- **2.1.** The group $PSL(2,\mathbb{R})$ has a natural topology as a quotient of $SL(2,\mathbb{R})$. Call a subgroup $\Gamma < PSL(2,\mathbb{R})$ discrete if the induced topology on Γ is discrete. Show that for an abstract group Γ , the following are equivalent.
 - (i) Γ is the fundamental group of a complete oriented hyperbolic surface.
 - (ii) There exists an embedding $\Gamma \to PSL(2,\mathbb{R})$ whose image is a discrete subgroup not containing any elliptic elements.
- **2.2.** The *injectivity radius* i(p) of a hyperbolic surface S at a point p is the supremum of all numbers r > 0 such that the open ball of radius r about p is contractible.
 - (i) Show: If there exists some p so that $i(p) = \infty$ then S is isometric to \mathbb{H}^2 .
 - (ii) Show: If the group Γ as in the first exercise contains a parabolic element then there exists a sequence of points $p_i \subset S$ such that $i(p_i) \to 0$.
- **2.3.** Let again S be a complete hyperbolic surface and let $\gamma \subset S$ be a periodic geodesic. Show that if γ' is any curve freely homotopic to γ whose trace is different from the trace of γ , then the length of γ' is strictly bigger than the length of γ .
- **2.4.** (i) Determine the set of all triples $(\alpha, \beta, \gamma) \in [0, \pi]$ so that there exists a hyperbolic triangle with angles α, β, γ .
 - (ii) Determine the set of all triples $(a, b, c) \in [0, \infty)$ so that there exists a hyperbolic triangle with side lengths a, b, c.