- **3.1.** Show that the area of any convex right angled hexagon in \mathbb{H}^2 equals π .
- **3.2.** (i) The curvature of a smooth curve α in the hyperbolic plane parametrized by arc length (for the hyperbolic metric) is the norm of the covariant derivative of α' . Show that the (properly parametrized) lines $s \to ir + s$ (r > 0) all have the same constant curvature and caculte this curvature.
 - (ii) Let γ be a geodesic in \mathbb{H}^2 and let r > 0. Show that a component of the set $\{z \mid d(z, \gamma) = r\}$ parametrized by arc length is an arc of constant curvature. This curvature does not depend on γ . Show that as $r \to \infty$, the curvature tends to the curvature of the lines in (i).
 - (iii) (Harder- use (i) and (ii)) Consider the unit half-circle c through i with endpoints on $\mathbb{R} \subset \partial \mathbb{H}^2$. Let $\gamma : [0, \infty) \to \mathbb{H}^2$ be one of the geodesic rays starting at i which are contained in c. Attach a geodesic arc a_t to $\gamma(t)$ which meets γ with angle $\pi/2$ and which is contained in the complement of unit disk. Choose the endpoint of the arc a_t in such a way that its tangent is horizontal (=real) at its endpoint. Let β_t be the vertical line through the endpoint of a_t . Show that the length of the segment $\{z \mid d(a(t), z) = t\}$ which is contained in the vertical strip bounded by β_t and the line $\{\Re = 0\}$ is bounded from above and below by a positive number not depending on t.
- **3.3.** (i) Show that there exists a right angled hyperbolic octagon.
 - (ii) Show that there exists a regular hyperbolic octagon \mathcal{O} with angles $\pi/4$. Here regular means that there exists a group of isometries of \mathbb{H}^2 of order 8 preserving \mathcal{O} . Furthermore, such a regular octagon is unique up to isometry.
- **3.4.** Consider the octagon \mathcal{O} from the previous exercise. Identify opposite sides with an isometry which reverses the orientation induced from an orientation of \mathcal{O} (if the octagon were euclidean, such an identification is given by a translation of the euclidean plane). Show that the quotient of this identification admits a natural structure of a smooth closed surface equipped with a hyperbolic metric. Determine the genus of that surface.