Young Women in Algebraic Geometry

Analogue of Hilbert's 1888 Theorem for Symmetric and Even Symmetric forms Charu Goel

(Joint work with Salma Kuhlmann and Bruce Reznick)

ABSTRACT

Sums of squares representations of polynomials are of fundamental importance in real algebraic geometry. In 1888, Hilbert [3] gave a complete characterisation of the pairs (n, 2d) for which a *n*-ary 2*d*-ic form non-negative on \mathbb{R}^n can be written as sums of squares of other forms. This poster presents our recent results [1, 2] giving the analogue of Hilbert's characterisation *under the additional assumptions* of symmetry and even symmetry on the given form.

ANALOGUE OF HILBERT'S THEOREM FOR SYMMETRIC FORMS

- Theorem (Choi-Lam, 1976): $SP_{n,2d} = S\Sigma_{n,2d}$ if and only if n = 2 or 2d = 2 or (n, 2d) = (3, 4).
- ► If n = 2 or 2d = 2 or (n, 2d) = (3, 4), then $S\mathcal{P}_{n,2d} = S\Sigma_{n,2d}$ follows by Hilbert's Theorem
- ► Conversely, enough to find $f \in S\mathcal{P}_{n,2d} \setminus S\Sigma_{n,2d}$ for the pairs (3,6) and $(n,4) \forall n \ge 4$, using: **Proposition [Reduction to Basic cases]:** If $S\Sigma_{3,6} \subsetneq S\mathcal{P}_{3,6}$ and $S\Sigma_{n,4} \subsetneq S\mathcal{P}_{n,4} \forall n \ge 4$, then $S\Sigma_{n,2d} \subsetneq S\mathcal{P}_{n,2d} \forall n \ge 3, 2d \ge 4$ and $(n, 2d) \ne (3, 4)$.

Proof: By Lemma 1 (below), $f \in S\mathcal{P}_{n,2d} \setminus S\Sigma_{n,2d} \Rightarrow \left(\sum_{j=1}^{n} x_j\right)^{2i} f \in S\mathcal{P}_{n,2d+2i} \setminus S\Sigma_{n,2d+2i} \forall i \ge 0.$

• (Robinson, 1969): $R(x, y, z) := \sum^{3} x^{6} - \sum^{6} x^{4}y^{2} + 3x^{2}y^{2}z^{2} \in S\mathcal{P}_{3,6} \setminus S\Sigma_{3,6}$ • (Choi-Lam, 1976): $f(x, y, z, w) := \sum^{6} x^{2}y^{2} + \sum^{12} x^{2}yz - 2xyzw \in S\mathcal{P}_{4,4} \setminus S\Sigma_{4,4}$ [The summations in the above two examples denote the full symmetric sums]

DEFINITIONS & NOTATIONS

• *n-ary* 2*d-ic form*: $\mathcal{F}_{n,2d}$:= homogenous polynomials in *n* variables and of degree 2*d* • *Positive semidefinite* (*psd*) *form*: $\mathcal{P}_{n,2d} := \{f \in \mathcal{F}_{n,2d} | f(\underline{x}) \ge 0 \forall \underline{x} \in \mathbb{R}^n\}$ • *Sum of squares* (*sos*) *form*: $\Sigma_{n,2d} := \{f \in \mathcal{F}_{n,2d} | f = \sum_i h_i(\underline{x})^2, h_i \in \mathcal{F}_{n,d}\}$ • *Symmetric form*: $f \in \mathcal{F}_{n,2d}$ such that $f(x_{\sigma(1)}, \ldots, x_{\sigma(n)}) = f(x_1, \ldots, x_n) \forall \sigma \in S_n$ • $S\mathcal{P}_{n,2d} := \{f \in \mathcal{F}_{n,2d} | f \text{ is symmetric & psd}\}$ • $S\Sigma_{n,2d} := \{f \in \mathcal{F}_{n,2d} | f \text{ is symmetric & sos}\}$ • *Even symmetric form*: $f \in \mathcal{F}_{n,2d}$ such that f is symmetric and all its monomials appear with even exponents

• $S\mathcal{P}^{e}_{n,2d} := \{f \in \mathcal{F}_{n,2d} | f \text{ is even symm \& psd} \}$ • $S\Sigma^{e}_{n,2d} := \{f \in \mathcal{F}_{n,2d} | f \text{ is even symm \& sos} \}$

HILBERT'S 1888 THEOREM

Every sos form is automatically psd (by definition), but not the converse: • Theorem (Hilbert, 1888): $\mathcal{P}_{n,2d} = \Sigma_{n,2d}$ if and only if n = 2 or 2d = 2 or (n, 2d) = (3, 4). • To construct explicit $f \in S\mathcal{P}_{n,4} \setminus S\Sigma_{n,4}$ for $n \ge 5$, we [1] consider the following symmetric quartic in $n \ge 4$ variables:

$$L_n(\underline{x}) := m(n-m) \sum_{i < j} (x_i - x_j)^4 - \left(\sum_{i < j} (x_i - x_j)^2\right)^2; \text{ where } m = \lfloor \frac{n}{2} \rfloor$$

• **Proposition:** L_n is psd for all n and sos for even n.

Results 1

• Lemma 1: Let $f \in \mathcal{P}_{n,2d} \setminus \Sigma_{n,2d}$ and p an irreducible indefinite form of degree r in n variables. Then $p^2 f \in \mathcal{P}_{n,2d+2r} \setminus \Sigma_{n,2d+2r}$.

- **Theorem:** If $n \ge 5$ is odd, then L_n is not sos.
- Theorem: For $m \ge 2$, $C_{2m}(x_1, \ldots, x_{2m}) := L_{2m+1}(x_1, \ldots, x_{2m}, 0) \in S\mathcal{P}_{2m,4} \setminus S\Sigma_{2m,4}$.

EXTENSION OF HILBERT'S THEOREM FOR EVEN SYMM. FORMS

• (\mathcal{Q}) : For what pairs (n, 2d) is $S\mathcal{P}_{n, 2d}^e \subseteq S\Sigma_{n, 2d}^e$? • Let $\Delta_{n, 2d} := S\mathcal{P}_{n, 2d}^e \setminus S\Sigma_{n, 2d}^e$ and $M_r(x_1, \dots, x_n) := x_1^r + \dots + x_n^r$ for an integer $r \ge 1$ • Known: $\Delta_{n, 2d} = \emptyset$ if $n = 2, d = 1, (n, 2d) = (n, 4)_{n \ge 4}, (3, 8)$, and

 $\Delta_{n,2d} \neq \emptyset$ for $(n,2d) = (n,6)_{n \ge 3}, (3,10), (4,8)$

• To get a complete answer to (Q), we need to look at the pairs $(3, 2d)_{d \ge 6}, (n, 8)_{n \ge 5}, (n, 2d)_{n \ge 4, d \ge 5}$

- The arguments for $\mathcal{P}_{n,2d} = \Sigma_{n,2d}$ for n = 2& d = 1 were already known in the late 19th century and Hilbert proved $\mathcal{P}_{3,4} = \Sigma_{3,4}$
- Conversely, Hilbert proved $\Sigma_{3,6} \subsetneq \mathcal{P}_{3,6}$ and $\Sigma_{4,4} \subsetneq \mathcal{P}_{4,4}$, and demonstrated that **Proposition [Reduction to Basic cases]:** If $\Sigma_{3,6} \subsetneq \mathcal{P}_{3,6}$ and $\Sigma_{4,4} \subsetneq \mathcal{P}_{4,4}$, then $\Sigma_{n,2d} \subsetneq$ $\mathcal{P}_{n,2d} \forall n \ge 3, 2d \ge 4$ and $(n, 2d) \ne (3, 4)$. **Idea of Proof:** If $f \in \mathcal{P}_{n,2d} \setminus \Sigma_{n,2d}$, then $f \in \mathcal{P}_{n+j,2d} \setminus \Sigma_{n+j,2d} \forall j \ge 0$ and

 $x_1^{2i}f \in \mathcal{P}_{n,\ 2d+2i} \setminus \Sigma_{n,\ 2d+2i} \ \forall \ i \ge 0.$

• (Motzkin, 1967): $M(x, y, z) := z^6 + x^4 y^2 + x^2 y^4 - 3x^2 y^2 z^2 \in \mathcal{P}_{3,6} \setminus \Sigma_{3,6}$ • (Choi-Lam, 1976): $Q(x, y, z, w) := w^4 + x^2 y^2 + y^2 z^2 + z^2 x^2 - 4xyzw \in \mathcal{P}_{4,4} \setminus \Sigma_{4,4}$

TEST SETS FOR POSITIVITY

RESULTS 2

- Lemma: For $n \ge 3$, the even symmetric real forms $p_n := 4 \sum_{j=1}^n x_j^4 17 \sum_{1 \le i < j \le n} x_i^2 x_j^2$ and $q_n := \sum_{j=1}^n x_j^6 + 3 \sum_{1 \le i \ne j \le n} x_i^4 x_j^2 100 \sum_{1 \le i < j < k \le n} x_i^2 x_j^2 x_k^2$ are irreducible over \mathbb{R} . • Theorem [Degree Jumping Principle]: Suppose $f \in \Delta_{n,2d}$ for $n \ge 3$, then (i) for any integer $r \ge 2$, the form $p_n^{2a} q_n^{2b} f \in \Delta_{n,2d+4r}$, where r = 2a + 3b; $a, b \in \mathbb{Z}_+$, (ii) $(x_1 \dots x_n)^2 f \in \Delta_{n,2d+2n}$.
- **Proposition [Reduction to Basic cases]:** If $\Delta_{n,2d} \neq \emptyset$ for $(n, 8)_{n \ge 4}$, $(n, 10)_{n \ge 3}$ and $(n, 12)_{n \ge 3}$, then $\Delta_{n,2d} \neq \emptyset$ for $(n, 2d)_{n \ge 3, d \ge 7}$.
- Theorem: For $m \ge 2$, $D_{2m} := C_{2m}(x_1^2, \dots, x_{2m}^2) \in \Delta_{2m,8}$ and $G_{2m+1} := L_{2m+1}(x_1^2, \dots, x_{2m+1}^2)$ $\in \Delta_{2m+1,8}$.
- **Theorem:** For $n \ge 4$, $T_n(x_1, \ldots, x_n) := M_2 \left(M_2^3 5M_2M_4 + 6M_6 \right) \in \Delta_{n,8}$.
- Theorem: For $n \ge 4$, $P_n(x_1, \ldots, x_n) := (n\dot{M_4} M_2^2)(M_2^3 5M_2\dot{M_4} + 6M_6) \in \Delta_{n,10}$.
- **Theorem:** For $n \ge 3$, $R_n(x_1, \ldots, x_n) := (M_2^3 3M_2M_4 + 2M_6)(M_2^3 5M_2M_4 + 6M_6) \in \Delta_{n,12}$.
- Theorem [Analogue of Hilbert's Theorem for even symmetric forms]: $S\mathcal{P}^e_{n,2d} = S\Sigma^e_{n,2d}$ if and only if n = 2, d = 1 or $(n, 2d) = (n, 4)_{n \ge 4}, (3, 8)$.

SUMMARISING

(m, 2d) for which $S\mathcal{D} \to C S\Sigma$

- $\Omega \subseteq \mathbb{R}^n$ is a *test set* for f if f is psd if and only if $f(\underline{x}) \ge 0$ for all $\underline{x} \in \Omega$.
- Choi, Lam, Reznick and Harris gave test sets for symmetric quartics and even symmetric ric sextics, octics and ternary decics.
- Theorem (Timofte, 2003): A symmetric real polynomial of degree 2d in n variables is non-negative on $\mathbb{R}^n \Leftrightarrow$ it is nonnegative on the subset $\Lambda_{n,k} := \{ \underline{x} \in \mathbb{R}^n \mid \text{number of distinct components in } \underline{x} \text{ is } \leq k \}$, where $k := \max\{2, d\}$.

$\blacktriangleright (n, 2a)$ for which $S \nearrow_{n,2d} \subseteq S \angle_{n,2d}$.										
$\begin{bmatrix} 2d \setminus n = \\ \parallel \end{bmatrix}$	2	3	4	5	6	•••				
2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	•••				
4	\checkmark	\checkmark	\times	\times	\times	•••				
6	\checkmark	×	×	×	×	•••				
8	\checkmark	×	×	×	×	• • •				
•	• •	• • •	• •	• • •	•	•••				

► $(n, 2d)$ for which $S\mathcal{P}^{e}_{n, 2d} \subseteq S\Sigma^{e}_{n, 2d}$:										
$\boxed{2d\setminus n}$	2	3	4	5	6	• • •				
2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	• • •				
4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	• • •				
6	\checkmark	×	×	×	×	• • •				
8	\checkmark	\checkmark	\times	\times	\times	• • •				
10	\checkmark	\times	\times	\times	\times	• • •				
12	\checkmark	\times	×	×	×	• • •				
•	•	•	•	•	•	•				

REFERENCES

C. Goel, S. Kuhlmann, B. Reznick, On the Choi-Lam Analogue of Hilbert's 1888 theorem for symmetric forms, arXiv:1505.08145, 2015.
 C. Goel, S. Kuhlmann, B. Reznick, The Analogue of Hilbert's 1888 theorem for even symmetric forms, arXiv:1509.07482, 2015.
 D. Hilbert, Über die Darstellung definiter Formen als Summe von Formenquadraten, Math. Ann., 32 (1888), 342-350.