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1 Introduction

The purpose of this note is to report on a certain family of finite complexes and
their cyclic structure. The complexes in question arise as compactifications of
moduli spaces of directed Riemann surfaces. The cyclic structure is an action of
a cyclic group on the cells. The order of this cyclic operator and its behaviour
with respect to the face operators is somewhat different from the general theory
of cyclic objects. Nevertheless, it enables us to define Hochschild and cyclic
homology groups for these complexes and to develop basic properties. Using in
a addition a reflection operator one can also define dihedral and quaternionic
homology groups.

In the background of all this is the moduli space ﬁ(g) of directed Rie-
mann surfaces of genus g. It consists of conformal equivalence classes of triples
[F, O, X], where F is a closed Riemann surface and X is a tangent direction at

some point @. Since the mapping class group f(g) = mo(Diff T (F,0, X)) acts
freely on the contractible Teichmiiller space ’E(g) of marked directed surfaces,
the quotient ﬂ?t(g) is an orientable, open manifold of dimension 6g — 3 with the
homotopy type of Bf:(g). The group _I:(g) is better known as the mapping class
group of genus g surfaces with one boundary curves.

This moduli space 51(9) can be described as a configuration space P(g) of
slits in the complex plane; we recall this uniformization in section 3 from [B6 1].
A compactification P(g) was developed in [Bo 2]. It has a cell structure whose
chain complex resembles formally the Hochschild resolution of an algebra, and
there is a cyclic operation and an involution on the cells.

This analogy is strong enough to permit the definition of Hochschild ho-
mology groups H H.(P(g)) and cyclic homology groups HC,(P(g)) for these
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complexes. They are related to their (topological) homology groups by long
exact sequences

.- — HH.(P(g)) — H.(S'(g)) — H\-1(P(g9)) — - --
and

- — H.(S)(g)) — HC.(P(g)) — HCu—2(P(9)) — ---

in which H,(S%(g)) is the homology of an intermediate complex. Our intension
is to use this apparatus to study the spaces P(g)/W(g), which are Poincaré dual

to the moduli spaces 9}}(;}), and to study the spaces U(g) = U(g)/(U(g) N D(g)).

Here we merely report on some basic ideas. We have as yet no interpretation
available of such important connection between cyclic homology groups and K-
Theory, the homology of Lie-algebras, Kahler forms, etc. .

We point out that 9—).1(g) carries a (non-free) S'-action given by rotation of
the tangent vector or X'. The quotient is the moduli space of genus g surfaces
with one puncture. We have as yet now description of this action on the home-
omorphic space P(g); but we expect this action to be directly related to the
cyclic action on cells. Complex conjugation of conformal structures is another

symmetry on {ﬁ(g); in this case it will be easy to see that it transforms to the
reflection operator on cells.
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2 Moduli and parallel slit domains

We recall the describtion of the moduli space ﬁ(g) which leads to the compact-
ification. The reader is refered to [B6 1] for more details.

Let [F,0,X] € 5‘{(5}) be a directed Riemann surface of genus g. There is a
function u : F — R = R U co with the following properties: (1) u is harmonic
away from O, and (2) u(z) — Re(1/z) is smooth and vanishes at O for any local
parameter z around O such that z(0) = 0 and dz(X') = —dz. This characterizes
u uniquely up to an additve and a positive multiplicative constant.

Let the critical graph K of the gradient flow of u consist of the dipole @, all
zeroes of the flow, and of all integral curves which leave zeroes. Since Fy = F'\ K
is connected and simply-connected, u is the real part of a holomorphic map
w=u-+1w : Fy — C; w is unique, up to another additive constant for the
harmonic-conjugate v of u. The complement of w(Fy) C C, — described as a



configuration of 2¢g pairs of of slits in the complex plane C, — will comprise all
moduli of the conformal class [F, O, X].

A slit Ly, is a horizontal half-line, starting at some point z; = (2, yx) € C,
and unbounded to the left. There are always 4g slits, paired by a fixed point free
involution A in the symmetric group G4, acting on the indexset I = {1,...,4g}.
A configuration is subject to two conditions:

(1) Ye < Yk+1

(2) Tk = Tatk)
No assumption is made so far about the slits being disjoint or different.

To associate a surface /(L) to L we glue, for each pair k and A(k), the upper
(resp. lower) bank of Ly to the lower (resp. upper bank of Lxx). As basepoint
we choose O = oo and X is the direction of —dz under the local parameter
¢+~ 1/¢. If F(L) is a (non-singular) surface, it inherits from C a conformal

structure, and thus [F, O, X] € ﬁt(g) In case F'(L) has singularities, or if it is
a surface of a genus smaller than g, we call L degenerate.

The following conditions (3) and (4) guarantee that O resp. no finite point
of F(L) is singular. Define a new permutation ¢ = X o ¢, where ¢ denotes the
cyclic rotation k — k + 1 (mod 4g). Let k()\) + 1 denote the number of cycles
of o, which can be any even number between 0 and 4g. We admit only X for
which

(3) Ii(/\) =10

holds; such a X is called connected.
The next condition excludes certain subconfigurations.

(4) There are no three indices k, k+1 and k+2 such that :
/\(k) = k + 2) Lk = Lk+2 and Lk+1 g Lk-

In [B6 2] we examined in detail, what type of singular surfaces occur if (3) or
(4) are violated.

It is obvious from the gluing process that two different configurations can
lead to conformally equivalent surfaces. Then they are connected by a chain of
moves (called Rauzy-moves) of the following type: if Ly_; C Ly then Lj,_; can
jump to the upper bank of the slit L(k)- In its new position it will be contained
in L), and all slits overtaken by this move change their index by a cyclic
rotation and A is conjugated accordingly. Such a move leaves F(L) certainly
invariant. The equivalence classes generated by Rauzy moves are denoted by
£ =[L1,...,Lag|A]. A class is called non-degenerate, if none of its representa-
tives violates (3) or (4); such classes are in older literatur known as parallel slit
domains.



On the space of all parallel slit domains the contractible 3-dimensional group
of similarities of C acts freely as a group of conformal invariants. It is generated
by translations in the z- and y-direction and dilations, whose parameters cor-
respond precisely to the three undetermined constants in the complex potential
w. We therefore introduce the following normalisations.

(5) vy = 0
(6) Yag =
(7) min{zr} = 0

These conditions are invariant under moves, and thus conditions on a class. For
a non-degenerate class we always have y; < ya,, enabling us to normalize as in
(5) and (6). In a non-degenerate class the slits can not lie on the same horizontal,
but all slits can end on the same vertical. The main result of [Bo 1] is that the
space of all non-degenerate, normalized configuration classes is homeomorphic

to the moduli space 971(_(])

It will be convenient for the compactification to introduce the condition
(8) maz{zp} < 1.

This restricts to a subspace, which is homeomorphic to the entire space by
reparametrizing the real parts of the slit end points. We denote this space of
all classes satisfying (1) to (8) by 9B(g). What we said above implies that this

configuration space JB(g) is hoeomorphic to the moduli space D_J:t(g) for all g.

3 The cyclic structure of the compactification

One can compactify the space B(g) by taking its closure in the space of all
normalized classes of configurations: one simply forgets about the condition (4)
and replaces (8) by the weak inequality

9) maz{zy} < 1.

This compactification of the moduli space is denoted by P(g). Let D(g) be
the subspace of degenerate classes. The subspaces N(g), consisting of all classes
with maz{z} = 1, is a partial boundary of the manifold P(g). The subspace
U(g) of all classes such that maz{xz;} = 0 (which we call uni-level surfaces) is
a homotopy retract of P(g), see [B6 2]. U(g) and N(g) are disjoint, but N(g)
and D(g) are not. W(g) = D(g)UN(g) is called the periphery of P(g), because
B(g) = P(g) \ W(g). Since P(g) is an orientable manifold of dimension 6g — 3,
Poincaré duality implies H*(P(g), W(g)) = Heg—3-+(P(g)) for all coefficients,
see [Bo 2].



It was shown in [B6 2] that P(g) is a finite cell complex, whose cells are
encoded by symbols

(10) E = [ao,al,...,an+1|/\ ]Bg,Bl,...Bm+1]:[a|)\|B].

If the slits lie on n 42 distinct y-levels — the 0-th being y = 0, the (n + 1)-st
being y = 1 — then a; is the number of slits on the i-th horizontal. Thus
0 < a; < 4y, Z?;ol = 4g and 0 < n < 4¢9 — 2. Similarily, if the slits start
at m + 2 distinct z-levels — the 0-th being z = 0, and the (m + 1)-st being
z = 1, although there may be none on this last vertical - then B; is the subset
of indices whose slits start on the j-th vertical. The B; are a A-invariant disjoint
decompostion of I, non-empty for j = 0,...,m;and 0 < m < 2g—1. Taking the
distances between these horizontals resp. verticals as barycentric coordinates,
the cell £ becomes a product of two open simplices, £ = A™ x A™. We call n
the vertical and m the horizontal dimension of E'; and ¢ = n+m is its dimension.

Since a Rauzy move changes some of the numbers a;, some of the sets B;
and conjugates A, this notation (10) for a cell is not unique, which is indicated
by the brackets refering to the equivalence relation generated by Rauzy moves.

But on the other hand, this notation makes it obvious, how similiar this
cell structure is to several well-known constructions like the bar-construction or
the Hochschild resolution of an algebra, as we shall see by looking at the face
operators.

There are face operators 9; for the first factor A™ and 9’ for the second
factor A™ of E, for i =0,...,nresp. for j =0,...,m :

(11) 8,’(E) = [ao,...,ai+ai+1,...,an+1|/\IBO,...,Bm+1],
(12) 8;/(E) = [(10, .. .,an+1| A IB(), .. .,Bj U Bj+1, .. .,Bm+1].

The cyclic structure of this cell complex comes from the cyclic operator 7

defined by
(13) 7(E) = [an41,80,...,an| 7o+ A 77041 | 7941 By . ron41 By ],

where 7 € G4, is the maximal cyclic permutation k¥ — k + 1 used earlier. 7
moves the last package of slits on the level y = 1 to the bottom to become the
first one; it follows that it is well-defined with respect to Rauzy moves. The
cycle number of ¢/ = 7%+1 )\ 77%+1 1 is the same as that of ¢ = A 7, thus
K4+t At~ %+1 t) = k(A) = 0. The sets B; are invariant under the new A.

T acts essentially on the first factor of E, in accordance with the general
philosophy that this factor seems to hold more information.

REMARK. It is not sensible to extend the action of 7 to also properly
rotate the horizontal entries B = (By,...Bpy41) of E. This would make the



subcomplexes D(g), N(g) and U(g) non-invariant. The same remark applies to
the reflection operator below.

The order of 7 on a cell E is not its dimension, but determined by its vertical
dimension,

(14) ™12 = id.

The subspaces D(g), N(g), U(g) and W(g) are subcomplexess under this cell
decomposition. The presence of singular subconfigurations as descibed in (4) is
independent of the values of barycentric coordinates and therefore a property of
a cell £ furthermore, such subconfigurations are then also present in each face
of the cell and in the cell 7(E). N(g) resp. U(g) can be characterized by the
properties By, 11 # 0 resp. m = 0 of their cells; both properties are invariant
under the face operators and the cyclic operator.

The relations between face operators and the cyclic operator are recorded in
the following easily proved

LEMMA 1

(15) 6505‘]’- = ;100 for 0<i<j<nm,

(16) dod = 800, for 0<i<n,

(17) 0/ 00] = 0f_ 100 for 0<i<j<m,

(18) 0i00] = 08/0d,, for 0<j<m,

(19) 0;00] = 909 for 0<i<n, 0<j<m,
(20) 700, = 8ot for 0<i<n-—1,

(21) 700, = 8jor?

(22) 700 = 0ot for 0<j<m.

It is not clear, how this cyclic structure fits into the general theory of cyclic
sets and cyclic spaces as developed in [C], [B], [DHK], [G], [J] and others. There
are no degeneracy operators, since the complex P(g) is finite dimensional. The
degenaracies seem to be important to put an S'-action on the geometric realiza-
tion, see [J]. We point out that the cyclic structure restricted to the subcomplex
U(yg) is closer to the general theory; only the order of 7 is n + 2 instead of
n+ 1, what can be regarded as an effect of our normalization, i.e. the cone of
Ul(g) is a cyclic set in the sense of [C]. On the other hand, certain other cyclic
constructions are used, where the order of 7 differs from the general theory, e.g.
the edgewise subdivision in [BHM].

The S'-action on the moduli space 5)}(5]) is given by rotating the tangent
direction X, i.e. a-[F,0,X] = [F, O, aX]for an angle a € S*. It is well-defined,
since the tangent bundle of F' is a complex vector bundle. This action is not
free; whenever O is a fixed point under some (necessarilly) cyclic automorphism



of F order r, then Z/rZ < S! is the isotropy group of [F, 0, X] for any direction
X.

But at this point we do not know, how this action transforms to this specific
parametrization P(g) of the moduli space.

REMARK. There is also a free S!-action on the ”homotopy-type” of P(g).
The mapping class group f(g) is the central extension of the pointed mapping
class group I''(g) = mo(Diff+(F,©)) by an infinite cyclic group generated by a
Dehn-twist along a null-homotopic curve enclosing the point @. Thus BI'(g) is
the total space of an S'-bundle. But the rotation does not lift to a free flow on

the Teichmiiller space E(g); only the isotropy is disjoint from the integral part
Z < R. the

4 The chain complex of P(g)

For any commutative ring K with unit let S(g) be the chain complex with S(g)
the free K-module generated by all cells E of P(g) of dimension ¢ = n+m. The
boundary 0 : Se(9) — Se-1(g) is given by

(23) 8=+ (-1)"9"

with R .

(24) &= (-1)'8; and 0"=) (-1Y 9
$=0 j=0

Since 9" and 0" commute by (19), we have d 0 d = 0. We call § the topolog-
ical boundary operator, and denote its homology H.(S(g),8) by H.(P(g)) =
H.(P(9);K).

We now exploit the fact that S(g) looks formally similiar to the Hochschild
resolution of same algebra A, if we interpret the entry a = (ag,...,an41) as a
tensor in A®("+2). The Hochschild boundary operator b : Sy(g) — Sp—1(g) is
defined as

(25) b= + (=1)"18} 7 + (=1)"8"
0

Using the commutation relations of Lemma 1 it is straightforward to show bob =
0. We denote the complex S(g) with the boundary operator b by S”(g), and
call its homology H H,(P(g)) = H.(S(g),b) the Hochschild homology of P(g).

Let T = (—1)"*2r be the (signed) cyclic operator, denote the invariance
operator by D = id—T, and the norm operator by N = id+T+T>+...+T"+1.
Then we obtain

LEMMA 2
(26) boD=Dod
(27) 60N:N0b



Proof: The arguments in [LQ] carry over verbatim.

Thus we can form the double complex C(g) with Cj, 4(g) = S,(g) and bound-
ary d : Cp 4(g) — Cp—1,¢®Cp ¢—1(9) given by d = D—9 for odd p, and d = N+b
for even p. Let the cyclic homology of P(g) be the homology of the associated
total complex, HC\(P(g)) = H.(Tot(C(g)),d).

Different from the classical situation is that the complex S(g) is not acyclic;
in fact, its homology is precicely what interests us. Note that the total complex
is periodic in dimensions above 6g — 3, since S(g) vanishes there.

There is an earlier definition of cyclic homology, which uses the complex of
7-coinvariants instead of the double complex C(g). Denote by S (g) the quotient
complex with Sg(g); Si(g)/im(D). Because of (26) S(g) inherits from S(g) a
boundary operator b.

PROPOSITION 1

If Q CK, then §(g) is quasi-isomorphic to T'ot(C(g)).

Proof: One applies the usual argument, that the rows of C(g) form a free
resolution of the cyclic groups Z/¢Z. In our case, however, their are several
groups involved per row. Let the terms Si(g) = @Drim=t Snm(g) in the £
th row be decomposed according the vertical and horizontal bigrading of their
cells. The summands are no subcomplexes (neither for d nor for b), but they are
invariant under both D and N. Thus for each ¢ and n the summands Sni=nlg)
form in the £-th row of C(g) a free, periodic resolution of the group Z/¢Z with
alternating differential D and N. The "row spectral sequence” of C(g), which
converges to H.(Z/lZ;K), is trivial as soon as Q C K. It follows that the
homology of T'ot(C/(g)) is isomorphic to the homology of S(g).

This means a considerable advantage in terms of actual computations for
small g. The orbits of 7 tend to be quite large, and so the complex S(g) is much
smaller.

REMARK. In search of an algebra behind all this we perhaps may first
concentrate on the subspace U(g) or U(g). The cells are then all of type (n, 0),
and we write /' = [a|A] = [ao, ..., an+1]|A]. Let A be the ideal in the polynomial
ring K[X] generated by X. We write X¢ for the tensor X% @ ... @ X%+ in
An = A%+ To involve A, we consider the K-module A in the group ring
K[S4,] generated by all connected pairings, i.e. free involutions A € G4, with
k(A) = 0. Consider now the ideal Z, C A,®xA generated by all differences
X*® X — X% @ X such that [a|A] und [a/|\'] are related by a Rauzy-move. If
Ay is the quotient by this ideal, then the complex A = (A,) inherits from the
Hochschild resolution of A a ”topological” and a Hochschild boundary 0 resp.
b. This is the complex we study.



5 The Connes-Gysin diagram

To relate the three homologies H, HH and HC' we consider the following com-
plexes and chain maps. Let the complex S*(g) consist of the first two columns
of C(g), with d as boundary operator; and let T'ot’(C(g)) be the total complex
associated to the double complex C'(¢g) minus the first column, graded such that
C1,0(g) = So(g) is the degree zero part. In the following diagram

D

4

0 — Sb(g) —

0 — S'(g9) — Tot(

=
|
&)
— e o
&
|
o

(9)) — STot

—

Clg) — 0

——

™
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b
&

C(g)) = ZTo

o
O e—
S
P
o
N’
N

all maps are inclusions, except for two shift maps. sh : T'ot(C(g)) — XTot'(C(g))
is the chain map induced by shifting the columns of the double complex C(g)
one column to the left. And sh? : Tot(C(g)) — E2Tot(C(g)) is then the pe-
riodicity self-map of T'ot(C(g)). ¥ denotes the suspension of a complex. The
diagram is commutative is commutative, and we obtain

PROPOSITION 2
There is the a diagram of long exact sequences :

l
- HH*?P(g)) —  H.(SY9) — H._1(P(9)) ==

— HH.(P(9)) — HC.(P(9) — H.a(Tot'(C(g)) —

HC._2(P(g)) =  HC._

l

(P(9))

— —

In the classical situation of an algebra the term H.(P(g)) would vanish and
the diagram would reduce to the long exact Connes-Gysin sequence. sh? is then
Connes’ periodicity operator. The diagram suggests that perhaps H.(S*(g))
should be named the Hochschild homology.

Since the total complex T'ot(C(g)) is periodic in high dimensions, the shift
induces an isomorphism.



PROPOSITION 3 The double shift
sh? : HC,(P(g)) — HCu-s(P(g))
is an isomorphism for * > 6g — 5.

As a consequence, the cyclic homology HC.(P(g)) differs from the peri-
odic cyclic homology HCY*"(P(g)) = limg HC4y2¢(P(g)) only in dimension
* < 6g — 3.

It is clear that everything said so far is also true, if we replace the space
P(g) by any of the spaces P(g)/W(g), P(g)/D(g), U(g) or U(g); note that the
dimesion of the last two spaces is 49 — 2. Recall that P(g)/W(g) is Poincaré

dual to S)_;):t(g); thus if we work ove a field we obtain results about the homology
of the moduli space directly.

6 Dihedral and quaternionic homology

We briefly mention another operator, the reflection W = (—1)3(n+h(n+2),,
where w acts on a cell E by

(28) W(E) = [ant1,n,- .-, a1,a0| w A w™w(By),. .. ,w(Bm+1)]

Here w € G4, is the involution k — 49 + 1 — k.

LEMMA 3
(29) Wod, = 08,_;oW for 0<i<n,
(30) Wod! = oW for 0<j<m.

It follows that

(31) Wod = (=1)"8oW,
(32) Wod" = 0"oW.

One can define dihedral and quaternionic homology groups for the complexes
P(g) and the various sub- and quotient complexes, following [L 1]. The easiest
case is U(g) or U(g). For W it is obvious, that it is the transformed complex
conjugation of P(g); a conjugation of the conformal structure is for a parallel slit
domain just complex-conjugation of its slits in C, and that amounts to reading
the slits in reversed order from top to bottom.
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