- **11.1.** Let M be a hyperbolic 3-manifold with positive injectivity radius which is homeomorphic to $S \times \mathbb{R}$. Assume that the convex core Core(M) of M is not compact.
 - (a) Show that M has precisely two ends.
 - (b) Show that there is one end E of M and a globally minimizing geodesic ray $\gamma: [0, \infty) \to \operatorname{Core}(M)$ which is exits the end E.
 - (c) Show that if $\operatorname{Core}(M) = M$ then there exists a globally minimizing geodesic line $\gamma : \mathbb{R} \to M$.
 - (d) Let g be the intrinsic path metric on $S \times \{0\}$. Show that there exists a sequence γ_i of closed geodesics in M so that $\ell(\gamma_i)/\ell_S(\gamma_i) \to 0$ where $\ell_S(\gamma_i)$ is the shortest length of a closed curve on S which is freely homotopic to γ_i .
- **11.2.** Let S be a closed hyperbolic surface with fundamental group $\Gamma < PSL(2, \mathbb{R})$.
 - (a) Show that the limit set for the action of Γ on the hyperbolic plane equals the entire circle $S^1 = \partial \mathbb{H}^2$.
 - (b) A fixed point $\xi \in S^1$ of an element $e \neq g \in \Gamma$ is attracting if $g^k \zeta \to \xi$ uniformly for all ζ outside compact neighborhoods of a point $\eta \in S^1$. Show that every element $g \in \Gamma$ admits an attracting fixed point.
 - (c) Show that for every $e \neq g \in \Gamma$, the attracting fixed point of g is distinct from the repelling fixed point (i.e. the attracting fixed point of g^{-1}).
 - (d) (Harder) Assume that $h \in \Gamma$ is another element and let $\zeta \neq \xi$ be the attracting fixed point of h^{-1} . Assume furthermore that the attracting fixed point of h is distinct from the attracting fixed point of g^{-1} . Show that for any neighborhood U of ξ , V of ζ there exists a number k > 0 such that the element $g^k \circ h^k$ has attracting fixed point in U and repelling fixed point in V.
 - (d) Show that for every non-empty open subset U of S, there exists a closed geodesic in S passing through U.
- **11.3.** (Harder) Let M be a hyperbolic 3-manifold with injectivity radius bounded from below. Show that through every non-empty open subset U of Core(M) passes a closed geodesic.