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Abstract. Consider a component Q of a stratum in the moduli space of area
one abelian differentials on a surface of genus g. Call a property P for periodic
orbits of the Teichmüller flow on Q typical if the growth rate of orbits with
property P is maximal. We show that the following properties are typical.

The logarithms of the eigenvalues of the symplectic matrix defined by the
orbit are arbitrarily close to the Lyapunov exponents of Q, and its trace field
is a totally real splitting field of degree g over Q. If g ≥ 3 then periodic
orbits whose SL(2,R)-orbit closure equals Q are typical. We also show that

Q contains only finitely many algebraically primitive Teichmüller curves, and
only finitely many affine invariant submanifolds of rank ℓ ≥ 2.

1. Introduction

The mapping class group Mod(S) of a closed surface S of genus g ≥ 2 acts
by precomposition of marking on the Teichmüller space T (S) of marked complex
structures on S. The action is properly discontinuous, with quotient the moduli
space Mg of complex structures on S.

The goal of this article is to describe properties of this action which are invariant
under conjugation and hold true for conjugacy classes of mapping classes which are
typical in the following sense.

The Hodge bundle H → Mg over moduli space is the bundle whose fibre over a
Riemann surface x equals the vector space of holomorphic one-forms on x. This is
a holomorphic vector bundle of complex dimension g which decomposes into strata
of differentials with zeros of given multiplicities. Its sphere subbundle is the moduli
space of area one abelian differentials on S. There is a natural SL(2,R)-action
on this sphere bundle preserving any connected component Q of a stratum. The
action of the diagonal subgroup is called the Teichmüller flow Φt.

Let Γ be the set of all periodic orbits for Φt in Q. The length of a periodic orbit
γ ∈ Γ is denoted by ℓ(γ). Let k ≥ 1 be the number of zeros of the differentials in Q
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and let h = 2g− 1+ k. As an application of [EMR12] (see also [EM11]) we showed
in [H13] that

♯{γ ∈ Γ | ℓ(γ) ≤ R} hR
ehR

→ 1 (R→ ∞).

Call a subset A of Γ typical if

♯{γ ∈ A | ℓ(γ) ≤ R} hR
ehR

→ 1 (R→ ∞).

Thus a subset of Γ is typical if its growth rate is maximal. The intersection of two
typical subsets of Γ is typical.

A periodic orbit γ ∈ Γ for Φt determines the conjugacy class of a pseudo-Anosov
mapping class. The mapping class group acts on the first integral cohomology
group H1(S,Z) of S, and this action preserves the intersection form ι on H1(S,Z).
This defines a natural surjective [FM12] homomorphism

Ψ : Mod(S) → Sp(2g,Z).

Thus a periodic orbit γ ∈ Γ determines the conjugacy class [A(γ)] of a matrix
A(γ) ∈ Sp(2g,Z).

As a real vector bundle, the Hodge bundle H equals the flat vector bundle ob-
tained as a quotient of T (S) × H1(S,R) by the standard left diagonal action of
the mapping class group Mod(S), where the action on H1(S,R) is via the homo-
morphism Ψ. Thus H, viewed as a real vector bundle, admits a natural symplectic
structure as well as a flat connection preserving the symplectic structure which is
called the Gauss Manin connection. There are other local descriptions of the Gauss
Manin connection taking advantage of the integral structure of the first cohomology
group of S, but these descriptions will not be important for our discussion.

If we denote by Π : H → Mg the canonical projection, then for each component
Q of a stratum, the Gauss Manin connection pulls back to a flat connection on
the pullback bundle Π∗H → Q which is called again the Gauss Manin connection.
Parallel transport for this connection along flow lines of the Teichmüller flow Φt

on Q defines a cocycle over Φt which is called the Kontsevich Zorich cocycle (see
Section 4.4 of [Z99] as well as the introduction of [AV07]).

The SL(2,R)- action on Q preserves a Borel probability measure in the Lebesgue
measure class, the so-called Masur-Veech measure [M82, V86]. The Kontsevich
Zorich cocycle is integrable [AV07] for the action of the Teichmüller flow with
respect to this measure and hence we can apply the Oseledets multiplicative ergodic
theorem [O68] to obtain Lyapunov exponents of the cocycle with respect to the
Masur-Veech measure onQ. As the cocycle is symplectic, the Lyapunov spectrum is
invariant under multiplication with −1. This Lyapunov spectrum is simple [AV07],
and more precisely, the positive Lyapunov exponents listed in decreasing order form
a sequence

1 = κ1 > κ2 > · · · > κg > 0.
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For γ ∈ Γ let α̂i(γ) be the logarithm of the absolute value of the i-th eigenvalue
of the matrix A(γ), ordered in decreasing order, and write αi(γ) = α̂i(γ)/ℓ(γ). As
A(γ) is symplectic, with real leading eigenvalue eℓ(γ), we have

1 = α1(γ) ≥ · · · ≥ αg(γ) ≥ 0 ≥ −αg(γ) ≥ · · · ≥ −α1(γ) = −1.

Since eigenvalues of matrices are invariant under conjugation, this does not depend
on the choice of a representative in the class [A(γ)], and for −g ≤ i ≤ g we obtain
in this way a function αi : Γ → [−1, 1].

The characteristic polynomial of a symplectic matrix A ∈ Sp(2g,Z) is a recipro-
cal polynomial of degree 2g with integral coefficients. Its roots define a number field
k of degree at most 2g over Q which is a quadratic extension of the so-called trace
field of A. The Galois group of k is isomorphic to a subgroup of the semi-direct
product (Z/2Z)g ⋊Sg where Sg is the symmetric group in g variables (see [VV02]
for details). The field k and the Galois group only depend on the conjugacy class
of A.

For γ ∈ Γ let G(γ) be the Galois group of the number field defined by the
conjugacy class [A(γ)]. We show

Theorem 1. (1) For ǫ > 0, the set {γ ∈ Γ | |αi(γ) − κi| < ǫ} (1 ≤ i ≤ g) is
typical.

(2) The set of all γ ∈ Γ such that the trace field of [A(γ)] is totally real, of
degree g over Q, and G(γ) = (Z/2Z)g ⋊Sg is typical.

The proof of Theorem 1 uses a result on the Zariski closure of the image under
the map Ψ of pseudo-Anosov mapping classes obtained from the first return map
of the Teichmüller flow on Q to a small contractible flow box in Q. We state the
result separately as it is of independent interest.

For its precise formulation, recall that the α-limit set of an orbit {Φtx} of the
Teichmüller flow is the set of points y for which there exists a sequence ti → ∞ so
that Φtix → y. Similarly, the ω-limit set is defined to be the set of accumulation
points of the backward orbit t → Φ−tx. A point x ∈ Q is birecurrent if it is
contained in its own α- and ω-limit set.

A component Q of a stratum is an orbifold, and the manifold points are open,
dense and invariant under the action of Φt. If U ⊂ Q is any open contractible set
consisting of manifold points, then the Gauss Manin connection induces a trivial-
ization of the bundle Π∗H → Q over U . With respect to such a trivialization, we
can investigate the subgroup of Sp(2g,Z) which is generated by the return maps to
U of the parallel transport for the Gauss Manin connection over flow lines of the
Teichmüller flow. We prove

Theorem 2. Let Q be a component of a stratum, let q ∈ Q be a birecurrent
manifold point and let U ⊂ Q be a contractible neighborhood of x consisting of
manifold points. Then the sub-semigroup of Sp(2g,Z) which is generated by the
return maps to U of the parallel transports along orbits of the Teichmüller flow is
Zariski dense in Sp(2g,R).
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There is an easy translation of Theorem 2 into the language of Rauzy induction
and the so-called Rauzy-Veech group of Q which yields a solution to a conjecture
of Zorich (Conjecture 5 of [Z99]). However, Rauzy induction plays no role in our
approach, and we leave this translation to other authors.

For hyperelliptic strata, Avila, Matheus and Yoccoz [AMY16] showed that the
Rauzy-Veech group is a subgroup of Sp(2g,Z) of finite index. In [H16] we determine
explicitly the Rauzy Veech group for all components of all strata. An independent
result along this line is due to Gutierrez-Romo [GR17]. In this article we are
interested in affine invariant manifolds which are just the orbit closures of the
action of SL(2,R) [EMM15], and we prove a version of Theorem 2 which is valid
for affine invariant manifolds as well (Theorem 4.6). For components of strata, the
result is less precise than the results in [H16].

Theorem 4.6 can be used to analyze stretch factors of pseudo-Anosov elements
ϕ ∈ Mod(S). Here the stretch factor of ϕ is the unique number λ > 1 such that
there exists a measured foliation ξ on S with ϕ(ξ) = λξ, and it only depends on
the conjugacy class of ϕ. In the case that ϕ fixes a pair of oriented projective
measured foliations, this stretch factor is just the leading eigenvalue for the action
of ϕ on H1(S,R). The second part of Theorem 1 then states that for a typical
pseudo Anosov conjugacy class preserving a pair of oriented projective measured
foliations, the stretch factor is an algebraic integer of degree 2g over Q.

The maximal degree over Q of the stretch factor for arbitrary pseudo-Anosov
elements is known to be 6g − 6. This was claimed by Thurston in [Th88] and was
verified in [St15]. The article [St15] shows more precisely that a number d is the
algebraic degree of the stretch factor of a pseudo-Anosov mapping class if and only
if either d is at most 3g − 3, or d is even and at most 6g − 6.

Counting conjugacy classes of all pseudo-Anosov elements amounts to counting
periodic orbits for the Teichmüller flow acting on a component D of a stratum
in the moduli space of area one quadratic differentials on S. If this component
consists of quadratic differentials which are not squares of holomorphic one-forms
and with k ≥ 1 zeros, then the number of conjugacy classes of translation length
(=logarithmic stretch factor) at most R is asymptotic to e(2g−2+k)R/(2g− 2+ k)R
[H13]. Note that if D consists of quadratic differentials whose zeros are all of
odd order then k is even. As before, we can speak of typical properties for such
conjugacy classes. As an application of Theorem 4.6, we obtain

Corollary. Let D a component of a stratum of quadratic differentials consisting of
differentials with k ≥ 2 zeros of odd order. Then the algebraic degree of the stretch
factor of a pseudo-Anosov conjugacy class defined by a typical periodic orbit in D
equals 2g − 2 + k.

Thus together with the second part of Theorem 1, we obtain for every even
number 2g ≤ d ≤ 6g − 6 countably many conjugacy classes of pseudo-Anosov
elements with stretch factor of algebraic degree d.

By the groundbreaking work of Eskin, Mirzakhani and Mohammadi [EMM15],
affine invariant manifolds in a componentQ of a stratum are precisely the closures of



TYPICAL AND ATYPICAL PROPERTIES OF PERIODIC TEICHMÜLLER GEODESICS 5

orbits for the SL(2,R)-action. Examples of non-trivial orbit closures are arithmetic
Teichmüller curves. They arise from branched covers of the torus, and they are
dense in any component of a stratum of abelian differentials. Other examples
of orbit closures different from entire components of strata can be constructed
using more general branched coverings. A more exotic orbit closure was recently
discovered by McMullen, Mukamel and Wright [MMW16].

Period coordinates for a component Q of a stratum of abelian differentials, with
set Σ ⊂ S of zeros, are obtained by integration of a holomorphic one-form q ∈ Q
over a basis of the relative homology group H1(S,Σ;Z). Thus a tangent vector of
Q defines a point in H1(S,Σ;Z)

∗. The rank of an affine invariant manifold C is
defined by

rk(C) = 1

2
dimC(pTC)

where p is the projection of H1(S,Σ;R)
∗ into H1(S,R)

∗ = H1(S,R) [W15]. The
rank of a component of a stratum equals g, and Teichmüller curves, ie closed orbits
of the SL(2,R)-action, are affine invariant manifolds of rank one and real dimension
three.

We establish a finiteness result for affine invariant submanifolds of rank at least
two which is independently due to Eskin, Filip and Wright [EFW17].

Theorem 3. Let g ≥ 2 and let Q be a component of a stratum in the moduli space
of abelian differentials. For every 2 ≤ ℓ ≤ g, there are only finitely many proper
affine invariant submanifolds in Q of rank ℓ.

As an application, we obtain

Theorem 4. Let Q be any component of a stratum in genus g ≥ 3. Then the set
of all γ ∈ Γ whose SL(2,R)-orbit closure equals Q is typical.

For g = 2, Theorem 4 is false in a very strong sense. Namely, McMullen
[McM03a] showed that in this case, the orbit closure of any periodic orbit is an
affine invariant manifold of rank one. If the trace field k of the periodic orbit is qua-
dratic, then k defines a Hilbert modular surface in the moduli space of principally
polarized abelian varieties which contains the image of the orbit closure under the
Torelli map. Such a Hilbert modular surface is a quotient of H2×H2 by the lattice
SL(2, ok) where ok is an order in k. This insight is the starting point of a complete
classification of orbit closures in genus 2 [Ca04, McM03b].

In higher genus, Apisa [Ap15] classified all orbit closures in hyperelliptic com-
ponents of strata. For other components of strata, a classification of orbit closures
is not available. However, there is substantial recent progress towards a geomet-
ric understanding of orbit closures. In particular, Mirzakhani and Wright [MW16]
showed that all affine invariant manifolds of maximal rank either are components
of strata or are contained in the hyperelliptic locus. We refer to the work [LNW15]
of Lanneau, Nguyen and Wright for an excellent recent overview of what is known
and for a structural result for rank one affine invariant manifolds.

To each Teichmüller curve is associated a trace field which is an algebraic number
field of degree at most g over Q. This trace field coincides with the trace field of



6 URSULA HAMENSTÄDT

every periodic orbit contained in the curve [KS00]. The Teichmüller curve is called
algebraically primitive if the algebraic degree of its trace field equals g.

The stratum H(2) of abelian differentials with a single zero on a surface of
genus 2 contains infinitely many algebraically primitive Teichmüller curves [Ca04,
McM03b]. Recently, Bainbridge, Habegger and Möller [BHM14] showed finiteness
of algebraically primitive Teichmüller curves in any stratum in genus 3. Finiteness
of algebraically primitive Teichmüller curves in strata of differentials with a single
zero for surfaces of prime genus g ≥ 3 was established in [MW15]. Our final result
generalizes this to every stratum in every genus g ≥ 3, with a different proof. A
stronger finiteness result covering Teichmüller curves whose field of definition is of
degree at least three over Q is contained in [EFW17].

Theorem 5. Any component Q of a stratum in genus g ≥ 3 contains only finitely
many algebraically primitive Teichmüller curves.

Plan of the paper and strategy of the proofs: The proofs of the above re-
sults use tools from hyperbolic and non-uniform hyperbolic dynamics, differential
geometry and algebraic groups. We embark from the foundational results of Es-
kin, Mirzakhani and Mohammadi [EMM15] and Filip [F16], but we do not use any
methods developed in these works. We also do not use methods from the theory of
flat surfaces, nor from algebraic geometry, although we apply several recent results
from these areas, notably a foundational insight of Wright [W15] and a structural
result of Möller [Mo06]. Instead we initiate a study of differential geometric prop-
erties of the moduli space of abelian differentials using the geometry of the moduli
space of principally polarized abelian differentials and the Torelli map. We hope
that such ideas together with the use of algebraic geometry will lead to a better
understanding of the Schottky locus in the future.

In Section 2 we introduce the dynamical setup which is used throughout the
article. We summarize the relevant properties of the Hodge bundle as well as some
results from [H13], and we establish the first part of Theorem 1 as a fairly easy
consequence.

In Section 3 we begin the investigation of affine invariant submanifolds. Its first
part is devoted to a study of the so-called absolute period foliation. This foliation has
extensively been studied for components of strata. We will only need some fairly
elementary properties discovered in [McM13] (see also [H15]), and we generalize
these properties to affine invariant manifolds. We also extend some dynamical
results for the Teichmüller flow on strata from [H13] to general affine invariant
manifolds.

Section 4 contains the main algebraic results of this article. We look at the local
monodromoy group of an affine invariant manifold and show that it is Zariski dense
in the symplectic group of rank corresponding to the rank of the manifold. The
proof uses a result of Wright [W15] on flat structures on surfaces defined by abelian
differentials which are contained in an affine invariant manifold (this is the only part
of this work which refers to flat structures defined by abelian differentials), non-
uniform hyperbolicity of the Teichmüller flow as explained in Section 2 and mod
p-reduction for the integral symplectic group Sp(2g,Z). Theorem 2 is obtained as
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a corollary as well as the existence of periodic orbits whose monodromy maps are
semisimple and such that no product of two eigenvalues is an eigenvalue.

Theorem 2 and some aspect of its proof is used in Section 5 together with group
sieving and tools from hyperbolic dynamics to deduce the second part of Theorem
1 and Corollary 1.

In Section 6 we begin with the differential geometric analysis of the moduli space
of abelian differentials. We compare the Chern connection on the Hodge bundle to
the Gauss Manin connection and establish a rigidity result using the results from
Section 4. This then leads to the proof of the first part of Theorem 3 in Section 7.
As a byproduct, we obtain that the Oseledets splitting of the Hodge bundle over a
component of a stratum is not of class C1, however our methods are insufficient to
deduce that this splitting is not continuous.

Section 8 is based on the ideas developed in Section 6, but relies on precise
information on the absolute period foliation. It contains the completion of the
proof of Theorem 3. The proofs of Theorem 4 and Theorem 5 are contained in
Section 9.

The article concludes with an appendix which collects some differential geometric
properties of the moduli space of principally polarized abelian differentials which
are used in Section 6 and Section 8.

Acknowledgement: During the various stages of this work, I obtained generous
help from many collegues. I am particularly grateful to Alex Wright for pointing
out a mistake in an earlier version of this work. Both Matt Bainbridge and Alex
Eskin notified me about parts in an earlier version of the paper which needed
clarification. Yves Benoist provided the proof of Proposition 4.13, and discussions
with Curtis McMullen inspired me to the differential geometric approach in Section
8. Part of this article is based on work which was supported by the National Science
Foundation under Grant No. DMS-1440140 while the author was in residence at
the MSRI in Berkeley, California, in spring 2015.

2. Lyapunov exponents

The goal of this section is to establish some properties of the Kontsevich Zorich
cocycle and use this together with a refined understanding of the dynamics of the
Teichmüller flow established in [H13] to show the first part of Theorem 1.

2.1. The Hodge bundle. In this subsection we introduce the geometric setup
which will be used throughout the remainder of this article.

A point in Siegel upper half-space Dg = Sp(2g,R)/U(g) is a principally polarized
abelian variety of complex dimension g. Here as usual, U(g) denotes the unitary
group of rank g. Let ω =

∑

i dxi ∧ dyi be the standard symplectic form on the
real vector space R2g. A point in Dg can be viewed as a complex structure J on
(R2g, ω) which is compatible with the symplectic structure, ie such that ω(·, J ·) is
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an inner product on R2g. The Siegel upper half-space is a Hermitean symmetric
space, in particular it is a complex manifold, and the symmetric metric is Kähler.

There is a natural rank g complex vector bundle Ṽ → Dg whose fibre over y is just
the complex vector space defining y. This bundle is holomorphic. The polarization
(ie the symplectic structure) and the complex structure define a Hermitean metric

h on Ṽ. The group Sp(2g,R) acts from the left on the bundle Ṽ as a group of
bundle automorphisms preserving the polarization and the complex structure, and
hence this action preserves the Hermitean metric. Thus the bundle Ṽ projects to a
holomorphic Hermitean (orbifold) vector bundle

V → Sp(2g,Z)\Sp(2g,R)/U(g) = Ag.

We refer to the appendix for a more detailed information on this bundle.

Let Mg be the moduli space of closed Riemann surfaces of genus g. The Torelli
map

Ig : Mg → Ag = Sp(2g,Z)\Sp(2g,R)/U(g)

which associates to a Riemann surface its Jacobian is holomorphic. The Hodge
bundle

Π : H → Mg

is the pullback of the holomorphic vector bundle V → Ag by the Torelli map. As
the Torelli map is holomorphic, H is a g-dimensional holomorphic Hermitean vector
bundle on Mg (in the orbifold sense). Its fibre over x ∈ Mg can be identified with
the vector space of holomorphic one-forms on x. The Hermitean inner product on
H is given by

(ω, ζ) =
i

2

∫

ω ∧ ζ.
Here the integration is over the basepoint, which is a Riemann surface. With this
interpretation, the sphere bundle in H for the inner product (, ) is just the moduli
space of area one abelian differentials.

As a real vector bundle, the Hodge bundleH has the following additional descrip-
tion. The action of the mapping class group Mod(S) on the first real cohomology
group H1(S,R) defines the homomorphism Ψ : Mod(S) → Sp(2g,Z). As a real
vector bundle, the Hodge bundle is then the flat orbifold vector bundle

(1) N = Mod(S)\T (S)×H1(S,R) → Mg

for the standard action of Mod(S) on Teichmüller space T (S) and the action on
H1(S,R) via Ψ. This description determines a flat connection on N which is called
the Gauss Manin connection. We use the notation N to emphasize that we consider
a flat real vector bundle. The bundle N has a natural real analytic structure
induced by the complex structure on Mg so that the Gauss Manin connection is
real analytic.

The Hodge bundle H is the real vector bundle N equipped with the following
complex structure. Each point x ∈ Mg determines a complex structure Jx on
H1(S,R). Namely, every cohomology class α ∈ H1(S,R) can be represented by a
unique harmonic one-form for the complex structure x, and this one-form is the
real part of a unique holomorphic one-form ζ on x. The imaginary part of ζ is
a harmonic one-form which represents the cohomology class Jxα. The complex
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structure Jx is compatible with the symplectic structure defined by the intersection
form ι on H1(S,R).

The assignment x → Jx defines a real analytic section J of the endomorphism
bundle N ∗ ⊗N → Mg of N which satisfies J2 = −Id. Thus the flat vector bundle
N ⊗ C → Mg can be decomposed as

N ⊗ C = H⊕H
where the holomorphic bundle H = {α+ iJα | α ∈ N} admits a natural identifica-
tion with the bundle of holomorphic one-forms onMg, ieH is just the Hodge bundle

over Mg. The antiholomorphic bundle H is defined by H = {α− iJα | α ∈ N}.

Denote by H+ ⊂ H the complement of the zero section in the Hodge bundle H.
This is a complex orbifold. The pull-back

Π∗H → H+

to H+ of the Hodge bundle on Mg is a holomorphic vector bundle on H+. As
a real vector bundle, it coincides with the pull-back Π∗N of the flat bundle N .
The pull-back of the Gauss-Manin connection on N is a flat connection on Π∗N
which we call again the Gauss Manin connection. In the sequel we identify the real
vector bundles Π∗N and Π∗H at leisure, using mainly the notation Π∗H. However,
sometimes we are only interested in the flat structure of Π∗N and then we write
Π∗N to avoid confusion.

Let Q+ ⊂ H+ be a component of a stratum of abelian differentials. We use the
notation Q+ to indicate that we do not normalize the area of an abelian differential.
Then Q+ is a complex suborbifold of H+. Period coordinates for Q+ define the
complex structure. Such coordinates are obtained by integration of a closed complex
valued one-form α ∈ Q+ over a basis of the relative homology group of (S,Σ) where
Σ is the set of zeros of a differential in Q+.

The component GL+(2,R) of the identity of the full linear group GL(2,R) acts
on H+ as a group of real analytic transformations, and this action preserves Q+.

2.2. Non-uniform hyperbolic dynamics. Let Q be a component of a stra-
tum of area one abelian differentials on S. Recall from the introduction that the
Teichmüller flow Φt acts on Q preserving a Borel probability measure λ in the
Lebesgue measure class, the so-called Masur-Veech measure. Let k ≥ 1 be the
number of zeros of a differential in Q and let h = 2g − 2 + k be the entropy of Φt

with respect to the measure λ.

The Gauss Manin connection on Π∗N → Q is symplectic, but it is not triv-
ial. More precisely, its monodromy group is a nontrival subgroup of the group
Sp(2g,Z) < Sp(2g,R). Parallel transport for the Gauss Manin connection defines
a lift of the Teichmüller flow Φt to a flow Θt on Π∗N → Q, and the corresponding
cocycle over the Teichmüller flow on Q with values in the flat bundle Π∗N is called
the Kontsevich Zorich cocycle.

The Kontsevich Zorich cocycle is integrable with respect to the Masur Veech
measure λ on Q (see [AV07] for more and for references), and therefore its Lyapunov
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exponents are defined. These exponents measure the asymptotic growth rate of
vectors along orbits of Φt which are generic for λ. Since the Gauss Manin connection
is symplectic, the exponents are invariant under multiplication with −1. Let

1 = κ1 > · · · > κg > 0

be the largest g Lyapunov exponents of the Teichmüller flow on Q. That these
exponents are all positive and pairwise distinct is the main result of [AV07].

Remark 2.1. For more general affine invariant manifolds, the Lyapunov spectrum
of the Kontsevich Zorich cocycle need not be simple. We refer to [Au15] for a
discussion and examples.

Let

Γ ⊂ Q
be the countable collection of all periodic orbits for Φt contained in Q. Denote by
ℓ(γ) the period of γ ∈ Γ. The orbit γ ∈ Γ determines a conjugacy class in Mod(S)
of pseudo-Anosov elements. Let ϕ ∈ Mod(S) be an element in this conjugacy class;
then

A(γ) = Ψ(ϕ) ∈ Sp(2g,Z)

is determined by γ up to conjugation. The matrix A(γ) is Perron Frobenius, with
leading eigenvalue eℓ(γ), and the eigenspace for the eigenvalue eℓ(γ) is spanned by
the real cohomology class which is defined by intersection with the vertical measured
foliation of any point on the cotangent line of the unique ϕ-invariant Teichmüller
geodesic. Namely, this measured foliation µ is orientable by assumption, and hence
it defines a first cohomology class on S by associating to a smooth closed curve α on
S − Σ its vertical length, obtained by integrating the transverse invariant measure
of µ over α. Here as before, Σ denotes the set of zeros of a differential on this
cotangent line.

If we define 1 = α1(γ) > · · · ≥ αg(γ) ≥ 0 to be the quotients by ℓ(γ) of the
logarithms of the g largest absolute values of the eigenvalues of the matrix A(γ),
ordered in decreasing order and counted with multiplicities, then the numbers αi(γ)
only depend on γ but not on any choices made.

Let ǫ > 0. For γ ∈ Γ define χǫ(γ) = 1 if |αi(γ)− κi| < ǫ for every i ∈ {1, . . . , g},
and define χǫ(γ) = 0 otherwise.

For R1 < R2 let Γ(R1, R2) ⊂ Γ be the set of all periodic orbits for Φt of prime
period contained in the interval (R1, R2) (asking for prime period means that we do
not consider multiply covered orbits). For an open or closed subset V of Q denote
by χ(V ) the characteristic function of V and define

H(V,R1, R2) =
∑

γ∈Γ(R1,R2)

∫

γ

χ(V ) and

Hǫ(V,R1, R2) =
∑

γ∈Γ(R1,R2)

∫

γ

χ(V )χǫ(γ).

Clearly we have

Hδ(V,R1, R2) ≤ Hǫ(V,R1, R2) ≤ H(V,R1, R2)
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for all ǫ > δ > 0. Note that H(V,R1, R2) is the measure of V for the Φt-invariant
measure on Q which is the sum of the standard length measures over all periodic
orbits of prime period contained in (R1, R2).

There are some technical difficulties due to nontrivial point stabilizers for the
action of the mapping class group on the Teichmüller space of marked abelian
differentials. To avoid dealing with this issue (although this can be done with some
amount of care) we define the good subset Qgood of Q to be the set of all points

q ∈ Q with the following property. Let Q̃ be a component of the preimage of Q
in the Teichmüller space of marked abelian differentials and let q̃ ∈ Q̃ be a lift of
q; then an element of Mod(S) which fixes q̃ acts as the identity on Q̃ (compare
[H13] for more information on this technical condition). Thus Qgood is precisely
the subset of Q of manifold points. Lemma 4.5 of [H13] shows that the good subset
Qgood of Q is open, dense and Φt-invariant.

Call a point q ∈ Q birecurrent if it is contained in its own α- and ω limit set.
By the Poincaré recurrence theorem, the set of birecurrent points in Q has full
Masur-Veech measure. In Corollary 4.8 of [H13] we showed

Proposition 2.2. For every good birecurrent point q ∈ Qgood, for every neighbor-
hood U of q in Q and for every δ > 0 there is an open neighborhood V ⊂ U of q in
Q and a number t0 > 0 such that

H(V,R− t0, R+ t0)e
−hR ≤ 2t0λ(V )(1 + δ)

for all sufficiently large R > 0.

The proof of Proposition 2.2 is based on a more technical result which will be
used several times in the sequel. For its formulation, we say that a closed curve η in
Qgood defines the conjugacy class of a pseudo-Anosov mapping class ϕ ∈ Mod(S)
if the following holds true. Let η̃ be a lift of η to an arc in the Teichmüller space
of abelian differentials, parametrized one some interval [0, a] ⊂ R; note that such a
lift exists and is unique up to translation by an element of Mod(S) since we require
that η ⊂ Qgood. Then η̃(a) = ψ(η̃(0)) for a mapping class ψ, and we require that
ψ is conjugate to ϕ. As two different lifts of η determine conjugate elements in
Mod(S), this definition does not depend on any choices made.

For an Anosov flow Φt on a closed manifold M , Margulis [Ma04] calculated the
asymptotic growth rate of the number of periodic orbits sorted by their length
using that the flow is mixing with respect to the unique invariant measure µ of
maximal entropy and that moreover each point in M admits a particularly nice
basis of neighborhoods. These neighborhoods are flow boxes with a local product
structure. Using uniform contraction and expansion, respectively, of strong stable
and strong unstable manifolds under the action of Φt, for large R > 0 the measure
of a connected component of the intersection of such a flow box B with the image of
a slightly smaller flow box under the time-R-map ΦR can effectively be estimated.
These estimates are combined with an Anosov closing lemma resulting from expan-
siveness of the flow to relate the asymptotic growth rate of periodic orbits to the
topological entropy of the flow.
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The Teichmüller flow is not Anosov, but its enjoys sufficient non-uniform hy-
perbolicity that a similar statement can be established [H13]. Such a statement is
a bit more complicated than the corresponding statement for Anosov flows, with
all estimates local near birecurrent points, ie the constants depend on the specific
birecurrent point we are interested in. Lemma 2.3 below combines Lemma 4.7 and
Proposition 5.4 of [H13]. In its statement, λ is as before the Masur-Veech measure
on Q.

Lemma 2.3. Let q ∈ Qgood be a good birecurrent point, let δ > 0 and let U
be any neighborhood of q. Then U contains a nested sequence of neighborhoods
Z0 ⊂ Z1 ⊂ Z2 ⊂ V of q, and there are numbers R0 > 0, t0 > 0 with the following
properties.

(a) V is open and contractible, and Zi is closed, with dense interior, and con-
tained in the interior of Zi+1.

(b) λ(Z0) > (1− δ)λ(V ).
(c) The length of a connected subsegment of the intersection with Z1 or Z2 of

an orbit of Φt equals 2t0.
(d) If R > R0 and z ∈ Z1 are such that ΦRz = z and if Ê denotes the connected

component containing z of the intersection ΦRV ∩V , then the Masur Veech
measure of the intersection ΦRZ1 ∩ Z2 ∩ Ê is contained in the interval

[e−hRλ(V )(1− δ), e−hRλ(V )(1 + δ)].

(e) Let z ∈ Z0 and R > R0 be such that ΦRz ∈ Z0. Connect Φ
Rz to z by an arc

in V and let η be the concatenation of the orbit segment ∪0≤t≤RΦ
tz with

this arc. We call η a characteristic curve of the orbit segment ∪t∈[0,R]Φ
tz.

There is a unique periodic orbit γ for Φt of length contained in the interval
[R − t0 − δ,R + t0 + δ] which intersects ΦRZ1 ∩ Z1 ∩ Ê where Ê equals
the connected component containing z of the intersection ΦRV ∩ V . The
closed curve η and the periodic orbit γ define the same conjugacy class in
Mod(S).

Note that in the above statement, we slightly adjusted the choice of the sets Zi

compared to the terminology in [H13] for clarity of exposition. The more refined
construction of a nested chain of sets in [H13] was necessary for a more precise
volume control but is unimportant for the purpose of this article.

We use Lemma 2.3 to show an improved version of Proposition 5.4 of [H13].

Proposition 2.4. For every birecurrent point q ∈ Qgood, for every neighborhood
U of q in Q and for every δ > 0 there is an open neighborhood V ⊂ U of q in Q
and a number t0 > 0 with the properties stated in Lemma 2.3 such that for every
ǫ > 0 we have

lim inf
R→∞

Hǫ(V,R− t0 − δ,R+ t0 + δ)e−hR ≥ 2t0λ(V )(1− δ).

Proof. Let ‖ ‖ be any smooth Riemannian norm on the flat vector bundle N → Q.
Let Θt be the lift of the Teichmüller flow to a flow onN defined by parallel transport
for the Gauss Manin connection. Recall that Θt preserves the symplectic structure
on N , but it may not preserve the norm ‖ ‖.
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For z ∈ Q let Nz be the fibre of N at z. For 1 ≤ i ≤ g and for t > 0 let

ζi(t, z)

be the infimum of the operator norms of the restriction of Θt(z) to a symplectic
subspace of Nz of real dimension 2(g − i+ 1). Define

κi(t, z) =
1

t
log ζi(t, z).

Let ǫ > 0, δ > 0 and let U be a neighborhood of a birecurrent point q ∈ Qgood.
Since the Kontsevich Zorich cocycle is locally constant (or, equivalently, the Gauss
Manin connection is flat), we can find a collection of nested neighborhoods Z0 ⊂
Z1 ⊂ Z2 ⊂ V ⊂ U with the properties in Lemma 2.3 and such that furthermore,
with the notations from part (e) of the lemma, if z ∈ Z0, R > R0 and if ΦRz ∈ Z0

then the periodic orbit γ for Φt determined by a characteristic curve η of the orbit
segment ∪t∈[0,R]Φ

tz satisfies

(2) |κi(R, z)− αi(γ)| ≤ ǫ/2.

Namely, for a sufficiently small contractible neighborhood V of q in Qgood, the
trivialization of N|V defined by the Gauss Manin connection almost preserves the
norm ‖ ‖. Then the estimate (2) holds true if we replace αi(γ) be the i-th absolute
value in decreasing order of an eigenvalue of the symplectic transformation Aη of
Nz which is defined by parallel transport for the Gauss Manin connection along
a characteristic curve η for the orbit segment ∪t∈[0,R]Φ

tz. But by property (e) in
Lemma 2.3, the characteristic curve η defines the same conjugacy class of a pseudo-
Anosov mapping class as γ. This means that the numbers αi(γ) are precisely the
absolute values of the eigenvalues of the transformation Aη. Thus the estimate for
the transformation Aη implies the estimate (2).

As the Teichmüller flow is ergodic for the Masur-Veech measure λ [M82, V86] and
as the Gauss Manin connection preserves the symplectic structure, the Oseledets
multiplicative ergodic theorem [O68] states that for λ-almost every point z ∈ Q,
the numbers κi(R, z) converge as R → ∞ to the i-th positive Lyapunov exponent
κi of the Kontsevich Zorich cocycle. Then there is a number R(ǫ) > R0 and a Borel
subset B of Z0 of measure λ(B) > λ(Z0)(1 − δ) with the following property. Let
u ∈ B and let R > R(ǫ); then |κi(R, u)− κi| ≤ ǫ/2.

Since the Masur-Veech measure is mixing for the Teichmüller flow [M82, V86],
there is a number R1 > R(ǫ) such that

λ(ΦRB ∩B) ≥ λ(B)2(1− δ) ≥ λ(Z0)
2(1− δ)3 ≥ λ(V )2(1− δ)5

for all R ≥ R1. Property (e) in Lemma 2.3 implies that for each R ≥ R1 and

each connected component Ê of V ∩ ΦRV which contains a point in B ∩ ΦRB,
there is a periodic orbit of Φt passing through Z1 ⊂ V . Furthermore, the length
ℓ of this periodic orbit is contained in the interval [R − t0 − δ,R + t0 + δ], and
if z ∈ Z1 is a point on this orbit then by the estimate (d) in Lemma 2.3, the

Masur Veech measure of the intersection ΦℓZ1 ∩Z2 ∩ Ê is contained in the interval
[e−hℓλ(V )(1− δ), e−hℓλ(V )(1 + δ)].
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This implies that the number of components of the intersection ΦRV ∩ V con-
taining points in ΦRB ∩ B is at least eh(R−t0−δ)λ(V )(1− δ)5(1 + δ)−1. Each such
component determines a periodic orbit γ of Φt of length at most R+t0+δ, and it also
determines a component of the intersection of γ with the set Z1. The estimate (2)
together with the choice of the set B yields that each such periodic orbit γ satisfies
χǫ(γ) = 1. Thus by (c) of Lemma 2.3, any component of ΦRV ∩V which contains a
point in ΦRB ∩B contributes at least 2t0 to the value Hǫ(V,R− t0 − δ,R+ t0+ δ).
Together this shows that

Hǫ(V,R− t0 − δ,R+ t0 + δ) ≥ 2t0e
h(R−t0−δ)λ(V )(1− δ)5(1 + δ)−1.

Up to adjusting the constant δ (which was arbitrarily prescribed at the beginning
of this proof), this implies the proposition. We refer to the proof of Proposition 5.4
of [H13] and [Ma04] for more details on this construction. �

As a corollary, we obtain the first part of Theorem 1. As before, κi denotes
the i-th Lyapunov exponent of the Kontsevich Zorich cocycle with respect to the
Masur-Veech measure.

Corollary 2.5. For ǫ > 0, the set {γ ∈ Γ | |αi(γ)− κi| < ǫ} (1 ≤ i ≤ g) is typical.

Proof. The main result of [H13] states the following. As R→ ∞, the measures

µR = e−hR
∑

γ∈Γ,ℓ(γ)≤R

δ(γ)

converge weakly to the Masur-Veech measure on Q. Here δ(γ) denotes the Φt-
invariant length measure on the periodic orbit γ. Furthermore, by the main result
of [EM11, EMR12], there is a compact subset K of Q such that the growth rate of
all periodic orbits which do not intersect K is strictly smaller than h.

The Masur-Veech measure ofQ−Qgood vanishes. As orbits which do not intersect
the compact setK do not contribute towards the asymptotic counting of all periodic
orbits, it follows that periodic orbits γ with χǫ(γ) > 0 are typical if we can show
that for any ǫ > 0, the measures

µR = e−hR
∑

γ∈Γ,ℓ(γ)≤R

χǫ(γ)δ(γ)

converge as R → ∞ weakly to the Lebesgue measure on Qgood (we refer to [H13]
for a comprehensive discussion). However, this is a consequence of Proposition
2.2 and Proposition 2.4. We refer again to [Ma04, H13] for more details on this
construction. �

Remark 2.6. As the results of [H13] equally hold for components of strata of
quadratic differentials, Corollary 2.5 is valid without modification in this case as
well. Even more generally, Corollary 2.5 is valid for the Lyapunov spectrum of
an integrable cocycle for the Teichmüller flow on a component Q of abelian or
quadratic differentials which is defined by parallel transport with respect to a flat
connection on an arbitrary flat bundle over Q.
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3. The local structure of affine invariant manifolds

In this section we begin the investigation of affine invariant manifolds. Our first
goal is to gain some understanding of their local structure. Most of the results in
this section are known to the experts. As we did not find precise references in the
literature, we include a detailed discussion.

An affine invariant manifold C+ in a component Q+ of a stratum of abelian
differentials with fixed number and multiplicities of zeros is the closure in Q+ of an
orbit of the GL+(2,R)-action. Such an affine invariant manifold is complex affine
in period coordinates [EMM15]. In particular, C+ ⊂ Q+ is a complex suborbifold.
Period coordinates determine a projection

p : TC+ → Π∗(H⊕H)|C+ = Π∗N ⊗ C|C+
to absolute periods (see [W14] for a clear exposition). The image p(TC+) is flat, ie
it is invariant under the restriction of the Gauss Manin connection to a connection
on Π∗(H⊕H)|C+

= Π∗N ⊗ C|C+
.

By the main result of [F16], there is a holomorphic subbundle Z of Π∗H|C+
such

that
p(TC+) = Z ⊕ Z.

We call Z the absolute holomorphic tangent bundle of C+. As a consequence, the
bundle p(TC+) is invariant under the complex structure on Π∗N ⊗ C.

As a real vector bundle, Z is isomorphic to p(TC+) ∩ Π∗N|C+. Since Z is
invariant under the compatible complex structure J , p(TC+) ∩ Π∗N is symplectic
[AEM12]. Moreover, Z ⊕ Z ⊂ Π∗N ⊗ C|C+ viewed as the real part of p(TC+) is
flat [EMM15, F16].

Define the rank of the affine invariant manifold C+ as

rk(C+) =
1

2
dimC p(TC+) = dimCZ.

With this definition, components of strata are affine invariant manifolds of rank g.

When we investigate dynamical properties it is as before more convenient to
consider the intersection C of an affine invariant manifold C+ ⊂ H+ with the moduli
space of area one abelian differentials. This intersection C is invariant under the
action of the group SL(2,R) < GL+(2,R). Throughout we always denote such an
affine invariant manifold by C, and we let C+ be its natural extension to H+.

3.1. The absolute period foliation. Every component Q of a stratum in the
bundle of area one abelian differentials which consists of differentials with at least
two zeros admits a foliation AP(Q) whose leaves locally consist of differentials
with the same absolute periods. This foliation is called the absolute period foliation
(we adopt this terminology from [McM13], other authors call it the relative period
foliation). The leaves of this foliation admit a complex affine structure (see e.g.
[McM13]).

If C ⊂ Q is an affine invariant manifold whose complex dimension is strictly
bigger than twice its rank then C intersects the leaves of the absolute period foliation
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of Q nontrivially. This fact alone does not imply that C ∩ AP(Q) is a foliation of
C. The main goal of this subsection is to verify that indeed, this is always the case.

To this end we need some more detailed information on the absolute period
foliation of the component of a stratum Q. Its tangent bundle TAP(Q) has an
explicit description via so-called Schiffer variations [McM13] which we explain now.

Let first ω be an abelian differential with a simple zero p. Then ω defines a
singular euclidean metric on S which has a cone point of cone angle 4π at p. There
are four horizontal separatrices at p for this metric. In a complex coordinate z near
p so that ω = (z/2)dz, the horizontal separatrices are the four rays contained in the
real or the imaginary axis. The restriction of ω to these rays defines an orientation
on the rays. With respect to this orientation, the two rays contained in the real axis
are outgoing from p, while the rays contained in the imaginary axis are incoming.
The Schiffer variation of ω with weight one at p is the tangent at ω of the following
arc of deformations of ω. For small u > 0 cut the surface S open along the initial
subsegment of length 2u of the two separatrices whose orientations point towards
p and refold the resulting four-gon so that the singular point p slides backwards
along the incoming rays in the imaginary axis. We refer to [McM13] and [H15] for
a more detailed description.

If ω has a zero of order n ≥ 2 at p then the Schiffer variation of ω with weight
one at p is defined as follows (see p.1235 of [McM13]). Choose a coordinate z near
p so that ω = (zn/2)dz in this coordinate. This choice of coordinate is unique
up to multiplication with eℓ2πi/(n+1) for some ℓ ≤ n. There are n + 1 horizontal
separatrices at p for the flat metric defined by ω whose orientations point towards
p. For small u > 0 cut the surface S open along the initial subsegments of length
2u of these n + 1 segments. The result is a 2n + 2-gon which we refold as in the
case of a simple zero. The tangent at ω of this arc of deformations of ω is called
the Schiffer variation of ω with weight one at p.

Now let Q be an arbitrary component of a stratum of abelian differentials con-
sisting of differentials with k ≥ 2 zeros. By passing to a finite cover Q̂ of Q we may
assume that the zeros are numbered. For ω ∈ Q̂ let Z(ω) be the set of numbered
zeros of ω. Let moreover V (ω) ∼ Ck be the complex vector space freely generated

by the set Z(ω). Then the tangent space TAP(Q̂) of the absolute period foliation

of Q̂ at ω is naturally isomorphic to the hyperplane in V (ω) of all points whose
coordinates sum up to zero [McM13, H15], ie of points with zero mean.

More explicitly, let a = (a1, . . . , ak) ∈ Rk be any k-tuple of real numbers with
∑

i ai = 0. Then a defines a smooth vector field Xa on Q̂ as follows. For each

ω ∈ Q̂, the value of Xa at ω is the Schiffer variation for the tuple (a1, . . . , ak) of
weight parameters at the numbered zeros of ω. Thus Xa is tangent to the absolute
period foliation. The k − 1-dimensional real subbundle of the tangent bundle of Q̂
spanned by these vector fields is the tangent bundle of the real rel foliation R of Q̂
which is the intersection of the absolute period foliation with the strong unstable
foliation W su of Q̂. Recall that the leaf of the strong unstable foliation through
q ∈ Q̂ locally consists of all differentials with the same horizontal measured foliation
as q. In period coordinates, the local leaf of W su through q is just the set of all
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differentials q′ whose imaginary part defines the same relative cohomology class as
the imaginary part of q, taken relative to the zeros of q (or q′).

Similarly, we define the imaginary rel foliation of Q̂ to be the intersection of the
absolute period foliation with the strong stable foliation W ss of Q̂. The leaf of the
foliation W ss through q locally consists of all differentials with the same vertical
measured foliations as q. Exchanging the roles of the horizontal and the vertical
foliation in the definition of the Schiffer variations identifies the tangent bundle of
the imaginary rel foliation of Q̂ with the purely imaginary weight vectors of zero
mean on the numbered zeros of the differentials in Q̂. As the tangent bundle of the
absolute period foliation is spanned by its intersection with the tangent bundle of
the strong stable and the strong unstable foliation, mapping a real weight vector to
its multiple with i =

√
−1 defines a natural almost complex structure on TAP(Q̂).

This almost complex structure is in fact integrable [McM13] and equals the complex
structure defined by period coordinates.

The Teichmüller flow Φt preserves the absolute period foliation. The following
is Lemma 2.2 of [H15].

Lemma 3.1. dΦtXa = etXa and dΦtXia = e−tXia for every a ∈ Rk with zero
mean.

We observe next that an affine invariant submanifold C of Q intersects the ab-
solute period foliation of Q in a real analytic foliation AP(C) with complex affine
leaves.

For the formulation, denote again by Q̂ a finite cover of Q on which the zeros
of the differentials are numbered. Then any choice of numbering of these zeros
determines an identification of the complex vector space freely generated by the
zeros of one (and hence any) differential in Q̂ with Ck. This yields an identification

of the tangent bundle TAP(Q̂) of the absolute period foliation of Q̂ with the trivial

bundle over Q̂ whose fibre is the hyperplane of Ck of vectors of zero mean.

Let now C ⊂ Q be an affine invariant manifold. As before, C+ denotes the
extension of C to a GL+(2,R)-invariant subspace of H+. We define the deficiency
def(C) as

def(C) = dimC(C+)− 2rk(C+).
Let moreover Ĉ be a lift of C to an affine invariant manifold in Q̂.

The following lemma is a concrete and global version of Remark 1.4.(ii) of [F16].
As before, k ≥ 1 denotes the number of zeros of a differential in Q.

Lemma 3.2. Let C be an affine invariant submanifold of Q of deficiency r =
def(C) > 0 and let Ĉ be a component of the preimage of C in Q̂. Then Ĉ intersects

the real rel foliation (or the imaginary rel foliation) of Q̂ in a real analytic foliation

of real dimension r. Furthermore, if q ∈ Ĉ and if a ∈ Rk is a vector of zero mean
such that Xa(q) ∈ TAP(Ĉ), then Xa(z) ∈ TAP(Ĉ), Xia(z) ∈ TAP(Ĉ) for every

z ∈ Ĉ.
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Proof. Let Ĉ ⊂ Q̂ be an affine invariant manifold of deficiency r = def(C) > 0.

Then for each q ∈ Ĉ there is a vector 0 6= X ∈ TqAP(Q̂) which is tangent to Ĉ.
By invariance of Ĉ and of the absolute period foliation of Q̂ under the Teichmüller
flow, we have dΦt(X) ∈ T Ĉ ∩ TAP(Q̂) for all t.

A vector X ∈ T Ĉ ∩TAP(Q̂) decomposes as X = Xu+Xs where Xu ∈ TAP(Q̂)
is real (and hence tangent to the strong unstable foliation) and Xs is imaginary
(and hence tangent to the strong stable foliation). We claim that we can find a

vector Y ∈ T Ĉ ∩ TAP(Q̂) which either is tangent to the strong unstable or to the
strong stable foliation. To this end we may assume that Xu 6= 0. Since this is an
open condition and since the Teichmüller flow on Ĉ is topologically transitive, we
may furthermore assume that the Φt-orbit of the footpoint q of X is dense in Ĉ.
Then there is a sequence ti → ∞ such that Φti(q) → q.

Choose any smooth norm ‖ ‖ on T Q̂. As Xu 6= 0, Lemma 3.1 and its analog for
imaginary vectors and the inverse t → Φ−t of the Teichmüller flow shows that up
to passing to a subsequence,

dΦti(X)/‖dΦti(X)‖

converges to a vector Y ∈ TqAP(Q̂) which is tangent to the strong unstable fo-

liation. Now T Ĉ is a smooth dΦt-invariant subbundle of the restriction of the
tangent bundle of Q̂ to Ĉ (this is meant in the orbifold sense) and hence we have

Y ∈ T Ĉ ∩ TAP(Q̂) which is what we wanted to show.

Using Lemma 3.1 and density of the Φt-orbit of q, if 0 6= a ∈ Rk is a vector of
zero mean such that Y = Xa(q), then Xa(u) ∈ T Ĉ for all u ∈ Ĉ.

By invariance of TC+ under the complex structure defined by period coordinates,
if r = 1 then

T Ĉ ∩ TAP(Q̂) = RXa ⊕ RXia

and we are done. Otherwise there is a tangent vector Y ∈ T Ĉ ∩ TAP(Q̂) − CXa.
Apply the above argument to Y , perhaps via replacing the Teichmüller flow by its
inverse. In finitely many such steps we conclude that there is a smooth subbundle
B of T Ĉ ∩TAP(Q̂) which is tangent to the strong unstable foliation (ie real for the

real structure), of real rank r, and such that T Ĉ ∩ TAP(Q̂) = CB. Moreover, if

z ∈ Ĉ and if a ∈ Rk is such that Xa(z) ∈ B then Xa(q) ∈ B for every q ∈ Ĉ.

To summarize, there exists an r-dimensional real linear subspace V of the hy-
perplane of Rk of vectors of zero mean, and for each a ∈ V and every q ∈ Ĉ, the
vectors Xa(q), Xia(q) are both tangent to Ĉ at q. Then Ĉ is invariant under the
flows Λt

a generated by the vector fields Xa for a ∈ V . However the flow lines of
these flows define an affine structure on the leaves of the absolute period foliation.
As a consequence, the intersection of Ĉ with a leaf of the absolute period foliation
is locally an affine submanifold of the corresponding leaf of AP(Q̂). This completes
the proof of the lemma. �
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3.2. Dynamical properties of the Teichmüller flow. The goal of this subsec-
tion is to generalize some dynamical properties of the Teichmüller flow on compo-
nents of strata as recorded in Section 2 to affine invariant manifolds.

As before, we will concentrate on the manifold points in an affine invariant
manifold C+. Namely, there is an obvious notion of a good point in C+ extending
the notion of a good point in a component of a stratum. Denote by C+,good the good
subset of C+ and by Cgood the intersection of the good subset with the hypersurface
of area one differentials. The good set is precisely the set of manifold points. The
proof of Lemma 4.5 of [H13] is equally valid for affine invariant manifolds and
shows that the set Cgood ⊂ C of good points is open, dense and invariant under the
Teichmüller flow.

Lemma 3.2 can be viewed as a global version of a local structural result for affine
invariant manifolds which is a consequence of the fact that such an affine invariant
manifold C+ ⊂ H+ is described in period coordinates as the set of solutions of a
system of linear equations [EMM15]. In particular, each manifold point of C+ has
a neighborhood U which is mapped by period coordinates homeomorphically onto
an open subset V of an affine subspace of H1(S,Σ;R)

∗⊗C. Here as before, Σ is the
set of zeros of a differential in the stratum containing C+. The period coordinates
are obtained by integration of a holomorphic one-form over a basis of the relative
homology group H1(S,Σ;Z). The tangent bundle of C+ is invariant under the
complex structure induced from the complex structure on H1(S,Σ;R)

∗ ⊗ C.

Recall the definition of the foliation W ss,W su of a component Q+ of a stratum
of abelian differentials. In period coordinates, a local leaf of the strong unstable
foliation W su through a point w ∈ H1(S,Σ;R)

∗ ⊗ C consists of all differentials
whose imaginary parts coincide with the imaginary part of w, and the local leaf of
the strong stable foliation consists of all differentials whose real parts coincide with
the real part of w. This discussion immediately implies

Corollary 3.3. Let C+ be an affine invariant manifold. Then C+∩W i is a smooth
foliation of C+ (in the orbifold sense) into leaves of real dimension dimC(C+) (i =
ss, su).

Remark 3.4. The dimension formula in Corollary 3.3 stems from the fact that we
look at differentials whose area is not normalized. If we denote as before by C ⊂ C+
the hyperplane of differentials of area one, then the intersection of C with a local
leaf of the strong unstable or strong stable foliation, respectively, is a submanifold
of C of real dimension dimC(C+)− 1.

Corollary 3.3 implies that for every affine invariant manifold C, every point
q ∈ Cgood has a neighborhood with a product structure. We next define a set
with a product structure formally. To this end let again Σ ⊂ S be the set of zeros
of a differential in the component Q of a stratum containing C. An abelian differ-
ential ω ∈ Q then determines an euclidean metric on S − Σ, given by a system of
complex local coordinates z on S−Σ for which ω assumes the form ω = dz. Chart
transitions are translations. The foliations of S into horizontal and vertical line
segments, respectively, are equipped with a transverse invariant measure by inte-
gration of the imaginary or real part, respectively, of ω. These measured foliations
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are oriented, and they are called the horizontal and vertical measured foliation of ω.
Via integration with respect to the transverse measure and respecting orientation,
these foliations define points in H1(S,Σ;R)

∗.

Definition 3.5. A closed contractible set V ⊂ Cgood with dense interior admits

a product structure if for some component Ṽ of V of the preimage of V in the
Teichmüller space of abelian differentials, there are two disjoint compact subsets
D,K of the set of (marked) projective measured foliations on S, viewed as projective
classes of points in H1(S,Σ;R)

∗, with the following properties.

(1) The sets D,K are homeomorphic to closed balls of dimension

m = dimC(C+)− 1.

(2) There is a continuous map

Λ : D ×K → Ṽ

such that for any pair (ξ, ν) ∈ D ×K, the horizontal projective measured
foliation of Λ(ξ, ν) equals ξ, and its vertical projective measured foliation
equals ν.

(3) There is some ǫ > 0 such that

Ṽ = ∪−ǫ≤t≤ǫ ∪(ξ,ν)∈D×K ΦtΛ(ξ, ν).

We say that an open subset U of Cgood has a product structure if its closure has
a product structure in the sense of Definition 3.5. We refer to Section 3.1 of [H13]
for a detailed description of this construction for strata which carries over word by
word to affine invariant manifolds. The requirement (1) in Definition 3.5 is made
for convenience of exposition; we will occasionally talk about a set with a product
structure which only has properties (2) and (3) above.

We use sets with a product structure in Cgood to establish a local version of the so-
called shadowing property for pseudo-orbits for the Teichmüller flow on C. A global
shadowing property is a distinguished feature of hyperbolic flows as discovered
by Bowen [Bw73], and it holds true for the restriction of the Teichmüller flow to
compact invariant sets [H10].

Definition 3.6. Let V = {Vi | i ∈ I} be a non-empty finite or infinite collection
of open contractible subsets of C. For some n > 0, an (n,V)-pseudo-orbit for the
Teichmüller flow Φt on C consists of a sequence of points q0, q1, . . . , qm ∈ C and a
sequence of numbers t0, . . . , tm−1 ∈ [n,∞) with the following property. For every
j ≤ m, there exists some κ(j) ∈ I such that Φtj−1qj−1, qj ∈ Vκ(j). The pseudo-orbit
is called periodic if qm = q0.

The shadowing property [Bw73] for hyperbolic flows on a compact Riemannian
manifold states that for sufficiently large n and sufficiently small ǫ, if Vǫ is the
collection of all open balls of radius ǫ then an (n,Vǫ)-pseudo-orbit is fellow-traveled
by an orbit: For an arbitrarily prescribed number σ > 0, there are n > 0, ǫ > 0 such
that for any (n,Vǫ)-pseudo-orbit η, there exists an orbit segment whose Hausdorff
distance to η is less than σ. This orbit segment can be chosen to be a periodic orbit
in the case that the pseudo-orbit is periodic.
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For the Teichmüller flow on components of strata or, more generally, on affine
invariant manifolds, we can not expect that the shadowing property for all small
balls holds true. However, Lemma 2.3 indicates that there should be a local, non-
uniform version of shadowing. Proposition 3.7 below establishes such a local version
for periodic pseudo-orbits on affine invariant manifolds.

For its formulation, assume that the collection V of open contractible subsets Vi
(i ∈ I) of C is finite and that we are given a periodic (n,V)-pseudo-orbit, specified by
points q0, q1, . . . , qm = q0 ∈ C, numbers t0, . . . , tm−1 ∈ [n,∞) and indices κ(j) ∈ I.
Connect Φtiqi to qi+1 by an arc αi+1 in Vκ(i+1). The concatenation of the orbit
segments connecting qi to Φ

tiqi with the arcs αi+1 defines a closed curve η in C which
we call a characteristic curve of the pseudo-orbit. Note that such a characteristic
curve is by no means unique, but as the sets Vi have been selected a priori, any
other such curve can be obtained by a collection of small deformations in a fixed
contractible set.

Recall from Section 2 that a closed curve in Cgood defines the conjugacy class of
some mapping class.

Proposition 3.7. Let C be an affine invariant manifold, let q1, . . . , qm ∈ Cgood be
good birecurrent points, and for each i let Ui be a neighborhood of qi. Then there
are neighborhoods Yi ⊂ Vi ⊂ Ui of qi, and there is a number R0 > 0 with the
following property. Suppose that y0, . . . , ys−1 is a sequence of points with yi ∈ Yκ(i)
for all i and some κ(i) ∈ {1, . . . ,m}, and that there are numbers ti > R0 such that
Φtiyi ∈ Yκ(i+1) (indices are taken modulo s). Let η be a characteristic curve of
the corresponding periodic pseudo-orbit of Φt. Then there is a periodic orbit γ ⊂ C
for Φt which passes through each of the sets Vκ(i) at times close to

∑

j≤i−1 tj and

which defines the same conjugacy class in Mod(S) as η.

Proof. Using the notation from the proposition, for each i choose a closed con-
tractible neighborhood Vi ⊂ Ui of qi with a product structure. Recall that such a
product structure is determined by a choice Ṽi of a component of the preimage of Vi
in the Teichmüller space of marked abelian differentials, of two closed disjoint sub-
sets Di,Ki of the space of projective measured foliations which are homeomorphic
to closed balls of dimension d = dimC(C+) − 1, an embedding Λi : Di ×Ki → Ṽi
and a number ǫ > 0 with the properties stated in Definition 3.5.

For each j and each z̃ ∈ Ṽj , the product structure determines a closed local strong
unstable manifold W su

loc(z̃) containing z̃ which is homeomorphic to a closed ball of
dimension d. This set consists of all points whose marked horizontal measured
foliation coincides with the marked horizontal measured foliation of z̃, and whose
vertical projective measured foliation is contained in Kj . Similarly we obtain a
local strong stable manifold W ss

loc(z). The sets W i
loc(z̃) (i = ss, su) need not be

contained in Ṽj , but every ỹ ∈W i
loc(z̃) can be moved into Vj with a small translate

along the flow line of Φt through ỹ. We require that the projection into C of the
union of all these local manifolds are contained in a fixed contractible subset of
Uj . For z ∈ Vj we denote by W i

loc(z) the projection to C of the set W i
loc(z̃) for the

preimage z̃ of z in Ṽj ; this does not depend on the choice of the component Ṽj .
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The tangent bundle of the strong stable or strong unstable foliation of the com-
ponent Q can be equipped with the so-called modified Hodge norm which induces a
Hodge distance dH on these leaves. By Theorem 8.12 of [ABEM12], there exists a
number cH > 0 not depending on choices such that for any q ∈ Vj , any q

′ ∈W ss
loc(q)

and all t > 0 we have

(3) dH(Φtq,Φtq′) ≤ cHdH(q, q′).

By the definition of a product structure, for any two points ũ, z̃ ∈ Ṽj there
exists a holonomy homemorphism W su

loc(ũ) → W su
loc(z̃) which maps a point u′ ∈

W su
loc(ũ) to the intersection ofW su

loc(z̃) with the local stable manifold through u′; this
local stable manifold consists of translates under Φt of W ss

loc(u
′). These holonomy

homeomorphisms are smooth and depend smoothly on ũ, z̃. In particular, they are
bilipschitz for the Hodge distance. By decreasing the size of the sets Vj we may
assume that the bilipschitz constants for these holonomy maps is at most 2.

Choose a neighborhood Yj ⊂ Vj of qj with a product structure so that for
z ∈ Yj , the local strong stable and strong unstable manifolds W i

loc,Yj
(z) (i = su, ss)

constructed as above for Yj have the following additional property. There exists a
number r > 0 such that for any z ∈ Yj , the dH -distance between the set W i

loc,Yj
(z)

and the boundary of W i
loc(z) is at least r. We assume furthermore that for each

y ∈ Yj the dH -diameter of the local strong stable or strong unstable manifold
W i

loc,Yj
(y) (i = ss, su) is at most r. Let χ > 2r be an upper bound for the dH -

diameter of the sets W i
loc(Vj).

The growth estimate (3) for the Hodge distance and birecurrence of the points
qi is used in the proof of Proposition 5.4 of [H13] to show the following. Up to
decreasing the size of the sets Yj , for each j, there exists a number Rj > 0 with the
following property. If z ∈ Yj and if T > Rj then

dH(ΦT z,ΦT z′) ≤ r

4χ
dH(z, z′) for all z′ ∈W ss

loc(z) and(4)

dH(Φ−T z,Φ−T z′) ≤ r

4χ
dH(z, z′) for all z′ ∈W su

loc(z).

Let R = maxj Rj , let Y = {Yj} and let η be the characteristic curve of a
periodic (R,Y)-pseudo-orbit. By definition, η is determined by points yj ∈ Yκ(j)
and numbers tj > 0 (j ≥ 0). Parametrize η in such a way that η(

∑

j<s tj +s) = ys.

For simplicity of notation, assume that η(0) ∈ Y1. Let T > 0 be such that η(T ) =
η(0).

Let C̃ be a component of the preimage of C in the Teichmüller space of area one
abelian differentials, contained in the component Q̃ of the preimage of Q. Let η̃ be
a lift of η to C̃ which begins at η̃(0) = ỹ0. Using the notation from the beginning

of this proof, we may assume that ỹ0 ∈ Ṽ1. Then there is an element ϕ ∈ Mod(S)
which maps the endpoint η̃(T ) of η̃ back to ỹ0. As any element of Mod(S) either

stabilizes C̃ or maps C̃ to a disjoint component of the preimage of C, we know that
ϕ ∈ Stab(C̃).
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The proof of Proposition 5.4 of [H13] shows that the mapping class ϕ is pseudo-
Anosov. Our goal is to show that it defines a periodic orbit γ in C with the
properties stated in the proposition. To this end we use the argument in the proof
of Proposition 5.4 of [H13].

Let γ̃ ⊂ Q̃ be the cotangent line of the axis in Teichmüller space of the pseudo-
Anosov element ϕ. The curve γ̃ is a ϕ-invariant orbit of the Teichmüller flow in Q̃
which projects to the periodic orbit γ. The (biinfinite) lift η̃ of the characteristic
curve η is contained in a uniformly bounded neighborhood of γ̃.

The pseudo-Anosov element ϕ acts with north-south dynamics on the Thurston
sphere PML of projective measured foliations of the surface S. This means that
ϕ has precisely two fixed points in PML, one is attracting, the other repelling.
Furthermore, if ũ ∈ γ̃ is arbitrary, then the vertical projective measured foliation ξ
of ũ equals the attracting fixed point of ϕ, and the horizontal projective measured
foliation ν of ũ equals the repelling fixed point of ϕ.

It now suffices to verify that with the above notation, we have ξ ∈ D1, ν ∈ K1.
Namely, every flow line of the Teichmüller flow in the Teichmüller space of abelian
differentials which is defined by a differential with horizonal measured foliation in
D1 and vertical measured foliation in K1 passes through the set Ṽ1 and hence it is
entirely contained in C̃. As the choice of initial point of the periodic pseudo-orbit
is arbitrary among the starting points of the orbit segments which determine the
pseudo-orbit, the periodic orbit then has the properties stated in the proposition.

Using the reasoning on p.524 of [H13], we show that indeed ξ ∈ D1. Consider

the point η̃(t0 +1). It is contained in the same component Ỹκ(1) of the preimage of
Yκ(1) as η̃(t0). Moreover, we have η̃(t0) = Φt0 z̃0.

By the choice of the sets Yj , if we denote by ṽ1 the point on W su
loc(η̃(t0)) which

is the image of η̃(t0 +1) under the holonomy map, then ṽ1 is contained in the local
strong unstable manifold W su

loc,Ỹκ(1)
(η̃(t0)) ⊂ W su

loc(η̃(t1)) by the very definition of

these sets and the properties of the pseudo-orbit. In particular, the Hodge distance
between η̃(t0) and ṽ1 is at most r.

As t0 > R0, the image of the set W su
loc(q̃1) of diameter at most χ under the

map Φ−t0 is of diameter at most r/4. In particular, the Hodge distance between

Φ−t0 ṽ1 and ỹ0 = Φ−t0 η̃(t0) is at most r/4. But ỹ0 ∈ Ỹ1 ⊂ Ṽ1 where Ỹi is the

component of the preimage of Yi contained in Ṽi and hence the Hodge distance
of Φ−t0 ṽ1 to any boundary point of W su

loc(ỹ0) is at least 3r/4. This implies that
Φ−t0W su

loc(η̃(t0)) ⊂ W su
loc(z̃0). In particular, if we denote by Kκ(1) the closed set

of all vertical projective measured foliations for points in the component of the
preimage of Vκ(1) containing ṽ1 then we have Kκ(1) ⊂ K1.

For s ≥ 1 let now K̂κ(s) be the set of all projective measured foliations of all

marked abelian differentials which are contained in the component Ṽκ(s) of the
preimage of Vκ(s) containing η̃(

∑

j<s tj + s). By induction on s, we now show that

for any s ≥ 1, the set K̂κ(s) is entirely contained in K1. So let us assume that
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this holds true for all s < s0. Then K̂κ(s0) ⊂ K̂κ(1) by the induction hypothesis,

however we showed above that K̂κ(1) ⊂ K1. This yields the induction step.

To summarize, for each t > 0 the vertical projective measured foliation of η̃(t)
is contained in the compact set K1. As the attracting fixed point of ϕ is the
limit as t → ∞ of the vertical projective measured foliation of η̃(t) (see the proof
of Proposition 5.4 of [H13] for details), this attracting fixed point of ϕ is indeed
contained in K1.

The same argument applies to the repelling fixed point of ϕ and shows that this
repelling fixed point is contained in D1. In particular, the periodic orbit of Φt

defined by ϕ is contained in C, and it passes through V1. As remarked earlier on,
this suffices for the proof of the proposition. �

Remark 3.8. The proof of Proposition 3.7 follows the strategy from the proof of
Proposition 5.4 of [H13]. However, the argument in [H13] is more involved as it
contains the proof of the most important property used in the above argument:
The non-uniform contraction of the Hodge distance on the strong stable manifold
of a birecurrent point.

Remark 3.9. Let C be an affine invariant manifold, contained in a component Q of
a stratum, and let C̃ be a component of the preimage of C in the Teichmüller space of
abelian differentials. If ϕ ∈ Mod(S) defines a periodic orbit of the Teichmüller flow
on C, then ϕ is a pseudo-Anosov mapping class which is conjugate to an element of
Stab(C̃). However, it is not true that any pseudo-Anosov mapping class in Stab(C̃)
determines a periodic orbit for Φt contained in the closure of C. An example of this
situation is the case that C equals a non-principal stratum of abelian differentials
with at least one simple zero. In this case the preimage of C in the Teichmüller
space of abelian differentials is connected [H16] and hence the stabilizer of this
preimage equais the entire mapping class group. However, the set of periodic orbits
for the Teichmüller flow contained in the closure of C is a proper subset of the set
of all periodic orbits.

The last goal of this subsection is to establish a parametrized version of Propo-
sition 3.7. This is needed to associate to a periodic orbit of Φt on C an element
of Mod(S) rather than a conjugacy class in such a way that adjunction of orbit
segments in a pseudo-orbit corresponds to multiplication of group elements.

To this end let again q ∈ Cgood be a good birecurrent point. Let U ⊂ Cgood be a
neighborhood of q and let Z ⊂ V ⊂ U be a nested family of neighborhoods of q in
Cgood as in Proposition 3.7. We may assume that V is contractible, that Z has a
product structure and that any connected component of the intersection with Z of
an orbit segment of the Teichmüller flow is an arc of fixed length 2t0.

For sufficiently large R0 > 0 let z ∈ Z and let T > R0 be such that ΦT z ∈ Z.
A characteristic curve of this orbit segment determines uniquely a periodic orbit
γ of Φt which intersects V in an arc of length 2t0. There may be more than one
such intersection arc, but there is a unique arc determined by the component of the
intersection V ∩ ΦTV containing the point z similar to the statement of Lemma
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2.3. Choose the midpoint of this intersection arc as a basepoint for γ and as an
initial point for a parametrization of γ.

Let Γ0 be the set of all parametrized periodic orbits of this form for points z ∈ Z
with ΦT z ∈ Z. The map which associates to a component of ΦTV ∩ V containing
points in ΦTZ∩Z the corresponding parametrized periodic orbit in Γ0 is a bijection.

Fix once and for all a lift Ṽ of the contractible set V to a component C̃ of the
preimage of C in the Teichmüller space of abelian differentials. A periodic orbit
γ which intersects V in an arc of length 2t0 lifts to a subarc of a flow line of
the Teichmüller flow on Q̃ with starting point in Ṽ . The endpoints of this arc
are identified by a pseudo-Anosov element Ω(γ) ∈ Mod(S). The conjugacy class of
Ω(γ) is uniquely determined by γ, and the element Ω(γ) only depends on the choice

of Ṽ (and the component of γ ∩ V as explained above). In particular, following
Proposition 3.7, a characteristic curve of a sufficiently long orbit segment beginning
and ending in Z determines an element in Mod(S).

The following proposition is a parametrized version of shadowing as established
in Proposition 3.7.

Proposition 3.10. For γ1, . . . , γm ∈ Γ0, there is a point z ∈ V , and there are
numbers 0 < t1 < · · · < tm with the following properties.

(1) Φtiz ∈ V .
(2) For each i ≤ m, a characteristic curve of the orbit segment {Φtz | ti−1 ≤

t ≤ ti} defines the element Ω(γi) in Mod(S).
(3) A characteristic curve of the orbit segment {Φtz | 0 ≤ t ≤ tm} determines

a parametrized periodic orbit γ for Φt with initial point in V , and Ω(γ) =
Ω(γk) ◦ · · · ◦ Ω(γ1).

Proof. In the case that the arcs γi are contained in a fixed compact invariant subset
K for Φt and that the set V is chosen small in dependence of K, the lemma is
identical with the slight weakening of Theorem 4.3 of [H10]. That the statement
holds true in the form presented here is immediate from Proposition 3.7. �

As a consequence, the subsemigroup 〈Ω(Γ0)〉 of Mod(S) generated by {Ω(γ) |
γ ∈ Γ0} consists of pseudo-Anosov elements whose corresponding periodic orbits
are contained in the affine invariant manifold C and pass through the set V . This
can be viewed as a version of Rauzy-Veech induction as used in [AV07, AMY16]
which is valid for all affine invariant manifolds, in particular for strata of quadratic
differentials, or as a version of symbolic dynamics for the Teichmüller flow on strata
as in [H16].
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4. Local Zariski density for affine invariant manifolds

The goal of this section is to prove a version of Theorem 2 for arbitrary affine
invariant manifolds in the moduli space of abelian differentials of a surface of genus
g ≥ 3. Throughout this section we assume that g ≥ 3, and we use the assumptions
and notations from Section 3.

Let Q+ ⊂ H+ be a component of a stratum and let C+ ⊂ H+ be an affine
invariant manifold. Recall from Section 3 that the image of the projection p :
TC+ → Π∗N ⊗ C|C+ = Π∗(H ⊕H) to absolute periods is a flat subbundle Z ⊕ Z
of Π∗N ⊗ C|C+ which is invariant under both the complex structure defined by
multiplication with i as well as the complex structure of the Hodge bundle. We
denote by 2ℓ ≥ 1 its complex dimension. Then p(TC+) ∩ Π∗N|C+ is a flat bundle
whose fibre is a symplectic subspace of H1(S,R) of real dimension 2ℓ. As before,
by a flat subbundle of the bundle Π∗N|C+ we mean a bundle which is invariant
under the restriction of the Gauss Manin connection.

As a real vector bundle, p(TC)+∩Π∗N|C+ can be identified with the holomorphic
bundle Z and we will use this identification throughout this section for convenience
of notation. In particular, the Gauss Manin connection induces a flat connection
on Z. The monodromy of the restriction of the Gauss Manin connection to Z is
defined as the subgroup of GL(2ℓ,R) which is generated by parallel transport along
loops based at some fixed point p. As the Gauss Manin connection is symplectic,
this monodromy group is a subgroup of Sp(2ℓ,R). Its conjugacy class does not
depend on any choices made.

Definition 4.1. The monodromy group of the affine invariant manifold C+ of rank
ℓ is the subgroup of Sp(2ℓ,R) which is the monodromy of the absolute holomorphic
tangent bundle Z of C+ for the restriction of the Gauss Manin connection.

A geometric description of the monodromy group of C+ is as follows. Observe
first that the monodromy coincides with the monodromy of the restriction of the
bundle Z to the intersection C of C+ with the moduli space of area one abelian

differentials. Let C̃ be a component of the preimage of C in the Teichmüller space
of abelian differentials. The stabilizer Stab(C̃) of C̃ in the mapping class group
maps via the natural surjective projection Ψ : Mod(S) → Sp(2g,Z) to a subgroup
of Sp(2g,Z). There is a linear symplectic subspace H ⊂ R2g of dimension 2ℓ which

is preserved by Ψ(Stab(C̃)). The monodromy group of C then is the projection of

Ψ(Stab(C̃)) to the group of symplectic automorphisms of H. This description is
immediate from the description of the Gauss Manin connection in Section 2.

Example 4.2. If C+ is a Teichmüller curve then the monodromy group of C+ is
just the Veech group of C+. Thus this monodromy group is a lattice in Sp(2,R) =
SL(2,R), in particular it is Zariski dense in SL(2,R).

The monodromy group of a component of a stratum is a subgroup of Sp(2g,Z).

To investigate the monodromy group of arbitrary affine invariant manifolds we
will make use of the fact that an abelian differential on S defines a singular euclidean
metric on S with cone points of cone angle a multiple of 2π at the zeros of the
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differential. This singular euclidean metric is given by a family of charts, defined
on the complement of the zeros of the differential, with chart transitions being
translations. As it is customary in the literature, if we view an abelian differential
on S as a singular euclidean metric, we refer to these data as a translation surface.
We denote such a translation surface by X or by a pair (X,ω) if we like to specify
the abelian differential ω which defines the translation structure. Note that ω can
be read off from the horizontal and vertical measured foliations of the translation
surface.

We begin with evoking a result of Wright [W15]. He introduced the following
two deformations of a translation surface (X,ω).

The horocycle flow is defined as part of the SL(2,R)-action,

ut =

(

1 t
0 1

)

⊂ SL(2,R),

and the vertical stretch is defined by

at =

(

1 0
0 et

)

⊂ GL+(2,R).

For a collection Y of horizontal cylinders on a translation surface X, define the
cylinder shear uYt (X) to be the translation surface obtained by applying the horo-
cycle flow to the cylinders in Y but not to the rest of X. Similarly, the cylinder
stretch aYt (X) is obtained by applying the vertical stretch only to the cylinders in
Y.

The following lemma is a fairly easy consequence of the work of Wright [W15].
For its formulation, a translation surface (X,ω) is called horizontally periodic if it
is a union of horizontal cylinders.

Lemma 4.3. Let C+ be an affine invariant manifold of rank ℓ. Suppose that
(X,ω) ∈ C+ is horizontally periodic, and that there is a decomposition of X into ℓ
collections Y1, . . . ,Yℓ of horizontal cylinders so that for each i, the cylinder shear
uYi

t (X) remains in C+. Then for each i, the moduli of the cylinders in the collection
Yi are rationally dependent.

Proof. For each i, the collection Yi consists of ri ≥ 1 cylinders. By assumption,
the cylinder shear uYi

t (X) remains entirely in C+. A local version of Lemma 3.1 of
[W15], applied to this cylinder shear rather than to the full horocycle flow (note
that the proof of this local version is identical to the proof given in Section 3 of
[W15]) shows the following. If the moduli mi

1, . . . ,m
i
ri of the cylinders in Yi are

not rationally dependent, then there is a proper subcollection V of Yi consisting of
1 ≤ s < ri cylinders so that the cylinder shear uVt for this subcollection is contained
in C+.

But then there are at least ℓ+1 pairwise distinct collections of horizontal cylin-
ders in (X,ω) with the property that the cylinder shear of X for each of these collec-
tions is contained in C+ (see Section 3 of [W15] for details). This violates Theorem
1.10 of [W15] and yields that indeed, for fixed i the moduli mi

j (1 ≤ j ≤ ri) of the
cylinders in Yi are rationally dependent. �
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Define a piecewise affine transformation of a translation surface (X,ω) to be
a continuous self-map F : X → X with the following property. There exists a
decomposition X = ∪iXi into finitely many components with geodesic boundary
for the singular euclidean metric which is preserved by F , and the restriction of
F to each of these components is affine. In contrast to an affine automorphism of
(X,ω), we allow that the restriction of F to some of the components Xi equals
the identity. A cylinder shear of a collection Y of horizontal cylinders with non-
empty complement is such a piecewise affine transformation. If the result of such a
transformation is isometric to (X,ω) then we call the piecewise affine transformation
a piecewise affine automorphism of (X,ω).

A transvection in a rank 2ℓ symplectic vector space (H, ι) is a symplectic auto-
morphism of H which fixes a subspace of H of (real) codimension one pointwise and
has determinant one. Any map of the form x → x + ι(x, z)z for some 0 6= z ∈ H
is a transvection. We call this map a transvection by z. The main consequence of
Lemma 4.3 we are going to use is the following

Corollary 4.4. Let C+ be an affine invariant manifold of rank ℓ ≥ 2. Then there
is a horizontally periodic surface (X,ω) ∈ C+, and there is a free abelian group
of rank ℓ of piecewise affine transformations of (X,ω) which preserves C+. This
group of affine transformations contains a lattice H, ie a subgroup isomorphic to
Zℓ, which acts on (X,ω) as a group of piecewise affine automorphisms consisting
of Dehn-multitwists. The group H acts on H1(S,R) as a group of transvections of
rank ℓ.

Proof. By Theorem 1.10 of [W15] and its proof (more precisely, the results in
Section 8 of [W15]), the affine invariant manifold C+ contains a horizontally periodic
surface (X,ω) which admits a decomposition into ℓ cylinder families Y1, . . . ,Yℓ with
the properties stated in Lemma 4.3. Moreover, for each i and each t the image of
X under the vertical stretch aYi

t (X) is contained in C+. These vertical stretches
commute.

The vertical stretch aYi

t changes the heights of the horizontal cylinders in the
family Yi while keeping their circumferences fixed. The image translation surfaces
are horizontally periodic. Using Lemma 4.3, this implies that we can find t1, . . . , tℓ ∈
R so that the modulus of every horizontal cylinder in

Z = aY1
t1 · · · aYℓ

tℓ
(X)

is rational.

Using again the results in Section 8 of [W15], the affine invariant manifold C+
contains the images of the translation surface Z under the cylinder shears uYi

t (Z)
where by abuse of notation, we denote again by Yi the cylinder family on Z which
is the image of the horizontal cylinder family Yi on (X,ω). As the moduli of all
cylinders in the family Yi are rational, these cylinder shears are eventually periodic.
This means that for each i there exists some number ri > 0 such that for some fixed
marking of the surface Z, the surface uYi

ri (Z) is the image of Z by a Dehn multitwist
Ti about the core curves of the cylinders in Yi.
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Since the core curves of the horizontal cylinders in Z are pairwise disjoint, the
Dehn multitwists Ti commute. Therefore these multitwists generate a free abelian
group of rank ℓ of piecewise affine automorphisms of Z. The multitwist Ti acts as
a transvection on H1(S,R) by a homology class of the form

∑

s b
s
i ζ

s
i where bsi ∈ Z

and where ζsi runs through the homology classes of the waist curves of the oriented
cylinders in the family Yi.

Using the natural pairing between homology and cohomology and pull-back un-
der the projection p : TC+ → Π∗N ⊗ C, the homology class ai =

∑

s b
s
i ζ

s
i induces

a linear functional on the fibre of TC+ at Z. The proposition now follows from
another application of Theorem 1.10 of [W15]: The rank of the subspace of TC∗

+

spanned by these homology classes equals ℓ. But this just means that the subgroup
of Mod(S) generated by the Dehn multitwists Ti (i = 1, . . . , ℓ) acts on H1(S,R) as
a group of transvections of rank ℓ. �

Definition 4.5. An affine invariant manifold C+ of rank ℓ is called locally Zariski
dense if for every open contractible subset U of C+ the subsemigroup of Sp(2ℓ,R)
generated by the monodromy of those periodic orbits for Φt in C+ which pass
through U is Zariski dense in Sp(2ℓ,R).

Here as before, monodromy means monodromy of the restriction of the Gauss
Manin connection to the bundle Z → C+, and this is computed with respect to a
fixed trivialization of Z over U which is parallel for the Gauss Manin connection.
Replacing such a trivialization by another one changes the local monodromy group
by a conjugation.

Our goal is to show

Theorem 4.6. An affine invariant manifold is locally Zariski dense.

We begin with reducing the statement of the theorem to a statement on local
Zariski density near a single point. To this end we consider again the hypersurface
C of C+ of area one abelian differentials. Local Zariski density is defined in the
same way, and it is equivalent to local Zariski density of C+.
Lemma 4.7. An affine invariant manifold C of rank ℓ is locally Zariski dense if and
only if there exists a birecurrent point q ∈ C with the following property. For every
open neighborhood Uof q, the subgroup of Sp(2ℓ,R) generated by the monodromy of
those periodic orbits for Φt in C which pass through U is Zariski dense in Sp(2ℓ,R).

Proof. That the condition stated in the lemma is necessary is obvious from the
definition of local Zariski density. We have to show that it is also sufficient.

To this end let q ∈ C be a birecurrent point as in the statement of the lemma. Let
U be any open subset of C. Let z ∈ U be an arbitrary birecurrent point; such a point
exists since the set of birecurrent points is dense. Write U = Uz. By Proposition
3.7, for every neighborhood Uq of q we can find neighborhoods Yz ⊂ Vz ⊂ Uz of z,
Yq ⊂ Vq ⊂ Uq of q and a number n > 0 with the following property.

The sets Vz, Vq are contractible. Write Y = {Yq, Yz} and let u0, u1, u2, u3 be a
periodic (n,Y)-pseudo-orbit for Φt, with u0 = u3 ∈ Yz and u1, u2 ∈ Yq. There
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are numbers ti > n such that Φtiui ∈ Yκ(i+1) where κ(i + 1) = q for i = 0, 1 and
κ(i+ 1) = z otherwise. Such a pseudo-orbit exists since the Teichmüller flow on C
is topologically transitive.

Let η be a characteristic curve for the pseudo-orbit. Then η determines a
parametrized periodic orbit ν for Φt beginning in Vz, and this orbit passes through
Vq.

Choose a component Ṽz of the preimage of Vz in the Teichmüller space of abelian
differentials. This choice determines a pseudo-Anosov element Ω(ν) ∈ Mod(S). Let

ũ0 be the preimage of u0 in ṽz and let Ṽq be the component of the preimage of Vz
which contains Φt0 ũ0.

Our goal is to show that the subsemigroup of Sp(2ℓ,R) generated by the elements
Ψ(Ω(ν)) for periodic orbits ν of the above form is Zariski dense in Sp(2ℓ,R). To
this end note that if η′ is a characteristic curve of a pseudo-orbit defined by points
u0, u

′
1, u2, u3 = u0, with u

′
1 ∈ Zq, and times t0, t

′
1, t2, and if ν′ is the corresponding

periodic orbit, then the element Ω(ν′)−1 ◦ Ω(ν) of Mod(S) is defined by the lift

beginning in Ṽz of the concatentation (η′)−1 ◦ η (recall that this makes sense since
η, η′ begin at the same point u0 ∈ Zz). Thus Ω(ν′)−1 ◦ Ω(ν) is conjugate to
(gΩ(ξ′))−1 ◦ gΩ(ξ) where Ω(ξ),Ω(ξ′) are the elements of Mod(S) constructed in

the same way from Ṽq and from parametrized periodic orbits of Φt through Vq
determined by the one-segment periodic pseudo-orbits u1 = u2 and u′1 = u′2 and
return times t1, t

′
1 and where g ∈ Mod(S) is defined by the periodic pseudo-orbit

given by the points v0 = u2, v1 = u0, v2 = v0 and times s0 = t2, s1 = t0.

To complete the proof just note that a subsemigroup G of Sp(2ℓ,R) is Zariski
dense if and only if for any h ∈ Sp(2ℓ,R) the conjugate hGh−1 is Zariski dense
if and only if there exists an element g ∈ G such that g−1G ⊂ Sp(2ℓ,R) is not
contained in any proper algebraic subvariety of Sp(2ℓ,R). Thus Zariski density
of the semigroup constructed from Vq implies Zariski density of the semigroup
constructed from Vz. �

Our criterion for Zariski density relies on a result of Hall [Hl08]. For its formu-
lation, for a prime p ≥ 2 let Fp be the field with p elements. Then Sp(2g, Fp) is
a finite group. Therefore for every A ∈ Sp(2g, Fp) there is some ℓ ≥ 1 such that
Aℓ = A−1. As a consequence, if G < Sp(2g, Fp) is any sub-semigroup then for all
x, y ∈ G we have xy−1 ∈ G as well and hence G < Sp(2g, Fp) is a group.

Define a transvection in Sp(2g, Fp) to be a map A ∈ Sp(2g, Fp) which fixes a
subspace of F 2g

p of codimension one and has determinant one (see [Hl08]). Any
map of the form

α→ α+ ι(α, β)β

for some 0 6= β ∈ F 2g
p (here as before, ι is the symplectic form) is a transvection.

We call this map a transvection by β.

Lemma 4.8. Let p ≥ 3 be an odd prime and let G < Sp(2g, Fp) be a subgroup
generated by 2g transvections by the elements of a set E = {e1, . . . , e2g} ⊂ F 2g

p

which spans F 2g
p . Assume that there is no nontrivial partition E = E1 ∪ E2 so that

ι(ei1 , ei2) = 0 for all eij ∈ Ej. Then G = Sp(2g, Fp).
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Proof. For each i write Ai(x) = x+ ι(x, ei)ei. Let G < Sp(2g, Fp) be the subgroup
generated by the transvections A1, . . . , A2g. Since the vectors e1, . . . , e2g span F 2g

p ,
the intersection of the invariant subspaces of the transvections Ai (i ≤ 2g) is trivial.

We claim that the standard representation of G on F 2g
p is irreducible. Namely,

assume to the contrary that there is an invariant proper linear subspace W ⊂ F 2g
p .

Let 0 6= w ∈W ; then there is at least one i so that ι(w, ei) 6= 0. By invariance, we
have w + ι(w, ei)ei ∈W and hence ei ∈W since Fp is a field.

As a consequence, W is spanned by some of the ei, say by ei1 , . . . , eik , and if j
is such that ι(eis , ej) 6= 0 for some s ≤ k then ej ∈ W . However, this implies that
W = F 2g

p by the assumption on the set E = {ei}.

To summarize, G is an irreducible subgroup of Sp(2g, Fp) generated by transvec-
tions (where irreducible means that the standard representation of G on F 2g

p is
irreducible). Furthermore, as p is an odd prime by assumption, the order of each
of these transvections is not divisible by 2. Theorem 3.1 of [Hl08] now yields that
G = Sp(2g, Fp) which is what we wanted to show. �

Remark 4.9. By Proposition 6.5 of [FM12], Lemma 4.8 is not true for p = 2.

We use Lemma 4.8 to establish a criterion for Zariski density of a subgroup
of Sp(2ℓ,R) acting on a 2ℓ-dimensional symplectic subspace of H1(S,R). In its
formulation, we use the standard pairing

〈, 〉 : H1(S,R)×H1(S,R) → R

between homology and cohomology to view a class in H1(S,R) as an element of
H1(S,R)∗. Then a symplectic automorphism of H1(S,R) can be viewed as a sym-
plectic automorphism of H1(S,R)∗. Recall also that the real part Re(q̃) and the
imaginary part Im(q̃) of a marked abelian differential q̃ define a cohomology class
[Re(q̃)], [Im(q̃)] ∈ H1(S,R).

For a symplectic subspace V of H1(S,R) denote by Sp(V ∗) the group of sym-
plectic automorphisms of its dual V ∗. Recall that the image of Mod(S) under the
homomorphism Ψ is the integral symplectic group Sp(2g,Z) and hence reduction
of coefficients modulo a prime p makes sense. By a weighed oriented simple multi-
curve c on S we mean a simple oriented multicurve with integral weights. Such a
weighted oriented multicurve then defines a homology class [c] ∈ H1(S,Z).

Proposition 4.10. Let C be an affine invariant manifold of rank ℓ, let C̃+ be a
component of the preimage of C+ in the Teichmüller space of abelian differentials

and let V = p(T C̃+) ∩H1(S,R). Let c1, . . . , cℓ be pairwise disjoint simple oriented
weighted multicurves whose homology classes [ci] generate a subspace of V ∗ of rank

ℓ. Let U ⊂ C be an open contractible set and assume that there is component Ũ of
the preimage of U in C̃+ such that 〈[Re(z̃)], [ci]〉 > 0 for all z̃ ∈ Ũ , all 1 ≤ i ≤ ℓ.
Let Ω(Γ0) ⊂ Mod(S) be the subsemigroup determined by U and the choice of its

preimage Ũ . Then the subsemigroup of Sp(V ∗) generated by Ψ(Ω(Γ0)) and the
Dehn multitwists Tci about the multicurves ci is Zariski dense in Sp(V ∗). If ℓ = g
then for all but finitely many primes p ≥ 3, this semigroup surjects onto Sp(2g, Fp).
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Proof. Let C be an affine invariant manifold of rank ℓ. Let U ⊂ C be an open
contractible set and let Ũ be a component of the preimage of U in the Teichmüller
space of abelian differentials. Via perhaps decreasing the size of U we may assume
that Ũ has a product structure, defined by disjoint compact balls of dimension
dimC(C+)− 1 in the sphere of projective measured foliations on S. The real parts

Re(z̃) of the differentials z̃ ∈ Ũ project to an open subset of the 2ℓ-dimensional
subspace V of H1(S,R) as defined in the proposition.

Let c1, . . . , cℓ be pairwise disjoint simple oriented weighted multicurves and de-
note by [ci] ∈ H1(S,Z) the homology class of ci. With respect to some fixed

marking of S, used for the choice of the lift Ũ , assume that the cohomology classes
[ci] define a subspace of V ∗ of dimension ℓ. Then the projection which associates

to a marked abelian differential z̃ ∈ Ũ the cohomology class [Re(z̃)] ∈ H1(S,R) of

its real part Re(z̃) maps the open subset Ũ of C̃ to an open subset of the dual L∗

of the ℓ-dimensional linear subspace L of H1(S,R) spanned by the classes [ci].

Let z̃ ∈ Ũ be the lift of a periodic point z ∈ U for Φt; such a point exists
by Proposition 3.7. Let ϕ ∈ Γ0 < Mod(S) be the pseudo-Anosov element which
preserves the Φt-orbit of z̃. Recall the assumption 〈[Re(z̃)], [ci]〉 > 0 for all i.

There is a number κ > 1 such that ϕ∗Re(z̃) = κRe(z̃), moreover κ is the Perron
Frobenius eigenvalue for the action of ϕ on H1(S,R). By invariance of the natural
pairing 〈, 〉 under ϕ, as k → ∞ the homology classes ϕk([ci]) converge up to rescaling
to a class u ∈ H1(S,R) whose contraction with the intersection form ι defines
±[Re(z̃)], viewed as a linear functional on H1(S,R). By this we mean that ι(u, a) =
〈±[Re(z̃)], a〉 for all a ∈ H1(S,R). As a consequence, for sufficiently large j and all
i, ℓ we have ι([ϕjci], [cℓ]) 6= 0.

Let G1 < Mod(S) be the group generated by the pseudo-Anosov mapping class
ϕ as well as the Dehn multitwists Ti = Tci (i ≤ ℓ). Then G1 also contains the
multitwists ϕjTiϕ

−j = Tϕjci . Moreover, ι([ϕjci], [cu]) 6= 0 for all i, u adn sufficiently
large j.

Let A1 < V ∗ be the linear subspace of rank ℓ which is the common fixed set
in V ∗ for the transvections Ψ(Tci) of V ∗. Then A1 is a Lagrangian subspace of
V ∗. Let A2 ⊂ A1 be the common fixed set in V ∗ of the transvections which
are the images under the map Ψ of all multitwists Ti, ϕ

jTuϕ
−j . Then A2 is a

linear subspace of A1, and for large enough j its codimension in A1 is s ≥ 1. Let
i1, . . . , is ⊂ {1, . . . , ℓ} be such that the homology classes [ci], [ϕ

jciu ] ∈ H1(S,Z)
(i ≤ ℓ, u ≤ s) are independent over R and that the common fixed set in V ∗ of the
transvections defined by the corresponding Dehn multitwists is A2.

Using again the fact that the set of real parts of differentials in Ũ define an open
subset of the symplectic vector space V , we can find some ũ ∈ Ũ and some a ∈ A2

so that 〈[Re(ũ)], a〉 > 0. As before, we may assume that ũ is the preimage of a
periodic point of U . Argue now as in the previous paragraph and find a multitwist
β in the subgroup G of Mod(S) generated by Ω(Γ0) so that the common fixed set
of the subgroup generated by Ψ(β) and A2 has codimension at least one in A2.
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Repeat this construction. In at most ℓ steps we find integral homology classes
a1, . . . , aℓ, aℓ+1, . . . , a2ℓ ∈ H1(S,Z) (where for i ≤ ℓ the class ai is the class [ci] of
the weighted multicurve ci) with the following properties.

(1) Let E ⊂ H1(S,R) be the real vector space spanned by the classes ai. Then
the dimension of E equals 2ℓ. Each element a ∈ E defines a linear functional
on H1(S,R), and the restriction to V of this linear subspace of H1(S,R)∗

is non-degenerate. In particular, E is a symplectic subspace of H1(S,R).
(2) ι(aj , ai) 6= 0 for all i ≤ ℓ, j ≥ ℓ+ 1.
(3) For each i the transvection b → b + ι(b, ai)ai is contained in the group

generated by Ψ(Ω(Γ0)) and the Dehn multitwists Ψ(Tci).

By the choice of the homology classes ai, the (2ℓ, 2ℓ)-matrix (ι(ai, aj)) whose
(i, j)-entry is the intersection ι(ai, aj) is integral and of maximal rank. Choose a
prime p ≥ 5 so that each of the entries of (ι(ai, aj)) is prime to p. All but finitely
many primes will do. Then the reduction mod p of the matrix (ι(ai, aj)) is of
maximal rank as well. In particular, if Fp denotes the field with p elements then
the reductions mod p of the homology classes ai span a 2ℓ-dimensional symplectic
subspace Ep of H1(S, Fp).

Let L < Sp(E) be the subgroup of the symplectic group of E which is generated
by the transvections with the elements ai. Its reduction Lp mod p acts on Ep as a
group of symplectic transformations. Lemma 4.8 shows that Lp = Sp(2ℓ, Fp). Note
that property (2) above guarantees that all conditions in Lemma 4.8 are fulfilled.
Then L is a Zariski dense subgroup of the group of symplectic automorphisms of
E [Lu99]. By duality, this just implies that the subgroup G of Sp(V ∗) generated
by Ψ(Tci) and Ψ(Ω(Γ0)) is Zariski dense in Sp(V ∗).

Now assume that ℓ = g. The Dehn twists Tci define elements of Sp(2g,Z). All
elements of Sp(2g,R) constructed in the above way are integral, and the above
proof shows that the subgroup of Sp(2g,Z) constructed in the above way surjects
onto Sp(2g, Fp) for all but finitely many p. �

Now we are ready to show Theorem 4.6.

Proof. Let C+ be an affine invariant manifold of rank ℓ ≥ 1, and let C ⊂ C+ be its
subset of differentials of area one. By Lemma 4.7, it suffices to show the existence
of a single birecurrent point q ∈ C with the following property. For every open
neighborhood U of q, the subgroup of Sp(2ℓ,R) generated by the monodromoy of
those periodic orbits for Φt in C which pass through U is Zariski dense in Sp(2ℓ,R).

Choose a translation surface (X,ω) ∈ C with the properties stated in Corollary
4.4. Denote by H the free abelian group of rank ℓ of Dehn multitwists which is
contained in the group of piecewise affine automorphisms of X whose existence was
shown in Corollary 4.4.

Let C̃ be a component of the preimage of C in the Teichmüller space of abelian
differentials and let ω̃ be a preimage of ω in C̃. The cylinder shears of the translation
surface (X,ω) which are used to construct the Dehn multitwists Ti generating the
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group H preserve the horizontal projective measured foliation of ω, but they deform
the vertical projective measured foliation. These cylinder shears define ℓ smooth
paths ci (i = 1, . . . , ℓ) in C which lift to smooth paths c̃i in C̃ beginning at the

preimage ω̃ of ω in Ũ and connecting ω̃ to Tiω̃.

Fix j ≤ ℓ and write T = Tj and c̃ = c̃j for simplicity. Our first goal is to show

that there is a neighborhood of the entire path c̃ ⊂ C̃ with a product structure.
Recall that such a neighborhood Ã is determined by closed disjoint subsets D,K of
the Thurston sphere PML of projective measured foliations, a number ǫ > 0 and
a map Λ : D ×K → C̃ with the properties stated in Definition 3.5 so that

Ã = ∪−ǫ≤t≤ǫ ∪(µ,ν)∈D×K ΦtΛ(µ, ν).

Although this is an easy consequence of the fact that in period coordinates,
an affine invariant manifold is a solution of a linear system of equations, we give
a detailed proof. Cover the compact path c̃ by finitely many open subsets Wj

(i = 0, . . . , k) of C̃ whose closures Wi have a product structure as described above.
These product structures are defined by compacts balls Di,Ki of dimension m =
dimC(C+)− 1 in the space of projective measured foliations, a map Λi : Di ×Ki →
Wi and a number ǫi > 0. For each i, the set Di is homeomorphic to an m-
dimensional compact ball and coincides with the set of all horizontal projective
measured foliations of all points in Wi. Let int(Di) be the interior of Di. As
the horizontal projective measured foliation of any point on c̃ coincides with the
horizontal projective measured foliation µ of ω̃, for each i the set int(Di) contains
µ.

Up to renumbering, we may assume that Wi ∩Wi+1 ∩ c̃ 6= ∅ for all i. We may
also assume that Wk = T (Wi). We now show by induction on j ≤ k that the set
∩i≤j int(Di) is an open neighborhood of µ in each of the sets Di (i ≤ j).

The case j = 0 is obvious, so assume that the claim is known for some 0 ≤ j < k.
This means that Ej = ∩i≤j int(Di) is an open neighborhood of µ in each of the sets
int(Di) for i ≤ j. Note however that Ej is not an open subset of PML.

Let Ej be the closure of Ej in Dj . As Ej is an open neighborhood of µ in

int(Dj), the subset Zj of Wj with a product structure which is defined by Ej ,Kj

contains an open neighborhood of c̃∩Wj (compare the remark after Definition 3.5).
Thus by the assumption on the sets Wu, the intersection Zj ∩Wj+1 contains an

open neighborhood in C̃ ofWj∩Wj+1∩ c̃. But this is only possible if Ej∩ int(Dj+1)
is an open neighborhood of µ in both Ej , Dj+1. The induction step follows.

Let E ⊂ Ek be a compact neighborhood of µ in Ek which is homeomorphic to a
closed ball of dimension m. Then E is a compact neighborhood of µ in each of the
sets int(Di), and by construction,

c̃ ⊂ ∪i ∪−ǫi≤t≤ǫi Φ
tΛi(E ×Ki).

It now follows from the definition of a subset of C̃ with a product structure that
there is a neighborhood of c̃ in C̃ with a product structure which is of the form
∪−δ≤t≤δΦ

tΛ(E × ∪iKi). Here for a point (ξ, η) ∈ E × Kj , the point Λ(ξ, η) is
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obtained from Λi(ξ, η) by postcomposition with Φσi(ξ,η) where σi : E ×Ki → R is
a continuous function.

Do this construction for all j ≤ ℓ and as well for the maps T−1
j . This results in a

neighborhood W of ω̃ in C̃ with a product structure with the following properties.

(1) There are compact disjoint balls D,K in the sphere PML of projective
measured foliations, there is a number ǫ > 0 and there is a map Λ :
D × K → W with the properties stated in Definition 3.5 such that W =
∪−ǫ≤t≤ǫΦ

tΛ(D ×K).
(2) There exists a compact neighborhood R of µ inD homeomorphic to a closed

ball so that TjR ⊂ D for all j ≤ ℓ.
(3) There is a compact neighborhood B ⊂ K of the vertical projective measured

foliation of ω̃ such that T−1
j (B) ⊂ K for all j.

Let A be the projection to C of the set

Ã = ∪−δ≤t≤δΦ
tΛ(R×B).

Then U is a closed neighborhood of ω. We may adjust U in such a way that U is
contractible; this is always possible in spite of the fact that ω may not be contained
in Cgood. Up to passing to a finite branched cover of C, we then may assume that the
holomorphic tangent bundle Z of C admits a trivialization over U which is parallel
for the Gauss Manin connection. To this end recall that there is a finite branched
cover of Mg which is the quotient of Teichmüller space by a torsion free subgroup
of Mod(S) of finite index.

Since the Teichmüller flow on C is topologically transitive, Proposition 3.7 shows
that there exists a periodic orbit γ for Φt which passes through the interior of A.
A point q ∈ A ∩ γ is birecurrent. We will show that for every neighborhood U of
q, the subgroup of Sp(2ℓ,R) generated by the monodromy of those periodic orbits
which pass through U is Zariski dense in Sp(2ℓ,R).

Note first that it suffices to consider neighborhoods V ⊂ A of q. Thus let
V ⊂ A be such a neighborhood. We may assume that the component Ṽ ⊂ Ã of the
preimage of V in C̃ which is contained in Ã equals the interior of the set

V = ∪−δ′≤t≤δ′Φ
tΛ(R′ ×B′)

for some closed balls R′ ⊂ R, B′ ⊂ B and for a number δ′ < δ. Construct a set Γ0

of periodic orbits passing through V as in Proposition 3.10. Denote by 〈Ω(Γ0)〉 the
corresponding subsemigroup of Mod(S) constructed with the above component Ṽ
of the preimage of V and let G < Mod(S) be the subgroup generated by 〈Ω(Γ0)〉.

Let q̃ be the lift of q to Ã. The preimage of γ passing through q̃ is the cotangent
line of a pseudo-Anosov mapping class ϕ. We claim that for each j there is a number
k > 0 such that for the Dehn multitwist T = Tj , we have ϕk ◦ T ◦ ϕk ∈ Ω(Γ0).
Since G is a group, this implies that Tj ∈ G for all j.

We establish the existence of a number k > 0 with the above property using a
fixed point argument for the action of Mod(S) on the sphere of projective measured
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foliations which is motivated by the argument in the proof of Proposition 5.4 of
[H13] (compare the proof of Proposition 3.7).

Let τ > 0 be the period of γ; then ϕ(q̃) = Φτ (q̃). Write again T = Tj . The
horizontal projective measured foliation ζ ∈ R′ of q̃ is the attracting fixed point for
the action of the map ϕ on the sphere PML of projective measured foliations of
S. As ϕ preserves the component C̃ of the preimage of C containing q̃, by possibly
replacing ϕ by a large power we may assume that ϕ(D) is contained in the interior
of R′, and Tϕ(D) is contained in the interior of D. Recall to this end that Tζ is
contained in the interior of D by assumption. Then ϕ ◦ T ◦ ϕ(D) is contained in
the interior of D.

The proof of Proposition 5.4 of [H13] shows that replacing ϕ by another power
will guarantee that ϕ ◦ T ◦ϕ is pseudo-Anosov. As ϕ ◦ T ◦ϕ(D) is contained in the
interior of D, the attracting fixed point of ϕ ◦ T ◦ ϕ is contained in D.

We show next that the repelling fixed point of ϕ ◦ T ◦ϕ (which is the attracting
fixed point of ϕ−1 ◦ T−1 ◦ ϕ−1) is contained in the interior of B′, possibly after re-
placing ϕ by another power. Namely, the attracting fixed point for ϕ−1 is contained
in interior of B′. Moreover, T−1(B′) ⊂ K by construction. But a large enough
iterate of ϕ−1 maps K into the interior of B′ and hence as before, we conclude that
the repelling fixed point of ϕ◦T ◦ϕ is contained in the interior of B′. In particular,
via replacing ϕ by a sufficiently large power, we may assume that the periodic orbit
of Φt defined by ϕ ◦ T ◦ ϕ passes through V .

As a consequence, the pseudo-Anosov elements ϕ and ϕ ◦ T ◦ϕ are contained in
the group G and hence G contains the multiwist T = Tj . As this argument is valid
for each i ≤ ℓ, we deduce that the group G contains each of the multi-twists Ti.

Theorem 4.6 now follows from Proposition 4.10 if we can make sure that for
each z̃ ∈ Ṽ and each i we have 〈[Re(z̃), [ci]〉 > 0. But by construction, we have
〈[Re(ω̃), [ci]〉 > 0 for all i, and the set D ⊂ PML in the definition of the neighbor-
hood W of ω̃ as constructed above can be chosen to project to an arbitrarily small
neighborhood of the projective class of [Re(ω̃)]. Thus by continuity, we may choose
the set D in such a way that indeed, 〈[Re(ũ), [ci]〉 > 0 for all j and all ũ ∈ W .
Theorem 4.6 now follows from Proposition 4.10. �

For a prime p let Λp : Sp(2g,Z) → Sp(2g, Fp) be reduction mod p. Recall
from the remark before Lemma 4.8 that a semi-subgroup of a finite group G is a
subgroup of G. The proof of Theorem 4.6 together with Proposition 4.10 shows
more precisely the following strenthening of Theorem 2 from the introduction.

Corollary 4.11. Let C be an affine invariant manifold of rank g. Then for all but
finitely many primes p ≥ 3, we have {ΛpΨ(Ω(γ)) | γ ∈ Γ0} = Sp(2g, Fp).

The following corollary is the main consequence of Theorem 2 used in the proof
of Theorem 3.
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Corollary 4.12. Let C be the hyperplane of area one abelian differentials in an
affine invariant manifold C+ of rank ℓ ≥ 1, with absolute holomorphic tangent
bundle Z. Then for every open subset U of C there exists a periodic orbit γ for Φt

through U with the following properties.

(1) The eigenvalues of the matrix A = Ψ(Ω(γ))|Z are real and pairwise distinct.
(2) No product of two eigenvalues of A is an eigenvalue.

Proof. By Proposition 4.6, for every small open contractible subset U of C, the
image under Ψ of the subsemigroup Ψ(Ω(Γ0)) defined as in Proposition 3.10 by
the monodromy along periodic orbits through U is Zariski dense in Sp(2ℓ,R). The
statement of the corollary is now an immediate consequence of the main result of
[Be97]. �

Let again C+ be an affine invariant manifold of rank ℓ ≤ g and let C̃+ be a compo-
nent of the preimage of C+ in the Teichmüller space of marked abelian differentials.
Then the projected tangent space p(TC+) can be identified with the complexifica-
tion of a 2ℓ-dimensional symplectic subspace V of R2g = H1(S,R). The stabilizer
in Sp(2g,R) of this subspace is the subgroup G = Sp(V ) × Sp(V ⊥) of Sp(2g,R)
where V ⊥ is the orthogonal complement of V with respect to the symplectic form.
Thus the group G is isomorphic to Sp(2ℓ,R)× Sp(2(g − ℓ),R).

Let P : G → Sp(V ) = Sp(2ℓ,R) be the natural projection. Proposition 4.5
shows that P (G∩Sp(2g,Z)) is a Zariski dense subgroup of Sp(2ℓ,R). The following
consequence of this fact was communicated to me by Yves Benoist. Although it is
not used in the sequel, we include it here since it relates affine invariant manifolds
to proper subvarieties of Ag.

Proposition 4.13. If P (G ∩ Sp(2g,Z)) is Zariski dense in Sp(2ℓ,R) then either
P (G ∩ Sp(2g,Z)) is a lattice in Sp(2ℓ,R) or dense.

Proof. Using the above notations, write GZ = Sp(2g,Z)∩G and let F < Sp(2ℓ,R)
be the Zariski closure of P (GZ).

The group F is defined over Q. Namely, the set of polynomials P which vanish
on GZ is invariant under the Galois action. As a consequence, either FZ = GZ is a
lattice in F , or there is a nontrivial character on F defined over Q.

Assume for contradiction that there exists a nontrivial character on F defined
over Q. Define

F 0 = ∩{ker(χ) | χ is a character on F defined over Q}.
Then F 0 = F since up to multiplication with an integer, the evaluation on GZ of a
nontrivial character χ defined over Q has to be integral in C∗ which is impossible.
This contradiction yields that FZ is a lattice in F .

The group G1 = Sp(2ℓ,R) is simple, and ∆ = P (GZ) < G1 is Zariski dense.
Then ∆ < G1 either is discrete or dense. We have to show that if ∆ is discrete
then ∆ is a lattice.
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Thus assume that ∆ is discrete. Consider the surjective homomorphism ϕ : F →
G1. Its kernel K is a locally compact group which intersects the lattice FZ in a
discrete subgroup. The exact sequence

1 → K → F → G1 → 1

induces a sequence

K/K ∩ FZ → F/FZ → G1/ϕ(FZ).

Now the Haar measure on F can locally be represented as a product of the Haar
measure on the orbits of K and the quotient Haar measure. If the volume of
G1/ϕ(FZ) is infinite then this shows that the volume of F/FZ has to be infinite.
But FZ is a lattice in F which is a contradiction. �

Remark 4.14. If C is a Teichmüller curve, then the group P (G∩Sp(2g,Z)) is just
the Veech group of C, which is a lattice in SL(2,R). The image under the Torelli
map of the projection to moduli space of such a Teichmüller curve is a Kobayashi
geodesic in Siegel upper half-space.

If C is algebraically primitive, then this Kobayashi geodesic is contained in a
Hilbert modular variety defined by an order o in the trace field of C. This Hilbert
modular variety is the quotient of an embedded copy of H2 × · · · × H2 in Siegel
upper half-space Dg by its stabilizer SL(2, o) in Sp(2g,Z). Moreover, the finite
area Riemann surface Σ obtained by projecting C to the moduli space of curves
admits a modular embedding into SL(2, o)\H2 × · · · ×H2 whose composition with
the first factor projection H2 × · · · ×H2 → H2 is a finite area Riemann surface.

Proposition 4.13 states that we may expect a similar picture for affine invariant
manifolds of higher rank. However, the example in [MMW16] is the only example
of an higher dimensional affine invariant manifold not arising from a construction
related to a branched covering.

5. Galois groups

In this section we consider an arbitrary component Q of a stratum of abelian
differentials. We continue to use the assumptions and notations from Section 2-
4. In view of the results in Section 3, we expect that appropriate versions of the
results in this section should also hold true for arbitrary affine invariant manifolds.
However, the discussion in this section builds on the main result of [H13] which at
the moment has not been completely verified for arbitrary affine invariant manifolds,
and we leave the verification in this case to other authors.

Recall from Proposition 3.10 the construction of the set Γ0 of parametrized
periodic orbits in Qgood defined by suitable small neighborhoods Z0 ⊂ Z1 of a
point q ∈ Qgood which is birecurrent under the Teichmüller flow. By Proposition
3.10, this set determines a subsemigroup Ω(Γ0) of Mod(S) consisting of pseudo-
Anosov elements. By Theorem 4.6, the image of Ω(Γ0) under the homomorphism
Ψ : Mod(S) → Sp(2g,Z) is Zariski dense in Sp(2g,R).

Let p ≥ 3 be an odd prime and let as before Fp be the field with p elements.
Denote by N(p) the cardinality of Sp(2g, Fp). Let Λp : Sp(2g,Z) → Sp(2g, Fp) be
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the reduction modulo p. By Corollary 4.11, for all but finitely many primes p we
have Λp(ΨΩ(Γ0)) = Sp(2g, Fp).

Our next goal is to make this statement quantitative. To this end denote for a
periodic orbit γ for Φt by δγ the Φt-invariant measure supported on γ whose total
mass equals the period ℓ(γ) of γ.

Let k > 0 be the number of zeros of a differential in Q and let h = 2g − 1 + k.
In the sequel, for functions f, g : [0,∞) → R we write f ∼ g if f(t)/g(t) → 1
as t → ∞. Recall that periodic orbits in the set Γ0 are parametrized, so a single
unparametrized periodic orbit may give rise to many different elements of Γ0.

The following proposition holds true for any finite group G of order N with
the property that there is a homomorphism ρ : Mod(S) → G whose restriction to
the semigroup Ω(Γ0) is surjective. It can be viewed as an equidistribution result
for elements in Sp(2g, Fp) defined by periodic orbits of the Teichmüller flow which
parallels the familiar equidistribution of random walks on finite connected graphs.
To this end recall that 2t0 is the length of a connected component of the intersection
with Z1 of an orbit segment of Φt.

Proposition 5.1. Let p ≥ 3 be an odd prime such that Λp(Ψ◦Ω(Γ0)) = Sp(2g, Fp).
Let B ∈ Sp(2g, Fp) be arbitrary and for R > 0 define

B(R,B) = {γ ∈ Γ0 | ℓ(γ) ≤ R,Λp(ΨΩ(γ)) = B}.
Then as R→ ∞,

♯B(R,B) ∼ c
ehRλ(Z0)

2ht0N(p)

independent of B where c > 0 depends on Z0 and can be arranged to be arbitrarily
close to one.

Proof. We show first that there is a number a > 0 such that

♯B(R,B) ≥ aehR

for all B ∈ Sp(2g, Fp) and for all sufficiently large R.

To this end recall from Lemma 2.3 the choice of the nested sets Z0 ⊂ Z1 ⊂
Z2 ⊂ V ⊂ U which are neighborhoods of a birecurrent point q ∈ Qgood as well
as the choice of the numbers R0 > 0, δ > 0. The sets are used to construct the
sub-semigroup Ω(Γ0) of Mod(S). By Proposition 3.10, this semigroup consists
of pseudo-Anosov elements. Furthermore, each ρ ∈ Ω(Γ0) is represented by a
parametrized periodic orbit ζ for Φt which intersects the set Z1 in a segment of
length 2t0 containing ζ(0) as its midpoint. Vice versa, every periodic orbit which
passes through Z0 admits a parametrization so that the corresponding element of
Mod(S) is contained in Ω(Γ0). The subsemigroup Ψ(Ω(Γ0)) of Sp(2g,Z) is mapped
by Λp onto the finite group Sp(2g, Fp).

Since Sp(2g, Fp) is a finite group, there is a number R̂ > R0 with the following
property. Let A ∈ Sp(2g, Fp) be arbitrary. Then there is a parametrized periodic

orbit γ(A) ∈ Γ0 of length ℓ(γ) ≤ R̂ − t0 − δ with ΛpΨ(Ω(γ(A))) = A. Here δ > 0
coincides with the constant which entered in the construction of the set Z0.



40 URSULA HAMENSTÄDT

Let v, w ∈ Z0 be such that ΦT v ∈ Z0,Φ
Uw ∈ Z0 for some T,U > R0. By

Lemma 2.3 and Proposition 3.10, the orbit segments {Φtv | 0 ≤ t ≤ T} and {Φtw |
0 ≤ t ≤ U} determine two parametrized periodic orbits γ1, γ2 for Φt which define
elements ΛpΨ(Ω(γ1)),ΛpΨ(Ω(γ2)) ∈ Sp(2g, Fp). Let γ = γ2◦̂γ1 be the periodic
orbit corresponding to the pseudo-orbit consisting of the two orbit segments {Φtv |
0 ≤ t ≤ T} and {Φtw | 0 ≤ t ≤ U} in this order. The notation γ = γ2◦̂γ1 indicates
that the element Ω(γ) of Mod(S) defined by γ is the product of the elements of
Mod(S) defined by γ1 and γ2. We have

ΛpΨ(Ω(γ2◦̂γ1)) = ΛpΨ(Ω(γ2)) ◦ ΛpΨ(Ω(γ1)).

Fix an element B ∈ Sp(2g, Fp). If A ∈ Sp(2g, Fp) is arbitrary and if ζ ∈ Γ0 is
such that ΛpΨ(Ω(ζ)) = A then ΛpΨ(Ω(γ(BA−1)◦̂ζ)) = B. In particular, by the

choice of R̂ and by Proposition 3.10, for sufficiently large R > R0 the number of
parametrized periodic orbits γ ∈ Γ0 with ℓ(γ) ≤ R+ R̂ and ΛpΨ(Ω(γ)) = B is not
smaller than the number of orbits in Γ0 of length at most R.

For large enough R, the number of orbits in Γ0 of length at most R can be
estimated as in [H13]. Namely, by Proposition 2.2 and the choice of the set Z0, for
the fixed number δ > 0 used in the construction of Z0 and for large R, the volume
of the set Z1 with respect to the sum of the measures supported on periodic orbits
of Φt of length in the interval [R− t0 − δ,R+ t0 + δ] is contained in the interval

[2t0e
hRλ(Z0)(1− δ), 2t0e

hRλ(Z0)(1 + δ)].

Each component of intersection (in the sense explained in Lemma 2.3) of ΦRZ1∩
Z2 containing points in ΦRZ0 ∩Z0 defines an element of Γ0 (recall that Γ0 consists
of parametrized orbits). Up to adjusting the a priori chosen constant δ, the number
of such components is contained in the interval [ehRλ(Z0)(1− δ), ehRλ(Z0)(1 + δ)]
(compare [H13] for details). Thus for large enough R, the number of elements of
Γ0 of length contained in [R − t0 − δ,R + t0 + δ] equals ehRλ(Z0) up to a factor
contained in the interval [1− δ, 1 + δ].

Summation yields that for sufficiently large k, up to a factor contained in the
interval [1− 2δ, 1 + 2δ], the number of elements of Γ0 of length at most 2k(t0 + δ)
equals

k
∑

i=1

eh(2i−1)(t0+δ)λ(Z0) ∼
e(2k+1)h(t0+δ)

e2h(t0+δ) − 1
λ(Z0).

As a consequence, there is a number a > 0 not depending on B such that up to
passing to a subsequence, the measures

he−hR
∑

γ∈B(R,B)

δ[γ(−t0),γ(t0)]

converge to a measure λ̂B on Z1 of total mass contained in [aλ(Z1), λ(Z1)(1 + σ)].
Here δ[γ(−t0),γ(t0)] is the restriction to γ[−t0, t0] of the Φt-invariant measure δγ
supported on γ and σ depends on δ and tends to zero as δ → 0 and t0 → 0.
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It is immediate from the construction that λ̂B is the restriction to Z1 of a Φt-
invariant Borel measure λB on Q which is a weak limit as R→ ∞ of the measures

ν(B,R) = he−hR
∑

γ∈B(R,B)

δγ .

To guarantee the existence of such a limit we may have to pass to a subsequence, and
we will continue passing to suitable subsequences in the course of this proof. Note
again that a single unparametrized periodic orbit γ may appear many times in this
sum. The interpretation is as follows. Let γ be a periodic orbit for Φt of length at
most R. For each connected component I of the intersection γ ∩Z1, check whether
there is a point z ∈ Z0 with Φsz ∈ Z0 for some s ∈ [R − t0 − δ,R + t0 + δ] whose
characteristic curve determines the parametrization γ̂ of γ whose starting point is
the midpoint of I. If such a point z ∈ Z0 exists and if moreover Λp(Ω(γ̂)) = B
where Ω(γ̂) is obtained from this specific parametrization of γ, then we add a copy
of δγ to the measure ν(B,R). Other components of γ∩Z1 do not contribute towards
ν(B,R).

By the main result of [H13] (see also Proposition 2.2), the measure λB is con-
tained in the measure class of the Masur Veech measure λ. Furthermore, for large
R the total mass of the measure

he−hR
∑

γ∈Γ0,ℓ(γ)≤R

δγ =
∑

B

ν(B,R)

is bounded from above and below by a positive constant not depending on R.

Choose a sequence Ri → ∞ such that each of the finitely many measures ν(B,Ri)
(B ∈ Sp(2g, Fp)) converges as i → ∞ to measure λB . Let b > a be the total mass
of

∑

B λB . By ergodicity of λ under the Teichmüller flow, we have λB = c(B)λ for
a number c(B) ∈ [a, b]. Via rescaling all measures with b−1 we may assume that in
fact b = 1.

Our goal is to show that c(B) is independent of B. To this end recall that the
Masur-Veech measure λ is mixing of all orders [M82]. In particular, for numbers
R,S > 0 we have

λ(Z0 ∩ ΦRZ0 ∩ ΦR+S(Z0)) → λ(Z0)
3 (R,S → ∞)

and therefore λB(Z0 ∩ ΦRZ0 ∩ ΦR+SZ0) → c(B)λ(Z0)
3.

For R > 0, T > 0 and B ∈ Sp(2g, Fp) let Γ(R, T,B,Z0) be the set of all
parametrized periodic orbits γ ∈ Γ0 for Φt with the following properties.

(1) There exists some v ∈ Z0 with ΦR+T v ∈ Z0 such that γ is determined
by a characteristic curve of the periodic pseudo-orbit ∪t∈[0,R+T ]Φ

tv. In
particular, the length of γ is contained in the interval [R+ T − t0 − δ,R+
T + t0 + δ].

(2) ΦRv ∈ Z0.
(3) ΛpΨ(Ω(γ)) = B.
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Define similarly a set Γ(R+ T,B,Z0) containing all orbits with properties (1), (2)
and (4) above. It follows from the above discussion (compare [H13]) that

♯Γ(R+ T,B,Z0) ∼ c(B)λ(Z1)e
h(R+T )/2ht0

for large enough R and similarly

♯Γ(R, T,B,Z0) ∼ c(B)λ(Z1)
2eh(R+T )/(2ht0)

2.

Note that in this asymptotic formula, the term λ(Z1) rather than λ(Z0) occurs due
to our renormalization of the limiting measure

∑

B λB .

By definition, each orbit γ ∈ Γ(R, T,B,Z0) can be represented in the form
γ = γ2◦̂γ1 for some γ1 ∈ Γ(R,A,Z0) and some γ2 ∈ Γ(T,BA−1, Z0).

As a consequence, for sufficiently large R > 0, as T → ∞ we observe that

♯Γ(R, T,B,Z0) ≤
∑

A∈Sp(2g,Fp)

♯Γ(T,BA−1, Z0)♯Γ(R,A,Z0)

∼ 1

(2ht0)2
λ(Z1)

2eh(R+T )
∑

A∈Sp(2g,Fp)

c(BA−1)c(A).

Now let B ∈ Sp(2g, Fp) be such that c(B) = max{c(A) | A}. Such an element
exists since Sp(2g, Fp) is finite. Since

∑

A c(BA
−1) =

∑

A c(A) = 1 for all B and
since each of the terms c(A) is positiv, we have

∑

A

c(BA−1)c(A) ≤
∑

A

c(BA−1)c(B) = c(B)

with equality only if c(A) = c(B) for all A. This implies that ♯Γ(R, T,B,Z0) ∼
c(B)λ(Z1)

2eh(R+T )/(2ht0)
2 only if c(A) = c(B) = 1

N(p) for all A. The proposition

follows. �

Now we are ready to complete the proof of the second part of Theorem 1. To this
end recall that the characteristic polynomial of a symplectic matrix A ∈ Sp(2g,Z)
is reciprocal of degree 2g. The roots of such a polynomial come in pairs. The Galois
group of the number field defined by the polynomial is a subgroup of the semidirect
product

(Z/2Z)g ⋊Sg

where Sg is the symmetric group in g elements [VV02], and Sg acts on (Z/2Z)g

by permutation of the factors.

In the sequel we call the Galois group of the field defined by the characteristic
polynomial of a matrix A ∈ Sp(2g,Z) simply the Galois group of A. It only depends
on the conjugacy class of A. We say that the Galois group of A is full if it coincides
with (Z/2Z)g ⋊Sg.

Having a full Galois group makes also sense for an element in Sp(2g, Fp). We
use this as in [R08] as follows.

Let p0 ≥ 5 be large enough so that Ψ(Ω(Γ0)) surjects onto Sp(2g, Fp) for all
p ≥ p0. Let p ≥ p0 and let N(p) be the number of elements of Sp(2g, Fp). By
Proposition 5.1, for large enough R the proportion of the elements γ ∈ Γ0 of length
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at most R which satisfy Λp ◦ Ψ ◦ Ω(γ) = B roughly equals 1
N(p) . On the other

hand, if we denote by Rp(2g) the subset of Sp(2g, Fp) of elements with reducible
characteristic polynomial then

|Rp(2g)|
N(p)

< 1− 1

3g

(see Theorem 6.2 of [R08] for a reference to this classical result of Borel).

We follow the proof of Theorem 6.2 of [R08]. Let p1, . . . , pk be k distinct primes
bigger than p0, and let K = p1 · · · pk. Then the reduction ΛK(A) modulo K of any
element A ∈ Sp(2g,Z) is defined, and we have

ΛK(A) = Λp1
(A)× · · · × Λpk

(A).

Namely, for distinct primes p 6= q ≥ 5, the groups Sp(2g, Fp) and Sp(2g, Fq)
are non-isomorphic simple groups. This implies that if Γ is any group and if ρp :
Γ → Sp(2g, Fp) and ρq : Γ → Sp(2g, Fq) are surjective homomorphisms, then
the homomorphism ρp × ρq : Γ → Sp(2g, Fp) × Sp(2g, Fq) is surjective. Then by
the discussion preceding Proposition 5.1, reduction mod K defines a surjection of
the semigroup ΨΩ(Γ0) onto the finite group Λp1

(ΨΩ(Γ0)) × · · · × Λpk
(ΨΩ(Γ0)) =

ΛK(ΨΩ(Γ0)).

Now if A ∈ Sp(2g,Z) has a reducible characteristic polynomial, then the same
holds true for Λpi

(A) for all i. The discussion in the previous paragraph yields that
the proportion of the number of elements in Sp(2g,K) with this property is at most
(1− 1

3g )
k.

By Proposition 5.1 (taking into account the comment preceding the proposition),
this implies that for large enough R, the proportion of all orbits γ of length at most
R with the property that the Galois group G(γ) of A(γ) is not full is at most of
the order of (1− 1

3g )
k. As k → ∞, we conclude that the Galois group of a typical

periodic orbit for Φt is full. Thus we have shown

Corollary 5.2. Let Q be a component of a stratum of abelian differentials. The
set of all γ ∈ Γ such that the trace field of [A(γ)] is of degree g over Q, and
G(γ) = (Z/2Z)g ⋊Sg is typical.

For a periodic orbit γ ⊂ Q, the trace field of A(γ) can also be read off directly
from a point ω on γ. Namely, let ω̃ be a lift of ω to a marked abelian differential.
The periods of ω̃ define an abelian subgroup Λ = ω̃(H1(S,Z)) of C of rank two.
Let e1, e2 ∈ Λ be two points which are linearly independent over R. Let K be the
smallest subfield of R such that every element of Λ can be written as ae1 + be2,
with a, b ∈ K; then Λ⊗K K = K2. If we write T = A(γ) + A(γ)−1, then the field
K also is the field of the characteristic polynomial of T . We call K the trace field
of γ (see the appendix of [KS00] for more details).

Definition 5.3. The periodic orbit γ is called algebraically primitive if the trace
field K of γ is a totally real number field of degree g over Q, with maximal Galois
group.

The following corollary completes the proof of the second part of Theorem 1.
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Corollary 5.4. Algebraically primitive periodic orbits for Φt are typical.

Proof. Corollary 5.2 shows that for a typical periodic orbit γ, the trace field of
[A(γ)] is of degree g over Q. We have to show that it is also totally real.

As the Lyapunov spectrum of Q is simple [AV07], the first part of Theorem 1
implies that for a typical periodic orbit γ, the absolute values of the eigenvalues
of [A(γ)] are pairwise distinct and hence all eigenvalues are real. Thus by the
discussion following Proposition 5.1, we only have to show that for a symplectic
matrix A ∈ Sp(2g,R) with 2g distinct real eigenvalues ri, r

−1
i (i ≤ g, ri > 1) the

field defined by A + A−1 is totally real. However, this is immediate from the fact
that the roots of the polynomial defining the trace field of A are of the form ri+r

−1
i

where ri are the roots of the characteristic polynomial of A. �

We are left with the proof of Corollary 1 from the introduction. We repeat
its formulation. We require that strata of quadratic differentials are not strata of
squares of holomorphic one-forms. As the counting results for periodic orbits hold
in this setting as well [H13], a typical property is defined for periodic orbits on such
strata as well.

Corollary 5.5. Let D be a component of a stratum of quadratic differentials with
k zeros of odd order. Then for a typical periodic orbit γ ⊂ D, the algebraic degree
of the stretch factor of Ω(γ) ∈ Mod(S) equals 2g − 2 + k.

Proof. Let D be a component of a stratum in the moduli space of area one quadratic
differentials for the surface S with k zeros of odd order. ThenD is a complex orbifold
of dimension 2g − 2 + k.

For each quadratic differential q which is not the square of a holomorphic one-
form, there is a two-sheeted cover S′ of S, ramified at some of the zeros of q, such
that q lifts to an abelian differential on S′. Each singular point of q whose cone
angle is an odd multiple of π, ie which is a zero of odd order, is a ramification point.
Thus if q ∈ D then the covering is ramified at each singular point. By the Riemann
Hurwitz formula, the genus g′ of S′ equals 2g−1+ k

2 , and S is obtained from S′ by
taking the quotient by an involution ι which exchanges the two sheets in the cover.

The component D lifts to an affine invariant manifold C in a component Q of
a stratum in the moduli space of abelian differentials on S′, consisting of abelian
differentials with k zeros.

The involution ι acts on the real cohomology H1(S′,R) of S′. This cohomology
decomposes over R as

H1(S′,R) = E1 ⊕ E2
where E1 is the eigenspace for ι with respect to the eigenvalue 1, and E2 is the
eigenspace for ι with respect to the eigenvalue −1. As the action of ι on the first
cohomology is a symplectic transformation, this decomposition is orthogonal for
the symplectic form on H1(S′,R). The vector space E1 is precisely the pull-back
of H1(S,R) under the branched covering map and hence its dimension equals 2g.
Thus dim(E2) = 2g − 2 + k which coincides with the complex dimension of the
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extension D+ of D to a stratum of quadratic differentials of arbitrary area. In
other words, we have dim(E2) = dimC(C+).

Since ι is an involution, the decomposition H1(S′,R) = E1 ⊕ E2 is defined over
Z[ 12 ]. As a consequence, the stabilizer of this decomposition in the group Sp(2g′,Z)
projects to a lattice in the group of symplectic automorphisms of E2.

In [Th88], Thurston observed that in the case of the principal stratum P+ of
quadratic differentials (ie in the case k = 4g−4), the intersection form on E2 induces
a symplectic structure on the space of measured foliations on S. This implies that
the rank of the affine invariant manifold C+ which is the pull-back of P+ is equal to
half its dimension, ie that the deficiency of C+ vanishes. Then the tangent bundle
of C+ can be identified with E2 ⊗ C. The same also holds true for an arbitrary
component D of a stratum consisting of differentials with only singularities of odd
order. Namely, let Σ be the set of zeros of a differential in D. As the covering
S′ → S is ramified at every point of Σ, the preimage in S′ of any arc in S with
endpoints at two distinct points of Σ is a closed curve which defines an absolute
homology class in S′. Thus period coordinates for D+ lift to coordinates for C+
obtained by integration of a one-form over absolute homology classes.

Via lifting a mapping class of S to the branched cover S′, for each periodic orbit
γ for the Teichmüller flow in D, the monodromy of its lift to C is a Perron Frobenius
automorphism of E2 whose Perron Frobenius eigenvalue is just the stretch factor of
the pseudo-Anosov element of Mod(S) defining γ.

By Theorem 4.6, the affine invariant manifold C is locally Zariski dense. Using
dynamical properties of the Teichmüller flow on D as used before for strata of
abelian differentials and as described in [H13], the proofs of Proposition 5.1 and
Corollary 5.2 apply verbatim and show that the algebraic degree of the stretch
factor of a pseudo-Anosov mapping class defined by a typical periodic orbit for Φt

on D equals 2g − 2 + k. This is what we wanted to show. �

Remark 5.6. The proof of the above result also shows the following. Let D be
any component of a stratum of quadratic differentials consisting of differentials
with k zeros. Then the algebraic degree of the stretch factor of any pseudo-Anosov
mapping class defining a periodic orbit in D is at most 2g − 2 + k.

Furthermore, the degree of the stretch factor for a typical such element can
be explicitly computed: It equals twice the rank of the affine invariant manifold
obtained from the double orientation cover of a differential in D.

These result do not answer however any of the more specific questions on stretch
factors one might ask, and in contrast to the second part of Theorem 1, they do not
imply that the extension of Q by a typical stretch factor is a totally real number
field.
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6. Connections on the Hodge bundle

In this section we begin the investigation of differential geometric properties of an
affine invariant manifold C+, with tangent bundle TC+. We study the Gauss Manin
connection on the projection p(TC+) of TC+ to the flat bundle Π∗N ⊗C|C+. Recall
that p(TC+) is a subbundle of Π∗N ⊗ C|C+ which is invariant under the Gauss
Manin connection [EMM15] and invariant under the complex structure i [F16]. We
establish a first rigidity result geared towards Theorem 3 from the introduction.
We always assume that g ≥ 3.

Recall from Section 4 that the Hodge bundleH on the moduli spaceMg of curves
of genus g is the pull-back under the Torelli map of the Hermitean holomorphic
(orbifold) vector bundle V → Ag (see also the appendix).

The complement H+ of the zero section in H is a complex orbifold. Let as before
Π : H → Mg be the canonical projection. The pull-back Π∗H → H+ to H+ of
the Hodge bundle on Mg is a holomorphic vector bundle on H+. The Hermitean
metric on H which is determined by the complex structure J on H and a natural
symplectic structure (see the appendix for more details) pulls back to a Hermitean
structure on Π∗H. The bundle Π∗H splits as a direct sum

Π∗H = T ⊕ L
of complex vector bundles. Here the fibre of T over a point q ∈ H+ is just the C-span
of q, and the fibre of L is the orthogonal complement of T for the natural Hermitean
metric, or, equivalently, the orthogonal complement of T for the symplectic form.
The complex line bundle T is holomorphic. Via identification of L with the quotient
bundle Π∗H/T , we may assume that L is holomorphic. Its complex dimension
equals g − 1 ≥ 2.

The group GL+(2,R) acts on H+ as a group of real analytic transformations,
and this action pulls back to an action on Π∗H → H+ as a group of real analytic
bundle automorphisms.

Recall that the bundle Π∗H can be equipped with the flat Gauss Manin connec-
tion. We say that a splitting of Π∗H over a subset V of H+ is flat if it is invariant
under parallel transport for the Gauss Manin along paths in V .

Lemma 6.1. The restriction of the bundle L to the orbits of the GL+(2,R)-action
is flat.

Proof. Let q ∈ H+ and let A ⊂ H1(S,R) be the R-linear span of the real and the
imaginary part of q. Then A is locally constant along the orbit GL+(2,R)q and
hence it defines a subbundle of Π∗H → GL+(2,R)q which is locally invariant under
parallel transport for the Gauss-Manin connection.

Now in a neighborhood of q in GL+(2,R)q, the subspace A coincides with the
fibre of the bundle T → H+, viewed as a subbundle of the bundle Π∗N which
is invariant under the complex structure J on N . Therefore the restriction of the
bundle T to any orbit ofGL+(2,R) is flat. As the Gauss Manin connection preserves
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the symplectic structure on Π∗H, the restriction of its symplectic complement L to
an orbit of the action of the group GL+(2,R) is flat as well. �

The foliation F of H+ into the orbits of the GL+(2,R)-action is real analytic
in period coordinates since the action of GL+(2,R) is affine in period coordinates.
Furthermore, its leaves are complex suborbifolds of the complex orbifold H+. In
particular, the tangent bundle TF of F is a real analytic subbundle of the tangent
bundle of the complex orbifold H+.

By Lemma 6.1, the Gauss-Manin connection on the flat bundle Π∗H → H+ re-
stricts to a real analytic flat leafwise connection ∇GM on the bundle L → H+. Here
a leafwise connection is a connection whose covariant derivative is only defined for
vectors tangent to the foliation F . In other words, a leafwise connection associates
to a smoth section of L and a tangent vector X ∈ TF a point in L.

The leafwise connection ∇GM is real analytic, which means that it is defined by a
connection matrix which is real analytic in period coordinates. A connection matrix
is defined as follows (see [GH78] for the use of a connection matrix in algebraic
geometry). Choose a real analytic local basis of the bundle L. The connection
matrix for this local basis is the matrix whose entries are one-forms on F , ie sections
of the bundle TF∗. The evaluation of these one-forms on a tangent vector Y ∈ TF
expresses the covariant derivatives of the local basis of L in direction of Y as a
linear combination of the basis elements. The leafwise connection ∇GM preserves
the symplectic structure of L as this is true for the Gauss Manin connection, but
there is no information on the complex structure.

For each k ≤ g − 2, the leafwise connection ∇GM extends to a flat leafwise
connection on the bundle ∧2k

R
L whose fibre at q is the 2k-th exterior power of the

fibre of L at q, viewed as a real vector space.

The Hermitean holomorphic vector bundle Π∗H → H+ admits a unique Chern
connection ∇ (see e.g. [GH78]). The Chern connection defines parallel transport
of the fibres of Π∗H along smooth curves in H+. This parallel transport preserves
the Hermitean metric. The complex structure J on Π∗H is parallel for ∇. Since
the GL+(2,R)-orbits on H+ are complex suborbifolds of H+ and the restriction
of the bundle T to each leaf of the foliation F can locally be identified with the
pull-back to GL+(2,R) of the tangent bundle of the complex homogeneous space
GL+(2,R)/(R+×S1) = H2, by naturality the restriction of the Chern connection to
the leaves of the foliation F of H+ into the orbits of the GL+(2,R)-action preserves
the decomposition Π∗H = T ⊕ L.

For every k ≤ g − 2, the complex structure J on L can be viewed as a real
vector bundle automorphism of L, and such a bundle automorphism extends to an
automorphism of the real tensor bundle ∧2k

R
L. The restriction of the connection

∇ to the orbits of the GL+(2,R)-action extends to a leafwise connection on ∧2k
R
L

which commutes with this automorphism.

The Hermitean metric which determines the Chern connection is defined by the
polarization and the complex structure. These data are real analytic in period
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coordinates (recall that the Torelli map is holomorphic) and consequently the con-
nection matrix for the Chern connection is real analytic in period coordinates (see
[GH78]).

To summarize, for every k ≤ g − 2, both the Chern connection and the Gauss
Manin connection restrict to leafwise connections of the restriction on the bundle
∧2k
R
L → H+ to the orbits of the GL+(2,R)-action. Furthermore, ∇−∇GM defines

a real analytic tensor field

Ξ ∈ Ω((TF)∗ ⊗ L∗ ⊗ L)
where we denote by Ω((TF)∗ ⊗ L∗ ⊗ L) the vector space of real analytic sections
of the real analytic vector bundle (TF)∗ ⊗ L∗ ⊗ L. For every k ≤ g − 2 we obtain
in the same way a real analytic tensor field

(5) Ξk ∈ Ω((TF)∗ ⊗ (∧2k
R L)∗ ⊗ ∧2k

R L).
If C+ ⊂ H+ is an affine invariant manifold of rank 2 ≤ ℓ ≤ g − 1, with absolute
holomorphic tangent bundle Z, then the restriction of the tensor field Ξℓ−1 to C+
preserves the J-invariant section of ∧2ℓ−2

R
L|C+ which is defined by p(TC+) ∩Π∗N .

This section associates to a point q ∈ C+ the exterior product of a normalized
oriented basis of the (real) 2ℓ− 2-dimensional vector space p(TqC+)∩L. Note that
as p(TC+) ∩ L is equipped with a complex structure, it also is equipped with an
orientation.

The next proposition is a key step towards Theorem 3. For its formulation, de-
note again byQ+ ⊂ H+ a component of a stratum. Recall that the groupGL+(2,R)
acts on the bundle L by parallel transport for the Gauss Manin connection.

Proposition 6.2. Let C+ ⊂ Q+ be an affine invariant manifold of rank ℓ ≥ 3, with
absolute holomorphic tangent bundle Z. Then one of the following two possibilities
holds true.

(1) There are finitely many proper affine invariant submanifolds of C+ which
contain every affine invariant submanifold of C+ of rank 2 ≤ k ≤ ℓ− 1.

(2) Up to passing to a finite cover of C+, the restriction of the bundle L ∩ Z
to an open dense GL+(2,R)-invariant subset of C+ admits a non-trivial
GL+(2,R)-invariant real analytic splitting L∩Z = E1⊕E2 into two complex
subbundles.

Proof. Let Q+ ⊂ H+ be a component of a stratum and let C+ ⊂ Q+ be an affine
invariant manifold of rank ℓ ≥ 3, with absolute holomorphic tangent bundle Z →
C+. An affine invariant manifold is affine in period coordinates and hence it inherits
from Q+ a real analytic structure. As before, there is a splitting

Z = T ⊕ (L ∩ Z).

The bundle

W = L ∩ Z → C+
is holomorphic. It also can be viewed as a real analytic real vector bundle with a
real analytic complex structure J (which is just a real analytic section of the real
analytic endomorphism bundle of W with J2 = −Id).
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For 1 ≤ k ≤ ℓ − 2 denote by Gr(2k) → C+ the fibre bundle whose fibre over
q is the Grassmannian of oriented 2k-dimensional real subspaces of Wq. This is a
real analytic fibre bundle with compact fibre. It contains a real analytic subbun-
dle P(k) → C+ whose fibre over q is the Grassmannian of complex k-dimensional
subspaces of Wq (for the complex structure J).

The real part of the Hermitean metric on W naturally extends to a real analytic
Riemannian metric on ∧2k

R
W. The bundle Gr(2k) can be identified with the set of

pure vectors in the sphere subbundle of ∧2k
R
W for this metric. Namely, an oriented

2k-dimensional real linear subspace E of Wq defines uniquely a pure vector in
∧2k
R
Wq of norm one which is just the exterior product of an orthonormal basis

of E with respect to the inner product on Wq. The points in P(k) correspond
precisely to those pure vectors which are invariant under the extension of J to an
automorphism of ∧2k

R
W.

From now on, we work on the real analytic hyperplane C ⊂ C+ of abelian differ-
entials in C+ of area one, and we replace the action of GL+(2,R) by the action of
SL(2,R). The tangent bundle of the foliation of C into the orbits of the SL(2,R)-
action is naturally trivialized by the following elements of the Lie algebra sl(2,R)
of SL(2,R):

(6)

(

1 0
0 −1

)

,

(

0 1
0 0

)

,

(

0 1
−1 0

)

defining the generator X of the Teichmüller flow, the generator Y of the horocycle
flow, and the generator Z of the circle group of rotations.

Let Bk (or Ck, Dk) be the contraction of the tensor field Ξk defined in equation
(5) with the vector field X (or Y,Z). Since these vector fields are real analytic and
since the bundle W → C is invariant under both the Gauss Manin connection and
the Chern connection, Bk (or Ck, Dk) can be viewed as a real analytic section of
the endomorphism bundle (∧2k

R
(W))∗ ⊗ ∧2k

R
(W) of ∧2k

R
(W).

Define a real analytic subset of P(k) to be the intersection of the zero sets of
a finite or countable number of real analytic functions on P(k). Recall that this
is well defined since P(k) has a natural real analytic structure. We allow such
functions to be constant zero, ie we do not exclude that such a set coincides with
P(k). The real analytic set is proper if it does not coincide with P(k). Then there
is at least one defining function which is not identically zero, and the set is closed
and nowhere dense in P(k). We do not exclude the possibility that the set is empty.

For 1 ≤ k ≤ ℓ− 2 and q ∈ C let

Rk
0(q, 0) ⊂ P(k)q

be the set of all k-dimensional complex linear subspaces L of Wq with BkL = 0 =
CkL = DkL (here we view as before a k-dimensional complex subspace of Wq as
a pure J-invariant vector in ∧2k

R
Wq). By linearity of the contractions Bk, Ck, Dk

of the tensor field Ξk, the set Rk
0(q, 0) can be identified with the set of all J-

invariant pure vectors in ∧k
R
(Wq) which are contained in some (perhaps trivial)

linear subspace of ∧k
R
(Wq). This subspace is the intersection of the kernels of the

endomorphisms Bk, Ck, Dk.
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Since the tensor field Ξk and the vector fieldsX,Y, Z are real analytic, ∪qRk
0(q, 0)

is a real analytic subset of P(k), defined as the common zero set of three real analytic
functions (the function which associates to a pure vector of square norm one the
square norm of its image under the bundle map Bk, Ck, Dk).

Let ρt be the flow on C induced by the action of the circle group of rotations in
SL(2,R), obtained by a standard parametrization as a one-parameter subgroup of
SL(2,R). For t ∈ R define

Rk
0(q, t) ⊂ Gr(2k)q

to be the preimage of Rk
0(ρtq, 0) under parallel transport for the Gauss Manin

connection along the flow line s → ρsq (s ∈ [0, t]). By the previous paragraph and
the fact that parallel transport is real analytic, ∪qRk

0(q, t) is a real analytic subset
of Gr(2k)q and hence the same holds true for

Ak
0 = ∩t∈R(∪qRk

0(q, t)) ⊂ P(k)

(take the intersections for all t ∈ Q).

By construction, the set Ak
0 is invariant under the extension of the circle group

of rotations by parallel transport with respect to the Gauss Manin connection to
the fibres of the bundle Gr(2k) → C. Here as before, we view Gr(2k) as a subset
of the bundle ∧2k

R
(W). It also is invariant under parallel transport with respect

to the Chern connection: Namely, by definition, if Z ∈ Ak
0(q) and if Z(t) is the

parallel transport of Z = Z(0) for the Gauss Manin connection along the orbit
t → ρt(q) through q, then the covariant derivative of the section t → Z(t) for the
Chern connection vanishes since for each t the vector Z(t) is contained in the kernel
of the contraction of the tensor field Ξk with the generator of the flow.

Similarly, for t ∈ R define

Rk
1(q, t) ⊂ Gr(2k)q

to be the preimage of Ak
0(Φ

tq) under parallel transport for the Gauss Manin con-
nection along the flow line s→ Φsq (s ∈ [0, t]) of the Teichmüller flow and let

Ak
1 = ∩t∈R

(

∪qRk
1(q, t)

)

⊂ P(k).

Then Ak
1 is invariant under the extension of the Teichmüller flow by parallel trans-

port both for the Gauss Manin connection and the Chern connection. Furthermore,
if α : [0, 1] → SL(2,R) is any path which is a concatenation of an orbit segment
of the Teichmüller flow, ie an orbit segment of the action of the diagonal group,
with an orbit segment of the circle group of rotations, then for every L ∈ Ak

1 , the
parallel transport of L along α for the Gauss Manin connection coincides with the
parallel transport for the Chern connection, and it consists of points in the kernels
of the tensor fields Bk, Ck, Dk.

Repeat this construction once more with the circle group of rotations to find a
real analytic set

Ak ⊂ P(k).

This set is invariant under the action of SL(2,R) defined by parallel transport
for the Gauss Manin connection. Namely, let α ⊂ SL(2,R) be a path which is a
concatentation of three segments α1◦α2◦α3, where α1, α3 are orbit segments of the
circle group of rotations and α2 is an orbit segment of the diagonal group. Then
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for each z ∈ C and each point L ∈ Ak(z), the parallel transport of L along the path
t → zα(t) for the Gauss-Manin connection coincides with the parallel transport of
L for the Chern connection, and it consists of points contained in Ak. In particular,
this parallel transport consists of points whose contractions with Bk, Ck, Dk vanish.

Now using the Cartan decomposition of SL(2,R), each point on zSL(2,R) is
the endpoint of a path of the above form beginning at z. As the restriction of
∇GM to the orbits of the action of SL(2,R) is flat, this implies the following. If
z ∈ C and if L ∈ Ak(z), then the image of L under parallel transport for the Gauss
Manin connection along the SL(2,R)-orbit zSL(2,R) defines a section of the bundle
∧k
R
(W)|zSL(2,R) which is parallel for the Chern connection and contained in Ak.

If D ⊂ C is a proper affine invariant manifold of rank 2 ≤ k + 1 < ℓ, then it
follows from the discussion preceding this proof (see [F16]) that for every q ∈ D the
projected tangent space p(TqD) defines a point in Ak(q) ⊂ P(k)q. In particular,
we have Ak 6= ∅.

Let π : P(k) → C be the natural projection and let

M(k) = π(Ak).

The fibres of π are compact and hence π is closed. Therefore M(k) is a closed
SL(2,R)-invariant subset of C which contains all affine invariant submanifolds of C
of rank k + 1.

There are now two possibilities. In the first case, the setM(k) is nowhere dense in
C. Theorem 2.2 of [EMM15] then shows that M(k) is a finite union of proper affine
invariant submanifolds of C. By construction, the union of these affine invariant
submanifolds contains each affine invariant submanifold of C of rank k + 1. Thus
the first possibility in the proposition is fulfilled for affine invariant manifolds of
rank k + 1.

It now suffices to show the following. If there is some k ≤ ℓ− 2 such that the set
M(k) contains an open subset of C, then there is a splitting of the bundle W over
an open dense invariant subset of a finite cover of C as predicted in case (2) of the
proposition.

Thus assume that the set M =M(k) = π(Ak) contains an open subset of C. By
invariance and topological transitivity of the action of SL(2,R) on C [EMM15], M
contains an open dense invariant set. On the other hand, M is closed and hence we
haveM = C. This is equivalent to stating that for every q ∈ C the setAk(q) ⊂ P(k)q
is non-empty. In particular, for every q ∈ C there is a line in ∧2k

R
(Wq) spanned by a

pure vector L which is an eigenvector for the extension of the complex structure J
and which is contained in the kernel of Bk, Ck, Dk. Moreover, the same holds true
for the parallel transport of L with respect to the Gauss Manin connection along
the orbits of the SL(2,R)-action (compare the above discussion).

With respect to a real analytic local trivialization of the bundle P(k) over an
open set V ⊂ C, the set Ak is of the form (q,Ak(q)) where Ak(q) is a real analytic
subset of the compact projective variety P(k)q of k-dimensional complex linear
subspaces of Wq depending in a real analytic fashion on q. Even more is true:
Ak(q) can be identified with the space of all J-invariant pure vectors which are
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contained in some J-invariant linear subspace Rq of ∧2k
R
(Wq) of positive dimension

which depends in a real analytic fashion on q. The subspaces Rq are equivariant
with respect to the action of SL(2,R) by parallel transport for the Gauss Manin
connection. Thus the set of all q ∈ C so that the dimension of Rq is minimal is an
open SL(2,R)-invariant subset V of C.

We claim that for q ∈ V , the set Ak(q) consists of only finitely many points.
To this end choose a periodic orbit γ ⊂ V for the Teichmüller flow so that for
q ∈ γ, the restriction B to R2ℓ = Zq of the transformation Ψ(Ω(γ)) ∈ Sp(2ℓ,R)
has 2ℓ distinct real eigenvalues (the notations are as in Section 3). Such an orbit
exists by Corollary 4.12. The linear map B is the return map for parallel transport
of Z along γ with respect to the Gauss Manin connection, and it preserves the
decomposition Zq = Tq ⊕Wq.

We are looking for k-dimensional complex linear subspaces L of Wq with the
property that BjL is complex for all j ∈ Z. Now the linear map B preserves the
symplectic form on Wq, and the complex structure and the symplectic structure
define an inner product 〈, 〉 on Wq and hence on ∧2k

R
(Wq). Thus the set Ak(q)

consists of pure vectors Y ∈ ∧2k
R
(Wq) whose norms are preserved by the symplectic

linear map B.

As the eigenvalues of B are all real, nonzero and of multiplicity one, the eigen-
values for the action of B on ∧2k

R
(Wq) are all real as well. Each such eigenvalue τ is

the product of 2k eigenvalues of the linear map B. The corresponding eigenspace is
spanned by all pure vectors which are the exterior product of a basis of a 2k-tuple
of eigenspaces for B such that the product of the corresponding eigenvalues equals
τ . In particular, the action of B on ∧2k

R
(Wq) is diagonalizable over R. A vector

Y ∈ ∧2k
R
(Wq) whose norm is preserved by the action of B is an eigenvector for the

eigenvalue ±1.

Since the complex structure defines an orientation, a point in Ak(q) is a 2k-
dimensional linear subspace of Wq which corresponds to a J-invariant pure eigen-
vector of B (acting on ∧2k

R
(Wq)) for the eigenvalue one. In particular, such a linear

subspace is invariant under the map B acting on Wq.

A B-invariant linear subspace of Wq is a direct sum of subspaces of eigenspaces.
As all eigenvalues are simple, it is in fact a direct sum of eigenspaces, and there are
only finitely many such subspaces of Wq. In other words, the number of points in
Ak(q) is finite.

By Corollary 4.12 and the above discussion, the set of all points q ∈ V such that
Ak(q) ⊂ P(k)q is a finite set is dense in V . But Ak is a real analytic subset of
P(k) and therefore by perhaps decreasing the size of V we may assume that Ak(q)
is finite for all q ∈ V . Furthermore, the cardinality of Ak(q) is locally constant and
hence constant on V since we may assume that V is connected.

As the dependence of Ak(q) on q ∈ V is real analytic, any choice of a point in
Ak(q) defines locally near q an analytic section of P(k)|V and hence a real analytic
J-invariant subbundle of W|V . This subbundle is invariant under parallel transport
for the Gauss Manin connection along the orbits of the SL(2,R)-action. In the case
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that this local section is globally invariant under parallel transport for the Gauss
Manin connection along the orbits of the SL(2,R)-action, it defines a real analytic
J-invariant SL(2,R)-invariant subbundle of W|V .

Otherwise parallel transport along the orbits of the SL(2,R)-action acts as a
finite group of permutations on the finite set Ak(q). Thus we can pass to a finite
cover of C so that on the covering space, using the same notation, the induced local
subbundles of W are globally defined.

In other words, up to passing to a finite cover of C, Ak defines a real analytic
SL(2,R)-invariant complex k-dimensional vector bundle over the open dense in-
variant subset V of C. By invariance of the symplectic structure under parallel
transport along the orbits of the SL(2,R)-action, Ak then defines a splitting of the
bundle W|V as predicted in the second part of the proposition. �

Remark 6.3. By Proposition 4.5 (see also [W14]), a real analytic splitting of the
bundle L as stated in the second part of Proposition 6.2 can not be flat, i.e. invariant
under the Gauss Manin connection. However, the second part of Proposition 6.2
does not claim the existence of a flat subbundle of the projected tangent bundle of
C. Namely, the splitting is only required to be invariant under parallel transport
along the orbits of the SL(2,R)-action.

7. Invariant splittings of the lifted Hodge bundle

In this section we use information on the moduli space of principally polarized
abelian varieties to rule out the second case in Proposition 6.2. We continue to use
all assumptions and notations from Section 6.

Recall the splitting Π∗H = T ⊕ L of the lifted Hodge bundle Π∗H → H+. Let
C+ be an affine invariant manifold with absolute holomorphic tangent bundle Z.

Consider again the intersection C of C+ with the moduli space of abelian differ-
entials of area one. We shall argue by contradiction. As our discussion does not
change by replacing C by a finite cover, we assume that there is an open dense
SL(2,R)-invariant subset V of C, and there is an SL(2,R)-invariant real analytic
splitting L ∩ Z|V = E1 ⊕ E2 into complex orthogonal subbundles as in the sec-
ond part of Proposition 6.2. The restriction of the splitting to an orbit of the
SL(2,R)-action is invariant under the Gauss Manin connection.

By Lemma 3.2, if r = dimC(C+) − 2rk(C+) > 0 then the absolute period folia-
tion AP(C) of C is defined, and it is a real analytic foliation with complex leaves
of dimension r. Furthermore, as differentials contained in a leaf of this foliation
locally have the same absolute periods, they define locally the same complex one-
dimensional linear subspace of H. This means that the splitting Z = T ⊕W where
W = L∩Z is invariant under the restriction of the Gauss Manin connection to the
leaves of the absolute period foliation of C in the sense described in Section 6.

Our first goal is to show that the real analytic splitting W = E1⊕E2 is invariant
under the restriction of the Gauss Manin connection to the leaves of the absolute
period foliation as well.
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Lemma 7.1. The restriction of the bundle Ei → V to a leaf of AP(C) is invariant
under the Gauss Manin connection.

Proof. We may assume that the dimension r of AP(C) is positive. Furthermore,
by passing to a finite cover of C, we may assume that the zeros of the differentials
in C are numbered. By abuse of notation, we will ignore these modifications in our
notations as they do not alter the argument.

Write again W|V = Z ∩ L = E1 ⊕ E2. By assumption, the bundles Ei → V are
real analytic and invariant under parallel transport for the Gauss Manin connection
along the leaves of the foliation of V into the orbits of the action of SL(2,R).

The splitting Z|V = T ⊕ E1 ⊕ E2 can be used to project the Gauss Manin

connection ∇GM on p(TC+) = Z to a real analytic connection ∇̂ on Z along the
leaves of the absolute period foliation which preserves this decomposition. Namely,
given a tangent vector Z ∈ TAP(C) and a local smooth section Y of Ei, define

∇̂ZY = Pi(∇GM
Z Y )

where

Pi : W = E1 ⊕ E2 → Ei
is the natural projection. Recall that this makes sense since the Gauss Manin
connection restricted to a leaf of AP(C) preserves the bundle W = L∩Z and hence
∇GM

Z Y ∈ W.

We now use the assumptions and notations from Section 3. Let k be the number
of zeros of a differential in C. Choose once and for all a numbering of the zeros of
a differential in C. With respect to such a numbering, every vector a ∈ Ck of zero
mean defines a vector field Xa which is tangent to the absolute period foliation of
the component Q of the stratum containing C.

By Lemma 3.2, there exists a complex linear subspace O of Ck of complex
dimension r contained in the complex hyperplane of vectors with zero mean so
that for every a ∈ O, the vector field Xa is tangent to C at every point of C.
Furthermore, for every a ∈ O, the affine invariant manifold C is invariant under the
flow Λt

a generated by Xa. For every q ∈ V ⊂ C, every a ∈ O and every Y ∈ E1(q)
we can extend Y by parallel transport for ∇̂ along the flow line of the flow Λt

a.

Let us denote this extension by Ŷ ; then

β(Xa, Y ) =
∇GM

dt
Ŷ (Λt

a(q))|t=0 ∈ E2(q)

only depends on Xa and Y , moreover this dependence is linear in both variables.
In this way we obtain a real analytic tensor field

β ∈ Ω(TAP(C)∗ ⊗ E∗
1 ⊗ E2).

Here as before, Ω(TAP(C)∗ ⊗ E∗
1 ⊗ E2) is the vector space of real analytic sections

of the bundle TAP(C)∗ ⊗ E∗
1 ⊗ E2. The splitting W = E1 ⊕ E2 is invariant under

the restriction of the Gauss Manin connection to the leaves of the absolute period
foliation if and only if β vanishes identically.
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The Teichmüller flow Φt acts on the bundle W by parallel transport with respect
to the Gauss Manin connection, and by assumption, this action preserves the bun-
dles Ei (i = 1, 2). The Teichmüller flow also preserves the absolute period foliation
of C. Thus the tensor field β is equivariant under the action of Φt.

Assume to the contrary that β does not vanish identically. As β is real analytic
and bilinear and the vector space O is invariant under the complex structure, there
is then an open subset U of V ⊂ C and either a real or a purely imaginary vector
a ∈ O such that the contraction of β with Xa does not vanish on U .

Assume that a ∈ Rk ∩O is real, the case of a purely imaginary vector is treated
in the same way; then dΦtXa = etXa by Lemma 3.1. Let now γ ⊂ C be a periodic
orbit with the properties stated in Corollary 4.12 which passes through U . Let
q ∈ γ ∩ U . The eigenvalues of the matrix A = Ψ(Ω(γ))|Zq (where we identify Zq

with the symplectic subspace of Π∗Hq it defines) are real and of multiplicity one.

The largest eigenvalue of A equals eℓ(γ) where ℓ(γ) is the length of the orbit γ, and
the eigenspace for this eigenvalue is contained in the fibre Tq of the bundle T .

The subspaceWq of Zq is invariant under A and henceWq is a sum of eigenspaces
for A (viewed as a transformation of Zq) for eigenvalues whose absolute values

are strictly smaller than eℓ(γ). Furthermore, by invariance of the splitting of W
under parallel transport for the Gauss Manin connection along flow lines of the
Teichmüller flow, the decomposition Wq = E1(q) ⊕ E2(q) (i = 1, 2) is invariant
under the map A. Then Ei(q) is a direct sum of eigenspaces for A.

For clarity of exposition, write for the moment ||GM
γ for parallel transport along

γ with respect to the Gauss Manin connection. By equivariance of the tensor field
β under the action of Φt, for Y ∈ E1(q) we have

β(dΦℓ(γ)Xa, ||GM
γ Y ) = ||GM

γ β(Xa, Y ) ∈ E2(q).

Now if Y ∈ E1(p) is an eigenvector of A for the eigenvalue b 6= 0, then from
dΦℓ(γ)Xa = eℓ(γ)Xa we obtain

β(dΦℓ(γ)Xa, AY ) = eℓ(γ)bβ(Xa, Y ) = Aβ(Xa, Y ) ∈ E2(p).
In other words, the contraction Y ∈ E1(p) → β(Xa, Y ) ∈ E2(p) of β with Xa maps
an eigenspace of A contained of A contained in E2(p) for the eigenvalue eℓ(γ)b.

But eℓ(γ) is an eigenvalue of the matrix A (for an eigenvector contained in the
bundle T ) and by the choice of γ, no product of two eigenvalues of A is an eigenvalue.
By the discussion in the previous paragraph, this implies that the contraction of β
with Xa vanishes at q, contradicting the assumption that this contraction does not
vanish at q.

As a consequence, the tensor field β vanishes identically, and parallel transport
for ∇̂ of a vector Y ∈ E1 along a path which is entirely contained in a leaf of the
absolute period foliation of V ⊂ C coincides with parallel transport with respect
to the Gauss Manin connection. Equivalently, the restriction of the Gauss Manin
connection to a leaf of the absolute period foliation preserves the splitting W =
E1 ⊕ E2. This is what we wanted to show. �
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Remark 7.2. Lemma 7.1 is valid for Φt-invariant splittings of the bundle W of
class C1, but the case of a continuous splitting can not be deduced in the same way.
We expect nevertheless that the lemma holds true for continuous splittings as well.
A possible strategy towards this end is to use methods from hyperbolic dynamics to
show that a continuous Φt-invariant splitting has to be of class C1 along the leaves
of the real real foliation and the leaves of the imaginary rel foliation and then use
Lemma 7.1 and its proof to deduce that it is parallel along these leaves.

It is an interesting question whether it is possible to deduce from Lemma 7.1,
Proposition 4.13 and Moore’s theorem, applied to the right action of SL(2,R) on
Sp(2g,Z)\Sp(2g,R), that a splitting as in the second part of Proposition 6.2 does
not exist. The main difficulty is that the global structure of the absolute period
foliation of an affine invariant manifold is poorly understood. Moreover, we do not
know whether there is a leaf of the foliation of the bundle S → Dg as described
in the appendix which intersects the image of the period map in more than one
component.

We saw so far that a splitting of the subbundle W of the bundle Π∗H over an
affine invariant manifold C as predicted by the second part of Proposition 6.2 has
to be parallel for the Gauss Manin connection along the leaves of the absolute
period foliation. Our final goal is to use the curvature of the projection of the
Gauss Manin connection to the bundle L to derive a contradiction. Note that this
projected connection is not flat (see below). To compute its curvature we take
advantage of the geometry of the tautological vector bundle V → Ag. We will use
some differential geometric properties of this bundle described in the appendix.

Proposition 7.3. Let Z be the absolute holomorphic tangent bundle of an affine
invariant manifold C+ of rank at least three. There is no open dense GL+(2,R)-
invariant subset V of C+ such that the bundle Z∩L|V admits a GL+(2,R)-invariant
real analytic splitting Z ∩ L = E1 ⊕ E2 into two complex subbundles.

Proof. As before, we write W = L ∩ Z. Furthermore, we restrict our attention to
the intersection C of C+ with the moduli space of area one abelian differentials.

We argue by contradiction, and we assume that an open dense invariant set V
and a splitting W|V = E1 ⊕E2 with the properties stated in the proposition exists.
Lemma 7.1 shows that this splitting is invariant under the restriction of the Gauss
Manin connection to the leaves of the absolute period foliation of C. Furthermore,
it naturally induces an invariant splitting of the bundle W ⊕ W ⊂ p(TC+) into
two subbundles which are complex for the flat complex structure on H1(S,C) =
H1(S,R)⊗C. Namely, recall that via the identifications used earlier, the bundle W
can be represented as W = {X + iJX | X ∈ WR} where WR is a (real) subbundle
of the flat vector bundle Π∗N → C+ which is globally invariant under the Gauss
Manin connection.

Let T (S) be the Teichmüller space of the surface S and let Ig < Mod(S) be the
Torelli group. The group Ig acts properly and freely from the left on T (S), with
quotient the Torelli space Ig\T (S). Let D → Ig\T (S) be the bundle of area one
homology-marked abelian differentials. The period map F maps the bundle D into
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the sphere subbundle S of the tautological vector bundle V over the Siegel upper
half-space Dg (see the beginning of Section 4 and the appendix for the notations).

By the discussion in the appendix, the composition of the map F with the
projection

Π : S = Sp(2g,R)×U(g) S
2g−1 → Ω = Sp(2g,R)/Sp(2g − 2,R)

is equivariant for the standard right SL(2,R)-actions on D and on Ω. Furthermore,
we have

Ω = {x+ iy | x, y ∈ R2g, ω(x, y) = 1}
where ω =

∑

i dxi ∧ dyi is the standard symplectic form on R2g.

Let Ĉ be a component of the preimage of C in the bundle D → Ig\T (S). The

projection p(TC+) determines a subbundle of the trivial bundle Ĉ × H1(S,C) →
Ĉ which is locally constant and invariant under the complex structure i induced
from the representation H1(S,C) = H1(S,R)⊗ C. Hence Ĉ determines a complex
subspace C2ℓ of H1(S,C) whose real part is symplectic. The composition of the
map Π ◦ F with symplectic orthogonal projection then defines a map

Υ : Ĉ → Ωℓ = {x+ iy | x, y ∈ R2ℓ, ω(x, y) = 1}.
We refer to the appendix for more details of this construction.

The manifold Ωℓ is a hyperplane in the open subset

Oℓ = {x+ iy | x, y ∈ R2ℓ, ω(x, y) > 0}
of C2ℓ. By naturality (see the appendix for details), the Gauss Manin connection

on the bundle p(T Ĉ+) with fibre Z ⊕ Z is just the pull-back via Υ of the natural
flat connection ∇O on TOℓ.

As a consequence, using the notations from the appendix, we obtain the follow-
ing. The restriction of the tangent bundle TOℓ of Oℓ to Ωℓ decomposes as

TOℓ|Ωℓ = TSL ⊕R⊕ R

where TSL is the tangent bundle of the foliation of Ωℓ into the orbits of the right
action of the group SL(2,R), TSL ⊕ R is the tangent bundle of Ωℓ and R is the
normal bundle of Ωℓ in Oℓ. The standard flat connection ∇Oℓ on TOℓ projects to
a connection ∇R on R. The restriction of ∇Oℓ to the foliation of Ωℓ into the orbits
of the SL(2,R)-action preserves the bundle R and hence the restriction of ∇R to
this foliation coincides with the restriction of ∇Oℓ . The leafwise connection ∇GM

on the bundle W = L ∩Z is the pull-back of the restriction of the connection ∇Oℓ

(see the appendix for more details).

By Lemma 7.1, the splitting W = E1 ⊕ E2 is real analytic, invariant under
the action of SL(2,R) and parallel with respect to the restriction of the Gauss
Manin connection to the leaves of the absolute period foliation. By Lemma A.7
in the appendix, this implies that the splitting W = E1 ⊕ E2 is the pull-back by
Υ of a real analytic local splitting R = R1 ⊕ R2 of the bundle R into a sum
of two complex vector bundles, defined on the image of the map Υ. That this
image is open follows from the description of affine invariant manifolds via period
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coordinates. Furthermore, this splitting is invariant under the right action of the
group SL(2,R).

The curvature form Θ for the connection ∇R is a two-form on Ωℓ with values in
the bundle R∗ ⊗ R. We claim that Θ preserves the decomposition R = R1 ⊕ R2

on the image of the map Υ. This means that for any point x in the image of Υ,
any two tangent vectors u, v ∈ TxΩℓ and any Y ∈ Ri, we have Θ(u, v)(Y ) ∈ Ri.

To this end let γ ⊂ C be a periodic orbit for Φt with the properties as in Corollary
4.12 and let γ̂ be a lift of γ to Ĉ. By Lemma A.7, Υ(γ̂) is an orbit in Ωℓ for the
action of the diagonal subgroup of SL(2,R). This orbit is periodic under the action
of an element A ∈ Sp(2ℓ,R) (which is the restriction of an element of Sp(2g,Z)
stabilizing the subspace R2ℓ) whose eigenvalues are all real, of multiplicity one, and
such that no product of two eigenvalues is an eigenvalue.

Since the local splitting R = R1 ⊕R2 is invariant under the action of SL(2,R)
and is complex and hence symplectic, for any choice of a point z ∈ Υ(γ̂), the
subspaces (Ri)z are direct sums of eigenspaces for A, containing with an eigenspace
for the eigenvalue a the eigenspace for a−1.

We now follow the proof of Lemma 7.1. Let ∇R1 be the projection of the
connection ∇R to a connection on R1. Then ∇R −∇R1 is a real analytic (locally
defined) tensor field β ∈ Ω(T ∗Ωℓ ⊗ R∗

1 ⊗ R2). Since R1 and ∇R are invariant
under the action of the diagonal flow Ψt ⊂ SL(2,R) (we use the notation Ψt

here to indicate that we are looking at a flow on the space Ωℓ), this tensor field
is equivariant under the action of Ψt. Now no product of two eigenvalues of the
matrix A is an eigenvalue and hence this implies that the restriction of β to Υ(γ̂)
vanishes (compare the proof of Lemma 7.1).

By Corollary 4.12, the set of points q ∈ V ⊂ C which are contained in a periodic
orbit with the above properties is dense in V . Hence the image of this set under the
restriction of the map Υ to a small contractible open subset of V is a dense subset
of a nonempty open subset E of Ωℓ where the splitting R = R1 ⊕ R2 is defined.
As the real analytic tensor field β vanishes on this dense subset of E, it vanishes
identically on E. Hence the splitting R = R1 ⊕ R2 of R on E is invariant under
the connection ∇R.

As a consequence, the curvature form Θ of ∇R preserves the decomposition
R = R1 ⊕R2 on E. Using the terminology from the appendix, this means that Θ
splits R as a complex vector bundle. This contradicts Lemma A.4 and shows the
proposition. �

Remark 7.4. The reasoning in the proof of Lemma 7.1 and Proposition 7.3 also
implies that the Lyapunov filtration for the action of the Teichmüller flow on a
stratum of abelian differentials is not smooth (or, less restrictive, is not of the class
C1). As we use covariant differentiation in our argument, mere continuity of the
filtration can not be ruled out in this way.

Corollary 7.5. (1) Let Q be a component of a stratum; then for every 2 ≤
ℓ ≤ g−1 there are finitely many affine invariant submanifolds of Q of rank
ℓ which contain every affine invariant submanifold of rank ℓ.
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(2) The smallest stratum of differentials with a single zero contains only finitely
many affine invariant submanifolds of rank at least two.

Proof. Let C be an affine invariant manifold of rank ℓ ≥ 3. By Proposition 6.2 and
Proposition 7.3, there are finitely many proper affine invariant submanifolds of C
which contain every affine invariant submanifold of C of rank 2 ≤ k ≤ ℓ− 1.

An application of this fact to a component Q of a stratum shows that for 2 ≤
ℓ ≤ g−1, there are finitely many proper affine invariant submanifolds C1, . . . , Cm of
Q which contain every affine invariant submanifold of Q of rank ℓ. The dimension
of Ci is strictly smaller than the dimension of Q.

By reordering we may assume that there is some u ≤ m such that for all i ≤ u
the rank rk(Ci) of Ci is at most ℓ, and that for i > u the rank rk(Ci) of Ci is
bigger than ℓ. Apply the first paragraph of this proof to each of the affine invariant
manifolds Ci (i > u). We conclude that for each i there are finitely many proper
affine invariant submanifolds of Ci of rank r ∈ [ℓ, rk(Ci)) which contain every affine
invariant submanifold of Ci of rank ℓ. The dimension of each of these submanifolds
is strictly smaller than the dimension of Ci. In finitely many such steps, each
applied to all affine invariant submanifolds of rank strictly bigger than ℓ found in
the previous step, we deduce the statement of the first part of the corollary.

Now let H(2g − 2) be a stratum of differentials with a single zero. Period coor-
dinates for H(2g− 2) are given by absolute periods, and the dimension of an affine
invariant manifold C ⊂ H(2g− 2) of rank ℓ equals 2ℓ. Thus C does not contain any
proper affine invariant submanifold of rank ℓ.

By Proposition 6.2 and the first part of this proof, there are finitely many proper
affine invariant submanifolds C1, . . . , Cs of H(2g − 2) which contain every affine
invariant submanifold of H(2g − 2) of rank at most g − 1. In particular, there are
only finitely many such manifolds of rank g − 1.

To show finiteness of affine invariant manifolds of any rank 2 ≤ ℓ ≤ g − 1,
apply Proposition 6.2 and the first part of this proof to each of the finitely many
affine invariant manifolds constructed in some previous step and proceed by inverse
induction on the rank. �

Remark 7.6. The proof of the second part of Corollary 7.5 immediately extends to
the following statement. An affine invariant manifold C with trivial absolute period
foliation contains only finitely many affine invariant manifolds of rank at least two.

8. Nested affine invariant submanifolds of the same rank

The goal of this section is to analyze affine invariant submanifolds of affine in-
variant manifolds C+ of the same rank ℓ ≥ 2 and to complete the proof of Theorem
3. Our strategy is a variation of the strategy used in Section 7. Namely, given an
affine invariant manifold C+ with nontrivial absolute period foliation, we observe
first that either C+ contains only finitely many affine invariant manifolds of the
same rank, or there is a GL+(2,R)-invariant real analytic splitting of the tangent
bundle TC+ of C+ over a GL+(2,R)-invariant open dense subset V of C+ into two
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subbundles, where one of these subbundles is contained in the tangent bundle of
the absolute period foliation. In a second step, we show that these subbundles can
be chosen to be integrable, with integral manifolds which are flat. We then use
the assumption that the rank of C+ is at least two to deduce that these manifolds
determine a flat GL+(2,R)-invariant splitting of TC+ which is impossible [W14].

Denote as before by AP(C+) the absolute period foliation of an affine invariant
manifold C+. By perhaps passing to a finite cover we may assume that the zeros of
a differential q ∈ C+ are numbered.

The following proposition is analogous to Proposition 6.2 and carries out the
first and second step of the above outline. Recall that the Teichmüller flow Φt acts
on TC+ as a group of bundle automorphisms.

Proposition 8.1. Let C+ ⊂ Q+ be an affine invariant manifold of rank ℓ ≥ 1.
Then one of the following two possibilities holds true.

(1) There are at most finitely many proper affine invariant submanifolds of C+
of rank ℓ.

(2) Up to passing to a finite cover, the tangent bundle TC+ of C+ admits a
non-trivial Φt-invariant real analytic splitting TC+ = A ⊕ E where A is
a flat complex subbundle of TAP(C+) and where E contains the tangent
bundle of the orbits of the GL+(2,R)-action. Furthermore, the bundle E is
integrable, and it defines a foliation of C+ with locally flat leaves.

Proof. By Theorem 2.2 of [EMM15], it suffices to show the following. Let m =
dimC(C+) and write ℓ = rk(C+). Assume that there is a number k ∈ [1,m−2ℓ], and
there is an open subset V of C+ such that the set of all affine invariant submanifolds
of C+ of complex codimension k whose rank coincide with the rank of C+ is dense
in V ; then the second property in the proposition holds true.

Assume from now on that a nonempty open subset V of C+ with the properties
stated in the previous paragraph exists. Note that we may assume that V is dense
by GL+(2,R)-invariance and topological transitivity of the action of GL+(2,R).

The leaves of the foliation F of C+ into the orbits of the GL+(2,R)-action are
complex suborbifolds of C+, ie the tangent bundle TF of this foliation is invariant
under the complex structure i obtained from period coordinates. Let Y be an i-
invariant GL+(2,R)-invariant real analytic subbundle of the tangent bundle TC+
of C+ which is complementary to the bundle TF . Using the notations from Section
6, such a bundle can be constructed as follows.

Let Z be the absolute holomorphic tangent bundle of C+ and write W = L∩Z.
Let moreover TC be the tangent bundle of the foliation of C+ into the hypersurfaces
of differentials with fixed area and let i be the standard complex structure in period
coordinates; then we can take Y = p−1(W ⊕W) ∩ TC ∩ iTC.

For the number k ∈ {1, . . . ,m − 2ℓ} as specified above let P → C+ be the real
analytic fibre bundle whose compact fibre at a point q ∈ C+ equals the Grass-
mannian of all complex subspaces of Yq of complex codimension k. This is a real
analytic subbundle of the fibre bundle whose fibre at q equals the Grassmannian
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of all oriented real linear subspaces of codimension 2k in Yq. The bundle P ad-
mits a natural decomposition P = ∪k

i=0Pi where Pi consists of all subspaces which
intersect TAP(C+) in a subspace of complex codimension k − i. Thus P0 is the
bundle of complex subspaces of complex codimension k which intersect TAP(C+)
in a subspace of smallest possible dimension. In particular, P0 ⊂ P is open and
GL+(2,R)-invariant, and ∪i≥1Pi is a closed nowhere dense subvariety of P.

Our strategy is similar to the strategy used before. We begin with investigating
the action of the Teichmüller flow Φt on the bundle P, where for convenience of
exposition, we restrict this flow to the real hypersurface C of differentials in C+ of
area one, but we let its derivative act on the tangent bundle TC+ of C+.

Recall that the action of the flow Φt on TC+ preserves the bundle Y. For q ∈ C
and t ∈ R let ρ(q, t) be the image of P(Φtq) under the map dΦ−t. Then

R∞ = ∩t ∪q ρ(q, t)

is a (possibly empty) real analytic subset of P. By construction, this subset is
invariant under the action of Φt.

The tangent bundle of an affine invariant submanifold D+ of C+ intersects the
complex vector bundle Y in a complex subbundle Y ∩ TD+|D+. This subbundle is
invariant under the action of the flow Φt. Hence if q ∈ C is contained in an affine
invariant submanifold D of C of the same rank as C and of complex codimension k,
then R∞ ∩ P0(q) 6= ∅.

Thus under the assumption on the existence of a nonempty open Φt-invariant
subset V of C containing a dense set of points which lie on an affine invariant
submanifold of C of rank ℓ and complex codimension k, the real analytic subset
R∞ of P is not empty, and its image under the canonical projection π : P → V is
dense in the open set V . Since R∞ ⊂ P is closed and the canonical projection π is
closed as well, this implies that the restriction of π to R∞ maps R∞ onto V . We
refer to the proof of Proposition 6.2 for details on this construction.

Now P0 ⊂ P is an open subset of P, and R∞∩P0(q) 6= ∅ for a dense set of points
q ∈ V . As R∞ is a real analytic set, this implies that up to perhaps decreasing
the set V , we may assume that R∞ ∩ P0(q) is not empty for every q ∈ V . As the
tangent bundle of the absolute period foliation is invariant under the action of Φt,
the set R∞ ∩ P0 is Φt-invariant as well. Thus

K = R∞ ∩ P0

is a real analytic subset of the (open) suborbifold P0 of P which is invariant under
the natural action of the Teichmüller flow Φt and which projects onto an open dense
Φt-invariant subset of C which we denote again by V .

For each q ∈ V , each point z ∈ K(q) is a complex linear subspace of Yq of complex
codimension k which intersects TAP(C) in a subspace of complex codimension k.
Define

E(q) = ∩z∈K(q)z ⊂ Yq ⊂ TqC+.
Then E(q) is a (possibly trivial) complex linear subspace of Yq. As K ⊂ P0 is a
real analytic subset of P0 which projects to V and which is invariant under the
action of the Teichmüller flow Φt, by possibly replacing the set V by a proper open
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Φt-invariant subset we may assume that the dimension of E(q) (which may be zero)
does not depend on q ∈ V . If this dimension is positive, then ∪q∈V E(q) is a real
analytic complex subbundle of Y|V . Furthermore, if D ⊂ C is an affine invariant
submanifold of rank ℓ and complex codimension k which intersects the set V , then
for every point q ∈ V ∩ D, the tangent space TqD+ of D+ at q contains E(q).

Our next goal is to show that for q ∈ V , the complex dimension of E(q) is at
least ℓ− 1. To this end let γ ⊂ C be a periodic orbit with the properties stated in
Corollary 4.12 which intersects V in a point q. Let ℓ(γ) be the length of γ. The
return map dΦℓ(γ)(q) acts on Yq.

Let again p be the projection of TC+ into absolute periods, and let Z be the
absolute holomorphic tangent bundle of C+. The map dΦℓ(γ) commutes with p and
hence it descends to a linear map A on the vector space (Z ⊕ Z)q, ie we have

p ◦ dΦℓ(γ) = A ◦ p.
The map A is just the monodromy map obtained from parallel transport for the
Gauss Manin connection on the flat bundle Π∗N ⊗ C → Q+.

By the choice of γ, the map A is semi-simple, with real eigenvalues, and the
eigenspaces are complex lines (recall that we look here at the action of the pseudo-
Anosov map Ω(γ) on H1(S,C) = H1(S,R) ⊗ C). Let W = L ∩ Z be as before.
Then the complex subspace W ⊗W is a direct sum of eigenspaces for eigenvalues
whose absolute values are contained in the open interval (e−ℓ(γ), eℓ(γ)).

Together with Lemma 3.1, we conclude that the restriction F of the map dΦℓ(γ)

to Yp is semi-simple. The eigenspaces for eigenvalues of absolute value contained

in (e−ℓ(γ), eℓ(γ)) are complex lines. The remaining eigenvalues are e−ℓ(γ), eℓ(γ). The
eigenspace for the eigenvalue eℓ(γ) is the intersection of Yq with the tangent space of

the real rel foliation, and the eigenspace for the eigenvalue e−ℓ(γ) is the intersection
of Yq with the tangent space of the imaginary rel foliation. Furthermore, the image
under the complex structure i induced by period coordinates of an eigenvector for
the eigenvalue eℓ(γ) is an eigenvector for the eigenvalue e−ℓ(γ).

By definition, a point z ∈ K(q) is a complex subspace of Yq ⊂ TqC+ of complex
codimension k which is complementary to some k-dimensional complex subspace of
TqAP(C), and the image of z under the map F is complex as well. We claim that
such a subspace has to contain the sum of the eigenspaces for A with respect to the
eigenvalues of absolute value different from eℓ(γ), e−ℓ(γ).

To this end recall that the fibre P(q) of the bundle P at q is a closed subset of the
Grassmann manifold of all oriented linear subspaces of Yq of real codimension 2k.
Furthermore, R∞ ∩ P(q) is a non-empty closed F -invariant subset containing the
non-empty set K(q). If z ∈ K(q), then any limit of a subsequence of the sequence
F iz (i → ±∞) is complex. Such a limit y is a fixed point for the action of F on
P(q) and hence it is a direct sum of subspaces of eigenspaces of F (compare the
proof of Proposition 6.2 for details on this fact).

Now for z ∈ K(q), the complex dimension of the intersection of z with TqAP(C+)
equals dimCTq(AP(C+)) − k. As the image of z under arbitrary iterates by the
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map F remains complex and the complex structure pairs an eigenvector for the
eigenvalue eℓ(γ) with an eigenvector for the eigenvalue e−ℓ(γ), we conclude that z
contains the sum of the eigenspaces for F with respect to the eigenvalues different
from eℓ(γ), e−ℓ(γ). As this discussion is valid for each z ∈ K(q), the sum of the
eigenspaces for F with respect to eigenvalues of absolute value different from e±ℓ(γ)

is contained in ∩z∈K(q)z = E(q). In particular, we have dimCE(q) ≥ ℓ − 1 and
hence

dimCE(q) ∈ [ℓ− 1, dimC(Yq)− k],

moreover Yq = TAP(C)q +E(q) (this sum may not be direct). Now E(q) depends
in a real analytic fashion on q ∈ V and hence the assignment q → E(q) is a real
analytic Φt-invariant subbundle of Y|V .

Let as before F ⊂ C+ be the foliation into the orbits of the GL+(2,R)-action and

let Ê → V be the real analytic vector bundle whose fibre at q ∈ V equals TF⊕E(q).

Clearly Ê is invariant under the Teichmüller flow Φt. Moreover, if D ⊂ C is an affine
invariant manifold of rank ℓ and complex codimension k which intersects V , then
for every q ∈ D, the fibre Ê(q) of Ê at q is contained in the tangent space TqD of D
at q.

We use the bundle Ê to construct a bundle E with the properties stated in (2)

of the proposition. To this end note that as Ê is a real analytic subbundle of the
tangent bundle of C+, for q ∈ V we can consider the linear subspace B(q) ⊃ Ê(q)
of TqC+ spanned by Ê(q) and the values of all Lie brackets of sections of Ê . Let
q ∈ V be a point such that the dimension of B(q) is maximal, say that this dimension
equals n. Then in a small neighborhood U of q, this dimension is constant and hence
the assignment u → B(u) ⊂ TuC+ defines an integrable real analytic subbundle of

TC+ of real dimension n which contains the bundle Ê . In particular, we have
B + TAP(C+) = TC+. On the other hand, for any point q ∈ U with the property
that q is contained in an affine invariant submanifold D of C+ of rank ℓ and complex
codimension k, we have TqD+ ⊃ Bq. As the set of these points is dense in V by
assumption, this shows that the (real) codimension of B is at least 2k ≥ 2.

As Φt acts on C as a group of diffeomorphisms, the set U constructed above is
invariant under Φt and hence it is open and dense in C by topological transitivity
of the action of Φt. To facilitate the notation we assume that in fact U = V .

Let B̂ = B + iB; then for each q ∈ V , B̂(q) is a complex subspace of TpC+, and
the above reasoning shows that its complex codimension is at least k. There exists
an open Φt-invariant subset U of V such that the complex dimension of B̂(q) is

maximal for every q ∈ U . Then the restriction of B̂ to U is a real analytic complex
subbundle of TC+ containing B. Using again the fact that B is tangent to each
affine invariant submanifold D+ of C+ of rank ℓ and complex codimension k, the

complex codimension of B̂ is at least k.

Now if B̂ = Ê in U then Ê is integrable and we put E = Ê . Otherwise the
complex dimension of B̂ is strictly larger than the complex dimension of Ê . Repeat
the above construction with the bundle B̂ instead of Ê . In finitely many such steps,
the complex dimension of the bundles constructed in this way has to stabilize. As a
consequence, in finitely many such steps we find an integrable subbundle E ⊂ TC+,
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defined on an open Φt-invariant subset V of C, of complex codimension at least
k, and such that for each affine invariant manifold D ⊂ C of rank ℓ and complex
codimension k which intersects V and each point q ∈ D∩V , a local integral manifold
of E through q is contained in D.

Recall that the bundle E contains the tangent bundle TF of the foliation of C
into the orbits of the action of GL+(2,R). This means that its integral manifolds
are locally saturated for the foliation of C into the orbits of the action of the group
GL+(2,R). Then E is invariant under the action of GL+(2,R).

We show next that we can choose the bundle E in such a way that its the integral
manifolds are locally affine. Note that as E is tangent to each of the affine invariant
manifolds of rank ℓ and complex codimension k which intersects V and such affine
invariant manifolds are affine in period coordinates, the integral manifolds of E are
locally affine if the complex codimension of E in TC+|V equals k.

Otherwise let q ∈ V be a point which is contained in an affine invariant manifold
D of rank ℓ and complex codimension k. Define G(q) ⊂ TC+ to be the intersection of
TD with all limits TqiDi as i→ ∞ where qi is a point on an affine invariant manifold
Di of rank ℓ and complex codimension k and qi → q. Since E is a real analytic
vector bundle and since E(qi) ⊂ TqiDi for all i, we have G(q) ⊃ E(q). Furthermore,
in the case that dimC(G(q)∩TqD) = dimCE(q) then in period coordinates, the local
leaf M through q of the local foliation of C into integral manifolds of the bundle
E equals the intersection of D with a collection of local limits of affine invariant
manifolds Di and hence this local leaf is affine.

It now suffices to observe that via perhaps decreasing the set V , we may assume
that there exists a real analytic complex vector bundle G ⊃ E whose fibre at a
dense set of points q ∈ V lying on an affine invariant manifold D as above coincides
with the complex vector space constructed in the previous paragraph. To this end
choose q so that the dimension of the complex vector space G(q) ⊃ E(q) is minimal.
As before, locally near q there exists a vector bundle G ⊃ E with fibre Gq at q such
that for a dense set of points z in a neighborhood of q, Gz is tangent to an affine
submanifold of C. Thus via perhaps replacing the bundle E by the bundle G, we
may assume that the local integral manifolds of E are affine.

We are left with showing that there is a flat subbundle of TAP(C) which is
complementary to E . Namely, let m be the number of zeros of a differential in C.
Let q ∈ V and let a1, . . . , am−1 ∈ Rm be linearly independent with zero mean such
that for some u ≤ m− 1, the vector fields Xa1

, . . . , Xau
are tangent to C+ and such

that moreover their complex span is a linear subspace of TAP(C+) complementary
to E(q). By invariance and Lemma 3.2, the complex span of these vector fields
defines a flat invariant complex subbundle of TAP(C)|V which is complementary
to the bundle E . This is what we wanted to show. �

Remark 8.2. Proposition 8.1 is valid for affine invariant manifolds C+ of rank one,
but in this case, property (2) just states that C+ is foliated into the orbits of the
action of GL+(2,R), and these leaves are flat. Thus for rank one affine invariant
manifolds, property (2) above always holds true for straightforward reason.
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Remark 8.3. Lemma A.6 discusses real analytic SL(2,R)-invariant splittings of
the tangent bundle of the sphere subbundle of the tautological vector bundle V over
the moduli space Ag of principally polarized abelian differentials. In contrast to
the statement of Proposition 8.4, such splittings can explicitly be constructed. This
witnesses the fact that orbits of the action of SL(2,R) on the Teichmüller space of
abelian differentials project to Kobayashi geodesics which in general do not map to
totally geodesic complex curves in the Siegel upper half-space, equipped with the
symmetric metric. In other words, in spite of Lemma A.7, the actions of SL(2,R)
on the moduli space of abelian differentials and on the sphere subbundle of V are
not compatible in any obvious geometric way.

Our final goal is to show that for ℓ ≥ 2, an affine invariant manifold C+ of rank ℓ
does not admit a nontrivial GL+(2,R)-invariant foliations into locally affine leaves
which is transverse to the absolute period foliation. We refer to Theorem 5.1 of
[W14] for a related result.

Proposition 8.4. Let C+ be an affine invariant manifold of rank ℓ ≥ 2; then there
is no nontrivial Φt-invariant real analytic splitting TC+ = A⊕E over an open dense
Φt-invariant subset of C with property (2) of Proposition 8.1.

Proof. We proceed as in the proof of Lemma 7.1 and Proposition 7.3. Let C ⊂ C+
be the hyperplane of area one differentials. Assume to the contrary that there is an
open dense Φt-invariant set V ⊂ C, and there is a Φt-invariant real analytic splitting
TC+|V = A ⊕ E as in the statement of the proposition. As before, we pass to a

finite cover Ĉ of C such that the zeros of a differential in this cover are numbered.
Our goal is to show that the bundle E is flat; this then contradicts Theorem 5.1 of
[W14].

An affine invariant manifold is locally defined by real linear equations in period
coordinates (see [W14]). The affine structure of C+ defines a flat connection ∇C on
TC+ which is invariant under affine transformations. In particular, this connection
is invariant under the GL+(2,R)-action. The bundle A ⊂ TAP(C+) is flat, ie
invariant under parallel transport for ∇C . Namely, it is trivialized by globally
defined vector fields Xai

where ai ∈ Cm (compare the proof of Proposition 8.1),
and these vector fields are parallel for ∇C (compare [W14]).

Recall from the proof of Proposition 8.1 that there is a real analytic complex
subbundle Y ⊂ TC+ which is invariant under the GL+(2,R)-action and transverse
to the tangent bundle TF of the foliation F of C+ into the orbits of the GL+(2,R)-
action. Let K = E ∩ Y. Since the rank ℓ of C+ is at least two, K is a complex
subbundle of Y of positive dimension.

By passing to a finite cover, assume that the zeros of the differentials in C are
numbered. Let k ≥ 2 be the number of these zeros. Using the notation from the
proof of Lemma 7.1, let O ⊂ Ck be the complex vector space of vectors a with zero
mean which are tangent to C+. For a ∈ O let Xa ⊂ TAP(C) be the vector field
defined by the Schiffer variation with weight a. Then for each a ∈ O, the affine
invariant manifold C is invariant under the flow Λt

a generated by Xa (Lemma 3.2).
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Furthermore, the bundle A is defined by a linear subspace of O which is invariant
under the complex structure.

We claim that the bundle K is invariant under the flows generated by the vector
fields Xa for a ∈ A. This is equivalent to stating that for all a ∈ A and every q ∈ C,
the Lie derivative LXa

Y (q) of every local section Y of K near q in direction of Xa

is contained in K at the point q.

We proceed as in the proof of Lemma 7.1. Use the SL(2,R)-invariant decom-
position TC+ = TF ⊕Y to project the flat connection ∇C on TC+ to a connection

∇Y on Y. Let q ∈ V , let Y ∈ K and let Ŷ be the vector field along the flow line of
the flow Λt

a obtained by parallel transport of Y for the connection ∇Y . Then the

Lie derivative LXa
(Ŷ ) is defined at q, and we have to show that LXa

(Ŷ ) ∈ Y.

To this end define β(Xa, Y ) ∈ TF ⊕A to be the component of LXa
Ŷ in TF ⊕A

with respect to the decomposition TC+ = TF ⊕ A ⊕ K. Then β is a real analytic
section of A∗ ⊗Y∗ ⊗ (TF ⊕A). By invariance of the decomposition of TC+ under
the Teichmüller flow and equivariance of the flat connection ∇C , the tensor field β
is equivariant under the action of the Teichmüller flow.

As in the proof of Lemma 7.1, it now suffices to show that β vanishes at any
point q ∈ C contained in a periodic orbit γ for Φt with the properties stated in
Corollary 4.12. Let F be the differential of the map dΦℓ(γ); then the fibre Kq can
be represented in the form

Kq = Lq ⊕ (Kq ∩ TAP(C+)
where Lq is a direct sum of eigenspaces of the map F for eigenvalues which are

different from eℓ(γ), e−ℓ(γ),±1.

Now if Z ∈ TAP(C+) ∩ Kq then β(·, Z) = 0 as a leaf of the absolute period
foliation is flat. On the other hand, (TF ⊕ A)q is a direct sum of eigenspaces of

F for the eigenvalues eℓ(γ), e−ℓ(γ),±1 and hence vanishing of β(·, Z) for Z ∈ Lq

follows as in the proof of Lemma 7.1.

We showed so far that the bundle K is invariant under each of the flows Λt
a

generated by a vector field Xa ⊂ A. Then the (locally defined) bundle K̂ generated
by K and all Lie brackets of sections of K is invariant under such a flow as well
(compare the proof of Proposition 8.1 for details of this construction). But K
projects to a complex subbundle of rank at least one in the bundle W. Hence
by Lemma A.2 in the appendix, the bundle K̂ contains the generator Y of the
Teichmüller flow. However, this contradicts the fact that for each a ∈ O ∩ Rk we
have

LXa
(Y ) = [Xa, Y ] = −LY (Xa) = −Xa

by Lemma 3.1. This is a contradiction which completes the proof of the proposition.
�

As an immediate consequence of Proposition 6.2 and Lemma 8.4, we obtain

Corollary 8.5. An affine invariant manifold C of rank at least two contains only
finitely many affine invariant submanifolds of the same rank.
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Theorem 3 from the introduction is now an immediate consequence of Proposi-
tion 7.5 and Corollary 8.5.

9. Algebraically primitive Teichmüller curves

A point in the moduli space of area one abelian differentials on a closed surface
S of genus g ≥ 2 defines an euclidean metric on S whose singularities are cone
points of cone angle a multiple of 2π at the zeros of the differential. Such a metric
is called a translation structure on S. An affine automorphism of such a translation
structure (X,ω) is a homeomorphism f : S → S which takes singularities of (X,ω)
to singularities and and is locally affine in the nonsingular part of S. Let Γ be
the group of affine automorphisms of (X,ω). The function which takes an affine
automorphism f to its derivative Df gives a homomorphism from Γ into GL(2,R).
The image D(Γ) is called the Veech group of the translation surface. It is contained
in the subgroup SL±(2,R) of all elements with determinant ±1.

If the affine automorphism group of the translation surface (X,ω) contains a
pseudo-Anosov element ϕ then the trace field of ϕ is defined. Recall that ϕ acts on
H1(S,R) as a Perron Frobenius automorphism, and if µ is the leading eigenvalue
for this action, then the trace field of ϕ equals Q[µ+ µ−1].

By Theorem 28 in the appendix of [KS00], the trace field of ϕ coincides with the
so-called holonomy field of (X,ω). The holonomy field is defined for any translation
surface, however we will not make use of this fact in the sequel. Instead we refer
to the appendix of [KS00] for more information. By Lemma 2.10 of [LNW15], if C
is a rank one affine invariant manifold then for all (X,ω) ∈ C, the holonomy field
of (X,ω) equals the field of definition of C [W14]. In particular, the trace field of
a pseudo-Anosov element whose conjugacy class corresponds to a periodic orbit in
a rank one affine invariant manifold C only depends on C but not on the periodic
orbit. As we will not use any other information on the field of definition, we will
not define it here.

For the proof of Theorem 4 we have a closer look at rank one affine invariant
manifolds C whose field of definition k is of degree g over Q. Then k is a totally real
[F16] number field of degree g, with ring of integers Ok. Via the g field embeddings
k → R, the group SL(2,Ok) embeds into G = SL(2,R)×· · ·×SL(2,R) < Sp(2g,R)
and in fact, SL(2,Ok) is a lattice in G. The trace field of every periodic orbit γ
in C equals k and hence the image of a corresponding pseudo-Anosov element Ω(γ)
under the homomorphism Ψ : Mod(S) → Sp(2g,R) is contained in a conjugate of
SL(2,Ok).

The following observation is immediate from Theorem 4.6 and [G12]. For its
formulation, define the extended local monodromy group of an open contractible
subset U of C to be the subgroup of SL(2,Ok) which is generated by the monodromy
of those (parametrized) periodic orbits for Φt in C which pass through U . Compare
with Theorem 4.6.

Lemma 9.1. For a rank one affine invariant manifold C whose field of definition is
of degree g over Q, the extended local monodromoy group of any open set is Zariski
dense in SL(2,R)× · · · × SL(2,R).
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Proof. By Theorem 4.6, the projection of the extended local monodromy group of
an open set U ⊂ C to the first factor SL(2,R) of G = SL(2,R)× · · · × SL(2,R) is
Zariski dense in SL(2,R) and hence it is non-elementary. Moreover, by definition
and [KS00, LNW15], the invariant trace field of the extended local monodromy
group equals k (compare [G12] for the definition of the invariant trace field). Thus
by Corollary 2.2 of [G12], the extended local monodromy group of U is Zariski
dense in G. �

In the statement of the next corollary, the affine invariant manifold B+ may be
a component of a stratum. As before, we put a lower index + whenever we do not
normalize the area of a holomorphic differential.

Corollary 9.2. Let C+ be a rank one affine invariant manifold whose field of def-
inition is of degree g over Q. Assume that C+ is properly contained in an affine
invariant manifold B+ of rank at least three. Let Z → B+ be the absolute holomor-
phic tangent bundle of B+; then Z|C+ splits as a sum of holomorphic line bundles
which are invariant under both the Chern connection and the Gauss Manin connec-
tion.

Proof. In the case that the rank of B+ equals g (and hence Z = Π∗H|B+), the
statement is immediate from Theorem 1.5 of [W14]. Thus assume that the rank of
B+ is at most g − 1.

Since C+ ⊂ B+, the restriction of Π∗H to C+ has two splittings which are invari-
ant under the extended local monodromy of C+. The first splitting is the splitting
into g line bundles obtained from the different field embeddings of the field of defi-
nition of C+ into R (see Theorem 1.5 of [W14]). The second splitting is the splitting
into the absolute holomorphic tangent bundle Z of B+ (which is a holomorphic sub-
bundle of Π∗H|B+

whose complex rank equals the rank of B+) and its symplectic
complement. Since by Lemma 9.1 the extended local monodromy group of C+ is
Zariski dense in SL(2,R) × · · · × SL(2,R), the bundle Z|C+ is a sum of invariant
line bundles. �

Corollary 9.3. For a component Q+ of a stratum in genus g ≥ 3, all affine
invariant submanifolds of rank one whose fields of definition are of degree g over Q
are contained in a finite collection of affine invariant submanifolds of rank at most
two.

Proof. Let C be the collection of all rank one affine invariant submanifolds of Q
whose field of definition is a number field of degree g over Q. Recall the invariant
decomposition Π∗H = T ⊕ L. For each C+ ∈ C, the restriction of the bundle L
to C+ splits as a sum of holomorphic line bundles which are invariant under the
Gauss-Manin connection in the sense discussed in Section 6. Thus by Proposition
6.2 and its proof, there exists a finite collection of affine invariant submanifolds of
Q of rank at most g − 1 which contain each element of C.

Now if B+ is an affine invariant manifold of rank contained in [3, g − 1] which
contains some C+ ∈ C then by Corollary 9.2, the above reasoning can be applied to
B+. In finitely many steps we find finitely many proper affine invariant manifolds



TYPICAL AND ATYPICAL PROPERTIES OF PERIODIC TEICHMÜLLER GEODESICS 69

C1, . . . , Ck ⊂ Q+ of rank at most two which contain every C+ ∈ C. This is the
statement of the corollary. �

Now we are ready to complete the proof of Theorem 4.

Corollary 9.4. For g ≥ 3 the SL(2,R)-orbit closure of a typical periodic orbit in
any component of a stratum is the entire stratum.

Proof. Let Q be a component of a stratum and let U ⊂ Q be a non-empty open
set. Then a typical periodic orbit for Φt passes through U [H13]. Thus by Theorem
3 (see also [MW15, MW16]), the SL(2,R)-orbit closure of a typical periodic orbit
either equals the entire stratum, or it is an affine invariant manifold of rank one.

By the second part of Theorem 1, the trace field of a typical perodic orbit γ is
totally real and of degree g over Q. If the rank of the SL(2,R)-orbit closure C of
γ equals one then this trace field is the field of definition of C [LNW15]. Thus the
corollary follows from Corollary 9.3. �

We complete the main body of this article with the proof of Theorem 5. We
begin with

Proposition 9.5. Let g ≥ 3 and let B+ ⊂ Q+ be a rank two affine invariant
manifold. Then the union of all algebraically primitive Teichmüller curves which
are contained in B+ is nowhere dense in B+.

Proof. Let B+ ⊂ Q+ be a rank two affine invariant manifold. We argue by contra-
diction, and we assume that the closure of the union of all algebraically primitive
Teichmüller curves C+ ⊂ B+ contains some open subset V of B+.

Let Z → B+ be the absolute holomorphic tangent bundle of B+. Let U be a
small contractible subset of V so that there is a trivialization of the Hodge bundle
over U defined by the Gauss Manin connection. The extended local monodromy
group of U preserves Z. Let Ci ⊂ B+ be a sequence of algebraically primitive
Teichmüller curves which pass through U and whose closures contain a compact
subset of U with non-empty interior W .

Let Π : Q+ → Mg be the canonical projection and let Ig : Mg → Ag be the
Torelli map. The image under Π of the curve Ci is an algebraic curve (see [F16])
which admits a modular embedding. Namely, by the main result of [Mo06], there is
a totally real number field Ki of degree g over Q, there is an order oKi

in Ki, and
there is an embedding

SL(2, oKi
) → SL(2,R)× · · · × SL(2,R) → Sp(2g,R)

which maps SL(2, oKi
) into Sp(2g,Z) and such that the image of Ci under the

Torelli map is contained in the Hilbert modular variety H(oKi
). This Hilbert

modular variety is the quotient of H2 × · · · ×H2 under the lattice SL(2, oKi
) in a

Lie subgroup Gi of Sp(2g,R) which is isomorphic to SL(2,R)× · · · × SL(2,R).

We claim that Gi = Gj = G for all i. Namely, assume otherwise. Then there are
algebraically primitive Teichmüller curves Ci, Cj which intersect U and for which the
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groups Gi, Gj are distinct. By Lemma 9.1, the extended local monodromy groups
of Ci ∩ U and Cj ∩ U are Zariski dense in Gi, Gj . Therefore the Zariski closure in
Sp(2g,R) of the extended local monodromy group of U ⊂ B+ contains Gi ∪ Gj .
But as Gi 6= Gj , a subgroup of Sp(2g,R) which contains Gi ∪Gj can not preserve
the subspace Z. This is a contractiction and implies that indeed, Gi = Gj = G for
all i.

Write SL(2, o) = SL(2, oKi
). The Hilbert modular variety H(o) = H(oKi

) ⊂ Ag

consists of abelian varieties with real multiplication with the field K = Ki. The
image of Ci under the map Ig ◦ Π is contained in H(o). As a consequence, the set
of points in B+ which are mapped by the composition of the foot-point projection
Π : B+ → Mg with the Torelli map Ig into H(o) contains a dense subset of the
open set W . But H(o) is a complex submanifold of Ag and this composition map
is holomorphic and therefore the image of B+ is contained in H(o).

We showed so far that each point in B+ is an abelian differential whose Jaco-
bian has real multiplication with K. Now a point on an algebraically primitive
Teichmüller curve is mapped to an eigenform for real multiplication [Mo06] and
hence the closure of the set of differentials in B+ which are mapped to eigenforms
for real multiplication with K contains an open set. This implies as before that
each point in B+ corresponds to such an eigenform and hence B+ is a rank one
affine invariant manifold, contrary to our assumption. The proposition follows �

Proof of Theorem 5:

Let Q be a component of a stratum in genus g ≥ 3. By Corollary 9.3, there are
finitely many affine invariant submanifolds B1, . . . ,Bk of rank two which contain all
but finitely many algebraically primitive Teichmüller curves.

Let Bi be such an affine invariant manifold of rank two. Assume that its di-
mension equals r for some r ≥ 4. By Proposition 9.5, the closure of the union of
all algebraically primitive Teichmüller curves which are contained in Bi is nowhere
dense in Bi. As this closure is invariant under the action of GL(2,R), it consists of
a finite union of affine invariant manifolds. The dimension of each of these invariant
submanifolds is at most r − 1.

If there are submanifolds of rank two in this collection then we can repeat this ar-
gument with each of these finitely many submanifolds. By inverse induction on the
dimension, this yields that all but finitely many algebraically primitive Teichmüller
curves are contained in one of finitely many affine invariant manifolds of rank one.
The field of definition of such a manifold coincides with the field of definition of the
Teichmüller curve, in particular it is of degree g [LNW15].

By the main result of [LNW15], a rank one affine invariant manifold with field of
definition of degree g over Q only contains finitely many Teichmüller curves. Thus
the number of algebraically primitive Teichmüller curves in Q is finite as promised.
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Appendix A. Structure of the homogeneous space Sp(2g,Z)\Sp(2g,R)

In this appendix we collect some geometric properties of the Siegel upper half-
space Dg = Sp(2g,R)/U(g) and its quotient Ag = Sp(2g,Z)\Dg which are either
directly or indirectly used in the proofs of our main results.

The tautological vector bundle

V → Dg

over the Hermitean symmetric space Dg = Sp(2g,R)/U(g) is obtained as follows.

Via the right action of the unitary group U(g), the symplectic group Sp(2g,R)
is an U(g)-principal bundle over Dg. The bundle V is the associated vector bundle

V = Sp(2g,R)×U(g) C
g

where U(g) acts from the right by (x, y, α) → (xα, α−1y). The bundle V is holomor-
phic, and it is equipped with a hermitean metric obtained from an U(g)-invariant
hermitean inner product on Cg. As U(g) acts transitively on the unit sphere in Cg,
with isotropy group U(g − 1), the associated sphere bundle

S = Sp(2g,R)×U(g) S
2g−1

in V → Dg can naturally be identified with the homogeneous space

S = Sp(2g,R)/U(g − 1)

(Proposition I.5.5 of [KN63]).

The group Sp(2g − 2,R) is the isometry group of Siegel upper half-space

Dg−1 = Sp(2g − 2,R)/U(g − 1).

Since the action of Sp(2g−2,R) on Dg−1 is transitive, with isotropy group U(g−1),
the bundle S = Sp(2g,R)/U(g−1) → Dg can also be identified with the associated
bundle

S = Sp(2g,R)×Sp(2g−2,R) Dg−1

where Sp(2g − 2,R) acts via

(g, x)h = (gh, h−1(x)).

The first factor projection then defines a projection

Π : S → Sp(2g,R)/Sp(2g − 2,R).

Let ω =
∑

i dxi ∧ dyi be the standard symplectic form on R2g. The standard
representation of Sp(2g,R) on (R2g, ω) naturally extends to an action of Sp(2g,R)
on R2g ⊗ C = C2g. The open subset

O = {x+ iy | x, y ∈ R2g, ω(x, y) > 0} ⊂ C2g

is Sp(2g,R)-invariant. It contains the invariant hypersurface

Ω = {x+ iy ∈ C2g | ω(x, y) = 1}.
Lemma A.1. Ω can naturally and Sp(2g,R)-equivariantly be identified with the
homogeneous space

Sp(2g,R)/Sp(2g − 2,R).
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Proof. Observe that the diagonal action of the group Sp(2g,R) on Ω is transitive.
The stabilizer in Sp(2g,R) of a point x + iy ∈ Ω is isomorphic to a standard
embedded

Id× Sp(2g − 2,R) < Sp(2,R)× Sp(2g − 2,R) < Sp(2g,R).

�

For a more explicit description of Ω we use the standard basis (x1, y1, · · · , xg, yg)
of the symplectic vector space R2g. With respect to this basis, the symplectic form
ω is given by the matrix

I =















1
−1

. . .

1
−1















The Lie algebra sp(2g,R) of Sp(2g,R) is then the algebra of (2g, 2g)-matrices A
with AI + IA = 0. The Lie algebra h of the subgroup Sp(2,R) × Sp(2g − 2,R)
consists of matrices in block form

(

A
B

)

where A ∈ sl(2,R) and B ∈ sp(2g − 2,R).

Let p be the linear subspace of sp(2g,R) of matrices whose only non-trivial
entries are entries aij with i = 1, 2 and 3 ≤ j ≤ 2g or j = 1, 2 and 3 ≤ i ≤ 2g. This
subspace can explicitly be computed as follows. Let ι be the complex structure on
R2g defined informally by ιxi = yi, ιyi = −xi; then a matrix in p is of the form













x
−Jx

yt − Jyt













where x, y ∈ R2g−2 ⊂ R2g are vectors with vanishing first and second coordinate.
Thus p = a ⊕ b where a, b are abelian subalgebras of dimension 2g − 2. Here a is
the intersection with p of the vector space of matrices whose only non-zero entries
are contained in the first and second line, and b is the intersection with p of the
vector space of matrices whose only non-zero entries are contained in the first and
second row. Note that the transpose of a matrix in the subspace a is contained in
b.

The group SL(2,R) = Sp(2,R) acts from the right on Ω. Namely, the real and
imaginary part of a point x+ iy ∈ Ω define the basis of a two-dimensional symplec-
tic subspace V of R2g. The group SL(2,R) acts by basis transformation on this
subspace, preserving the symplectic form. Furthermore, the action of SL(2,R) fixes
preserves pointwise the symplectic complement of the subspace V of R2g spanned
by x and y.
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If we identify the Lie algebra sp(2g,R) with the vector space of right invariant
vector fields on Sp(2g,R) then as Ω = Sp(2g,R)/Sp(2g− 2,R), the tangent bundle
TΩ of Ω is trivialized by the linear subspace u = sl(2,R) ⊕ p of sp(2g,R). The
decomposition of TΩ resulting from this decomposition of u is just the splitting

TΩ = T ⊕R
where for a point x+ iy ∈ Ω we have

Rx+iy = {u+ iv | ω(u, x) = ω(u, y) = ω(v, x) = ω(v, y) = 0}
and where T is tangent to the orbits of the right action of SL(2,R).

Let J be the complex structure on p defined by JA = At for A ∈ a and JB = −Bt

for B ∈ b. In the above identification of TΩ with u, the complex structure i on
C2g ⊃ Ω restricts to the complex structure J on p, viewed as the subbundle R of
TΩ. Furthermore, this complex structure pairs the matrix A ∈ sl(2,R) ⊂ sp(2g,R)
with entries a12 = 1 and aij = 0 otherwise (ie the generator of the horocycle flow)
with its transpose At.

Let X ∈ sl(2,R) ⊂ sp(2g,R) be the matrix given by x11 = 1, x22 = −1 and
xij = 0 otherwise. Then for any 0 6= A ∈ p we have [A, JA] = aX for some a 6= 0.
The above Lie algebra computation now shows

Lemma A.2. Ω ⊂ C2g is a CR-hypersurface: If θ is the one-form on Ω with
θ(X) = 1 and θ(TΩ ∩ iTΩ) = 0 then θ ∧ dθ2g−1 is a volume form on Ω.

Proof. All we need to show is that dθ(Y, iY ) > 0 for Y ∈ TΩ ∩ iTΩ. Thus let y be
the local section of TΩ ∩ JTΩ obtained by the right action of the one-parameter
subgroup of Sp(2g,R) generated by the element in p⊕ sl(2,R) which projects to Y .
As [y, Jy] = aX for some a > 0 we have dθ(Y, iY ) = −θ([y, Jy)]) < 0. �

The left action of Sp(2g,R) on O is the restriction of a linear action on C2g.
Therefore the tangent bundle of O admits an Sp(2g,R)-invariant flat connection.
Namely, we can write TO = O×C2g, and the standard vector fields on O which are
the tangent lines of one-parameter groups of translations are invariant under the
linear action of Sp(2g,R). These vector fields define a parallel trivialization of TO.
This flat connection restricts to a left Sp(2g,R)-invariant flat connection ∇GM on
TO|Ω.

The bundle TO|Ω splits as a sum

TO|Ω = TΩ⊕ R

where the trivial line bundle R is the tangent bundle of the orbits of the one-
parameter group of deformations ((x+ iy), t) → etx+ iety transverse to Ω. Lemma
A.2 shows that this splitting is not flat, i.e. it is not invariant under the connection
∇GM .

The subbundles R and T of TΩ are invariant under both the left action of
Sp(2g,R) and the right action of SL(2,R). Thus the flat left Sp(2g,R)-invariant
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connection ∇GM on TO|Ω projects to a left Sp(2g,R)-invariant right SL(2,R)-
invariant connection ∇R on R defined as follows. Let

P : TO|Ω = R⊕ T ⊕ R → R
be the canonical projection, and for X ∈ TΩ and a local section Y of R define
∇R

XY = P∇GM
X (Y ).

Lemma A.3. The flat left Sp(2g,R)-invariant connection on TO projects to a
connection ∇R on R which is invariant under both the left Sp(2g,R) action and
the right SL(2,R) action.

The curvature of the connection ∇R is a two-form on Ω with values in the Lie
algebra sp(2g − 2,R) of Sp(2g − 2,R), acting as an algebra of transformation on
R. The restriction of this two-form to the tangent bundle of the orbits of the
SL(2,R)-action vanishes. Moreover, the two-form is equivariant with respect to
the left action of Sp(2g,R) and the right action of SL(2,R).

We say that the curvature form Θ for a connection ∇ on a complex vector bundle
E → M splits E as a complex vector bundle if there is a nontrivial Θ-invariant
decomposition E = E1 ⊕ E2 as a Whitney sum of two complex vector bundles.
This means that for any x ∈M and any two vectors Y,Z ∈ TxM the map Θ(Y,Z)
preserves the decomposition E = E1 ⊕ E2.

Since Ω is not locally affine, the curvature form of the connection ∇R on R
does not vanish identically. Furthermore, the stabilizer in Sp(2g,R) of a point
z ∈ Ω can be identified with the subgroup Sp(2g − 2,R), which act on the fibre
of R at z via the standard representation of Sp(2g − 2,R) on C2g−2, viewed as
the complexification of the standard representation on R2g−2. Since the standard
representation of Sp(2g − 2,R) on the complex vector space C2g−2 is irreducible
and since the curvature form of ∇R is equivariant with respect to the left action of
Sp(2g,R), by equivariance we have the following analog of Lemma A.2.

Lemma A.4. The curvature form of ∇R does not split R as a complex vector
bundle.

The complement of the zero section V+ ⊂ V of the bundle V → Dg is a complex
manifold. The fibration S → Ω extends to a holomorphic fibration V+ → O of
complex manifolds. The fibres of the fibration define a foliation U of V+.

The following is immediate from the definition of the complex structure on V+

and on O ⊂ C2g.

Lemma A.5. The foliation U is holomorphic. A leaf is biholomorphic to Dg−1.

The foliation U on V+ can be viewed as the analog of the absolute period foliation
on the bundle H+ → Mg which is the pull-back of V+ by the Torelli map. Recall
that the restriction of the absolute period foliation to any component of a stratum
has a complex affine and hence a complex structure. However, this affine structure
is singular at the boundary points of the strata (which are contained in lower
dimensional strata).
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Let for the moment G be an arbitrary Lie group. A G-connection for a G-
principal bundle X → Y is given by an Ad(G)-invariant subbundle of the tangent
bundle of X which is transverse to the tangent bundle of the fibres. Such a bundle
is called horizontal.

The following observation contrasts the case of the absolute period foliation on
H+ and reflects the fact that the right SL(2,R)-action on the bundle S does not
pull back to the SL(2,R)-action on H+. Namely, orbits of the SL(2,R)-action on
H+ define orientable Teichmüller curves which are mapped by the Torelli map to
geodesics in Dg for the Kobayashi metric. However, these Kobayashi geodesics are
in general not totally geodesic for the symmetric metric. We refer to [BM14] for
more and for references.

The group Sp(2g,R) is an Sp(2g−2,R)-principal bundle over Ω. In the statement
of the following Lemma, the type (2g, 2g − 1) stems from the fact that Ω is a
hypersurface in the manifold O with invariant indefinite metric of type (2g, 2g).

Lemma A.6. The Sp(2g− 2,R)-principal bundle Sp(2g,R) → Ω admits a natural
real analytic Sp(2g − 2,R)-connection which is invariant under the left action of
Sp(2g,R) and the right action of SL(2,R). The horizontal bundle Z0 contains the
tangent bundle T of the orbits of the SL(2,R)-action, and it admits an SL(2,R)-
invariant Sp(2g,R)-invariant pseudo-Riemannian metric h of type (2g, 2g − 1).
The h-orthogonal complement Y0 of T in Z0 is a real analytic SL(2,R)-invariant
Sp(2g,R)invariant bundle.

Proof. The fibre containing the identity induces an embedding of Lie algebras

sp(2g − 2,R) → sp(2g,R).

The restriction of the Killing form B of sp(2g,R) to the Lie algebra sp(2g − 2,R)
is non-degenerate. Thus the B-orthogonal complement z of sp(2g− 2,R) is a linear
subspace of sp(2g,R) which is complementary to sp(2g− 2,R) and invariant under
the restriction of the adjoint representation Ad of Sp(2g,R) to Sp(2g − 2,R). The
restriction to z of the Killing form is a non-degenerate bilinear form of type (2g, 2g−
1).

The group Sp(2g,R) acts by left translation on itself, and this action commutes
with the right action of Sp(2g−2,R). Hence Sp(2g,R) acts as a group of automor-
phisms on the principal bundle Sp(2g,R) → Ω.

Define a sp(2g − 2,R)-valued one-form θ on Sp(2g,R) by requiring that θ(e)
equals the canonical projection

TeSp(2g,R) = z⊕ sp(2g − 2,R) → sp(2g − 2,R)

and

θ(g) = θ ◦ dg−1.

Then for every h ∈ Sp(2g − 2,R) we have

θ(gh) = Ad(h−1) ◦ θ(g)
and hence this defines an Sp(2g,R)-invariant connection on the Sp(2g − 2,R)-
principal bundle Sp(2g,R) → Ω. Denote by Z0 the horizontal bundle. It is invariant
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under the left action of Sp(2g,R) and the right action of Sp(2g − 2,R), and it is
equipped with an invariant pseudo-Riemannian metric of type (2g, 2g − 1).

Now sp(2,R) ⊂ z, and hence the tangent bundle for the right action of Sp(2,R)
is contained in the horizontal bundle Z0. Thus the subbundle Y0 of Z0 defined by
the B-orthogonal complement y in z of the Lie algebra sp(2,R) is invariant as well.
The lemma follows. �

Since S = Sp(2g,R) ×Sp(2g−2,R) Dg−1 and since the subgroups SL(2,R) and
Sp(2g − 2,R) commute, the right action of SL(2,R) on Sp(2g,R) descend to an
action of SL(2,R) on S. The action of the unitary subgroup U(1) of Sp(2,R) is
just the standard circle action on the fibres of the sphere bundle S → Dg given
by multiplication with complex numbers of absolute value one. The connection
Z0 = T ⊕ Y0 induces a real analytic splitting

TS = TU ⊕ Z = TU ⊕ T ⊕ Y
where TU denotes the tangent bundles of the fibres of the fibration S → Ω, the
horizontal bundle Z is the image of Z0 × TDg−1 under the projection Sp(2g,R)×
Dg−1 → S and as before, T is the tangent bundle of the orbits of the SL(2,R)-
action.

Lemma A.7. The right action of SL(2,R) on S projects to the standard action of
SL(2,R) on Ω.

Proof. This follows as before from naturality and bi-invariance of the Killing form.
�

The group Sp(2g,Z) acts properly discontinuously from the left on the bundle
S → Ω as a group of real analytic bundle automorphisms. In particular, it preserves
the real analytic splitting of the tangent bundle of S into the tangent bundle of
the leaves of the foliation U and the complementary bundle. Thus this splitting
descends to an SL(2,R)-invariant real analytic splitting of the tangent bundle of
the quotient. This quotient is just the sphere bundle of the quotient vector bundle
(in the orbifold sense) over the locally symmetric space

Ag = Sp(2g,Z)\Sp(2g,R)/U(g).
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