- 8.1. (a) Show that the map $\gamma : t \to \gamma(t) = t + i \in \{z \mid \Im z > 0\} = \mathbb{H}^2$ is not a quasi-geodesic.
 - (b) Show that there is no reparametrization of the curve γ above which makes it a quasi-geodesic.
- 8.2. Let Γ_{θ} be obtained from the fundamental group Γ of a closed hyperbolic surface by bending (θ small). It leaves the pleated surface $H \subset \mathbb{H}^3$ invariant. Let $A \subset \mathbb{H}^3$ be closure of the union of all the images of geodesic arcs in \mathbb{H}^3 with both endpoints on H.
 - (a) Show that A is invariant under the action of Γ_{θ} and has non-empty interior for $\theta \neq 0$.
 - (b) Show that $\Gamma \setminus A$ is compact.
 - (c) Show that A is quasi-isometric to the hyperbolic plane \mathbb{H}^2 .
- 8.3. Let Γ be a finitely generated group, with finite symmetric generating set S which defines a word metric d. Show that the metric defined by a different finite generating set S' is quasi-isometric to d and give an example which shows that this does not hold true if we allow infinite generating sets.
- 8.4. (a) Let M be a smooth complete Riemannian manifold. Show that $\mathbb{H}^2 \times M$ equipped with the product metric is hyperbolic in the sense of Gromov if and only if the diameter of M is finite.
 - (b) For each $m \ge 0$ construct a complete Riemannian manifold which is hyperbolic space in the sense of Gromov with respect to its induced distance and whose Gromov boundary consists of precisely m points.
 - (c) Let X be a hyperbolic length space and let $\gamma : \mathbb{R} \to X$ be a geodesic. Let furthermore $z \in X$ be arbitrary and let $y \in \gamma(\mathbb{R})$ be a point of smallest distance to z. Show that any geodesic connecting z to some point on γ passes through a uniformly bounded neighborhood of y.