4.1. Verify the sign formula
\[\tau_n \cup \tau_q = (1)^{nq} \tau_m \]
where \(n + q = m \), \(\tau_n \in H^q(\mathbb{R}^m, \mathbb{R}^m - (\mathbb{R}^n \times \{0\})) \), similarly for \(\tau_q \) and the orientation of \(\mathbb{R}^{m+q} \) is the sum of the orientations of \(\mathbb{R}^n \) and \(\mathbb{R}^q \) (in this order).

4.2. Let \(M^m \) be a smooth closed oriented manifold, \(N^{m-1} \subset M \) a closed submanifold of codimension one.
Show:
a) If \(N \) is orientable and \(0 \neq \mu_N \in H_{m-1}(M, \mathbb{Z}) \) then \(\mu_N \) is indivisible.
b) If \(N \) is non-orientable then there is a smooth submanifold \(V \subset M \) diffeomorphic to the orientation cover of \(N \) which is contained in a tubular neighborhood of \(N \). Moreover, \(\iota_*\mu_V = 0 \in H_{m-1}(M, \mathbb{Z}) \) (here \(\iota : V \to M \) is the inclusion).

4.3. For each \(k \geq 1 \) construct a closed embedded oriented surface in \(\mathbb{C}P^2 \) which represents the homology class \(k\mathbb{C}P^1 \) (here \(\mathbb{C}P^1 \to \mathbb{C}P^2 \) is the standard embedding).

4.4. Calculate the intersection form on \(H_2 \) of
1) \(M = \mathbb{C}P^2 \# \mathbb{C}P^2 \) (means: Connected sum of \(\mathbb{C}P^2 \) with \(\mathbb{C}P^2 \) equipped with the opposite orientation). Deduce that \(M \) is not homotopy equivalent to \(S^2 \times S^2 \).
2) \(S_g \times S^1 \times S^1 \) where \(S_g \) is a closed surface of genus \(g \).
3) The product of a mapping torus \(S_g \times [0, 1]/ \sim \) for an orientation preserving diffeomorphisms with \(S^1 \).

4.5. Discussion problem: Is there an oriented vector bundle over an oriented manifold without nowhere vanishing section but with vanishing Euler class?