Young Women in Algebraic Geometry

On the Selmer group associated to a modular form

Yara Elias

Ph.D advisor : Prof. Henri Darmon

Birch-Swinnerton-Dyer conjecture

Mordell-Weil: Let E be an elliptic curve over a number field K. Then

 $E(K) \simeq \mathbb{Z}^r + E(K)_{tor}$

where

- r = the algebraic rank of E
- $E(K)_{tors}$ = the finite torsion subgroup of E(K).

Questions arising:

- When is E(K) finite?
- How do we compute r?
- Could we produce a set of generators for $E(K)/E(K)_{tors}$?

Modularity (Wiles-BCDT): For $K = \mathbb{Q}$, L(E/K, s) has analytic continuation to all of \mathbb{C} and satisfies

 $L^{*}(E/K, 2-s) = w(E/K)L^{*}(E/K, s).$

The analytic rank of E/K is defined as

$$r_{an} = ord_{s=1}L(E/K, s)$$

Birch and Swinnerton-Dyer conjecture:

 $r = r_{an}$.

Exact sequence of G_K **modules:** Consider the short exact sequence

$$0 \longrightarrow E_p \longrightarrow E \xrightarrow{p} E \longrightarrow 0.$$

Local cohomology: For a place v of $K = Q(\sqrt{-D}), K \hookrightarrow K_v$ induces $Gal(\overline{K_v}/K_v) \longrightarrow Gal(\overline{K}/K)$.

Definition

- $Sel_p(E/K) = ker(\rho)$
- $\amalg(E/K)_p = ker(h)$

Importance of the Selmer group

Information on the algebraic rank r:

$$0 \longrightarrow E(K)/pE(K) \xrightarrow{\delta} Sel_p(E/K) \longrightarrow \mathrm{III}(E/K)_p \longrightarrow 0$$

relates r to the size of $Sel_p(E/K)$.

Shafarevich-Tate conjecture: The Shafarevich group III(E/K) is finite. In particular,

$$Sel_p(E/K) = \delta(E(K)/pE(K))$$

for all but finitely many p.

Gross-Zagier:

$$L'(E/K, 1) = * height(y_K),$$

where $y_K \in E(K) \sim$ Heegner point of conductor 1. Hence,

 $r_{an} = 1 \implies r \ge 1.$

Kolyvagin: If y_K is of infinite order in E(K) then $Sel_p(E/K)$ has rank 1 and so does E(K). Hence,

$$r_{an} = 1 \implies r = 1$$

Combined with results of Kumar and Ram Murty, this can be used to show

$$r_{an} = 0 \implies r = 0.$$

Generalization:

- $E \rightsquigarrow f, \quad T_p(E) \rightsquigarrow T_p(f)$
- f normalized newform of level $N \ge 5$ and even weight 2r.
- $T_p(f) = p$ -adic Galois representation associated to f, higher-weight analogue of the Tate module $T_p(E)$
- $K = \mathbb{Q}(\sqrt{-D})$ imaginary quadratic field (with odd discriminant) satisfying the Heegner hypothesis with $|\mathcal{O}_K^{\times}| = 2$.

Beilinson-Bloch conjecture

Definition: The Selmer group

 $Sel_p \subseteq H^1(K, T_p(f))$ consists of the cohomology classes whose localizations at a prime v of K lie in

 $\begin{cases} H^1(K_v^{ur}/K_v, T_p(f)) \text{ for } v \text{ not dividing } Np \\ H^1_f(K_v, T_p(f)) \text{ for } v \text{ dividing } p \end{cases}$

where

- K_v is the completion of K at v
- and $H^1_f(K_v, T_p(f))$ is the finite part of $H^1(K_v, T_p(f))$.

p-adic Abel-Jacobi map:

- W_r = Kuga-Sato variety of dimension 2r 2.
- $T_p(f)$ is realized in the middle cohomology $H^{2r-1}_{et}(W_r \otimes \overline{\mathbb{Q}}, \mathbb{Z}_p)$ of W_r .
- $E(K) \rightsquigarrow CH^r(W_r/K)_0 = r$ -th Chow group of W_r over K.
- transition map $\delta \rightsquigarrow p\text{-adic}$ Abel Jacobi map ϕ

$$CH^r(W_r/K)_0 \to H^1(K, H^{2r-1}_{et}(W_r \otimes \overline{\mathbb{Q}}, \mathbb{Z}_p(r))) \to H^1(K, T_p(f))$$

Beilinson-Bloch conjectures:

$$dim_{\mathbb{Q}_p}(Im(\phi)\otimes\mathbb{Q}_p)=ord_{s=r}L(f,s)$$

 $Ker(\Phi) = 0 \& Im(\Phi) \otimes \mathbb{Q}_p = Sel_p.$

Heegner point of conductor 1:

- \rightsquigarrow there is an ideal \mathcal{N} of \mathcal{O}_K with $\mathcal{O}_K/\mathcal{N} \simeq \mathbb{Z}/N\mathbb{Z}$
- \rightsquigarrow point x_1 of $X_0(N)$ = modular curve with $\Gamma_0(N)$ level structure
- $\rightsquigarrow x_1$ is defined over the Hilbert class field K_1 of K
- $\rightsquigarrow y_1 = \phi(x_1)$, for $\phi: X_0(N) \to E$ modular parametrization

Kolyvagin: If $Tr_{K_1/K}(y_1)$ is of infinite order in E(K) then $Sel_p(E/K)$ has rank 1 and so does E(K).

Modular forms of higher even weight. Consider the elliptic curve E corresponding to x_1

• \rightsquigarrow Heegner cycle of conductor 1: $\Delta_1 = e_r \ graph(\sqrt{-D})^{r-1}$

• $\rightsquigarrow \Delta_1$ belongs to $CH^r(W_r/K_1)_0$.

Nekovar: Assuming $\Phi(\Delta_1)$ is not torsion,

 $rank(Im(\Phi)) = 1.$

Results

Modular forms twisted by a ring class character

- H = ring class field of conductor c for some c, and e = exponent of G = Gal(H/K)
- $F = \mathbb{Q}(a_1, a_2, \cdots, \mu_e)$ where the a_i 's are the coefficients of f
- $\hat{G} = \text{Hom}(G, \mu_e)$ the group of characters of G
- $e_{\chi} = \frac{1}{|G|} \sum_{g \in G} \chi^{-1}(g)g$ the projector onto the χ -eigenspace

Theorem 1 Let $\chi \in \hat{G}$ be such that $e_{\overline{\chi}} \Phi(\Delta_c)$ is not divisible by p. Then the χ -eigenspace of the Selmer group Sel_p^{χ} is of rank 1 over $\mathcal{O}_{F,\wp}/p$.

Modular forms twisted by an algebraic Hecke character

- $\psi : \mathbb{A}_K^{\times} \longrightarrow \mathbb{C}^{\times}$ unramified Hecke character of K of infinity type (2r 2, 0)
- A elliptic curve defined over the Hilbert class field K_1 of K with CM by \mathcal{O}_K
- $F = \mathbb{Q}(a_1, a_2, \cdots, b_1, b_2, \cdots)$, where the a_i 's and b_i 's are the coefficients of f and θ_{ψ} .

Galois representation associated to f and ψ

$$V = V_f \otimes_{\mathcal{O}_F \otimes \mathbb{Z}_p} V_{\psi}(2r-1).$$

Generalized Heegner cycle of conductor 1: Consider (φ_1, A_1) where

- A_1 is an elliptic curve defined over K_1 with level N structure and CM by \mathcal{O}_K and
- $\varphi_1: A \longrightarrow A_1$ is an isogeny over \overline{K} .

p-adic Abel-Jacobi map

$$\phi: CH^{2r-1}(X/K)_0 \longrightarrow H^1(K,V)$$

where

•
$$X = W_{2r-2} \times A^{2r-2}$$
 and $CH^{2r-1}(X/K)_0 = 2r - 1$ -th Chow group of X over K.

Theorem 2 Under certain technical assumptions, if

 $\Phi(\Delta_{\varphi_1}) \neq 0,$

then the Selmer group Sel_p has rank 1 over $\mathcal{O}_{F,\wp_1}/p$, the localization of \mathcal{O}_F at $\wp_1 \mod p$.

2015 Max Planck Institute for Mathematics, Bonn, Germany yara.elias@mail.mcgill.ca