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ABSTRACT
Sums of squares representations of polynomi-
als are of fundamental importance in real al-
gebraic geometry. In 1888, Hilbert [3] gave a
complete characterisation of the pairs (n, 2d)
for which a n-ary 2d-ic form non-negative on
Rn can be written as sums of squares of other
forms. This poster presents our recent results
[1, 2] giving the analogue of Hilbert’s character-
isation under the additional assumptions of sym-
metry and even symmetry on the given form.

ANALOGUE OF HILBERT’S THEOREM FOR SYMMETRIC FORMS
• Theorem (Choi-Lam, 1976): SPn,2d = SΣn,2d if and only if n = 2 or 2d = 2 or (n, 2d) = (3, 4).
I If n = 2 or 2d = 2 or (n, 2d) = (3, 4), then SPn,2d = SΣn,2d follows by Hilbert’s Theorem
I Conversely, enough to find f ∈ SPn,2d \ SΣn,2d for the pairs (3, 6) and (n, 4) ∀ n ≥ 4, using:

Proposition [Reduction to Basic cases]: If SΣ3,6 ( SP3,6 and SΣn,4 ( SPn,4 ∀ n ≥ 4, then
SΣn,2d ( SPn,2d ∀ n ≥ 3, 2d ≥ 4 and (n, 2d) 6= (3, 4).

Proof: By Lemma 1 (below), f ∈ SPn,2d\SΣn,2d⇒ (
∑n
j=1 xj)

2if ∈ SPn,2d+2i\SΣn,2d+2i ∀ i ≥ 0.

• (Robinson, 1969): R(x, y, z) :=
∑3

x6 −
∑6

x4y2 + 3x2y2z2 ∈ SP3,6 \ SΣ3,6

• (Choi-Lam, 1976): f(x, y, z, w) :=
∑6

x2y2 +
∑12

x2yz − 2xyzw ∈ SP4,4 \ SΣ4,4

[The summations in the above two examples denote the full symmetric sums]
• To construct explicit f ∈ SPn,4 \SΣn,4 for n ≥ 5, we [1] consider the following symmetric quartic
in n ≥ 4 variables:

Ln(x) := m(n−m)
∑
i<j

(xi − xj)4 −
(∑
i<j

(xi − xj)2
)2; where m = bn2 c

• Proposition: Ln is psd for all n and sos for even n.
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DEFINITIONS & NOTATIONS
• n-ary 2d-ic form: Fn,2d := homogenous poly-
nomials in n variables and of degree 2d
• Positive semidefinite (psd) form:
Pn,2d := {f ∈ Fn,2d|f(x) ≥ 0 ∀ x ∈ Rn}
• Sum of squares (sos) form:
Σn,2d := {f ∈ Fn,2d|f =

∑
i hi(x)2, hi ∈ Fn,d}

• Symmetric form: f ∈ Fn,2d such that
f(xσ(1), . . . , xσ(n)) = f(x1, . . . , xn) ∀ σ ∈ Sn
• SPn,2d := {f ∈ Fn,2d|f is symmetric & psd}
• SΣn,2d := {f ∈ Fn,2d|f is symmetric & sos}
• Even symmetric form: f ∈ Fn,2d such that f is
symmetric and all its monomials appear with
even exponents
• SPen,2d := {f ∈ Fn,2d|f is even symm & psd}
• SΣen,2d := {f ∈ Fn,2d|f is even symm & sos}

RESULTS 1
• Lemma 1: Let f ∈ Pn,2d \ Σn,2d and p an irreducible indefinite form of degree r in n variables.
Then p2f ∈ Pn,2d+2r \ Σn,2d+2r.
• Theorem: If n ≥ 5 is odd, then Ln is not sos.
• Theorem: For m ≥ 2, C2m(x1, . . . , x2m) := L2m+1(x1, . . . , x2m, 0) ∈ SP2m,4 \ SΣ2m,4.

EXTENSION OF HILBERT’S THEOREM FOR EVEN SYMM. FORMS
• (Q) : For what pairs (n, 2d) is SPen,2d ⊆ SΣen,2d?
• Let ∆n,2d := SPen,2d \ SΣen,2d and Mr(x1, . . . , xn) := xr1 + . . .+ xrn for an integer r ≥ 1

• Known: ∆n,2d = ∅ if n = 2, d = 1, (n, 2d) = (n, 4)n≥4, (3, 8), and
∆n,2d 6= ∅ for (n, 2d) = (n, 6)n≥3, (3, 10), (4, 8)

• To get a complete answer to (Q), we need to look at the pairs (3, 2d)d≥6, (n, 8)n≥5, (n, 2d)n≥4,d≥5
HILBERT’S 1888 THEOREM
Every sos form is automatically psd (by defini-
tion), but not the converse:
• Theorem (Hilbert, 1888): Pn,2d = Σn,2d if
and only if n = 2 or 2d = 2 or (n, 2d) = (3, 4).
I The arguments for Pn,2d = Σn,2d for n = 2

& d = 1 were already known in the late 19th
century and Hilbert proved P3,4 = Σ3,4

I Conversely, Hilbert proved Σ3,6 ( P3,6 and
Σ4,4 ( P4,4, and demonstrated that
Proposition [Reduction to Basic cases]: If
Σ3,6 ( P3,6 and Σ4,4 ( P4,4, then Σn,2d (
Pn,2d ∀ n ≥ 3, 2d ≥ 4 and (n, 2d) 6= (3, 4).
Idea of Proof: If f ∈ Pn,2d \ Σn,2d, then
f ∈ Pn+j,2d \ Σn+j,2d ∀ j ≥ 0 and

x2i1 f ∈ Pn, 2d+2i \ Σn, 2d+2i ∀ i ≥ 0.
• (Motzkin, 1967): M(x, y, z) := z6 + x4y2 +
x2y4 − 3x2y2z2 ∈ P3,6 \ Σ3,6

• (Choi-Lam, 1976): Q(x, y, z, w) := w4+x2y2+
y2z2 + z2x2 − 4xyzw ∈ P4,4 \ Σ4,4

RESULTS 2
• Lemma: For n ≥ 3, the even symmetric real forms pn := 4

∑n
j=1 x

4
j − 17

∑
1≤i<j≤n x

2
ix

2
j and

qn :=
∑n
j=1 x

6
j + 3

∑
1≤i 6=j≤n x

4
ix

2
j − 100

∑
1≤i<j<k≤n x

2
ix

2
jx

2
k are irreducible over R.

• Theorem [Degree Jumping Principle]: Suppose f ∈ ∆n,2d for n ≥ 3, then
(i) for any integer r ≥ 2, the form p2an q

2b
n f ∈ ∆n,2d+4r, where r = 2a+ 3b; a, b ∈ Z+,

(ii) (x1 . . . xn)2f ∈ ∆n,2d+2n.

• Proposition [Reduction to Basic cases]: If ∆n,2d 6= ∅ for (n, 8)n≥4, (n, 10)n≥3 and (n, 12)n≥3, then
∆n,2d 6= ∅ for (n, 2d)n≥3,d≥7.
• Theorem: For m ≥ 2, D2m := C2m(x21, . . . , x

2
2m) ∈ ∆2m,8 and G2m+1 := L2m+1(x21, . . . , x

2
2m+1)

∈ ∆2m+1,8.
• Theorem: For n ≥ 4, Tn(x1, . . . , xn) := M2

(
M3

2 − 5M2M4 + 6M6

)
∈ ∆n,8.

• Theorem: For n ≥ 4, Pn(x1, . . . , xn) := (nM4 −M2
2 )(M3

2 − 5M2M4 + 6M6) ∈ ∆n,10.
• Theorem: For n ≥ 3, Rn(x1, . . . , xn) := (M3

2 − 3M2M4 + 2M6)(M3
2 − 5M2M4 + 6M6) ∈ ∆n,12.

• Theorem [Analogue of Hilbert’s Theorem for even symmetric forms]:
SPen,2d = SΣen,2d if and only if n = 2, d = 1 or (n, 2d) = (n, 4)n≥4, (3, 8).

TEST SETS FOR POSITIVITY
• Ω ⊆ Rn is a test set for f if f is psd if and only
if f(x) ≥ 0 for all x ∈ Ω.
• Choi, Lam, Reznick and Harris gave test
sets for symmetric quartics and even symmet-
ric sextics, octics and ternary decics.
• Theorem (Timofte, 2003): A symmetric real
polynomial of degree 2d in n variables is non-
negative on Rn ⇔ it is nonnegative on the sub-
set Λn,k := {x ∈ Rn | number of distinct com-
ponents in x is ≤ k }, where k := max{2, d}.

SUMMARISING

I (n, 2d) for which SPn,2d ⊆ SΣn,2d:
2d

=

\ n = 2 3 4 5 6 . . .

2 X X X X X . . .
4 X X × × × . . .
6 X × × × × . . .
8 X × × × × . . .
...

...
...

...
...

...
. . .

I (n, 2d) for which SPen,2d ⊆ SΣen,2d:
2d \ n 2 3 4 5 6 . . .
2 X X X X X . . .
4 X X X X X . . .
6 X × × × × . . .
8 X X × × × . . .
10 X × × × × . . .
12 X × × × × . . .
...

...
...

...
...

...
. . .


