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Interpolation of entire functions on regular sparse

sets and q-Taylor series

par Michael WELTER

Résumé. Nous donnons une démonstration alternative d’un théo-
rème de Ismail et Stanton et appliquons cela à des fonctions en-
tières arithmétiques.

Abstract. We give a pure complex variable proof of a theo-
rem by Ismail and Stanton and apply this result in the field of
integer-valued entire functions. Our proof rests on a very general
interpolation result for entire functions.

1. Introduction

In [4] (see also the references there) Ismail and Stanton established q-
analogues of Taylor series expansions of entire functions, so–called q-Taylor
series, and gave some applications of these. Their proofs depend heavily
on the theory of basic hypergeometric functions.

In this note we will deduce one of their theorems from an interpolation
formula which we will prove in section 2. In section 3 we will give another
application of the q-Taylor series in the field of the so–called integer-valued
entire functions and give a first answer on a question asked by Ismail and
Stanton in [4].

We start with some definitions and notations. Throughout this section
let q, a ∈ C \ {0} with |q| 6= 1. We denote by Q the maximum of |q| and∣∣q−1

∣∣.
The q-shifted factorials are defined by

(a; q)0 := 1, (a; q)n := (1− aqn−1)(a; q)n−1 for n = 1, 2, 3, . . . .

We put

zn :=
1
2
(aqn + a−1q−n)

and

φn(z; a) :=
n−1∏
k=0

(1− 2azqk + a2q2k) ∈ C[z]
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for n = 0, 1, 2, 3, . . .. Finally we denote for an entire function f

σ(f) := lim sup
r→∞

log |f |r
(log r)2

,

where as usual |f |r := max|z|=r |f(z)|. The theorem of Ismail and Stanton
(Theorem 3.3 in [4]) states

Theorem 1.1. Let f be an entire function with σ(f) < 1/(2 logQ). Then
we have for all z ∈ C

(1) f(z) =
∞∑

n=0

qnfn,φφn(z; a)

with

fn,φ =
n∑

k=0

(−1)kqk(k−1)/2(1− a2q2k)
(q; q)k(q; q)n−k(a2qk; q)n+1

f(zk).

Remark. Ismail and Stanton state the theorem only for real a, q with
0 < a, q < 1.

2. Interpolation of entire functions on regular sparse sets

For subsets X ⊂ C we put ψX(r) = card {x ∈ X| |x| ≤ r}.
Definition. We call a subset X ⊂ C regular sparse, if X is infinite, discrete
and satisfies the following condition:
There exist θ ∈]1,+∞[ and T ∈ R such that

(2) ψX

(
rθ
)
≤ TψX (r) + o(ψX (r)) when r → +∞.

In [6] we studied entire functions f that are integer-valued on regular
sparse sets X ⊂ Z. There we proved the following characterization of
regular sparse sets (see [6], Lemma 1).

Lemma 2.1. Let X be an infinite, discrete subset of C. Then the following
three statements are equivalent:

(i) X is regular sparse.
(ii) For all θ ∈]1,+∞[ there exists a T ∈ R such that ψX

(
rθ
)
≤ TψX (r)+

o(ψX (r)) when r → +∞.
(iii)

Λ(X) := lim sup
r→∞

1
log rψX (r)

∑
x∈X\{0}
1<|x|≤r

log |x| < 1.

Therefore it is useful to define

TX(θ) := lim sup
r→+∞

ψX

(
rθ
)

ψX (r)
∈ [1,+∞[

and the main result of this section states as follows.
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Theorem 2.2. Let X be a regular sparse subset of C and let (xn)n∈N0 be
the sequence of all distinct elements of X ordered by increasing modulus.
Then we have for all entire functions f with

(3) lim sup
r→+∞

log |f |r
ψX (r) log r

< sup
θ∈]1,+∞[

θ − Λ(X)
θTX(θ)

=: γ0

the series expansion

f(z) =
∞∑

n=0

AX,nPX,n(z),

where PX,0(z) := 1 and PX,n(z) := (z − xn−1)PX,n−1(z) for all n ≥ 1 and

(4) AX,n =
n∑

k=0

n∏
ν=0
ν 6=k

(xk − xν)−1f(xk).

Therefore, every such f is uniquely determined by its values on X.

Remark. In [6] we proved that the entire function g which is defined by

g(z) :=
∏

x∈X\{0}

(
1− z

x

)
has a growth bounded by

log |g|r ≤ (1− Λ(X))ψX (r) log r + o(ψX (r) log r)

for all sufficiently large r, where

Λ(X) := lim inf
r→∞

1
ψX (r) log r

∑
x∈X\{0}
1<|x|≤r

log |x| .

Before we prove the above theorem, we will deduce theorem 1.1 from it.

Proof of theorem 1.1. We set X = {zk|k ∈ N0}. Then we have ψX (r) =
log r/ logQ+O(1) when r → +∞, TX(θ) = θ and Λ(X) = 1/2. Hence (3)
becomes σ(f) < 1/(2 logQ).

The polynomial φn(z; a) is of degree n in z and has the property
φn(zk; a) = 0 for k = 0, . . . , n − 1. Hence φn(z; a) = cnPX,n(z) with
cn = (−1)n(2a)nqn(n−1)/2.
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We have

(q; q)k =
k∏

ν=1

(1− qν) =
k−1∏
ν=0

(1− qk−ν)

(q; q)n−k =
n−k∏
ν=1

(1− qν) =
n∏

ν=k+1

(1− qν−k)

(a2qk; q)n+1

(1− a2q2k)
= (1− a2q2k)−1

n∏
ν=0

(1− a2qk+ν)

=
k−1∏
ν=0

(1− a2qk+ν)
n∏

ν=k+1

(1− a2qk+ν)

and

(1− qk−ν)(1− a2qk+ν) = 2aqk(zk − zν)

(1− qν−k)(1− a2qk+ν) = −2aqν(zk − zν).

From this we deduce
(5)

(q; q)k(q; q)n−k
(a2qk; q)n+1

(1− a2q2k)
= (−1)n−k(2a)nqn(n+1)/2+k(k−1)/2

n∏
ν=0
ν 6=k

(zk − zν).

And therefore we get from (4)

(6) qnfn,φcn =
n∑

k=0

n∏
ν=0
ν 6=k

(zk − zν)−1f(zk) = AX,n.

This proves Theorem 1.1 �

Proof of theorem 2.2. Without loss of generality we assume that |x| ≥ 1 for
all x ∈ X.

Let n be a positive integer, which we assume to be sufficiently large. Let
r be a real with r > |xn−1|. We will specify r a little bit later in the proof.
For every z ∈ C with |z| < r we have (see e.g. Bundschuh [3])

(7) f(z) =
n−1∑
ν=0

AX,νPX,ν(z) +RX,n(z)

where

(8) AX,ν :=
1

2πi

∫
|ξ|=r

f(ξ)dξ
PX,ν+1(ξ)
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and

(9) RX,n(z) :=
PX,n(z)

2πi

∫
|ξ|=r

f(ξ)dξ
(ξ − z)PX,n(ξ)

.

Obviously (4) follows from (8) by Cauchy’s integral formula.
To prove the theorem, it is therefore enough to prove that under the

assumptions of Theorem 2.2 the reminder RX,n converges uniformly against
the zero function on any compact subset of C.

We suppose that we have log |f |r ≤ γψX (r) log r with a constant γ < γ0

for all sufficiently large r. Further we fix a θ ∈]1,+∞[ such that

γ <
θ − Λ(X)
θTX(θ)

.

Let δ > 0 and z ∈ C with |z| ≤ δ.
For θ > 1, we have 2 |xn| ≤ |xn|θ =: r for all sufficiently large n. There-

fore we can estimate
n−1∏
ν=0

(
1− |xν |

|xn|θ

)
≥
(

1
2

)n

= exp(O(ψX (r))).

The last equality follows from the fact that ψX (|xn|) = n+O(1) for all n.
By Proposition 1 of [6] we know, that for regular sparse sets X there are
constants c, α > 0 such that log |xn| ≥ cnα for all n. Hence the limit

C(δ) := lim
n→∞

n−1∏
ν=0

(
1 +

δ

|xν |

)
exists. This leads to

|PX,n(z)| =

∣∣∣∣∣
n−1∏
ν=0

(z − xν)

∣∣∣∣∣ ≤ C(δ)
n−1∏
ν=0

|xν | ≤ C exp

 ∑
x∈X

|x|≤|xn|

log |x|


and for all ξ with |ξ| = r

|PX,n(ξ)| ≥
n−1∏
ν=0

(
|xn|θ − |xν |

)
≥ exp (θψX (|xn|) log |xn|+O(ψX (r)))

Further we have if n and therefore r is sufficiently large

log |f |r ≤ γψX

(
|xn|θ

)
log |xn|θ

≤ γTX(θ)θψX (|xn|) log |xn|+ o(ψX (|xn|) log |xn|).

Here we have again used the fact that the set X is regular sparse.
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If we further assume, that 2δ < r, then we get from (9)

|RX,n(z)| ≤ exp
(
(Λ(X)− θ + γθTX(θ))ψX (|xn|) log |xn|

+o(ψX (|xn|) log |xn|))
which shows that RX,n(z) converges against zero when n tends to infinity.
Hence the theorem is proven. �

3. Application of Theorem 1.1 to integer-valued entire functions

In this section we will give some statements about entire functions that
are integer-valued on the sequence zn = (aqn + a−1q−n)/2.

The following theorem is a corollary to Theorem 1 in [6], a general result
on integer-valued entire functions on regular sparse sets X ⊂ Z. From this
theorem one easily deduces

Theorem 3.1. Let a, q ∈ C \ {0} with |q| 6= 1 such that zn := 1
2(aqn +

a−1q−n) ∈ Z for every n ∈ N0, and let f be an entire function such that
f(zn) ∈ Z for every n ∈ N0 and

log |f |r ≤ γ
(log r)2

log |q|
, γ < 0.0225

for all sufficiently large r. Then f is a polynomial function.

Remark. The case a = ±1 was essentially treated by Bézivin in [1, 2]. By
using an interpolation series method he obtained a better upper bound for
γ than that in the above theorem. The sequence (zn) is the solution of the
linear difference equation un+1 = (q+ q−1)un−un−1 with the initial values
u0 = (a + a−1)/2 and a1 = (aq + a−1q−1)/2. Hence the condition zn ∈ Z
for all n ∈ N0 is obviously satisfied if the three numbers

a+ a−1

2
,
aq + a−1q−1

2
, q + q−1

are rational integers. Therefore the theorem above covers not only the case
a = ±1 and we get some new applications with a, q both lying in the same
real quadratic number field.

From the q-Taylor theorem 1.1, we can deduce the following result, which
covers another case.

Theorem 3.2. Let K be Q or an imaginary-quadratic number field and
OK be its ring of integers. Further let a, q ∈ OK \ {0} with |q| > 1 and
a2 6∈ {q−ν |ν ∈ N}. If f is an entire function satisfying f(zn) ∈ OK for all
n ∈ N0 and

log |f |r ≤ γ
(log r)2

log |q|
, where γ < 1/10

for all sufficiently large r, then f is a polynomial function.
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Proof. If Φd denotes the d-th cyclotomic polynomial, then we have for all
n ∈ N and k ∈ {0, . . . , n} (see Lang [5], p. 279f.)

(q; q)n

(q; q)k(q; q)n−k
=

n∏
d=1

Φd(q)[
n
d ]−[ k

d ]−[n−k
d ] ∈ Z[q].

Obviously we have ∏2n−1
ν=1 (1− a2qν)∏k−1

ν=0(1− a2qk+ν)
∏n

ν=k+1(1− a2qk+ν)
∈ Z[a, q].

Hence, if we put Dn := (q; q)n
∏2n−1

ν=1 (1 − a2qν) 6= 0, it follows from (5)
and (6) that DnAX,n ∈ Z[a, q] for all n ∈ N0. Therefore |DnAX,n| ≥ 1, if
DnAX,n is not equal to zero.

On the other hand, we find by (8) like in the proof of Theorem 2.2, again
with r := |zn|θ

|AX,n| ≤ exp
(
(γθ2 − θ)n2 log |q|+ o(n2)

)
and

|Dn| ≤ |q|
n(n+1)

2
+

(2n−1)2n
2

n∏
ν=1

(
1 + |q|−ν) 2n−1∏

ν=1

(
1 +

∣∣a2
∣∣ |q|−ν) .

Obviously the two infinite products
∞∏

ν=1

(
1 + |q|−ν)

and
∞∏

ν=1

(
1 +

∣∣a2
∣∣ |q|−ν)

converge, and therefore we get

|DnAX,n| ≤ exp
(
(γθ2 − θ + 5/2)n2 log |q|+ o(n2)

)
.

We now chose θ = 1/(2γ). If γ < 1/10 then the upper bound of |DnAX,n|
is less than 1 for all sufficiently large n. Hence DnAX,n = 0 for this n.
For we know that Dn is not zero, this implies that AX,n vanishes for all
sufficiently large n. This proves the theorem.

�
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