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1. Introduction

Hermann Weyl was one of the most influential mathematicians of the first half
of the twentieth century. He was born in 1885 in Elmshorn. In 1933 he emigrated
to the United States, and he died in 1955 in Zürich. The majority of his many
fundamental contributions to mathematics belong to the area of analysis in the
broadest possible sense. However, one of his earliest and most celebrated results
can be viewed as the origin of the study of number theory with tools from dynamical
systems.

His theorem, published in 1916 in the “Mathematische Annalen” [W16], is as
follows.

Weyl’s theorem: Let y0 ∈ (0, 1) be irrational. Then the sequence (ui)i≥1

defined by ui = iy0 mod 1 is asymptotically equidistributed: For all 0 < a < b < 1
we have

|{1 ≤ i ≤ n : a ≤ ui ≤ b}|

n
→ b− a (n→ ∞).

In this note we explain how the idea behind this theorem was used in the last
quarter of the twentieth century to gain surprising insights into the interplay be-
tween number theory, geometry and dynamical systems.

2. Classical dynamical systems

In this section we discuss how Weyl’s theorem can be reformulated in the lan-
guage of dynamical systems, and we introduce some basic concepts which will be
important in the later sections.

Let S1 = {eit | t ∈ [0, 2π)} ⊂ C be the standard unit circle in the complex plane.
Then S1 is an abelian group with multiplication eit × eis = ei(t+s). In particular,
every angle α ∈ (0, 2π) defines a cyclic group T nα of rotations of S1 (n ∈ Z) via

Tnα (eit) = eit+nα.
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Thus the rotation Tα with angle α generates a dynamical system with phase space
S1. Global (or asymptotic) properties of a dynamical system can be investigated
with the help of invariant measures.

Definition 1. A Radon measure µ (i.e. a locally finite Borel measure) on a locally
compact topological spaceX is invariant under a Borel map T if µ(T−1(A)) = µ(A)
for every Borel set A ⊂ X.

If X is a compact topological space then the space P(X) of Borel probability
measures on X can be equipped with the weak∗-topology. This weak∗- topology
is the weakest topology such that for every continuous function f : X → R the
function µ ∈ P(X) →

∫

fdµ is continuous. In other words, a sequence (µi) ⊂
P(X) converges to µ ∈ P(X) if and only if for every open subset U of X we have
lim infi→∞ µi(U) ≥ µ(U). The space P(X) equipped with the weak∗-topology is
compact.

By compactness, every continuous transformation T of X admits an invariant
Borel probability measure [Wa82]. Namely, for every point x ∈ X, any weak limit
of the sequence of measures

1

n

n−1
∑

i=0

δT ix

is T -invariant where δz is the Dirac δ-measure at z, defined by δz({z}) = 1 and
δz(X − {z}) = 0.

For our circle rotations, there are now two cases.

Case 1: α is a rational multiple of 2π, i.e α = 2pπ/q for relatively prime p, q ∈ N.

In this case we have T qα(eit) = eit+2pπ = eit for all t which means the following.

Every point in S1 is periodic for Tα, with period independent of the point.

In particular, every point y ∈ S1 is an atom of a Tα-invariant probability mea-
sure, namely the weighted counting measure on the orbit {T iαy | 0 ≤ i ≤ q − 1} of
y. This measure is given by the formula

µ =
1

q

q−1
∑

i=0

δT i
αy
.

Case 2: α is an irrational multiple of 2π, i.e. α = 2πρ for an irrational number
ρ ∈ (0, 1).

In this case, Tα does not have periodic points, and Weyl’s theorem says precisely
the following: For each y ∈ S1,

1

n

n−1
∑

i=0

δT i
αy

→ λ

weakly in the space of probability measures on S1 where λ is the normalized stan-
dard Lebesgue measure on S1 defined by λ{eis | 0 ≤ α < s < β ≤ 2π} = (β−α)/2π.
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For a continuous map T of a compact space X, the space P(X)T of T -invariant
Borel probability measures on X is convex: If µ1, µ2 are two such measures and if
s ∈ [0, 1] then sµ1+(1−s)µ2 ∈ P(X)T as well. In other words, P(X)T is a compact
and convex subset of a topological vector space on which the dual separates points.
Hence P(X)T is the convex hull of the set of its extreme points.

An extreme point µ ∈ P(X)T is an ergodic invariant measure: If A ⊂ X is a
T -invariant Borel set then µ(A) = 0 or µ(X − A) = 0. By the Birkhoff ergodic
theorem [Wa82], every extreme point µ ∈ P(X)T is a weak limit of measures of

the form 1
q

∑q−1
i=0 δT iy for a suitable choice of y ∈ X. Note that the definition of

ergodicity also makes sense for Radon measures on locally compact spaces which
are invariant under a continuous transformation.

Definition 2. A continuous transformation T of a compact space X is called
uniquely ergodic if up to scale, T admits a unique invariant Borel probability mea-
sure.

An invariant Borel probability measure µ for a uniquely ergodic continuous trans-
formation T on a compact space X is necessarily ergodic. Now Weyl’s theorem can
be rephrased as follows.

Irrational rotations of the circle are uniquely ergodic.

However, this also means the following.

If α is an irrational multiple of 2π then a measure which is invariant
under Tα is invariant under the full circle group of rotations.

3. The modular group and hyperbolic geometry

About 1970, the significance of Weyl’s theorem became apparent in a somewhat
unexpected way and in a different context. This development began with the work
of Hillel Furstenberg. Furstenberg was born in 1935 in Berlin and moved shortly
later with his family to the United States. He now works at the Hebrew University
in Jerusalem (Israel). Furstenberg was interested in lattices in semi-simple Lie
groups G of non-compact type and their actions on homogeneous spaces associated
to G. A large part of the structure theory for semi-simple Lie groups is due to
Hermann Weyl, but it seems that he never attempted to draw a close connection
between the structure of Lie groups, their actions on homogeneous spaces and his
number theoretic result which we discussed in Section 1.

In this section we explain Furstenberg’s work and its generalizations which are
entirely in the spirit of Weyl’s theorem.

Consider the modular group

SL(2,Z) = {

(

a b
c d

)

| a, b, c, d ∈ Z, ad− bc = 1}
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which acts as a group of linear transformations on R2 preserving the usual area
form. This action is given by

(

a b
c d

)(

x
y

)

→

(

ax+ by
cx+ dy

)

.

There is an obvious SL(2,Z)-invariant subset of R2, namely the countable set
RQ2 ⊂ R2 of points whose coordinates are dependent over Q (which means that
their quotient is rational). Since SL(2,Z) preserves the integral lattice Z2 ⊂ R2,
each SL(2,Z)-orbit of a point whose coordinates are dependent over Q is a discrete
subset of R2. Hence this orbit supports an SL(2,Z)-invariant purely atomic ergodic
Radon measure. For example, the measure

µ =
∑

y∈Z2

δy

is an SL(2,Z)-invariant Radon measure. However, it is not ergodic since Z2 contains
countably many orbits for the action of SL(2,Z). Namely, the SL(2,Z)-orbit of
the point (1, 0) ∈ R2 consists precisely of all points (p, q) such that p, q ∈ Z are
relatively prime. As a consequence, there is an uncountable family of SL(2,Z)-
invariant Radon measures on R2. Each ergodic measure in this family is a sum of
weighted Dirac masses on a single SL(2,R)-orbit in RQ2.

In contrast, extending earlier work of Furstenberg [F72], Dani [D78] proved in
1978 the following unique ergodicity result.

Theorem 1. (Unique ergodicity for the standard linear action of SL(2,Z)):
An SL(2,Z)-invariant Radon measure on R2 which gives full mass to the set of
points whose coordinates are independent over Q coincides with the Lebesgue mea-
sure up to scale.

As a consequence, we have.

A Radon measure on R2 which is invariant under SL(2,Z) and which
gives full measure to points whose coordinates are independent over Q

is invariant under the full group SL(2,R).

The proof of this result does not use directly the fact that SL(2,Z) acts on
R2 by linear transformations. Instead, the group SL(2,Z) is viewed as a lattice
in the simple Lie group SL(2,R). By this we mean that SL(2,Z) is a discrete
subgroup of SL(2,R) with the following property. The group SL(2,R) admits a
natural Radon measure which is invariant under the action of SL(2,R) on itself by
right or left translation. This measure is given by a biinvariant volume form. By
biinvariance, this volume form projects to a volume form on the quotient orbifold
SL(2,Z)\SL(2,R) of finite total volume.

The quotient group PSL(2,R) under the center Z/2Z of SL(2,R) admits a
natural simply transitive action on the unit tangent bundle T 1H2 of the hyperbolic
plane H2 and hence this unit tangent bundle can be identified with PSL(2,R).
Namely, we have H2 = {z = x+ iy ∈ C | Im(z) > 0} with the Riemannian metric

Q =
dx2 + dy2

y2
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which is invariant under the action of SL(2,R) by linear fractional transformations

z →
az + b

cz + d
where

(

a b
c d

)

∈ SL(2,R).

The subgroup of SL(2,R) acting trivially is just the center of SL(2,R) and hence
this action factors to an action of PSL(2,R). The hyperbolic plane H2 admits a
compactification by adding the circle ∂H2 = R ∪∞, and the action of PSL(2,R)
on H2 extends to a transitive action on this circle by homeomorphisms.

There are three characteristic one-parameter subgroups of SL(2,R).

(1) The diagonal subgroup

A = {

(

et 0
0 e−t

)

| t ∈ R}

(2) The upper unipotent group

N = {

(

1 t
0 1

)

| t ∈ R}

(3) The lower unipotent group

U = {

(

1 0
t 1

)

| t ∈ R}

These groups project to one-parameter subgroups of PSL(2,R) which we denote
by the same symbols.

The right action of the diagonal subgroup A on PSL(2,R) defines the geodesic
flow on T 1H2. The right action of the group N of upper triangular matrices of
trace two is the horocycle flow on T 1H2. The group PSL(2,R) acts transitively
from the left on the homogeneous space PSL(2,R)/N .

Recall that the linear action of SL(2,R) on R2 naturally induces an action of
PSL(2,R) on the punctured cone R2 − {0}/± 1. We have.

Lemma 3.1. There is a homeomorphism F : R2−{0}/±1 → PSL(2,R)/N which
commutes with the action of PSL(2,R). This means that we have B(Fz) = F (Bz)
for all z ∈ R2 − {0}/± 1 and for all B ∈ PSL(2,R).

Proof. A homeomorphism as required in the lemma can easily be determined ex-
plicitly (see e.g. the paper [LP03]). However, its existence can also be derived as
follows. The group PSL(2,R) acts transitively from the left on R2 −{0}/± 1 (this
is immediate from transitivity of the left linear action of SL(2,R) on R2 − {0}).
Moreover, the stabilizer subgroup of the point (1, 0)/± 1 for this action is precisely
the group N . ¤

As a consequence, PSL(2,Z)-invariant Radon measures on R2 − {0}/ ± 1 cor-
respond precisely to Radon measures on PSL(2,R)/N which are invariant un-
der the left action of PSL(2,Z) or, equivalently, to finite Borel measures on the
unit tangent bundle T 1(Mod) = PSL(2,Z)\PSL(2,R) of the modular surface
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Mod = PSL(2,Z)\H2 which are invariant under the action of the horocycle flow
ht defined by the right action of the upper unipotent group N .

There is an obvious family of ht-invariant Borel probability measures on the
homogeneous space T 1(Mod). Namely, a fundamental domain for the action of
PSL(2,Z) on the hyperbolic plane H2 by linear fractional transformations is the
complement of the euclidean disc of radius one centered at the origin in the strip
{z ∈ C | Im(z) > 0, 1

2 ≤ Re(z) ≤ 1
2}. The stabilizer of ∞ in the group PSL(2,R)

is the solvable subgroup G of all upper triangular matrices generated by A and N .
This stabilizer is preserved by the action of N by right translation. The orbits of N
in S project to the lines Im = const in H2 and hence they project to closed orbits of
the horocycle flow on T 1(Mod). In particular, for every such orbit there is a unique
ht-invariant Borel probability measure supported on this orbit. Figure 1 shows a
periodic orbit of the horocycle flow about the cusp in the standard fundamental
domain of the action of the group PSL(2,Z) on H2.

1.5

0.5−0.5

0.5

1

2

To describe the corresponding PSL(2,Z)-invariant Radon measure on the cone
R2 −{0}/± 1, observe that the left action of PSL(2,R) on the cone R2 −{0}/± 1
projects to the action of PSL(2,R) on the real projective line RP 1 ∼ S1 by projec-
tive transformations. This action is transitive, and the stabilizer of the real line [1, 0]
spanned by the point (1, 0) ∈ R2 equals the subgroup G of PSL(2,R). Thus the
action of PSL(2,R) on ∂H2 is just the action of PSL(2,R) on RP 1. In particular,
the PSL(2,Z)-orbit of [1, 0] which consists of all points in RP 1 spanned by vectors
with integer coordinates (see the above discussion) naturally coincides with the
PSL(2,Z)-orbit of the point ∞ ∈ ∂H2. As a consequence, the ht-invariant Borel
probability measures on PSL(2,Z)\PSL(2,R) supported on the above described
closed orbits of the horocycle flow correspond precisely to the invariant Radon mea-
sures on R2 − {0}/± 1 supported on points whose coordinates are dependent over
Q. Thus we have.

Borel probability measures supported on closed orbits of ht on T 1(Mod)
correspond to SL(2,Z)-invariant Radon measures on R2 supported on orbits
of points whose coordinates are dependent over Q.
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On the other hand, the Lebesgue Haar measure is invariant under the action of
the whole group PSL(2,R), and it is uniquely determined by this property up to
scale. Thus our Theorem 1 is an immediate consequence of the following result of
Dani [D78].

Proposition 3.2. Any ht-invariant probability measure on T 1(Mod) either is sup-
ported on a closed orbit for the horocycle flow or it is invariant under the whole
group PSL(2,R).

In the early nineties, Ratner proved a far-reaching generalization of this result.
We refer to the book [BM00] for an introduction to the subject and to [WM05] for
a more detailed treatment of Ratner’s celebrated work.

4. Uniquely ergodic unipotent flows on some homogeneous spaces of

infinite volume

The results explained in Section 3 and their generalizations, in particular the
work of Ratner, have many applications. However, they are only applicable in an
algebraic setting and to invariant probability measures. The simplest extension of
the questions discussed in Section 3 which can not be answered with these methods
can be formulated as follows.

Let S be a closed oriented surface of genus g ≥ 2. Choose a Riemannian metric
g on S of constant sectional curvature −1. Then there is a discrete subgroup Γ of
PSL(2,R) such that our hyperbolic surface is just Γ\H2, with unit tangent bundle
T 1S = Γ\PSL(2,R) as before. In particular, the horocycle flow ht is defined on
T 1S. For some d ≤ 2g choose a normal subgroup Λ of Γ with factor group Γ/Λ
isomorphic to Zd. An example of such a group is the commutator subgroup of
Γ. Consider the regular Zd-cover Ŝ of S with fundamental group Λ. Then the
horocycle flow ht on the unit tangent bundle T 1Ŝ of Ŝ is defined. By the work of
Ratner, ht-invariant Borel probability measures on T 1Ŝ can be classified. Namely,
in the situation at hand, either they are supported on closed orbits of the horocycle
flow or they are invariant under the full group PSL(2,R) on T 1Ŝ. In other words,

since the volume of T 1Ŝ is infinite, such invariant Borel probability measures do
not exist. However, the Lebesgue measure (i.e. the measured induced by a Haar

measure on PSL(2,R)) is a PSL(2,R)-invariant Radon measure on T 1Ŝ. A natural
problem is now to classify all invariant Radon measures for the horocycle flow on
T 1Ŝ.

Babillot and Ledrappier [BL98] constructed for every homomorphism ϕ : Zd → R

a Radon measures λ̂ϕ on T 1Ŝ which is both invariant under the horocycle flow on
T 1Ŝ and under the geodesic flow. The trivial homomorphism corresponds to the
Lebesgue measure. Each of these measures is the lift of a Borel probability measure
λϕ on T 1S. If the homomorphism is nontrivial, then the measure λϕ on T 1S is

not invariant under the horocycle flow on T 1S. For ϕ 6= ψ the measures λ̂ϕ, λ̂ψ are
singular. We call these measures Babillot-Ledrappier measures.

The Babillot-Ledrappier measures are all absolutely continuous with respect to
the stable foliation, i.e. the foliation of T 1Ŝ = Λ\PSL(2,R) into the orbits of
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the right action of the solvable subgroup G generated by the groups A,N . More
precisely, the following holds true.

For every point ξ ∈ S1 = ∂H2 there is a Busemann function θξ : H2 → R

at ξ. Such a Busemann function is a one-Lipschitz function for the hyperbolic
metric on H2 which is determined uniquely by ξ up to an additive constant. The
function θ∞(z) = log Im(z) is a Busemann function at the point ∞. The Busemann
functions are invariant under the action of PSL(2,R) on ∂H2×H2 and therefore the
images under the action of PSL(2,R) of the function θ∞ determines all Busemann
functions on H2.

For a discrete subgroup Λ of PSL(2,R) and a number α ≥ 0 define a conformal
density of dimension α ≥ 0 for Λ to be an assignment which associates to every
x ∈ H2 a finite measure µx on ∂H2 with the following properties.

(1) The measures µx (x ∈ H2) are equivariant under the action of Λ on H2 ×
∂H2.

(2) For x, y ∈ H2 the measures µx, µy are absolutely continuous, with Radon

Nikodym derivative dµy

dµx (ξ) = eα(θξ(y)−θξ(x)) where θξ is a Busemann func-

tion at ξ.

The Babillot-Ledrappier measures on T 1Ŝ are related to conformal densities for the
fundamental group Λ of Ŝ as follows.

Recall that there is a Λ-equivariant canonical projection PSL(2,R) → ∂H2 =
PSL(2,R)/G. Let µ̃ be the Λ-invariant measure on PSL(2,R) which is the lift of a

Babillot-Ledrappier measure λ̂ϕ on T 1Ŝ = Λ\PSL(2,R). Then for every relatively
compact open subset U of PSL(2,R) the push-forward π∗(µ|U) is contained in the
measure class of a conformal density for Λ. This conformal density {µx} has the
additional property that

µx ◦ g = eϕ(g) ◦ µx∀g ∈ Zd.

This additional condition determines the conformal density uniquely up to scale.

The measure λ̂ϕ in turn is uniquely determined by the conformal density up to
scale.

A Radon measure µ on T 1Ŝ is quasi-invariant under the geodesic flow Φt on
T 1Ŝ if for every t ∈ R the push-forward measure Φt∗µ is absolutely continuous with
respect to µ, i.e. the measures µ and Φt∗µ have the same set of measure zero. The
following result is due to Babillot [B04] and Aaronson, Sarig, Solomyak [ASS02].

Proposition 4.1. Every ht-invariant Radon measure on T 1Ŝ which is quasi-
invariant under the geodesic flow is a Babillot-Ledrappier measure.

Now let λ by any ht-invariant ergodic Radon measure on T 1Ŝ. Let Φt be the
geodesic flow on T 1Ŝ and let H(λ) ⊂ R be the set of all t ∈ R such that the measure
Φtλ is contained in the measure class of λ. Then H(λ) is a closed subgroup of R and
hence if H(λ) 6= R then either H(λ) is infinite cyclic or trivial. The measure λ is
quasi-invariant under the flow Φt if and only if we have H(λ) = R. Proposition 4.1
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then shows that every ht-invariant Radon measure λ with H(λ) = R is a Babillot-
Ledrappier measure.

To classify the ht-invariant measures with the property that H(λ) is either in-
finite cyclic or trivial, Sarig [S04] proved a general structure theorem for cocycles.

He uses this result to show that there is no ht-invariant Radon measure λ on T 1Ŝ
with Hλ 6= R. Thus he obtains.

Theorem 2. Every ht-invariant ergodic Radon measure on T 1Ŝ is a Babillot-
Ledrappier measure.

In fact, the analog of Theorem 2 holds true for the horocycle flow on any Zd-
cover of a closed surface S of higher genus equipped with a Riemannian metric of
negative Gauß curvature. In other words, this result does not require any algebraic
setting.

5. Moduli space

The first book written by Hermann Weyl is the monograph “Die Idee der Rie-
mannschen Fläche” which appeared in 1913. In this section, a Riemann surface
will be a closed oriented surface of genus g ≥ 1 which is equipped with a complex
structure. We are going to connect the moduli space of Riemann surfaces to the
ideas discussed in Section 3 and Section 4.

Define a marked Riemann surface to be a Riemann surface M together with a
homeomorphism S →M from a fixed closed oriented surface S of genus g ≥ 1.

Definition 3. (1) The Teichmüller space T (S) of S is the space of all marked
Riemann surfaces which are homeomorphic to S up to biholomorphisms
isotopic to the identity.

(2) The mapping class group M(S) is the group of all isotopy classes of orien-
tation preserving homeomorphisms of S.

Every element of the mapping class group M(S) naturally induces a nontrivial
automorphism of the fundamental group π1(S) of S. It is easy to see that this
automorphism is not inner, i.e. it is not induced by a conjugation. Thus there is a
natural homomorphism of M(S) into the group Out(π1(S)) of outer automorphisms
of π1(S), i.e. the quotient of the group of all automorphisms of π1(S) by the normal
subgroup of all inner automorphisms. By an old result of Nielsen, this map is in
fact an isomorphism.

The mapping class group naturally acts on Teichmüller space by precomposition,
i.e. by changing the markings. It is well known that T (S) can be equipped with
a topology so that with respect to this topology, T (S) is homeomorphic to R6g−6

and that the mapping class group acts properly discontinuously on T (S) by home-
omorphisms. There is also an M(S)-invariant complex structure on T (S) which
identifies T (S) with a bounded domain Ω in C3g−3. The mapping class group is
then just the group of all biholomorphic automorphisms of Ω.
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By uniformization, if g ≥ 2 then the moduli space Mod(S) = M(S)\T (S) of S
can be identified with the space of all hyperbolic Riemannian metrics on S up to
orientation preserving isometries. In the case g = 1, it is the space of all euclidean
metrics of area one up to orientation preserving isometries.

Example:

In the case g = 1 (i.e. in the case of the 2-torus S = T 2), the fundamental group
π1(S) of S is the lattice Z2 in R2. Then every automorphism of Z2 is induced
by a linear isomorphism of R2 preserving the lattice Z2 and hence the mapping
class group M(S) is just the group SL(2,Z). Here the center Z/2Z of SL(2,Z)
corresponds to the hyperelliptic involution which acts trivially on T (T 2). More
precisely, we have natural identifications as follows.

(1) T (T 2) = H2 = {z ∈ C | Im(z) > 0}, the hyperbolic plane.
(2) M(T 2) = SL(2,Z) acting on H2 by linear fractional transformations.
(3) Mod(T 2) = SL(2,Z)\H2, the modular surface.

A Riemann surface S is a one-dimensional complex manifold and hence it admits
a natural holomorphic cotangent bundle T ′(S) whose fiber at a point x is the one-
dimensional C-vector space of all C-linear maps TxS → C.

Definition 4. For a Riemann surface S, a holomorphic quadratic differential q on
S is a holomorphic section of the holomorphic line bundle T ′(S) ⊗ T ′(S).

In a holomorphic coordinate z on S, a holomorphic quadratic differential q can
be written in the form q(z) = f(z)dz2 with a local holomorphic function f . The
bundle of all holomorphic quadratic differentials over all Riemann surfaces can
be viewed as the cotangent bundle of Teichmüller space. It is a complex vector
bundle of complex dimension 3g−3. The mapping class group M(S) acts properly
discontinuously on this bundle as a group of bundle automorphisms.

A quadratic differential q defines a singular euclidean metric on S as follows.
Near a regular point z, i.e. away from the zeros of the differential, there is a
holomorphic coordinate z on S such that in this coordinate the differential is just
dz2. Such a chart is unique up to translation and multiplication with −1 and hence
the euclidean metric defined by this chart is uniquely determined by q. We call such
a chart isometric. The area of a quadratic differential is the area of the singular
euclidean metric it defines. The mapping class group preserves the sphere bundle
Q̃(S) over T (S) of all holomorphic quadratic differentials of area one and hence

this bundle projects to the moduli space Q(S) = M(S)\Q̃(S) of such differentials.

The real line bundles q > 0, q < 0 on the complement of the (finitely many)
singular points of q define transverse singular measured foliations qh, qv on S called
the horizontal and vertical measured foliations of q. By definition, a measured foli-
ation of S is a foliation F with finitely many singularities together with a transverse
measure which associates to every smooth compact arc which meets the leaves of
the foliation F transversely a length which is invariant under a homotopy of the
arc moving each endpoint of the arc within a single leaf of the foliation.
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There is a natural action of the group SL(2,R) on the space Q̃(S) of area one
holomorphic quadratic differentials which is given as follows. For each quadratic
differential q ∈ Q̃(S) choose a family of isometric charts near the regular points.
For B ∈ SL(2,R) define Bq to be the quadratic differential whose isometric charts
are the compositions of the isometric charts for q with B. This collection of charts
then defines a new holomorphic quadratic differential on a (different) Riemann
surface. The action of SL(2,R) commutes with the action of the mapping class
group and hence it descends to an action of SL(2,R) on Q(S). The diagonal
subgroup of SL(2,R) then defines a flow on Q(S) called the Teichmüller flow Φt,
and the upper unipotent group defines the horocycle flow ht. In the case of the
Teichmüller space of surfaces of genus 1, these flows are precisely the geodesic flow
and the horocycle flow on the unit tangent bundle of the modular surface. By
construction, the horocycle flow preserves the horizontal measured foliation of the
quadratic differentials since it preserves the lines q > 0 in our charts.

For the moduli space of surfaces of higher genus, the classification of ht-invariant
Borel probability measures is up to date impossible. There are lots of examples of
such measures. For example, Veech surfaces in moduli space are holomorphically
embedded (singular) Riemann surfaces of finite type. They correspond to closed
SL(2,R)-orbits in Q(S). Any ht-invariant Borel probability measure on such an
orbit then defines a ht-invariant Borel probability measure on Q(S).

However, we can ask for the easier question of a classification of M(S)-invariant
Radon measures on the space of equivalence classes of measured foliations. For this
call two measured foliations on S are equivalent if they can be transformed into
each other by so-called collapses of two singular points along a connecting compact
singular arc and Whitehead moves. Figure 2 shows a modification of a singular
foliation with such a Whitehead move.

The following fundamental fact was discovered by Hubbard and Masur in 1979
[HM79], see also [Hu06].
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Theorem 3. (Hubbard-Masur) Let H be the natural map which associates to a
quadratic differential the equivalence class of its horizontal measured foliation. Then
for every Riemann surface M the restriction of H to the truncated vector space of
all nontrivial quadratic differentials on M is a bijection.

Example: If S = T 2 then the space of equivalence classes of measured foliations
is R2.

By the theorem of Hubbard and Masur (in a slightly stronger version than the one

we described above), the natural topology on the bundle Q̃(S) induces a metrizable
topology on the set MF of equivalence classes of measured foliations on S (which
by construction is a purely topologically defined space). The mapping class group
M(S) acts on the space of equivalence classes of measured foliations by homeo-
morphisms. If S = T 2 then this action can naturally be identified with the linear
action of SL(2,R) on R2.

Definition 5. A measured foliation F on S fills up S if there is no simple closed
curve on S whose F -length vanishes.

Here the F -length of a simple closed curve c is the infimum of the transverse
lengths of closed curves transverse to the foliation which are freely homotopic to c.

The following classification result which was independently and at the same time
shown in [H07a] and in [LM07] extends unique ergodicity for the action of SL(2,Z)
on the set of irrational points in R2 to the framework of Teichmüller theory and
moduli spaces. For the formulation of this result, define a measured multi-cylinder
for a measured foliation of S to be a disjoint union of embedded annuli in S which
are foliated by closed leaves of the foliation.

Theorem 4. Let µ be an M(S)-invariant ergodic Radon measure on MF .

(1) If µ gives full mass to measured foliations which fill up S then µ coincides
with the Lebesgue measure up to scale.

(2) If µ is singular to the Lebesgue measure then there is a measured foliation
F containing a nontrivial measured multi-cylinder c such that µ coincides
with the translates of a Stab(c)-invariant measure on the space of measured
foliations on S − c.

Remark: The proof for genus g ≥ 2 is not valid in the case g = 1, i.e. we do
not obtain a new proof of the result of Dani. The argument for the first part of
the theorem uses the structural result of Sarig discussed in Section 4 in an essential
way. The proof of the second part relies on a result of Minsky and Weiss [MW02]
which is motivated by an analogous classical result of Dani for the horocycle flow
on non-compact hyperbolic surfaces of finite volume.

Finally we discuss some applications. We begin with two classical results of
Margulis [M69] and Dani.
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Theorem 5. (1) (Margulis) For ` > 0 let n(`) be the number of closed
geodesics on M = SL(2,Z)\H2 of length at most `. Then

lim
`→∞

1

`
log n(`) = 1.

(2) (Dani) For a compact subset K of SL(2,Z)\H2 and for ` > 0 let nK(`) be
the number of periodic orbits of length at most ` which are entirely contained
in K. Then

1 = sup{lim inf
`→∞

1

`
log nK(`) | K ⊂ SL(2,Z)\H2compact }.

Also, for a hyperbolic surface M a collar lemma holds: There is a compact subset
K in M compact such that every geodesic in M intersects K.

For closed Teichmüller geodesics, Eskin and Mirzakhani [EM08] obtained re-
cently the analog of Margulis’ result.

Theorem 6. Let n(`) be the number of closed Teichmüller geodesics of length at
most `. Then

lim
`→∞

1

`
log n(`) = 6g − 6.

We also have [H07b].

Theorem 7. For a compact subset K of Mod(S) and for ` > 0 let nK(`) be the
number of closed geodesics in Mod(S) which are entirely contained in K; then

6g − 6 = sup{lim inf
`→∞

1

`
log nK(`) | K ⊂ Mod(S) compact }.
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[Hu06] J. Hubbard, Teichmüller theory, Matrix edition, 2006.

[HM79] J. Hubbard, H. Masur, Quadratic differentials and measured foliations, Acta Math. 142

(1979), 221–274.

[LP03] F. Ledrappier, M. Pollicott, Ergodic properties of linear actions of (2×2)-matrices, Duke

Math. J. 116 (2003), 353–388.

[LM07] E. Lindenstrauss, M. Mirzakhani, Ergodic theory of the space of measured laminations,

preprint, April 2007.

[M69] G. Margulis, On some application of ergodic theory to the study of manifolds of negative

curvature, Funct. Anal. Appl. 3 (1969), 335–336.

[MW02] Y. Minsky, B. Weiss, Nondivergence of horocycle flows on moduli spaces, J. reine angew.

Math. 552 (2002), 131-177.

[S04] O. Sarig, Invariant Radon measures for horocycle flows on Abelian covers, Invent. Math.

157 (2004), 519–551.

[Wa82] P. Walters, An introduction to ergodic theory, Springer Graduate Texts in Math. 79

(1982).
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