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Abstract. Consider a component Q of a stratum in the moduli space of area
one abelian or quadratic differentials on a surface of genus g. Call a property

P for periodic orbits of the Teichmüller flow on Q typical if the growth rate

of orbits with property P is maximal. We show that the following property is
typical. If Q is a stratum of abelian differentials, then the trace field of the

symplectic matrix defined by the orbit is a totally real splitting field of degree

g over Q. If Q is a component of a stratum of quadratic differentials with
k ≥ 0 zeros of odd order then the stretch factor of a typical orbit is of degree

2g − 2 + k over Q.
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1. Introduction

The mapping class group Mod(S) of a closed surface S of genus g ≥ 2 acts
by precomposition of marking on the Teichmüller space T (S) of marked complex
structures on S. The action is properly discontinuous, with quotient the moduli
space Mg of complex structures on S.

The fibre over a Riemann surface x ∈ Mg of the Hodge bundle H → Mg

equals the vector space of holomorphic one-forms on x. The Hodge bundle is a
holomorphic vector bundle of complex dimension g (in the orbifold sense) which
decomposes into strata of differentials with zeros of given multiplicities. There is a
natural SL(2,R)-action on H preserving its sphere subbundle of area one abelian
differentials on S as well as any connected component of a stratum. The action of
the diagonal subgroup is called the Teichmüller flow Φt.

The cotangent bundle of moduli space can naturally be identified with the bundle
of holomorphic quadratic differentials over Mg. It also admits a natural SL(2,R)-
action preserving the strata of differentials with zeros of given multiplicities and
the sphere bundle of area one quadratic differentials. The action of the diagonal
subgroup is again called the Teichmüller flow Φt.

Let Q be a component of stratum of area one abelian or quadratic differentials
and let Γ be the set of all periodic orbits for Φt in Q. The length of a periodic
orbit γ ∈ Γ is denoted by `(γ). Let m ≥ 1 be the number of singular points of the
differentials in Q and let h = 2g−1+m if Q is a component of abelian differentials,
and let h = 2g− 2 +m otherwise. As an application of [EMR12] (see also [EM11])
we showed in [H13] that

]{γ ∈ Γ | `(γ) ≤ R} hR
ehR
→ 1 (R→∞).

Call a subset A of Γ typical if

]{γ ∈ A | `(γ) ≤ R} hR
ehR
→ 1 (R→∞).

Thus a subset of Γ is typical if its growth rate is maximal. The intersection of two
typical subsets of Γ is typical.

A periodic orbit γ ∈ Γ for Φt determines the conjugacy class of a pseudo-Anosov
mapping class. The mapping class group acts on the first integral cohomology group
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H1(S,Z) of S preserving the intersection form ι on H1(S,Z). This action defines
a natural surjective [FM12] homomorphism

Ψ : Mod(S)→ Sp(2g,Z).

Thus a periodic orbit γ ∈ Γ determines the conjugacy class [A(γ)] of a matrix
A(γ) ∈ Sp(2g,Z).

The characteristic polynomial of a symplectic matrix A ∈ Sp(2g,Z) is a recip-
rocal polynomial of degree 2g with integral coefficients. Its roots define a number
field k of degree at most 2g over Q which is a quadratic extension of the so-called
trace field of A. The field k only depends on the conjugacy class of A. We show

Theorem 1. Let Q be a component of a stratum of abelian differentials. The set
of all γ ∈ Γ such that the field of [A(γ)] is of degree 2g over Q, separable and totally
real is typical.

Theorem 1 can be used to analyze stretch factors of pseudo-Anosov elements
ϕ ∈ Mod(S). Here the stretch factor of ϕ is the unique number λ > 1 such that
there exists a measured foliation ξ on S with ϕ(ξ) = λξ, and it only depends on the
conjugacy class of ϕ. In the case that ϕ fixes a pair of oriented projective measured
foliations, this stretch factor is just the leading eigenvalue for the action of ϕ on
H1(S,R). Theorem 1 then states that for a typical pseudo Anosov conjugacy class
preserving a pair of oriented projective measured foliations, the stretch factor is an
algebraic integer of degree 2g over Q.

The maximal degree over Q of the stretch factor for arbitrary pseudo-Anosov
elements is known to be 6g − 6. This was claimed by Thurston in [Th88] and was
verified in [St15]. The article [St15] shows more precisely that a number d is the
algebraic degree of the stretch factor of a pseudo-Anosov mapping class if and only
if either d is at most 3g − 3, or d is even and at most 6g − 6. We show

Theorem 2. Let D a component of a stratum of area one quadratic differentials
consisting of differentials with k ≥ 0 zeros of odd order. Then the algebraic degree
of the stretch factor of a pseudo-Anosov conjugacy class defined by a typical periodic
orbit in D equals 2g − 2 + k.

Unlike in Theorem 1, we do not show that the extension of Q determined by a
typical stretch factor is totally real. The proof of this fact in the case of a component
of a stratum of abelian differentials uses simplicity of the Lyapunov spectrum for
the Kontsevich Zorich cocycle [AV07] which is not available at the moment for
components of strata of quadratic differentials. We will address this question in
forthcoming work.

As an easy corollary, we obtain

Corollary. For every g ≥ 2 and every even number 2m ≤ 6g−6, there are infinitely
many distinct conjugacy classes of pseudo-Anosov mapping classes whose stretch
factors are algebraic intergers of degree 2m over Q.
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The proofs of these results use a result of independent interest which we explain
next.

Period coordinates on a component Q of a stratum of abelian differentials with
singular set Σ ⊂ S are obtained by integration of a holomorphic one-form q ∈ Q
over a basis of the relative homology group H1(S,Σ;Z). Thus a tangent vector of
Q defines a point in H1(S,Σ;C)∗.

By the groundbreaking work of Eskin, Mirzakhani and Mohammadi [EMM15],
the orbit closures of the SL(2,R)-action on the moduli space of abelian differentials
are precisely the so-called affine invariant manifolds. Such manifolds are cut out
by linear equations in period coordinates. The rank of an affine invariant manifold
C is defined by

rk(C) =
1

2
dimC(pTC)

where p is the projection of H1(S,Σ;C)∗ into H1(S;C)∗ = H1(S;C) [W14]. The
rank of a component of a stratum equals g.

Recall that the α-limit set of an orbit {Φtx} of the Teichmüller flow on a com-
ponent Q of abelian or quadratic differentials is the set of points y ∈ Q for which
there exists a sequence ti → ∞ so that Φtix → y. Similarly, the ω-limit set is
defined to be the set of accumulation points of the backward orbit t → Φ−tx. A
point x ∈ Q is birecurrent if it is contained in its own α- and ω-limit set.

The Hodge bundle H is equipped with a natural flat connection, the so-called
Gauss-Manin connection. This connection defines a trivialization of H over any
contractible subset of moduli space not containing any singular points, and this
trivialization is unique up to conjugation. If U is a contractible subset of an affine
invariant manifold C, then there is a natural trivialization of the pullback Π∗H of
the Hodge bundle H over U , defined by the pullback connection. If we fix such a
trivialization, then we can identify the fibres of Π∗H over U . Thus for any fixed
basepoint x ∈ U , we can study the monodromy of the pullback connection at x and
relate it to the monodromy along periodic orbits of Φt passing through U .

More precisely, if we denote by ZR the projection of the tangent bundle of C to
H1(S,R) ⊂ H1(S,C) then ZR is a flat symplectic [AEM12, F16] subbundle of the
restriction of Π∗H to C, and we can study the subsemigroup of Sp(ZR,R) generated
by the return maps of periodic orbits γ for Φt passing through U .

Definition. The monodromy of the affine invariant manifold C is locally Zariski
dense if for every birecurrent point q ∈ C and every neighborhood U of q in C, the
subsemigroup of Sp(ZR,R) generated by the monodromy maps of parametrized
periodic orbits for Φt beginning at a point in U is Zariski dense in Sp(ZR,R).

The following result is used in the proof of the main theorems.

Theorem 3. The monodromy of any affine invariant manifold is locally Zariski
dense.
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For components Q of strata of abelian differentials, there is an easy translation
of Theorem 3 into the language of Rauzy induction and the so-called Rauzy-Veech
group of Q which yields a solution to a conjecture of Zorich (Conjecture 5 of [Z99]).
However, Rauzy induction plays no role in our approach, and we leave this trans-
lation to other authors. The Rauzy-Veech group of a component of a stratum of
abelian differentials has independently been studied by Avila, Matheus and Yoccoz
[AMY16] and Gutierrez-Romo [GR17], with different methods. They show that it
is an explicit finite index subgroup of Sp(2g,Z). In Proposition 4.14 which was
shown to us by Yves Benoist we give a version of this result for all affine invariant
manifolds.

Strategy of the proofs and organization of the article: The proofs of the
above results use tools from hyperbolic and non-uniform hyperbolic dynamics and
algebraic groups. Many of the arguments and results are valid in much larger
context, for example for the geodesic flow on a closed rank one manifold of non-
positive curvature. With the exception of the proof of Theorem 3, we do not use
any methods or results from the theory of flat surfaces.

The basic strategy for the proof of Theorem 1 is motivated by work of Rivin
[R08] who showed the following. Let µ be a symmetric probability measure on
Sp(2g,Z) whose finite support generates Sp(2g,Z). Then µ generates a random
walk on Sp(2g,Z). As the step length tends to infinity, the probability that the
characteristic polynomial of a random element is reducible tends to zero.

Rivin’s argument consists in studying for a prime p ≥ 5 the projection of the
random walk to the finite simple group Sp(2g, Fp) where Fp is the field with p
elements. Since this group is finite, this projected random walk equidistributes. By
a counting result due to Borel, a definite proportion of the elements of Sp(2g, Fp)
which is independent of p has an irreducible characteristic polynomial. Since the
mod p reduction of a reducible polynomial with coefficients in Z is reducible, this
implies that as the step length of the walk tends to infinity, a definitive proportion
of the random matrices in Sp(2g,Z) have irreducible characteristic polynomials.
An application of this argument to varying primes then yields Rivin’s result.

A natural route towards Theorem 1 is to replace the equidistribution result
obtained from the projection of a random walk on Mod(S) to Sp(2g,Z) by equidis-
tribution based on lattice counting. There is by now a vast literature on lattice
counting in Teichmüller space, see [ABEM12] for an example. However, an argu-
ment along this line only seems applicable to study the principal stratum in the
moduli space of quadratic differentials. Instead we work directly with the dynamics
of the Teichmüller flow on an affine invariant manifold. Our approach has three
partially independent parts.

The first part addresses the issue that periodic orbits for the Teichmüller flow
correspond to conjugacy classes of pseudo-Anosov mapping classes rather than to
actual group elements. To mimic lattice counting we choose a suitable contractible
flow box V for the Teichmüller flow on an affine invariant manifold and lift flow
lines through this box to the Teichmüller space of abelian differentials. Using a
strong shadowing result reminiscent of hyperbolic dynamics we associate to an orbit
segment beginning and ending in a suitable open subset Y of V a pseudo-Anosov
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element in Mod(S) in such a way that concatenation of orbit segments translates
into multiplication of group elements. This construction is carried out in Section 3
and is based on earlier results in [H13, H18].

The image of the resulting subsemigroup of Mod(S) under the homomorphism Ψ
defines a subsemigroup of a symplectic group. For a component of a stratum, this
symplectic group is the group Sp(2g,Z), but for an affine invariant manifold C, it is
the group Sp(ZR,R) introduced above. The second part of our approach consists in
establishing Theorem 3 which is the main algebraic result of this article. Its proof
is contained in Section 4 and builds on results of Wright [W15] on horizontally
periodic translation surfaces in affine invariant manifolds. We also use the results
from Section 3 and tools from the theory of algebraic groups developed in the
context of strong approximation.

The third and most involved part of this work is an equidistribution result for
a homomorphism of Mod(S) onto a finite group G which is contained in Section
5. In our application, the group G is just one of the groups Sp(2g, Fp). For such
a homomorphism we construct a cocyle over the Teichmüller flow on a component
of a stratum of abelian or quadratic differentials with values in G, and we prove
equidistribution for this cocycle with respect to the Masur Veech measure. This
part of the article is independent of Section 4.

The only information on the Teichmüller flow we use is quantitative non-uniform
hyperbolicity in the sense of [H13, H18] and the fact that periodic orbits equidis-
tribute for the Masur Veech measure. The results in Section 5 are valid in much
broader context, for example they hold true for the geodesic flow on a rank one
manifold of non-positive curvature equipped with the measure of maximal entropy.

An application of the results from Sections 3-5 completes the proof of Theorem 1
and Theorem 2 in Section 6. In the introductory Section 2 we introduce the Hodge
bundle and the Gauss Manin connection. We then establish some basic properties
of affine invariant manifolds.

Acknowledgement: I am grateful to Yves Benoist for useful discussions and for
providing the proof of Proposition 4.14. This article is based on work which was
supported by the National Science Foundation under Grant No. DMS-1440140
while the author was in residence at the MSRI in Berkeley, California, in spring
2015. This work was also supported by the Advanced Grant ”Moduli” of the
European Science Foundation.

2. The geometry of affine invariant manifolds

The goal of this section is to collect some geometric and dynamical properties of
affine invariant manifolds which are used throughout this article.
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2.1. The Hodge bundle. LetMg be the moduli space of closed Riemann surfaces
of genus g. This is the quotient of Teichmüller space T (S) under the action of
the mapping class group Mod(S). The Hodge bundle H → Mg is a holomorphic
vector bundle over Mg (in the orbifold sense). As a real vector bundle, it has the
following description. The action of the mapping class group Mod(S) on the first
real cohomology group H1(S,R) defines a homomorphism

Ψ : Mod(S)→ Sp(2g,Z).

The Hodge bundle is then the flat orbifold vector bundle

(1) Π : H = T (S)×Mod(S) H
1(S,R)→Mg

for the standard left action of Mod(S) on Teichmüller space T (S) and the right
action of Mod(S) on H1(S,R) via Ψ. This description determines a flat connection
on H which is called the Gauss Manin connection.

As the Hodge bundle H is a holomorphic vector bundle over the complex orbifold
Mg, it is a complex orbifold in its own right and the same holds true for the
complement H+ ⊂ H of the zero section in H. The pull-back

Π∗H → H+

to H+ of H is a holomorphic vector bundle on H+. The pull-back of the Gauss-
Manin connection is a flat connection on Π∗H which we call again the Gauss Manin
connection.

2.2. Affine invariant manifolds. Let Q ⊂ H be a component of a stratum of
area one abelian differentials. Define the good subset Qgood of Q to be the set of all

points q ∈ Q with the following property. Let Q̃ be a component of the preimage
of Q in the Teichmüller space of marked abelian differentials and let q̃ ∈ Q̃ be
a lift of q; then an element of Mod(S) which fixes q̃ acts as the identity on Q̃
(compare [H13] for more information on this technical condition). Then Qgood is
precisely the subset of Q of manifold points. Lemma 4.5 of [H13] shows that the
good subset Qgood of Q is open, dense and Φt-invariant, furthermore it is invariant
under scaling.

Definition 2.1. A closed curve η : [0, a] → Qgood defines the conjugacy class
of a pseudo-Anosov mapping class ϕ ∈ Mod(S) if the following holds true. Let

η̃ : [0, a]→ Q̃ be a lift of η to an arc in the Teichmüller space of abelian differentials.
Then ψη̃(a) = η̃(0) for a unique ψ ∈ Mod(S), and we require that ψ is conjugate
to ϕ.

As any two lifts of an arc in Qgood to the Teichmüller space of abelian differen-
tials are translates of each other by some element in the mapping class group, the
property captured in Definition 2.1 does not depend on any choices made.

Using Definition 2.1, the above discussion easily leads to the following statement
(here parallel transport means parallel transport with respect to the Gauss Manin
connection).
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Lemma 2.2. Let η ⊂ Qgood be a closed curve which defines the conjugacy class of
a pseudo-Anosov mapping class ϕ ∈ Mod(S). Then the characteristic polynomial
of the holonomy map obtained by parallel transport of the bundle Π∗H along η
coincides with the characteristic polynomial of the map Ψ ◦ ϕ ∈ Sp(2g,Z).

Proof. Since the Gauss Manin connection is flat, parallel transport along a closed
based loop in Qgood is invariant under homotopy of the based loop in Qgood and
hence the holonomy along such a based loop is an invariant of its homotopy class.
Furthermore, moving the basepoint, i.e. changing the loop with a free homotopy,
results in conjugation of the holonomy map.

Now the characteristic polynomial of an element A ∈ Sp(2g,Z) is invariant
under conjugation and hence the characteristic polynomial of the holonomy of an
unparametrized loop in Qgood is defined. For a loop η : [0, a] → Qgood which
defines the conjugacy class of a pseudo-Anosov element ϕ, this polynomial can be
computed as follows.

Choose any lift η̃ of η to the Teichmüller space of area one abelian differentials.
By the definition of the Gauss Manin connection, the characteristic polynomial of
the holonomy map along η is the characteristic polynomial of Ψ ◦ ζ where ζ ∈
Mod(S) maps the endpoint η̃(a) of η̃ back to η̃(0). As ζ is conjugate to ϕ and
hence Ψ ◦ ζ is conjugate to Ψ ◦ ϕ, the lemma follows. �

Let Q+ be a component of a stratum of (non-normalized) abelian differentials
on the surface S with fixed number and multiplicities of zeros. We use the notation
Q+ if we are looking at differentials whose area may be different from one. Denote
by Σ ⊂ S the set of zeros of a differential in Q+.

Period coordinates for Q+ are defined by integration of a differential q over a
basis of H1(S,Σ;Z). These coordinates take values in H1(S,Σ;R)∗⊗RC and induce
an affine structure on Q+.

An affine invariant manifold C+ in Q+ is the closure in Q+ of an orbit of the
GL+(2,R)-action. Such an affine invariant manifold is complex affine in period
coordinates [EMM15]. In particular, C+ ⊂ Q+ is a complex suborbifold. Period
coordinates determine a projection

p : TC+ → Π∗H⊗R C|C+
to absolute periods (see [W14] for a clear exposition). The image p(TC+) is flat, i.e.
it is invariant under the restriction of the Gauss Manin connection to a connection
on Π∗H⊗R C|C+ .

By the main result of [F16], there is a holomorphic subbundle Z of Π∗H|C+ such
that

p(TC+) = Z ⊕ Z.
We call Z the absolute holomorphic tangent bundle of C+. As a consequence, the
bundle p(TC+) is invariant under the complex structure on Π∗H⊗R C obtained by
extension of scalars.
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As a real vector bundle, Z is isomorphic to p(TC+)∩Π∗H|C+. Since Z is complex,
the bundle p(TC+) ∩Π∗H → C+ is symplectic [AEM12]. Moreover, it is flat, i.e. it
is invariant under the Gauss Manin connection.

Define the rank of the affine invariant manifold C+ as [W14]

rk(C+) =
1

2
dimC p(TC+) = dimCZ.

With this definition, components of strata are affine invariant manifolds of rank g.

3. Non-uniform hyperbolic dynamics of the Teichmüller flow

The goal of this section is to give an account on non-uniform hyperbolicity of the
dynamics of the Teichmüller flow Φt on components of strata and on affine invariant
manifolds. We establish a strengthening of a shadowing result for the Teichmüller
flow on components of strata from [H13] (see also [H18]) which is moreover also valid
for the Teichmüller flow on affine invariant manifolds. The slogan is that an ordered
sequence of orbit segment in an affine invariant manifold with prescribed transitions
through a finite collection of small relatively compact flow boxes is shadowed by a
periodic orbit contained in the affine invariant manifold with the same transitions.
We also introduce the idea of encoding iterated transitions through a flow box by
a semigroup.

3.1. Product structures and the Hodge distance. In this subsection we in-
troduce local product structures for affine invariant manifolds C and the Hodge
distance on strong stable and strong unstable manifolds. These will be used to
obtain effective control on non-uniform hyperbolicity of the Teichmüller flow on C.

An affine invariant manifold C+ ⊂ H+ is described in period coordinates as the
set of solutions of a system of linear equations [EMM15]. Here as before, we write
C+ if we consider differentials whose area is not necessarily one. In particular, each
manifold point of C+ has a neighborhood U which is mapped by period coordinates
homeomorphically onto an open subset V of an affine subspace of H1(S,Σ;R)∗⊗RC
where Σ is the set of zeros of the differentials in the stratum containing C+. This
affine subspace is invariant under the complex structure induced from the complex
structure on H1(S,Σ;R)∗ ⊗R C [F16].

To avoid technical difficulties, we will concentrate on the manifold points in an
affine invariant manifold C+. To this end recall from Subsection 2.2 the definition
of the set Qgood of good points of a component Q of area one abelian differentials.
This notion extends in an obvious way to the notion of a set of good points in C+.
Denote by C+,good the good subset of C+ and by Cgood the intersection of C+,good

with the hypersurface C of area one differentials. As before, the good subset Cgood

of C is precisely the set of manifold points. The proof of the easy Lemma 4.5 of
[H13] is equally valid for affine invariant manifolds and shows that the set Cgood ⊂ C
of good points is open, dense and invariant under the Teichmüller flow.

In period coordinates, a local leaf of the strong unstable foliation W su through
a point w ∈ H1(S,Σ;R)∗ ⊗R C consists of all differentials whose imaginary parts
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coincide with the imaginary part of w, and the local leaf of the strong stable foliation
consists of all differentials whose real parts coincide with the real part of w. As C+
is complex affine in period coordinates, we obtain

Lemma 3.1. Let C+ be an affine invariant manifold. Then Cgood∩W i is a smooth
foliation of Cgood into leaves of real dimension dimC(C+)− 1 (i = ss, su).

Lemma 3.1 implies that for every affine invariant manifold C, every point q ∈
Cgood has a neighborhood with a product structure. We next define a set with a
product structure formally. The definition we give is a bit less restrictive than other
of its versions, but it is convenient for the purpose of this section.

The real and imaginary part, respectively, of an abelian differential ω defines a
measured foliation on S. This is a smooth oriented foliation of S − Σ, equipped
with a transverse invariant measure. The tangent bundle of the foliation is the
subbundle of T (S−Σ) annihilated by the real or imaginary part of ω, respectively.
The space of marked projective measured foliations PMF on S is equipped with
a natural topology so that it is homeomorphic to a sphere of dimension 6g − 7.
Period coordinates for the component Q of a stratum containing C show that nearby
differentials in Q whose real parts define the same class in H1(S,Σ;R)∗ determine
the same marked measured foliations on S (up to equivalence as in the definition
of PMF).

Definition 3.2. Let C be an affine invariant manifold and let C̃ be a component of
the preimage of C in the Teichmüller space of abelian differentials. A subset Ṽ of
C̃ admits a product structure if there are two disjoint compact subsets D,K of the
set of (marked) projective measured foliations on S, viewed as projective classes
of points in H1(S,Σ;R)∗ via integration of the transverse measure along arcs with
endpoints in Σ, with the following properties.

(1) The sets D,K are homeomorphic to closed balls of dimension

m = dimC(C+)− 1.

(2) There is a continuous map

Λ : D ×K → Ṽ

such that for any pair (ξ, ν) ∈ D ×K, the horizontal projective measured
foliation of Λ(ξ, ν) equals ξ, and its vertical projective measured foliation
equals ν.

(3) There is some ε > 0 such that

Ṽ = ∪−ε≤t≤ε ∪(ξ,ν)∈D×K ΦtΛ(ξ, ν).

A closed contractible set V ⊂ Cgood with dense interior admits a product structure

if some (and hence any) component Ṽ of V of the preimage of V in the Teichmüller
space of abelian differentials has a product structure.

We say that an open subset U of Cgood has a product structure if its closure has
a product structure in the sense of Definition 3.2. We refer to Section 3.1 of [H13]
for a detailed description of this construction for strata. The requirement (1) in
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Definition 3.2 is made for convenience of exposition; we will occasionally talk about
a set with a product structure which only has properties (2) and (3) above.

The following observation is immediate from the definition.

Lemma 3.3. Let U ⊂ Cgood be an open or closed set with a product structure as in
Definition 3.2. Then each component of the intersection of U with an orbit of the
Teichmüller flow is an arc of length 2ε.

Proof. Let V ⊂ Cgood be a set with a product structure, and let Ṽ be a component
of the preimage of V in the Teichmüller space of marked abelian differentials. As
V is contained in Cgood and is contractible, a component of the intersection of V
with an orbit of the Teichmüller flow lifts to a component of the intersection of
Ṽ with an orbit of the Teichmüller flow. The lemma is now immediate from the
definition and the fact that the Teichmüller flow preserves the projective class of
the horizontal and vertical measured foliation, respectively. �

Let Ṽ be as in (3) of Definition 3.2. For each z̃ ∈ Ṽ , the product structure
determines a closed local strong unstable manifold

W su
loc(z̃)

containing z̃ which is homeomorphic to a closed ball of dimension m. This set
consists of all points whose marked horizontal measured foliation coincides with the
marked horizontal measured foliation of z̃, and whose marked vertical projective
measured foliation is contained in the set K. Similarly we obtain a local strong
stable manifold W ss

loc(z̃) by exchanging the roles of the horizontal and the vertical

measured foliations. The sets W i
loc(z̃) (i = ss, su) need not be contained in Ṽ , but

every ỹ ∈ W i
loc(z̃) can be moved into Ṽ with a small translate along the flow line

of Φt through ỹ. For z ∈ V we let W i
loc(z) be the projection to C of W i

loc(z̃) where

z̃ ∈ Ṽ is the preimage of z (i = ss, su). Note that these sets are contained in Cgood

by invariance of Cgood under the Teichmüller flow.

Example 3.4. Let Q be a component of a stratum of abelian or quadratic differ-
entials. Let q ∈ Qgood and let Asu be a neighborhood of q in W su

loc(q). Then for a
sufficiently small neighborhood Ass of q in W ss

loc(q) and every z ∈ Ass there exists
a holonomy homeomorphism

Ξz : Asu → Ξz(A
su) ⊂W su

loc(z)

with Ξz(q) = z determined by the requirement that Ξz(u) ∈ ∪−ε≤t≤εΦtW ss
loc(u)

for some small ε > 0. The holonomy homeomorphisms Ξz are smooth and depend
smoothly on z.

Define V (Ass, Asu) = ∪z∈AssΞzA
su and

V (Ass, Asu, t0) = ∪−t0≤t≤t0ΦtV (Ass, Asu).

If we choose Ai to be a sufficiently small ball neighborhood of q in W i
loc(q) and

t0 sufficiently small, then V (Ass, Asu, t0) is a neighborhood of q with a product
structure in the sense of Definition 3.2.
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The tangent bundle of the strong stable or strong unstable foliation of a com-
ponent Q of a stratum can be equipped with the so-called modified Hodge norm
which induces a Hodge distance dH on the leaves of the foliation of a stratum of
abelian differentials.

The following result is the first part of Theorem 8.12 of [ABEM12].

Theorem 3.5. There exists a number cH > 0 not depending on choices such that
for every q ∈ Q, any q′ ∈W ss

loc(q) and all t > 0 we have

dH(Φtq,Φtq′) ≤ cHdH(q, q′).

The following is Theorem 2 of [H18]. In its formulation, Bi(q, r) denotes the ball
of radius r about q for the Hodge distance on the local leaf W i

loc(q) of the foliation
W i through q. The balls Bi(u, r0) are not required to be contained in the set U
(i = ss, su).

Theorem 3.6. Let q ∈ Qgood be a birecurrent point. Then there is a number r0 =
r0(q) > 0, and there is a neighborhood U of q in Qgood with the following property.
Let z ∈ U be birecurrent; then for every a > 0 there is a number T (z, a) > 0 so
that for all T > T (z, a), we have ΦTBss(z, r0) ⊂ Bss(ΦT (z), a) and ΦTBsu(z, a) ⊃
Bsu(ΦT (z), r0).

3.2. Shadowing and Anosov closing. The goal of this subsection is to establish
a strong version of shadowing and Anosov closing for the Teichmüller flow on affine
invariant manifolds which is familiar in hyperbolic dynamics. We begin with some
basic definitions.

Definition 3.7. Let Y = {Yi | i ∈ I} be a non-empty finite collection of open
relatively compact subsets of an affine invariant manifold C. For some n > 0,
an (n,Y)-pseudo-orbit for the Teichmüller flow Φt on C consists of a sequence of
points q0, q1, . . . , qm ∈ C and a sequence of numbers t0, . . . , tm−1 ∈ [n,∞) with the
following property. For every 1 ≤ j ≤ m, there exists some κ(j) ∈ I such that
Φtj−1qj−1, qj ∈ Yκ(j). The pseudo-orbit is called periodic if qm = q0.

Although we describe a pseudo-orbit by a sequence of pairs (qi, ti) ∈ C × (0,∞),
we view a pseudo-orbit as a finite ordered collection of compact orbit segments such
that the endpoint of the i − 1-th segment is close to the starting point of the i-th
segment. With this interpretation, the shadowing property [Bw73] for hyperbolic
flows on a compact Riemannian manifold states that for sufficiently large n and
sufficiently small ε, if Yε is the collection of all open balls of radius ε then an
(n,Yε)-pseudo-orbit is fellow-traveled by an orbit with prescribed precision: For
every number σ > 0, there are n > 0, ε > 0 such that for any (n,Yε)-pseudo-orbit
η, there exists an orbit segment whose Hausdorff distance to η is less than σ. In
the case that the pseudo-orbit is periodic, this orbit segment can be chosen to be
a periodic orbit. The point here is that there is no upper bound on the number of
orbit segments contained in the pseudo-orbit.

For the Teichmüller flow on components of strata or, more generally, on affine
invariant manifolds, we can not expect that the shadowing property for all small
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balls holds true. However, Proposition 3.8 below establishes a local version of
shadowing for periodic pseudo-orbits on affine invariant manifolds.

For its formulation, assume that the open relatively compact subsets Yi (i ∈ I)
of the affine invariant manifold C have disjoint closure. Assume furthermore that
the closure of each Yi is contained in an open relatively compact contractible subset
Vi of Cgood and that the sets Vi are pairwise disjoint. Now suppose we are given a
periodic (n,Y)-pseudo-orbit, specified by points q0, q1, . . . , qm = q0 ∈ C, numbers
t0, . . . , tm−1 ∈ [n,∞) and indices κ(j) ∈ I. Connect Φtj−1qj−1 to qj by an arc αj in
Vκ(j). The concatenation of the orbit segments connecting qj−1 to Φtj−1qj−1 with
the arcs αj defines a closed curve η in C which we call a V-characteristic curve of
the pseudo-orbit, where V = {Vi | i ∈ I}. Note that such a characteristic curve is
by no means unique, but as the sets Vj are contractible and have been selected a
priori, any other such curve can be obtained by a collection of small deformations
in a fixed contractible subset of Cgood.

By the definition of the set Cgood, every path η : [0, a] → Cgood admits a lift η̃
to the Teichmüller space of marked abelian differentials, and such a lift is unique
up to translation by an element of Mod(S). Now assume that the path η is closed.
Then the endpoints of each lift η̃ of η are identified by a unique element of Mod(S),
and two distinct lifts give rise to conjugate elements in Mod(S) as made precise in
Lemma 2.2.

The following is the version of the shadowing properties we need. For its formu-
lation, recall from [M82, V86] that for every component Q of a stratum of abelian
or quadratic differentials, there is a Φt-invariant Borel probability measure λ on Q
in the Lebesgue measure class, the so-called normalized Masur Veech measure.

Proposition 3.8. Let C be an affine invariant manifold, let q1, . . . , qk ∈ Cgood be
birecurrent points and for each j let Uj be a neighborhood of qj in Cgood. Then there
are open relative compact neighborhoods Yj ⊂ Vj ⊂ Uj of qj, where Vj contractible
with a product structure, and there is a number R0 > 0 with the following property.
Let Y = {Yj | j}, let V = {Vj | j} and let η be a V-characteristic curve of a
periodic (R0,Y)-pseudo-orbit, given by points y0, . . . , ym−1 and numbers ti > R0

such that Φti−1yi−1, yi ∈ Yκ(i) for some κ(i) ∈ {1, . . . ,m}. Then there is a periodic
orbit γ ⊂ Cgood for Φt which passes through each of the sets Vκ(i) at times close to∑
s≤i−1 ts and which defines the same conjugacy class in Mod(S) as η. If C = Q is

a component of a stratum then for any number δ > 0 and any finite set of birecurrent
points Σ ⊂ ∪jVj, the sets Yj ⊂ Vj can be chosen so that λ(Yj) ≥ λ(Vj)(1− δ) and
that Σ ⊂ ∪jYj.

Proof. The proof is divided into three steps. In the first step, we construct the
neighborhoods Yj ⊂ Vj ⊂ Uj of the points qj and determine the number R >
0 whose existence is stated in the proposition. These sets have some additional
properties used to obtain the dynamical control we need.

In the second step we consider the element ϕ ∈ Mod(S) determined by a V-
characteristic curve of a periodic (R,Y)-pseudo orbit, and we show that it is pseudo-
Anosov. In particular, it determines a periodic orbit for the Teichmüller flow in the
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moduli space of abelian differentials. We then use a fixed point argument to show
that this orbit is contained in C and has the properties stated in the proposition.

The last step contains the measure control for components of strata which is the
last part of the proposition.

Step 1.

Using the notation from the proposition, for each j ≤ k choose a closed con-
tractible neighborhood Vj ⊂ Uj of qj with a product structure which furthermore
has the properties stated in Theorem 3.6. Recall that such a product structure is
determined by a choice Ṽj of a component of the preimage of Vj in the Teichmüller
space of marked abelian differentials, of two closed disjoint subsets Dj ,Kj of the
space of projective measured foliations which are homeomorphic to closed balls of
dimension d = dimC(C+)− 1, an embedding

Λj : Dj ×Kj → Ṽj

and a number εj > 0 with the properties stated in Definition 3.2.

For z̃ ∈ Ṽj denote by W ss
loc(z̃) the local strong stable manifold of z̃, and let simi-

larly W su
loc(z̃) be the local strong unstable manifold. We require that the projections

into C of the union of all these local strong stable and strong unstable manifolds
are contained in a fixed contractible subset of Uj . Note that this is not automatic
as some of these local manifolds may not be contained in Vj , but it can be achieved
by making Vj smaller if necessary. For z ∈ Vj we denote by W i

loc(z) the projection

to C of the set W i
loc(z̃) where z̃ is the preimage of z in Ṽj ; this does not depend

on the choice of the component Ṽj . By perhaps decreasing the size of Vj we may
assume that W i

loc(z̃) ⊂ Bi(z̃, r0) for all z̃ ∈ Vj , where r0 > 0 is as in Theorem 3.6.

Recall from Example 3.4 that for two points z̃, ũ ∈ Ṽj there is a holonomy map

Ξ(ũ, z̃) : W su
loc(ũ)→W su

loc(z̃).

For each ṽ ∈ W su
loc(ũ), the point Ξ(ũ, z̃)(ṽ) is the unique point in W su

loc(z̃) whose
marked vertical projective measured foliation coincides with the marked vertical
projective measured foliation of ṽ.

The holonomy maps Ξ(ũ, z̃) are smooth and depend smoothly on ũ, z̃. In partic-
ular, they are bilipschitz for the Hodge distance dH . Furthermore, if z̃ ∈ W su

loc(ũ)
then Ξ(ũ, z̃) = Id. Thus by perhaps decreasing the size of the sets Vj we may
assume that the bilipschitz constants for these holonomy maps are at most 2.

Choose a compact neighborhood Zj ⊂ Vj of qj with a product structure which
is contained in the interior of Vj . For z ∈ Zj let W i

loc,Zj
(z) (i = su, ss) be the local

strong stable and strong unstable manifold for Zj . By continuity and compactness,
there exists a number r > 0 such that for any z ∈ Zj , the dH -distance between the
set W i

loc,Zj
(z) and the boundary of W i

loc(z) is at least r.
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By Theorem 3.5 and Theorem 3.6 and the choice of the sets Zj , we can find a
contractible neighborhood Yj ⊂ Zj of qj with a product structure and a number
Tj > 0 with the following property. If z ∈ Yj and if T > Tj then

dH(ΦT z′,ΦT z′′) ≤ r

4
for all z′, z′′ ∈W ss

loc(z) and(2)

dH(Φ−T z′,Φ−T z′′) ≤ r

4
for all z′, z′′ ∈W su

loc(z).

Namely, choose Tj > 0 so that the estimate (2) is satisfied for qj and the constant
r/8cH instead of r/4. Such a number exists by Theorem 3.6 and the choice of the
sets Vj . By continuity, the estimate with r/4cH then holds true for this number
Tj and for all points z in a neighborhood Yj of qj which can be chosen to be
contractible, with a product structure. By Theorem 3.5, the estimate (2) then
holds true for all T ≥ Tj and for all z ∈ Yj . Define Y = {Yj},V = {Vj} and let
R = maxj Tj .

Step 2.

Using the notations from Step 1, let η be a V-characteristic curve of a periodic
(R,Y)-pseudo-orbit. By definition, η is determined by points yi ∈ Yκ(i), numbers
ti > R (0 ≤ i ≤ m − 1) and arcs in the contractible sets Vκ(i). Parametrize η
in such a way that for each orbit segment, the parametrization coincides with the
parametrization as a flow line of the Teichmüller flow and that η(

∑
i<` ti + `) = y`

(i.e. the connecting arcs αj are parametrized on a unit interval). For simplicity of
notation, assume that η(0) ∈ Y1. Let T =

∑
j tj +m > 0 be such that η(T ) = η(0).

Let as before Q be the component of the stratum containing C and let Q̃ be
a component of the preimage of Q in the Teichmüller space of marked abelian
differentials. Let C̃ ⊂ Q̃ be a component of the preimage of C. We assume that
these components are chosen in such a way that they contain the set Ṽ1. Let η̃ be a
lift of η to C̃ which begins at η̃(0) = ỹ0 ∈ Ṽ1. Then there is an element ϕ ∈ Mod(S)
which maps the endpoint η̃(T ) of η̃ back to ỹ0. As any element of Mod(S) either

stabilizes C̃ or maps C̃ to a disjoint component of the preimage of C, we know that
ϕ ∈ Stab(C̃).

By Lemma 5.1 of [H13] (and after perhaps increasing the number R > 0), the
mapping class ϕ is pseudo-Anosov (see also the bottom of p.523 of [H13]). Our goal
is to show that it defines a periodic orbit γ in C with the properties stated in the
proposition. Note that this is not implied by the fact that ϕ ∈ Stab(C̃). To this
end we use a variation of the argument in the proof of Proposition 5.4 of [H13].

Let γ̃ ⊂ Q̃ be the cotangent line of the axis in Teichmüller space of the pseudo-
Anosov element ϕ. The curve γ̃ is a ϕ-invariant orbit of the Teichmüller flow in Q̃
which projects to the periodic orbit γ. The (biinfinite) lift η̃ of the characteristic
curve η is contained in a uniformly bounded neighborhood of γ̃.

The pseudo-Anosov element ϕ acts with north-south dynamics on the Thurston
sphere PMF of projective measured foliations of the surface S. This means that
ϕ has precisely two fixed points in PMF , one is attracting, the other repelling.
Furthermore, if ũ ∈ γ̃ is arbitrary, then the vertical projective measured foliation ν
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of ũ equals the attracting fixed point of ϕ, and the horizontal projective measured
foliation ξ of ũ equals the repelling fixed point of ϕ.

It now suffices to verify that with the above notation, we have ξ ∈ D1, ν ∈ K1.
Namely, every flow line of the Teichmüller flow in the Teichmüller space of abelian
differentials which is defined by a differential with horizonal measured foliation in
D1 and vertical measured foliation in K1 passes through the set Ṽ1, in particular
it is entirely contained in C̃ by invariance of C̃. Thus if ξ ∈ D1, ν ∈ K1 then the
periodic orbit γ is contained in C, and it passes through the set V1. As the initial
point of the periodic pseudo-orbit was arbitrarily chosen among the starting points
of the orbit segments which determine the pseudo-orbit, the periodic orbit γ passes
through each of the sets Vκ(i), and the crossing times fulfill the estimate stated in
the proposition. Thus γ has all the properties stated in the proposition.

Using the argument on p.524 of [H13], we show that indeed ν ∈ K1. To this end
we claim that

Φ−t0W su
loc(η̃(t0)) ⊂W su

loc(ỹ0).

Namely, since t0 > R and since η(t0) ∈ Yκ(1), the estimate (2) shows that the

dH -diameter of A = Φ−t0W su
loc(η̃(t0)) is at most r/4. On the other hand, the

set A contains the point η̃(0) = ỹ0 ∈ Ỹ1 ⊂ Ṽ1. Now by assumption, the Hodge
distance between ỹ0 and the boundary of W su

loc(ỹ0) is at least r and hence indeed
Φ−t0W su

loc(η̃(t0)) ⊂ W su
loc(z̃0). In particular, if we denote by Kκ(1) ⊂ PMF the

closed set of all vertical projective measured foliations for points in the component
Ṽκ(1) of the preimage of Vκ(1) containing η̃(t0), then we have Kκ(1) ⊂ K1.

The above reasoning can be iterated: For s ≥ 1 let Kκ(s) be the set of all
projective measured foliations of all marked abelian differentials which are contained
in the component Ṽκ(s) of the preimage of Vκ(s) containing η̃(

∑
j<s tj + s). We

show by induction on s that for any s ≥ 1, the set Kκ(s) is entirely contained
in K1 = Kκ(0). The case s = 1 was discussed in the previous paragraph, so
let us assume that this holds true for all s < s0 for some s0 ≥ 2. Replacing the
starting point y0 of the periodic pseudo-orbit by y1, we conclude from the induction
hypothesis that Kκ(s0) ⊂ Kκ(1). However, we showed above that Kκ(1) ⊂ K1. This
yields the induction step.

To summarize, for each t > 0 the vertical projective measured foliation of η̃(t) is
contained in the compact set K0. Now the attracting fixed point of ϕ is the limit
as t → ∞ of the vertical projective measured foliation of η̃(t). Namely, the path
η̃ is invariant under the pseudo-Anosov element ϕ. Since ϕ acts with north-south
dynamics on PMF , any non-constant orbit on PMF under forward iteration of ϕ
converges to the attracting fixed point of ϕ. Thus this attracting fixed point of ϕ
is indeed contained in the compact set K1.

Reversing the direction of the flow Φt and replacing ϕ by ϕ−1, the same argument
applies to the repelling fixed point of ϕ and shows that this repelling fixed point
is contained in D1 = Dκ(0). In particular, the periodic orbit of Φt defined by ϕ is
contained in C, and it passes through V1. As remarked earlier, this suffices for the
proof of the main part of the proposition.

Step 3.



STRETCH FACTORS 17

Consider now a component Q of stratum of abelian or quadratic differentials,
equipped with Masur Veech measure λ. We have to show that for any given δ > 0
the sets Yj can be chosen in such a way that λ(Yj) > λ(Vj)(1 − δ). To this end
note that we may choose the sets Vj as in the beginning of this proof in such a way
that the Lebesgue measure of their boundaries vanish. In a second step, we choose
the sets Zj in such a way that they satisfy λ(Zj) ≥ (1 − δ/2)λ(Vj). Let r > 0 be
sufficiently small that the modified Hodge distance of every point z ∈ Zj to the
boundary of W i

loc(z) is at least r.

By our choices and Theorem 3.6, for every birecurrent point z ∈ Zj there exists
a number T = T (z) > 0 such that the estimates (2) above hold true provided
that t ≥ T (z), with r/4 replaced by r/8. As Φt is smooth and as birecurrent
points in Zj have full Masur Veech measure, we can find a number Tj > 0 such
that Tj ≥ T (z) for a subset Y ′j of Zj of measure at least (1 − δ)λ(Vj). Then the
corresponding estimate for r/4 holds true for an open neighborhood Yj of Y ′j . Let
R = max{Tj | j}.

Now the proof of the Anosov closing property only used the estimate (2) beyond
some standard properties of the Teichmüller flow. This yields the proposition with
the additional volume control on the nested sets Yj ⊂ Vj . Furthermore, by Theorem
3.6 and as the sets Vj are open, we may also construct the sets Yj in such a way
that ∪jYj contains any prescribed finite subset Σ ⊂ ∪jVj consisting of birecurrent
points. This finishes the proof. �

Remark 3.9. Let C be an affine invariant manifold, contained in a component Q of
a stratum, and let C̃ be a component of the preimage of C in the Teichmüller space of
abelian differentials. If ϕ ∈ Mod(S) defines a periodic orbit of the Teichmüller flow
on C, then ϕ is a pseudo-Anosov mapping class which is conjugate to an element of
Stab(C̃). However, it is not true that any pseudo-Anosov mapping class in Stab(C̃)
determines a periodic orbit for Φt contained in the closure of C. An example of this
situation is the case that C equals a non-principal stratum of abelian differentials
with at least one simple zero. In this case the preimage of C in the Teichmüller
space of abelian differentials is connected [H14] and hence the stabilizer of this
preimage equals the entire mapping class group. However, the set of periodic orbits
for the Teichmüller flow contained in the closure of C is a proper subset of the set
of all periodic orbits.

In the case of a single birecurrent point q on an affine invariant manifold C,
Proposition 3.8 predicts for every contractible neighborhood U of q a nested set of
neighborhoods Y ⊂ V ⊂ U of q and a number R > 0 with the following property.
For every y ∈ Y and T > R so that ΦT y ∈ Y , there is a periodic orbit passing
through V of period close to T which defines the same conjugacy class in Mod(S)
as a characteristic curve of the periodic (R, Y )-pseudo-orbit (y, T ).

3.3. Semigroups defined by recurring orbits. The goal of this subsection is
to establish a parametrized version of Proposition 3.8. This is needed to associate
to a periodic orbit of Φt on an affine invariant manifold C which passes through
an a priori chosen subset of C an element of Mod(S) rather than a conjugacy class
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in such a way that adjunction of orbit segments in a pseudo-orbit corresponds to
multiplication of group elements.

To this end let again q ∈ Cgood be a good birecurrent point. Let U ⊂ Cgood be
a neighborhood of q and let Y ⊂ V ⊂ U be a nested family of neighborhoods of
q in Cgood as in Proposition 3.8. We may assume that V is contractible and has a
product structure, that Y consists of a finite union of contractible sets with product
structures and that any connected component of the intersection with Y or V of
an orbit segment of the Teichmüller flow is an arc of fixed length 2t0.

For R0 > 0 as in Proposition 3.8 let y ∈ Y and let T > R0 be such that ΦT y ∈ Y .
A characteristic curve of this orbit segment determines uniquely a periodic orbit γ
of Φt which intersects V in an arc of length 2t0. There may be more than one such
intersection arc, but there is a unique arc determined by the requirement that the
parametrized periodic orbit starting at a point in this arc uniformly fellow-travels
the pseudo-orbit issuing from y. Choose the midpoint of this intersection arc as a
basepoint for γ and as an initial point for a unit speed parametrization of γ.

Let Γ0 be the set of all parametrized periodic orbits of this form for points y ∈ Y
with ΦT y ∈ Y (T > R0). There is a bijection between such periodic orbits and
subsets of ΦTV ∩ V containing points in ΦTY ∩ Y . With some care, these subsets
can be chosen to be components of ΦTV ∩ V [H13], but we will not need this
somewhat technical fact in the sequel.

Fix once and for all a lift Ṽ of the contractible set V to a component C̃ of
the preimage of C in the Teichmüller space of marked abelian differentials. A
parametrized periodic orbit γ which starts in V lifts to a subarc of a flow line of
the Teichmüller flow on C̃ with starting point in Ṽ . The endpoint of this arc is
mapped to its starting point by a pseudo-Anosov element Ω(γ) ∈ Mod(S). The
conjugacy class of Ω(γ) is uniquely determined by γ, and the element Ω(γ) only

depends on the choice of Ṽ (and the component of γ∩V as explained above). Thus
a characteristic curve of a sufficiently long orbit segment beginning and ending in
Y determines an element in Mod(S).

The following proposition is a parametrized version of shadowing as established
in Proposition 3.8.

Proposition 3.10. For γ1, . . . , γm ∈ Γ0, there is a point z ∈ V , and there are
numbers 0 < t1 < · · · < tm with the following properties.

(1) Φtiz ∈ V .
(2) For each i ≤ m, a V -characteristic curve of the orbit segment {Φtz | ti−1 ≤

t ≤ ti} defines the element Ω(γi) in Mod(S).
(3) A V -characteristic curve of the orbit segment {Φtz | 0 ≤ t ≤ tm} deter-

mines a parametrized periodic orbit γ for Φt with initial point in V , and
Ω(γ) = Ω(γk) ◦ · · · ◦ Ω(γ1).

Proof. The proposition is a fairly immediate consequence of Proposition 3.8 and
the definitions.
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Namely, recall that an orbit γ ∈ Γ0 is constructed from a point y ∈ Y and a
number s(γ, y) > R0 so that Φs(γ,y) ∈ Y . The orbit γ then is the unique periodic
orbit determined by the characteristic curve of the pseudo-orbit (y, s(γ, y)).

Now let γ1, . . . , γm ∈ Γ0, and for each i ≤ m let (yi, si) be as in the previous
paragraph for γi. By Proposition 3.8, there exists a parametrized periodic orbit γ ∈
C beginning at a point z ∈ V which passes through V at times ti close to

∑
`<i−1 s`

and which defines the same conjugacy class in Mod(S) as the concatenation of
the pseudo-orbits (y1, s1), . . . , (ym, sm). But this just means that for each i a V -
characteristic curve of the orbit segment ∪t∈[ti−1,ti]Φ

tz defines the element Ω(γi)
in Mod(S). It is now immediate from the construction that γ can be parametrized
in such a way that the properties in the proposition are fulfilled. �

As a consequence, the subsemigroup 〈Ω(Γ0)〉 of Mod(S) generated by {Ω(γ) |
γ ∈ Γ0} consists of pseudo-Anosov elements whose corresponding periodic orbits
are contained in the affine invariant manifold C and pass through the set V . This
can be viewed as a version of Rauzy-Veech induction as used in [AV07, AMY16]
which is valid for all affine invariant manifolds, in particular for strata of quadratic
differentials, or as a version of symbolic dynamics for the Teichmüller flow on strata.

4. Local Zariski density for affine invariant manifolds

The goal of this section is to prove Theorem 3. Throughout this section we
assume that g ≥ 2, and we use the assumptions and notations from Section 2.

Let Q+ ⊂ H+ be a component of a stratum and let C+ ⊂ Q+ be an affine
invariant manifold. Recall from Section 2 that the image of the projection p :
TC+ → Π∗H⊗RC|C+ to absolute periods is a flat subbundle of Π∗H⊗RC|C+ which
is invariant under both the complex structure defined by enlargement of coefficients
(the tensor product) as well as the complex structure of the Hodge bundle. We
denote by 2` ≥ 2 its complex dimension. Then p(TC+) ∩ Π∗H|C+ is a flat bundle
Z = ZR whose fibre is a symplectic subspace of the fibre of Π∗H (recall that the
fibre of Π∗H can be identified with H1(S,R)) of real dimension 2`. As before, by
a flat subbundle of the bundle Π∗H|C+ we mean a bundle which is invariant under
the restriction of the Gauss Manin connection. We call Z the absolute real tangent
bundle of C+. The Gauss Manin connection restricts to a flat connection on Z.

The monodromy of the restriction of the Gauss Manin connection to Z is defined
as the subgroup of GL(2`,R) which is generated by parallel transport along loops
in C+ based at some fixed point p. As the Gauss Manin connection is symplectic,
this monodromy group is a subgroup of Sp(2`,R). Its conjugacy class does not
depend on any choices made.

Definition 4.1. The monodromy group of the affine invariant manifold C+ of rank
` is the subgroup of Sp(2`,R) which is the monodromy of the absolute real tangent
bundle Z of C+ for the restriction of the Gauss Manin connection.
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A geometric description of the monodromy group of C+ is as follows. Observe
first that the monodromy coincides with the monodromy of the restriction of the
bundle Z to the intersection C of C+ with the moduli space of area one abelian

differentials. Let C̃ be a component of the preimage of C in the Teichmüller space
of abelian differentials. The stabilizer Stab(C̃) of C̃ in the mapping class group maps
via the natural surjective homomorphism Ψ : Mod(S) → Sp(2g,Z) to a subgroup
of Sp(2g,Z). There is a linear symplectic subspace H ⊂ R2g of dimension 2` which

is preserved by Ψ(Stab(C̃)). The monodromy group of C then is the projection of

Ψ(Stab(C̃)) to the group of symplectic automorphisms of H. This description is
immediate from the description of the Gauss Manin connection in Section 2.1.

Example 4.2. If C+ is a Teichmüller curve, then the monodromy group of C+
is just the Veech group of C+, acting on the two-dimensional symplectic subspace
of H1(S,R) which is spanned by the real and imaginary part, respectively, of an
abelian differential ω ∈ C+. Thus this monodromy group is a lattice in Sp(2,R) =
SL(2,R), in particular it is Zariski dense in SL(2,R).

The proof of Theorem 3 is divided into two steps contained in two subsections.
The first step establishes Zariski density of the (global) monodromy group, and in
a second step, we extend this result to the local monodromy group.

4.1. The monodromy group of affine invariant manifolds. The goal of this
subsection is to show that the monodromy group of any affine invariant manifold is
Zariski dense in Sp(2g,R). We will make use of the fact that an abelian differential
on S defines a singular euclidean metric on S with cone points of cone angle a
multiple of 2π at the zeros of the differential. This singular euclidean metric is given
by a family of charts, defined on the complement of the zeros of the differential,
with chart transitions being translations. As it is customary in the literature, if
we view an abelian differential on S as a singular euclidean metric, we refer to
these data as a translation surface. We denote such a translation surface by X or
by a pair (X,ω) if we like to specify the abelian differential ω which defines the
translation structure. Note that ω can be read off from the horizontal and vertical
measured foliations of the translation surface.

We begin with evoking a result of Wright [W15]. He introduced the following
two deformations of a translation surface (X,ω).

The horocycle flow is defined as part of the SL(2,R)-action,

ut =

(
1 t
0 1

)
⊂ SL(2,R),

and the vertical stretch is defined by

at =

(
1 0
0 et

)
⊂ GL+(2,R).

For a collection Y of horizontal cylinders on a translation surface X (i.e. cylinders
foliated by leaves of the horizontal foliation), define the cylinder shear uYt (X) to
be the translation surface obtained by applying the horocycle flow to the cylinders
in Y but not to the rest of X. Similarly, the cylinder stretch aYt (X) is obtained by
applying the vertical stretch only to the cylinders in Y.
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The following lemma is a consequence of the work of Wright [W15]. For its
formulation, a translation surface (X,ω) is called horizontally periodic if it is a
union of horizontal cylinders. Via the natural pairing 〈, 〉 between first homology
and first cohomology of S, a class in H1(S,R) defines an element of H1(S,R)∗.

Lemma 4.3. Let C+ be an affine invariant manifold of rank `. Then there exists
a horizontally periodic surface (X,ω) ∈ C+ with the following properties. There is
a decomposition of X into ` + 1 collections Y1, . . . ,Y`,Y`+1 of horizontal cylinder
families. The family Y`+1 may be empty. The homology classes of the cylinder
families Yi (i ≤ `) span a subspace of the dual pTC∗+ of pTC+ of dimension `, and
the moduli of all of the cylinders in each of the collections Yi (i ≤ `) are rational.

For each i ≤ `, the cylinder shear uYi
t (X) remains in C+.

Proof. Let (X,ω) ∈ C+ be a translation surface with the maximal number of parallel
cylinders. We may assume that these cylinders are horizontal. Following the proof
of Theorem 1.10 of [W15], (X,ω) is horizontally periodic, and the core curves of
the horizontal cylinders span a subspace of the dual pTC∗+ of pTC+ of dimension
`. No set of core curves of parallel cylinders on a translation surface Y ∈ C+ may
span a subspace of pTC∗+ of dimension greater than `.

Following Definition 4.4 of [W15], call two homology classes in H1(S,R) C+-
collinear if they have collinear images in TC∗+, i.e. if they are scalar multiples. By
Definition 4.6 of [W15], two cylinders in X are called C+-parallel if they are parallel
at X and at every nearby X ′ ∈ C+. Being C+-parallel is an equivalence relation on
the set of cylinders.

Let Zi (i = 1, . . . , k) be the set of equivalence classes of horizontal cylinders
in (X,ω) for this equivalence relation. By the choice of (X,ω) and the results in
Section 4 of [W15], we have k = `, i.e. the horizontal cylinders of (X,ω) group into
precisely ` equivalence classes. Lemma 4.11 of [W15] shows that the cylinder shear
of any of the C+-parallel cylinder families Zi remains in C+.

Consider one of the families Zi. The cylinder shear for Zi remains in C+. Corol-
lary 3.4 of [W15] states that if the moduli of the cylinders in this family are not
all rationally dependent, then there is a proper decomposition Zi = A ∪ B so that
the cylinder shears for the families A,B remain in C+. Thus we can subdivide the

cylinder family Zi = ∪jZji where j ≥ 1, where the moduli of the cylinders in each

of the families Zji are rationally dependent and such that for each j, the cylinder

shear u
Zj

i
t (X) remains in C+.

By Theorem 5.1 of [W15], for all i ≤ ` the vertical stretch of the cylinder family
Zi is contained in C+. This vertical stretch changes the moduli of the cylinders
in the family Zi while keeping the moduli of the cylinders in the family Zj fixed
for all j 6= i. If A1, A2 ⊂ Zi are cylinders with rationally dependent moduli, then
the moduli of their images under the vertical stretch are rationally dependent as
well. As a consequence, by successively modifying (X,ω) with a sequence of vertical
stretches of the cylinder families Zi (i = 1, . . . , `) we can assure that in the image
surface (X ′, ω′) which is again horizontally periodic, the moduli of all cylinders in
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the cylinder families Y1, . . . ,Y` which are the images inX ′ of the families Z1
1 , . . . ,Z1

`

are rational.

Let Y`+1 = X ′ − ∪iYi. Then the surface (X ′, ω) and the cylinder families Yi
have the properties stated in the lemma. �

Define a piecewise affine transformation of a translation surface (X,ω) to be
a continuous self-map F : X → X with the following property. There exists an
F -invariant decomposition X = ∪iXi into finitely many components with geodesic
boundary for the singular euclidean metric, and the restriction of F to each of
these components is affine. In contrast to an affine automorphism of (X,ω), we
allow that the restriction of F to some of the components Xi equals the identity. A
cylinder shear of a collection Y of horizontal cylinders with non-empty complement
is such a piecewise affine transformation. If the result of such a transformation
is isometric to (X,ω) then we call the piecewise affine transformation a piecewise
affine automorphism of (X,ω).

A transvection in a 2g-dimensional symplectic vector space over a field K is a
map A ∈ Sp(2g,K) which fixes a subspace of K2g of codimension one and has
determinant one (see [Hl08]). Any map of the form

α→ α+ ι(α, β)β

for some 0 6= β ∈ K2g (here as before, ι is the symplectic form) is a transvection.
We call this map a transvection by β. The main consequence of Lemma 4.3 we are
going to use is the following

Corollary 4.4. Let C+ be an affine invariant manifold of rank ` ≥ 1. Then there
is a horizontally periodic surface (X,ω) ∈ C+, and there is a free abelian group of
rank ` of piecewise affine transformations of (X,ω) which preserves C+. This group
of piecewise affine transformations contains a lattice H, i.e. a subgroup isomorphic
to Z`, which acts on (X,ω) as a group of Dehn-multitwists, and it acts on H1(S,R)
as a group of transvections of rank `. This action restricts to a group of linear
automorphisms of pTC∗+ of rank `.

Proof. Let (X,ω) be a translation surface as in Lemma 4.3. Let Yi (i ≤ `) be one
of the cylinder families whose existence was shown in Lemma 4.3. The moduli of
all cylinders in the family are rational. Moreover, the cylinder shear uYi

t (X) for
this cylinder family remains in C.

As all the moduli of the cylinders are rational, this cylinder shear is eventually
periodic. This means that for each i there exists some number ri > 0 such that for
some fixed marking of the surface X, the surface uYi

ri (X) is the image of X by a
Dehn multitwist Ti about the core curves of the cylinders in Yi.

Since the core curves of the horizontal cylinders in X are pairwise disjoint, the
Dehn multitwists Ti commute. Therefore these multitwists generate a free abelian
group of rank ` of piecewise affine automorphisms of X. The multitwist Ti acts as
a transvection on H1(S,R) by a homology class of the form

∑
s b
s
i ζ
s
i where bsi ∈ Z

and where ζsi runs through the homology classes of the waist curves of the oriented
cylinders in the family Yi.
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Each of the homology classes ai =
∑
s b
s
i ζ
s
i (i ≤ `) induces a linear functional on

the fibre of TC+ at X. The corollary now follows from the fact that by the choice of
(X,ω), the rank of the subspace of TC∗+ spanned by these homology classes equals `.
Then the subgroup of Mod(S) generated by the Dehn multitwists Ti (i = 1, . . . , `)
acts on H1(S,R) as an abelian group of transvections of rank `. �

Our criterion for Zariski density relies on a result of Hall [Hl08]. For its formu-
lation, for a prime p ≥ 2 let Fp be the field with p elements. Then Sp(2g, Fp) is
a finite group. Therefore for every A ∈ Sp(2g, Fp) there is some ` ≥ 1 such that
A` = A−1. As a consequence, if G < Sp(2g, Fp) is any subsemigroup then for all
x, y ∈ G we have xy−1 ∈ G as well and hence G < Sp(2g, Fp) is a group.

In the formulation of the following lemma, ι denotes the symplectic form on a
symplectic vector space F 2`

p over Fp of rank 2`.

Lemma 4.5. Let p ≥ 3 be an odd prime and let G < Sp(2`, Fp) be a subgroup
generated by 2` transvections by the elements of a set E = {e1, . . . , e2`} ⊂ F 2`

p

which spans F 2`
p . Assume that there is no nontrivial partition E = E1 ∪ E2 so that

ι(ei1 , ei2) = 0 for all eij ∈ Ej. Then G = Sp(2`, Fp).

Proof. For each i write Ai(x) = x+ ι(x, ei)ei. Let G < Sp(2`, Fp) be the subgroup
generated by the transvections A1, . . . , A2`. Since the vectors e1, . . . , e2` span F 2`

p ,
the intersection of the invariant subspaces of the transvections Ai (i ≤ 2`) is trivial.

We claim that the standard representation of G on F 2`
p is irreducible. Namely,

assume to the contrary that there is an invariant proper linear subspace W ⊂ F 2`
p .

Let 0 6= w ∈W ; then there is at least one i so that ι(w, ei) 6= 0. By invariance, we
have w + ι(w, ei)ei ∈W and hence ei ∈W since Fp is a field.

As a consequence, W is spanned by some of the ei, say by ei1 , . . . , eik , and if j
is such that ι(eis , ej) 6= 0 for some s ≤ k then ej ∈ W . However, this implies that
W = F 2`

p by the assumption on the set E = {ei}.

To summarize, G is an irreducible subgroup of Sp(2`, Fp) generated by transvec-
tions (where irreducible means that the standard representation of G on F 2`

p is
irreducible). Furthermore, as p is an odd prime by assumption, the order of each
of these transvections is not divisible by 2. Theorem 3.1 of [Hl08] now yields that
G = Sp(2`, Fp) which is what we wanted to show. �

Remark 4.6. By Proposition 6.5 of [FM12], Lemma 4.5 is not true for p = 2.

We use Lemma 4.5 to establish a criterion for Zariski density of a subgroup
of Sp(2`,R) acting on a 2`-dimensional symplectic subspace of H1(S,R). In its
formulation, we use the standard pairing

〈, 〉 : H1(S,R)×H1(S,R)→ R
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between homology and cohomology to view a class in H1(S,R) as an element
of H1(S,R)∗. A symplectic automorphism of H1(S,R) induces a symplectic au-
tomorphism of H1(S,R). Recall also that the real part Re(q̃) and the imag-
inary part Im(q̃) of a marked abelian differential q̃ define a cohomology class
[Re(q̃)], [Im(q̃)] ∈ H1(S,R).

For a symplectic subspace E of H1(S,R) denote by Sp(E∗) the group of symplec-
tic automorphisms of its dual E∗. The image of Mod(S) under the homomorphism
Ψ is the integral symplectic group Sp(2g,Z) and hence reduction of coefficients
modulo a prime p makes sense. By a weighted oriented simple multicurve c on S
we mean a simple oriented multicurve with integral weights. For some fixed choice
of a marking of S, such a weighted oriented simple multicurve then defines a ho-
mology class [c] ∈ H1(S,Z). In the formulation of the proposition below we use
such a fixed choice of a marking for S.

Proposition 4.7. Let C be an affine invariant manifold of rank `, let C̃ be a
component of the preimage of C in the Teichmüller space of abelian differentials
and let Z = p(T C̃+)∩Π∗H|C+. Let c1, . . . , c` be pairwise disjoint weighted oriented
simple multicurves whose (marked) homology classes [ci] span a subspace of Z∗ of
rank `. Let U ⊂ C be an open contractible set and assume that there is a component
Ũ of the preimage of U in C̃ such that 〈[Re(z̃)], [ci]〉 > 0 for all z̃ ∈ Ũ , all 1 ≤ i ≤ `.
Let Ω(Γ0) ⊂ Mod(S) be the subsemigroup determined by a suitable pair of open

contractible subsets Y ⊂ V of U and the lift Ũ of U as in Proposition 3.10. Then
the subgroup of Sp(Z∗) generated by Ψ(Ω(Γ0)) and the Dehn multitwists Tci about
the multicurves ci is Zariski dense in Sp(Z∗). If ` = g then for all but finitely many
primes p ≥ 3, this semigroup surjects onto Sp(2g, Fp).

Proof. Let C be an affine invariant manifold of rank `. Let U ⊂ C be an open con-
tractible set with the properties stated in the proposition and let Ũ be a component
of the preimage of U in the Teichmüller space of marked abelian differentials. Via
perhaps decreasing the size of U we may assume that Ũ has a product structure,
defined by disjoint compact balls D,K of dimension dimC(C+)− 1 in the sphere of
projective measured foliations on S as in Definition 3.2. The real parts Re(z̃) of

the differentials z̃ ∈ Ũ project to an open subset of the 2`-dimensional subspace Z
of H1(S,R) as defined in the proposition.

Let Y ⊂ V ⊂ U be a pair of open subsets of U as in Proposition 3.8 and use
these sets and the components Ỹ ⊂ Ṽ ⊂ Ũ of the preimages of Y ⊂ V to construct
the subsemigroup Ω(Γ0) of Mod(S).

Let c1, . . . , c` be pairwise disjoint simple oriented weighted multicurves. With
respect to some fixed marking of S, used for the choice of the lift Ũ of U , assume
that the homology classes [ci] of ci span a linear subspace L of Z∗ of dimension
`. As the multicurves ci are pairwise disjoint, this subspace is isotropic. The
projection which associates to a marked abelian differential z̃ ∈ Ũ the cohomology
class [Re(z̃)] ∈ H1(S,R) of its real part Re(z̃) maps the open subset Ỹ of C̃ to an
open subset of the dual L∗ of L.
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Let z̃ ∈ Ỹ be the lift of a periodic point z ∈ Y for Φt; such a point exists by
Proposition 3.8. Let ϕ ∈ Ω(Γ0) < Mod(S) be the pseudo-Anosov element which
preserves the Φt-orbit of z̃. Recall the assumption 〈[Re(z̃)], [ci]〉 > 0 for all i.

There is a number κ > 1 such that ϕ∗Re(z̃) = κRe(z̃), moreover κ is the Perron
Frobenius eigenvalue for the action of ϕ on H1(S,R). By invariance of the natural
pairing 〈, 〉 under ϕ, as k →∞ the homology classes [ϕkci] converge up to rescaling
to a class u ∈ H1(S,R) whose contraction with the intersection form ι defines
±[Re(z̃)], viewed as a linear functional on H1(S,R). By this we mean that ι(u, a) =
〈±[Re(z̃)], a〉 for all a ∈ H1(S,R). As a consequence, for all sufficiently large n > 0
and all i, j ≤ ` we have ι([ϕnci], [cj ]) 6= 0.

Let G < Mod(S) be the group generated by the semigroup Ω(Γ0) as well as the
Dehn multitwists Ti = Tci (i ≤ `). Then G contains the multitwists ϕnTiϕ

−n =
Tϕnci (see Fact 3.7 on p.73 of [FM12] for this equation).

Let A1 < Z∗ be the linear subspace of rank ` which is the common fixed set
in Z∗ for the transvections Ψ(Tci) of Z∗ (i = 1, . . . , `). Then A1 is a Lagrangian
subspace of the symplectic vector space Z∗. Let A2 ⊂ A1 be the common fixed set
in Z∗ of the transvections which are the images under the map Ψ of all multitwists
Ti, ϕ

nTjϕ
−n. Then A2 is a linear subspace of A1, and for large enough n its

codimension in A1 is s ≥ 1. Let i1, . . . , is ⊂ {1, . . . , `} be such that the homology
classes [cj ], [ϕ

ncip ] ∈ H1(S,Z) (j ≤ `, p ≤ s) are independent over R and that the
common fixed set in Z∗ of the transvections defined by the corresponding Dehn
multitwists is A2.

Since the set of real parts of differentials in Ỹ define an open subset of the
symplectic vector space Z, we can find some ỹ ∈ Ỹ and some a ∈ A2 so that
〈[Re(ỹ)], a〉 6= 0. As this condition is open, we may assume as before that ỹ is the
preimage of a periodic point of Y . Argue now as in the previous paragraph and
find a multitwist β in the subgroup G of Mod(S) generated by Ω(Γ0) so that the
common fixed set of the subgroup generated by Ψ(β) and A2 has codimension at
least one in A2.

Repeat this construction. In at most ` steps we find integral homology classes
a1, . . . , a`, a`+1, . . . , a2` ∈ H1(S,Z) (where for i ≤ ` the class ai is the class [ci] of
the oriented weighted multicurve ci) with the following properties.

(1) Let W ⊂ H1(S,R) be the real vector space spanned by the classes ai. The
dimension of W equals 2`. Viewing W as a linear subspace of H1(S,R)∗,
its restriction to Z is non-degenerate. In particular, W is a symplectic
subspace of H1(S,R).

(2) ι(aj , ai) 6= 0 for all i ≤ `, j ≥ `+ 1.
(3) For each j the transvection b → b + ι(b, aj)aj is contained in the group

generated by Ψ(Ω(Γ0)) and the Dehn multitwists Ψ(Tci) (i ≤ `).

By the choice of the homology classes ai, the (2`, 2`)-matrix (ι(ai, aj)) whose
(i, j)-entry is the homology intersection number ι(ai, aj) is integral and of maximal
rank. Choose a prime p ≥ 5 so that each of the entries of (ι(ai, aj)) is prime to p. All
but finitely many primes will do. Then the reduction mod p of the matrix (ι(ai, aj))
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is of maximal rank as well. In particular, if Fp denotes the field with p elements then
the reductions mod p of the homology classes ai span a 2`-dimensional symplectic
subspace Wp of H1(S, Fp).

Let Λ < Sp(W ) be the subgroup of the symplectic group of W which is generated
by the transvections with the elements ai. Its reduction Λp mod p acts on Wp as a
group of symplectic transformations. Lemma 4.5 shows that Wp = Sp(2`, Fp). Note
that property (2) above guarantees that all conditions in Lemma 4.5 are fulfilled.
Then Λ is a Zariski dense subgroup of the group of symplectic automorphisms of
W [Lu99]. By duality, this implies that the subgroup G of Sp(Z∗) generated by
Ψ(Tci) and Ψ(Ω(Γ0)) is Zariski dense in Sp(Z∗).

Now assume that ` = g. The Dehn twists Tci define elements of Sp(2g,Z). All
elements of Sp(2g,R) constructed in the above way are integral, and the above
proof shows that the subgroup of Sp(2g,Z) constructed in the above way surjects
onto Sp(2g, Fp) for all but finitely many p. �

Let again C+ be an affine invariant manifold of rank ` ≥ 1. Recall from Definition
4.1 the definition of the monodromy group of an affine invariant manifold C+ of rank
`. We can now summarize the discussion in this section as follows.

Corollary 4.8. For any affine invariant manifold C+ of rank `, the monodromy
group of C+ is Zariski dense in Sp(2`,R).

Proof. Let C+ be an affine invariant manifold of rank ` ≥ 1, and let C ⊂ C+ be its
subset of differentials of area one.

Choose a translation surface (X,ω) ∈ C with the properties stated in Corollary
4.4. Denote by H the free abelian group of rank ` of Dehn multitwists which is
contained in the group of piecewise affine automorphisms of X whose existence was
shown in Corollary 4.4.

Choose a marking of the translation surface, i.e. a lift ω̃ of ω to the Teichmüller
space of abelian differentials. By construction, we have 〈[Re(ω̃), [ci]〉 > 0 for all

i. As this is an open condition, we can find an open neighborhood Ũ of ω̃ in the
component C̃ of the preimage of C such that this condition is fulfilled for all z̃ ∈ Ũ .
We may assume that Ũ projects to a contractible subset U of C. The corollary now
follows from Proposition 4.7. �

4.2. The local monodromy group of affine invariant manifolds. The goal
of this subsection is to complete the proof of Theorem 3. We use the following

Definition 4.9. An affine invariant manifold C of rank ` is locally Zariski dense
if for every open contractible subset U of Cgood the subsemigroup of Sp(2`,R)
generated by the monodromy of those periodic orbits for Φt in C which pass through
U is Zariski dense in Sp(2`,R).
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Here as before, monodromy means monodromy of the restriction of the Gauss
Manin connection to the bundle Z → C, and this is computed with respect to a
fixed trivialization of Z over U which is parallel for the Gauss Manin connection.
Replacing such a trivialization by another one changes the local monodromy group
by a conjugation. We refer to subsection 2.2 for details.

We begin with reducing the statement of Theorem 3 to a statement on local
Zariski density near a single point. For the next lemma, call a point q ∈ C transitive
if its orbit under the Teichmüller flow is dense in C. Transitive points are known
to exist and are dense in C [EMM15].

Lemma 4.10. An affine invariant manifold C of rank ` is locally Zariski dense if
and only if there exists a transitive point q ∈ Cgood with the following property. For
every open contractible neighborhood Uof q, the subgroup of Sp(2`,R) generated by
the monodromy of those periodic orbits for Φt in C which pass through U is Zariski
dense in Sp(2`,R).

Proof. That the condition stated in the lemma is necessary is obvious from the
definition of local Zariski density. We have to show that it is also sufficient.

To this end let q ∈ Cgood be a transitive point as in the statement of the lemma.
Let U be any open subset of C. Let z ∈ U ∩ Cgood be an arbitrary transitive point;
such a point exists since Cgood is an open and dense Φt-invariant subset of C and
the set of transitive points is dense. Write U = Uz and let Uq be a neighborhood
of q.

By Proposition 3.8, we can find neighborhoods Yz ⊂ Vz ⊂ Uz of z, Yq ⊂ Vq ⊂
Uq of q and a number n > 0 with the following properties. The sets Vz, Vq are
contractible. Write Y = {Yq, Yz} and let u0, u1, u2, u3 be a periodic (n,Y)-pseudo-
orbit for Φt, with u0 = u3 ∈ Yz and u1, u2 ∈ Yq. There are numbers ti > n such
that Φtiui ∈ Yκ(i+1) where κ(i+1) = q for i = 0, 1 and κ(i+1) = z otherwise. Such
a pseudo-orbit exists since the Teichmüller flow on C is topologically transitive.

Let V = {Vq, Vz} and let η be a V-characteristic curve for this pseudo-orbit.
Then η determines a parametrized periodic orbit ν for Φt beginning in Vz, and this
orbit passes through Vq.

Choose a component C̃ of the preimage of C in the Teichmüller space of abelian
differentials and let Ṽz ⊂ C̃ be a component of the preimage of Vz. Let ũ0 be
the preimage of u0 in Ṽz. For this fixed choice, the parametrized periodic orbit ν
determines a pseudo-Anosov element Ω(ν) ∈ Mod(S) as follows. Let η̃ be the lift of
the characteristic curve η for the pseudo-orbit beginning at ũ0. Then Ω(ν) maps the
endpoint of η̃ back to its starting point. Our goal is to show that the subsemigroup
of Sp(2`,R) generated by the elements Ψ(Ω(ν)) for parametrized periodic orbits ν
of the above form is Zariski dense in Sp(2`,R).

To this end let Ṽq ⊂ C̃ be the component of the preimage of Vq which con-
tains Φt0 ũ0. If η′ is a characteristic curve of a pseudo-orbit defined by points
u0, u

′
1, u2, u3 = u0, with u′1 ∈ Yq, and times t0, t

′
1, t2 > n, and if ν′ is the corre-

sponding periodic orbit, then the element Ω(ν′)−1 ◦ Ω(ν) (read from right to left)
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of Mod(S) maps the endpoint of the lift beginning in Ṽz of the concatentation
(η′)−1 ◦ η back to its starting point ũ0. Recall that this makes sense since η, η′

begin and end at the same point u0 ∈ Yz.

Thus Ψ(Ω(ν′)−1 ◦Ω(ν)) equals the holonomy for parallel transport with respect
to the Gauss Manin connection of the following loop. Fix the point u0 ∈ Yz as
a basepoint. The (n,Y)-pseudo-orbit given by the points u0, u1, u1 and the times
t0, t1 determine the homotopy class with fixed endpoints of an arc β connecting
u0 to u1, and there is an arc β′ for the (n,Y)-pseudo-orbit given by the points
u0, u

′
1, u1 and the times t0, t

′
1. These arcs are constructed in such a way that they

end at u1. The holonomy of the concatenation of β with the inverse of β′ equals
the element Ψ(Ω(ν′)−1 ◦ Ω(ν)) (again read from right to left).

Now parallel transport along the distinguished orbit segment connecting u0 to
u1 identifies the fibre of Z ⊂ Π∗H at u0 with the fibre of Z at u1 as a symplectic
vector space. This identification conjugates Ψ(Ω(ν′)−1 ◦Ω(ν)) to Ψ(Ω(ξ′)−1 ◦Ω(ξ))
where Ω(ξ),Ω(ξ′) are the elements of Mod(S) constructed in the same way from

Ṽq and from parametrized periodic orbits of Φt through Vq determined by the one-
segment periodic pseudo-orbits (u1, t1) and (u′1, t

′
1). Furthermore, the conjugating

element does not depend on ν, ν′.

To complete the proof just note that a subsemigroup G of Sp(2`,R) is Zariski
dense if and only if for any h ∈ Sp(2`,R) the conjugate hGh−1 is Zariski dense if and
only if there exists an element g ∈ G such that g−1G ⊂ Sp(2`,R) is not contained
in any proper algebraic subvariety of Sp(2`,R). Thus under the assumption of the
lemma, the affine invariant manifold C is indeed locally Zariski dense. �

We need the following technical statement which is well known for components
of strata. For its formulation, recall from Definition 3.2 the definition of a set with
a product structure.

Lemma 4.11. Let C̃ be a component of the preimage in the Teichmüller space
of abelian differentials of an affine invariant manifold C. Let α̃ : [0, 1] → C̃ be
a smooth path which consists of differentials with the same horizontal projective
measured foliation. Then there exists an open set Ṽ ⊂ C̃ with a product structure
which contains α̃.

Proof. Cover the compact path α̃ by finitely many open subsets Wi (i = 0, . . . , k)

of C̃ whose closures Wi have a product structure as in Definition 3.2. These product
structures are defined by compacts balls Di,Ki ⊂ PMF , a map Λi : Di×Ki →Wi

and a number εi > 0. For each i, the set Di coincides with the set of all horizontal
projective measured foliations of all points in Wi. Let int(Di) be the interior of
Di (this is meant to be the interior of the Di viewed as an m-dimensional ball in
PMF and not the interior of Di as a subset of PMF). As the horizontal projec-
tive measured foliation of any point on α̃ coincides with the horizontal projective
measured foliation µ of ω̃ = α̃(0), we have µ ∈ int(Di) for each i.

Up to renumbering, we may assume that Wi ∩Wi+1 ∩ c̃ 6= ∅ for all i. We now
show by induction on j ≤ k that the set ∩i≤j int(Di) is an open neighborhood of µ
in each of the sets Di (i ≤ j).
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The case j = 0 is obvious, so assume that the claim is known for some 0 ≤ j < k.
This means that Ej = ∩i≤j int(Di) is an open neighborhood of µ in each of the sets
int(Di) for i ≤ j. Note however that Ej is not an open subset of PMF .

Let Ej be the closure of Ej in Dj . As Ej is an open neighborhood of µ in int(Dj),

the subset Zj of Wj with a product structure which is defined by Ej ,Kj and the
restriction of Λj contains an open neighborhood of α̃ ∩Wj (compare the remark
after Definition 3.2). Thus by the assumption on the sets Wu, the intersection

Zj ∩Wj+1 contains an open neighborhood in C̃ of Wj ∩Wj+1 ∩ α̃. But this is only
possible if Ej ∩ int(Dj+1) is an open neighborhood of µ in both Ej , Dj+1. The
induction step follows.

Let E ⊂ Ek be a compact neighborhood of µ in Ek which is homeomorphic to a
closed ball of dimension m. Then E is a compact neighborhood of µ in each of the
sets int(Di), and by construction,

α̃ ⊂ ∪i ∪−εi≤t≤εi ΦtΛi(E ×Ki).

It now follows from the definition of a subset of C̃ with a product structure that
there is a neighborhood of α̃ in C̃ with a product structure which is of the form
∪−δ≤t≤δΦtΛ(E × ∪iKi). Here for a point (ξ, η) ∈ E × Ki, the point Λ(ξ, η) is

obtained from Λi(ξ, η) by postcomposition with Φσi(ξ,η) where σi : E ×Ki → R is
a continuous function. The lemma follows. �

Now we are ready to show

Theorem 4.12. An affine invariant manifold is locally Zariski dense.

Proof. Let C+ be an affine invariant manifold of rank ` ≥ 1, and let C ⊂ C+ be its
subset of differentials of area one. By Lemma 4.10, it suffices to show the existence
of a single transitive point q ∈ Cgood with the following property. For every open
neighborhood U of q, the subgroup of Sp(2`,R) generated by the monodromies of
those periodic orbits for Φt in C which pass through U is Zariski dense in Sp(2`,R).

Choose a translation surface (X,ω) ∈ C with the properties stated in Corollary
4.4. Denote by H the free abelian group of rank ` of Dehn multitwists which is
contained in the group of piecewise affine automorphisms of X whose existence was
shown in Corollary 4.4.

Let C̃ be a component of the preimage of C in the Teichmüller space of abelian
differentials and let ω̃ be a preimage of ω in C̃. Choose an open neighborhood Ũ of
ω̃ in C̃ such that 〈Re(z̃), [ci]〉 > 0 for all z̃ ∈ Ũ where [ci] are the homology classes of
the marked weighted oriented multicurves which determine the Dehn multitwists Ti
generating the group H. We require that the projection U of Ũ to C is contractible.
Such a neighborhood always exists although the differential ω may not be contained
in Cgood.

By Proposition 4.7, it suffices to find a birecurrent point q ∈ U such that for
each i ≤ ` and every neighborhood V ⊂ U of q, the Dehn multitwist Ti is contained
in the group generated by the periodic orbits of the Teichmüller flow through V
which is determined by the lift Ṽ of V contained in Ũ .
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The cylinder shears of the translation surface (X,ω) which are used to construct
the Dehn multitwists Ti generating the group H preserve the horizontal projective
measured foliation of ω, but they deform the vertical projective measured foliation.
These cylinder shears define ` smooth paths αi (i = 1, . . . , `) in C which lift to

smooth paths α̃i in C̃ beginning at the preimage ω̃ of ω in Ũ and connecting ω̃ to
Tiω̃.

By Lemma 4.11, for each i ≤ ` there is a closed subset of C̃ with a product
structure as defined in Definition 3.2 whose interior contains the entire path α̃i ⊂ C̃.
Recall that such a neighborhood Ã is determined by compact disjoint balls D,K of
dimension m = dimC(C+)−1 in the Thurston sphere PMF of projective measured

foliations, a number ε > 0 and a map Λ : D×K → C̃ with the properties stated in
Definition 3.2 so that

Ã = ∪−ε≤t≤ε ∪(µ,ν)∈D×K ΦtΛ(µ, ν).

Do this construction for all j ≤ ` and as well for the maps T−1
j . This results in a

neighborhood W of ω̃ in C̃ with a product structure with the following properties.

(1) There are compact disjoint sets D,K in the Thurston sphere PMF of
projective measured foliations, homeomorphic to closed balls of dimension
m, there is a number ε > 0 and there is a map Λ : D ×K → W with the
properties stated in Definition 3.2 such that W = ∪−ε≤t≤εΦtΛ(D ×K).

(2) There exists a compact neighborhood R of µ in D homeomorphic to a closed
ball of dimension m so that TjR ⊂ D for all j ≤ `.

(3) There is a compact neighborhoodB ⊂ K of the vertical projective measured
foliation of ω̃ such that T−1

j (B) ⊂ K for all j.

Let A be the projection to C of the set

Ã = ∪−ε≤t≤εΦtΛ(R×B).

Then A is a closed neighborhood of ω. We may adjust A in such a way that A is
contractible; this is always possible in spite of the fact that ω may not be contained
in Cgood (see Section 2 of [H13] for a detailed discussion of this standard fact). Up
to passing to a finite branched cover of C, we then may assume that the absolute
real tangent bundle Z of C admits a trivialization over A which is parallel for the
Gauss Manin connection. To this end recall that there is a finite branched cover
of Mg which is the quotient of Teichmüller space by a torsion free subgroup of
Mod(S) of finite index and recall the discussion in subsection 2.2.

We now show that for any birecurrent point q contained in the interior of A
and every pair of open neighborhoods Y ⊂ V of q with the properties stated in
Proposition 3.8, with corresponding set Γ0 or periodic orbits for Φt, the subgroup
of Mod(S) generated by Ω(Γ0) contains the Dehn multitwists Ti (i ≤ `).

Thus let q ∈ Y ⊂ V ⊂ A as above. By perhaps decreasing the size of V we may
assume that the component Ỹ ⊂ Ã of the preimage of Y in C̃ which is contained in
Ã equals the interior of the set

Y = ∪−δ′≤t≤δ′ΦtΛ(R′ ×B′)
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for some closed balls R′ ⊂ R, B′ ⊂ B and for a number δ′ < δ. Using the
neighborhoods Y ⊂ V of q, construct a set Γ0 of periodic orbits passing through
V as in Proposition 3.10. Denote by Ω(Γ0) the corresponding subsemigroup of

Mod(S) constructed with the above component Ṽ of the preimage of V and let
G < Mod(S) be the subgroup generated by Ω(Γ0).

Let z ∈ Y be a periodic point for Φt as constructed in Proposition 3.10, and let
γ be the closed Φt-orbit of z. Let z̃ be the lift of z to Ã. The component γ̃ of the
preimage of γ which passes through z̃ is stabilized by a pseudo-Anosov mapping
class ϕ. We claim that for every j ≤ ` there is a number k > 0 such that for the
Dehn multitwist T = Tj , we have ϕk ◦ T ◦ ϕk ∈ Ω(Γ0). Since G is a group, this
implies that Tj ∈ G for all j.

We establish the existence of numbers k > 0, n > 0 with the above property
using a fixed point argument for the action of Mod(S) on the sphere of projective
measured foliations which is motivated by the argument in the proof of Proposition
5.4 of [H13] (compare the proof of Proposition 3.8).

Let τ > 0 be the period of γ; then ϕ(z̃) = Φ−τ (z̃) (up to perhaps exchanging ϕ
and ϕ−1). The horizontal projective measured foliation ζ ∈ R′ of z̃ is the attracting
fixed point for the action of the map ϕ on the sphere PMF of projective measured
foliations of S. As ϕ preserves the component C̃ of the preimage of C containing
z̃ and acts with north-south dynamics on PMF , there exists some large k0 > 0
such that ϕk(D) is contained in the interior of R′ for all k ≥ k0. Then Tϕk(D) is
contained in the interior of D (recall to this end that TR′ ⊂ D) and hence for any
k > k0, ϕk ◦ T ◦ϕk(D) is contained in the interior of R′. Since the attracting fixed
point of ϕ−1 is contained in the interior of B′, by perhaps increasing k0 we also
may assume that ϕ−k maps K into the interior of B′ for all k ≥ k0.

As ϕ is pseudo-Anosov, for large enough k > k0 the mapping class ϕk ◦T ◦ϕk is
pseudo-Anosov (observe that for large k, this element acts with positive translation
on the curve graph of S). Now ϕk ◦T ◦ϕk(R′) is contained in the interior of R′ and
hence the attracting fixed point of ϕk ◦ T ◦ ϕk is contained in the interior of R′.

The same argument shows that for sufficiently large k, the repelling fixed point
of ϕk ◦T ◦ϕk (which is the attracting fixed point of ϕ−k ◦T−1 ◦ϕ−k) is contained in
the interior of B′. Namely, T−1(B′) ⊂ K by construction and hence ϕ−k◦T−1◦ϕ−k
maps B′ into its interior by the choice of k. In particular, we may assume that the
periodic orbit of Φt defined by ϕk ◦ T ◦ ϕk passes through Y .

As a consequence, the pseudo-Anosov elements ϕ and ϕk ◦ T ◦ ϕk are contained
in the group G and hence G contains the multitwist T = Tj . As this argument is
valid for each j ≤ `, we deduce that the group G contains each of the multi-twists
Tj .

Theorem 4.12 now follows from Proposition 4.7 if we can make sure that for
each z̃ ∈ Ṽ and each i we have 〈[Re(z̃), [ci]〉 > 0. But by construction, we have
〈[Re(ω̃), [ci]〉 > 0 for all i, and the set D ⊂ PMF in the definition of the neighbor-
hood W of ω̃ as constructed above can be chosen to project to an arbitrarily small
neighborhood of the projective class of [Re(ω̃)]. Thus by continuity, we may choose
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the set D as in (1) above in such a way that indeed, 〈[Re(ũ), [ci]〉 > 0 for all i and
all ũ ∈W . Theorem 4.12 now follows from Proposition 4.7. �

For a prime p let Λp : Sp(2g,Z)→ Sp(2g, Fp) be reduction mod p. Recall from
the remark before Lemma 4.5 that a sub-semigroup of a finite group G is a subgroup
of G. The proof of Theorem 4.12 and Proposition 4.7 shows the following version
of Theorem 3 for affine invariant manifolds of rank g.

Corollary 4.13. Let C be an affine invariant manifold of rank g. Then for all but
finitely many primes p ≥ 3, we have {ΛpΨ(Ω(γ)) | γ ∈ Γ0} = Sp(2g, Fp).

Let again C+ be an affine invariant manifold of rank ` ≤ g and let C̃+ be a compo-
nent of the preimage of C+ in the Teichmüller space of marked abelian differentials.
Then the projected tangent space p(TC+) can be identified with the complexifica-
tion of a 2`-dimensional symplectic subspace V of R2g = H1(S,R). The stabilizer
in Sp(2g,R) of this subspace is the subgroup G = Sp(V ) × Sp(V ⊥) of Sp(2g,R)
where V ⊥ is the orthogonal complement of V with respect to the symplectic form.
Thus the group G is isomorphic to Sp(2`,R)× Sp(2(g − `),R).

Let P : G→ Sp(V ) = Sp(2`,R) be the natural projection. Theorem 4.12 shows
that P (G ∩ Sp(2g,Z)) is a Zariski dense subgroup of Sp(2`,R). The following
consequence of this fact was communicated to me by Yves Benoist. Although it is
not used in the sequel, we include it here since it relates affine invariant manifolds
to proper subvarieties of Ag.

Proposition 4.14. If P (G ∩ Sp(2g,Z)) is Zariski dense in Sp(2`,R) then either
P (G ∩ Sp(2g,Z)) is a lattice in Sp(2`,R) or dense.

Proof. Using the above notations, write GZ = Sp(2g,Z)∩G and let F < Sp(2`,R)
be the Zariski closure of P (GZ).

The group F is defined over Q. Namely, the set of polynomials P which vanish
on GZ is invariant under the Galois action. As a consequence, either FZ = GZ is a
lattice in F , or there is a nontrivial character on F defined over Q.

Assume for contradiction that there exists a nontrivial character on F defined
over Q. Define

F 0 = ∩{ker(χ) | χ is a character on F defined over Q}.

Then F 0 = F since up to multiplication with an integer, the evaluation on GZ of a
nontrivial character χ defined over Q has to be integral in C∗ which is impossible.
This contradiction yields that FZ is a lattice in F .

The group G1 = Sp(2`,R) is simple, and ∆ = P (GZ) < G1 is Zariski dense.
Then ∆ < G1 either is discrete or dense. We have to show that if ∆ is discrete
then ∆ is a lattice.



STRETCH FACTORS 33

Thus assume that ∆ is discrete. Consider the surjective homomorphism ϕ : F →
G1. Its kernel K is a locally compact group which intersects the lattice FZ in a
discrete subgroup. The exact sequence

1→ K → F → G1 → 1

induces a sequence

K/K ∩ FZ → F/FZ → G1/ϕ(FZ).

Now the Haar measure on F can locally be represented as a product of the Haar
measure on the orbits of K and the quotient Haar measure. If the volume of
G1/ϕ(FZ) is infinite then this shows that the volume of F/FZ has to be infinite.
But FZ is a lattice in F which is a contradiction. �

Remark 4.15. If C is a Teichmüller curve, then the group P (G∩Sp(2g,Z)) is just
the Veech group of C, which is a lattice in SL(2,R). The image under the Torelli
map of the projection to moduli space of such a Teichmüller curve is a Kobayashi
geodesic in the quotient of Siegel upper half-space Dg by Sp(2g,Z).

If C is algebraically primitive, then this Kobayashi geodesic is contained in a
Hilbert modular variety defined by an order o in the trace field of C [Mo06]. This
Hilbert modular variety is the quotient of an embedded copy of H2 × · · · × H2 in
Siegel upper half-space Dg by its stabilizer SL(2, o) in Sp(2g,Z). The finite area
Riemann surface Σ obtained by projecting C to the moduli space of curves admits
a modular embedding into SL(2, o)\H2× · · · ×H2 whose composition with the first
factor projection H2 × · · · ×H2 → H2 is a finite area Riemann surface.

Proposition 4.14 suggests that we may expect a similar picture for affine invariant
manifolds of higher rank.

5. Equidistribution for cocycles with values in finite groups

In this section we consider a component Q of a stratum of area one abelian or
quadratic differentials. We continue to use the assumptions and notations from
Section 2-4. Our goal is to establish an equidistribution result for a cocyle over the
Teichmüller flow with values in a finite group G constructed from a homomorphism
ρ : Mod(S)→ G.

5.1. A cocycle for the Teichmüller flow. Choose a Birkhoff regular (and hence
transitive) point q ∈ Qgood for the Masur Veech measure and a contractible neigh-
borhood V of q. We then can find an open neighborhood Y ⊂ V of q with the fol-
lowing property. If y ∈ Y and T > 0 are such that ΦT y ∈ Y , then a V -characteristic
curve for the periodic pseudo-orbit defined by y, T determines a periodic orbit γ
passing through V . Note that we do not have to specify a number R(δ) > 0 as a
minimal return time to Y so that Proposition 3.8 can be applied because we can
choose Y sufficiently small that any return time to Y is bigger than the threshold
from Proposition 3.8.
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By perhaps decreasing Y we may assume that Y has a product structure of the
form specified in Example 3.4. This means that there are open ball neighborhoods
Ai of q in W i

loc(q) (i = ss, su), and there is a number β > 0 such that

(3) Y = V (Ass, Asu, β) = ∪−β<t<βΦtV (Ass, Asu).

We may assume that the return time to Y is bigger than 2β and that moreover the
Masur Veech measure of the boundary of Y vanishes.

Let B be the closure of the set Φ−βV (Ass, Asu). Note that B is a compact
transversal for the Teichmüller flow. We equip B with the projection µ of the
Masur Veech measure in Y . This is defined by

µ(C) = λ
(
∪0≤t≤2βΦtC

)
(C ⊂ B).

The measure of the boundary of B vanishes.

For y ∈ Q let T (y) ∈ (0,∞] (or S(y) ∈ [−∞, 0)) be the first positive (or the first
negative) hitting time with B of the Φt-orbit of y. Since B is closed, the functions
y → T (y) and y → S(y) are measurable on Q. By ergodicity of the Teichmüller
flow for the Masur Veech measure, the set

Ω = {y ∈ B | T (Φsy) <∞, S(Φsy) > −∞ for all s ∈ R}

has full measure for µ.

The suspension of the Teichmüller flow over B is defined by the first return to
B. This suspension is the Borel set

B = {(y, t) ∈ Ω× [0,∞) | 0 ≤ t ≤ T (y) <∞}/ ∼

where the equivalence relation ∼ identifies (y, T (y)) with (ΦT (y)y, 0). In the sequel
we identify B with the Borel set ∪y∈Ω ∪0≤t<T (y) Φty ⊂ Q. This set is Φt-invariant
and has full Masur Veech measure.

We use this suspension to define a map θ : Q × [0,∞) → G as follows. Denote
as before by Γ0 the collection of all parametrized periodic orbits for Φt constructed
from the pair Y ⊂ V . We use the convention from Proposition 3.10 that words
in Ω(Γ0) are read from left to right. Define θ(z, 0) = e (the identity in G) for all
z, and θ(z, s) = e for all s whenever z 6∈ B. For z ∈ B assume by induction that
θ(z, s) has been defined for some s ≥ 0. Let t ∈ (0,∞) be the smallest positive
number so that Φs+tz ∈ B. Define θ(z, u) = θ(z, s) for s ≤ u < s + t, and
let θ(z, s + t) = θ(z, s)g where g ∈ G is determined as follows. Since Φsz ∈ B
there is a largest number u ≤ s such that Φuz = y ∈ B; then Φs+t−uy ∈ B and
T (y) = s+ t− u. Let γ ∈ Γ0 be the parametrized periodic orbit for Φt defined by
the periodic pseudo-orbit ∪β≤v≤T (y)+βΦvy; then g = ρ(Ω(γ)).

The following is immediate from Proposition 3.10 and the definition of θ.

Lemma 5.1. θ(z, t) is a G-valued measurable cocycle for the Teichmüller flow.

Proof. Since B is a closed transversal for the Teichmüller flow and Ω ⊂ B is mea-
surable, the first return time y → T (y) is a measurable function on Ω and hence
the same holds true for the function θ.
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The cocycle equality for θ means that θ(z, s+ t) = θ(z, s)θ(Φsz, t) for all z and
all s, t ≥ 0. This is clear if the orbit segment connecting Φsv to Φs+tv does not
cross through B.

Assume now that there is a single such crossing point in the interior of this
segment. By definition, we then have θ(z, s + t) = θ(z, s)g where g is determined
as follows. Let y ∈ Ω be such that Φsz = Φuy for some u ∈ [0, T (y)) and let
γ be the periodic orbit for Φt determined by the pseudo-orbit (y, T (y)). Then
g = ρ(Ω(γ)) = θ(Φsz, t) and hence the cocycle equation follows from Proposition
3.10. �

By the cocycle equality, the image of θ is a subsemigroup of the finite group G
and hence a subgroup. In the sequel we assume that this group is all of G. Our
goal is to show that the cocycle θ is equidistributed in a sense which is motivated
by equidistribution of random walks on the finite group G.

We next summarize some result on random walks on the finite group G needed
in the sequel.

Let P(G) be the space of all probability measures on the finite group G equipped
with the `∞-norm. Then P(G) is a compact convex subset of a finite dimensional
Banach space. For a number σ ≥ 0 define P(G, σ) ⊂ P(G) to be the subspace of
all measures µ with min{µ(g) | g ∈ G} ≥ σ.

The convolution of two probability measures ν, µ on G is defined by

(4) µ ∗ ν(g) =
∑
h∈G

µ(h)ν(h−1g).

A measure µ is stationary if µ ∗ µ = µ.

The next lemma quantifies the fact that iterated convolutions of a measure µ
which gives positive mass to every element of G converge to the equilibrium measure
ν on G defined by ν(g) = 1/|G| for all g ∈ G.

Lemma 5.2. Let G be a finite group of order N and let σ > 0.

(1) If µ ∈ P(G, σ) and ν ∈ P(G) then µ ∗ ν ∈ P(G, σ).
(2) For all 0 < σ ≤ κ < 1/N there exists a number δ = δ(σ, κ) > 0 with

the following property. Let µ1 ∈ P(G, κ), µ2 ∈ P(G, σ); then µ2 ∗ µ1 ∈
P(G, κ+ δ).

Proof. Convolution ∗ is a continuous convex bilinear map on the compact convex
space of all probability measures on G.

Let 0 ≤ σ ≤ κ < 1/N and let µ1 ∈ P(G, κ), µ2 ∈ P(G, σ). Then for every g ∈ G
we have

µ2 ∗ µ1(g) =
∑
h

µ2(h)µ1(h−1g) ≥
∑
h

κµ2(h) = κ.

Equality holds only if σ = 0 and µ2(h) = 0 for all h with µ1(h−1g) > κ.
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Thus if σ > 0 then min{µ2 ∗ µ1(g) | g ∈ G} > κ and hence µ1 ∗ µ2 ∈ P(σ + δ)
for some δ > 0 depending on µ1, µ2. The lemma now follows from continuity of the
convolution and compactness of P(G, σ) and P(G, κ). �

We next characterize stationary measures. To this end we denote by µ(n) the
n-fold convolution of µ with itself.

Lemma 5.3. (1) Let ν be a stationary measure on G. Then there exists a
subgroup H of G such that ν(h) = 1/|H| for all h ∈ H, and ν(g) = 0 for
g ∈ G−H.

(2) Let µ ∈ P(G) and let H be the subgroup of G generated by supp(µ); then
as n→∞, µ(n) converges in P(G) to the stationary measure supported on
H.

Proof. Let ν be a stationary measure on G. We claim that {g ∈ G | ν(g) > 0} = H
is a subgroup of G. Namely, if g, h ∈ G and if ν(g), ν(h) > 0 then ν(gh) ≥
ν(g)ν(g−1gh) > 0 which yields the claim.

Thus by perhaps replacing G by H, it suffices to show that every positive station-
ary measure on G is the equilibrium measure ν(g) = 1/|G| for all g ∈ G. However,
this is immediate from Lemma 5.2.

This shows the first part of the lemma. The second part is equally well known,
and its proof will be omitted. �

Lemma 5.4. Let µ, ν ∈ P(G) and assume that supp(µ) = H, supp(ν) = H ′ are
subgroups of G. Then the subgroup of G generated by the support of µ ∗ ν contains
both H,H ′.

Proof. Assume that supp(µ) is a subgroup H of G, and supp(ν) is a subgroup H ′.
In the case that H = G (or H ′ = G), the statement of the lemma is immediate
from the first part of Lemma 5.2. Thus assume that H,H ′ are proper subgroups of
G.

Let g ∈ H ′; as µ(e) > 0, we have µ ∗ ν(g) ≥ µ(e)ν(g) > 0 and similarly for
g ∈ H. This shows the lemma. �

We use these statements for the proof of the following simple lemma which will
be used in the proof of the main technical result in this section.

Lemma 5.5. Let Υ ⊂ P(G) be a closed subset with the following properties.

• For all g ∈ G, there exists a point ξg ∈ Υ with ξg(g) > 0.
• There exists a number c > 0, and for any ξ, η ∈ Υ there exists some ζ ∈ Υ

such that ζ(g) ≥ cξ ∗ η(g) for all g ∈ G.

Then there exists some ξ ∈ Υ with ξ(g) > 0 for all g ∈ G.
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Proof. Let ξ ∈ Υ be such that min{ξ(g) | g} is maximal among all points in Υ. If
there is more than one point with this property then choose ξ in such a way that
the number of elements g ∈ G for which the minimal value is atteint is minimal.

Our goal is to show that ξ(g) > 0 for all g ∈ G. We argue by contradiction and
we assume that min{ξ(g) | g ∈ G} = 0.

Let H < G be the subgroup which is generated by the support of ξ. We first
show that ξ(h) > 0 for all h ∈ H. Since ξ vanishes on G −H, by the choice of ξ
to this end it suffices to find a measure η ∈ Υ so that |{h ∈ H | η(h) = 0}| < |H0|.
By the second part of Lemma 5.3, for this it suffices to show that for every n ≥ 0
there exists a measure ηn ∈ Υ such that ηn ≥ cnξ.

We establish this fact by induction on n. The case n = 0 is obvious, so assume
that the statement holds true for all k < n for some n ≥ 1. Assume by induction
that ηn−1 ∈ Υ is such that ηn−1 ≥ cn−1ξ. By the second property of the set Υ
stated in the lemma, there exists a measure ηn so that

ηn(g) ≥ cηn−1∗ξ(g) = c
∑
h

ηn−1(h)ξ(h−1g) ≥ c
∑
h

cn−1ξ(n)(h)ξ(h−1g) ≥ cnξ(n)(g)

which completes the induction step.

As a consequence, there exists a point ν ∈ Υ with ν(h) > 0 for all h ∈ H and
hence ξ(h) > 0 for all h ∈ H by the definition of ξ.

On the other hand, if H 6= G then by the above reasoning, applied to ξg for some
g ∈ G − H we can find some ζ ∈ Υ whose support is a subgroup H ′ of G which
intersects G − H. It now follows from Lemma 5.4 and the above discussion that
there exists a measure ζ ∈ Υ whose support is a proper superset of the support
of ξ. This contradicts once more the choice of ξ and completes the proof of the
lemma. �

5.2. Volume control. The goal of this subsection is to show that for any compo-
nent Q of a stratum of abelian or quadratic differentials, the cocycle θ constructed
in the previous subsection equidistributes with respect to the Masur Veech measure
λ. By this we mean the following. Consider the set Y defined in (3) which is used
for the construction of θ. Then for each g ∈ G we have

lim
T→∞

λ{z ∈ Y | θ(z, T ) = g} = λ(Y )/|G|.

The idea of proof for this statement is to use the fact that the measure λ is
Bernoulli [M82] and make the idea precise that the cocycle θ has properties remi-
niscent of the Markov property which guarantees independence of the distribution
of the random variable defined by θ. For the volume control we need we have to
partition a subset of Y = V (Ass, Asu, β) of full measure into sufficiently small sets
of the form V (Css, Asu, β) whose boundaries have measure zero. The choice of this
partition depends on an a-priori chosen error term ε > 0.

Recall that there are families λss, λsu of conditional measures for λ with the
following properties. We have dλ = dλss × dλsu × dt, the measures λsu are the
images of the measures λss under the flip v → −v, and the transformation rule
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dλss ◦ Φt = e−htdλss is fulfilled where h is the complex dimension of the stratum
Q+ which consists of all non-trivial scalings of the points in Q.

Denote as before by Bss(y, r) the ball of radius r about y for the modified Hodge
distance in the local strong stable manifold of y. The following easy but technical
observation is immediate from the construction of the Masur Veech measure from
period coordinates. We refer to Section 2 of [H13] for a detailed discussion of this
fact. As in Example 3.4, for y ∈ Ass denote by Ξy : Asu → Ξy(Asu) ⊂W su

loc(y) the
holonomy homeomorphism.

Lemma 5.6. For every ε > 0 there exists a number r(ε) > 0 with the following
property. Let y ∈ Ass; then the Jacobian of the natural diffeomorphism

Bss(y, r(ε))× ΞyA
su × (−β, β)→ V (Bss(y, r(ε)), Asu, β)

with respect to the measures λss × λsu × dt on Bss(y, r(ε))× ΞyA
su × (−β, β) and

the Masur Veech measure on V (Bss(y, r(ε)), Asu, β) is contained in the interval
[1− ε, (1− ε)−1].

In the sequel if a set V (A,B, β) with a good product structure, i.e. a product
structure as in Example 3.4, fulfills the conclusion in Lemma 5.6 then we say that
the Masur Veech measure on V (A,B, β) is an (1 − ε)-approximate product. We
will use Lemma 5.6 for subsets of Y of the form V (Css, Asu, β) where Css is a
measurable subset of Ass of diameter at most r(ε) for the Hodge distance.

The main technical tool for the control of the cocycle θ is Proposition 4.6 of
[H18] which provides a quantitative control of non-uniform hyperbolicity of the
Teichmüller flow.

Consider for the moment an arbitrary set Z = V (A,B, ζ) with a good product
structure. Later Z will always be of the form Z = V (Css, Asu, ζ) for some open
subset Css of Ass and some ζ ≤ β. Define the local leaf W s

loc,Z(y) through y
of the stable foliation of Z to be the intersection of Z with a suitably chosen
neighborhood of y in the leaf of the stable foliation through y (which is defined as
W s(y) = ∪tΦtW ss(y)). If A is connected, this is just the connected component of
Z ∩W s(y) containing y. If A is disconnected then we assume that V (A,B, ζ) ⊂
V (A′, B′, ζ ′) = Z ′ where A′ is connected, and then we define W s

loc,Z(y) to be the

intersection with Z of the local stable manifold of y in Z ′. The choice of Z ′ will
be clear from the context. If z ∈ A then this local leaf is just the set ∪−ζ<t<ζΦtA.
The local leaf Wu

loc,Z(y) of the unstable foliation through y is defined in the same
way, starting with a leaf of the strong unstable foliation.

We say that a subset Z0 of Z is saturated for the local stable foliation (or saturated
for the local strong unstable foliation) if for all y ∈ Z0, the local stable manifold
W s

loc,Z(y) (or the local strong unstable manifold Wu
loc,Z(y)) is contained in Z0.

Lemma 5.7. A subset Z0 of Z = V (A,B, ζ) is saturated for the local stable foliation
(or the local unstable foliation) if and only if there exists a subset E of B (or a subset
E′ of A) such that Z0 = V (A,E, ζ) (or Z0 = V (E′, B, ζ)).
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Proof. Let F : A × B × (−ζ, ζ) → V (A,B, ζ) be the map which associates to a
triple (z, x, s) the point F (z, x, s) = ΦsΞz(x); here notations are as in Example 3.4.
By construction, the set F (A × {x} × (−ζ, ζ)) equals the local stable manifold of
x. The first part of the lemma is now immediate from the definition of the sets
V (A,B, ζ).

The proof for local unstable manifolds is completely analogous and will be omit-
ted. �

Proposition 4.6 of [H18] now states the following.

Proposition 5.8. For every ε > 0 there are open subsets Z1(ε) ⊂ Z2(ε) ⊂ Z =
V (A,B, ζ), and there is a number T (ε) > 0 such that the following properties hold
true.

(a) For some m > 10/ε, we have Z2(ε) = V (A,B, ζ/m).
(b) λ(Z2(ε)) ≤ (1− ε)−1λ(Z1(ε)).
(c) A Φt-orbit intersects Z1(ε) in arcs of length 2t0 = 2ζ/m.
(d) Write

Z3(ε) = ∪−t0(m−2)≤t≤t0(m−2)Φ
tZ1(ε) ⊂ V (A,B, ζ).

Let z ∈ Z1(ε) and let T > T (ε) be such that ΦT z ∈ Z3(ε). Then there exists
an open path connected set C(z, T ) ⊂ Z2(ε) containing z with the following
properties.
• ΦTC(z, T ) ⊂ Z.
• λ(C(z, T )) ∈ [(1− ε)2e−hTλ(Z2(ε)), (1− ε)−2e−hTλ(Z2(ε))].
• The characteristic curves of the periodic pseudo-orbits given by any u ∈
C(z, T ) and the time parameter T determine the same parametrized
periodic orbit γ for Φt, with basepoint contained in a distinguished
component γ(z, T ) of the intersection of γ with Z.

• The sets C(z, T ) are saturated for the local stable foliation of Z2(ε).
• The sets ΦTC(z, T ) are saturated for the local strong unstable foliation

of Z.
(e) If ε < δ then Z3(ε) ⊃ Z3(δ).

By (a), (c) and (e) above, for each ε > 0, the set Z1(ε) is of the form

Z1(ε) = ∪−t0≤t≤t0ΦtA(ε)

where A(ε) ⊂ V (A,B) is an open set and such that furthermore A(ε) ⊃ A(δ) for
ε < δ and ∪εA(ε) = V (A,B). Note however that the sets Z1(ε) are not required
to have a product structure. The sets C(z, T ) are saturated for the local stable
foliation of Z2(ε) = V (A,B, t0) and hence by Lemma 5.7, they are of the form

C(z, T ) = V (A,U(z), t0)

for some path connected subset U(z) of Asu. By construction, the value of θ(·, T )
is constant on the sets C(z, T ).

The main equidistribution result for the cocycle θ will be derived from a precise
volume estimate for the intersection of the fixed set Y as in (3) with Φ−TY for
some large T > 0 under control of the cocycle θ. The following lemma is its main
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technical part. Recall that the Masur Veech measure is mixing for the Teichmüller
flow.

Lemma 5.9. Let Si, Ti ⊂ (0,∞) be sequences so that Si → ∞, Ti → ∞ and that
furthermore for each g ∈ G there exist numbers a(g), b(g) ≥ 0 such that

λ{y ∈ Y | ΦSiy ∈ Y, θ(y, Si) = g} → a(g)λ(Y )2 (i→∞)

and similarly

λ{y ∈ Y | ΦTiy ∈ Y, θ(y, Ti) = g} → b(g)λ(Y )2 (i→∞).

Then up to passing to a subsequence, we have

λ{y ∈ Y | ΦSiy ∈ Y,ΦSi+Tiy ∈ Y, θ(y, Si + Ti) = g} → (
∑
h

a(h)b(h−1g))λ(Y )3.

Proof. We divide the proof of the lemma into four steps.

Step 1:

Let Z = V (A,B, ζ) ⊂ Y be an arbitrary subset with a good product structure.
Let ε > 0 and let Z1(ε), Z2(ε), Z3(ε) ⊂ Z be as in Proposition 5.8. Then Z2(ε) =
V (A,B, ζ/m) for some m > 10/ε, and λ(Z1(ε)) ≥ (1 − ε)λ(Z2(ε)). As m > 10/ε,
we also have λ(Z3(ε)) ≥ (1− ε)2λ(Z). Let T (ε) > 0 be as in Proposition 5.8.

As λ is mixing for the Teichmüller flow, for large enough T > T (ε) we have

λ{z ∈ Z1(ε) | ΦT z ∈ Z3(ε)}(5)

∈ [(1− ε)λ(Z1(ε))λ(Z3(ε)),(1− ε)−1λ(Z1(ε))λ(Z3(ε))]

and similarly

(6) λ{z ∈ Z2(ε) | ΦT z ∈ Z} ∈ [(1− ε)λ(Z2(ε))λ(Z), (1− ε)−1λ(Z2(ε))λ(Z)].

For large enough T > T (ε) let

C(T, ε) = ∪{C(z, T ) | z ∈ Z1(ε),ΦT z ∈ Z3(ε)}

(notations as in Proposition 5.8). Since z ∈ C(z, T ) for all z ∈ Z1(ε), by the
estimates (5) and (6) we have

(7) λ(C(T, ε))/λ(Z2(ε))λ(Z) ∈ [(1− ε)4, (1− ε)−4].

Furthermore, the sets C(z, T ) are saturated for the local stable foliation of Z2(ε)
and hence by Lemma 5.7, the same holds true for C(T, ε). As the value of θ(·, T )
is constant on each of the sets C(z, T ) we conclude the following.

For g ∈ G and all large enough T , let

C(T, ε, g) = {z ∈ C(T, ε) | θ(z, T ) = g};

then C(T, ε, g) is saturated for the local stable foliation of C(T, ε) and hence of
Z2(ε) = V (A,B, ζ/m). By Lemma 5.7, this implies that

(8) C(T, ε, g) = V (A,E(T, ε, g), ζ/m)
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for some open subset E(T, ε, g) of B, and we have

(9)
∑
g∈G

λ(C(T, ε, g)) = λ(C(T, ε)).

Step 2:

Using the notations from Step 1 above, we now apply Proposition 5.8 to the set
Z2(ε) = V (A,B, ζ/m) with the same ε > 0. We find a number n > 10/ε and a

subset Ẑ1(ε) ⊂ Ẑ2(ε) = V (A,B, ζ/mn) so that the conclusions of Proposition 5.8

hold true for these sets and a number T̂ (ε) > 0, with

Ẑ3(ε) = ∪−(2n−2)ζ/mn≤t≤(2n−2)ζ/mnΦtẐ1(ε) ⊂ Z2(ε).

Let S > T̂ (ε) be sufficiently large and assume that z ∈ Ẑ1(ε) is such that

ΦSz ∈ Ẑ3(ε). Denote by Ĉ(z, S) ⊂ Ẑ2(ε) the set constructed in Proposition 5.8. It

is saturated for the local stable foliation of Ẑ2(ε), and ΦSĈ(z, S) ⊂ Z2(ε). Thus by
Lemma 5.7, there exists a set U(z) ⊂ B such that

Ĉ(z, S) = V (A,U(z), ζ/mn).

Since the sets C(T, ε, g) are saturated for the local stable foliation of Z2(ε) and

the map ΦS maps a local leaf of the stable foliation of Ĉ(z, S) into a local leaf of

the stable foliation of Z2(ε), we conclude that Ĉ(z, S) ∩Φ−SC(T, ε, g) is saturated

for the local stable foliation of Ẑ2(ε) and hence this set is of the form

Ĉ(z, S) ∩ Φ−SC(T, ε, g) = V (A,U(z) ∩ Φ−SΞΦSzE(T, ε, g), ζ/nm).

Here we write ΞΦSz = Ξy if y ∈ A and ΦSz ∈ ∪−ζ<t<ζΦtΞyB, and recall from
the definition (8) that E(T, ε, g) ⊂ B. The notation makes clear that we take the
image under the map Φ−S of a subset of the local strong unstable manifold of ΦSz
in Ẑ2(ε).

Step 3.

Now let us furthermore assume that the Masur Veech measure on the set Z =
V (A,B, ζ) is an (1− ε)-approximate product. Then we have

λ(Ĉ(z, S) ∩ Φ−SC(T, ε, g))/λss(A)λsu(U(z) ∩ Φ−SΞΦszE(T, ε, g))2ζ/nm(10)

∈[1− ε, (1− ε)−1].

Since the conditional measures λsu on strong unstable manifolds transform under
the Teichmüller flow by λsu ◦ Φ−S = e−hSλsu and since furthermore ΦSĈ(z, S) is
saturated for the local strong unstable foliation of Z2(ε) (since the leaves of the
strong unstable foliation of Z which intersect Z2(ε) are precisely the leaves of the
local strong unstable foliation of Z2(ε)), we conclude that

λ(Ĉ(z, S) ∩ Φ−SC(T, ε, g))/e−hSλss(A)λsu(E(T, ε, g))2ζ/nm(11)

∈[(1− ε)2, (1− ε)−2].

The difference in the error term (1− ε)2 compared to the estimate (10) arises from
replacing λsu(ΞΦSzE(T, ε, g)) by λsuE(T, ε, g), and these two quantities deviate by



42 URSULA HAMENSTÄDT

the Jacobian of the holonomy map which is contained in the interval [1−ε, (1−ε)−1]
by assumption. Observe that this formula is consistent with Proposition 5.8.

From now on we use the notation =
(1−ε)k

for an equality which holds true up to

multiplying one of the sides by a factor contained in [(1− ε)k, (1− ε)−k].

The volume estimate in part (d) of Proposition 5.8 and the assumption that the
measure λ on Z ⊃ Z2(ε) is an (1− ε)-approximate product yield

λ(Ĉ(z, S)) =
(1−ε)3

e−hSλss(A)λsu(B)2ζ/nm.

Insertion of this estimate into the estimate (11) then shows that

(12) λ(Ĉ(z, S) ∩ Φ−SC(T, ε, g))λsu(B) =
(1−ε)5

λ(Ĉ(z, S))λsu(E(T, ε, g)).

As the measure λ on Z is a (1− ε)-approximate product, we have

(13) λsu(E(T, ε, g))λss(A)2ζ/m =
(1−ε)

λ(C(T, ε, g)).

Now note that λss(A)2ζ/m =
(1−ε)

λ(Z2(ε))/λsu(B). Summing the approximate

equality (13) over g ∈ G and using the estimate (7) and the equations (8,9) yields

(14)
∑
g∈G

λsu(E(T, ε, h−1g))/λsu(B) =
(1−ε)6

λ(Z).

Recall that the cocycle θ is constant on Ĉ(z, S), with constant value θ(z, S). For
g ∈ G write

Ĉ(S, ε, g) = ∪z{Ĉ(z, S) | θ(z, S) = g}
and let Ĉ(S, ε) = ∪g∈GĈ(S, ε, g).

The estimate (10) is valid for all g ∈ G and all z ∈ Ẑ1(ε) such that ΦSz ∈ Ẑ3(ε).

Moreover, for fixed g ∈ G the set Ĉ(S, ε, g) is a disjoint union of some of the sets
C(z, S). Thus summing the estimate (12) over all g, h ∈ G und insertion of the
estimate (14) together with the analog of the estimate (7) for the measures of the

sets Ĉ(S, ε) implies ∑
h∈G

∑
g∈G

λ(Ĉ(S, ε, h) ∩ Φ−SC(T, ε, h−1g))(15)

=
(1−ε)5

∑
h∈G

∑
g∈G

λ(Ĉ(S, ε, h))λsu(E(T, ε, h−1g))/λsu(B)

=
(1−ε)15

λ(Ẑ2(ε))λ(Z2(ε))λ(Z).

On the other hand, as the Teichmüller flow Φt is mixing of all orders, for suffi-
ciently large S, T we also have

(16) λ{z ∈ Ẑ2(ε) | ΦSz ∈ Z2(ε),ΦS+T z ∈ Z} =
(1−ε)

λ(Ẑ2(ε))λ(Z2(ε))λ(Z).
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Comparison with the estimate (15) and using the estimate (7) for both Ĉ(S, ε) and
C(T, ε) then shows that

λ{z ∈ Ẑ2(ε) |ΦS(z) ∈ Z2(ε),ΦS+T z ∈ Z, θ(z, S + T ) = g}(17)

=
(1−ε)24

(∑
h∈G

λ{z ∈ Ẑ2(ε) | ΦSz ∈ Z2(ε), θ(z, S) = h}

λ{z ∈ Z2(ε) | ΦT z ∈ Z, θ(z, T ) = h−1g)}
)
/λ(Z2(ε)).

Step 4.

In Step 3 above, for a fixed number ε > 0 and a fixed set Z = V (A,B, ζ) with a
good product structure and the additional property that the Masur Veech measure
on Z is an (1 − ε)-approximate product, for sufficiently large m,n we considered

the sets Z2(ε) = V (A,B, ζ/m) and Ẑ2(ε) = V (A,B, ζ/mn) ⊂ Z2(ε) and obtained
for a fixed g ∈ G an estimate for the Masur Veech measure of the set

{z ∈ Ẑ2(ε) | ΦSz ∈ Z2(ε),ΦS+T z ∈ Z, θ(v, S + T ) = g}
for all sufficiently large S, T .

By replacing the time S by S + kζ/mn for some k ∈ [−mn,mn], this estimate

is equally valid if we replace Ẑ2(ε) by Φ−kζ/mnẐ2(ε) provided that S is sufficiently
large. Assuming now that mn = 2`+ 1 for some integer `, we have

Z = ∪−`≤k≤`Φ2kζ/mnẐ2(ε).

Summing the estimate (17) over all k ∈ [−`, `] then yields that we have

λ{z ∈ Z | ΦS(z) ∈ Z2(ε),ΦS+T z ∈ Z, θ(z, S + T ) = g}(18)

=
(1−ε)24

∑
h∈G

λ{z ∈ Z | ΦSz ∈ Z2(ε), θ(z, S) = h}

λ{z ∈ Z2(ε) | ΦT z ∈ Z, θ(z, T ) = h−1g}/λ(Z2(ε)).

On the other hand, assuming that m = 2p + 1 for some integer p, the estimate
is also valid if we replace Z2(ε) by Φkζ/mZ2(ε) for −p ≤ k ≤ p. Then summing
the estimate (18) over k ∈ [−p, p] and using the fact that λ(Z2(ε)) = λ(Z)/2m, we
deduce that

λ{z ∈ Z |ΦSz ∈ Z,ΦS+T ∈ Z, θ(z, S + T ) = g}λ(Z)(19)

=
(1−ε)24

∑
h∈G

λ{z ∈ Z |ΦSz ∈ Z, θ(z, S) = h}λ{z ∈ Z | ΦT z ∈ Z, θ(z, T ) = h−1g}.

The above discussion depended on the choice of the number ε > 0, and it used the
fact that on the subset Z = V (A,B, ζ) of Y , the Masur Veech measure is an (1−ε)-
approximate product. The lemma now follows from the following observation.

Fix again a number ε > 0. Recall that Y = V (Ass, Asu, β). By subdividing an
open subset of Ass of full λss-measure into finitely many open connected subsets
of small diameter (with boundary of vanishing λss-measure), we obtain a partition
of an open subset of Y of full measure into finitely many open connected sets of
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the form Zi = V (Ai, A
su, β) with the property that the Masur Veech measure on

each of these sets is an (1 − ε)-approximate product. Let Y = ∪iZi be such a
decomposition. Fix numbers i, j, k and use the above construction for the return
maps from Zj to Zi and from there to Zk. For large enough S, T , this yields an
estimate of the measure of the sets

Ω(i, j, k, g) = {z ∈ Zi | ΦSz ∈ Zj ,ΦS+T z ∈ Zk, θ(z, S + T ) = g}

which is identical to the estimate (19).

As the sets Ω(i, j, k, g) are pairwise disjoint, summing their measures shows that
for large enough S, T we have

λ{z ∈ Z | ΦSz ∈ Z,ΦS+T z ∈ Z, θ(z, S + T ) = g}λ(Z)(20)

=
(1−ε)24

(∑
h∈G

λ{z ∈ Z | ΦSz ∈ Z, θ(z, S) = h}λ{z ∈ Z | ΦT z ∈ Z, θ(z, T ) = h−1g}
)

But as S, T → ∞ we can let ε tend to zero which yields the asymptotic formula
stated in the lemma. �

Our goal is to apply Lemma 5.9 for a control of the cocycle θ in the way explained
in Lemma 5.3. To this end note that by the mixing property of the Teichmüller
flow, the values a(g) ≥ 0 (g ∈ G) obtained from a suitable chosen sequence Si →∞
satisfy

∑
g a(g) = 1. For an application of the simple argument in Lemma 5.3 we

need to assure that a(g) > 0 for all g ∈ G. That this always holds true is shown in
the following lemma.

Lemma 5.10. There exists a number σ > 0 with the following property. Let
Ti ⊂ (0,∞) be a sequence so that Ti → ∞ and that furthermore for each g ∈ G
there exists a number a(g) ≥ 0 such that

λ{y ∈ Y | ΦTiy ∈ Y, θ(y, Si) = g} → a(g)λ(Y )2 (Ti →∞);

then a(g) ≥ σ for all g ∈ G.

Proof. We first claim that there are numbers κ > 0, R0 > 0 with the following
property. For all sufficiently large T > 0 and every g ∈ G there exists a number
R = R(g, T ) < R0 such that

λ{y ∈ Y | ΦT+Ry ∈ Y, θ(y, T +R) = g} ≥ κ.

To show the claim recall that by assumption, the cocycle θ is onto G. Using
Proposition 5.8 for Y = V (Ass, Asu, β), with the notations from the proposition
there is a number ε > 0, and for every g ∈ G there exists a number T (g) > T (ε),
and there is some zg ∈ Z1(ε) such that ΦT (g)zg ∈ Z3(ε) and θ(zg, T (g)) = g.

Now let T0 > T (ε) be sufficiently large that the estimate (20) in the proof of
Lemma 5.9 is valid for this ε and all S, T ≥ T0. Let N be the order of the group G.
Using the above notations, for a given number T > T0 choose some h = h(T ) ∈ G
so that

λ{z ∈ Z1(ε) | ΦT z ∈ Z3(ε), θ(z, T ) = h} ≥ (1− ε)λ(Z1(ε))λ(Z3(ε))/N.
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Such an element exists by the choice of T0 (which controls the mixing property of
the Teichmüller flow).

Recall from Proposition 5.8 the definition of the sets C(z, T ) for z ∈ Z1(ε) and
ΦT z ∈ Z3(ε) (here T > T (ε)). By the reasoning used in the proof of Lemma 5.9,
for large enough T and putting once more h = h(T ) we have

λ{y ∈ C(zgh−1 , T (gh−1)) | ΦT (gh−1)+T y ∈ Y, θ(y, T (gh−1) + T ) = g}(21)

≥ λ(C(zgh−1 , T (gh−1))λ(Z1(ε))λ(Z2(ε))(1− ε)24/N.

Since the sets C(zg, T (g)) are all open, and their number is finite, the right hand side
of inequality (21) is bounded from below by a positive constant which is independent
of g. This shows the claim for R0 = max{T (h) | h ∈ G},

As λ is a probability measure and as the group G is finite, we can find a sequence
Ti →∞ such that for every g ∈ G the sequence

χ(Ti, g) = λ{z ∈ Y | ΦTiz ∈ Y, θ(z, Ti) = g}/λ(Y )2

converges as i→∞ to some number χ(g) ≥ 0. Note that by the mixing property,
we have

∑
g χ(g) = 1, independent of the sequence. In other words, we can view χ

as a probability measure on the group G.

Let Υ ⊂ P(G) be the closure of the set of all probability measures on G obtained
in this way. We claim that this set has the properties in Lemma 5.5.

Namely, let g ∈ G be arbitrary. By the beginning of this proof, there exists a
sequence Ti →∞ such that for each i we have

λ{y ∈ Y | ΦTiy ∈ Y, θ(y, Ti) = g} ≥ κ.
By passing to a subsequence we may assume that the sequence fulfills the condition
in the definition of the set Υ. This shows that for all g ∈ G there exists some
ξg ∈ Υ with ξg(g) ≥ κ. The second property in Lemma 5.5 with c = λ(Y )2 is the
statement of Lemma 5.9.

From Lemma 5.5 and the definition of Υ we obtain the existence of a sequence
Si →∞ and a number κ > 0 such that

lim
i→∞

λ{y ∈ Y | ΦSiy ∈ Y, θ(y, Si) = g} ≥ κ

for all g ∈ G. Now let Rj →∞ be any sequence such that for each g ∈ G, the limit

lim
j→∞

λ{y ∈ Y | ΦRjy ∈ Y, θ(y,Rj) = g} = χ(g)

exists. We claim that χ(g) ≥ κ2 for all g. This then completes the proof of the
lemma.

To this end apply Lemma 5.9 to the sequences Si, Ti = Rj(i) − Si where i→∞
and where j(i) is chosen in such a way that Rj(i) − Si →∞. For sufficiently large
i the conclusion of the lemma holds true for Si and Rj(i) − Si up to some error of

at most εκ2. An application of Lemma 5.9 and Lemma 5.2 implies that for each
g ∈ G, we have

λ{y ∈ Y | ΦSiy ∈ Y,ΦRj(i)−Siy ∈ Y, θ(y,Rj(i)) = g} ≥ (1− ε)κ2.
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As this estimate is valid for all sufficiently large j = j(i) the lemma follows. �

For functions a, b : [0,∞) → (0,∞) define a ∼ b if a(R)/b(R) → 1 (R → ∞).
Using the earlier notations, and in particular the definition of the set Y in (3) and
the set Γ0 of parametrized periodic orbits defined by Y , we are now ready to show

Proposition 5.11. For g ∈ G and for R > 0 define

L(R, g) = {γ ∈ Γ0(Y ) | `(γ) ≤ R, ρ(Ω(γ)) = g}.

Then as R→∞,

]L(R, g) ∼ ehRλ(Y )

2hβ|G|
.

Proof. By construction, each of the parametrized periodic orbits γ ∈ Γ0 contains a
distinguished subarc of length 2β with midpoint in the set V ⊃ Y . Let Γ̂0 ⊂ Γ0 be
the subset of all such orbits whose distinguished subarc is contained in Y .

For each g ∈ G, we construct from the periodic orbits γ ∈ Γ̂0 with ρ(Ω(γ)) = g
a Φt invariant Borel measure λg on Q which is a positive multiple of the Masur
Veech measure λ.

To this end recall that any component of an intersection of an orbit of Φt with
Y is an arc of length 2β. Define

C(R− 2β,R, g) = {γ ∈ Γ̂0 | R− 2β < `(γ) ≤ R, ρ(Ω(γ)) = g}.

We claim that up to passing to a subsequence, for every g ∈ G the measures

(22) he−hR(1− e−2hβ)−1
∑

γ∈C(R−2β,R,g)

δ[γ(−β),γ(β)]

converge as R→∞ to a measure λ̂g on Y with λ̂g(Y ) ∈ [0, λ(Y )]. Here δ[γ(−β),γ(β)]

is the restriction to γ[−β, β] of the Φt-invariant measure δγ supported on γ.

To show the claim it suffices to control the total mass of the measure defined
in (22). This mass can be computed as follows. Let as before Γ be the set of all
(unparametrized) periodic orbits for Φt. For each periodic orbit γ ∈ Γ, let n(γ) ≥ 0
be the number of components of the intersection γ ∩ Y , and let n(γ, g) be the
number of intersection components so that a parametrization of γ with starting
point in the component defines a point γ̂ ∈ Γ0 with ρ(γ̂) = g. Define b(γ, g) = 0 if
n(γ) = 0, and define b(γ, g) = n(γ, g)/n(γ) otherwise. Clearly

∑
g b(γ, g) = 1 for

all γ with n(γ) > 0.

For R > 2β let Γ(R − 2β,R) be the set of all (unparametrized) periodic orbits
for Φt of length contained in the interval (R − 2β,R]. By Corollary 5.4 of [H18],
the measures

νR,2β = he−hR(1− e−2hβ)−1
∑

γ∈Γ(R−2β,R)

δγ

converge weakly to the Masur Veech measure λ, and limR→∞ νR,2β(Q) = 1 (which
means that there is no escape of mass).
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Define a Φt-invariant Borel measure

(23) ν(R, g) = he−hR(1− e−2hβ)−1
∑

γ∈Γ(R−2β,R)

b(γ, g)δγ .

By construction, we have∑
g

ν(R, g)(Y ) = he−hR(1− e−2hβ)−1
∑

γ∈Γ(R−2β,R)

δγ(Y ).

Thus the measures ν(R, g) are precompact in the space of all Φt-invariant Borel
measures on the component Q.

If Ri →∞ is a sequence such that for each g ∈ G the measures ν(Ri, g) converge
weakly to a measure λg, then ν(Ri, g)(Q)→ λg(Q) and

∑
g λg = λ. Furthermore,

the measures λg are invariant under the Teichmüller flow Φt. As the Masur Veech
measure is ergodic under the action of Φt, for each g ∈ G there exists a number
c(g) ∈ [0, 1] so that λg = c(g)λ.

A priori, the measures λg depend on the choice of the sequence Ri →∞ used to
construct them. By Lemma 5.10 and its proof, there is however a number σ > 0
such that λg(Q) ≥ σ independent of the sequence Ri.

Namely, using the terminology of Proposition 5.8, each parametrized periodic
orbit γ ∈ Γ0 with γ(0) ∈ Z2(ε) and period R determines a component C(γ(0), R) of
Z2(ε)∩Φ−RZ, and vice versa, such a component determines a parametrized periodic
orbit which passes through Y (see [H18] for details of this fact). The additional
constraint ρ(γ) = g for some g ∈ G is then equivalent to stating that the value of
the cocycle θ(·, T ) equals g on such a component.

We now use an argument which is similar to the reasoning in the proof of Lemma
5.10. Namely, call a sequence Ri → ∞ admissible if for each g ∈ G the measures
ν(Ri, g) converge weakly to a measure λg = c(g)λ.

Let Ri be any admissible sequence, with limiting measures c(g)λ. Choose a
subsequence Rij so that for each g ∈ G the measures ν(Rij/2, g) weakly converge

as well. By Lemma 5.9, if these measures converge to measures λ̂h then for each g
we have

(24) ν(Tij , g){y ∈ Y | ΦRij
/2 ∈ Y,ΦRij z ∈ Y } →

∑
h

λ̂h(Y )λ̂h−1g(Y ).

On the other hand, λg = c(g)λ is a multiple of the Lebesgue measure and hence it
is mixing of all orders. Since ν(Tij , g) → λg, this implies that the limit of the left

hand side of the expression (24) equals c(g)λ(Y )3.

Now the formula (24) together with Lemma 5.2 and the definition of the lim-
iting measures λg shows that necessarily c(g) = 1/N for all N . As Ri was an
arbitrary admissible sequence, we deduce that indeed, λg(Q) = 1/|G| for all g ∈ G,
independent of the sequence Ri. �
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6. Stretch factors

In this section we complete the proofs of the main results of the introduction us-
ing group sieving for reductions modulo a prime of the symplectic group Sp(2g,Z).
We begin with discussing periodic orbits in a component Q of a stratum of abelian
differentials.

Let p ≥ 3 be an odd prime and let Fp be the field with p elements. Let

Λp : Sp(2g,Z)→ Sp(2g, Fp)

be reduction modulo p. Consider a nested pair of sets Y ⊂ V as in Section 5 and use
these sets to construct the set Γ0 of parametrized periodic orbits in Q. We showed
in Corollary 4.13 that for all but finitely many primes p we have Λp(ΨΩ(Γ0)) =
Sp(2g, Fp). Here as before, Ω(γ) ∈ Mod(S) is the pseudo-Anosov mapping class
defined by the parametrized orbit γ, and Ψ : Mod(S)→ Sp(2g,Z) is the canonical
homomorphism.

The following corollary is an immediate consequence of Proposition 5.11. For its
formulation, let N(p) be the order of the group Sp(2g, Fp).

Corollary 6.1. Let Q be a component of a stratum of abelian differentials and let
p ≥ 3 be an odd prime such that Λp(Ψ ◦ Ω(Γ0)) = Sp(2g, Fp). Let B ∈ Sp(2g, Fp)
be arbitrary and for R > 0 define

B(R,B) = {γ ∈ Γ0 | `(γ) ≤ R,Λp(ΨΩ(γ)) = B}.

Then as R→∞,

]B(R,B) ∼ ehRλ(Y )

2hβN(p)
.

As in the introduction, let Γ be the set of all periodic orbits for Φt in the
component Q. For a periodic orbit γ for Φt denote by A(γ) ∈ Sp(2g,Z) the image
under the homomorphism Ψ of some (arbitrarily chosen) pseudo-Anosov element of
Mod(S) which preserves a flow line for the Teichmüller flow projecting onto γ. Let
[A(γ)] be the conjugacy class of A(γ); this class not depend on any choices made.

The characteristic polynomial of a symplectic matrix A ∈ Sp(2g,Z) is reciprocal
of degree 2g. The roots of such a polynomial come in pairs: If α is a root then so
is α−1. We call the extension of Q defined by the characteristic polynomial of A
simply the field of A. It only depends on the conjugacy class of A. Its degree over
Q equals 2g if and only if the polynomial is irreducible over Q.

We are now ready to complete the proof of Theorem 1 from the introduction.

Theorem 6.2. Let Q be a component of a stratum of abelian differentials. The
set of all γ ∈ Γ such that the field of [A(γ)] is of degree 2g over Q, separable and
totally real is typical.
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Proof. We show first that for a typical periodic orbit γ ∈ Γ the characteristic
polynomial of [A(γ)] is irreducible.

Using the notations from Corollary 6.1, let p0 ≥ 5 be large enough so that
Ψ(Ω(Γ0)) surjects onto Sp(2g, Fp) for all p ≥ p0. Let p ≥ p0 and let as before
N(p) be the order of Sp(2g, Fp). By Corollary 6.1, for every B ∈ Sp(2g, Fp) and
for all large enough R the proportion of the elements γ ∈ Γ0 of length at most R
which satisfy Λp ◦ Ψ ◦ Ω(γ) = B roughly equals 1

N(p) . On the other hand, if we

denote by Rp(2g) the subset of Sp(2g, Fp) of elements with reducible characteristic
polynomial then

|Rp(2g)|
N(p)

< 1− 1

3g

(see Theorem 6.2 of [R08] for a reference to this classical result of Borel).

We follow the proof of Theorem 6.2 of [R08]. Let p1, . . . , pk be k distinct primes
bigger than p0, and let K = p1 · · · pk. Then the reduction ΛK(A) modulo K of any
element A ∈ Sp(2g,Z) is defined, and we have

ΛK(A) = Λp1(A)× · · · × Λpk(A).

Namely, for distinct primes p 6= q ≥ 5, the groups Sp(2g, Fp) and Sp(2g, Fq) are
non-isomorphic simple groups. This implies that if Γ is any group and if ρp :
Γ → Sp(2g, Fp) and ρq : Γ → Sp(2g, Fq) are surjective homomorphisms, then the
homomorphism ρp × ρq : Γ → Sp(2g, Fp) × Sp(2g, Fq) is surjective. In particular,
we have

Sp(2g,K) = Sp(2g, Fp1)× · · · × Sp(2g, Fpk).

As ΨΩ(Γ0) surjects onto Sp(2g, Fp) for all p ≥ p0, the reduction mod K defines
a surjective homomorphism of the semigroup ΨΩ(Γ0) < Sp(2g,Z) onto the finite
group Sp(2g,K) = ΛK(ΨΩ(Γ0)). On the other hand, if A ∈ Sp(2g,Z) has a
reducible characteristic polynomial, then the same holds true for Λpi(A) for all
i. By the reasoning in the previous paragraph, the proportion of the number of
elements in Sp(2g,K) with this property is at most (1− 1

3g )k.

By Corollary 6.1, this implies that for a given number k ≥ 1 and all large enough
R, the proportion of all orbits γ ∈ Γ0 of length at most R with the property that
the characteristic polynomial of Ψ(Ω(γ)) is reducible is at most of the order of
(1 − 1

3g )k. As k was arbitrarily chosen, we conclude that the degree of the field

extension of Q defined by typical periodic orbit of Φt equals 2g.

We next claim that for a typcial orbit γ ∈ Γ, the field of A(γ) is separable and
totally real. Namely, as the Lyapunov spectrum of Q is simple [AV07], Theorem
1 of [H18] shows that for a typical periodic orbit γ, the absolute values of the
eigenvalues of [A(γ)] are pairwise distinct. But this just means that the field of
[A(γ)] is totally real and separable. �

For a symplectic matrix A ∈ Sp(2g,Z), the field of A is an extension of degree
at most two of its trace field, defined as the characteristic polynomial of A+ A−1.
For a periodic orbit γ ⊂ Q, we call the trace field of [A(γ)] the trace field of γ.
The trace field γ can also be read off directly from a point ω ∈ γ. Namely, let ω̃
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be a lift of ω to a marked abelian differential on the surface S. The periods of ω̃
define an abelian subgroup Λ = ω̃(H1(S,Z)) of C of rank two. Let e1, e2 ∈ Λ be
two points which are linearly independent over R. Let K be the smallest subfield
of R such that every element of Λ can be written as ae1 + be2, with a, b ∈ K; then
Λ⊗K K = K2 (see the appendix of [KS00] for more details).

Definition 6.3. The periodic orbit γ is called algebraically primitive if the trace
field K of γ is a totally real separable number field of degree g over Q.

The following corollary summarizes the discussion.

Corollary 6.4. For every component Q of a stratum of abelian differentials, alge-
braically primitive periodic orbits for Φt are typical.

We are left with the proof of Theorem 2 from the introduction. Recall that
we always require that strata of quadratic differentials are not strata of squares of
holomorphic one-forms. By a slight abuse of notation, for a periodic orbit γ for the
Teichmüller flow on a component D of the moduli space of quadratic differentials we
denote by Ω(γ) an arbitrarily chosen pseudo-Anosov mapping class whose conjugacy
class defines γ.

Theorem 6.5. Let D be a component of a stratum of quadratic differentials with
m ≥ 1 zeros and k ≤ m zeros of odd order. Then for a typical periodic orbit γ ⊂ D,
the algebraic degree of the stretch factor of Ω(γ) ∈ Mod(S) equals 2g − 2 + k.

Proof. Let D be a component of a stratum of quadratic differentials with m ≥ 1
zeros and k ≤ m zeros of odd order. As the total orders of all zeros equals 4g−4, the
number k is necessarily even. Then D is a complex orbifold of dimension 2g−2+m.

For each quadratic differential q on S which is not the square of a holomorphic
one-form, there is a two-sheeted cover S′ of S, ramified precisely at the zeros of
odd orders of q, such that q lifts to an abelian differential on S′. This double cover
is constructed as follows.

Let S0 be the surface obtained from S by removing the zeros of q of odd order.
Then for every point x ∈ S0, there exists a local square root of q near x, unique up
to multiplication by −1. Thus there exists a unique two-sheeted cover S′0 of S0 on
which such a square root is globally defined. This cover is the cover of S0 whose
fibre over a point x are the two choices of the square roots of q at x. It is connected
since q is not the square of a holomorphic one-form. The double cover π : S′0 → S0

does not depend on the particular choice of q in the component D of a stratum.

The preimages of the punctures of S0 are punctures of S′0. Furthermore, a loop in
S0 going around a puncture p of S0 reverses the sign of a square root of q and hence
the covering projection π extends to a branched cover S′ → S where S′ is obtained
from S′0 by filling in the punctures. This branched cover is ramified precisely at the
punctures of S0, i.e. at the zeros of q of odd order. As a consequence, the cover
S′ → S is ramified at precisely k points. The quadratic differential q lifts to an
abelian differential on S′ with 2m − k zeros. This shows that the component D
lifts to an affine invariant manifold C in a component Q of a stratum in the moduli
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space of abelian differentials on S′, consisting of abelian differentials with 2m − k
zeros.

By the Riemann Hurwitz formula, the genus g′ of S′ equals 2g−1+ k
2 and hence

dimH1(S′,R) = 4g − 2 + k. The surface S is the quotient of S′ by an involution ι
which exchanges the two sheets in the cover.

The involution ι acts on the real cohomology H1(S′,R) of S′. This cohomology
decomposes over R as

H1(S′,R) = E1 ⊕ E2
where E1 is the eigenspace for ι with respect to the eigenvalue 1, and E2 is the
eigenspace for ι with respect to the eigenvalue −1. As the action of ι on H1(S′,R)
is a symplectic transformation, this decomposition is orthogonal for the symplectic
form on H1(S′,R). The vector space E1 is precisely the pullback of H1(S,R) under
the branched covering map and hence its dimension equals 2g. Thus dim(E2) =
2g − 2 + k.

We next observe that E2 ⊗ C has a natural identification with the projection of
TC+ = C × (0,∞) to absolute periods. To this end note that by construction, if
q′ ∈ C+ then ι∗q′ = −q′. Hence by equivariance, the projection of TC+ to absolute
periods is contained in E2 ⊗ C.

Let Σ be the zero set of a differential in Q+ = Q×(0,∞). The set Σ contains the
k ramification points of a differential in C+. The involution ι acts as an involution on
the dualH1(S′,Σ;Z)∗ of the homology group of S′ relative to Σ. Period coordinates,
for Q+ take values in H1(S′,Σ;Z)∗, and the linear equation for C+ is the equation
ι∗ω+ω = 0. Namely, if ω is any point with this property, then ω2 is ι-invariant and
projects to a quadratic differential on S which is not the square of a holomorphic
one-form. By construction, this quadratic differential is contained in the component
D.

By naturality of period coordinates, the map which associates to an abelian
differential ω with ι∗ω + ω = 0 its projection to absolute periods is a submersion
into E2 ⊗ C. As a consequence, the projection of TC+ to absolute periods equals
the vector space E2 ⊗ C.

Since ι descends to an element of Sp(2g′,Z) whose square is the identity, the
decomposition H1(S′,R) = E1 ⊕ E2 is defined over Z[ 1

2 ]. Thus the stabilizer of
this decomposition in the group Sp(2g′,Z) projects to a lattice in the group of
symplectic automorphisms of E2.

A periodic orbit γ for the Teichmüller flow in D determines a pseudo-Anosov
mapping class which preserves the zeros of odd order and hence lifts to a mapping
class of the branched cover S′ of S. This mapping class projects to a Perron
Frobenius automorphism of E2 whose Perron Frobenius eigenvalue is just the stretch
factor of the pseudo-Anosov element of Mod(S) defining γ.

By Theorem 4.12, the affine invariant manifold C is locally Zariski dense (this can
also be seen directly in this explicit case). Furthermore, for all but finitely many
primes p the local monodromy surjects onto the mod p reduction of the intregral
symplectic group. Using Corollary 6.1 for the Teichmüller flow on D and cocycles
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defined by the action of this flow on the mod p homology on C in the same way as
in the proof of Theorem 6.2, we conclude that the algebraic degree of the stretch
factor of a pseudo-Anosov mapping class defined by a typical periodic orbit for Φt

on D equals 2g − 2 + k. This is what we wanted to show. �

We are left with showing the Corollary from the introduction. To this end
we proceed by induction on the genus g of S. As there are strata of quadratic
differentials with k zeros of odd order for any even number k ≤ 4g − 4, the case
g = 2 follows from Theorem 6.5 applied to the numbers k = 0, 2, 4. Note that
the strata of quadratic differentials used in this construction are well known to be
non-empty.

Assume now that the corollary is known for every genus 2 ≤ h ≤ g − 1. By
Corollary 6.5, applied to all even numbers k ∈ [0, 4g − 4], we find that for every
even number 2g − 2 ≤ m ≤ 6g − 6 there are infinitely many distinct conjugacy
classes of pseudo-Anosov mapping classes with stretch factor of degree m over Q.

To cover the cases m ≤ 2g − 4 we consider first the case that g − 1 = 2n is even
(n ≥ 1). Then a surface S of genus g is a double cover of a surface S′ of genus n+1.
Let Π : S → S′ be the covering projection. The pullback by Π of a component of
a stratum of abelian or quadratic differentials on S′ is an affine invariant manifold
for the Teichmüller flow on S. For pseudo-Anosov mapping class ϕ on S′ there
exists some k > 0 such that ϕk lifts to a pseudo-Anosov mapping class on S whose
stretch factor is the k-th power of the stretch factor of ϕ.

By induction hypothesis, for each even number m ≤ 6(n+ 1)− 6 = 6n = 3g − 3
there are infinitely many conjugacy classes of pseudo-Anosov mapping classes for
S′ whose stretch factor is an algebraic integer of degree m. The induction step
follows. In particular, we obtain the statement for g = 3.

If g = 2n ≥ 4 is even then by the Riemann Hurwitz formula, S is a double cover
of a surface S′ of genus n, branched at two points. Note that as n ≥ 2, there are no
constraints for the construction of such a double branched cover. Indeed, S is just
the orientation cover of a quadratic differential on S′ with two simple zeros and all
other zeros of even degree.

Let D be a component of a stratum of quadratic differentials on S′ with two
simple zeros p1, p2 and all other zeros of even order. Then the points p1, p2 are
the branch points of the cover. The covering map Π : S → S′ commutes with the
Teichmüller flows on D and on its preimage, which is an affine invariant manifold
in the moduli space of quadratic differentials on S. The preimage of a differential
q ∈ D is a differential on S. If q is a periodic point for the Teichmüller flow on D
then q lifts to a periodic point for the Teichmüller flow on S with the same stretch
factor.

By induction hypothesis, for each even number m ≤ 6k − 6 = 3g − 6 there are
infinitely many conjugacy classes of mapping classes on S′ with stretch factor of
algebraic degree m. These mapping classes lift to S. As 2g − 2 ≤ 3g − 6 for all
g ≥ 4, the induction step follows. This completes the proof of the corollary from
the introduction.
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Remark 6.6. The above results do not answer any of the more specific questions
on stretch factors one might ask, and in contrast to Theorem 1, they do not imply
that the extension of Q by a typical stretch factor is a totally real number field.
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[AEM12] A. Avila, A. Eskin, and M. Möller, Symplectic and isometric SL(2,R)-invariant sub-

bundles of the Hodge bundle, J. Reine Angew. Math. 732 (2017), 1–20.

[AMY16] A. Avila, C. Mattheus, J.C. Yoccoz, Zorich conjecture for hyperelliptic Rauzy-Veech
groups, arXiv:1606.01227.

[AV07] A. Avila, M. Viana, Simplicity of Lyapunov spectra: Proof of the Kontsevich-Zorich

conjeccture, Acta Math. 198 (2007), 1–56.
[Bw73] R. Bowen, Symbolic dynamics for hyperbolic flows, Amer. J. Math. 95 (1973), 429–460.

[BG11] A. Bufetov, B.M. Gurevich, Existence and uniqueness of a measure with maximal
entropy on the moduli space of abelian differentials. S. Math. 202 (2011), 935–970.

[EM11] A. Eskin, M. Mirzakhani, Counting closed geodesics in moduli space, J. Mod. Dynam-

ics 5 (2011), 71–105.
[EMR12] A. Eskin, M. Mirzakhani, K. Rafi, Counting closed geodesics in strata,

arXiv:1206.5574.

[EMM15] A. Eskin, M. Mirzakhani, A. Mohammadi, Isolation theorems for SL(2,R)-invariant
submanifolds in moduli space, Ann. Math. 182 (2015), 673-721.

[FM12] B. Farb, D. Margalit, A primer on mapping class groups, Princeton Univ. Press,

Princeton 2012.
[F16] S. Filip, Splitting mixed Hodge structures over affine invariant manifolds, Ann. of

Math. 183 (2016), 681–713,

[GR17] R. Guttierez-Romo, Zariski density of the Rauzy-Veech group: proof of the Zorich
conjecture, arXiv:1706.04923.

[Hl08] C. Hall, Big symplectic or orthogonal monodromy modulo `, Duke Math. J. 141 (2008),
179–203.
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