
QUOTIENTS OF THE ORBIFOLD FUNDAMENTAL GROUP OF

STRATA OF ABELIAN DIFFERENTIALS

URSULA HAMENSTÄDT

Abstract. Let S be a closed oriented surface of genus g ≥ 2. The orbifold
fundamental group of a component Q of a stratum of abelian differentials maps
into the mapping class group Mod(Sg,m) of S with m ≥ 1 marked points at
the zeros of the differentials in Q. We give an explicit description of the image

of this homomorphism.

1. Introduction

The moduli space H of abelian differentials on a closed oriented surface S of
genus g ≥ 2 (also called the Hodge bundle) decomposes into strata. Each such
stratum is determined by a partition 2g − 2 =

∑m
i=1 ki for some numbers ki ≥ 1,

and it consists of all abelian differentials with the same number m ≥ 1 of zeros of
the same multiplicities ki. Such a stratum, denoted by H(k1, . . . , km), is a complex
orbifold of complex dimension 2g − 1 + m. Strata are not necessarily connected,
but their connected components were classified by Kontsevich and Zorich [KZ03].

Up to date, not much is known about the orbifold fundamental group of compo-
nents of strata except for some strata in small genus. The case g = 2 is exceptional
as all surfaces of genus 2 are hyperelliptic. In this case there are only two strata.
These strata are connected, and they are classifying spaces for groups commensu-
rable to braid groups [FM12]. Looijenga and Mondello [LM14] found that several
components of strata in genus g = 3 are classifying spaces for finite type Artin
groups.

For every component Q of a stratum of abelian differentials with m ≥ 1 zeros
there is a natural forgetful map of Q into the moduli space Mg,m of complex struc-
tures on S with m marked points. This map associates to an abelian differential
q ∈ Q the underlying complex structure and the zeros of q, viewed as marked
points. It induces a homomorphism P from the orbifold fundamental group π1(Q)
of Q into the mapping class group Mod(Sg,m) of a surface Sg,m of genus g with m
marked points, well defined up to conjugation.

The homomorphism P is also defined for components of strata of quadratic
differentials. Walker [W09, W10] investigated its image. To describe her result,
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recall that the marked point forgetful map Sg,m → S = Sg,0 induces a Birman
exact sequence

0 → Γg,m → Mod(Sg,m)
Π
−→ Mod(S) → 0.

Walker found that for strata Q of quadratic differentials with at least g simple
zeros, the subgroup Pπ1(Q) of Mod(Sg,m) maps onto Mod(Sg,0) [W09]. She also
observed that the intersection of Pπ1(Q) with the group Γg,m is contained in the
kernel of a version of an Abel Jacobi map and, furthermore, that this intersection
equals the kernel of the Abel Jacobi map provided that the stratum consists of
quadratic differentials with sufficiently many simple zeros [W10].

The goal of this article is to give an explicit description of the image of the
homomorphism P for all components of strata of abelian differentials in every genus.
For the formulation of our result, we use the following definition.

Definition 1. An abelian differential q ∈ Q is called completely periodic admissible
for the component Q if the following conditions are satisfied.

(1) The differential q is horizontally and vertically periodic. Equivalently, every
regular leaf of the horizontal or the vertical foliation is closed.

(2) The collection C of core curves of the horizontal and vertical cylinders de-
compose S into m disks where m ≥ 1 is the number of zeros of a differential
z ∈ Q.

(3) Any two curves from the collection C of simple closed curves on S inter-
sect in at most one point. Furthermore, the graph whose vertices are the
curves from C and where two such vertices are connected by an edge if they
intersect is a tree.

In Section 2, we construct explicitly a completely periodic admissible differential
q for every component of any stratum of abelian differentials on any surface of
genus g ≥ 2. These differentials are all square-tiled, i.e. they are pullbacks of a
holomorphic one-form on a square torus T 2 by a covering branched over a single
point of T 2.

If q ∈ Q is such a differential with its collection C of core curves of horizontal
and vertical cylinders and if we mark a point in each component of S−C, then the
Dehn twists about the curves from C can be viewed as elements of the mapping
class group Mod(Sg,m). Our main result is the following

Theorem 2. Let Q be a component of a stratum of abelian differentials with m ≥ 1
zeros. Let q ∈ Q be a completely periodic differential which is admissible for Q; then
up to conjugation, the image Pπ1(Q) in Mod(Sg,m) of the orbifold fundamental
group π1(Q) of Q is generated by the Dehn twists about the core curves of the
horizontal and vertical cylinders of q.

Theorem 2 is also valid for the two-torus T 2. In this case it is equivalent to the
well known fact that the mapping class group SL(2,Z) of the torus T 2 (with or

without a marked point) is generated by the elements

(

1 1
0 1

)

and

(

1 0
1 1

)

.
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A completely periodic abelian differential q which is admissible for Q is by no
means unique. It is not hard to see that for each such differential q, the subgroup Γ
of Mod(Sg,m) generated by the Dehn twists about the core curves of the horizontal
and vertical cylinders of q is contained in Pπ1(Q) (see Corollary 3.8, and compare
with [H14] for an earlier explicit statement). An analogous result is also true for
components of strata of quadratic differentials. The major part of this article is
devoted to showing that Pπ1(Q) = Γ. In particular, the group Γ does not depend
on the choice of the completely periodic differential which is admissible for Q.

The description of the groups Pπ1(Q) in Theorem 2, although explicit, does
not provide an understanding of these groups. As they intersect the group Γg,m

in the kernel of a version of an Abel Jacobi map [W10], they are of infinite index
in Mod(Sg,m). But one of the natural questions one might ask is whether or not
they project to a subgroup of finite index in the mapping class group Mod(S) of S.

As the mapping class group of S acts by pull-back on the Teichmüller space H̃ of
marked abelian differentials on S, this question is equivalent to asking whether the
number of components of the preimage of the stratum in the Teichmüller space of
abelian differentials is finite.

The easier part of Theorem 2 together with some deep results of Salter [Sa17]
yields some information to this end. A much stronger version of its second and third
part is due to Calderon [Cal18] in independent work. His interesting approach rests
on an analysis of higher spin structures as suggested in [Sa17]. Here for a number
k ≥ 2 which divides 2g − 2, a Z/kZ- spin structure is a k-th root of the canonical
bundle of S.

Theorem 3. Let Q be a non-hyperelliptic component of a stratum of abelian dif-
ferentials.

(1) If q ∈ Q has at least one simple zero then the orbifold fundamental group
of Q surjects onto Mod(S).

(2) If g ≥ 5 and if q ∈ Q has at least one zero of odd order k < g − 1 which
divides g − 1 then the orbifold fundamental group of Q surjects onto the
finite index subgroup of Mod(S) which preserves a Z/kZ-spin structure.

(3) If Q ⊂ H(k1, . . . , km) with all ki even and if g ≥ max{2ki + 1, 21} for
some i such that ki divides 2g − 2, then the orbifold fundamental group of
Q surjects onto a finite index subgroup of Mod(S).

(4) If Q is the non-hyperelliptic component of H(4) then the orbifold funda-
mental group of Q surjects onto the stabilizer of a Z/4Z-spin structure in
Mod(S).

As a consequence of Theorem 2 and Theorem 3, in particular its extension by
Calderon [Cal18], we find new generating sets of Mod(S) consisting of 2g+1 Dehn
twists about non-separating simple closed curves. Namely, take any collection C
of 2g + 1 simple closed curves on S with properties (2) and (3) in Definition 1
which decompose S into a two disks whose boundaries are polygons with 4r + 2
and 4g − 4r + 2 sides, respectively, where r is odd and prime to g − 1. Then the
collection of Dehn twists about these curves generate Mod(S). We refer to Section
2 for more details.
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In view of the work of Wright [Wr15], we expect that there also is a version of
Theorem 2 for affine invariant manifolds and, in particular, for strata of quadratic
differentials. We refer to [H14] for some partial result in this direction.

In general, the homomorphism P : π1(Q) → Mod(Sg,m) is not injective. In
particular, a connected component of the preimage of Q in the Teichmüller space
of marked abelian differentials may not be simply connected. As an example, Looi-
jenga and Mondello [LM14] showed that the orbifold fundamental group of the
non-hyperelliptic component Q of the stratum H(4) is the quotient of the Artin
group A of finite type E6 by its center. There is a natural so-called geometric
homomorphism of A into Mod(S3,1) which maps the standard generators of A to
Dehn twists about the core curves of the horizontal and vertical cylinders of a com-
pletely periodic admissible differential q ∈ Q. Theorem 2 implies that the subgroup
P (A) of Mod(S3,1) is the image of A under a geometric homomorphism. However,
by a result of Waijnryb [Wj99] (see also [Ma00]), the kernel of any geometric ho-
momorphism A → Mod(S3,1) is not contained in the center of A.

To summarize, Theorem 2 describes an explicit quotient of π1(Q) which however
is non-trivial in general. In forthcoming work, we use Theorem 2 to compute the
orbifold fundamental group of components of strata with a single zero. This however
requires different tools.

As an application of the methods used for the proof of Theorem 2, we provide a
fairly easy topological computation of the image of the orbifold fundamental group
of a component of a stratum in the symplectic group Sp(2g,Z).

The Hodge bundle H over the moduli space Mg of Riemann surfaces of genus g
is equipped with a natural flat connection, the so-called Gauss-Manin connection.
This connection defines a trivialization of H over any contractible subset of moduli
space not containing any singular point, and this trivialization is unique up to
conjugation. If U is a contractible subset of a component Q of a stratum, then
there is a natural trivialization of the pullback Π∗H of the Hodge bundle H over U ,
defined by the pullback connection. If we fix such a trivialization, then for any fixed
basepoint x ∈ U , we can study the monodromy of the pullback connection along
loops based at x, and we can relate it to the monodromy along periodic orbits of Φt

passing through U . Equivalently (see [H14] for a detailed discussion), we can study
the subsemigroup of Sp(2g,Z) generated by the return maps of periodic orbits γ
for Φt passing through U .

Definition 4. The local monodromy group of the component Q of a stratum is
the following subgroup G of Sp(2g,Z). For q ∈ Q and a neighborhood U of q
in Q, let G(U) be the subgroup of Sp(2g,Z) generated by the monodromy maps
of parametrized periodic orbits for Φt beginning at a point in U , and define G =
∩U∋qG(U).

It is shown in [H14] that the group G does not depend on the point q ∈ Q.

Components of strata of abelian differentials with all zeros of even order which
are not hyperelliptic are distinguished by the parity of their spin structure [KZ03].
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Such a spin structure is a square root of the canonical bundle of S, and it deter-
mines a quadratic form q on H1(S,Z/2Z). The parity of the quadratic form is its
Arf invariant, an element of Z/2Z). Any two quadratic forms with the same Arf
invariant are conjugate under the action of the symplectic group Sp(2g,Z/2Z).

For a quadratic form q on H1(S,Z/2Z) denote by G(q) ⊂ Sp(2g,Z) the finite
index subgroup which maps under mod 2 reduction of coefficients to the stabilizer
of q in Sp(2g,Z/2Z). The first part of the following result is due to Avila, Matheus
and Yoccoz [AMY18], and the second and third part are due to Gutierrez-Romo
[GR17]. Their proofs use Rauzy Veech induction as their main tool while our
approach is purely topological.

Theorem 5 (Avila-Matheus-Yoccoz [AMY18], Gutierrez-Romo [GR17]). Let Q be
a component of a stratum of abelian differentials.

(1) If Q is hyperelliptic, then the local monodromy group is an extension of the
level two congruence subgroup of Sp(2g,Z) by the symmetric group in either
2g + 1 variables (for the component Hhyp(2g − 2)) or 2g + 2 variables (for
the component Hhyp(g − 1, g − 1)).

(2) If Q is a non-hyperelliptic component of a stratum of abelian differentials
with only zeros of even order and quadratic form q, then the local mon-
odromy group of Q equals the group G(q).

(3) If Q is a non-hyperelliptic component of a stratum of abelian differentials
with at least one zero of odd order, then the local monodromy group of Q
equals the group Sp(2g,Z).

For hyperelliptic components, Theorem 5 was established in [AMY18] using the
language of Rauzy Veech induction, and non-hyperelliptic components are treated
in [GR17], see also [H14].

Plan of the paper and strategy of the proof: In Section 2 we introduce ad-
missible curve systems and relate them to completely periodic abelian differentials.
In Section 3 we introduce the Arf invariant of a simple admissible curve system
and compute it for a specific collection of curve systems which are chosen in such
a way that they determine completely periodic differentials which are admissible
for all components strata with a single zero on a surface of genus g ≥ 2. We also
prove Theorem 3. In Section 4 we use the Dehn twists about the core curves of the
cylinders to give a fairly easy topological proof of a global version of Theorem 5.

In Sections 5 and 6 we associate to a component Q of a stratum of abelian
differentials a family of train tracks on S. In Section 7 we construct from a com-
pletely periodic abelian differential q which is admissible for Q a particular such
train track. In Section 8 we show that these train tracks can be used to navigate
in the component Q. This is then used to show that the subgroup of Pπ1(Q) of
Mod(Sg,m) defined by a completely periodic admissible differential is independent
of the differential.

Section 9 is mainly technical and establishes additional information on subgroups
of punctured mapping class groups generated by Dehn twists about the curves of
admissible curve systems. Section 10.1 introduces higher spin structures and gives
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some first relation to degenerations of abelian differentials to abelian differentials
on surfaces with nodes.

Section 11 contains the proof of part (4) of Theorem 3. This result is used as
the base for an argument by induction which leads to the proof of Theorem 2 in
Section 12.

Acknowledgement: A large part of this work was carried out in spring 2010 dur-
ing a special semester at the Hausdorff Institute for Mathematics in Bonn and in
the spring semester 2011 while the author was in residence at the Mathematical
Science Research Institute in Berkeley, California, and was supported by the Na-
tional Science Foundation. I thank both institutes for their hospitality and for the
excellent working conditions.

2. Curve diagrams and components of strata

Consider a closed surface S of genus g ≥ 2. The goal of this section is to introduce
admissible curve systems and show that they correspond to completely periodic
admissible abelian differentials for components of strata of abelian differentials on
S in the sense of the introduction.

We begin with reviewing the classification of components of strata of abelian
differentials due to Kontsevich and Zorich [KZ03]. A hyperelliptic component of
a stratum is the pull-back of a stratum of meromorphic quadratic differentials on
CP 1 under a two-sheeted branched cover S → CP 1 obtained by quotienting S by
a hyperelliptic involution.

Kontsevich and Zorich [KZ03] found that with the exception of the stratum
H(2ℓ−1, 2ℓ−1) (ℓ ≥ 2), all strata which contain a zero of odd order are connected.
The stratumH(2ℓ−1, 2ℓ−1) consists of two components. One componentHhyp(2ℓ−
1, 2ℓ− 1) is hyperelliptic, the other is not. The description of the components of a
stratum with all zeros of even order is as follows.

The zeros of an abelian differential on S, counted with multiplicities, define a
divisor on S whose dual line bundle is the canonical bundle for the complex structure
on S underlying the differential. If all orders of the zeros are even, then the square
root of the divisor is defined. Its dual line bundle is a square root of the canonical
bundle.

Let Z → S be the circle bundle of directions of non-zero tangent vectors on S.
The square roots of the canonical bundle correspond precisely to spin structures on
S, and these are classified by a coset of H1(S,Z/2Z) in H1(Z,Z/2Z). We refer to
Section 3 of [KZ03] for details about these facts.

A spin structure determines a quadratic form on the symplectic vector space
H1(S,Z/2Z), equipped with the mod 2 intersection form ι. By definition, a qua-
dratic form is a function q : H1(S,Z/2Z) → Z/2Z which satisfies

q(a+ b) = q(a) + q(b) + ι(a, b).
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The Arf invariant Arf(q) of such a quadratic form q is defined as follows. Choose
any symplectic basis a1, b1, . . . , ag, bg of H1(S,Z/2Z) and write

Arf(q) =
∑

i

q(ai)q(bi).

The parity of the spin structure is defined to be the Arf invariant of its quadratic
form. Thus each abelian differential with all zeros of even order determines a parity,
and the parity is constant on components of strata with all zeros of even order. We
refer to [KZ03] for a detailed discussion and for references.

The classification of components of strata with all zeros of even order is then as
follows [KZ03].

Theorem 2.1 (Kontsevich-Zorich). (1) For g ≥ 4, any stratum with all zeros
of even order contains two non-hyperelliptic connected components, distin-
guished by the parity of their spin structure.

(2) H(4) and H(2, 2) contain a single non-hyperelliptic component with odd
spin structure.

(3) For g = 2ℓ ≥ 4 even, the stratum H(4ℓ− 2) contains a hyperelliptic compo-
nent Hhyp(4ℓ−2). The only other hyperelliptic component for this genus is
the component Hhyp(2ℓ− 1, 2ℓ− 1) which contains zeros of odd order. The
parity of the spin structure of Hhyp(4ℓ− 2) is even if and only if g ≡ 0 mod
4.

(4) For g = 2ℓ + 1 ≥ 3 odd, the hyperelliptic components are Hhyp(2ℓ, 2ℓ) and
Hhyp(2ℓ). The parity of the spin structure of each of these components is
even if and only if g ≡ 3 mod 4.

For the construction of a completely periodic abelian differential q which is ad-
missible for a component Q of H(2g− 2) we have to compute the parity of the spin
structure defined by a completely periodic differential q. We first introduce some
terminology.

Definition 2.2. A curve system on S is a finite collection of simple closed smoothly
embedded non-contractible mutually not freely homotopic curves on S such that
any two curves from this collection intersect transversely in at most one point.

Note that the mapping class group of S naturally acts on the family of all curve
systems.

To each curve system is associated its curve diagram. This diagram is a finite
graph whose vertices are the curves from the system and where two vertices are
connected by an edge if and only if the curves representing these vertices intersect.

Remark 2.3. In [Lei04], in a slightly different context, a curve diagram as defined
above is called a configuration graph.

Example 2.4. Define a Humphries system for a surface of genus g to be a curve
system whose diagram consists of a line segment of length 2g with a single edge
attached to vertex 4. By Proposition 2.1 of [Lei04], any two Humphries systems are
equivalent under the action of the mapping class group. The mapping class group of
S is generated by the Dehn twists about the curves of a Humphries system (Section
4.4.3 of [FM12]).
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Definition 2.5. A curve system is admissible if it decomposes S into simply con-
nected components and if its curve diagram is a tree. An admissible curve system
is called simple if it consists of precisely 2g curves.

With this terminology, a Humphries system is admissible, but it is not simple.

Since the curve diagram of an admissible curve system C is connected, each
curve c ∈ C intersects at least one other simple closed curve on S transversely in
a single point and hence it is non-separating. If C is a simple curve system then
its components, equipped with an arbitrary orientation, define a basis for the first
integral homology group H1(S,Z) of S.

We next discuss the significance of curves systems for components of strata. The
following notion will be useful.

Definition 2.6. A consistent orientation of a curve system C = {c1, . . . , ck} is an
orientation of each of the curves ci with the following properties. Let p ∈ ci∩cj and
let us assume that the oriented basis (c′i, c

′
j) of TpS is positive (or negative) where

the tangent c′i, c
′
j is determined by the orientation of ci, cj . Then for any s 6= i, j

with ci ∩ cs = q 6= ∅, the oriented basis (c′i, c
′
s) of TqS is positive (or negative).

It is immediate from the definition that a consistent orientation partitions the
admissible curve system C into two disjoint sets. The positive elements are those
oriented curves c for which the orientation of TpS given by the ordered basis (c′, d′)
is positive for any curve d ∈ C which intersects c in some point p, and the negative
elements are the remaining curves. The positive curves from the curve system C
are pairwise disjoint, and the same holds true for the negative curves. Since the
curve diagram of an admissible curve system is connected, up to exchanging the
positive and negative curves, such a decomposition is unique, and it corresponds to
a realization of the curve diagram as a bipartite graph.

Recall that trees are bipartite graphs. We obtain

Lemma 2.7. A curve system whose curve diagram is a tree admits a consistent
orientation.

Proof. We proceed by induction on the number of vertices in the curve diagram. If
this diagram consists of two vertices and one edge, then any choice of orientation
for the two curves in the system will do.

Now assume that the lemma holds true for all curve systems whose curve diagram
is a tree with at most k− 1 vertices. Let C be a curve system whose curve diagram
T is a tree with k vertices. Let T ′ be obtained from T by removing one leaf a.
Then T ′ is the curve diagram of a curve system C′ ⊂ C which is obtained from C
by removing the curve c corresponding to the endpoint of the leaf a. By induction
hypothesis, there exists a consistent orientation for C′. Let c′ be the unique curve
from C′ which intersects c. Define the orientation of c so that c is positive if c′ is
negative, and define c to be negative if c′ is positive. This clearly is a consistent
orientation for the curves of C. The induction step follows. �
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Remark 2.8. If the curve system C is simple, then the curves from C define a
basis of the first homology group of S. Thus there are at most g vertices which are
pairwise not connected by an edge and hence the number of vertices of each type in
the curve diagram of a simple curve system is exactly g. The same argument also
shows that for any admissible curve system, the number of vertices of each type in
the curve diagram is at least g.

As in the introduction, call an abelian differential completely periodic if its hor-
izontal and vertical measured foliation, respectively, decomposes S into a union of
foliated cylinders (or, equivalently, if every non-singular leaf of the horizontal or
vertical foliation is closed). The following construction is well known and goes back
to Thurston [T88] and Veech [V89], see also Section 5 of [Lei04] for a nice account.

Lemma 2.9. Let C be an admissible curve system. Then there exists a completely
periodic abelian differential q(C) whose cylinders are homotopic to the curves from
C. The number of zeros of q(C) equals the number m of components of S − C.

Proof. We only outline this well known construction.

View C as a graph on S. Let Λ ⊂ S be the dual graph to C embedded in S.
Then Λ has m vertices x1, . . . , xm, one for each component of S −C. Furthermore,
Λ defines a cell decomposition of S whose two-cells are rectangles.

Declaring each of these rectangles to be an euclidean square defines an euclidean
metric on S with m cone points. Note that by the requirement that C is admissible
and hence its curve diagram is a tree, each complementary component of C, viewed
as a polygon, has at least six sides and hence each of the points xi is indeed a cone
point of cone angle bigger than 2π.

If we write C = A ∪B where A are the positive and B the negative curves for a
consistent orientation of C, then for each of these squares, one pair of opposite sides
is disjoint from A, and the second pair is disjoint from B. Defining the sides disjoint
from A to be horizontal and the sides disjoint from B to be vertical is consistent
with the gluing and determines a collection of C-valued charts on S−{x1, . . . , xm}
whose chart transitions are translations. Thus this construction yields a square
tiled translation surface with precisely m singular points. It is determined by an
abelian differential q(C) with the properties stated in the lemma. �

We call the abelian differential q(C) constructed in Lemma 2.9 a realization of C
by an abelian differential. Recall that q(C) may be chosen to be square tiled, i.e. it
is the pull-back of a holomorphic one-form on the two-torus T 2 by a cover branched
over a single point of T 2.

Remark 2.10. The proof of Lemma 2.9 also shows that given an admissible curve
system C, the order of the zeros of the differential q(C) are easily computable from
the curve system C. Namely, C determines the cone angle at the singular points for
the singular euclidean metric on S resulting from the construction.
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3. The Arf invariant of a simple admissible curve system

A simple admissible curve system C = {v1, . . . , v2g} on S determines a quadratic
form q = q(C) on H1(S,Z/2Z) as follows.

Let D be the curve diagram of the curve system C. Let [vi] ∈ H1(S,Z/2Z) be
the mod 2 homology class defined by the curve vi; it does not depend on a choice of
an orientation for vi. A homology class b ∈ H1(S,Z/2Z) can uniquely be written in
the form b =

∑

ai[vi] with ai ∈ Z/2Z. Let i1, . . . , is (s ≤ 2g) be those numbers so
that aij 6= 0 and define q(b) as the Euler characteristic mod 2 of the full subgraph
D(b) of D whose vertices are the elements vij (see p.176 of [FM12]).

Lemma 3.1. q is a quadratic form on H1(S,Z/2Z) which is invariant under the
subgroup of Mod(S) generated by the Dehn twists about the curves in C.

Proof. For b ∈ H1(S,Z/2Z) let as above D(b) be the full subgraph of the curve
diagram D whose vertices are the elements with non-zero coefficients for the rep-
resentation of b. Let V (b), E(b) be the set of vertices and the set of edges of D(b),
respectively.

Let as before ι be the symplectic form mod 2 on H1(S,Z/2Z). To show that
q is a quadratic form we have to show that q(a + b) = q(a) + q(b) + ι(a, b) for all
a, b ∈ H1(S,Z/2Z). To this end note that for every class a ∈ H1(S,Z/2Z) the value
q(a) equals (|V (a)|− |E(a)|) mod 2, or, equivalently, it equals the number mod 2 of
connected components of the graph D(a) (recall that D is a tree by assumption).

Write b1 =
∑

v∈V (a)∩V (b)[v]; then

|V (a+ b)| = |V (a)|+ |V (b)| − 2|V (b1)|

and hence we have |V (a+ b)| mod 2 = |V (a)|+ |V (b)| mod 2.

To compute the cardinality mod 2 of the set E(a + b) of edges of D(a + b) we
partition the set E = E(a) ∪ E(b) ∪ E(a+ b) into three subsets.

E1 is the set of all elements of E which either have both endpoints in V (a)−V (b1)
or in V (b)− V (b1). We have E1 ⊂ E(a+ b) ∩ (E(a) ∪ E(b)).

The set E2 contains those elements of E with one endpoint in V (b1) and the
second endpoint in (V (a)∪ V (b))− V (b1). We have E2 ⊂ (E(a)∪E(b))−E(a+ b).

The set E3 contains all elements of E with one endpoint in V (b)− V (b1) and the
second endpoint in V (a)− V (b1). We have E3 ⊂ E(a+ b)− (E(a) ∪ E(b)).

To summarize, we have p = |E(a)|+ |E(b)| mod 2 = |E1|+ |E2| mod 2. Further-
more, r = |E(a + b)| mod 2 = (|E1| + |E3|) mod 2. For the proof of the first part
of the lemma, it now suffices to show that r − p = ι(a, b), and this is equivalent to
stating that |E3| − |E2| mod 2 = ι(a, b).

To see that this is indeed the case observe that as V (b1) = V (a) ∩ V (b), each
edge in E2 contributes one to ι(a, b), and the same holds true for each edge in E3.
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Furthermore, the edges in E1 do not contribute to ι(a, b). But this just means that
ι(a, b) = |E2 ∪ E3| mod 2 which is what we wanted to show.

We are left with showing that the quadratic form q is invariant under the sub-
group of Mod(S) generated by the Dehn twists about the curves from C. To this
end note that a Dehn twist about the curve vi acts on H1(S,Z/2Z) as a transvection
by the element [vi], i.e. this action is just the map

τi(b) = b+ ι(b, [vi])[vi]

(Proposition 6.3 of [FM12]).

That this map preserves q is worked out on p.175 of [FM12]. For convenience of
the reader, we present the short proof.

Namely, if ι(b, [vi]) = 0 then τi(b) = b and there is nothing to show. On the
other hand, if ι(b, [vi]) = 1 then τi(b) = b + [vi]. But as the curve diagram D is a
tree, we have ι(b, [vi]) = 1 only if one of the following cases is satisfied.

(1) There exists a connected component V of the graph D(b) such that vi ∈ V ,
and the number of edges in V which are incident on vi is odd.

(2) vi 6∈ D(b), and there exists an odd number of vertices vj ∈ V (b) which are
connected to vi by an edge.

In the first case, removing the vertex vi from D(b) results in a graph whose
number of components differ from the number of components of D(b) by an even
number. Then q(b+[vi]) = q(b) as desired. In the second case, the graph D(b+[vi])
is obtained fromD by merging an odd number of components to a single component.
Once again, we have q(b+ [vi]) = q(b). �

The Arf invariant Arf(C) of the curve system C is the Arf invariant of the
quadratic form q defined by C. Call the curve system even (or odd) if its Arf
invariant is even (or odd).

Recall from Lemma 2.9 that a simple admissible curve system C determines an
abelian differential q(C) with a single zero.

Lemma 3.2. Let C be a simple admissible curve system. Then C is even if and only
if the abelian differential q(C) is contained in a component of the stratum H(2g−2)
with even spin structure.

Proof. Any quadratic form q on H1(S,Z/2Z) is determined by its values on a basis
of H1(S,Z/2Z).

By definition of the quadratic form q for C, we have q([c]) = 1 for all c ∈ C where
[c] denotes the mod two homology class of c. On the other hand, each c ∈ C can
be represented by a smooth curve which is transverse to either the horizontal or
the vertical foliation of q(C). Thus if q′ denotes the quadratic form on H1(S,Z/2Z)
determined by the spin structure of q(C) then by Lemma 2 of [KZ03], we have
q
′([c]) = 1 for all c ∈ C. As the homology classes [c] (c ∈ C) span H1(S,Z/2Z), the
lemma follows. �
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For g ≥ 2 we introduce now three curve systems by the following curve diagrams.

(1) Type A2g: For g ≥ 2 a line with 2g vertices. This is the Dynkin diagram
A2g.

(2) Type U2g: For g ≥ 3 a line with 2g−2 vertices and a segment of length two
coming out of vertex 3. Note that U6 is the Dynkin diagram E6, and U8 is
the diagram of the hyperbolic analog Eh8 of the spherical Coxeter group
E6.

(3) Type V2g: For g ≥ 3 a line with 2g − 1 vertices and an edge coming out of
vertex 5. We have V6 = A6, V8 is the diagram E8, and V10 is the diagram
of the hyperbolic analog Eh10 of the spherical Coxeter group E8.

Figure A

Example 3.3. Consider a curve system C of type A2g as in Figure A. It is invariant
under a hyperelliptic involution ν which preserves each of the curves ci and reverses
its orientation. This involution has precisely 2g+2 fixed points, and 2g+1 of these
fixed points are contained in the curve system C.

Let S0 be the surface obtained from S by removing the interior of a small ν-
invariant disk about the fixed point of ν not contained in C. The involution ν
restricts to an involution of S0. The quotient of S0 under ν is a disk with 2g + 1
marked points. The Dehn twists about the curves from C descend to the standard
generators of the Artin braid group with 2g + 1 strands (see p.254 and p.255 of
[FM12]). As a consequence, the Dehn twists about the curves from C generate the
symmetric mapping class group of S0 (Theorem 9.2 of [FM12]), i.e. the centralizer
of ν in Mod(S0).

In view of Lemma 3.2, part (1) of the following lemma is equivalent to Corollary
5 of Appendix B in [KZ03].

Lemma 3.4. (1) If C ⊂ S is a simple admissible curve system of type A2g then
Arf(C) = 0 if and only if g ≡ 0, 3 mod 4.
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(2) If C ⊂ S is a simple admissible curve system of type U2g for g ≥ 3 then
Arf(C) = 0 if and only if g ≡ 1, 2 mod 4.

(3) If C ⊂ S is a simple admissible curve system of type V2g for g ≥ 3 then
Arf(C) = 0 if and only of g ≡ 0, 3 mod 4.

Proof. We begin with showing part (1) of the lemma. Let qg be the quadratic form
defined by the curve diagram A2g. Label the vertices in the diagram in consecutive
order with the labels c1, a1, . . . , cg, ag. The simple closed curves corresponding
to the vertices ai or to the vertices cj (i, j = 1, . . . , g) are pairwise disjoint and
hence their homology classes [ai] or [cj ] mod 2 span a Lagrangian subspace of
H1(S,Z/2Z). If we denote by ι the symplectic form mod 2 in H1(S,Z/2Z) then
we have ι([ai], [ci]) = ι([ai], [ci+1]) = 1 for 1 ≤ i ≤ g − 1, and ι([ai], [cj ]) = 0 for
j 6= i, i+ 1.

If we write [bi] =
∑

j≤i[cj ] then [a1], [b1], . . . , [ag], [bg] is a symplectic basis of

H1(S,Z/2Z). We have qg([ai]) = 1 for all i, and qg([bi]) ≡ i mod 2. Thus

Arf(qg) =

g
∑

i=1

i mod 2 =
g

2
(g + 1) mod 2.

This implies Arf(qg) = Arf(qg+4) for all g, and Arf(qg) = 0 if and only if g ≡ 0, 3
mod 4.

To show (2) denote again by qg the quadratic form defined by the curve diagram
U2g. Number the vertices of the long line of the diagram in consecutive order
c1, a1, . . . , cg−1, ag−1. Denote moreover by ag, cg, respectively, the midpoint and
the endpoint of the segment of length two issuing from c2. Define b1 = c1, bj =
∑

i≤j cj + cg for 2 ≤ j ≤ g − 1 and bg = cg. It follows as before that ai, bi is a

symplectic basis of H1(S,Z/2Z). Now qg(ai) = 1 mod 2 for all i, qg(bj) = j + 1
mod 2 for 2 ≤ j ≤ g − 1, and qg(b1) = 1 = qg(bg) = 1 mod 2. Therefore

Arf(qg) =
g

2
(g + 1)− 3 + 2 mod 2.

But this just means that Arf(qg) = 0 if and only if g ≡ 1, 2 mod 2 which is what
we wanted to show.

Finally consider the curve system V2g. Number the vertices on the long line in
the order c1, a1, . . . , cg and let ag be the vertex at the endpoint of the leaf of the
tree coming out of the vertex 5. Using the same notations as before, we have

Arf(qg) = 1 + g +
1

2
(g − 3)(g − 2) mod 2.

This implies that Arf(qg) ≡ 0 if and only if g ≡ 0, 3 mod 4 and completes the proof
of the lemma. �

Remark 3.5. We used the diagrams U2g, V2g to cover all possible Arf invariants
in every genus.

Example 3.6. Using the remark 2.8, the curve diagrams of simple curve systems
for surfaces of small genus can easily be classified. To this end define a coloring of
a tree D to be a partition of the vertices of D into two subsets V1, V2, such that
any edge of D connects a vertex in V1 to a vertex in V2.
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If g = 2 then we look for a tree with 4 vertices and such that the cardinality of
Vi equals two. The only possibility is the diagram A4.

If g = 3 then there are precisely two possibilities, corresponding to the diagrams
A6 and E6.

If g = 4 then there are four possibilities. Three of these possibilities correspond to
the diagrams A8, U8, V8 = E8 as well as a diagram D with a single vertex of valence
4, with two line segments of length two and a segment of length one attached. The
parity of the diagram is odd. This is consistent with the fact that the Coxeter
groups defined by D and U8 are hyperbolic, while the Coxeter group defined by E8

is spherical.

An admissible subsystem of an admissible curve system C is an admissible curve
system C′ whose components are contained in C.

Corollary 3.7. Let Q be any component of a stratum of abelian differentials. Then
there exists an admissible curve system C for Q which contains a subsystem C′ of
type T for T = A2g, T = U2g or T = V2g. Moreover, if all the zeros of Q are even
and if Q is not hyperelliptic, then we can choose C′ to be the curve system T = U2g

or T = V2g whose parity coincides with the parity of Q.

Proof. For each k ≥ 1, an admissible curve system C for the hyperelliptic component
Hhyp(k, k) can be obtained from a system of type A2g (k = g − 1) by adding a
single curve which intersects the curve c1 in a single point and is disjoint from any
curve d 6= c1. The curves from the system C are invariant under the hyperelliptic
involution.

To construct curve systems for the remaining components, let g ≥ 4 and let Dg

be the curve system on a surface of genus g whose curve diagram is obtained from
the curve diagram of the system of type V2g as follows. Add an edge to the vertex
c1, and an edge to the vertex c3. Furthermore, if g is even then for each 2 ≤ ℓ < g/2
attach two edges to the vertex c2ℓ+1. If g is odd then for 2ℓ < (g− 1)/2 attach two
edges to the vertex c2ℓ+1, and attach one edge to the vertex cg. The resulting curve
system Dg is admissible, and the zeros of q(Dg) are all of order two. Furthermore,
by Lemma 3.2 and its proof, i.e. as a straightforward consequence of Lemma 2 of
[KZ03], the parity of the spin structure of the component of H(2, . . . , 2) containing
q(Dg) equals the parity of the curve system of type V2g. Note that Dg also contains
a subsystem of type A2g. This is consistent with Lemma 3.4 which shows that the
parities of the curve systems of type A2g and V2g coincide. We refer to Figure B
for an illustration.

A simple admissible curve system for an arbitrary component of a stratum with
all zeros of even order and of the same parity as the system of type V2g can be
obtained from Dg by removing some of the curves in Dg − C.

A similar construction is also valid for a curve system of type U2g. Construct a
curve system Eg whose curve diagram is obtained from the diagram U2g as follows.
If g is even, then attach an edge each to the vertices c1 and cg. Furthermore, for
2 ≤ ℓ < g/2 attach two edges to the curve c2ℓ−1. If g is odd then attach an edge to
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Figure B

the curve c2, and for 2 ≤ ℓ ≤ (g − 1)/2 attach two edge to the curve c2ℓ. We refer
to Figure B for this construction.

A realization q(Eg) of a curve system with curve diagram Eg is contained in the
component of H(2, . . . , 2) whose parity is opposite to the parity of the component
containing q(Dg). Removing some of the curves from Eg then yields an admissible
curve system for each component of a stratum of abelian differentials with only
zeros of even order whose parity coincides with the parity of the system U2g.

Finally, for a non-hyperelliptic component with at least one zero of odd order
we obtain an admissible curve system by first adding to the curve diagram of Dg

simple closed curves so that we obtain a system whose realization is a differential
with only simple zeros. From this system we remove a suitable collection of curves
to construct differentials with any prescribed number and order of zeros. We omit
the straightforward details of this construction. �

Recall from Lemma 2.9 that an admissible curve system C determines a com-
pletely periodic abelian differential q(C). Let Q(C) be the component of the stra-
tum of abelian differentials containing q(C) and denote by Γ(C) the subgroup of
Mod(Sg,m) generated by the Dehn twists about the curves from C. Here as before,
m ≥ 1 is the number of zeros of q(C).

Corollary 3.8. Let C be any admissible curve system. Then the orbifold funda-
mental group of Q(C) contains a subgroup which projects onto a conjugate of Γ(C).

Proof. Let as before q(C) ∈ Q(C) be the completely periodic abelian differential
constructed in Lemma 2.9 whose horizontal and vertical cylinders are homotopic
to the curves from C.

If C is a horizontal cylinder of q(C), then there is a smooth deformation of q(C)
which preserves the restriction of q(C) to the complement of C fixed and shears the
foliated cylinder along its horizontal trajectories. We refer to [Wr15] for a com-
prehensive discussion of this classical construction. For a suitable choice of such
a shearing parameter, the endpoint of this transformation is just the Dehn twist
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about the core curve of the cylinder (see e.g. [H14]). As these shearing transfor-
mations do not change the number of zeros of a differential nor its multiplicities,
they preserve the component Q(C). Thus the Dehn twist about the core curve of
a horizontal cylinder of q(C) is contained in the projection to Mod(Sg,m) of the
orbifold fundamental group of Q based at q(C).

Replacing horizontal cylinders by vertical cylinders of q(C) then shows the corol-
lary. �

As a fairly easy consequence of this observation and deep work of Salter [Sa17],
we obtain the first three parts of Theorem 3 from the introduction.

Proposition 3.9. Let Q be a non-hyperelliptic component of a stratum of abelian
differentials on S.

(1) If q ∈ Q has at least one simple zero then the orbifold fundamental group
of Q surjects onto Mod(S).

(2) If g ≥ 5 and if q ∈ Q has at least one zero of odd order k which divides
2g − 2 then the orbifold fundamenatal group of Q surjects onto the finite
index subgroup of Mod(S) which preserves a Z/kZ-spin structure.

(3) If Q ⊂ H(k1, . . . , km) with all ki even, if ki < g− 1 divides 2g− 2 for some
i and if g ≥ max{2ki + 1, 21} then the orbifold fundamental group of Q
surjects onto a finite index subgroup of Mod(S).

Proof. To show the first part of the corollary, note that if Q is a component of
abelian differentials with at least one simple zero, then by the above discussion,
there exists an admissible curve system for Q which contains the Humphries system
as a subsystem. As the mapping class group of S is generated by the Dehn twists
about the curves from the Humphries system, the corollary follows from Corollary
3.8.

Now let g ≥ 5 and consider a component of a stratum which contains a zero of
order k < g − 1 which divides g − 1. Let C be the following curve system on S.

Glue S from a chain of g−1 two-holed tori T1, . . . , Tg−1 in cyclic order. For each
i, the curve c2i−1 is embedded in Ti and goes around the hole of Ti. The curves
c1, . . . , c2g−3 define a chain of curves, i.e. the curve diagram is a line segment and
the numbering of the curves corresponds to the linear order of the vertices in the
line segment. The curves a1, a2 are embedded in T1, are disjoint and intersect c1
in a single point. The curve d is embedded in Tk, intersects c2k+1 in a single point
and is disjoint from all other curves. The curve a0 intersects a1 in a single point,
is disjoint from all other curves and is invariant under the obvious cyclic group
of diffeomorphisms of S which cyclically permute the tori Ti. Note that a0 is the
unique curve which intersects the common boundary component b of Tg−1 and T1.

The curve diagram for C is the following tree. There is a line segment of length
2g− 3 with linearly numbered vertices c1, . . . , c2g−3. Attached to this line segment
are two segments coming out of the vertex c1, one of length one and the other of
length two, and a single edge coming out of the vertex c2k+1.
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As the curve diagram of C is a tree, it can be realized by an abelian differential
q(C) with a single zero of order k and a zero of order 2g−2−k > k. The component
Q(C) of a stratum containing q consists of abelian differentials with two zeros, one of
order k and one of order 2g−2−k > k. In particular, these two zeros define a divisor
on S given by points with multiplicities a multiple of k. Thus this divisor determines
a k-th root of the canonical bundle and hence a Z/kZ-valued spin structure on S
(see [Sa17] for more information). The Dehn twists about the curves from C are
elements of Pπ1(Q), and they preserve this spin structure.

Removal of the curve a0 results in an curve system C′ whose curve diagram is
a tree and which fills the subsurface S − b of S. Thus this system fulfills all the
conditions in Theorem 9.5 of [Sa17]. Theorem 9.5 of [Sa17] then shows the following.

If k is odd then the stratumH(k, 2g−2−k) is connected. The group Γ(C) surjects
onto the stabilizer of a Z/kZ-spin structure in Mod(S). As Γ(C) ⊂ Pπ1(Q), the
second part of the proposition follows.

If k is even then Q(C) is a non-hyperelliptic component of the stratum H(k, 2g−
2−k). Theorem 9.5 of [Sa17] shows that for g ≥ max{2k+1, 21} the group Γ(C) is a
subgroup of finite index in the stabilizer of the corresponding Z/kZ-spin structure.
This shows the third part of the corollary for one of the two non-hyperelliptic
components of H(k, 2g − 2− k).

To cover the second non-hyperelliptic component of H(k, 2g−2−k), modify the
curve diagram by replacing the tail end of length 4 of the line segment with vertices
c1, . . . , c2g−3 in the above construction (containing the curves c2g−7, . . . , c2g−3) by
two segments of length two attached to the vertex c2g−7. This amounts to replacing
the circle of g− 1 tori by a circle of g− 2 tori and attaching an additional torus T ′

to the torus Tg−2. The curve a0 is disjoint from T ′. This curve system also fulfills
the conditions in Theorem 9.5 of [Sa17] and represents the parity opposite to the
parity of C.

Finally note that by Corollary 3.7, if Q is any component of a stratum containing
a zero of order k < g− 1 which divides 2g− 2 then there exists an admissible curve
system D for Q which can be obtained from one of the above curve systems by
adding some curves. Then the group Γ(D) contains one of the above groups Γ(C)
as a subgroup. This completes the proof of the proposition. �

Let us return to the discussion of the hyperelliptic component Hhyp(2g − 2) as
an explicit example.

Example 3.10. Consider again a curve system C with curve diagram A2g. The
group Γ(C) equals the Artin braid group in 2g + 1 strands (see Example 3.3 and
p.248 of [FM12]). The quotient of this group by its center can be identified with the
index 2g + 1 subgroup of the mapping class group Mod(S0,2g+2) of the two-sphere
CP 1 with 2g + 2 marked points which fixes one of these marked points.

The hyperelliptic component Hhyp(2g − 2) of the stratum H(2g − 2) can be
obtained as follows [KZ03]. Let R be the moduli space of meromorphic quadratic
differentials on S2 with 2g + 1 simple poles and one single zero of order 2g − 3.
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Taking the double cover of CP 1 branched at each of the singular points defines a
biholomorphism of this moduli space with Hhyp(2g−2). As the symmetric mapping
class group is isomorphic to the surface braid group Mod(S0,2g+2), we conclude that
the fundamental group of the component Hhyp(2g−2) is a subgroup of index 2g+1
of the symmetric mapping class group.

We complete this section with yet another viewpoint on the groups Γ(C) for
an admissible curve system C. Namely, let A(C) be the small type Artin group
defined by the curve diagram corresponding to C. This group has the following
presentation.

(1) The vertices of the curve diagram of C generate A(C).
(2) If two generators are not connected by an edge then they commute.
(3) If a, b are connected by an edge then the braid relation aba = bab holds

true.

For a simple closed curve c on S let Tc be the positive Dehn twist about c. If
c, d intersect in a single point then the braid relation TcTdTc = TdTcTd is fulfilled.
Therefore if we denote by m ≥ 1 the number of connected components of S − C
then there is a homomorphism

ρ : A(C) → Mod(Sg,m).

This homomorphism maps the generator of A(C) defined by a vertex c of the curve
diagram to the positive Dehn twist Tc about c. We call such a homomorphism
geometric.

The following result is due to Waijnryb [Wj99]. The (positive) result of [PV96]
does not apply since a diagram of type Dn can not be a diagram of an admissible
curve system on a closed surface.

Theorem 3.11. Let C be any admissible curve system. Then the homomorphism
ρ is injective if and only if C is of type A2g.

Proof. It is not hard to see that any admissible curve diagram C different from A2g

contains a subdiagram consisting of a line segment of length 5 with a single edge
attached to the middle vertex. As we will not use the theorem in the sequel, we omit
the combinatorial proof. This is the diagram for the finite Coxeter group E6. Let
H be the subgroup of A(C) which is generated by the vertices in this subdiagram.
It follows from [vdL83] that H is isomorphic to the finite type Artin group E6.

The main result of Waijnryb [Wj99] shows that the kernel of any geometric
homomorphism of the finite type Artin group E6 into any mapping class group is
not contained in the center of E6. An application to the group H then yields the
theorem. �

The following is a reformulation of Corollary 3.8.

Corollary 3.12. ρ(A(C)) ⊂ Pπ1(Q(C)) ⊂ Mod(Sg,m) for any admissible curve
system C.
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4. Action on homology

Let as before Q be a component of a stratum of abelian differentials. Consider
the chain of homomorphisms

π1(Q)
P
−→ Mod(Sg,m)

Π
−→ Mod(S)

Ψ
−→ Sp(2g,Z)

where Π : Mod(Sg,m) → Mod(S) is induced by the marked points forgetful map
and where Ψ : Mod(S) → Sp(2g,Z) defines the natural action of Mod(S) on the
first homology group H1(S,Z) of S, equipped with the intersection form. The goal
of this section is to compute explicitly the group ΨΠPπ1(Q) ⊂ Sp(2g,Z).

Let C be an admissible curve system for Q. If we equip C with a consistent
orientation then a curve c ∈ C defines a homology class [c] ∈ H1(S,Z). The image
under the homomorphism Ψ of a positive Dehn twist Tc about c is the transvection
by [c] in Sp(2g,Z), i.e. the transformation

b→ b+ ι(b, [c])[c]

where we denote by abuse of notation by ι the symplectic form on H1(S,Z). Note
that this transvection does not depend on the orientation of c.

By Corollary 3.8, the group Γ(C) ⊂ Pπ1(Q) generated by the Dehn twists about
the curves from C is contained in Pπ1(Q) and hence the subgroup ΨΠ(Γ(C)) of
Sp(2g,Z) generated by the transvections by the homology classes of the curves
from the system C is contained in ΨΠP (π1(Q)).

Our first goal is to compute explicitly this group for the simple admissible curve
systems introduced in Section 2.

Let ζ : Sp(2g,Z) → Sp(2g,Z/2Z) be the natural coefficient reduction homomor-
phism. The kernel ker(ζ) of ζ is the level two congruence subgroup of Sp(2g,Z).
For a computation of ΨΠ(Γ(C)) we proceed in the following two steps.

(1) Show that ΨΠ(Γ(C)) contains the group ker(ζ) ⊂ Sp(2g,Z).
(2) Compute explicitly the finite group ζ(ΨΠ(Γ(C))).

We begin with showing property (1) above.

Proposition 4.1. Let C be a simple admissible curve system of type A2g, U2g, V2g.
Then ker(ζ) ⊂ ΨΠ(Γ(C)).

Proof. Recall that the image under Ψ of a positive Dehn twist Tc about a non-
separating simple closed curve c is the transvection by the homology class [c] of
c. This transvection is independent of the orientation of c. We use the following
result of Mumford (appendix to Section 5 of [Mu07], see also Lemma 5 of [Joh85]
for a slightly weaker statement). Let (αi, βi) be a symplectic basis of H1(S,Z);
then the level two congruence subgroup ker(ζ) is generated by the transvections by
the elements 2αi, 2βi, 2(αi + βi).

Let ai, ci be the curves from the oriented simple admissible curve system C,
where the numbering is as in the proof of Lemma 3.4 (see Figure A), equipped
with a consistent orientation. These oriented curves determine homology classes
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[ai], [ci] ∈ H1(S,Z), and these homology classes define a basis of H1(S,Z). Our
goal is to show that there is a symplectic basis of H1(S,Z) constructed from this
homology basis which fulfills the criterion of Mumford.

We discuss each curve system separately. Consider first a curve system C of
type A2g. Using again the conventions from Lemma 3.4 (see Figure A), the homol-
ogy classes [ai] (i ≤ g) span a Lagrangian subspace of H1(S,Z). For each i, the
transvection by [ai] is contained in the group G = ΨΠ(Γ(C)).

A chain of simple closed curves on S is a curve system whose curve diagram is a
line segment [FM12], equipped with an order induced by the diagram. Its length is
the number of curves in the chain. Let x1 · · ·xk be a chain of simple closed curves
on S of odd length k. The oriented boundary of a closed regular neighborhood of
the chain consists of two oriented non-separating homologous simple closed curves
y1, y2. Proposition 4.12 of [FM12] shows that

(1) (Tx1
· · ·Txk

)k+1 = Ty1
Ty2

.

As y1, y2 are homologous and Ψ is a homomorphism, we have

Ψ(Tx1
· · ·Txk

)k+1 = Ψ(Tyi
)2.

An application to the chain consisting of the curves ag, cg, . . . , cg−i+1, ag−i as in
Figure A yields that for i ≥ 1 we have

(Tag
Tcg · · ·Tcg−i+1

Tag−i
)2i+2 = Td1

g−i
Td2

g−i

where d1g−i, d
2
g−i are homologous simple closed curves which intersect cg−i in a single

point and are disjoint from aj , cs for j 6= g − i and for all s. As a consequence, if
for i ≥ 1 we denote by [bg−i] the homology class of d1g−i and let [bg] = [ag], then up
to sign, ([ci], [bi]) is a symplectic basis of H1(S,Z). The chain relation (1) shows
that the transvection by 2[bi] is contained in the group G for all i.

Now for each i, the homology class of the simple multicurve T±
ci (2bi) equals

2[bi]+2[ci] where the choice of ± depends on the orientation of ai, bi. On the other
hand, Fact 3.7 in [FM12] shows that TTci

(2bi) = TciT
2
bi
T−1
ci and therefore by the

discussions in the last two paragraphs, for each i the transvection by 2[ci] + 2[bi] is
contained in the group G. The statement of the proposition for a curve system of
type A2g now follows from Mumford’s criterion.

We next consider the diagram V2g. We use again the notations from the proof
of Lemma 3.4 (see Figure A). For each i ≤ g let di be a simple closed curve on
S which intersects the curve ci is a single point and does not intersect any other
of the curves cj , aℓ. We may assume that d3 = ag and that for each i, the curves
di, ai, di+1 bound a pair of pants. We begin with showing that Ψ(Tdj

)2 ∈ G for all
j. Recall that Tdj

does not depend on an orientation of dj .

As d3 = ag ∈ C, this is clear for j = 3. The curve d2 is a boundary component
of a tubular neighborhood of the chain d3c3a2 of simple closed curves and hence
using the version of the chain relation from p.108 of [FM12], we have

(2) Ψ(Td2
)2 = Ψ(T 2

d3
Tc3Ta2

)3 ∈ Ψ(G).
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The same argument also shows that Ψ(T 2
d3
Tc3Ta4

)3 = Ψ(Td4
)2. Now replace the

curve d3 in the above construction by the curve d2 or the curve d4. Using again the
fact that Ψ is a homomorphism and Ψ(T 2

dj
) ∈ G (j = 2, 4), we can generate in this

way the image under Ψ of the square of the Dehn twist about d1, d5. Proceeding
inductively, this shows that the image of G under Ψ contains all transvections
by the homology classes 2y where y runs through the elements of the symplectic
basis [a1], · · · , [ag], [d1], · · · , [dg] of H1(S,Z). Furthermore, as G contains the image
under Ψ of the Dehn twists Tai

, we conclude as in the case of the curve system of
type A2g that the group G contains the kernel of the homomorphism ζ.

We are left with the curve system of type U2g. Let a1, . . . , ag be the maximal
system of pairwise disjoint curves in C which does not contain the curve correspond-
ing to the trivalent vertex of the curve diagram (these are the curves denoted with
the same symbols in the proof of Lemma 3.4, see Figure A). The trivalent vertex
corresponds to the curve c2, and the curves on the short line segments disjoint from
c2 are the curves ag, cg. Let bg−1 = cg−1 and for 2 ≤ i ≤ g − 1 let bi be the
simple closed curve which intersects ai in a single point and is disjoint from aj , cℓ
for all j, ℓ. Write furthermore b1 = c1 and bg = cg. Then [ai], [bi] is a symplectic
basis of H1(S,Z). Furthermore, with the reasoning used for the system A2g, V2g,
the transvections by the homology classes 2[ai], 2[bi] are contained in the group G.
The argument used for the curve diagram A2g also shows that this is true for the
transvections by 2[ai] + 2[bi]. �

Proposition 4.1 implies that for a curve system C of type A2g, U2g, V2g, the group
ΨΠ(Γ(C)) is a subgroup of Sp(2g,Z) of finite index. To determine this group
explicitly we are left with computing the group ζ(ΨΠ(Γ(C))).

We begin with the curve system of type A2g. In the following proposition, the
subgroup of Sp(2g,Z/2Z) which is isomorphic to the symmetric group in 2g + 1
variables will be explicitly constructed in its proof. The result is implicitly contained
in [AC79] and in [AMY18].

Proposition 4.2. Let C be a simple admissible curve system of type A2g. Then
the group ΨΠ(Γ(C)) equals the preimage of the symmetric group in 2g+1 variables
under the reduction of coefficients homomorphism ζ.

Proof. In Example 3.3, we observed that for a curve system C with curve diagram
A2g, the group Γ(C) equals the symmetric mapping class group of the surface S0

obtained from S by removing the interior of a disk about the unique fixed point of
the hyperelliptic involution ν which is not contained in any of the curves from C.

To study the action of Γ(C) on H1(S,Z/2Z) recall that each generator of Γ(C)
acts as a transvection on H1(S,Z/2Z). Let τi be the transvection by the mod 2
homology class of the i-th curve di of C where the order is determined by the curve
diagram. These transvections satisfy the following relations.

(1) τ2i = Id for all i.
(2) Braid relations: τiτi+1τi = τi+1τiτi+1 for all i.
(3) τiτj = τjτi for |i− j| ≥ 2.
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These are the defining relations for the Coxeter group with Artin diagram A2g, and
this Coxeter group is just the symmetric group in 2g + 1 variables.

Namely, recall that a realization of the curve system C by an abelian differential
is contained in the hyperelliptic component Hhyp(2g − 2). The unique zero of a
differential in Hhyp(2g − 2) is a Weierstrass point. Its image under the quotient
map S → S/ν = S0,2g+2 is a distinguished marked point x0 in the sphere S0,2g+2

with 2g + 2 marked points.

Let x1, . . . , x2g+1 be the remaining marked points. We assume that there is an
embedded arc ℓ in S0,2g+2 which contains the marked points x0, x1, . . . , x2g+1 in
this order. In other words, ℓ is a union of 2g + 2 arcs, and the i-th segment ℓi
connects xi−1 to xi.

The preimage of the arc ℓi in S is a simple closed curve ei which defines a
homology class [ei] ∈ H1(S,Z/2Z). The Dehn twist about the curve ei descends
to a standard generator of the Artin braid group A with 2g + 1 strands which acts
as a transposition on the marked points, exchanging xi−1 and xi (see [FM12] for
details, and compare Example 3.3).

As the symmetric group in 2g + 1 variables is generated by these transpositions
and the braid relations are relations in the symmetric group, this Coxeter group
indeed equals the symmetric group in 2g + 1 variables. Thus ζ(ΨΠ(Γ(C))) is a
quotient of the symmetric group in 2g + 1 variables.

On the other hand, as g ≥ 2, the only nontrivial normal subgroup of the sym-
metric group is the alternating group which consists of even permutation. Since
clearly there is an even permutation of the points x1, . . . , x2g+2 which induces a non-
trivial action on H2(S,Z/2Z), the kernel of the homomorphism from the symmetric
group to ζ(ΨΠ(Γ(C)) is trivial. In other words, the group ζ(ΨΠ(Γ(C))) equals the
symmetric group in 2g + 1 variables. This is what we wanted to show. �

The following immediate consequence will be used later on.

Corollary 4.3. Let D be curve system on S which consists of an even number
2k ≥ 4 of curves whose curve diagram is a line segment. Then the group Γ(D)
generated by the components of D acts transitively on the curves from D.

Proof. A tubular neighborhood of the curves from the curve system D is a surface
S0 of genus k with connected boundary. The group Γ(D) preserves S0 and acts on
S0 as the hyperelliptic mapping class group for an involution of S0 which preserves
D. By Proposition 4.2, via the identification of the hyperelliptic mapping class
group with the Artin braid group in 2k + 1 strands, the group acts transitively on
its standard generators which is equivalent to the statement of the corollary. �

The following corollary is an easy consequence of Corollary 3.8 and Proposition
4.2.
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Corollary 4.4 (A’Campo, Avila-Matheus-Yoccoz). (1) For each g ≥ 2, the
group ΨΠPπ1(H

hyp(2g−2)) equals the preimage of the symmetric group in
2g + 1 variables under the reduction of coefficients homomorphism ζ.

(2) For each ℓ ≥ 1, the group ΨΠPπ1(Hhyp(ℓ, ℓ)) equals the preimage of the
symmetric group in 2g + 2 variables under the reduction of coefficients ho-
momorphism ζ.

Proof. To show the first part of the corollary recall from Example 3.3 that the
group G = Pπ1(H

hyp(2g − 2)) equals the subgroup of the centralizer of the hyper-
elliptic involution which fixes the distinguished Weierstrass point at the zero of a
differentials q ∈ Hhyp(2g − 2).

Example 3.3 and Example 3.10 show that Pπ1(H
hyp(2g− 2)) = Γ(C) where C is

a simple admissible curve system of type A2g. The first part of the corollary thus
follows from Proposition 4.2.

The second part of the corollary follows from the same argument. Namely,
consider a curve system C whose curve diagram is a line with 2ℓ + 3 = 2g + 1
vertices. It is straightforward that C is admissible for the component Hhyp(ℓ, ℓ).
Note that C is invariant under a hyperelliptic involution, and that it decomposes S
into two connected components.

Following the reasoning in the proof of the first part of the corollary, the group
Pπ1(Hhyp(ℓ, ℓ)) is just the group Γ(C) as by equivariance, this group descends to
the full spherical braid group on the sphere with 2g+ 2 marked points. The image
of Γ(C) under the homomorphism Ψ can be computed with the argument used in
the proof of the first part of the corollary.

Namely, as in the proof of Proposition 4.2, the image of Γ(C) under the ho-
momorphism ζΨΠ is a quotient of the Coxeter group with Artin diagram A2g+1.
The ordering of the elements of C determined by the curve diagram determines an
ordering of the 2g + 2 marked points on the sphere. A standard generator of the
Coxeter group acts as a transposition on these marked points, and the braid rela-
tions translate into the relations between two transpositions in the symmetric group
in 2g + 2 variables. As a consequence, this Coxeter group equals the symmetric
group in 2g + 2 variables.

To complete the proof of the corollary, observe that the restriction to the alter-
nating group of the natural homomorphism of this Coxeter group into the group
ζΨΠ(Γ(C)) is non-trivial. As g ≥ 2, the alternating group is the only non-trivial
normal subgroup of the symmetric group in 2g+2 variables and hence the natural
homomorphism is indeed injective. �

We are left with analyzing curve diagrams of type U2g and V2g.

Proposition 4.5. Let C be a simple admissible curve system of type U2g, V2g and let
q be the quadratic form defined by C. Then ΨΠ(Γ(C)) ⊂ Sp(2g,Z) is the finite index
subgroup which maps under mod 2 reduction to the stabilizer of q in Sp(2g,Z/2Z).
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Proof. Let q be the quadratic form defined by the curve diagram. A transvection
τx by x ∈ H1(S,Z/2Z) preserves q if and only if q(x) = 1. Namely, we have
τx(y) = y + ι(y, x)x and hence

q(τxy) = q(y) + ι(y, x)q(x) + ι(y, x)

which equals q(y) if and only if either ι(y, x) = 0 or q(x) = 1. Since for every x
there exists some y with ι(y, x) = 1, the claim follows.

Indeed, by a result of Dieudonné (Proposition 14 of [Die73], see also Theorem
6.3 in [Sa17]), the stabilizer of q is generated by transvections by homology classes
v with q(v) = 1. Thus by Proposition 4.1, it suffices to show that the group
G = ζ(ΨΠ(Γ(C))) contains each transvection by an element a ∈ H1(S,Z/2Z) with
q(a) = 1.

We treat the curve systems for the two curve diagrams U2g, V2g simultaneously.
Let D be one of these curve diagrams and recall that D is a tree. We identify each
vertex of the tree with the mod 2 homology class it defines. Then the vertices of
D define a basis of H1(S,Z/2Z). By the definition of Γ(C), for each such vertex x,
the transvection by x is contained in the group G.

For x ∈ H1(S,Z/2Z) let as before D(x) be the full subgraph of D whose vertices
are those basis elements of H1(S,Z/2Z) for which the coefficient of the representa-
tion of x is non-zero.

Let y ∈ H1(S,Z/2Z) be such that the transvection τy by y is contained in
G. Assume that the graph D(y) contains a component A which has at least two
vertices. Then A is a tree. Let v ∈ A be a leaf of A; we claim that τy+v ∈ G.
Namely, we have ι(v, y) = 1 and hence y + v = τv(y) and τy+v = τvτyτ

−1
v ∈ G.

Similarly, assume that there exists a component A of D(y) and a vertex v ∈
D−D(y) such that v is connected to a leaf a of A by an edge and is not connected
to any other point in D(y) by an edge; then τy+v ∈ G. Again, this follows from
the observation that ι(v, y) = 1 and hence τv(y) = y + v which implies τy+v =
τvτyτ

−1
v ∈ G.

If y, v are as in the previous two paragraphs then we say that we obtain y+ v by
an elementary move from y. Note that elementary moves do not change the number
of components of D(y). They consist in adding or subtracting a single vertex to a
given diagram D(y). By the consideration in the previous paragraph and induction,
we conclude that if z can be obtained from y by a sequence of elementary moves
and if τy ∈ G then also τz ∈ G.

We claim that any two elements x, y so that D(x), D(y) have the same number
k ≥ 1 of components are connected by a sequence of elementary moves. To this end

note that k ≤ g. Consider the element yk =
∑k

i=1 ci (notations as in the proof of
Lemma 3.4, see Figure A). It suffices to show that if D(x) has k components then
y can be connected to yk by a sequence of elementary moves.

We show this by induction on the genus g of S beginning with g = 3 and the
diagram U6. Let v be a vertex of D(y) which is closest to c1 with respect to the
simplicial metric on the tree D. If this vertex is unique and if A is the component
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of D(y) containing v, then no vertex on the unique path ζ connecting c1 to v is
connected to a point on D(y) by an edge. Then attaching this path to D(y) yields
an element y′ whose diagram contains the element c1 and which is connected to y
by a sequence of elementary moves.

Let A′ be the component of D(y′) containing c1. No vertex of A′ is connected
to any vertex of D(y′)− A′ by an edge. Thus replacing A′ by the single vertex c1
yields an element y1 obtained from y by a sequence of elementary moves so that
D(y1) has a component consisting of the single element c1. Let y2 = y1 − c1; then
D(y2) is entirely contained in a subdiagram of D of type A2g−2, and we can use
the induction hypothesis to deduce the claim.

If the vertex v is not unique then there are two such vertices v1, v2, and these
are connected to the unique trivalent vertex w by an edge. Now if D is of type
U2g then this means that D(y) contains the vertex ag but not the vertex c2. Then
we can modify y with a sequence of elementary moves to an element y′ with the
property that D(y′) intersects the component of D− c2 containing ag in the single
vertex cg. The reasoning in the previous paragraph then shows the induction step.

If D is of type V2g then D(y) contains both ag and a3. Now the length of the
line segment which connects a3 to cg is even and hence by induction hypothesis,
we find an element y′ obtained from y by a sequence of elementary moves so that
D(y′) does not contain a3. The induction step now follows as before.

We are left with showing that for each odd number k ≤ g, there exists an element
y ∈ H1(S,Z/2Z) so that D(y) has k components and such that τy ∈ G. To this
end it suffices to show the following. If G contains a transvection τy for some y so
that D(y) has k − 2 components, then there also is an element τz ∈ G for some z
so that D(z) has k components.

To this end recall that the curve diagrams U2g, V2g contain each a trivalent
vertex v. Let y be such that D(y) has k − 2 components and contains v and all
three vertices connected to v by an edge. Then ι(v, y) = 1 and therefore

y + v = τv(y) = y + ι(v, x+ v)v.

As before, this implies τy+v ∈ G. But D(y+ v) = D(y)− v and hence D(y+ v) has
k + 2 connected components. This completes the proof of the proposition. �

Corollary 4.6. Let Q by a non-hyperelliptic component of a stratum with all zeros
of even multiplicity. Then ΨΠP (π1(Q)) equals the stabilizer of a quadratic form
on H1(S,Z/2Z) which defines a spin structure for Q.

Proof. By invariance, the group ΨΠP (π1(Q)) is contained in the stabilizer Stab(q)
of a quadratic form q on H1(S,Z/2Z), so we have to show that ΨΠPπ1(Q) contains
Stab(q).

By Corollary 3.7, there exists an admissible curve system C for Q containing a
simple admissible subsystem C′ which determines the parity of the spin structure
of Q. But then Γ(C′) ⊂ Pπ1(Q) and hence ΨΠ(Γ(C)′) ⊂ ΨΠP (π1(Q)).
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Now Proposition 4.5 shows that ΨΠΓ(C′) equals the stabilizer of q in Sp(2g,Z)
and hence ΨΠP (π1(Q)) contains this stabilizer. This is what we wanted to show.

�

Corollary 4.7. Let Q be a non-hyperelliptic component of a stratum with a zero
of odd muliplicity; then ΨΠPπ1(Q) = Sp(2g,Z).

Proof. By Corollary 3.7, there exists an admissible curve system C for Q which
contains a curve system C′ of type V2g or U2g as a subsystem. By Proposition 4.5,
the group ΨΠΓ(C) contains the stabilizer of the quadratic form q on H1(S,Z/2Z)
defined as follows.

Let D be the curve diagram of C′. The vertices of D determine a basis of
H1(S,Z/2Z). For a class x, we have that q(x) equals the Euler characteristic of
the full subgraph D(x) of D spanned by those vertices whose coefficients in the
representation of x is not zero.

As Q has a zero of odd order, there exists a component c of C which defines a
class [c] in H1(S,Z/2Z) with q([c]) = 0. The graph D([c]) has an even number of
components. Assume that this number of components equals 2ℓ ≥ 2.

By Proposition 4.5 and its proof, ζΨΠ(Γ(Q)) contains all transvections by ele-
ments which define a subgraph of the curve diagram D of C′ with an even number of
connected components. But this implies that ζΨΠ(Γ(C)) contains all transvections.
Thus ζΨΠ(Γ(C)) = Sp(2g,Z/2Z) and together with Proposition 4.1, this shows the
corollary. �

5. Train tracks and geodesic laminations

In this section we introduce our main technical tool to promote the results from
Section 2 to the Theorem from the introduction, namely train tracks and geodesic
laminations. We begin with summarizing some constructions from [PH92, H09]
which will be used throughout the paper. We then introduce a class of train tracks
which will serve as combinatorial models for components of strata in the later
sections, and we discuss some of their properties.

5.1. Geodesic laminations. Let S be an oriented surface of genus g ≥ 0 with
n ≥ 0 marked points (punctures) and where 3g− 3+ n ≥ 2. A geodesic lamination
for a complete hyperbolic structure on S of finite volume is a compact subset of S
which is foliated into simple geodesics. A geodesic lamination λ is called minimal
if each of its half-leaves is dense in λ. Thus a simple closed geodesic is a minimal
geodesic lamination. A minimal geodesic lamination with more than one leaf has
uncountably many leaves and is called minimal arational. Every geodesic lamina-
tion λ consists of a disjoint union of finitely many minimal components and a finite
number of isolated leaves. Each of the isolated leaves of λ either is an isolated closed
geodesic and hence a minimal component, or it spirals about one or two minimal
components [CEG87].
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A geodesic lamination λ on S is said to fill up S if its complementary regions
are all topological disks or once punctured monogons or once punctured bigons.
Here a once puncture monogon is a once punctured disk with a single cusp at
the boundary. A maximal geodesic lamination is a geodesic lamination whose
complementary regions are all ideal triangles or once punctured monogons.

Definition 5.1. A geodesic lamination λ is called large if λ fills up S and if more-
over λ can be approximated in the Hausdorff topology by simple closed geodesics.

Since every minimal geodesic lamination can be approximated in the Hausdorff
topology by simple closed geodesics [CEG87], a minimal geodesic lamination which
fills up S is large. However, there are large geodesic laminations with finitely many
leaves.

The topological type of a large geodesic lamination ν is a tuple

(m1, . . . ,mℓ;−p1, p2) where 1 ≤ m1 ≤ · · · ≤ mℓ,
∑

i

mi = 4g− 4+ p1, p1 + p2 = n.

Here ℓ ≥ 1 is the number of complementary regions which are topological disks,
and these disks are mi + 2-gons (i ≤ ℓ). There are p1 once punctured monogons
and p2 once punctured bigons. Let

LL(m1, . . . ,mℓ;−p1, p2)

be the space of all large geodesic laminations of type (m1, . . . ,mℓ;−p1, p2) equipped
with the restriction of the Hausdorff topology for compact subsets of S.

A measured geodesic lamination is a geodesic lamination λ together with a trans-
lation invariant transverse measure. Such a measure assigns a positive weight to
each compact arc in S with endpoints in the complementary regions of λ which
intersects λ nontrivially and transversely. The geodesic lamination λ is called
the support of the measured geodesic lamination; it consists of a disjoint union
of minimal components. The space ML of all measured geodesic laminations on
S equipped with the weak∗-topology is homeomorphic to S6g−7+2n × (0,∞). Its
projectivization is the space PML of all projective measured geodesic laminations.

The measured geodesic lamination µ ∈ ML fills up S if its support fills up S.
This support is then necessarily connected and hence minimal. Since a minimal
geodesic lamination can be approximated in the Hausdorff topology by simple closed
curves [CEG87], there exists a tuple (m1, . . . ,mℓ;−p1, p2) such that the support of
µ defines a point in the set LL(m1, . . . ,mℓ;−p1, p2). The projectivization of a
measured geodesic lamination which fills up S is also said to fill up S.

There is a continuous symmetric pairing ι : ML×ML → [0,∞), the so-called
intersection form, which extends the geometric intersection number between simple
closed curves.
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5.2. Train tracks. A train track on S is an embedded 1-complex τ ⊂ S whose
edges (called branches) are smooth arcs with well-defined tangent vectors at the
endpoints. At any vertex (called a switch) the incident edges are mutually tangent.
Through each switch there is a path of class C1 which is embedded in τ and contains
the switch in its interior. A simple closed curve component of τ contains a unique
bivalent switch, and all other switches are at least trivalent. The complementary
regions of the train track have negative Euler characteristic, which means that
they are different from disks with 0, 1 or 2 cusps at the boundary and different
from annuli and once-punctured disks with no cusps at the boundary. We always
identify train tracks which are isotopic. Throughout we use the book [PH92] as
the main reference for train tracks. All our train tracks are marked, i.e. we think
of a train track τ as a (coarsely well defined) point in the marking graph of the
subsurface of S filled by τ .

A train track is called generic if all switches are at most trivalent. For each
switch v of a generic train track τ which is not contained in a simple closed curve
component, there is a unique half-branch b of τ which is incident on v and which
is large at v. This means that every germ of an arc of class C1 on τ which passes
through v also passes through the interior of b. A half-branch which is not large
is called small. A branch b of τ is called large (or small) if each of its two half-
branches is large (or small). A branch which is neither large nor small is called
mixed.

Remark 5.2. As in [H09], all train tracks are assumed to be generic. Unfortunately
this leads to a small inconsistency of our terminology with the terminology found
in the literature.

A trainpath on a train track τ is a C1-immersion ρ : [k, ℓ] → τ such that for
every i < ℓ − k the restriction of ρ to [k + i, k + i + 1] is a homeomorphism onto
a branch of τ . More generally, we call a C1-immersion ρ : [a, b] → τ a generalized
trainpath. A trainpath ρ : [k, ℓ] → τ on is closed if ρ(k) = ρ(ℓ) and if either the
image of ρ is a closed curve component of τ or if precisely one of the half-branches
ρ[k, k + 1/2], ρ[ℓ− 1/2, ℓ] is large.

A generic train track τ is orientable if there is a consistent orientation of the
branches of τ such that at any switch s of τ , the orientation of the large half-branch
incident on s extends to the orientation of the two small half-branches incident on s.
If C is a complementary polygon of an oriented train track then the number of sides
of C is even. In particular, a train track which contains a once punctured monogon
component is not orientable (see p.31 of [PH92] for a more detailed discussion).

A train track or a geodesic lamination η is carried by a train track τ if there is
a map F : S → S of class C1 which is homotopic to the identity and maps η into τ
in such a way that the restriction of the differential of F to the tangent space of η
vanishes nowhere; note that this makes sense since a train track has a tangent line
everywhere. We call the restriction of F to η a carrying map for η. Write η ≺ τ if
the train track η is carried by the train track τ . Then every geodesic lamination ν
which is carried by η is also carried by τ .
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A train track fills up S if its complementary components are topological disks
or once punctured monogons or once punctured bigons. Note that such a train
track τ is connected. Let ℓ ≥ 1 be the number of those complementary components
of τ which are topological disks. Each of these disks is an mi + 2-gon for some
mi ≥ 1 (i = 1, . . . , ℓ). The topological type of τ is defined to be the ordered tuple
(m1, . . . ,mℓ;−p1, p2) where 1 ≤ m1 ≤ · · · ≤ mℓ and p1 (or p2) is the number of
once punctured monogons (or once punctured bigons); then

∑

imi = 4g − 4 + p1
and p1 + p2 = n. If τ is orientable then p1 = 0 and mi is even for all i. A train
track of topological type (1, . . . , 1;−p1, 0) is called maximal. The complementary
components of a maximal train track are all trigons, i.e. topological disks with
three cusps at the boundary, or once punctured monogons.

A transverse measure on a generic train track τ is a nonnegative weight function
µ on the branches of τ satisfying the switch condition: for every trivalent switch
s of τ , the sum of the weights of the two small half-branches incident on s equals
the weight of the large half-branch. Particular such transverse measures are the
counting measures of simple multicurves c carried by τ . Such a measure associates
to a branch b the number of the preimages of an interior point of b under the
carrying map. The weight of every branch with respect to this measure is integral.
In particular, the ratio of weights of any two branches is rational, and we call a
transverse measure with this property rational. The set of rational measures is
invariant under scaling, and it is dense is the cone of all transverse measures on τ .

A subtrack σ of a train track τ is a subset of τ which is itself a train track.
Then σ is obtained from τ by removing some of the branches, and we write σ < τ .
A vertex cycle for τ is defined to be an embedded subtrack of τ which either is a
simple closed curve or a dumbbell, i.e. it consists of two loops with one cusp which
are connected by an embedded segment joining the cusps (that this definition is
equivalent to the definition defined in other works can for example be found in
[Mo03], see also [H06]). An orientable train track does not contain dumbbells.
Each vertex cycle supports a single transverse measure up to scale.

The following is well known and will be used several times in the sequel. We
refer to [Mo03] for a comprehensive discussion.

Lemma 5.3. Let V(τ) be the space of all transverse measures on τ .

(1) V(τ) has the structure of a cone over a compact convex polyhedron in a
finite dimensional vector space.

(2) The vertices of the polyhedron are up to scaling the measures supported on
the vertex cycles.

(3) There exists a natural homeomorphism of V(τ), equipped with the euclidean
topology, onto the closed subspace of ML of all measured geodesic lamina-
tions carried by τ .

The train track is called recurrent if it admits a transverse measure which is
positive on every branch. We call such a transverse measure µ positive, and we
write µ > 0 (see [PH92] for more details).
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If b is a small branch of τ which is incident on two distinct switches of τ then
the graph σ obtained from τ by removing b is a subtrack of τ . We then call τ a
simple extension of σ. Note that formally to obtain the subtrack σ from τ − b we
may have to delete the switches on which the branch b is incident.

The following lemma is certainly known to the experts. We include it here as
it is useful to understand the way train tracks can be used to model of strata of
abelian or quadratic differentials and their degenerations.

Lemma 5.4. (1) A simple extension τ of a recurrent non-orientable connected
train track σ is recurrent.

(2) An orientable simple extension τ of a recurrent orientable connected train
track σ is recurrent.

Proof. If τ is a simple extension of a connected train track σ then σ can be obtained
from τ by the removal of a small branch b which is incident on two distinct switches
s1, s2. Then si is an interior point of a branch bi of σ (i = 1, 2).

If σ is moreover non-orientable and recurrent then there is a trainpath ρ0 :
[0, t] → τ − b which begins at s1, ends at s2 and such that the half-branch ρ0[0, 1/2]
is small at s1 = ρ0(0) and that the half-branch ρ0[t− 1/2, t] is small at s2 = ρ0(t).
Extend ρ0 to a closed trainpath ρ on τ − b which begins and ends at s1. This
is possible since σ is non-orientable, connected and recurrent. There is a closed
trainpath ρ′ : [0, u] → τ which can be obtained from ρ by replacing the trainpath
ρ0 by the branch b traveled through from s1 to s2. The counting measure of
ρ′ on τ satisfies the switch condition and hence it defines a transverse measure
on τ which is positive on b. On the other hand, every transverse measure on σ
defines a transverse measure on τ . Thus since σ is recurrent and since the sum of
two transverse measures on τ is again a transverse measure, the train track τ is
recurrent as well.

The second part of the lemma follows in exactly the same way, and its proof will
be omitted. �

Definition 5.5. A train track τ of topological type (m1, . . . ,mℓ;−p1, p2) which
carries a minimal large geodesic lamination ν ∈ LL(m1, . . . ,mℓ;−p1, p2) is called
fully recurrent.

Remark 5.6. The above definition is made for convenience to rule out some easy
pathological cases. Since the discussion of such cases is not important for what
follows, we do not include it here.

Note that by definition, a fully recurrent train track is connected and fills up
S. Since a minimal geodesic lamination supports a transverse measure, a fully
recurrent train track τ is recurrent.

We pause to relate our discussion to the work of Thurston as documented in
[PH92] and the work of Minsky and Weiss [MW14]. To this end let τ be a fully
recurrent orientable train track on S of type (m1, . . . ,mℓ; 0). Mark a point in each
complementary component of τ and let Σ be the union of these ℓ marked points.
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The set V(τ) is the set of non-negative solutions of system of linear equations
and hence it has the structure of convex cone in a vector space. We have

Lemma 5.7. The choice of an orientation for τ determines a linear homeomor-
phism of V(τ) onto a closed cone in H1(S − Σ;R) with dense interior.

Proof. View τ as an embedded graph in S −Σ. Thus τ is a one-dimensional chain
complex whose one-cells are the branches of τ , and the first cellular homology
H1(τ ;R) of τ is defined. The inclusion ι : τ → S − Σ defines a homomorphism
ι∗ : H1(τ ;R) → H1(S −Σ;R). As each complementary component of τ is a disk in
S, and this disk contains precisely one point of Σ, the train track τ is a deformation
retract of S − Σ and hence the map ι∗ is an isomorphism.

Given an orientation for τ and a transverse measure µ ∈ V(τ), evaluation of µ on
the branches of τ can be viewed as an element in the first chain group of τ . By the
definition of a consistent orientation, the switch condition is equivalent to stating
that this element is a cycle and hence µ defines a class in H1(τ ;R). As there are
no two-cells, the homology group H1(τ ;R) equals the kernel of the boundary map
and hence we obtain an embedding V(τ) → H1(S − Σ;R).

The lemma follows from the observation that as τ is recurrent, the dimension of
V(τ) coincides with the dimension of H1(S − Σ,R). Namely, adding a sufficiently
small solution to the switch conditions to a positive solution result in a positive
solution. As the set of positive solutions is non-empty and the space of all solutions
is identified with the group H1(S − Σ,R, the lemma follows. �

The second statement of the following corollary is immediate from Lemma 5.7,
and the first statement follows in the same way by passing to the orientation cover.

Corollary 5.8. (1) dimV(τ) = 2g − 2 + ℓ + p1 + p2 for every non-orientable
recurrent train track of topological type (m1, . . . ,mℓ;−p1, p2).

(2) dim(V(τ) = 2g − 1 + ℓ + p2 for every orientable recurrent train track τ of
topological type (m1, . . . ,mℓ; 0, p2).

Using the identification of V(τ) with an open cone in the space of measured
laminations on S, there is a geometric interpretation of the map from Lemma 5.7.
Namely, the space of measured laminations on S can be identified with the space
of measured foliations. If Σ is the singular set of the measured foliation F , then F
defines a relative cohomology class ζ ∈ H1(S,Σ;R) by integrating the transverse
measure over relative cycles in H1(S,Σ;R). The class in H1(S − Σ;R) defined by
the transverse measure µ corresponding to F is just the Poincaré dual of µ.

There are two simple ways to modify a fully recurrent train track τ to another
fully recurrent train track. Namely, if b is a mixed branch of τ then we can shift
τ along b to a new train track τ ′. This new train track carries τ and hence it
is fully recurrent since it carries every geodesic lamination which is carried by τ
[PH92, H09].

Similarly, if e is a large branch of τ then we can perform a right or left split of
τ at e as shown in Figure C. The new small branch in the split track is called the
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Figure C

diagonal of the split. A (right or left) split τ ′ of a train track τ is carried by τ .
If τ is of topological type (m1, . . . ,mℓ;−p1, p2), if ν ∈ LL(m1, . . . ,mℓ;−p1, p2) is
carried by τ and if e is a large branch of τ , then there is a unique choice of a right
or left split of τ at e such that the split track η carries ν. In particular, η is fully
recurrent. Note however that there may be a split of τ at e such that the split track
is not fully recurrent any more (see Section 2 of [H09] for details).

To each train track τ which fills up S one can associate a dual bigon track τ∗

(Section 3.4 of [PH92]). There is a bijection between the complementary compo-
nents of τ and those complementary components of τ∗ which are not bigons, i.e.
disks with two cusps at the boundary. This bijection maps a complementary com-
ponent C of τ which is an n-gon for some n ≥ 3 to an n-gon component of τ∗

contained in C, and it maps a once punctured monogon or bigon C to a once punc-
tured monogon or bigon contained in C. If τ is orientable then the orientation of
S and an orientation of τ induce an orientation on τ∗, i.e. τ∗ is orientable.

There is a notion of carrying for bigon tracks which is analogous to the notion of
carrying for train tracks. Measured geodesic laminations which are carried by the
bigon track τ∗ can be described as follows. A tangential measure on a train track τ
of type (m1, . . . ,mℓ;−p1, p2) assigns to a branch b of τ a weight µ(b) ≥ 0 such that
for every complementary k-gon of τ or once punctured bigon with consecutive sides
c1, . . . , ck and total mass µ(ci) (counted with multiplicities) the following holds
true.

(1) µ(ci) ≤ µ(ci−1) + µ(ci+1).

(2)
∑k+j−1

i=j (−1)i−jµ(ci) ≥ 0, j = 1, . . . , k.

The complementary once punctured monogons define no constraint on tangential
measures. Our definition of tangential measure on τ is stronger than the definition
given on p.22 of [PH92] and corresponds to the notion of a metric as defined on
p.184 of [P88]. We do not use this terminology here since we find it misleading.

The space of all tangential measures on τ has the structure of a convex cone
in a finite dimensional real vector space. By Lemma 2.1 of [P88], every tangential
measure on τ determines a simplex of measured geodesic laminations which hit τ
efficiently. The supports of these measured geodesic laminations are carried by
the bigon track τ∗, and every measured geodesic lamination which is carried by τ∗

can be obtained in this way. The dimension of this simplex equals the number of
complementary components of τ with an even number of sides. The train track τ
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is called transversely recurrent if it admits a tangential measure which is positive
on every branch.

In general, a measured geodesic lamination ν which hits τ efficiently does not
determine uniquely a tangential measure on τ either. Namely, let s be a switch of τ
and let a, b, c be the half-branches of τ incident on s and such that the half-branch a
is large. If β is a tangential measure on τ and if ν is a measured geodesic lamination
in the simplex determined by β then it may be possible to drag the switch s across
some of the leaves of ν and modify the tangential measure β on τ to a tangential
measure µ 6= β. Then β − µ is a multiple of a vector of the form δa − δb − δc where
δw denotes the function on the branches of τ defined by δw(w) = 1 and δw(a) = 0
for a 6= w.

Definition 5.9. Let τ be a train track of topological type (m1, . . . ,mℓ;−p1, p2).

(1) τ is called fully transversely recurrent if its dual bigon track τ∗ carries a
minimal large geodesic lamination ν ∈ LL(m1, . . . ,mℓ;−p1, p2).

(2) τ is called large if τ is fully recurrent and fully transversely recurrent.

For a large train track τ let V∗(τ) ⊂ ML be the set of all measured geodesic lam-
inations whose support is carried by τ∗. Each of these measured geodesic lamina-
tions corresponds to a family of tangential measures on τ . With this identification,
the pairing

(3) (ν, µ) ∈ V(τ)× V∗(τ) →
∑

b

ν(b)µ(b)

is just the restriction of the intersection form on measured lamination space (Section
3.4 of [PH92]). Moreover, V∗(τ) is naturally homeomorphic to a convex cone in a
real vector space. The dimension of this cone coincides with the dimension of V(τ).

From now on we denote by LT (m1, . . . ,mℓ;−p1, p2) the set of all isotopy classes
of large train tracks on S of type (m1, . . . ,mℓ;−p1, p2).

6. Strata

The goal of this section is to relate large train tracks to components of strata
of abelian or quadratic differentials. We begin with introducing some notations for
quadratic differentials which were used earlier in some more restricted setting for
abelian differentials. The results in this section hold true in both cases.

For a closed oriented surface Sg,n of genus g ≥ 0 with n ≥ 0 marked points

(punctures) let Q̃(Sg,n) be the bundle of marked area one holomorphic quadratic
differentials with either a simple pole or a regular point at each of the marked
points and no other pole over the Teichmüller space T (Sg,n) of marked complex
structures on Sg,n.

Fix a complete hyperbolic metric on Sg,n of finite area. A quadratic differential

q ∈ Q̃(Sg,n) is determined by a pair (λ+, λ−) of measured geodesic laminations
which jointly fill up S (i.e. we have ι(λ+, µ) + ι(λ−, µ) > 0 for every measured
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geodesic lamination µ). The vertical measured geodesic lamination λ+ for q corre-
sponds to the equivalence class of the vertical measured foliation of q. The horizontal
measured geodesic lamination λ− for q corresponds to the equivalence class of the
horizontal measured foliation of q.

For p1 ≤ n, p2 = n−p1 and ℓ ≥ 1, an ℓ-tuple (m1, . . . ,mℓ) of positive integers 1 ≤
m1 ≤ · · · ≤ mℓ with

∑

imi = 4g− 4 + p1 defines a stratum Q̃(m1, . . . ,mℓ;−p1, p2)

in Q̃(Sg,n). This stratum consists of all marked quadratic differentials with p1
simple poles, p2 regular marked points and ℓ zeros of order m1, . . . ,mℓ. We require
that these differentials are not squares of holomorphic one-forms. The stratum is a
complex manifold of dimension

(4) h = 2g − 2 + ℓ+ p1 + p2.

The closure in Q̃(Sg,n) of a stratum is a union of components of strata. Strata
are invariant under the action of the mapping class group Mod(Sg,n) of Sg,n and

hence they project to strata in the moduli space Q(Sg,n) = Q̃(Sg,n)/Mod(Sg,n) of
quadratic differentials on Sg,m. Denote by Q(m1, . . . ,mℓ;−p1, p2) the projection of

the stratum Q̃(m1, . . . ,mℓ;−p1, p2). The strata in moduli space need not be con-
nected, but their connected components have been identified by Lanneau [La08]. A
stratum in Q(Sg,n) has at most two connected components. The number of com-
ponents of the stratum Q(m1, . . . ,mℓ;−p1, p2) equals the number of components
of Q(m1, . . . ,mℓ;−p1, 0).

Similarly, let H̃(Sg,n) be the bundle of marked holomorphic one-forms over Te-
ichmüller space T (Sg,n) of Sg,n. Each of the marked points of Sg,n is required to
be a regular point for the differential. In particular, the bundle is non-empty only
if g ≥ 1. For an ℓ-tuple k1 ≤ · · · ≤ kℓ of positive integers with

∑

i ki = 2g − 2,

the stratum H̃(k1, . . . , kℓ;n) of marked holomorphic one-forms on S with ℓ zeros
of order ki (i = 1, . . . , ℓ) and n regular marked points is a complex manifold of
dimension

(5) h = 2g − 1 + ℓ+ n.

It projects to a stratum H(k1, . . . , kℓ;n) in the moduli space H(Sg,n) of area one
holomorphic one-forms on Sg,n. Strata of holomorphic one-forms in moduli space
need not be connected, but the number of connected components of a stratum is
at most three [KZ03].

We continue to use the assumptions and notations from Section 5. For a marked
large train track τ ∈ LT (m1, . . . ,mℓ;−p1, p2) let

Q(τ) ⊂ Q̃(Sg,n)

be the set of all marked quadratic differentials whose vertical measured geodesic
lamination is contained in V(τ) and whose horizontal measured geodesic lamination
is carried by the dual bigon track τ∗ of τ . Since τ and τ∗ both carry a minimal
large geodesic lamination, and such a lamination supports a transverse measure
and fills S = Sg,n, for a large train track τ on S = Sg,n the set Q(τ) is not empty.
Recall that no geodesic lamination can be carried by both τ and τ∗.
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The next observation relates Q(τ) to components of strata. It is related to
Theorem 1.2 of [MW14] which is used in its proof. The lemma can also be shown
in a more elementary way, however we felt that the proof we provide is better suited
to connect to the results in [MW14].

Lemma 6.1. (1) Let τ ∈ LT (m1, . . . ,mℓ;−p1, p2) be non-orientable and let
q ∈ Q(τ). If the support of the horizontal measured geodesic lamination of

q is contained in LL(m1, . . . ,mℓ;−p1, p2) then q ∈ Q̃(m1, . . . ,mℓ;−p1, p2).
(2) Let τ ∈ LT (m1, . . . ,mℓ; 0, p2) be orientable and let q ∈ Q(τ). If the sup-

port of the horizontal measured geodesic lamination of q is contained in
LL(m1, . . . ,mℓ; 0, p2) then q ∈ H̃(m1/2, . . . ,mℓ/2; p2).

Proof. A marked abelian or quadratic differential z ∈ Q̃(Sg,n) defines a singular
euclidean metric on Sg,n. A singular point for z is a zero or a pole or a marked
regular point. A saddle connection for z is a geodesic segment for this singular
euclidean metric which connects two singular points and does not contain a singular
point in its interior. A separatrix is a maximal geodesic segment or ray which begins
at a singular point and does not contain a singular point in its interior.

A complex structure on Sg,n determines a complete finite area hyperbolic metric
h on Sg,n with cusps at the p1 marked points appearing in the definition. Let ξ
be the support of the horizontal measured geodesic lamination of the quadratic
differential z, realized in the hyperbolic structure defined by z. By [Lev83], the
geodesic lamination ξ can be obtained from the horizontal foliation of z by cutting
Sg,m open along each horizontal separatrix and straightening the remaining leaves
so that they become geodesics for h. In particular, up to homotopy, a horizontal
saddle connection s of z is contained in the interior of a complementary component
C of ξ which is uniquely determined by s.

As marked regular points play no role for the conclusion of the lemma let us
consider an orientable large train track τ ∈ LT (m1, . . . ,mℓ; 0, 0). Let q ∈ Q(τ),
with horizontal measured geodesic lamination µ ∈ V(τ) whose support supp(µ)
is contained in LL(m1, . . . ,mℓ;−p1, p2). Mark a point in each complementary
component of τ and let Σ be the union of these marked points. By Lemma 5.7, µ
defines a homology class in H1(S−Σ;R), and this class is the Poincaré dual of the
measured foliation which corresponds to µ, viewed as a relative cohomology class
in H1(S,Σ;R). Note that as µ is minimal, we can choose this foliation in such a
way that its singular set is precisely Σ. We refer to [MW14] and the discussion
after Lemma 5.7 for more information.

Now the dual bigon track τ∗ is orientable, and for a given orientation of τ there
exists an orientation of τ∗ so that each intersection between τ and τ∗ is an interior
point of an oriented branch b, b∗ of τ, τ∗ so that the ordered pair (b, b∗) defines the
orientation of S. But this just means that for any measured lamination ν carried
by τ∗, the intersection between the homology class in H1(S − Σ;R) defined by ν
and the homology class defined by any measured lamination whose support equals
the support of µ is positive.
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By Theorem 1.2 of [MW14], the pair (µ, ν) defines an abelian differential q ∈
H(m1, . . . ,mℓ). As an abelian differential is uniquely determined by its horizontal
and vertical measured laminations, this is what we wanted to show.

In the case that τ is non-orientable the same holds true for supp(µ) since an
orientation of supp(µ) would induce an orientation on τ . The claim now follows in
the same way by passing to the orientation cover of τ . �

We use Lemma 6.1 to show

Proposition 6.2. (1) Let τ ∈ LT (m1, . . . ,mℓ;−p1, p2) be a large non-orien-

table train track. Then there is a component Q̃ of Q̃(m1, . . . ,mℓ;−p1, p2)
such that Q(τ) is the closure in Q̃(Sg,n) of an open path connected subset

of Q̃.
(2) For every large orientable train track τ ∈ LT (m1, . . . ,mℓ; 0, n) there is

a component Q̃ of H̃(m1/2, . . . ,mℓ/2, n) such that Q(τ) is the closure in

H̃(Sg,n) of an open path connected subset of Q̃.

Proof. In the proof of the proposition, we do not distinguish between the orientable
and the non-orientable case.

Let τ ∈ LL(m1, . . . ,mℓ;−p1, p2) and let µ ∈ V(τ) be such that the support
supp(µ) of µ is contained in LL(m1, . . . ,mℓ;−p1, p2). Then µ defines a positive
transverse measure on τ . If β ∈ V∗(τ) is arbitrary then the measured geodesic
laminations µ, β jointly fill up S (since the support of β is different from the support
of µ and supp(µ) fills up S) and hence the pair (µ, β) defines a point q ∈ Q(τ). By

Lemma 6.1, we have q(µ, β) ∈ Q̃(m1, . . . ,mℓ;−p1, p2).

Recall that V∗(τ) is homeomorphic to a cone over a closed cell whose dimen-

sion equals half of the dimension of Q̃(m1, . . . ,mℓ;−p1, p2). Let V be the interior
of this cell. By continuity and invariance of domain, we conclude that the set
{q(µ, β) | β ∈ V } is a neighborhood of q(µ, ν) in the strong stable manifold of

q(µ, ν) in Q̃(m1, . . . ,mℓ;−p1, p2) which in period coordinates consists of all qua-

dratic differentials in Q̃(m1, . . . ,mℓ;−p1, p2) with the same real part.

As measured laminations which are minimal and of the same topological type as
τ are dense in the set of all measured laminations in such a strong stable manifold
(see [KMS86] for a comprehensive discussion of this fact), we conclude that such
measured laminations are dense in V∗(τ).

Now assume that the support of the lamination ν ∈ V∗(τ) is contained in
LL(m1, . . . ,mℓ;−p1, p2). Using exactly the same reasoning as above, we deduce
that for each α ∈ V(τ), the pair (α, ν) defines a quadratic differential q(α, ν) ∈
Q̃(m1, . . . ,mℓ;−p1, p2). Furthermore, the measured laminations whose support is
minimal and of the same topological type as τ are dense in V(τ).

To summarize, there exists an open dense subset of Q(τ) which is contained

in Q̃(m1, . . . ,mℓ;−p1, p2). To complete the proof of the proposition, it suffices to
show that the set of all pairs (α, β) ∈ V(τ)×V∗(τ) which gives rise to a differential

q(α, β) ∈ Q̃(m1, . . . ,mℓ;−p1, p2) is path connected.
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Thus let (α, β), (α′, β′) be two pairs with this property. As jointly filling up S is
an open condition for pairs of measured laminations and as the set of all measured
laminations whose support is of type LL(m1, . . . ,mℓ;−p1, p2) is dense in V(τ),
there exist laminations µ, µ′ ∈ V(τ) with the following property. The support of
µ, µ′ is of type LL(m1, . . . ,mℓ;−p1, p2), and there are paths c, c′ : [0, 1] → V(τ)
connecting α to µ, α′ to µ′ so that for every t ∈ [0, 1], the pair (c(t), β) and (c′(t), β′)
determines a quadratic differential q(c(t), β), q(c′(t), β′), and the resulting paths

t→ q(c(t), β), t→ q(c′(t), β′) are contained in Q̃(m1, . . . ,mℓ;−p1, p2).

By Lemma 6.1, for every measured lamination ξ ∈ V∗(τ), the pair (µ, ξ) de-

fines a quadratic differential q(µ, ξ) in Q̃(m1, . . . ,mℓ;−p1, p2), and the same holds
true for the pair (µ′, ξ). Now choose a measured lamination ν ∈ V∗(τ) whose
support is contained in LL(m1, . . . ,mℓ;−p1, p2). Using the reasoning in the pre-
vious paragraph, the differential q(µ, β) can be connected to q(µ, ν) by a path in

Q(τ) which is contained in Q̃(m1, . . . ,mℓ;−p1, p2), and q(µ
′, β′) can be connected

to q(µ′, ν) by a path with the same properties. Using this argument once more
we conclude that the differential q(µ′, ν) can be connected to q(µ, ν) by a path in

Q̃(m1, . . . ,mℓ;−p1, p2) ∩ Q(τ).

Together we find that the differentials q(α, β) and q(α′, β′) can both be connected

to q(µ, ν) by a path in Q̃(m1, . . . ,mℓ;−p1, p2) ∩ Q(τ). As the pairs (α, β) and
(α′, β′) were arbitrarily chosen with the property that they determine quadratic

differentials in Q̃(m1, . . . ,mℓ;−p1, p2), the proposition follows. �

The next proposition is a converse to Proposition 6.2 and shows that train tracks
can be used to define coordinates on strata. The main point here is to keep track
of the singularities of the differential in a given stratum. This issue also arises in
[MW14] and is taken care of there with a different construction which however does
not serve our needs.

Proposition 6.3. (1) For every q ∈ H̃(k1, . . . , ks;n) there is an orientable
train track τ ∈ LT (2k1, . . . , 2ks; 0, n) so that q is an interior point of Q(τ).

(2) For every q ∈ Q̃(m1, . . . ,mℓ;−p1, p2) there is a non-orientable train track
τ ∈ LT (m1, . . . ,mℓ;−p1, p2) so that q is an interior point of Q(τ).

Furthermore, if q contains a horizontal cylinder then the core curve of this cylin-
der is embedded in τ .

Proof. Let q ∈ Q̃(m1, . . . ,mℓ;−p1, p2) and let Σ = {u1, . . . , us} (s = ℓ + m + p)
be the singular set of q, i.e. the union of the zeros and poles and marked regular
points.

Recall that q defines a singular euclidean metric on Sg,n as well as two measured
foliations, the horizontal and the vertical measured foliation. If x is a singular point
of this metric, then x is a cone point of cone angle kπ for some k ≥ 1. There are
precisely k horizontal and precisely k vertical separatrices which begin at x. The
zeros of the differential correspond to the cone points with cone angle kπ for some
k ≥ 3.
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Choose a number ǫ > 0 which is smaller than one eighth of the distance in the
flat metric between any two singular points. Let ui ∈ Σ be a singular point of cone
angle kπ for some k ≥ 1. There exists a closed neighborhood Vi of ui with the
following properties. The boundary ∂Vi of Vi is a polygon with 2k sides. The sides
are alternating between vertical arcs of fixed length σ < ǫ/10 and horizontal arcs.
The midpoint of a vertical arc is a point of distance ǫ on a horizontal separatrix
through ui. Note that the polygon is uniquely determined by these requirements.

Out of the polygons Vi (i ≤ s) we construct a train track ηi with stops whose
switches are the midpoints of the vertical sides of the polygon ∂Vi. Thus each
switch is a point of distance ǫ to the singular point ui on a horizontal separatrix ζi.

Two switches on separatrices ζ1i , ζ
2
i are connected by a branch in ηi if the angle

at xi between ζ
1
i , ζ

2
i equals π, or, equivalently, if there is a path in ∂Vi connecting

ζ1i , ζ
2
i which travels through precisely one horizontal side of ∂Vi. This branch is

constructed in such a way that all the vertical sides of the polygons ∂Vi are replaced
by a cusp. Furthermore, we require that all branches are contained in Vi and do
not intersect ui. Figure D shows this construction.

Figure D

The construction can be done in such a way that ηi is transverse to the vertical
measured foliation of q. More precisely, by adjusting the constant σ we can assume
that the tangent of ηi is arbitrarily close to the horizontal direction and that ηi is
an arc of arbitrarily small geodesic curvature for the euclidean metric defined by
q. There is a complementary component Ci of Vi − ηi which is a polygon with 2k
cusps. Its closure is contained in Vi and meets ∂Vi only at the cusps. It contains
the singular point ui. The cusps of the component are the vertices of ηi. The
component Ci is a once punctured monogon if ui is a pole, a once punctured bigon
if ui is a regular marked point, or an mi + 2-gon if ui is a zero of order mi.

Let η̂ be the union of the train tracks with stops ηi; this union consists of ℓ+p1+p2
connected components, and it has

∑

i(mi + 2) + p1 + 2p2 vertices. The graph η̂
is transverse to the vertical foliation of q. By construction, η̂ also is transverse to
the straight line foliation on S defined by any direction for the singular euclidean
metric on S which is sufficiently close to the vertical direction.
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A generalized bigon track is a graph with all properties of a train track except
that we allow the existence of complementary bigons, and we allow complementary
annuli. Out of the train track with stops η̂ we construct a generalized bigon track
η on S by inductively replacing a stop by a switch and adding additional branches
as follows.

For i ≤ s let β be a vertical side of the polygon ∂Vi. Then for small enough
h > 0, β is a side of an euclidean (right angled) rectangle Rh in S of width h which
intersects the polygonal disk Vi precisely in β. We require that the interior of Rh

is disjoint from the disks Vj . The area of Rh equals σh. Thus by consideration of
area, there exists a smallest number h0 > 0 such that the vertical side β′ of Rh0

distinct from β intersects one of the polygonal disks Vj . Then β
′∩∂Vj is a (possibly

degenerate) subarc of a vertical side ξ of ∂Vj .

There are two possibilities. In the first case, β′ = ξ. Then Vi ∪Rh0
∪Vj contains

a horizontal saddle connection joining ui to uj . Connect the cusp of the component
ηi of η̂ contained in Vi to the cusp of the component of ηj contained in Vj by the
subsegment of the saddle connection which is contained in Rh0

. This construction
yields a new generalized bigon track η̂′ with stops, and the number of stops of η̂′

equals the number of stops of η̂ minus two.

The second possibility is that β′ ∩ ξ is a proper subarc of ξ (perhaps degenerate
to a single point). Then precisely one of the endpoints of ξ is contained in β′;
denote this point by z. The point z is contained in a horizontal side of the polygon
Vj and hence it determines a branch b of the train track with stops η̂. Connect the
midpoint y of the side β of Rh0

(which is a stop of ηi) to an interior point of the
branch b with an arc ν in such a way that the union ηi∪ν∪ηj is a generalized bigon
track with stops, and that there is an arc of class C1 contained in this generalized
bigon track connecting the stop y of ηi to the endpoint of the branch b which is
distinct from z. In the resulting generalized bigon track η̂′ with stops, the midpoint
y of the vertical side β of Vi (which was a stop in ηi) is a trivalent switch. The
number of stops of η̂′ equals the number of stops of η̂ minus one.

Doing this construction with each of the stops of η̂ replaces η̂ by a generalized
bigon track η. This can be done in such a way that each branch of η is a smooth
arc whose tangent is everywhere close to the horizontal subbundle of the tangent
bundle of S − Σ.

We show next that a complementary component of η which does not contain
a singular point of q either is a bigon or an annulus. For this it suffices to show
that the Euler characteristic of each complementary region which does not contain
any marked point vanishes. Namely, by construction, the sum of the Euler char-
acteristics of the complementary regions of η containing marked points equals the
Euler characteristic of Sg,n. Furthermore, there are no complementary monogons as
those would have to encircle a cusp. As the Euler characteristic of any complemen-
tary component different from a monogon is non-positive, the Euler characteristic
of every complementary component not containing a marked point has to vanish.
Hence each such component either is a bigon or an annulus. An annulus component
corresponds to a horizontal cylinder of q.
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To construct a train track out of η we begin with collapsing successively the
complementary bigons of η as follows. The set of all directions for the flat metric
defined by q which are tangent to some saddle connection is countable and hence
we can find arbitrarily near the vertical direction a direction which is not tangent
to any saddle connection. By construction of η, we may assume that this direction
is transverse to η. For simplicity of exposition we will call this direction vertical in
the sequel. We use the vertical flow to collapse the complementary bigons of η as
follows.

Let B be a complementary bigon of η. The boundary ∂B of B consists of two arcs
a1, a2 which are nearly horizontal and which meet tangentially at their endpoints.
The vertical foliation is transverse to these sides, and non-singular in the bigon.

By transversality and compactness, a point x in the interior of the side a1 of B is
the starting point of a vertical arc γ whose interior is contained in the interior of B
and whose second endpoint y is contained in a side of ∂B. If y is contained in the
same side a1 of ∂B as x then y bounds together with the subarc of a1 connecting
x to y an euclidean disk whose boundary consists of two smooth arcs with small
curvature which meet at the endpoints with an angle close to π/2. However, this
violates the Gauss Bonnet theorem. This implies that B is foliated by vertical arcs
with one endpoint on a1 and the second endpoint on a2.

Now although the boundary of B may not be embedded in S (we only know that
the interior of B is embedded), the two endpoints of any vertical arc as above are
distinct since there is no vertical closed geodesic by assumption. This means that
we can collapse these vertical arcs to points and collapse in this way the bigon B
to a single arc. Let θ be the generalized bigon track obtained in this way.

There is a collapsing map F ′ : S → S of class C1 which is homotopic to the
identity, which equals the identity outside of a small neighborhood of the bigon
B and which maps η to θ by collapsing the vertical arcs crossing through B. As
the sides of B are nearly horizontal, we may assume that the differential of the
restriction of the collapsing map F ′ to each horizontal arc for q vanishes nowhere.

Using once more the fact that vertical trajectories do not contain loops, we can
repeat this process with any other bigon. In finitely many such steps we construct
a generalized bigon track τ̂ and a collapsing map F : η → τ̂ with the following
properties.

(1) τ̂ does not have any complementary bigon components.
(2) F is homotopic to the identity and of class C1.
(3) The differential of the restriction of F to the horizontal foliation of q van-

ishes nowhere, and it maps the intersection of the horizontal foliation of q
with the bigon complementary components of η to smoothly immersed arcs
in τ̂ .

The bigon track τ̂ may not be a train track as it may have complementary
components which are annuli. However, the above construction can also be used
to collapse annuli to circles. To this end let A be a complementary annulus of
τ̂ . By construction of τ̂ , A is contained in a horizontal cylinder C for q, and its
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closure does not contain a singular point of q. Furthermore, its boundary curves are
transverse to the vertical foliation, and they intersect the interior of the horizontal
cylinder C in m embedded arcs where m is the number of singular points on the
boundary of C.

Let a1, a2 be the two boundary curves of A. For a point x ∈ a1, there is a unique
subarc v(x) of a vertical trajectory starting at x which is entirely contained in A
and connects x to a point ψ(x) contained in the boundary of A. Using once more
the Gauss Bonnet theorem, we conclude that in fact ψ(x) ∈ a2. As there are no
vertical cylinders and the closure of A does not contain singular points, we have
ψ(x) 6= x. Furthermore, the arc v(x) depends smoothly on x.

By the discussion in the previous paragraph, for each x ∈ a1 we can collapse
the arc v(x) to a point. The result is a new generalized bigon track τ ′, and there
is a collapsing τ̂ → τ ′ of class C1 which is homotopic to the identity and whose
differential restricted to any horizontal arc vanishes nowhere. The number of com-
plementary components which are annuli is strictly smaller than the number of
annuli components of τ̂ . Repeating this construction with all the finitely many
annuli components of S − τ̂ , we construct in this way from τ̂ a train track τ on S
which carries the horizontal measured geodesic lamination of q. Furthermore, the
vertical measured geodesic lamination of q hits τ efficiently (see [PH92]) and hence
it is carried by the dual bigon track τ∗ of τ . Each complementary component of τ
contains precisely one singular point of q, and the component is a k + 2-gon if and
only if the singular point is a zero of order k. This yields that τ is of topological
type (m1, . . . ,mℓ;−p1, p2).

We are left with showing that τ is large. Now by construction, τ carries the
horizontal lamination of eisq provided s is sufficiently close to 0. But the set of
directions for the singular euclidean metric defined by q so that the horizontal
foliation in this direction is minimal and of the type predicted by the number
and multiplicities of the zeros of q is dense [KMS86]. This implies that τ carries a
lamination which is minimal, large and of the same topological type as τ . Similarly,
for s sufficiently close to zero, the vertical measured geodesic lamination of eisq hits
τ sufficiently. Thus as before, V∗(τ) carries a minimal large geodesic lamination of
the same topological type as τ . In other words, τ has all the properties required in
the proposition.

Now if q is an abelian differential then the horizontal and vertical foliations of
q are orientable. As η̂ is constructed from the horizontal foliation of q, it inherits
an orientation from the orientation of the horizontal foliation of q. The collapsing
construction uses the orientable vertical foliation, and it is straightforward that
this construction respects orientations as well. Then the resulting train track τ is
orientable. �

We summarize the discussion in this section as follows.

Let Q be a component of the stratum Q(m1, . . . ,mℓ;−p1, p2) of Q(Sg,n) (or of

the stratum H(m1/2, . . . ,mℓ/2; p) of H(Sg,n)) and let Q̃ be the preimage of Q in
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Q̃(Sg,n) (or in H̃(Sg,n)). Then there is a collection

LT (Q̃) ⊂ LT (m1, . . . ,mℓ;−p1, p2)

of large marked train tracks τ of the same topological type as Q such that for every
τ ∈ LT (Q̃), the set Q(τ) contains an open path connected subset of Q̃.

The set LT (Q̃) is invariant under the action of the mapping class group. Its
quotient LT (Q) under this action is finite and will be called the set of combinatorial
models for Q. The subset

∪τ∈LT (Q̃)Q(τ)

of the Teichmüller space of abelian or quadratic differentials is closed, Mod(S)-

invariant and contains Q̃ as an open dense subset, i.e. it coincides with the closure
of Q̃ in Q̃(Sg,n).

Lemma 6.4. Let Q be a component of a stratum, with preimage Q̃ in Q̃(Sg,n), let

τ ∈ LT (Q̃) and let η be a large train track of the same topological type as τ which

is carried by τ . Then η ∈ LT (Q̃).

Proof. A point in Q(τ) is defined by a pair (λ, ν) where λ ∈ V(τ) and where
ν ∈ V∗(τ). If we choose λ in such a way that its support supp(λ) is of the same
topological type as τ and such that λ is carried by the train track η, then (λ, ν)
defines a differential in Q(η). �

As a fairly immediate consequence of the above discussion and Section 3 of
[H09], we obtain a method to construct large train tracks of a given topological
type. Namely, for a fixed choice of a complete hyperbolic metric on S of finite
volume and numbers a > 0, ǫ > 0, there is a notion of a-long train track which
ǫ-follows a large geodesic lamination λ. By definition, this means the following.
Fix a hyperbolic metric on S. The straightening of a train track τ is obtained
from τ by replacing each branch b by a geodesic segment which is homotopic with
fixed endpoints to b. We require that the length of each of the straightened edges
is at least a, that their tangent lines are contained in the ǫ-neighborhood of the
projectivized tangent bundle of λ and that moreover the straightening of every
trainpath on τ is a piecewise geodesic whose exterior angles at the breakpoints are
not bigger than ǫ.

Lemma 3.2 of [H09] shows that for every geodesic lamination λ on S and every
ǫ > 0 there is an a-long generic transversely recurrent train track τ which carries λ
and ǫ-follows λ.

Corollary 6.5. Let τ ∈ LT (Q̃) and let λ be a minimal large geodesic lamination
of the same topological type as τ which is carried by τ . Then for sufficiently small
ǫ > 0, an a-long train track η which ǫ-follows λ is contained in LT (Q̃).

Proof. By construction, if λ is large, then for sufficiently small ǫ and sufficiently
large a > 0, an a-long train track η which ǫ-follows λ is of the same topological
type as λ. Furthermore, η carries a minimal large geodesic lamination of the same
topological type as τ and hence η is fully recurrent and transversely recurrent.
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If λ is carried by a large train track τ then for sufficiently small ǫ > 0 and
sufficiently large a > 0, η is carried by τ (see Section 3 of [H09]). Then a large
geodesic lamination which is carried by τ∗ is carried by η∗ and hence η is large as
claimed. �

7. Realizations of admissible curve systems

In this section we construct from a curve system which is admissible for a com-
ponent Q of a stratum of abelian differentials on a closed oriented surface S a large
train track τ which is contained in LT (Q̃). We use this train track to obtain a
dynamical version of Corollary 4.4 and Proposition 4.5 in the spirit of a conjecture
of Zorich [Z99] (see [AMY18, GR17]).

In Section 8 we will use the results in this section to navigate between subgroups
of Mod(Sg,m) which are generated by the Dehn twists about the components of
curve systems which are admissible for Q.

We assume throughout that all curves from a curve system C intersect trans-
versely in the minimal number of points. An admissible curve system C on S
decomposes S into m ≥ 1 topological disks. By Lemma 2.7, there is a consistent
orientation for C. Recall also that a vertex cycle of an oriented train track τ is an
embedded simple closed curve in τ .

Lemma 7.1. Let C be an admissible curve system. Then a consistent orientation
of C defines a recurrent orientable train track τ on S which contains each of the
curves from C as a vertex cycle.

Proof. Equip the admissible curve system with a consistent orientation. Construct
from the oriented curve system C a train track τ by replacing each intersection
between oriented curves by a large branch as shown in Figure E. Informally, this

Figure E

amounts to passing through the intersecting curves a, c ∈ C in the direction pre-
scribed by their orientation, and if we follow the curve a in an orientation preserving
fashion, then we allow to turn into the curve c in an orientation preserving fashion.
This does not depend on the order of the curves a, c. There exists an orientation
on the train track τ which induces on each of the curves c ∈ C the orientation
from the consistent orientation used in its construction. Namely, we only have to
check consistency of the orientation at the switches, which is immediate from the
definition of a consistent orientation.

By construction, each of the curves from the system C is embedded in τ .
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Thus we are left with showing that the train track τ is recurrent. To this end
we just have to check that we can transit from any curve defining a leaf in the tree
of the curve diagram to any other leaf with an oriented trainpath. However, by
construction, we can transit from any curve c in the system to any curve which
intersects c and hence recurrence follows by a straightforward induction. �

We call the train track τ constructed in Lemma 7.1 from a curve system C a
train track realization of C. All switches of such a train track are trivalent.

The following observation follows easily from the definition of a consistent orien-
tation. For its formulation, let c be an embedded simple closed curve in an oriented
train track τ on S. Equip the curve c with the orientation inherited from τ . If v is
a switch contained in c then there exists a unique half-branch incident on v which
is not contained in c (recall that we require all switches to be trivalent). For the
orientation of c and the given orientation of S, the switch v is called a right (or
left) switch if locally in a small neighborhood of v, the half-branch incident on v
and not contained in c is to the right of c (or to the left of c). Furthermore, the
switch v is called incoming if the orientation of the branch b incident on v and not
contained in c is such that the oriented subarc of b which begins at the midpoint
of b ends at v, and it is called outgoing otherwise.

Recall that a choice of a consistent orientation for the curve system C defines a
partition C = C+ ∪ C− into the positive curves C+ and the negative curves C−. We
have

Lemma 7.2. Let C be an admissible curve system and let τ be a train track which
realizes C, defined by a choice of a consistent orientation for C. Then for each
component c of C+ (or c of C−), the train track τ can be split to its image under a
positive (or negative) Dehn twist about c.

Proof. By the definition of τ and the definition of a consistent orientation of C, if
c ∈ C+ then all right switches are incoming and all left switches are outgoing, and
if c ∈ C− then all left switches are incoming and all right switches are outgoing (see
Figure F for an illustration).

Figure F

Now let us assume that c ∈ C+, the case that c ∈ C− is equivalent and will be
omitted. As τ is recurrent, there is a large branch e of τ contained in c. This large
branch is incident on two distinct switches. By construction of τ , one switch is
a right and the other a left switch, and one is incoming and the other outgoing.
In particular, a split τ ′ of τ at e which carries c is unique, and it slides the right
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incoming branch across the outgoing one. As c crosses through the diagonal of the
split, the split track contains c as an embedded simple closed curve.

Now if c consists of only two branches, then the branch contained in c which
is distinct from e is a small branch, and the split track τ ′ is the image of τ by a
positive Dehn twist about c. Namely, this Dehn twist maps the homology class [d]
defined by the oriented curve d ∈ C− which intersects c in a point corresponding to
e to the class [d] + [c] where [c] is the class defined by the orientation of c, and if ι
is the intersection form on H1(S,Z) then ι([c], [d]) = 1.

Otherwise we repeat this construction with the train track τ ′. In finitely many
such steps we obtain a train track η which on the one hand is obtained from τ by a
splitting sequence, on the other hand it is the image of τ by a positive Dehn twist
about c. �

Recall from Section 2 that each admissible curve system C determines a compo-
nent Q(C) of a stratum of abelian differentials. We denote by Q̃(C) its preimage in
the Teichmüller space of marked abelian differentials.

Corollary 7.3. Let τ be a train track realization of an admissible curve system C
on S; then τ ∈ LT (Q(C)).

Proof. By construction, the topological type of τ coincides with the topological
type of a train track in LT (Q̃(C)). We have to show that τ is large and determines
the component Q(C).

To this end decompose once again C = C+∪C−. The Thurston Penner construc-
tion (see Theorem 3.1 of [P88]), applied to the curves from C, shows the following.
Let ϕ1 be the concatenation of the positive Dehn twists about the curves from C+

and let ϕ2 be the concatenation of the negative Dehn twists about the curves from
C−. As the curves in C± are pairwise disjoint and hence the Dehn twists about
its components commute, the maps ϕi (i = 1, 2) do not depend on choices made.
Furthermore, ϕ = ϕ1ϕ2 is a pseudo-Anosov mapping class.

Each pseudo-Anosov mapping class preserves a flow line of the Teichmüller flow
on the Teichmüller space of quadratic differentials or abelian differentials, and it
acts on this flow line by translation. We claim that the invariant flow line of ϕ
projects to a periodic flow line of the Teichmüller flow in the component Q(C).

Namely, by the definition of a realization q(C) of C, the abelian differential q(C)
is square tiled, with completely periodic horizontal and vertical measured foliation.
In general, q(C) is not contained in the invariant flow line for ϕ, but it can deformed
to a differential in this flow line as follows (see Section 5 of [Lei04]).

Number the curves in C± in an arbitrary way. For simplicity of notation, we
denote the curves in C+ by ai, and the curves in C− by bj . Define N = NA,B to be
the (n,m)-matrix whose (i, j)-entry is ι(ai, bj). The connectivity of C guarantees
that NN t is irreducible. Let v be an Perron Frobenius eigenvector for NN t where
µ > 0 is the Perron Frobenius eigenvalue.
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If we put v′ = µ−1/2N tv then

N tNv′ = µv′

and also v = µ−1/2N (Section 5 of [Lei04]). Deform the euclidean squares which
compose q(C) to recangles for which the sides transverse to ai have length vi and
the sides transverse to bj have length v

′
j . Such a deformation can be achieved within

the stratum containing q(C). Let z be the image of this deformation.

By the results in Section 5 of [Lei04], each of the mapping classes contained in
the subgroup of Mod(S) generated by ϕ1, ϕ2 can be represented by an affine trans-
formation for the translation surface z. But this just means that ϕ is represented
by an affine transformation for z and hence the invariant flow line for ϕ passes
through z. This is what we wanted to show.

On the other hand, it follows from Lemma 7.2 that τ is splittable to ϕ(τ).
Let PV(τ) ⊂ PML be the projectivization of V(τ). Then PV(τ) is a non-empty
compact subset of PML, and ϕ(PV(τ)) ⊂ PV(τ). Then ∩kϕ

kPV(τ) is a non-
empty compact ϕ-invariant subset of V(τ).

Since ϕ acts with north-south dynamics on PML, the set ∩kϕ
kPV(τ) contains

the attracting fixed point for the action of ϕ. Thus τ carries this attracting fixed
point. If λ is the support of a measured geodesic lamination whose projective class
is this fixed point, then λ is minimal and of the same topological type as τ . Thus
τ is fully recurrent.

The same reasoning, applied to the inverse of ϕ, shows that τ∗ carries the re-
pelling fixed point of ϕ which is minimal and large. This implies that indeed,
τ ∈ Q̃(C). �

Let now q be a point in the component Q = Q(C) and let U be a contractible
neighborhood of q in Q. Since there exists a probability measure on Q of full
support which is invariant and ergodic under the Teichmüller flow Φt, the set
U contains forward recurrent points for Φt. Let Γ be the set of periodic orbits
for the Teichmüller flow Φt passing through U . Choose a component Ũ of the
preimage of U in the Teichmüller space of abelian differentials. A periodic orbit of
Φt beginning at a point in U then lifts to an orbit of Φt in the Teichmüller space
of abelian differentials which begins in Ũ and is invariant under a pseudo-Anosov
element ϕ ∈ Mod(Sg,m). Define Ω(Γ) to be the subgroup of Mod(Sg,m) generated
by such pseudo-Anosov elements ϕ. Observe that as U is contractible, the choice of
Ũ determines an element of Mod(Sg,m) rather than a conjugacy class in Mod(Sg,m);
we refer to [H14] for a comprehensive discussion. The group Ω(Γ) depends on the

choice of Ũ , but different choices give rise to conjugate groups.

We next observe that if q lifts to a differential in Q(τ) for a train track realization
τ of C then the group Ω(Γ) contains the group Γ(C).

Lemma 7.4. Let τ be a train track realization of an admissible curve system C for
Q. Let q̃ ∈ Q(τ) be the preimage of a differential q ∈ Q(C) which is contained in

a periodic orbit for Φt, and let Ũ be any neighborhood of q in the component Q̃ of
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the preimage of Q which contains q̃ . Then for each c ∈ C, the Dehn twist about c
is contained in Ω(Γ).

Proof. Recall from Lemma 7.2 that for each c ∈ C there exists a splitting sequence
connecting τ to the image T±

c τ of τ by a (positive or negative) Dehn twist T±
c

about c.

As periodic points for the Teichmüller flow are dense in any component of a
stratum, there exists a periodic point q ∈ Q(τ), and this point is contained in the
projection of the cotangent line of the axis of a pseudo-Anosov mapping class ϕ.
Furthermore, we may assume that the mapping class ϕ admits τ as a train track
expansion. This means that ϕ(τ) is carried by τ .

A pseudo-Anosov mapping class acts with north-south dynamics on the space
of projective measured laminations, and this property characterizes pseudo-Anosov
mapping classes. A standard fixed point argument (this is explained in detail in
[H14]) then yields that for large enough k, the mapping class T±

c ◦ ϕk is pseudo-
Anosov, and it admits τ as a train track expansion. It then follows that there
is some m > 1 so that the axis of ϕmTcϕ

k passes through an arbitrarily chosen
neighborhood U of q. We refer to Section 4 of [H14] where this is explained in
detail.

As c ∈ C was arbitrary, this shows that Γ(C) ⊂ Ω(Γ). �

Recall from the introduction the definition of the local monodromy group of a
component Q of a stratum of abelian differentials. As an immediate corollary of
Lemma 7.4 and Lemma 4.7 of [H14] we obtain

Corollary 7.5. Let C be an admissible curve system for a component Q of a stratum
of abelian differentials. Then the local monodromy group of Q contains the image
of the group Γ(C) generated by the Dehn twists about the components of C under
the homomorphism ΨΠ.

Together with Corollary 4.4 and Corollary 4.6, Corollary 7.5 yields Theorem 5
from the introduction.

8. Navigating within the punctured mapping class group

A component Q of a stratum of abelian differentials is a complex orbifold. A
zero of a differential q ∈ Q can be viewed as a marked point on the surface S and
hence if q has m ≥ 1 zeros then there is a homomorphism

P : π1(Q) → Mod(Sg,m),

well defined up to conjugation, where π1(Q) denotes the orbifold fundamental group
of Q. The main result of this section is the following. Let C be any admissible curve
system for Q; then Γ(C) is a normal subgroup of Pπ1(Q) which does not depend
on the choice of C.
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Recall that a vertex cycle of an oriented train track τ is a simple closed curve
embedded in τ . We begin with determining the vertex cycles of a train track
realization of an admissible curve system C.

Lemma 8.1. Let τ be the train track realization of an admissible curve system C.
Then the vertex cycles of τ are precisely the curves of C.

Proof. Any embedded simple closed curve in τ defines a subtrack of τ which consists
of at least two branches. Furthermore, since τ is recurrent, this subtrack contains
a branch which is large in τ [PH92].

Let c ⊂ τ be a vertex cycle and let e be a large branch of τ contained in c. By
construction of a train track realization of C, such a large branch corresponds to
the intersection of two curves a1, a2 ∈ C. In other words, it corresponds to an edge
χ in the curve diagram D of C. Furthermore, both a1, a2 are embedded in τ , and
e = a1 ∩ a2.

For the orientation of τ induced by the consistent orientation of C which is used
in the construction of τ , let b be the branch of τ contained in c which is forward
adjacent to the branch e. By construction of τ , the branch b is small and it either is
contained in the curve a1 or in the curve a2, but these two possibilities are exclusive.
Assume that b is contained in a1. Our goal is to show that a1 = c.

Let C′ ⊂ C be the subsystem of the curve system C whose elements correspond
to the vertices of the component D′ of D−χ containing a1 (recall that D is a tree).
There is a subtrack η of τ which is a train track realization of the curve system C′.
The number of branches of η is strictly smaller than the number of branches of τ .
We claim that η contains the vertex cycle c.

Namely, as the curve diagram D of C is a tree, there are precisely two half-
branches of τ − η which are incident on vertices in η. These half-branches are
incident on the two distinct endpoints of e. After removal of τ − η, the endpoints
of e are contained in the interior of some edge of η.

As τ is oriented, any trainpath ρ on τ which begins at the switch v of e on
which the branch b is incident, which passes first through b and which eventually
intersects τ − η has to pass through e before turning into τ − η (see Figure E). If
this path parametrizes the embedded simple closed curve c, then it has to end at
v. Consequently we have c ⊂ η as claimed.

Now c is embedded in the orientable train track η and hence c is a vertex cycle
of η. As η is a train track realization of a proper subsystem C′ of C, if c ⊂ η only
consists of two branches then clearly c = a1 ∈ C and we are done. Otherwise we
can apply the above discussion to c viewed as a vertex cycle of η. After finitely
many steps, each of which strictly decreases the number of edges of the train track
containing c as a vertex cycle, we find that indeed, c = a1 ∈ C. �

For an orientable large train track η ∈ LT (Q̃) define Γ(η) to be the subgroup
of Mod(Sg,m) generated by the Dehn twists about the vertex cycles of η. Here as
before, m is the number of zeros of a differential in Q.
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Corollary 8.2. Let τ be a train track realization of an admissible curve system C;
then Γ(τ) = Γ(C).

Proof. As by Lemma 8.1 the vertex cycles of τ are precisely the curves from the
curve system C, the corollary is immediate from the definitions. �

The following technical observations are recordered here for later use.

Lemma 8.3. Let τ be a large orientable train track on S and let c be a vertex cycle
of τ .

(1) The numbers of large and small branches of τ contained in c coincide and
are non-zero.

(2) If d is another vertex cycle of τ then every component of c ∩ d contains a
large branch.

(3) Let e be a large branch of τ contained in c. Then τ can be split at large
branches contained in c and distinct from e to a large train track η which
contains c as a vertex cycle and such that e is the unique large branch of η
contained in c.

Proof. Since τ is recurrent, c contains a large branch e of τ . Parametrize c as an
oriented periodic trainpath ρ : [0, k] → τ , beginning at the large branch e = ρ[0, 1].
Then ρ determines a function f : [0, k − 1] → {0, 1} as follows. Define f(j) = 0 if
the half-branch ρ[j − 1/2, j] is small at ρ(j), and define f(j) = 1 otherwise.

We have f(0) = 0, and f(1) = 1. Furthermore, the branch ρ[j − 1, j] is large if
and only if ρ(j − 1) = 0 and ρ(j) = 1, and it is small if and only if ρ(j − 1) = 1
and ρ(j) = 0. A mixed branch ρ[j − 1, j] is characterized by the property that the
function f takes on the same value at its endpoints.

The first part of the lemma is an immediate consequence: c contains the same
number of large and small branches, and between any two large branches there is
a small branch.

Now if d is another vertex cycle of τ and if β = ρ[i, j] is a component of c ∩ d
then f(ρ(i)) = 0 and f(ρ(j)) = 1 which immediately implies the second part of the
lemma.

We are left with showing the third part of the lemma. To this end let again e
be a large branch of τ contained in c. Let ρ : [0, k] → τ be a parametrization of
c as an oriented trainpath beginning at ρ[0, 1] = e. The length k of the path is
the combinatorial length of c. Define the oriented combinatorial distance between e
and the branch ρ[i, i+1] to be i. Let µτ (c, e) be the smallest oriented combintorial
distance between e and a small branch of τ contained in c. Note that if µτ (c, e) =
k − 1 then c contains a single large branch of τ .

We claim that if c contains at least two large branches then there is a sequence
of splits of τ at large branches in c different from e so that the split track η is large
and carries c, the combinatorial length of c in η is at most k and that moreover
µη(c, e) > µτ (c, e).



50 URSULA HAMENSTÄDT

To show this claim let f = ρ[j − 1, j] be the large branch of τ contained in c of
smallest combinatorial distance to e. Split τ at f so that the split track β1 carries
c. Then c defines a trainpath on β1 of length at most k (the length can be k − 1
if c is carried by both train tracks arising from τ by a split at f). We may assume
that the train track β1 is large.

We distinguish now two cases. In the first case, the branch ρ[j−2, j−1] of τ is a
small branch; then µτ (c, e) = j−2. The branch of β1 corresponding to ρ[j−2, j−1]
is a mixed branch, and as the split does not change the type of the branches ρ[s−1, s]
for 1 ≤ s ≤ j − 2, this implies that µβ1

(c, e) ≥ j − 1 = µ7tau(c, e) + 1. Thus β1 has
the properties we were looking for.

In the second case, the branch ρ[j − 2, j − 1] of τ is a mixed branch. Then the
branch of β1 corresponding to ρ[j− 2, j− 1] is large, and the branch corresponding
to ρ[j − 1, j] is small or mixed. Furthermore, we have µβ1

(c, e) = µτ (c, e).

Repeat the construction with ρ[j − 2, j − 1]. After finitely many such steps we
arrive at a train track β2 so that the c is carried by β2, µβ2

(c, e) = µτ (c, e) = i and
that the branch corresponding to ρ[i+ 1, i+ 2] in c ⊂ β2 is large. Then β2 has the
properties of the first case above, and we can apply the first case to deduce what
we were looking for.

Proceeding inductively, in finitely many such steps we find a splitting sequence
beginning at τ with the properties predicted in part (3) of the lemma. �

The proof of the following lemma uses orientability of the train track in an
essential way and is not valid for non-orientable train tracks. Recall that we denote
by Tc the positive Dehn twist about the simple closed curve c.

Lemma 8.4. Let Q be a component of a stratum of abelian differentials and let
η ∈ LT (Q̃) be obtained from τ ∈ LT (Q̃) by a single split.

(1) Γ(η) = Γ(τ).
(2) For every vertex cycle c of η, there exist two (not necessarily distinct) vertex

cycles c1, c2 of τ such that c = T±
c1c2.

(3) For every vertex cycle d of τ there exists a vertex cycle c of η and an element
ψ ∈ Γ(η) such that ψ(c) = d.

Proof. Let us assume that η is obtained from τ by a right split at a large branch e.
There are two cases. In the first case, the train track η′ obtained from τ by a left
split is not recurrent. Then every measured geodesic lamination which is carried
by τ is also carried by η. Now the convex cone of all measured geodesic laminations
carried by τ (or η) is the cone over a compact convex polytope whose vertices are
up to scaling the vertex cycles of τ (or η) (Proposition 3.11.3 of [Mo03]). Hence
any vertex cycle of η is a vertex cycle on τ , and vice versa, every vertex cycle of τ
lifts to a vertex cycle on η. Thus there is nothing to show.

Assume now that both η and η′ are recurrent. As η is carried by τ , there is
a carrying map F : S → S homotopic to the identity with F (η) = τ . The map
F can be chosen in such a way that F−1(e) is the union of the diagonal branch
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e′ of the split and two small half-branches whose second half projects to a branch
which is incident on an endpoint of e and which is distinct from e (see Figure C).
Furthermore, the restriction of F to η − F−1(e) is an embedding.

We first show the second part of the lemma. We only have to consider a vertex
cycle c of η which is not a vertex cycle of τ . Then c is an embedded simple closed
curve in η, but its image under the projection F to τ is a subtrack of τ which is not
a simple closed curve. As the restriction of F to η − F−1(e) is an embedding, the
image of c under F , viewed as a periodic trainpath ĉ on τ , has to pass through the
branch e twice. Furthermore, it passes through any of the neighboring branches of e
at most once. As there are precisely two half-branches which are incident and small
on each endpoint of e, the curve ĉ has to pass through each of these half-branches
precisely once. This implies that c does not pass through the diagonal branch e′ of
the split.

Equip c with the orientation inherited from the orientation of η. Let v1, v2 be
the two (necessarily distinct) switches of τ on which e is incident. Assume that e is
oriented from v1 to v2. Let b1, b2 be the two half-branches of τ which are incident
and small at v1, and let b3, b4 be the two half-branches of τ which are incident and
small at v2. As the oriented simple closed curve c does not pass through the branch
e′, for a suitable numbering of the half-branches bi there exists a subsegment of
ĉ which crosses through b1, e, b3 in this order, and there exists a subsegment of ĉ
which crosses through b2, e, b4 in this order. We refer to Figure G for an illustration.

As a consequence, there are simple closed embedded curves c1, c2 in τ with the
following properties. The weight function on τ defined by c1 ∪ c2 (which is just
counting the number of preimages of interior points on the branches of τ under a
carrying map c1 ∪ c2 → τ) equals the weight function of ĉ. Furthermore, up to
homotopy, the simple closed curves c1, c2 intersect in a single point, and this point
can be chosen to be an interior point of e.

Figure G

Up to exchanging c1 and c2, we thus have

c = Tc1(c2) = T−1
c2 (c1).

Furthermore,
Tc = TTc1

c2 = Tc1Tc2T
−1
c1 = T−1

c2 Tc1Tc2 ∈ Γ(τ)

(see p.73 of [FM12]). As c was an arbitrary vertex cycle of η which is not a vertex
cycle of τ , this shows the second part of the lemma and also shows that Γ(η) ⊂ Γ(τ).
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By induction, we then obtain the following. If the large train track ζ can be
obtained from τ by a splitting sequence, then Γ(ζ) ⊂ Γ(τ). Furthermore, for every
vertex cycle c of ζ there exists a vertex cycle d of τ and an element ψ ∈ Γ(τ) such
that c = ψ(d).

We are left with showing part 1) and 3) of the lemma. To show that Γ(τ) ⊂ Γ(η)
observe that using the above notation, one of the curves c1, c2 is a vertex cycle of
η, and the second curve is not carried by η. But if say c2 is not carried by η then
c2 = T−1

c1 c (which settles the third part of the lemma for c2) and

Tc2 = TT−1
c1

c = T−1
c1 TcTc1 ∈ Γ(η).

As a consequence, for the completion of the proof of the lemma, it suffices to show
the following. If c2 is any vertex cycle of τ which is not carried by η, then there is
a vertex cycle c1 of η and an element ψ ∈ Γ(η) so that c2 = ψ(c1).

Thus let c2 be an arbitrary vertex cycle of τ which is not carried by η. Note that
this implies that c2 is carried by the train track η′ obtained from τ by a left split
at the large branch e.

Inverting the discussion which led to the proof of the second part of the lemma
and of Γ(η) ⊂ Γ(τ), it suffices to find a large train track ζ with the following
properties.

• There exists a train track τ ′ which contains c2 as a vertex cycle and which
can be obtained from τ by a sequence of splits not involving a split at the
large branch e.

• ζ can be obtained from τ ′ by a single split at e, and η is splittable to ζ.
• There exists a vertex cycle c1 of ζ whose image in τ under a carrying map
ζ → τ intersects c2 in a single point contained in e.

Namely, for such a vertex cycle c1 we have Tc1 ∈ Γ(ζ) ⊂ Γ(η). The curve
c = T±

c1(c2) also is a vertex cycle of ζ, and c2 = T∓
c1c which shows the third part of

the lemma. The relation Tc2 = T±
c1TcT

∓
c1 ∈ Γ(ζ) ⊂ Γ(η) yields the first part.

To construct a train track ζ and a vertex cycle c1 for ζ with the required prop-
erties, note that as c2 is embedded in τ , it is a subtrack of τ . By Lemma 8.3, τ can
be modified with a sequence of splits at large branches in c2 different from the large
branch e to a large train track τ ′ which contains c2 as a vertex cycle and such that
e is the only large branch of τ ′ contained in e. As splits at distinct large branches
commute, the train track η is splittable to the train track obtained from τ ′ by a
single right split at e. There exists a vertex cycle d of ζ which crosses through the
diagonal of the split connecting τ ′ to ζ. This vertex cycle also is a vertex cycle
of τ ′, and it intersects c2 transversely in a single point. The curve d has all the
required property. This completes the proof of the lemma. �

A splitting and collapsing sequence is a sequence (ηi) of train tracks so that for
each i, the train track ηi+1 is obtained from ηi either by a split or a collapse, i.e.
the inverse of a split.
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Corollary 8.5. Let τ be a train track realization of an admissible curve system C.
If the large train track η is obtained from τ by a splitting and collapsing sequence,
then Γ(η) = Γ(C) and every vertex cycle of η is the image of a vertex cycle of τ by
an element of Γ(C).

Proof. We proceed by induction on the length of the splitting and collapsing se-
quence. If this length equals one then Lemma 8.1 and Lemma 8.4 show that the
corollary holds true, so assume it holds true whenever η can be obtained from τ by
a splitting and collapsing sequence of length at most k − 1 for some k − 1 ≥ 1.

Assume that the large train track η can be obtained from τ by a splitting and
collapsing sequence of length k. Let ξ be obtained from τ by a splitting and
collapsing sequence of length k− 1 and assume that ξ is splittable or collapsible to
η. By induction hypothesis, we have Γ(ξ) = Γ(C) and hence Γ(η) = Γ(ξ) = Γ(C)
by Lemma 8.1 and Lemma 8.4, moreover every vertex cycle of ξ is the image of a
vertex cycle of τ by an element of Γ(C) = Γ(ξ).

Let now d be a vertex cycle of η. By the second and third part of Lemma 8.4,
there exists some vertex cycle c of ξ and an element ψ ∈ Γ(ξ) = Γ(C) such that
d = ψ(c). By induction assumption, there exists a vertex cycle c′ of τ and an
element ψ′ ∈ Γ(C) such that c = ψ′(c′). Then d = ψψ′(c′) for ψ′ψ ∈ Γ(C) which is
what we wanted to show. �

To relate the projection Pπ1(Q) of the orbifold fundamental group of Q to Γ(C)
we use a combinatorial model for Pπ1(Q) as follows.

Let G(Q) be the graph whose vertices are the (marked) train tracks in LT (Q̃)
(i.e. those marked large train tracks which are associated to the component Q).
The mapping class group Mod(Sg,m) naturally acts properly and faithfully on G(Q)
by precomposition of marking. A Mod(Sg,m)-orbit of vertices of G(Q) consists of
all large train tracks of the same topological type which only differ by the marking.
We connect two marked train tracks τ, η ∈ G(Q) by an edge if η is obtained from
τ by a split or a collapse. Note that the graph G(Q) need not be connected, and
Mod(Sg,m) acts as a group of permutations on the connected components of G(Q).

If G is any connected component of G(Q) then we denote by Stab(G) the stabilizer
of G in Mod(Sg,m). The stabilizer of any other connected components is conjugate
to Stab(G) in Mod(Sg,m). We have

Proposition 8.6. Pπ1(Q) = Stab(G) for some connected component G of the graph
G(Q). Furthermore, Stab(G) acts properly and cocompactly on G.

Proof. Let Q̃ be a component of the preimage of Q in the Teichmüller space of
abelian differentials. Denote by Stab(Q̃) the stabilizer of Q̃ in Mod(Sg,m). We

show first that Stab(Q̃) preserves a component of G(Q).

To this end let q ∈ Q̃ be a point whose horizontal and vertical measured geodesic
lamination, respectively, has large support of the same combinatorial type as Q̃.
Recall that the set of points with this property is dense in Q̃. Let furthermore
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ψ ∈ Stab(Q̃). Then there exists a path α : [0, 1] → Q̃ which connects q = α(0)

to ψ(q) = α(1). Choose once and for all a marked train track τ ∈ LT (Q̃) so that
q ∈ Q(τ). Such a train track exists by Proposition 6.3. Our goal is to show that
there exists a path in G(Q) which connects τ to ψ(τ).

By Proposition 6.3, every point z ∈ Q̃ has an open neighborhood Uz ⊂ Q̃ with
the following property. There exists a train track ζ(Uz) ∈ LT (Q̃) ⊂ G(Q) so that
Uz is contained in Q(ζ(Uz)). By Proposition 6.2, we may assume that each of the
sets Uz is path connected.

Since α[0, 1] ⊂ Q̃ is compact it can be covered by finitely many of the sets Uz,
say by the sets Uα(ti) for 0 = t0 < t1 < · · · < tk. We may assume that ζ(Uα(t0)) = τ
and that ζ(Uα(tk)) = ψ(τ). We may furthermore assume that Uα(ti) ∩ Uα(ti+1) 6= ∅
for all i. It now suffices to show that for each i, there is a path in G(Q) which
connects ζi = ζ(Uα(ti)) to ζi+1 = ζ(Uα(ti+1)).

The set of all points z ∈ Q̃ with the property that the support of the horizontal
and vertical measured lamination of z is large, of the same combinatorial type as Q̃,
is dense in Q̃, and the sets Uα(tj) are open. Thus for each i there exists a measured

geodesic lamination νi whose support is large, of the same topological type as Q̃,
which is carried by both ζi and ζi+1. This measured lamination is the horizontal
measured lamination of a point in Uα(ti) ∩ Uα(ti+1).

Fix a hyperbolic metric on S. Then for sufficiently small ǫ > 0, a train track β
which carries νi and ǫ-follows νi is carried by both ζi and ζi+1 [H09]. Corollary 6.5
shows that β is large. It now follows from the work of Penner [PH92] that β carries
a large train track β′ with the property that both ζi and ζi+1 are splittable to β′.
But this just means that ζi can be connected to ζi+1 by a path in G(Q) which is the
concatenation of a splitting path connecting ζi to β

′ and the inverse of a splitting
path connecting β′ to ζi+1. This is what we wanted to show.

To summarize, we showed that Stab(Q̃) is contained in the stabilizer of the
component G of G(Q) which contains the fixed marked train track τ . Our next goal

is to show that Stab(G) ⊂ Stab(Q̃).

To this end let now ψ ∈ Stab(G). It suffices to construct for any edge path
β : [0, k] → G(Q) beginning at the fixed marked train track τ = β(0) and ending

at ψ(τ) = β(k) and for any point q ∈ Q̃ ∩ Q(τ) a path in Q̃ connecting q to ψ(q).
However, the existence of such an edge path follows in a fairly straightforward way
from the definition of the sets Q(τ) and Proposition 6.2.

Namely, by the definition of G(Q), β(i+ 1) is obtained from β(i) by a split or a
collapse for each i. But this implies that Q(β(i)) ∩ Q(β(i + 1)) contains an open

subset of Q̃. Choose for each i a point q(i) ∈ Q(β(i))∩Q(β(i+1))∩Q̃. We require
that q(0) = q and q(k) = ψ(q). By Proposition 6.2, for each i there exists a path in

Q(β(i))∩Q̃ which connects q(i−1) to q(i). The concatenation of these paths defines

a path in Q̃ connecting q to ψ(q). In other words, we have Stab(G) ⊂ Stab(Q̃) as
advertised.
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We are left with showing that the action of Stab(G) on G is proper and cocom-

pact. To show properness observe that as a large train track τ ∈ LT (Q̃) decomposes
S into disks and once punctured disks, the stabilizer of τ in Mod(Sg,m) acts as a
group of permutations on the branches of τ , and a mapping class which fixes each
of the branches of τ is the identity. Thus the order of the stabilizer of τ is bounded
from above by a universal constant. As Mod(Sg.m) acts on G(Q) as a group of
simplicial automorphisms, properness of the action follows.

To show cocompactness note that there are only finitely many combinatorial
types of large train tracks. Thus if we fix a train track realization τ of the curve
diagram C, then uniformly near any train track ζ ∈ G there is a train track in the
orbit of τ under the action of Stab(G). But this just means that G is the image of
a finite subset of G under the action of Stab(G). This shows cocompactness of the
action of Stab(G) (compare [H09] for a similar statement). �

The following example shows that the action of Stab(G) on G may not be faithful.

Example 8.7. Let H̃hyp(2g − 2) be a component of the preimage of the hyper-
ellptic component Hhyp(2g − 2) in the Teichmüller space of abelian differentials.
Its stabilizer in Mod(Sg,1) contains the hyperelliptic involution which acts by the

involution q → −q on H̃hyp(2g − 2). If we denote by G a component of the graph

G(H̃hap(2g − 2)) then the hyperelliptic involution acts on G by fixing each train
track and reversing its orientation. Thus the group Pπ1(Q) may have a non-trivial
center, and this center may act trivially on G(Q) (if we do not distinguish two
orientable train tracks which only differ by their orientation).

To summarize, let Q be a component of a stratum of abelian differentials and let
Q̃ be a component of its preimage in the Teichmüller space of abelian differentials.
We identified the stabilizer Stab(Q̃) of Q̃ in Mod(Sg,m) with the stabilizer of a com-
ponent G in the graph G(Q). We also know that for every admissible curve system
C for Q, there exists a train track realization τ = τ(C) for C. The curve system C
defines a subgroup Γ(C) of Pπ1(Q). By naturality of the action of Mod(Sg,m), for
every ψ ∈ Pπ1(Q) we have

Γ(ψ(C)) = ψ(Γ(C))ψ−1.

On the other hand, Proposition 8.6 shows that ψ ∈ Stab(G) for a connected com-
ponent G of G(Q). Thus τ can be connected to ψ(τ) = τ(ψ(C)) by an edge-path in
G, and such a path is a finite concatenation of splitting and collapsing segments.
Hence Corollary 8.5 yields that Γ(ψ(C)) = Γ(C). From this we conclude

Corollary 8.8. For every admissible curve system C for Q, the group Γ(C) is a
normal subgroup of Pπ1(Q).

9. Twist groups

In this section we consider again a curve system C which is admissible for a
component Q of a stratum of abelian differentials. Our goal is to provide some
additional properties of the group Γ(C).
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We begin with an alternative description of the group Γ(C). Although this
description is not used in the sequel, we think it helps to understand the structure of
the orbifold fundamental group of a component of a stratum of abelian differentials.
Furthermore, it relates to the work of Salter [Sa17].

Choose a component Q̃ of the preimage of Q in the Teichmüller space of abelian
differentials with the property that Γ(C) is contained in the stabilizer of Q̃. Define

Λ(Q̃) to be the subgroup of Mod(Sg,m) which is generated by the Dehn twists
about the core curves of all cylinders for the singular euclidean metrics of all abelian
differential in Q̃. Clearly Γ(C) ⊂ Λ(Q̃). We have

Proposition 9.1. Λ(Q̃) = Γ(C).

Proof. Let c be the core curve of a cylinder of a differential q ∈ Q̃. We have to
show that Tc ∈ Γ(C) where as before, Tc is the positive Dehn twist about c.

To this end replace q by z = eiθq where θ ∈ R is such that the cylinder with core
curve c is horizontal for z.

Using the notations from Section 8, let G ⊂ G(Q) be the component with the

property that Stab(G) = Stab(Q̃). Such a component exists by Proposition 8.6. By
Proposition 6.3, there exists a large train track η ∈ G which contains c as a vertex
cycle.

Let τ be a train track realization of the curve system C. Then τ ∈ G and hence
there exists a path in G connecting τ to η. Corollary 8.5 now yields that Tc ∈ Γ(C)
which is what we wanted to show. �

Our second goal is to describe the Γ(C)-orbits of the components of C. The
following lemma is true for all components.

Lemma 9.2. Let C be an admissible curve system for the component Q and let
c ∈ C. Then each curve c′ ∈ C is contained in the Γ(C)-orbit of c.

Proof. By Proposition 4.2 and its proof, the lemma holds true for hyperelliptic
components. Thus we may assume from now on that Q is not hyperelliptic. Then
by Corollary 3.7 and Lemma 8.4, we only have to show the lemma for a curve
system C which is an extension of a system of type U2g or a system of type V2g.

We begin with a curve system C of type U2g. Its curve diagram can be described
as a line segment L of length 2g − 2 with an arc of length two attached. Or, the
diagram can be viewed as two line segments L,L′ of length 2g − 2 which are glued
together along two subsegments of length 2g − 4.

Let L ⊂ C be the subsystem of curves whose curve diagram is the line L. As L
has an even number of curves, a tubular neighborhood of L in S is a subsurface S0

of S of genus g−1 with connected boundary (see Section 4.4 of [FM12] for details).
This subsurface is invariant under the group Γ(L). By Corollary 4.3, applied to
L as a curve system in S0, the group Γ(L) acts transitively on the components of
L. In particular, if we denote by c the curve which corresponds to the endpoint of
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the line L which also is an endpoint of L′, then for any d ∈ L there exists some
ψd ∈ Γ(L) ⊂ Γ(C) with ψd(d) = c. Similarly, if we denote by L′ the subsystem of
C with curve diagram L′, then for all d′ ∈ L′, there exists some ψd′ ∈ Γ(L′) ⊂ Γ(C)
with ψd′(d′) = c. Thus any curve from C can be moved to the curve c by an element
of Γ(C). This yields the statement of the lemma for the system of type U2g.

The argument for the curve system of type V2g is identical and will be omitted.

Now let C be an extension of a system D of type U2g or V2g. Then every element
c ∈ C −D is contained in a subsystem E whose diagram is a line with four vertices,
three of them contained in D. By the above argument, applied to E , there exists
an element ψ ∈ Γ(E) ⊂ Γ(C) which maps c to a curve in D. By the first part of the
proof, this implies that any curve in C can be mapped to a fixed curve in D by an
element of Γ(C). The lemma follows. �

We will use a strengthening of the third part of Lemma 8.4. To this end let c 6= d
be vertex cycles of an orientable train track τ . The intersection c ∩ d consists of
a finite number of embedded segments (which means a finite number of embedded
trainpaths). Define such a segment β to be a crossing segment if the following holds
true. Let A ⊂ S be an annulus neighborhood of c. Then there is no neighborhood of
β in d which intersects A in an arc entirely contained in the closure of a component
of A − c. In other words, a neighborhood of β in d crosses through c. Otherwise
we call the segment non-crossing.

Define two vertex cycles c, d on a train track τ to be in slick position if c ∩ d
consists of precisely one crossing segment. Note that if τ is a train track realization
of an admissible curve system, then any two of the vertex cycles of τ which are not
disjoint are in slick position. Futhermore, if c, d are in slick position then the simple
closed curves c, d can be homotoped in such a way that the intersect transversely
in a single point.

In the next lemma we denote as before by Q̃ a component of the preimage of a
component Q of a stratum of abelian differentials on S.

Lemma 9.3. Let Q be a component of a stratum of abelian differentials and let
η ∈ LT (Q̃) be obtained from τ ∈ LT (Q̃) by a single split. Let c, d be a pair of vertex
cycles of η which are in slick position. Then there exists an element ψ ∈ Γ(τ) and
a pair of vertex cycles c′, d′ of τ in slick position such that ψ(c′) = c, ψ(d′) = d.

Proof. Using the notations from the lemma, let us first assume that both vertex
cycles c, d of η are also vertex cycles of τ . Then the restriction of the carrying map
F : η → τ to c ∪ d, viewed as a subtrack of η, is an embedding. Thus c, d, viewed
as vertex cycles of τ , are in slick position, and we can choose ψ to be the identity.

Assume now that c is not a vertex cycle of τ . Let e be the large branch of τ
which is used in the transformation of τ to η, i.e. assume that η is obtained from
τ by a right split at e. Equip c with the orientation inherited from the orientation
of η. Using the notations from the proof of Lemma 8.4 (see Figure G), we showed
that c does not pass through the diagonal branch of the split.
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Let F : η → τ be a carrying map as in the proof of Lemma 8.4. The transverse
measure on τ defined by F (c) is a sum of the transverse measures defined by two
vertex cycles c1, c2 of τ . The vertex cycle c1 also is a vertex cycle of η, and the
vertex cycle c2 is not carried by η. The curves c1, c2 intersect in a single point
which can be chosen in the interior of the large branch e. Furthermore, we have
c = T±

c1c2 = T∓
c2c1.

By assumption, the vertex cycles c, d ⊂ η are in slick position and hence they
intersect in a single crossing arc.

We distinguish four cases.

Case 1: The vertex cycle d of η passes through the diagonal e′ of the split.

Using the notations from Figure G, the vertex cycle d is disjoint from the two
branches b1, b4 of η distinct from e′ which are incident on the endpoints of e′ and
small at these endpoints. Furthermore, d contains the two branches b2, b3 of η which
are incident on the endpoints of e′ and large at these endpoints.

Now by Lemma 8.4 and its proof, as c is not a vertex cycle of τ , the branches
b2, b3 are contained in c and hence they are contained in c∩ d. On the other hand,
by assumption c ∩ d is connected and hence c ∩ d contains the complement of e′

in the curve c1 shown in Figure G. As d is a vertex cycle which contains e′, this
implies that d = c1. Now c = T±

c1c2 where c2 is a vertex cycle of τ not carried by η
and hence in this case we can take ψ = T±

c1 and d′ = d = c1, c
′ = c2.

Case 2: d is a vertex cycle of τ which does not cross through the diagonal of the
split and whose projection to τ does not contain the large branch e.

In this case the restriction of the carrying map F : η → τ to d is a C1-
diffeomorphism which is disjoint from the large branch e. The restriction of F
to c ∩ d has the same property and hence F (c ∩ d) ⊂ c1 or F (c ∩ d) ⊂ c2. As a
consequence, d is disjoint from either c2 or from c1. If d is disjoint from c2 then
we use c = T±

c2c1 and d = T±
c2d as before. The case that d is disjoint from c1 is

completely analogous.

Case 3: d is a vertex cycle of τ which does not cross through the diagonal e′ of
the split but which projects onto the large branch e.

Recall that by assumption, c ∩ d is a crossing segment. In particular, d crosses
through c. Equip c, d with the orientation inherited from the orientation of η. As
S is oriented, it makes sense to distinguish between vertex cycles crossing from the
right side to the left side of c and vertex cycles crossing from the left side to the
right side of c.

Assume that the vertex cycle c1 of η crosses from the right side to the left side
of c, and that the curve c2 (which is a vertex cycle of τ but which is not carried by
η) crosses from the left side to the right side. This means that with a homotopy
we can assure that the curve c1 lies entirely to the right of the curve c except in a
small neighborhood of the diagonal branch e′ ⊂ η where it crosses through c.
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Now let us assume that d crosses from the right to the left through c. Using
the notations of Figure G, as d does not pass through the diagonal of the split, it
can be homotoped to a curve which intersects c in a unique point contained in the
interior of one of the branch b1 (if it projection onto b1) or in the interior of the
branch b4 (if it projects onto b4), and this crossing is from the right side of bi to
the left side. However, this implies that d is disjoint from c1.

The same argument shows that if d crosses from the left to the right through
c then d is disjoint from c2. As before, we conclude that we can take ψ = T±

c1 or
ψ = T±

c2 .

Case 4: d is not a vertex cycle of τ .

Following Lemma 8.4 and its proof and using the notations from Figure G, d
projects onto bi for each 1 ≤ i ≤ 4. As its intersection with c is connected, d projects
to both c1 and c2 and hence we have d = c which contradicts the assumption on
d. �

As a consequence, we obtain

Corollary 9.4. Let Q be a component of a stratum of abelian differentials and let
C be an admissible curve system for Q. Assume that Γ(C) stabilizes the component

Q̃ of the preimage of Q. Let ψ ∈ Stab(Q̃) and let c, d ∈ C a pair of curves which
intersect in a single point. Then there exists some ϕ ∈ Γ(C) such that ϕ(c) =
ψ(c), ϕ(d) = ψ(d).

Proof. Let C be any admissible curve system for Q and let τ be a train track
realization of C. Using the notations from the corollary and from Section 8, let G
be the component of G(Q) which is stabilized by Stab(Q̃).

Let η ∈ G be a train track which is splittable to τ . Let c, d ∈ C be curves which
intersect in a single point. We claim that there are vertex cycles c′, d′ for η in slick
position, and there is some ψ ∈ Γ(C) = Γ(η) such that ψ(c′) = c, ψ(d′) = d.

We proceed by induction on the length of the splitting sequence transforming η
to τ . The case that this length equals one is precisely the statement of Lemma 9.3.
Now let us assume that the statement holds true whenever this length is at most
k − 1 for some k ≥ 2. Let (ηi)i≥0 be a splitting sequence of length k connecting a
train track η0 to ηk = τ . By induction hypothesis, applied to the splitting sequence

(ηi)i≥1, there exists a pair of vertex cycles ĉ, d̂ on η1 in slick position, and there

exists some ϕ ∈ Γ(η1) = Γ(C) so that ϕ(ĉ) = c, ϕ(d̂) = d. By Lemma 9.3, we can
find vertex cycles c′, d′ for η0 in slick position and an element θ ∈ Γ(η0) = Γ(C)

such that θ(c′) = ĉ, θ(d′) = d̂. The claim now follows with ψ = θϕ.

A pair of vertex cycles in slick position for τ is a pair of curves c, d ∈ C which
intersect in a single point. Thus together with Lemma 9.2 and perhaps by replacing
ψ by ψ−1 we deduce the following. Let us assume that there exists some θ ∈ Stab(G)
such that τ is splittable or collapsible to θ(τ); then for any pair of curves c, d ∈ C
which intersect in a single point there exists some ψ ∈ Γ(C) such that ψ(c) =
θ(c), ψ(d) = θ(d).
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We use this to complete the proof of the corollary as follows. Let Id 6= ψ ∈
Stab(Q̃); then τ can be connected to ψ(τ) by a splitting and collapsing path. Such
an arc consists of k ≥ 1 subarcs which are either splitting arcs or collapsing arcs.
A splitting arc is followed by a collapsing arc.

We proceed by induction on the minimal number k of such arcs in a splitting
and collapsing path connecting τ to ψ(τ). The case k = 1 follows from the above
discussion, so assume by induction that the claim holds true for some k − 1 ≥ 1.

Assume that τ can be connected to ψ(τ) by a splitting and collapsing arc con-
sisting of k segments. Assume first that the first segment is a splitting segment,
ending at a train track η.

As Γ(C) acts properly and cocompactly on G, for every ξ ∈ G there exists some
ϕ1, ϕ2 ∈ Stab(G) such that ϕ1(τ) ≺ ξ ≺ ϕ2(τ). This means that we can find
some ϕ ∈ Stab(G) so that ϕ(τ) is carried by η. Then we may assume that η is
splittable to ϕ(τ). Replace the splitting and collapsing arc connecting τ to ϕ(τ)
by a splitting and collapsing arc with the same number of segments but where the
first segment is a splitting segment connecting τ to ϕ(τ). We can now apply the
induction hypothesis to the splitting and collapsing arc connecting ϕ(τ) to ψ(τ)
and to the splitting sequence connecting τ to ϕ(τ).

The case that the first segment is a collapsing arc is completely analogous and
will be omitted. �

10. Higher spin structures

In this section we introduce Z/rZ-valued spin structures on a closed surface. We
relate such higher spin structures to strata of abelian differential and discuss a first
instance of degeneration abelian differentials to abelian differentials on a surface
with nodes by controlling the information on the higher spin structures.

10.1. Higher spin structures and divisors. Let S be for the moment an arbi-
trary compact oriented surface. We allow that the boundary of S is non-empty.
Let S be the set of isotopy classes of oriented simple closed curves on S. We do not
require that such a curve is essential. The following goes back to Humphries and
Johnson [HJ89]; we adopt the viewpoint of Salter [Sa17]. As before, we denote by
ι the homological intersection form on H1(S,Z).

Definition 10.1. A Z/rZ-valued spin structure on S is a function ϕ : S → Z/rZ
satisfying the following properties.

(1) (Twist-linearity) Let c, d ∈ S be arbitrary. Then

ϕ(Tc(d)) = ϕ(d) + ι(d, c)ϕ(c) (mod r)

(2) (Normalization) If ζ is the boundary of an embedded disk D ⊂ S, oriented
so that D is to the left of ζ, then ϕ(ζ) = 1.
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It follows immediately from part (1) of the definition that the Dehn twist about a
curve c preserves the spin structure if and only if either ϕ(c) = 0 or if c is separating.
Furthermore, if ϕ is a Z/rZ-spin structure on S then r | (2g − 2) (Remark 3.6 of
[Sa17]).

Namely, let UTS be the unit tangent bundle of S, or, equivalently, the circle
bundle over S associated to the tangent bundle. Then Z/Z-spin structures on S

are in correspondence with cyclic r-fold coverings ŨTS → UTS that restrict to
connected coverings of the fibre. Equivalently, they correspond to r-th roots of the
tangent bundle of S, viewed as an oriented two-dimensional real vector bundle over
S.

Any abelian differential q on S with a single zero defines an Z/(2g − 2)Z-spin
structure on S. Namely, the unique zero of q, viewed as an divisor on S which
defines the cotangent bundle of S, has weight 2g − 2, and the (2g − 2)-fold tensor
product of the line bundle whose divisor equals the zero of q with weight one equals
the canonical bundle as holomorphic line bundle.

10.2. Degeneration to a boundary stratum I. In this subsection we collect
information on a specific type of degeneration of abelian differentials in a component
Q of a stratum of abelian differentials with a single zero on a surface of genus g to
a differential on a surface of genus g − 1 with a single non-separating node.

Let C be a simple admissible curve system for Q as defined in Section 2. Let c ∈ C
be a curve which corresponds to a leaf of the curve diagram of C. Let furthermore
q = q(C) ∈ Q be a realization of C as in Lemma 2.9. We may assume that there is
a horizontal cylinder C with core curve c for q. Since c intersects one single curve
from C, this cylinder is glued from a single square R by identifying its two vertical
sides.

There exists a unique simple closed curve d on S (not a component of C) which
intersects c in a single point and does not intersect any other curve from C. Namely,
let S0 be a tubular neighborhood of C−c. As the number of curves in C−c is odd, S0

is a surface of genus g−1 with two homotopic non-separating boundary components.
In particular, S − S0 is a cylinder. Its core curve d is disjoint from C − c, and it is
the unique simple closed curve with this property. As up to homotopy, the curve c
intersects S −S0 in a connected arc connecting the two boundary components, the
curve d has the required properties.

Example 10.2. Consider the curve system C of type U2g. There are three curves
corresponding to leaves in the curve diagram, these curves are the curves with
label c1, cg, ag−1 in Figure A. For each of these curves, say the curve c, there exists
a unique simple closed curve d which intersects c in a single point and does not
intersect any other curve from C. Adding this curve to C defines an admissible
curve system for a component Q′ of a stratum of abelian differentials. For the
curve c1 and cg, this is a component of H(g − 2, g), and for the curve ag−1 this is
a component of H(g − 1, g − 1).
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Let again R be the square in the construction of q(C) which contains the inter-
section point of c with the unique curve d ∈ C which is not disjoint from c. The
two vertical sides of R are identified in q(C). The resulting arc in q(C) connects the
singular point x of q = q(C) to itself. In particular, this saddle connection defines
a simple closed curve on S which is homotopic to the curve d. We can shrink the
height of the cylinder C to zero while keeping the remaining squares fixed. This
construction shrinks the flat length of the curve d to zero. The thus defined arc
of abelian differentials degenerates to an abelian differential q′ on a surface S′ of
genus g − 1 with a non-separating node. This node is obtained by shrinking d to a
point.

There is more information. The node is the only singular point for the euclidean
metric on S′ defined by q′. The core curve c of the cylinder degenerates in S′ to a
horizontal saddle connection connecting the node to itself. We refer to [BCGGM18]
for more information.

Let again x be the zero of the differential q = q(C). The horizontal separatrices
emanating from x divide a disk neighborhood of x into 4g euclidean half-disks of
fixed radius ǫ > 0 centered at x. These half-disks are contained in the upper half-
plane and contain a horizontal segment of length 2ǫ centered at 0. The point x
corresponds to the center of the horizontal boundaries of these half-disks. The
left half-segment of a half-disk is identified with the right half-segment of another
half-disk.

There are two non-adjacent such half-disks whose interiors are contained in the
cylinder C. Removal of the interiors of these half-disks yields two closed sectors
which only meet at x. The total angles α1, α2 of these sectors are multiples of
2π. A neighborhood of the node for the flat metric defined by the differential q′ is
obtained by removal of C and by identifying the two boundary arcs of each of the
two sectors.

Cutting the surface S′ open at the node yields a surface Ŝ of genus g−1 with two
marked points x1, x2 and an abelian differential q̂. The cone angle at these points
are α1, α2. One of these points may be regular, but the images of the node are
the only singular points for q̂. In particular, the differential q̂ has one or two zeros
and no poles. The horizontal cylinder C in q degenerates to a horizontal saddle
connection for q̂ connecting the marked points x1, x2.

Denote by R the component of a stratum of abelian differentials on a surface of
genus g− 1 which contains q̂. The curve system C′ = C −{c} induces an admissible
curve system for R.

Example 10.3. The above construction, applied to a realization of the curve sys-
tem of type U2g and the cylinder whose core curve is the curve labeled with c1 or
cg yields a differential on a surface of genus g − 1 with a zero of order g − 3 and a
zero of order g − 1. In particular, for g = 3 we obtain an abelian differential on a
surface of genus 2 with a double zero and a regular marked point.

If we apply the above construction to a realization of the curve system of type
U2g and the cylinder whose core curve is the curve labeled with ag−1 then we obtain
an abelian differential on a surface of genus g − 1 with two zeros of order g − 2.
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Thus in the case g = 3 we obtain a differential on a surface of genus 2 with two
simple zeros.

The above construction can be reversed as follows; this is called the figure eight
construction in [EMZ13].

Consider a translation surface (Ŝ, q̂) with two distinguished marked points x1 6=
x2. We allow that these marked points are regular or singular. Let γ be a saddle
connection connecting x1 to x2. Assume for simplicity that this saddle connection
is horizontal. Cut the surface Ŝ open along γ and identify the points x1, x2. One
obtains a surface X with two horizontal geodesic boundary circles of the same
length, attached at one point. Glue a flat cylinder C to the two boundary circles.
The result is a surface whose genus equals the genus of Ŝ plus one and which is
equipped with an abelian differential q.

There are two degrees of freedom for this construction which can be described
by a complex parameter reiθ. Here r > 0 is the height of the cylinder C, and
θ ∈ [0, 2π) describes the relative position of the two distinguished points on its two
boundary components. Let q be the differential for which the two distinguished
points on the boundary of C are connected by a vertical arc whose length equals
the height of C.

Given a sufficiently small neighborhood Û in the moduli space of abelian differ-
entials on Ŝ with two distinguished marked points x1, x2 and a saddle connection
connecting x1 to x2, the figure eight construction yields an open neighborhood U
of q in the moduli space of abelian differentials on S and a holomorphic surjection
Π : U → U ′ whose fibre is a punctured complex disk. Each of the surfaces z in
U contains a distinguished cylinder C(z). Going once around a circle in a fibre
which generates the fundamental group of the punctured disk results in a Dehn
twist about the core curve of the cylinder.

11. The non-hyperelliptic component of H(4)

In this section we use the discussion in Section 10.1 to compute explicitly the
image of the orbifold fundamental group π1(Q) in the mapping class group Mod(S)
for the non-hyperelliptic component Q of the minimal stratum H(4).

From now on S will always be a surface of genus g = 3.

11.1. Curve graphs. Let ϕ by a Z/4Z-spin structure on S. For the application
we have in mind we may assume that the mod 2 reduction of ϕ is an odd Z/2Z-spin
structure.

Let CG be the curve graph of S. The vertices of this graph are isotopy classes
of simple closed curves on S, and two such curves are connected by an edge if and
only if they can be realized disjointly. Denote by CG1 the complete subgraph of CG
of all non-separating curves c on S with ϕ(c) = ±1. Note that this condition does
not depend on the orientation of c and hence is indeed a condition on the vertices
of CG. Furthermore, the condition is equivalent to saying that ϕ(c) is odd for one
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and hence any of the two possible orientations of c. The finite index subgroup
Mod(S)[ϕ] of Mod(S) of all elements which preserves the spin structure ϕ acts on
CG1 as a group of simplicial automorphisms.

The goal of this subsection is to show

Proposition 11.1. The graph CG1 is connected.

Proof. Define a graph of non-separating pairs NS as follows. Vertices of NS are
unordered pairs of simple closed curves (c, d) on S so that S − (c∪ d) is connected.
Two such pairs (c, d), (c′, d′) are connected by an edge of length one if they differ
by a single component and can be realized disjointly. The graph NS is connected
(see [H14] for more details and more information on this graph).

We use the graph NS as an auxiliary structure for the construction of curves c
with ϕ(c) = ±1. Namely, in a non-deterministic way we can associate to a vertex
(c, d) in NS a vertex Λ(c, d) of CG1 as follows.

If at least one of the curves, say the curve c, satisfies ϕ(c) = ±1 then we choose
Λ(c, d) = c. Otherwise both ϕ(c), ϕ(d) are even. Connect the disjoint curves
c, d by an embedded arc ǫ in S whose interior is disjoint from c ∪ d. A regular
neighborhood ν of c ∪ ǫ ∪ d is homeomorphic to a three-holed sphere. Two of the
boundary components of ν are the curves c, d. We assume that these curves are
oriented in such a way that ν lies to the left. The third boundary component c+ǫ d,
oriented in such a way that ν is to its right, satisfies [c +ǫ d] = [c] + [d] where as
before, [c] denotes the homology class of the oriented curve c.

By Lemma 3.13 of [Sa17], we have ϕ(c +ǫ d) = ϕ(c) + ϕ(d) + 1, in particular,
ϕ(c+ǫd) is odd. Furthermore, as (c, d) is a non-separating pair and [c+ǫd] = [c]∪[d],
the curve c+ǫ d is non-separating. We then can define Λ(c, d) = c+ǫ d.

Now let c = c0, e be two vertices in the graph CG1. Then c0, e are non-separating
simple closed curves and hence we can find non-separating simple closed curves d0, f
so that (c0, d0) and (e, f) are vertices in NS. Connect (c0, d0) to (e, f) by an edge
path (ci, di)i≤n in NS. We use this edge path to construct an edge path aj ⊂ CG1

connecting c0 to e inductively in such a way that it passes through suitable choices
for the curves Λ(ci, di). In other words, the construction is done in such a way that
there is an increasing sequence j0 = 0 < j1 < · · · < jm = n such that aji equals a
possible choice for Λ(ci, di).

Define a0 = c0 (we can think of this as being the value of Λ(c0, d0)). Assume by
induction that for some i ≥ 0 we constructed already the path (as)s≤j(i). Our goal
will be to construct a path (as)ji≤s≤ji+1) for some ji+1 ≥ ji +1 which connects aji
to some choice for Λ(ci+1, di+1). We consider two cases.

Case 1; One of the values ϕ(ci) or ϕ(di) is odd.

By assumption, in this case we have up to renaming aji = ci.

Consider the pair (ci+1, di+1) ∈ NS. The curves ci+1, di+1 are disjoint from
ci. If at least one of the value ϕ(ci+1).ϕ(di+1) is odd, say that this holds true for
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ϕ(ci+1), then define ji+1 = ji + 1 and aji+1
= ci+1. This is consistent with the

requirements for the path (aj).

Otherwise ϕ(ci+1) and ϕ(di+1) are both even. Cut S open along ci+1 ∪ di+1.
The resulting surface is a torus T with four boundary components containing the
curve ci. Denote the two boundary components which are the images of the curve
ci+1 by C1, C2, and denote the two boundary components which are the images of
the curve di+1 by D1, D2.

If ci ⊂ T is non-separating then we can connect the boundary component C1 of
T to the boundary component D1 by an embedded arc ǫ disjoint from ci. The lift
of this arc to S, again denoted by ǫ, connects ci+1 to di+1 and is disjoint from ci.
Define aji+1

= ci+1+ǫ di+1. Clearly aji+1
fulfills the requirements for the extension

of the path (aj).

If ci ⊂ T is separating then it decomposes T into a torus with one, two or three
holes and a sphere with five, four or three holes. We can connect one of the two
boundary components C1, C2 to one of the two boundary components D1, D2 by
an embedded arc in T − Ci and proceed as above unless ci decomposes T into a
torus T0 with three holes and a sphere with three holes where up to renaming, two
of the holes are bounded by C1, C2.

Choose a non-separating simple closed curve b ⊂ T0. If ϕ(b) is odd then define
aji+1 = b. By construction, there exists an embedded arc ǫ connecting ci+1 to di+1

which is disjoint from b, viewed as a simple closed curve in S. Let ji+1 = ji + 2
and define aji+1

= ci+1 +ǫ di+1.

If ϕ(b) is even then choose an embedded arc ǫ1 ⊂ T0 which connects the boundary
component D1 of T0 to b and define aji+1 = di+1 +ǫ1 b. Clearly ϕ(aji+1 is odd and
aji+1 is disjoint from aji .

Since b ⊂ T0 is non-separating, the surface T0 − (b ∪ ǫ1) is connected, and it
contains the boundary circle D2 and a boundary component corresponding to ci.
In particular, if we view b and ǫ1 as a curve and an arc in T then there exists an
embedded arc ǫ2 in T − (b∪ ǫ1) which connects the boundary component D2 to the
boundary component C2. Define ji+1 = ji + 2 and aji+1

= ci+1 +ǫ2 di+1. Again
this construction fulfills all the requirements and completes the construction in the
case that at least one of the numbers ϕ(ci), ϕ(di) is odd.

Case 2: ϕ(ci) and ϕ(di) are both even.

In this case there exists an embedded arc ǫ connecting ci to di such that aji =
ci+ǫ di. Assume by renaming that di+1 = di. The curve ci+1 is disjoint from ci, di,
but it may not be disjoint from ǫ.

Cut S open along ci ∪ di. Let T be the resulting four holed torus and let C1, C2

and D1, D2 be the boundary components of T corresponding to ci, di. For a suitable
numbering, the arc ǫ connects the boundary components C1 and D1.

We distinguish again two cases. The first case is that ϕ(ci+1) is odd and that
ci+1 does not separate the pair of boundary components C1, C2 of T from the pair
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of boundary components D1 ∪D2. Let us assume that there is an arc ǫ′ in T which
is disjoint from cj+1 and connects C1 to D1.

Consider the graph whose vertices are embedded arcs in T with one endpoint on
C1 and the second endpoint on D1 and where two arcs are connected by an edge
of length one if they can be realized disjointly. This graph is connected (see e.g.
[H14]) and hence we can connect the arc ǫ to the arc ǫ′ disjoint from cj+1 by an
edge path, say the path (ǫℓ). We now modify this path as follows.

Let ǫℓ, ǫℓ+1 be two adjacent arcs. Cut T open along ǫℓ and let T̂ be the corre-

sponding three holed torus. Two of the boundary components of T̂ are the curves
C2, D2, and the third component contains the circles C1, D1 as subarcs.

There are two cases possible. In the first case, the arc ǫℓ+1 does not separate C2

from D2 in T̂ . This means that there exists an arc connecting C2 to D2 which is
disjoint from both ǫℓ and ǫℓ+1. Define δℓ to be such an arc.

Otherwise the arc ǫℓ+1 separates C2 from D2. As its endpoints lie on the same
boundary component of the three-holed torus T − ǫℓ, it decomposes the three-holed
torus T − ǫℓ into a cylinder with one boundary component, say the component C2,
and a two-holed torus Z with one boundary component D2. Then there exists an
arc ǫ′ℓ with one endpoint on C1 and the second endpoint on D1 which is disjoint
from both ǫℓ and ǫℓ+1 and which cuts Z into a three-holed sphere. The arc ǫ′i does
not separate C2 from D2 in T − ǫℓ or T − ǫℓ+1. Choose an arc δℓ connecting C2 to
D2 which is disjoint from both ǫℓ and ǫ′ℓ and an arc δ′ℓ connecting C2 to D2 which
is disjoint from ǫ′ℓ and ǫℓ+1. Replace the two arcs ǫℓ, ǫℓ+1 by arcs ǫℓ, δℓ, ǫ

′
ℓ, δ

′
ℓ, ǫℓ+1.

Doing this construction for each ℓ yields a sequence βj of arcs with the following
properties.

• β0 = ǫ, β2k = ǫ′ for some k ≥ 1.
• For each ℓ the arc β2ℓ+1 connects the boundary components C1 and D1,
and the arc β2ℓ+1 connects C2 and D2.

• The arcs βℓ, βℓ+1 are disjoint.

For each ℓ the simple closed curve bℓ = ci +βℓ
di in S is non-separating curve in

S, and we have ϕ(bℓ) = 1 for all ℓ, furthermore the curves bℓ and bℓ+1 are disjoint.
Thus this construction connects b0 to b2k by a path in CG1. But b2k is disjoint
from cj+1 and hence defining ji+1 = ji + 2k + 1, this defines a path in CG1 which
connects aji to cj+1 = aji+1

.

The final case to consider is that ϕ(ci+1), ϕ(di+1) are both even. The above
construction can be used to connect the curve aji = ci+ǫ di in CG1 to au = ci+

′
ǫ di

where ǫ′ is disjoint from cj+1. Furthermore, we may assume that the arc ǫ′, viewed
as an arc in the four-holed torus T , connects C1 to D1.

But then there exists an arc δ connecting C2 to D2 which is disjoint from ǫ′.
The curve au = ci+1 +δ di of a fulfills ϕ(au) = 1, furthermore there exists as path
in CG1 connecting aji to au. If s is the length of this path then define ji+1 = ji+ s.
The resulting arc in CG has the properties we are looking for.
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Induction by j yields the statement of the proposition. �

Remark 11.2. There is a simple trick due to Putman [Put08] which can be used to
show that a graph G which admits a vertex transitive action of a finitely generated
group Γ is connected: The only thing one needs to check is that for a fixed basepoint
x ∈ G and a fixed finite generating set {gi | i} of Γ, the vertices gix can be connected
to x by an edge. We can not use this trick in an obvious way here as we neither
know a nice generating set for Mod(S)[ϕ] (which is a finite index subgroup of the
finitely presented group Mod(S) and hence is finitely generated), neither do we
know a priori whether the action of Mod(S) on CG1 is vertex transitive.

11.2. Degeneration and induction. Consider now a curve system C of type E6

on a surface of genus three. It is admissible for the non-hyperelliptic component Q
of the minimal stratum. By the main result of Looijenga and Mondello [LM14], we
have Pπ1(Q) = Γ(C). Furthermore, the following holds true.

Consider a curve c which defines a leaf of the curve diagram of C so that the
curve diagram of C′ = C − c is the Dynkin diagram D5. There exists a simple
closed non-separating curve d 6∈ C which intersects c in a single point and does not
intersect any other curve from C. This curve satisfies ϕ(d) = ±1 which can be seen
as follows.

In Section 2 we viewed a Z/2Z-spin structure on S as a quadratic form on
H1(S,Z/2Z). The Z/4Z-spin structure ϕ on S defines a Z/2Z-spin structure on S
by reduction of coefficients. The corresponding quadratic form ψ is defined by

ψ([c]) = (ϕ(c) + 1) mod 2

where [c] is the mod 2 homology class defined by the oriented curve c ∈ S. We
refer to end of Section 3 of [Sa17] for a comprehensive discussion of this fact. It is
immediate from the discussion in Section 3 that ψ(d) = 0 and hence ϕ(d) = ±1.

The subgroup of Mod(S3,1) generated by the Dehn twists about the curves from
C′ preserves the subsurface S−d. This is a surface of genus two with two boundary
components. If we replace the boundary components by cusps then C′ defines a
curve system on a surface of genus two with two marked points. For one of these
marked points, say the marked point x, two of the curves from the system C′ become
homotopic if we remove x.

Denote as before by Mod(S)[ϕ] the stabilizer of a spin structure ϕ in the mapping
class group of S. Recall the definition of the projection Π : Mod(S3,1) → Mod(S) =
Mod(Sg,0). We use these observations to show

Proposition 11.3. Let C be a curve system of type E6 on a surface of genus 3 and
let ϕ be the Z/4Z-spin structure invariant under Γ(C). Then ΠΓ(C) = Mod(S)[ϕ].

Proof. We use the results of Perron and Vannier [PV96]. Let ϕ be the spin structure
invariant under Γ(C). Cutting S open along the simple closed curve d with ϕ(d) =
±1 which intersects the simple closed curve c ∈ C chosen as above in a single point
and does not intersect any other curve from the curve system C yields a surface Σ
of genus two with two boundary components. The curve system C′ descends to a
curve system on Σ whose curve diagram is the Dynkin diagram of type D5.
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One of the two boundary components of Σ, say the boundary componet v, has
the following property. If we cap off v by attaching a disk along v, then two of the
curves from C′ become homotopic. Let Σ′ be the resulting surface of genus 2 with
connected boundary. The curve system C′ descends to a curve system of type A4

on Σ′.

Let Φ : Σ → Σ′ be the map obtained by identifying the boundary component
v with a point. It induces a surjection Φ∗ of Γ(C′) onto the Artin braid group on
five strands (which is just the Artin braid group A4 of type A4). By Corollary 1 of
[PV96], the kernel of the homomorphism Φ∗ is the free group with four generators
which is identified with the fundamental group of Σ′ via the Birman exact sequence

0 → π1(Σ
′) → Mod(Σ) → Mod(Σ′) → 0.

In other words, if we denote by Σ̂ the surface obtained from Σ by replacing the
boundary component v by a puncture, then this kernel is precisely the kernel of the
natural homomorphism Mod(Σ̂) → Mod(Σ′). The spin structure ϕ on S descends
to a Z/2Z-spin structure ψ on Σ′. This means the following.

Let Σ0 be the closed surface of genus 2 without marked points or boundary, i.e.
Σ0 is the image of Σ′ under the marked point forgetful map. Recall from Lemma
3.4 that the Artin braid group A4 in five strands, viewed as the subgroup of the
mapping class group of Σ0, preserves an odd spin structure. There are precisely 6
odd spin structures on Σ0, and these spin structures are permuted by the mapping
class group. Each of these spin structures corresponds to one of the six Weierstrass
point on Σ. The Artin braid group A4 equals the stabilizer of such an odd spin
structure, and it can be identified with the fundamental group of the stratum H(2)
of abelian differentials with a single zero.

Using again the Birman exact sequence

0 → π1(Σ
′) → Mod(Σ̂) → Mod(Σ′) → 0.

and the inclusion homomorphism, by Corollary 1 of [PV96] we obtain an exact
sequence

0 → π1(Σ
′) → Γ(C′) → Mod(Σ′)[ϕ] → 0.

Thus the group Γ(C)′ coincides with the fundamental group of the stratum H(2; 1)
of abelian differentials on a surface of genus two with a double zero and an additional
regular marked point.

Recall that a Z/2Z-spin structure on Σ0 corresponds to a quadratic form on
H1(Σ0,Z/2Z). We conclude that

Γ(C′) = Mod(Σ′)[ϕ]/Z2

where the quotient is by the center, i.e by the hyperelliptic involution.

Namely, the full mapping class group of Σ0 is the extension of the spherical braid
group in 6 strands by the hyperelliptic involution. The Artin braid group in five
strands is precisely the stabilizer in the spherical braid group of one of the marked
points, and such a marked point is the image of a Weierstrass point.

The Z/4Z-spin structure ϕ preserved by Γ(C) descends to a Z/2Z-spin structure
on Σ, defined by a quadratic form ψ on H1(Σ,Z/2Z). The above discussion shows
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that the group Γ(C′) is precisely the stabilizer of this spin structure in Mod(Σ′).
This group acts transitively on the set of curves c with ϕ(c) = ±1.

Now let ρ ∈ Mod(S)[ϕ] be arbitrary. Then ρ(d) is a curve with ϕ(ρ(d)) = ±1.
Connect d to ρ(d) by a path in CG1. Such a path (di) exists by Proposition 11.1.
Choose a curve e which is disjoint from d = d0, d1 and such that ϕ(e) = 1. Cut
S open along e. We know that the stabilizer of e in Γ(C) acts transitively on the
curves disjoint from e on which the evaluation of the spin structure is odd. In
particular, there is an element α0 ∈ Γ(C) which moves d0 to d1.

Via the action of Γ(C) by conjugation, the stabilizer of d1 in Γ(C) is conjugate
to Γ(C′). In particular, there is an element in this stabilizer which maps d0 to d2.
Proceeding inductively, we conclude that there is an element ζ ∈ Γ(C) with ζ(d) =
ρ(d), Then ζ−1ρ stabiizes both d and the spin structure and hence it coincides with
an element of Γ(C′). This implies that indeed ρ ∈ Γ(C). �

Corollary 11.4. Let Q be the non-hyperelliptic component of the stratum H(4).
Then the components of the preimage of Q in the Teichmüller space of abelian
differentials correspond precisely to the Z/4Z-spin structures on a surface of genus
3 which project to an odd Z/2Z-spin structure on S. In particular, the stabilizers
of two different components are distinct subgroups of Mod(S).

Proof. The mapping class group acts on the components of the preimage of Q by
permutation. The number of components of the preimage equals the index of the
stabilizer of a component. This stabilizer equals the stabilizer of the Z/4Z-spin
structure defined by a component. Mod 2 reduction maps this spin structure to an
odd spin structure on S.

As the mapping class group acts transitively on the different spin structures, the
corollary follows. �

12. Completing the proof

From now on we assume that Q is a non-hyperelliptic component of a stratum
of abelian differentials on a surface of genus g ≥ 3. We view Q as a complex
orbifold. The idea is to proceed by induction on the genus of the surface, using
specific degenerations of abelian differentials on S to differentials on surfaces with
nodes as described in [EMZ13] and [BCGGM18].

We begin with some general observation on degenerations of abelian differentials
to differentials on a surface with nodes.
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12.1. Degeneration to a boundary stratum II. Consider a non-hyperelliptic
component Q of a stratum of abelian differentials. Let C be an admissible curve
system for Q. Choose a curve c ∈ C which corresponds to a leaf of the curve
diagram of C and assume that there exists a curve d ∈ C which intersects precisely
two other components of C, one of which is c. Write q = q(C).

The differential q contains a cylinder D with core curve d. We may assume that
D is a horizontal cylinder. Then D is obtained by glueing two squares R1, R2 along
their vertical sides to an annulus. These squares correspond to the intersection
points of d with c and the second curve e ∈ C which intersects d in a single point.
The curve c is the core curve of the cylinder which is obtained by identifying the
horizontal boundary arcs of the square R1.

As the vertical sides of the squares R1, R2 are identified among each other, we
can shrink the vertical sides of R1, R2 simultaneously to zero. Then the length of
the curve c shrinks to zero as the height of R1 equals the length of c. The length
of the curve e does not shrink to zero since e intersects at least one other of the
cylinders which make up q(C).

Now c is an essential non-separating simple closed curve on S. Therefore as
the length of c shrinks to zero when the heights of R1, R2 shrinks to zero, the
differentials obtained by shrinking the height of the cylinder D to zero degenerate
to an abelian differential q′ on a surface S′ of genus g−1 with a single non-separating
node. The cylinder D degenerates to a saddle connection which joins the node to
itself.

Cutting S′ open along the node then defines a surface Ŝ of genus g− 1 equipped
with an abelian differential q̂ with two marked points. The core curve d of the
cylinder D defines a saddle connection connecting these two marked points. The
differential q̂ on Ŝ has one or two zeros, and these singular points are precisely the
images of the node.

Let R be the component of the stratum of abelian differentials on Ŝ containing
q̂. It follows as in Section 10.2 that the construction which led to q̂ can be reversed.
In other words, there exists a neighborhood U of q̂ in Q which is contained in the
closure of Q for the Hausdorff topology. As the construction is compatible with
the complex structure, we conclude that R defines a boundary divisor of Q in the
incidence variety compactifiction of Q (see [BCGGM18]).

Consider now a component Q̃ of the preimage of Q and a lift q̃ of the differential q
as above. Denote again by c the marked curve as above. The degeneration described
above determines a component R̃ of the preimage of R in the Teichmüller space
of abelian differentials on Ŝ, where Ŝ is obtained from S by collapsing the simple
closed curve c to a node and opening the node.

The following is well known. For its formulation, note that as R̃ is a complex
manifold in the boundary of Q̃ of codimension one, a tubular neighborhood N of
R̃ in the closure of Q̃ is biholomorpic to a disk bundle over R̃. The fibre of the
bundle with the zero point deleted is a punctured disk whose fundamental grouo
generates the kernel of the map π1(N −R) → π1(N). We have
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Lemma 12.1. The generator of the kernel of the map π1(N −R) → π1(N) is the
Dehn twist about c.

The following observation is equally well known; we include it here for easy
reference.

Lemma 12.2. Let Q be a component of a stratum of abelian differentials and let
Q̃1 6= Q̃2 be components of the preimage of Q in the Teichmüller space of abelian
differentials; then ΠStab(Q̃1) 6= ΠStab(Q̃2).

Proof. The group Mod(S) acts by inner automorphisms on itself, and this ac-

tion induces an action on the left cosets of the subgroup ΠStab(Q̃). The space

ModS/ΠStab(Q̃) of such left cosets can be identified with the set of components
of the preimage of Q, and the action of Mod(S) on the set of such components is

naturally identified with the left action of Mod(S) on Mod(S)/ΠStab(Q̃).

If Stab(ϕQ̃) = Stab(Q̃) then ϕ normalizes Stab(Q̃). In particular, using again

naturality, it maps the generator of the fibre of a deleted tubular neighborhood of Q̃
to the generator of the fibre of a deleted tubular neighborhood of ϕ(Q̃). However,
this fibre class is just the Dehn twist about a circle enclosing two marked points.
But this is impossible.

Alternatively we observe that the following holds true. Let M be a simply con-
nected complex manifold and let N ⊂M be a complex submanifold of codimension
one. Then we have an exact sequence

. . . 0 → π1(M,N) → π0(N) → Z → 0.

Now each fibre of a tubular neighborhood of a generator gives rise an element in
the relative homotopy group π1(M,N) and as the map is injective, we conclude
that components of N correspond to generators of π1(M,N) by looping around a
component different from the one which contains the basepoint.

Now if M is not simply connected then the above is valid for the universal
covering M̃ of M . The deck group G acts on M̃ . The claim now follows from the
homotopy lifting property. �

12.2. Abelian differentials with a single zero. Consider a non-hyperelliptic
component Q of a stratum of abelian differentials with a single zero on a surface
of genus g ≥ 4. Let C be an admissible curve system for Q of type U2g or V2g.
Then we can find curves c, d as in Subsection 12.1 with the following property. Let
C′ = C−{c, d}; then C′ fills a subsurface S′ of S with a single boundary component,
and it defines an admissible curve system on S′ for a component of a stratum with
a single zero.

Namely, a tubular neighborhood of c ∪ d is a one-holed torus. Shrinking the
height of the cylinder D with core curve d to zero yields a surface with two marked
points, joined by a saddle connection which is determined by the curve c. Shrinking
this saddle connection to a point defines a surface Σ with an abelian differential z
with a single zero. This differential is a realization of an admissible curve system
which is a projection of C′.
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We use this to show

Proposition 12.3. Let Q be a non-hyperelliptic component of a stratum with a
single zero and let Q̃ be a component of the preimage of Q in the Teichmüller space
of abelian differentials.

(1) For every admissible curve system C for Q we have Stab(Q̃) = Γ(C).
(2) Stabilizers in Mod(S) of distinct components of the preimage of Q are dis-

tinct subgroup of Mod(S).

Proof. We proceed by induction on the genus g of S. The case g = 3 is due to
Looijenga and Mondello [LM14].

Now assume that the claim holds true for all non-hyperelliptic components of
the minimal stratum for surfaces of genus g − 1 ≥ 3. Let Q be a such component
of a stratum in genus g. Let C be an admissible curve system for Q of type U2g

or V2g. Let c, d be the two curves from C with the properties discussed before the

statement of the proposition. Let Q̃ be the component of the preimage of Q in the
Teichmüller space of abelian differentials which is stabilized by Γ(C).

Let ψ ∈ Stab(Q̃). By Corollary 9.4, there exists some ϕ ∈ Γ(C) so that ϕ(c) =
ψ(c), ϕ(d) = ψ(d). Put ξ = ϕ−1ψ; then ξ(c) = c, ξ(d) = d.

Let q be a realization of C and let z = ξ(q). Then ξ preserves the one-holed
torus T ⊂ S which is the tubular neighborhood of c ∪ d. The above construction
shows that shrinking the height of the cylinder D in q with core curve d to zero and
collapsing the saddle connection which is the image of the core curve of D yields
the realization q′ of the projection of C′ = C − {c, d}, and the same construction
yields the projection of ξ(C′).

The mapping class ξ acts on Stab(Q̃) by conjugation, and this action preserves
the conjugacy class of the fundamental group of the one-holed torus T and hence
it preserves its centralizer, which is the conjugacy class of the fundamental group
of S − T .

Let q be an abelian differential which realizes the curve system C. Then ξ(q) is a

differential which realizes ξ(C). The differentials degenerate to differentials q̂, ξ̂(q)
on a surface of genus g − 1 with a single zero. Furthermore, they are contained in
a connected component of the preimage of the same stratum R of abelian differ-
ential on a surface of genus g − 1. Two applications of Lemma 12.2 show that the

differentials q̂, ξ̂(q) are in fact contained in the same component of the preimage of
R.

Thus ξ induces an element of Stab(R̃). By induction hypothesis, we have

Stab(Q̃) = Γ(C′). But this shows ξ ∈ Γ(C) and hence the same holds true for
ψ. �
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12.3. Opening and closing zeros. Let us consider an abelian differential q with
a finite set Σ of marked points containing all the zeros. Assume that we fix two of
these marked points x1, x2 which are connected by a saddle connection γ, i.e. by
a geodesic segment not passing through another marked point. We always assume
that at least one of the marked point is a zero. Furthermore, we assume that γ is the
unique shortest saddle connection among all saddle connections in this direction.
Let δ > 0 be the length of γ.

There is a transformation of q called the Schiffer variation (see [McM13] for a
detailed discussion of this classical construction) which contracts this saddle con-
nection to a point without changing the absolute periods of q. This construction is
as follows. Let us assume that x1 is a zero of q and that the saddle connection is
horizontal, with its orientation pointing away from the zero. This can be achieved
by replacing q by eiθq for some θ ∈ [0, 2π). For a small number ǫ < δ cut S open
along the initial subsegments of length ǫ of all horizontal saddle connections whose
orientation points away from x1. The result is a surface with polygonal boundary,
with sides of length ǫ, which can be reglued in such a way that the endpoints of the
slits are all identified and yield a zero of the modified differential. The deformation
is local and does not change the differential (and hence the underlying complex
structure) outside a neighborhood of the saddle connection. It decreases the length
of the horizontal saddle connections whose orientation points away from the zero.
It can be continued until the endpoints of γ are identified.

The reverse of this construction consists in opening up a zero. This construction
is explained in detail in Section 8 of [EMZ13]. It depends on the choice of a zero x of
a differential q of order k ≥ 2, the choice of a sufficiently small number ǫ > 0 and the
choice of a direction at the zero. Choose moreover a decomposition k = k1 + k2 for
some k1 ≥ k2 ≥ 1 and a complex parameter reiθ where r > 0 and where θ ∈ [0, 2π).
The construction is as follows.

Choose a horizontal separatrix γ at x whose direction points away from x. Let
ǫ > 0 be sufficiently small that the ǫ-neighborhood of x for q consists of 2m+2 half-
disks of radius ǫ glued in cyclic order along segments of length ǫ in their horizontal
boundary. For r < ǫ mark the point on γ of distance r to x and reglue the half-
disks in such a way that the resulting differential has two zeros of order k1, k2,
respectively, connected by a horizontal saddle connection of length r.

The construction depends on the length parameter r ∈ (0, ǫ) and the choice of
the horizontal separatrix γ. Multiplication of q by eiθ for some θ ∈ [0, 2π) can be
thought of rotating the separatrix γ counter-clockwise around x. Thus for a fixed
choice of a decomposition k = k1 + k2 for some k1 ≥ k2 ≥ 1, the resulting abelian
differentials can be parametrized by a complex parameter reiθ with 0 < r < ǫ.

Now let R be the component of the stratum containing the differential q with
a zero of order k ≥ 2 and let Q be the component containing the differentials
with two zeros of order k1, k2 resulting from this construction. There exists an
open neighborhood U of q in R, an open set V ⊂ Q and a holomorphic surjection
π : V → U whose fibre is a punctured disk. The projection π maps a point in
V to the differential obtained by contracting the distinguished (shortest) saddle
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connection connecting the newborn zeros to a point. We refer to Section 8 of
[EMZ13] for a detailed discussion of this construction.

Going ones around the fibre of π amounts to the following. Let β ⊂ S be the
boundary of the ǫ-disk about q. This circle lifts in an unambiguous way to a circle
β′ enclosing the two newborn zeros of a differential z ∈ Q obtained from q by
splitting the zero x into the two zeros x1, x2. There exists a distinguished saddle
connection for z connecting x1 to x2 which is entirely contained in the disk enclosed
by β′.

On the other hand, the boundary of a small tubular neighborhood of any em-
bedded arc in Sg,m which connects the zeros x1, x2 is a circle enclosing the zeros.
With this viewpoint, up to homotopy in the punctured surface Sg,m, the circle β′ is
determined by the saddle connection connecting x1 to x2. Going once around the
core curve of the fibre then results in a Dehn twist about the circle β′ enclosing the
two marked points x1, x2.

Thus we can now apply the reasoning in the proof of Subsection 12.2 and com-
plete the proof of Theorem 2.

Remark 12.4. In [LM14] the following is shown. The orbifold fundamental group
of the stratum H(1, 3) equals the finite type Artin group of type E7. Its image
under the homomorphism P is the subgroup of Mod(S3,1) which is generated by
the Dehn twists about a Humphries system. In particular, Mod(S) is a quotient
of this Artin group E7. The Wajnryb presentation for the mapping class group
shows that Mod(Sg,1) is obtained from the Artin group E7 by adding the so-called
3-chain relations and the lantern relations [FM12]. By [LM14], these relations do
not appear in the orbifold fundamental group of the component. In particular, the
kernel of the homomorphism P : π1(H(1, 3)) → Mod(S3,1) is non-trivial.
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[H14b] U. Hamenstädt, Typical and atypical properties of periodic Teichmüller geodesics,

arXiv:1409.5978.

[HJ89] S. Humphries, D. Johnson, A generalization of winding number functions on sur-

faces, Proc. London Math. Soc. 58 (1989), 366–386.
[Joh85] D. Johnson, The structure of the Torelli group III. The abelianization of I, Topology

24 (1985), 127–144.

[KMS86] S. Kerckhoff, H. Masur, J. Smillie, Ergodicity of billiard flows and quadratic differ-

entials, Ann. Math. 124 (1986), 293-311.
[KZ03] M. Kontsevich, A. Zorich, Connected components of the moduli space of Abelian

differentials with prescribed singularities, Invent. Math 153 (2003), 631–678.
[La08] E. Lanneau, Connected components of the strata of the moduli spaces of quadratic
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