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A REMARK ON THE SIZE OF ﬂq(Sn)

Carl-Friedrich Bddigheimer and Hans-Werner Henn

Classical results of homotopy theory are used to prove

n
that dim‘wQ(SnyDZp < 3(q-2) for all primes p. Simul-
taneously we obtain bounds on the order of the p-torsion

subgroup of ﬂq(Sn).

Introduction. It might be known to many algebraic topo-
logists that the work of James [J?] and Toda [TJ on the
(double) suspension provide tools to get bounds on the rank
of TTq(Sn) and its torsion subgroup. Recently Selick [ S ]
has given a rather crude estimate for the p-rank of TTq(Sn)
for odd primes only. In a more direct approach than he we
offer better bounds for the p-rank of q(Sn) and the order
of its p-torsion subgroup for all primes based on the
simple idea that the size of the middle group of an exact

sequence is bounded by the size of the two outer groups.

Let p be a prime and denote by Op(q,n) the order of the

torsion subgroup of ﬂq(s?p)) and by Rp(q,n) the rank of
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2 BYDIGHEIMER - HENN

nq(Sn(p)). For p odd we always concentrate on odd spheres

2n-1 4n-1
Stp) X 95(p)

in [82]. We first prove some Fibonacci type recursion

because of Serre's splitting QS%;) &

formulae.

Lemma. (i) If p = 2, then

(1) R,(a,n+1) # R,(q-1,n)+R,(q,2n+1)

»n

(2a) 02(Q:n+1) 2’02((1-1:") f_b_r (q’n)=(u:2)’(8’u)3(16’8)

(2b) Oz(q,n+1) S 02(q—1,n)»02(q,2n+1) otherwise.

(ii) If p > 2, then
(3) Rp(q,2n+1) £ Rp(q-2,2n—1)+Rp(q-1,2np-1)+Rp(q,2np+1)
(ba) Op(q,2n+1) H p-Op(q-2,2n—1) for q=2np, otherwise
(4b) Op(q,2n+1) £ Op(q-2,2n-1)'0p(q-1,2np-1)-Op(q,2np+1)

Proof. (i) For every n2*1 there is a 2-local fibration [J2]
gh _E nsn+1 N nSZn+1

where E is the suspension map. Applying Ta-1 gives (1).
Also (2b) follows provided all groups involved are finite.
Recall that = q(Sk) is torsion and thus finite unless q=k,
or g=2k-1 and k is even[ S,]; that means not all of our
groups are finite if gq=n+1, or g=2n+1, or g=2n and n even.
Obviously (2b) holds in the first two cases. If q=2n and n
is even then E, is epic and its kernel is generated by the
Whitehead product [ idn,idn Jof the identity of s™ which has
Hopf invariant 2 [W;p.495,549]. Therefore kerk, is infinite

cyclic and a direct summand unless ﬂ2n_1(sn) contains an

element with Hopf invariant 1, i.e. unless n=2,4 or 8 [A].
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Hence (2a) and (2b) follow easily.
(ii) Toda's two p-local fibrations [T ]
s2n 2n+1 2np+1

— QS — QS

p-1

SZn-i 2n 2np-1

—» QJ__, S — QS

p-1
where Jk is the k=th stage of the James construction [Ji]’

imply (3) and (4b) since now the only non-trivial case with
infinite groups occurs for q=2np; now (l4a) follows from [T]

or [H;p.309f].

Denote by Sp(q,n) either Rp(q,n) or 1ogp0p(q,n) where again

n is odd if p> 2. Our bound reads as follows.

n
Proposition. Sp(q,n) ¢ 3973 for all primes.

n
Furthermore, if 0<d <1 then Sp(q,n) € Bd(q-§) for

almost all primes.

Proof: For each prime the inequalities hold obviously (for
any positive value of 0 ) if n=1 or n2q. Suppose now they
hold for all (q',n') with q'< q or q'=q and n+1< n'. By

applying the Lemma (twice if p=2) we arrive at

In

-1 np-1 np+1
v (a-2-552) ¢ (a-1-2B32) ¢ (q-2B5)
Spla,n+l) €3 +3 +3 2

¢ (a-2tL) r -¢ - n(p-1)
3 27 5 + 2-3 2 ]

For n2*2 this yields
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In

_n+l - - -
30'(qn2)[30' O‘(pi)]

Sp(q,n+1) + 23

30‘ (q-%)

provided we have O = 1 or p large enough. The case n=1
remains for the prime 2 only; we find for q> 2
G(q-2 a(q-
5,(a,2) £ 5,(a,3) + S,(a-1,1) ¢ 3°(47%) ¢ 59(a"D)

using the Lemma and Sz(q-i,i) =0

Remarks. a) The proof actually shows that the second

-G
1 13
glogs (=)

inequality holds for p 2 1 - .
b) There are sequences b(q,n) which satisfy (1)
or (3), respectively, and grow exponentially (for fixed p
and n) in the sense that for some d >0 and C>1 we have
b(q,n) > 4.¢% for almost all q. Hence to produce smaller
than exponential bounds on the growth of Sp(q,n) one needs
more information from homotopy theory than provided by the

Lemma.
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