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A Quotient of the Ree Curve

Definition 1: The function field of the Ree curve C ′/Fq (where q = 3q20,with q0 = 3s, s ≥ 1) is given by
Fq(C

′) = Fq(x, y1, y2), with

yq1 − y1 = xq0(xq − x) (1)

yq2 − y2 = xq0(yq1 − y1). (2)

The genus of C ′ is g = 3
2
q0(q − 1)(q + q0 + 1), and it has 1 + q3 Fq-rational points, including one point at

infinity.

Let X be the non-singular model of the function field of the affine curve defined by (1). It is a quotient of
C ′/Fq, via the map π : C ′ → X such that

(x, y1, y2) 7→ (x, y1).

For the sake of simplicity we will replace y1 by y, so (the function field of) X is defined by the equation

yq − y = xq0(xq − x).

We state some important facts developed about the curve X in [4, 5].

Proposition 1: X/Fq is irreducible with a single point at infinity (i.e. in the complement of the affine
curve), denoted by P∞. The rational functions on X/Fq, defined by

1, x, y, u = x3q0+1 − y3q0 , and v = x2y3q0 − u3q0

are regular on X \ {P∞}. At P∞, the pole orders of these functions are

−ord∞(1) = 0, −ord∞(x) = q, −ord∞(y) = q + q0,

−ord∞(u) = q + 3q0, −ord∞(v) = 2q + 3q0 + 1.

The element xu
v

is a uniformizer at P∞.

Proposition 2: The curve X has genus g = 3
2
q0(q − 1) with 1 + q2 Fq-rational points. The divisor of the

differential dx, known as the canonical divisor KX is given by

div(dx) = (2g − 2)P∞

.
See [5] for proof.

Zeta Function and Holomorphic Differentials on X

The Zeta function of the Ree curve C
′

is given by

Z(C
′
, T ) =

(1 + 3q0T + qT 2)q0(q
2−1)(1 + qT 2)

q0(q−1)(q+3q0+1)
2

(1− T )(1− qT )

Being quotient of the Ree curve, X then has Zeta function.

Z(X,T ) =
(1 + 3q0T + qT 2)q0(q−1)(1 + qT 2)

q0
2
(q−1)

(1− T )(1− qT )

Proposition 3: The curve X : yq − y = xq0(xq − x)/Fqr , (where q = 3q20,with q0 = 3s, s ≥ 1) is maximal if
and only if r ≡ 6(mod12)

Space of Holomorphic Differentials on X

Define a set I of indices (a, b, c, d) ∈ Z4 by the following conditions:

1. a, b, c, d ≥ 0.

2. a+ b+ c+ 2d ≤ 3q0 − 1.

3. If a+ b+ c+ 2d = 3q0 − 2 then 0 ≤ c ≤ 2q0 − 2. Writing c = 2q0 − 2− i, where 0 ≤ i ≤ 2q0 − 2, either
(i) b+ 3d < 2 + 3i and d ≤ q0+i

2
or (ii) b+ 3d = 2 + 3i and 0 ≤ d ≤ q0 − 2.

4. If a+ b+ c+ 2d = 3q0 − 1 then 0 ≤ c ≤ q0 − 2. Writing c = q0 − 2− j, b+ 3d ≤ 2 + 3j.

Proposition 4: The differential xaybucvd dx is holomorphic if and only if (a, b, c, d) ∈ I.

Proposition 5: Define J = {(a, b, c, d) ∈ I | 0 ≤ b ≤ 2 and 0 ≤ c, d ≤ q0 − 1}. Then

{xaybucvd dx | (a, b, c, d) ∈ J}

is a basis for H0(X,Ω1).

Remark 1: According to the Riemann-Roch Theorem, for the canonical divisor KC on the smooth projective
curve C,

l(KC) = l(H0(C,Ω1)) = g

One can easily verify that the above propositions produce exactly g differentials fdx,
where f = xaybucvd : (a, b, c, d) ∈ J .

Algebraic Geometric Codes

Linear Codes

Definition 2: A linear code C(n, k, d) over a finite field F is a subspace of F n. The elements of C are called
codewords.
n: length of code.
k: dimension of code as a subspace.
d: minimum distance defined as

d(C) := min{d(x, y)|x, y ε C and x 6= y} = min{wt(x)|0 6= x ε C}.

Remark 2: C(n, k, d) can detect d− 1 and correct up to bd−1
2
c errors.

Remark 3: For an efficient code, we need large d (to correct more errors) and large k (to transmit long
messages).

For each linear code C(n, k, d) we define the generating matrix G(C) by the help of k- basis vectors for C,
i.e. if ri = (ri1, ri2.....rin) form basis for C, where 1 ≤ i ≤ k , then the generating matrix is given by

G(C) =


r11 r12 . . . r1n
r21 r22 . . . r2n
. . . . . .
. . . . . .
. . . . . .
rk1 rk2 . . . rkn



Algebraic Geometric Codes

Algebraic geometric codes (commonly known as Goppa codes) are linear codes constructed with the help of
algebraic curves over the finite field with many rational points (i.e. maximal curves).
Let C be a smooth curve over Fq. Let D = P1 + P2 + .....Pn be a divisor ε Div(C) , where Pi′s(1 ≤ i ≤ n)
are Fq− rational points on C.
Let G be another divisor on C, such that Supp(G) is disjoint from {Pi′s}.
Let f ′is ε L(G) form a basis for L(G). We can evaluate each of f ′is at the rational points P ′is(1 ≤ i ≤ n) ,
thus we can define a map ϕ : L(G)→ Fn

q by

ϕ(fi) = (fi(P1), fi(P2), .....fi(Pn))

The Image of ϕ produces Goppa codes on C.

Algebraic Geometric Codes on X

On X : yq − y = xq0(xq − x), if we take D = P1 + P2 + .....Pq2 and G = (2g − 2)P∞. Then by Remark 1,
f ′is ε L(G) = L(KX). These f ′is (where 1 ≤ i ≤ g), when evaluated at Pj’s (where 1 ≤ j ≤ q2) produce the
generating matrix for Goppa codes as follows

G(C) =


f1(P1) f1(P2) . . . f1(Pq2)
f2(P1) f2(P2) . . . f2(Pq2)
. . . . . .
. . . . . .
. . . . . .

fg(P1) fg(P2) . . . fg(Pq2)



In particular, for s = 1, g = 117 i.e. 117 rational functions serve as a basis and hence form 117 rows of our
generating matrix (i.e. k = 117). On the other hand, in case of s = 1, number of rational points involved in
the divisor D are q2 = 729 and they form n = 729 columns of the generating matrix. With these parameters
d ≤ n− (2g − 2) = 497, this produces a code C which may correct up to 248 errors.

References

1. V. D. Goppa. Geometry and Codes. Kluwer Academic Publishers, Dordrecht, (1988).

2. J. P. Hansen and H. Stichtenoth. Group codes on certain algebraic curves with many rational points.
Appl. Algebra Engrg. Comm. Comput., 1,(1990): 67-77.

3. J. P. Hansen, Deligne-Lusztig varieties and group codes, in Coding theory and algebraic geometry (Lu-
miny, 1991), Lect. Notes Math. 1518, 63-81, Springer- Verlag, 1992.

4. S. Farwa, Exact holomorphic differentials on certain algebraic curves. Ph. D. thesis, University of Shef-
feld, June (2012).

5. N. Dummigan, S. Farwa, Exact holomorphic differentials on a quotient of the Ree curve, Journal of
Algebra, 400,(2014): 249-272.

2015 COMSATS Institute of Information Technology, Wah Campus, Paksitan
drsfarwa@gmail.com


