- **4.1.** Let M be a compact complex manifold and let $\mathcal{F} = \mathcal{O}$ or $\mathcal{F} = \mathcal{O}^*$ be the sheaf of holomorphic functions or non-vanishing holomorphic functions on M. Show that any biholomorphic map $F : M \to M$ induces an isomorphism $F^* : H^q(M, \mathcal{F}) \to H^q(M, \mathcal{F})$.
- **4.2.** Let again M be a compact complex manifold. Show that $H^1(M, \mathcal{O}^*)$ has the structure of a group, and this group is naturally isomorphic to the group of holomorphic line bundles on M, equipped with the tensor product.
- **4.3.** With M as in problem (1) and (2), show that the isomorphism $F^* : H^1(M, \mathcal{O}^*) \to H^1(M, \mathcal{O}^*)$ equals pull-back of line bundles.

4.4.

(a) Let M be a compact Riemann surface and let $D = \sum_i x_i$ is a divisor on M (with all multiplicities equal to one). Show that there is a holomorphic line bundle $K_M(D)$ on M whose local sections are the holomorphic one-forms on any open set not containing any of the x_i , and in a neighborhood of each x_i the meromorphic one-forms which can be written in a local holomorphic coordinate z_i centered at x_i as

$$\phi(z_i)\frac{dz_i}{z_i}$$

with a holomorphic function ϕ_i .

(b) Let K_M be the canonical bundle of M. Show that there is an exact sequence

$$0 \to K_M \to K_M(D) \xrightarrow{\operatorname{Res}} \sum_i \mathbb{C}_{x_i} \to 0$$

where each sheaf \mathbb{C}_{x_i} is a "skyscraper" sheaf supported at x_i , whose group of sections over any open set not containing x_i is $\{0\}$, and whose group of sections over any open set containing x_i is \mathbb{C} . Here the map $\operatorname{Res}_i : K_M(D) \to \mathbb{C}_{x_i}$ maps a meromorphic form ω to its residue at x_i , defined by

$$\operatorname{Res}_{i}(\omega) = \int_{\partial D_{i}} \frac{1}{2i\pi} \omega,$$

where D_i is a disk centered at x_i not containing any of the x_j 's, $i \neq j$.