- **10.1.** Let V be an 2n-dimensional real vector space with a complex structure J and a J-invariant inner product \langle, \rangle . Recall that these data define a Hermitean metric h on V.
 - (a) Show that for all $p, q \in \{0, ..., n\}$ the Hermitean metric h induces a Hermitean metric on $\Lambda^{p,q}V^*$, the tensor space of antisymmetric p-fold complex linear q-fold complex antilinear \mathbb{C} -valued functionals on V. (Note that the complex structure is inherited from the complex structure of $V \otimes_{\mathbb{R}} \mathbb{C}$). Show that the decomposition $\Lambda^m V^* = \bigoplus_{p+q=m} \Lambda^{p,q} V^*$ is orthogonal for this metric.
 - (b) Show that the Hodge star operator $* : \Lambda^{p,q} V^* \to \Lambda^{n-p,n-q} V^*$ is self-adjoint up to a factor $(-1)^u$ for some u. Compute this u.
- **10.2.** Let M be a compact complex manifold of dimension n.
 - (a) Show that $\Delta_{\bar{\partial}} * = * \Delta_{\bar{\partial}}$.
 - (b) Show that $H^{p,q}_{\bar{\partial}}(M)$ is isomorphic to $H^{n-p,n-q}_{\bar{\partial}}(M)$.
- **10.3.** Let $M = \mathbb{C}^n / \Lambda$ be a compact complex torus of dimension n. Here $\Lambda \sim \mathbb{Z}^{2n}$ is a lattice in \mathbb{C}^n . Compute the dimension of $H^{1,0}_{\bar{\partial}}(M), H^{0,1}_{\bar{\partial}}(M)$ and write down an explicit basis of these complex vector spaces.
- **10.4.** Let P be the regular octagon in \mathbb{C} , centered at the origin. Let S be the Riemann surface obtained from P by identifying opposite sides.
 - (a) Show that the one-form dz on \mathbb{C} descends to a holomorphic one-form η on S.
 - (b) Compute the number of zeros of η and their multiplicities.
 - (c) Use (b) to show that there exists a two-sheeted branched cover $S \to \mathbb{C}P^1$. Write this cover down explicity and determine the number of its branch points.