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Abstract. Consider a component Q of a stratum in the moduli space of area
one abelian or quadratic differentials on a surface of genus g. Call a property

P for periodic orbits of the Teichmüller flow on Q typical if the growth rate

of orbits with property P is maximal. We show that the following property is
typical. If Q is a stratum of abelian differentials, then the trace field of the

symplectic matrix defined by the orbit is a totally real splitting field of degree

g over Q. If Q is a component of a stratum of quadratic differentials with
k ≥ 0 zeros of odd order then the stretch factor of a typical orbit is of degree

2g − 2 + k over Q.
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1. Introduction

The mapping class group Mod(S) of a closed surface S of genus g ≥ 2 acts
by precomposition of marking on the Teichmüller space T (S) of marked complex
structures on S. The action is properly discontinuous, with quotient the moduli
space Mg of complex structures on S.

The fibre over a Riemann surface x ∈ Mg of the Hodge bundle H → Mg equals
the vector space of holomorphic one-forms on x. The Hodge bundle is a holomorphic
vector bundle of complex dimension g (in the orbifold sense) which decomposes into
strata of differentials with zeros of given multiplicities. There is a natural SL(2,R)-
action on H preserving its sphere subbundle of area one abelian differentials on
S as well as any connected component of a stratum. The action of the diagonal
subgroup is called the Teichmüller flow Φt.

The cotangent bundle of moduli space can naturally be identified with the bundle
of holomorphic quadratic differentials over Mg. It also admits a natural SL(2,R)-
action preserving the strata of differentials with zeros of given multiplicities and
the sphere bundle of area one quadratic differentials. The action of the diagonal
subgroup is again called the Teichmüller flow Φt.

Let Q be a component of a stratum of area one abelian or quadratic differentials
and let Γ be the set of all periodic orbits for Φt in Q. The length of a periodic
orbit γ ∈ Γ is denoted by ℓ(γ). Let m ≥ 1 be the number of singular points of the
differentials in Q and put h = 2g−1+m if Q is a component of abelian differentials,
and put h = 2g− 2+m otherwise. As an application of

EMR19
[EMR19] (see also

EM11
[EM11])

we showed in
H13
[H13] that

♯{γ ∈ Γ | ℓ(γ) ≤ R} hR
ehR

→ 1 (R→ ∞).

Call a subset A of Γ typical if

♯{γ ∈ A | ℓ(γ) ≤ R} hR
ehR

→ 1 (R→ ∞).

Thus a subset of Γ is typical if its growth rate is maximal. The intersection of two
typical subsets of Γ is typical.

A periodic orbit γ ∈ Γ for Φt determines the conjugacy class of a pseudo-Anosov
mapping class. The mapping class group acts on the first integral cohomology group
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H1(S,Z) of S preserving the intersection form ι on H1(S,Z). This action defines
a natural surjective

FM12
[FM12] homomorphism

Ψ : Mod(S) → Sp(2g,Z).
Thus a periodic orbit γ ∈ Γ determines the conjugacy class [A(γ)] of a matrix
A(γ) ∈ Sp(2g,Z).

The characteristic polynomial of a symplectic matrix A ∈ Sp(2g,Z) is a recip-
rocal polynomial of degree 2g with integral coefficients. Its roots define a number
field k of degree at most 2g over Q which is a quadratic extension of the so-called
trace field of A. The field k only depends on the conjugacy class of A. We show

theolyapunov Theorem 1. Let Q be a component of a stratum of abelian differentials. The set
of all γ ∈ Γ such that the field of [A(γ)] is of degree 2g over Q, separable and totally
real is typical.

Theorem
theolyapunov
1 can be used to analyze stretch factors of pseudo-Anosov elements

φ ∈ Mod(S). Here the stretch factor of φ is the unique number λ > 1 such that
there exists a measured foliation ξ on S with φ(ξ) = λξ, and it only depends on the
conjugacy class of φ. In the case that φ fixes a pair of oriented projective measured
foliations, this stretch factor is just the leading eigenvalue for the action of φ on
H1(S,R). Theorem

theolyapunov
1 then states that for a typical pseudo Anosov conjugacy class

preserving a pair of oriented projective measured foliations, the stretch factor is an
algebraic integer of degree 2g over Q.

The maximal degree over Q of the stretch factor for arbitrary pseudo-Anosov
elements is known to be 6g − 6. This was claimed by Thurston in

Th88
[Th88] and was

verified in
St15
[St15]. The article

St15
[St15] shows more precisely that a number d is the

algebraic degree of the stretch factor of a pseudo-Anosov mapping class if and only
if either d is at most 3g − 3, or d is even and at most 6g − 6. Recently, Lanneau
and Liechti

LL24
[LL24] constructed for every g ≥ 2, every even number 2 ≤ 2d ≤ 2g

and every component of a stratum of abelian differentials in genus g an explicit
pseudo-Anosov mapping class with periodic orbit in that stratum whose stretch
factor is of degree 2d.

Note that the number of zeros of odd order of a quadratic differential is always
even. We show

stretch Theorem 2. Let D a component of a stratum of area one quadratic differentials
consisting of differentials with k ≥ 0 zeros of odd order. Then the algebraic degree
of the stretch factor of a pseudo-Anosov conjugacy class defined by a typical periodic
orbit in D equals 2g − 2 + k. If D is non-hyperelliptic and consists of differentials
with at least two zeros of odd order, then the extension of Q determined by a typical
stretch factor is totally real.

Unlike in Theorem
theolyapunov
1, we do not show that the extension of Q determined by

a typical stretch factor is totally real for all components of strata of quadratic
differentials. The proof of this fact uses simplicity of the Lyapunov spectrum for the
Kontsevich Zorich cocycle

AV07
[AV07] which is likely not to be true for all components

of strata of quadratic differentials.
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As a fairly easy corollary, we obtain

countable Corollary. For every g ≥ 2 and every even number 2 ≤ 2m ≤ 6g − 6, there are
infinitely many distinct conjugacy classes of pseudo-Anosov mapping classes whose
stretch factors are algebraic intergers of degree 2m over Q.

Strategy of the proofs and organization of the article: The basic strategy
for the proof of Theorem

theolyapunov
1 is motivated by work of Rivin

R08
[R08] who showed the

following. Let µ be a symmetric probability measure on Sp(2g,Z) whose finite
support generates Sp(2g,Z). Then µ generates a random walk on Sp(2g,Z). As
the step length tends to infinity, the probability that the characteristic polynomial
of a random element is reducible tends to zero.

Rivin’s argument consists in studying for a prime p ≥ 5 the projection of the
random walk to the finite simple group Sp(2g, Fp) where Fp is the field with p
elements. Since this group is finite, this projected random walk equidistributes. By
a counting result due to Borel, a definite proportion of the elements of Sp(2g, Fp)
which is independent of p has an irreducible characteristic polynomial. Since the
mod p reduction of a reducible polynomial with coefficients in Z is reducible, this
implies that as the step length of the walk tends to infinity, a definitive proportion
of the random matrices in Sp(2g,Z) have irreducible characteristic polynomials.
An application of this argument to varying primes then yields Rivin’s result.

A natural route towards Theorem
theolyapunov
1 is as follows. Given a component Q of a

stratum of abelian or quadratic differentials, with set Γ of periodic orbits in Q, the
measures

µR = he−hR
∑

ℓ(γ)≤R

δγ

where δγ is the natural Lebegue measure supported on the periodic orbit γ, are
known to converge weakly to the normalized Masur Veech measure on Q

H13
[H13].

Thus if in a suitable sense this measure can be obtained from some random walk
on the mapping class group, then one may hope to apply Rivin’s strategy to that
random walk. However, at present such a result is not known for the principal
stratum of quadratic differentials and seems problematic for smaller strata.

The approach we take is motivated by the idea that flows defined by suspensions
of Markov shifts should display sufficient independence of the future from the past
that mod p reduction of cocycles with values in the group Sp(2g,Z) can effectively
be controlled. As codings of the Teichmüller flow on strata as a suspension over a
Markov shift are available, for example in the form of Rauzy induction on strata of
abelian differentials, see

AGY06
[AGY06], the task is to prove a quantitative such indepen-

dence statement. We carry this out by working directly with the dynamics of the
Teichmüller flow on an affine invariant manifold. Our argument has three partially
independent parts.

The first part addresses the issue that periodic orbits for the Teichmüller flow
correspond to conjugacy classes of pseudo-Anosov mapping classes rather than to
actual group elements. To mimic lattice counting we choose a suitable contractible
flow box V for the Teichmüller flow on an affine invariant manifold and lift flow
lines through this box to the Teichmüller space of abelian differentials. Using a
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strong shadowing result reminiscent of hyperbolic dynamics we associate to an orbit
segment beginning and ending in a suitable open subset Y of V a pseudo-Anosov
element in Mod(S) in such a way that concatenation of orbit segments translates
into multiplication of group elements. This construction is carried out in Section

nonuniform
3

and is based on earlier results in
H13,H18
[H13, H23].

The image of the resulting subsemigroup of Mod(S) under the homomorphism Ψ
defines a subsemigroup of a symplectic group. For a component of a stratum, this
symplectic group is the group Sp(2g,Z), but for an affine invariant manifold C, it is
the group Sp(ZR,R) introduced above. The second part of our approach consists in
establishing Theorem

zorich
3 which is the main algebraic result of this article. Its proof

is contained in Section
localzariski
4 and builds on results of Wright

W15
[W15] on horizontally

periodic translation surfaces in affine invariant manifolds. We also use the results
from Section

nonuniform
3 and tools from the theory of algebraic groups developed in the

context of strong approximation.

The third and most involved part of this work is an equidistribution result for
a homomorphism of Mod(S) onto a finite group G which is contained in Section
equidistribution
5. In our application, the group G is just one of the groups Sp(2g, Fp). For such
a homomorphism we construct a measurable cocyle over the Teichmüller flow on a
component of a stratum of abelian or quadratic differentials with values in G, and
we prove equidistribution for this cocycle with respect to the Masur Veech measure.
This part of the article is independent of Section

localzariski
4.

The only information on the Teichmüller flow we use is quantitative non-uniform
hyperbolicity in the sense of

H13,H18
[H13, H23] and the fact that periodic orbits equidis-

tribute for the Masur Veech measure. The results in Section
equidistribution
5 are valid in much

broader context, for example they should hold true for the geodesic flow on a rank
one manifold of non-positive curvature equipped with the measure of maximal en-
tropy although we do not pursue this idea in this article.

An application of the results from Sections
nonuniform
3-

equidistribution
5 completes the proof of Theorem

theolyapunov
1

and Theorem
stretch
2 in Section

galois
6. In the introductory Section

affinein
2 we introduce the Hodge

bundle and the Gauss Manin connection. We then establish some basic properties
of affine invariant manifolds.

Acknowledgement: I am grateful to Yves Benoist for useful discussions and for
providing the proof of Proposition

latticeordense
4.15. This article is based on work which was

supported by the National Science Foundation under Grant No. DMS-1440140
while the author was in residence at the MSRI in Berkeley, California, in spring
2015. This work was also supported by the Advanced Grant ”Moduli” of the
European Science Foundation.

2. The geometry of affine invariant manifolds
affinein

The goal of this section is to collect some geometric and dynamical properties of
affine invariant manifolds which are used throughout this article.
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hodge

2.1. The Hodge bundle. Let Mg be the moduli space of closed Riemann surfaces
of genus g. This is the quotient of Teichmüller space T (S) under the action of the
mapping class group Mod(S) and is naturally endowed with the structure of a
complex orbifold.

The Hodge bundle H → Mg is a holomorphic vector bundle over Mg (in the
orbifold sense). Its fiber over a manifold point X ∈ Mg equals the vector space of
holomorphic one-forms (abelian differentials) on X. As the map which associates to
a holomorphic one-form on X its real part is an isomorphism of real vector spaces,
as a real vector bundle, the Hodge bundle has the following description.

The action of the mapping class group Mod(S) on the first real cohomology
group H1(S,R), equipped with the symplectic structure given by the cup product,
defines a homomorphism

Ψ : Mod(S) → Sp(2g,Z).
The Hodge bundle is then the flat orbifold vector bundle

flatindenflatinden (1) Π : H = T (S)×Mod(S) H
1(S,R) → Mg

for the standard right action of Mod(S) on Teichmüller space T (S) by precomposi-
tion of marking, and the left action of Mod(S) on H1(S,R) via Ψ. This description
determines a flat connection on H which is called the Gauss Manin connection.
This connection preserves the symplectic structure on the fibers.

As the Hodge bundle H is a holomorphic vector bundle over the complex orbifold
Mg, it is a complex orbifold in its own right, and the same holds true for the
complement H+ ⊂ H of the zero section in H. The pull-back

Π∗H → H+

of H to H+ is a holomorphic vector bundle on H+ (in the orbifold sense). The
pull-back of the Gauss-Manin connection is a flat connection on Π∗H which we call
again the Gauss Manin connection.

connection

2.2. Strata and affine invariant manifolds. The Hodge bundle H is naturally
decomposed into strata, determined by the number and order of the zeros of the
abelian differential. Strata need not be connected, but they have at most three
connected components

KZ03
[KZ03]. A stratum is a complex orbifold in its own right.

The closure in H of a component of a stratum equals a union of strata. The area of
an abelian differential is well defined, and the locus of area one abelian differentials
is a cross section for the action of the multiplicative group (0,∞) by scaling. The
Teichmüller flow Φt acts on H preserving the area as well as the strata.

The fact that strata are orbifolds rather than manifolds gives rise to significant
technical difficulties. As in

H13
[H13], we circumvent this difficulty by restricting all

constructions to the manifold points. Concretely, let Q ⊂ H be a component of a
stratum of area one abelian differentials. Define the good subset Qgood of Q to be

the set of all points q ∈ Q with the following property. Let Q̃ be a component of
the preimage of Q in the Teichmüller space of marked abelian differentials and let
q̃ ∈ Q̃ be a lift of q; then an element of Mod(S) which fixes q̃ acts as the identity on
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Q̃ (compare
H13
[H13] for more information on this technical condition). Then Qgood

is precisely the subset of Q of manifold points. Lemma 4.5 of
H13
[H13] shows that the

good subset Qgood of Q is open, dense and Φt-invariant, furthermore it is invariant
under scaling.

By the construction of Qgood, for any smooth arc η : [0, a] → Qgood and any

choice q̃ of a preimage of η(0) in the Teichmüller space H̃ of marked abelian dif-
ferentials, there exists a unique lift η̃ of η through η̃(0) = q̃, and this lift depends
smoothly on η̃ (and q̃).

definestheconjugacyclass Definition 2.1. A closed curve η : [0, a] → Qgood defines the conjugacy class
of a pseudo-Anosov mapping class φ ∈ Mod(S) if the following holds true. Let

η̃ : [0, a] → Q̃ be a lift of η to an arc in the Teichmüller space of abelian differentials.
Then ψη̃(a) = η̃(0) for a unique ψ ∈ Mod(S), and we require that ψ is conjugate
to φ.

As any two lifts of an arc in Qgood to the Teichmüller space of marked abelian
differentials are translates of each other by some element in the mapping class group,
the property captured in Definition

definestheconjugacyclass
2.1 does not depend on any choices made.

Recall that the mapping class group acts on the fibers of the vector bundle
H̃ → T (S) through the representation Ψ. Moreover, the characteristic polynomial
of a symplectic matrix is invariant under conjugation. Using Definition

definestheconjugacyclass
2.1, the

above discussion easily leads to the following statement (here parallel transport
means parallel transport with respect to the Gauss Manin connection).

holonomy1 Lemma 2.2. Let η ⊂ Qgood be a closed curve which defines the conjugacy class of
a pseudo-Anosov mapping class φ ∈ Mod(S). Then the characteristic polynomial
of the holonomy map obtained by parallel transport of the bundle Π∗H along η
coincides with the characteristic polynomial of the map Ψ ◦ φ ∈ Sp(2g,Z).

Proof. Since the Gauss Manin connection is flat, parallel transport along a closed
based loop in Qgood is invariant under homotopy with fixed basepoint in Qgood and
hence the holonomy along such a based loop is an invariant of its class in π1(Qgood).
Furthermore, moving the basepoint, i.e. changing the loop with a free homotopy,
results in conjugation of the holonomy map.

Now the characteristic polynomial of an element A ∈ Sp(2g,Z) is invariant
under conjugation and hence the characteristic polynomial of the holonomy of a
loop in Qgood only depends on the free homotopy class of the loop. For a loop
η : [0, a] → Qgood which defines the conjugacy class of a pseudo-Anosov element φ,
this polynomial can be computed as follows.

Choose any lift η̃ of η to the Teichmüller space of area one abelian differentials.
By the definition of the Gauss Manin connection, the characteristic polynomial of
the holonomy map along η is the characteristic polynomial of Ψ ◦ ζ where ζ ∈
Mod(S) is the unique element which maps the endpoint η̃(a) of η̃ back to η̃(0). As
ζ is conjugate to φ and hence Ψ ◦ ζ is conjugate to Ψ ◦ φ, the lemma follows. □
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LetQ+ be a component of a stratum of (not area normalized) abelian differentials
on the surface S with fixed number and multiplicities of zeros. We use the notation
Q+ if we are looking at differentials whose area may be different from one. Denote
by Σ ⊂ S the set of zeros of a differential in Q+.

Period coordinates for Q+ are defined by integration of a differential q ∈ Q+

over a basis of H1(S,Σ;Z). These coordinates take values in H1(S,Σ;R)∗⊗RC and
induce an affine structure on Q+.

An abelian differential q ∈ Q+ defines an atlas on S − Σ whose chart transi-
tions are translations. Postcomposition of these charts with a fixed element of the
group GL+(2,R) defines a new such atlas and hence a new element in Q+. This
construction defines an affine action of GL+(2,R) on Q+. The induced action of
the diagonal subgroup is just the Teichmüller flow.

An affine invariant manifold C+ in Q+ is the closure in Q+ of an orbit of the
GL+(2,R)-action. Such an affine invariant manifold is complex affine in period
coordinates

EMM15
[EMM15]. In particular, C+ ⊂ Q+ is a complex suborbifold. Period

coordinates determine a projection

p : TC+ → Π∗H⊗R C|C+
to absolute periods (see

W14
[W14] for a clear exposition). The image p(TC+) is flat, i.e.

it is invariant under the restriction of the Gauss Manin connection to a connection
on Π∗H⊗R C|C+

.

By the main result of
F16
[F16], there is a holomorphic subbundle Z of Π∗H|C+

such
that

p(TC+) = Z ⊕ Z.
We call Z the absolute holomorphic tangent bundle of C+. As a consequence, the
bundle p(TC+) is invariant under the complex structure on Π∗H⊗R C obtained by
extension of scalars.

As a real vector bundle, Z is isomorphic to p(TC+)∩Π∗H|C+. Since Z is complex,
the bundle p(TC+) ∩Π∗H → C+ is symplectic

AEM12
[AEM12].

Define the rank of the affine invariant manifold C+ as
W14
[W14]

rk(C+) =
1

2
dimC p(TC+) = dimCZ.

With this definition, components of strata are affine invariant manifolds of rank g.

3. Non-uniform hyperbolic dynamics of the Teichmüller flow
nonuniform

The geodesic flow Ψt on the unit tangent bundle T 1M of a closed negatively
curved manifoldM is an Anosov flow and hence has the following strong shadowing
property :

Fix a Riemannian metric on T 1M which induces a distance function d. There
exist numbers ϵ > 0, R > 0 with the following properties. Let x1, . . . , xm ⊂ T 1M
be an arbitrary chain of points and let Ri > R (1 ≤ i ≤ m) be a sequence of
sufficiently large numbers. Assume that we have d(ΨRi(xi), xi+1) < ϵ for all i, and
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where xm+1 = x0. Then there exists a periodic orbit γ for Ψt which uniformly fellow
travels the (discontinuous) concatentation of the orbit segments βi : t → Ψt(xi)
(0 ≤ t ≤ Ri). Furthermore, the perodic orbit represents a conjugacy class in
the fundamental group of M which can be reconstructed from the chain of orbit
segments βi.

A component Q of a stratum of area abelian differentials is not compact, and the
Teichmüller flow Φt acting on Q is not hyperbolic. However, it is non-uniformly
hyperbolic in a precise quantitative sense, see

H13,H18
[H13, H23] for more information.

We shall use this non-uniform hyperbolicity to establish a non-uniform version of
the shadowing property for hyperbolic geodesic flows which is also valid for the
restriction of the Teichmüller flow to affine invariant manifolds..

For the formulation of our main result, for an affine invariant manifold C of area
one abelian differentials denote by Cgood ⊂ C the Φt-invariant open dense set of
good points. If C is a component of a stratum, then C is naturally equipped with
a Φt-invariant ergodic probability measure λ in the Lebesgue measure class, the
so-called Masur-Veech measure. Call a point q ∈ C birecurrent if q is contained in
both the α- and the ω-limit set of its orbit under Φt. By the Poincaré recurrence
theorem, almost every point with respect to any invariant probability measure has
this property.

The idea is now to use non-uniform hyperbolicity of the Teichmüller flow on C to
establish the shadowing property for orbit segments whose endpoints are contained
in small contractible neighborhoods of a fixed finite collection {q1, . . . , qk} ⊂ Cgood
of birecurrent points. The size of the neighborhoods, for example measured with
respect to the fixed choice of a Riemannian metric, depends on the points, and the
minimal length of the connecting orbit segments will depend on the points as well.
These data are chosen so that an orbit segment starting near one of the points qi
spends a sufficient amount of time in the thick part of moduli space to guarantee
some controlled definitive amount of contraction.

The following definition formalizes the concept of shadowing.

shadowin Definition 3.1. Let Y = {Yi | i ∈ I} be a non-empty finite collection of open
relatively compact subsets of an affine invariant manifold C. For some n > 0,
an (n,Y)-pseudo-orbit for the Teichmüller flow Φt on C consists of a sequence of
points q0, q1, . . . , qm ∈ C and a sequence of numbers t0, . . . , tm−1 ∈ [n,∞) with the
following property. For every 1 ≤ j ≤ m, there exists some κ(j) ∈ I such that
Φtj−1qj−1, qj ∈ Yκ(j). The pseudo-orbit is called periodic if qm = q0.

Although we describe a pseudo-orbit by a sequence of pairs (qi, ti) ∈ C × (0,∞),
we view a pseudo-orbit as a finite ordered collection of compact orbit segments such
that the endpoint of the i − 1-th segment is close to the starting point of the i-th
segment. With this interpretation, the shadowing property

Bw73
[Bw73] for hyperbolic

flows on a compact Riemannian manifold X states that for sufficiently large n and
sufficiently small ϵ, if Yϵ is the collection of all open balls of radius ϵ in X, then
an (n,Yϵ)-pseudo-orbit is fellow-traveled by an orbit with prescribed precision: For
every number σ > 0, there are n > 0, ϵ > 0 such that for any (n,Yϵ)-pseudo-orbit
η, there exists an orbit segment whose Hausdorff distance to η is less than σ. In
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the case that the pseudo-orbit is periodic, this orbit segment can be chosen to be
a periodic orbit. The point here is that there is no upper bound on the number of
orbit segments contained in the pseudo-orbit.

In addition to the shadowing property for pseudo-orbits, we need to identify
the free homotopy class of the corresponding periodic orbit. Now any periodic
orbit of Φt on a component of a stratum is determined by the conjugacy class of
a pseudo-Anosov mapping class, so that the periodic orbit is the projection of the
unit tangent line of an axis of an element in this conjugacy class. We encode this
information in the following notion of a characteristic curve.

characteristiccurve Definition 3.2. Let Y = ∪i∈IYi be a collection of open relative compact subsets of
the affine invariant submanifold C. Assume that the closure of each Yi is contained
in an open relatively compact contractible subset Vi of Cgood and that the sets Vi
are pairwise disjoint. Consider a periodic (n,Y)-pseudo-orbit, specified by points
q0, q1, . . . , qm = q0 ∈ C, numbers t0, . . . , tm−1 ∈ [n,∞) and indices κ(j) ∈ I.
Connect Φtj−1qj−1 to qj by an arc αj in Vκ(j). The concatenation of the orbit
segments connecting qj−1 to Φtj−1qj−1 with the arcs αj defines a closed curve η in
C which we call a V-characteristic curve of the pseudo-orbit, where V = {Vi | i ∈ I}.

It is immediate from this definition that a V-characteristic curve of an (n,Y)-
pseudo-orbit depends on choices, but its free homotopy class does not depend on
any choices made.

The following is the main result of this section. In its formulation, we view a
component of a stratum of quadratic differentials as an affine invariant manifold
via passing to its two-sheeted orientation cover. We refer to Section

galois
6 for details of

this construction. Note that the sets Yj are not required to satisfy any additional
topological properties beyond being open and relatively compact.

shadowing Theorem 3.3. Let C be an affine invariant manifold, let q1, . . . , qk ∈ Cgood be
birecurrent points, and for each j let Uj be a neighborhood of qj in Cgood. Then
there are open relative compact neighborhoods

Yj ⊂ Vj ⊂ Uj

of qj, where Vj is contractible, and there is a number R0 > 0 with the following
property.

Let Y = {Yj | j}, let V = {Vj | j} and let η be a V-characteristic curve of a
periodic (R0,Y)-pseudo-orbit, given by points y0, . . . , ym−1, ym = y0 and numbers
ti > R0 such that Φti−1yi−1, yi ∈ Yκ(i) for some κ(i) ∈ {1, . . . ,m}. Then there is a
periodic orbit γ ⊂ Cgood for Φt which passes through each of the sets Vκ(i) at times
close to

∑
s≤i−1 ts and which defines the same conjugacy class in Mod(S) as η.

If C = Q is a component of a stratum then for any number δ > 0 and any
finite set {q1, . . . , qk} of birecurrent points, the sets Yj ⊂ Vj can be chosen so that
λ(Yj) ≥ λ(Vj)(1− δ).

The following is a consequence of Theorem
shadowing
3.3 and Theorem C of

Ra14
[Ra14].
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strongshadow Corollary 3.4. Under the assumption of Theorem
shadowing
3.3, the periodic orbit uniformly

fellow-travels its defining pseudo-orbit.

Proof. Since the set {q1, . . . , qk} is finite, its projection to the moduli space Mg is
contained in the ϵ-thick part of moduli space for some ϵ > 0 depending on the set,
and the same holds true for the sets V1, . . . , Vk.

Now the periodic orbit γ can be decomposed into segments whose endpoints are
contained in the sets Vj and hence which are close to the endpoints of the orbit
segments defining the pseudo-orbit η. Furthermore, if the starting points of two
such corresponding segments α ⊂ γ and β ⊂ η are contained in the sets Vi and
the endpoints contained in Vj , then lifts of α, β to arcs in the Teichmüller space
of abelian differentials which begin in the same lift of the set Vi have endpoints in
the same lift of Vj . Thus such lifts define Teichmüller geodesic arcs with endpoints
in the ϵ-thick part of Teichmüller space which are uniformly close. Theorem C
of

Ra14
[Ra14] now states that the corresponding Teichmüller geodesics uniformly fellow

travel and hence the same holds true for the characteristic curve of the pseudo-orbit
and the corresponding periodic orbit. □

3.1. Product structures and the Hodge distance. In this subsection we in-
troduce local product structures for affine invariant manifolds C and the Hodge
distance on strong stable and strong unstable manifolds. We then formulate some
quantitative version of non-uniform hyperbolicity of the Teichmüller flow which was
established in

H13,H18
[H13, H23].

An affine invariant manifold C+ ⊂ H+ is described in period coordinates as the
set of solutions of a system of linear equations

EMM15
[EMM15]. Here as before, we write

C+ if we consider differentials whose area is not necessarily one. In particular, each
manifold point of C+ has a neighborhood U which is mapped by period coordinates
homeomorphically onto an open subset V of an affine subspace of H1(S,Σ;R)∗⊗RC
where Σ is the set of zeros of the differentials in the stratum containing C+. This
affine subspace is invariant under the complex structure induced from the complex
structure on H1(S,Σ;R)∗ ⊗R C

F16
[F16].

In period coordinates, a local leaf of the strong unstable foliation W su through
a point w ∈ H1(S,Σ;R)∗ ⊗R C consists of all differentials whose imaginary parts
coincide with the imaginary part of w, and the local leaf of the strong stable foliation
W ss consists of all differentials whose real parts coincide with the real part of w.
As C+ is complex affine in period coordinates, we obtain

affinelocal Lemma 3.5. Let C+ be an affine invariant manifold. Then Cgood∩W i is a smooth
foliation of Cgood into leaves of real dimension dimC(C+)− 1 (i = ss, su).

Lemma
affinelocal
3.5 implies that for every affine invariant manifold C, every point q ∈

Cgood has a neighborhood with a product structure. We next define a set with a
product structure formally. The definition we give is a bit less restrictive than other
of its versions, but it is convenient for the purpose of this section.

The real and imaginary part, respectively, of a marked abelian differential ω are
smooth closed one-forms on S which vanish precisely at the points in Σ. Thus
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their kernels define smooth one-dimensional subbundles of the tangent bundle of
S − Σ which integrate to one-dimensional oriented foliations on S − Σ. These
foliations are measured foliation on S, that is, they are equipped with a transverse
invariant measure. The transverse measure is obtained by integration of the real
and imaginary part of ω, respectively, over arcs in S − Σ which are transverse to
the foliation. The foliation defined by the real part of the differential is called
the vertical foliation, and the foliation defined by the imaginary part is called the
horizontal foliation.

The space of marked equivalence classes of projective measured foliations PMF
on S is equipped with a natural topology so that it is homeomorphic to a sphere of
dimension 6g − 7. Here two measured foliations are equivalent if they coincide up
to Whitehead moves. As this will not be important for us, we omit a more detailed
discussion. Period coordinates for the component Q of a stratum containing C show
that nearby differentials in Q whose real parts define the same class in H1(S,Σ;R)∗
determine equivalent vertical marked measured foliations on S.

productstructure Definition 3.6. Let C be an affine invariant manifold and let C̃ be a component of
the preimage of C in the Teichmüller space of marked abelian differentials. A subset
Ṽ of C̃ admits a product structure if there are two disjoint compact subsets D,K of
the set of (marked) projective measured foliations on S, viewed as projective classes
of points in H1(S,Σ;R)∗ via integration of the transverse measure along arcs with
endpoints in Σ, with the following properties.

(1) The sets D,K are homeomorphic to closed balls of dimension

m = dimC(C+)− 1.

(2) There is a continuous map

Λ : D ×K → Ṽ

such that for any pair (ξ, ν) ∈ D ×K, the horizontal projective measured
foliation of Λ(ξ, ν) equals ξ, and its vertical projective measured foliation
equals ν.

(3) There is some ϵ > 0 such that

Ṽ = ∪−ϵ≤t≤ϵ ∪(ξ,ν)∈D×K ΦtΛ(ξ, ν).

A closed contractible set V ⊂ Cgood with dense interior admits a product structure

if some (and hence any) component Ṽ of V of the preimage of V in the Teichmüller
space of marked abelian differentials has a product structure.

We say that an open subset U of Cgood has a product structure if its closure has
a product structure in the sense of Definition

productstructure
3.6. We refer to Section 3.1 of

H13
[H13]

for a detailed description of this construction for strata. The requirement (1) in
Definition

productstructure
3.6 is made for convenience of exposition; we will occasionally talk about

a set with a product structure which only has properties (2) and (3) above.

The following observation is immediate from the definition.
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componentinter Lemma 3.7. Let U ⊂ Cgood be an open or closed set with a product structure as
in Definition

productstructure
3.6. Then each component of the intersection of U with an orbit of

the Teichmüller flow is an arc of length 2ϵ.

Proof. Let V ⊂ Cgood be a set with a product structure, and let Ṽ be a component
of the preimage of V in the Teichmüller space of marked abelian differentials. As
V is contained in Cgood and is contractible, a component of the intersection of V
with an orbit of the Teichmüller flow lifts to a component of the intersection of
Ṽ with an orbit of the Teichmüller flow. The lemma is now immediate from the
definition and the fact that the Teichmüller flow preserves the projective class of
the horizontal and vertical measured foliation, respectively. □

Let Ṽ be as in (3) of Definition
productstructure
3.6. For each z̃ ∈ Ṽ , the product structure

determines a closed local strong unstable manifold

W su
loc(z̃)

containing z̃ which is homeomorphic to a closed ball of dimension m. This set
consists of all points whose marked horizontal measured foliation coincides with the
marked horizontal measured foliation of z̃, and whose marked vertical projective
measured foliation is contained in the set K. Similarly we obtain a local strong
stable manifold W ss

loc(z̃) by exchanging the roles of the horizontal and the vertical

measured foliations. The sets W i
loc(z̃) (i = ss, su) need not be contained in Ṽ , but

every ỹ ∈ W i
loc(z̃) can be moved into Ṽ with a small translate along the flow line

of Φt through ỹ. For z ∈ V we let W i
loc(z) be the projection to C of W i

loc(z̃) where

z̃ ∈ Ṽ is the preimage of z (i = ss, su). Note that these sets are contained in Cgood
by invariance of Cgood under the Teichmüller flow.

standardproduct Example 3.8. Let Q be a component of a stratum of abelian or quadratic differ-
entials. Let q ∈ Qgood and let Asu be a neighborhood of q in W su

loc(q). Then for a
sufficiently small neighborhood Ass of q in W ss

loc(q) and every z ∈ Ass there exists
a holonomy homeomorphism

Ξz : Asu → Ξz(A
su) ⊂W su

loc(z)

with Ξz(q) = z determined by the requirement that Ξz(u) ∈ ∪−ϵ≤t≤ϵΦ
tW ss

loc(u) for
some small ϵ > 0 and all u ∈ Asu. The holonomy homeomorphisms Ξz are smooth
and depend smoothly on z.

Define V (Ass, Asu) = ∪z∈AssΞzA
su and

V (Ass, Asu, t0) = ∪−t0≤t≤t0Φ
tV (Ass, Asu).

If we choose Ai to be a sufficiently small ball neighborhood of q in W i
loc(q) and

t0 sufficiently small, then V (Ass, Asu, t0) is a neighborhood of q with a product
structure in the sense of Definition

productstructure
3.6.

The tangent bundle of the strong stable or strong unstable foliation of a com-
ponent Q of a stratum can be equipped with the so-called modified Hodge norm
which induces a Hodge distance dH on the leaves of the foliation of a stratum of
abelian differentials.

The following result is the first part of Theorem 8.12 of
ABEM12
[ABEM12].
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abem Theorem 3.9. There exists a number cH > 0 not depending on choices such that
for every q ∈ Q, any q′ ∈W ss

loc(q) and all t > 0 we have

dH(Φtq,Φtq′) ≤ cHdH(q, q′).

The following is Theorem 2 of
H18
[H23]. It quantifies the idea of non-uniform hy-

perbolicity of the Teichmüller flow. In its formulation, Bi(q, r) denotes the ball of
radius r about q for the Hodge distance on the local leaf W i

loc(q) of the foliation
W i through q. The balls Bi(u, r0) are not required to be contained in the set U
(i = ss, su).

decay Theorem 3.10. Let q ∈ Qgood be a birecurrent point. Then there is a number r0 =
r0(q) > 0, and there is a neighborhood U of q in Qgood with the following property.
Let z ∈ U be birecurrent; then for every a > 0 there is a number T (z, a) > 0 so
that for all T > T (z, a), we have ΦTBss(z, r0) ⊂ Bss(ΦT (z), a) and ΦTBsu(z, a) ⊃
Bsu(ΦT (z), r0).

Let us explain the similarities and differences of Theorem
decay
3.10 with the familiar

properties of an Anosov flow on a closed manifold. First, the statement is local and
only applies to birecurrent points in Qgood. The neighborhood U of the birecurrent
point q can not be made uniform in size, measured for example with respect to the
distance function of a smooth Riemannian metric. The contraction times T (z, a)
depend on the birecurrent point z ∈ U . However, the size of the neighborhood
of the point z in its local strong stable manifold does not depend on z, which is
precisely what is needed to establish counting results from the mixing properties of
the Masur Veech measure. By restriction, the theorem immediately carries over to
affine invariant manifolds.

3.2. Shadowing and Anosov closing. The goal of this subsection is to prove
Theorem

shadowing
3.3.

Proof of Theorem
shadowing
3.3. The proof is divided into three steps. In the first step, we

construct the neighborhoods Yj ⊂ Vj ⊂ Uj of the points qj and determine the
number R > 0 whose existence is stated in the theorem. These sets have some
additional properties used to obtain the dynamical control we need.

In the second step we consider the element φ ∈ Mod(S) determined by a V-
characteristic curve of a periodic (R,Y)-pseudo orbit, and we show that it is pseudo-
Anosov. In particular, it determines a periodic orbit for the Teichmüller flow in the
moduli space of abelian differentials. We then use a fixed point argument to show
that this orbit is contained in C and has the properties stated in the proposition.

The last step contains the measure control for components of strata which is the
last part of the theorem.

Step 1.

Using the notation from the theorem, for each j ≤ k choose a closed contractible
neighborhood Vj ⊂ Uj of qj with a product structure which furthermore has the
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properties stated in Theorem
decay
3.10. Recall that such a product structure is deter-

mined by a choice Ṽj of a component of the preimage of Vj in the Teichmüller space
of marked abelian differentials, of two closed disjoint subsets Dj ,Kj of the space of
projective measured foliations which are homeomorphic to closed balls of dimension
d = dimC(C+)− 1, an embedding

Λj : Dj ×Kj → Ṽj

and a number ϵj > 0 with the properties stated in Definition
productstructure
3.6.

For z̃ ∈ Ṽj denote by W ss
loc(z̃) the local strong stable manifold of z̃ defined by Ṽj

as explained after Lemma
componentinter
3.7 and let similarly W su

loc(z̃) be the local strong unstable
manifold. We require that the projections into C of the union of all these local
strong stable and strong unstable manifolds are contained in a fixed contractible
subset of Uj . Note that as explained after Lemma

componentinter
3.7, this is not automatic as

some of these local manifolds may not be contained in Vj , but it can be achieved
by making Vj smaller if necessary.

For z ∈ Vj we denote by W i
loc(z) the projection to C of the set W i

loc(z̃) where z̃

is the preimage of z in Ṽj ; this does not depend on the choice of the component Ṽj .
By perhaps decreasing the size of Vj we may assume that W i

loc(z̃) ⊂ Bi(z̃, r0) for
all z̃ ∈ Vj , where r0 > 0 is as in Theorem

decay
3.10.

Recall from Example
standardproduct
3.8 that for two points z̃, ũ ∈ Ṽj there is a holonomy map

Ξ(ũ, z̃) :W su
loc(ũ) →W su

loc(z̃).

For each ṽ ∈ W su
loc(ũ), the point Ξ(ũ, z̃)(ṽ) is the unique point in W su

loc(z̃) whose
marked vertical measured foliation coincides with the marked vertical measured
foliation of ṽ (up to equivalence defined by Whitehead moves).

The holonomy maps Ξ(ũ, z̃) are smooth and depend smoothly on ũ, z̃. In partic-
ular, they are bilipschitz for the Hodge distance dH . Furthermore, if z̃ ∈ W su

loc(ũ)
then Ξ(ũ, z̃) = Id. Thus by perhaps decreasing the size of the sets Vj we may
assume that the bilipschitz constants for these holonomy maps are at most 2.

Choose a compact neighborhood Zj ⊂ Vj of qj with a product structure which
is contained in the interior of Vj . For z ∈ Zj let W i

loc,Zj
(z) (i = su, ss) be the local

strong stable and strong unstable manifold for Zj . By continuity and compactness,
there exists a number r > 0 such that for any z ∈ Zj , the dH -distance between the
set W i

loc,Zj
(z) and the boundary of W i

loc(z) is at least r.

By Theorem
abem
3.9 and Theorem

decay
3.10 and the choice of the sets Zj , we can find a

contractible neighborhood Yj ⊂ Zj of qj with a product structure and a number
Tj > 0 with the following property. If z ∈ Yj and if T > Tj then

dH(ΦT z′,ΦT z′′) ≤ r

4
for all z′, z′′ ∈W ss

loc(z) andeq3eq3 (2)

dH(Φ−T z′,Φ−T z′′) ≤ r

4
for all z′, z′′ ∈W su

loc(z).

Namely, choose Tj > 0 so that the estimate (
eq3
2) is satisfied for z = qj and T = Tj

and the constant r/8cH instead of r/4. Such a number exists by Theorem
decay
3.10 and

the choice of the sets Vj . By continuity, the estimate (
eq3
2) with r/4cH then holds
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true for this number Tj and for all points z in a neighborhood Yj of qj which can be
chosen to be contractible, with a product structure. By Theorem

abem
3.9, the estimate

(
eq3
2) then holds true for all T ≥ Tj and for all z ∈ Yj . Define Y = {Yj},V = {Vj}
and let R = maxj Tj .

Step 2.

Using the notations from Step 1, let η be a V-characteristic curve of a periodic
(R,Y)-pseudo-orbit. By definition, η is determined by points yi ∈ Yκ(i), numbers
ti > R (0 ≤ i ≤ m − 1) and arcs in the contractible sets Vκ(i). Parametrize η
in such a way that for each orbit segment, the parametrization coincides with the
parametrization as a flow line of the Teichmüller flow and that η(

∑
i<ℓ ti + ℓ) = yℓ

(i.e. the connecting arcs αj are parametrized on a unit interval). For simplicity of
notation, assume that η(0) ∈ Y0. Let T =

∑
j tj +m > 0 be such that η(T ) = η(0).

Let as before Q be the component of the stratum containing C and let Q̃ be
a component of the preimage of Q in the Teichmüller space of marked abelian
differentials. Let C̃ ⊂ Q̃ be a component of the preimage of C. We assume that
these components are chosen in such a way that they contain the component Ṽ0 of
the preimage of V0. Let η̃ be a lift of η to C̃ which begins at η̃(0) = ỹ0 ∈ Ṽ1. Then
there is an element φ ∈ Mod(S) which maps the endpoint η̃(T ) of η̃ back to ỹ0. As

any element of Mod(S) either stabilizes C̃ or maps C̃ to a disjoint component of the

preimage of C, we know that φ ∈ Stab(C̃).

By Lemma 5.1 of
H13
[H13] (and after perhaps increasing the number R > 0 and

decreasing the sets Yi), the mapping class φ is pseudo-Anosov (see also the bottom
of p.523 of

H13
[H13] and

H18
[H23]). For completeness, we sketch the proof.

It is known that a mapping class φ is pseudo-Anosov if and only if it acts on
the curve graph of S with positive translation length. Moreover, there exists a
coarsely well defined map Υ from the Teichmüller space to the curve graph which
associates to a point in Teichmüller space, viewed as a marked hyperbolic metric on
S, a systole, that is, a shortest simple closed geodesic. The restriction of this map
to any Teichmüller geodesic segment is a uniform unparameterized quasi-geodesic.
The diameter of the image of a Teichmüller geodesic ray is infinite if this ray recurs
to the thick part of Teichmüller space for arbitrarily large times.

As each of the points qj is birecurrent, for any lift q̃j of qj to the Teichmüller
space of marked abelian differentials. the image under Υ of the Teichmüller geodesic
ray whose unit cotangent line is the orbit {Φtqj | t ≥ 0} has infinite diameter.
Furthermore, if ũ is sufficiently close to q̃j , then the Φt-orbit of ũ and q̃j uniformly
fellow travel for any a priori given time interval. This implies that up to making
the sets Yj smaller and the number R > 0 larger, a lift of the characteristic curve
to the Teichmüller space or marked abelian differentials projects to a path in the
curve graph which consists of uniform unparameterized quasi-geodesic segments,
with a priori specified lower bound on the diameter, which extend so such segments
coarsely overlapping along quasi-geodesic arcs of diameter uniformly bounded from
below by another a priori chosen constant. By the local to global property of the
such a path in the curve graph, which is a hyperbolic geodesic metric space, this
path is a uniform unparameterized quasi-geodesic of controlled lower length bound,
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which is moreover invariant under the action of φ. But this just means that φ is
pseudo-Anosov.

Our goal is to show that the mapping class φ defines a periodic orbit γ in C with
the properties stated in the proposition. Note that this is not implied by the fact
that φ ∈ Stab(C̃). To this end we use a variation of the argument in the proof of
Proposition 5.4 of

H13
[H13].

Let γ̃ ⊂ Q̃ be the cotangent line of the axis in Teichmüller space of the pseudo-
Anosov element φ. The curve γ̃ is a φ-invariant orbit of the Teichmüller flow in Q̃
which projects to the periodic orbit γ. The (biinfinite) lift η̃ of the characteristic
curve η is contained in a uniformly bounded neighborhood of γ̃. Namely, this lift is
invariant under the action of φ and hence by invariance, the Hausdorff distance (for
some Mod(S)-invariant Riemannian metric) between γ̃ and η̃ equals the Hausdorff
distance between compact fundamental domains on these lifts for the action of φ
and hence is finite.

The pseudo-Anosov element φ acts with north-south dynamics on the Thurston
sphere PMF of projective measured foliations of the surface S. This means that
φ has precisely two fixed points in PMF , one is attracting, the other repelling.
Furthermore, if ũ ∈ γ̃ is arbitrary, then the vertical projective measured foliation ν
of ũ equals the attracting fixed point of φ, and the horizontal projective measured
foliation ξ of ũ equals the repelling fixed point of φ.

Recall the definition of the sets Dj ,Kj ⊂ PMF defining the set Ṽj which we
choose in such a way that it is intersected by η̃. We claim that it suffices to verify
that with the above notation, we have ξ ∈ D0, ν ∈ K0. Namely, every flow line of the
Teichmüller flow in the Teichmüller space of abelian differentials which is defined
by a differential with horizontal measured foliation in D0 and vertical measured
foliation in K0 passes through the set Ṽ0, in particular it is entirely contained in
C̃ by invariance of C̃ under the Teichmüller flow. Thus if ξ ∈ D0, ν ∈ K0 then the
periodic orbit γ is contained in C, and it passes through the set V0. As the initial
point of the periodic pseudo-orbit was arbitrarily chosen among the starting points
in Y of the orbit segments which determine the pseudo-orbit, we deduce that the
periodic orbit γ passes through each of the sets Vκ(i), and the crossing times fulfill
the estimate stated in the proposition. Thus γ has all the properties stated in the
proposition by the fellow traveling property for orbit segments with controlled lifts
to the Teichmüller space of marked abelian differentials.

Using the argument on p.524 of
H13
[H13], we show that indeed ν ∈ K0. To this end

we claim that

Φ−t0W su
loc(η̃(t0)) ⊂W su

loc(ỹ0).

Namely, since t0 > R and since η(t0) ∈ Yκ(1), the estimate (
eq3
2) shows that the

dH -diameter of A = Φ−t0W su
loc(η̃(t0)) is at most r/4. On the other hand, the

set A contains the point η̃(0) = ỹ0 ∈ Ỹ0 ⊂ Ṽ0. As by assumption, the Hodge
distance between ỹ0 and the boundary of W su

loc(ỹ0) is at least r, we indeed have
Φ−t0W su

loc(η̃(t0)) ⊂ W su
loc(ỹ0). In particular, if we denote by Kκ(1) ⊂ PMF the

closed set of all vertical projective measured foliations for points in the component
Ṽκ(1) of the preimage of Vκ(1) containing η̃(t0), then we have Kκ(1) ⊂ K0.
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The above reasoning can be iterated: For s ≥ 1 let Kκ(s) be the set of all
projective measured foliations of all marked abelian differentials which are contained
in the component Ṽκ(s) of the preimage of Vκ(s) containing η̃(

∑
j<s tj+s). We show

by induction on s that for any s ≥ 1, the set Kκ(s) is entirely contained in K0. The
case s = 1 was discussed in the previous paragraph, so let us assume that this holds
true for all s < s0 for some s0 ≥ 2. Replacing the starting point y0 of the periodic
pseudo-orbit by y1, we conclude from the induction hypothesis that Kκ(s0) ⊂ Kκ(1).
However, we showed above that Kκ(1) ⊂ K0. This yields the induction step.

To summarize, for each t > 0 the vertical projective measured foliation of η̃(t) is
contained in the compact set K0. Now the attracting fixed point of φ is the limit
as t → ∞ of the vertical projective measured foliation of η̃(t). Namely, the path
η̃ is invariant under the pseudo-Anosov element φ. Since φ acts with north-south
dynamics on PMF , any non-constant orbit on PMF under forward iteration of φ
converges to the attracting fixed point of φ. Thus this attracting fixed point of φ
is indeed contained in the compact set K0.

Reversing the direction of the flow Φt and replacing φ by φ−1, the same argument
applies to the repelling fixed point of φ and shows that this repelling fixed point is
contained in D0. In particular, the periodic orbit of Φt defined by φ is contained
in C, and it passes through V0. As remarked earlier, this suffices for the proof of
the main part of the proposition.

Step 3.

Consider now a component Q of stratum of abelian or quadratic differentials,
equipped with Masur Veech measure λ. We have to show that for any given δ > 0
the sets Yj can be chosen in such a way that λ(Yj) > λ(Vj)(1 − δ). To this end
note that we may choose the sets Vj as in the beginning of this proof in such a way
that the Lebesgue measure of their boundaries vanish. In a second step, we choose
the sets Zj in such a way that they satisfy λ(Zj) ≥ (1 − δ/2)λ(Vj). Let r > 0 be
sufficiently small that the modified Hodge distance of every point z ∈ Zj to the
boundary of W i

loc(z) is at least r.

By our choices and Theorem
decay
3.10, for every birecurrent point z ∈ Zj there exists

a number T = T (z) > 0 such that the estimates (2) above hold true provided
that t ≥ T (z), with r/4 replaced by r/8. As Φt is smooth and as birecurrent
points in Zj have full Masur Veech measure, we can find a number Tj > 0 such
that Tj ≥ T (z) for a subset Y ′

j of Zj of measure at least (1 − δ)λ(Vj). Then the
corresponding estimate for r/4 holds true for an open neighborhood Yj of Y ′

j . Let
R = max{Tj | j}.

Now the proof of the Anosov closing property only used the estimate (2) beyond
some standard properties of the Teichmüller flow. This yields the proposition with
the additional volume control on the nested sets Yj ⊂ Vj . This finishes the proof.

□

stabilizer Remark 3.11. Let C be an affine invariant manifold, contained in a component Q
of a stratum, and let C̃ be a component of the preimage of C in the Teichmüller space
of abelian differentials. If φ ∈ Mod(S) defines a periodic orbit of the Teichmüller
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flow on C, then φ is a pseudo-Anosov mapping class which is conjugate to an element
of Stab(C̃). However, it is not true that any pseudo-Anosov mapping class in Stab(C̃)
determines a periodic orbit for Φt contained in the closure of C. An example of this
situation is the case that C equals a non-principal stratum of abelian differentials
with at least one simple zero. In this case the preimage of C in the Teichmüller
space of abelian differentials is connected

CS21
[CS21] and hence the stabilizer of this

preimage equals the entire mapping class group. However, the set of periodic orbits
for the Teichmüller flow contained in the closure of C is a proper subset of the set
of all periodic orbits.

In the case of a single birecurrent point q on an affine invariant manifold C,
Proposition

shadowing
3.3 predicts for every contractible neighborhood U of q a nested set of

neighborhoods Y ⊂ V ⊂ U of q and a number R > 0 with the following property.
For every y ∈ Y and T > R so that ΦT y ∈ Y , there is a periodic orbit passing
through V of period close to T which defines the same conjugacy class in Mod(S)
as a characteristic curve of the periodic (R, Y )-pseudo-orbit (y, T ).

Note also that filtering the sets Yi ⊂ Vi is necessary in the above argument as
it is used to specify the precise location of the periodic orbit constructed from a
closed pseudo-orbit.

3.3. Semigroups defined by recurring orbits. The goal of this subsection is
to establish a parameterized version of Theorem

shadowing
3.3. This is needed to associate to

a periodic orbit of Φt on an affine invariant manifold C which passes through an a
priori chosen subset of C an element of the mapping class group Mod(S) rather than
a conjugacy class in Mod(S) in such a way that concatentation of orbit segments
in a pseudo-orbit corresponds to multiplication of group elements. That this is
possible is reminiscent of the idea that the Teichmüller flow admits a symbolic
coding

AGY06,H11
[AGY06, H11] by a subshift of finite type, and the characteristic property

of a Markov chain is precisely that the future is independent of the past.

Let again q ∈ Cgood be a good birecurrent point. Let U ⊂ Cgood be a neigh-
borhood of q and let Y ⊂ V ⊂ U be a nested family of neighborhoods of q in
Cgood as in Theorem

shadowing
3.3. We may assume that V is contractible and has a product

structure, that Y consists of a finite union of contractible sets with product struc-
tures (in general, this union is non-trivial) and that any connected component of
the intersection with Y or V of an orbit segment of the Teichmüller flow is an arc
of fixed length 2t0 > 0 (this is a straightforward consequence of the construction).
Put V = V .

For R0 > 0 as in Theorem
shadowing
3.3 let y ∈ Y and let T > R0 be such that ΦT y ∈ Y . A

V-characteristic curve of this orbit segment determines uniquely a periodic orbit γ
of Φt which intersects V in an arc of length 2t0. There may be more than one such
intersection arc, but there is a unique arc determined by the requirement that the
parametrized periodic orbit starting at a point in this arc uniformly fellow-travels
the pseudo-orbit defined by the parameterized orbit segment t→ Φty (0 ≤ t ≤ T ).
Choose the midpoint of this intersection arc as a basepoint for γ and as an initial
point for a unit speed parametrization of γ.
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Let Γ0 be the set of all parameterized periodic orbits of this form for points
y ∈ Y with ΦT y ∈ Y (T > R0). There is a bijection between such periodic orbits
and subsets of ΦTV ∩ V containing points in ΦTY ∩ Y . With some care, these
subsets can be chosen to be components of ΦTV ∩ V

H13
[H13], but we will not need

this somewhat technical fact in the sequel.

Fix once and for all a lift Ṽ of the contractible set V to a component C̃ of
the preimage of C in the Teichmüller space of marked abelian differentials. A
parametrized periodic orbit γ which starts in V lifts to a subarc of a flow line of
the Teichmüller flow on C̃ with starting point in Ṽ . The endpoint of this arc is
mapped to its starting point by a pseudo-Anosov element Ω(γ) ∈ Mod(S). The
conjugacy class of Ω(γ) is uniquely determined by γ, and the element Ω(γ) only

depends on the choice of Ṽ (and the component of γ∩V as explained above). Thus
a characteristic curve of a sufficiently long orbit segment beginning and ending in
Y determines a pseudo-Anosov mapping class in Mod(S).

The following proposition is a parameterized version of shadowing as established
in Theorem

shadowing
3.3.

grouplaw Proposition 3.12. For γ1, . . . , γm ∈ Γ0, there is a point z ∈ V , and there are
numbers 0 < t1 < · · · < tm with the following properties.

(1) Φtiz ∈ V for all i.
(2) For each i ≤ m, a V -characteristic curve of the orbit segment {Φtz | ti−1 ≤

t ≤ ti} defines the element Ω(γi) in Mod(S).
(3) A V -characteristic curve of the orbit segment {Φtz | 0 ≤ t ≤ tm} deter-

mines a parameterized periodic orbit γ for Φt with initial point in V , and
Ω(γ) = Ω(γk) ◦ · · · ◦ Ω(γ1).

Note that we can not expect that the point z is contained in the smaller set
Y ⊂ V .

Proof of Proposition
grouplaw
3.12. The proposition is a fairly immediate consequence of

Theorem
shadowing
3.3 and the definitions.

Namely, recall that an orbit γ ∈ Γ0 is constructed from a point y ∈ Y and a
number s(γ, y) > R0 so that Φs(γ,y)y ∈ Y . The orbit γ then is the unique periodic
orbit determined by the characteristic curve of the pseudo-orbit (y, s(γ, y)).

Now let γ1, . . . , γm ∈ Γ0, and for each i ≤ m let (yi, si) be as in the previous
paragraph for γi. By Theorem

shadowing
3.3, there exists a parameterized periodic orbit γ ∈ C

beginning at a point z ∈ V which passes through V at times ti close to
∑

ℓ<i−1 sℓ
and which defines the same conjugacy class in Mod(S) as the concatenation of
the pseudo-orbits (y1, s1), . . . , (ym, sm). But this just means that for each i a V-
characteristic curve of the orbit segment ∪t∈[ti−1,ti]Φ

tz defines the element Ω(γi) in
Mod(S). It is now immediate from the construction that γ can be parameterized
in such a way that the properties in the proposition are fulfilled. □
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As a consequence, the subsemigroup

⟨Ω(Γ0)⟩ < Mod(S)

generated by {Ω(γ) | γ ∈ Γ0} consists of pseudo-Anosov elements whose corre-
sponding periodic orbits are contained in the affine invariant manifold C and pass
through the set V . This can be viewed as a version of Rauzy-Veech induction as
used in

AV07,AGY06
[AV07, AGY06] which is valid for all affine invariant manifolds, in particular

for strata of quadratic differentials, or as a version of symbolic dynamics for the
Teichmüller flow on strata.

4. Local Zariski density for affine invariant manifolds
localzariski

The goal of this section is to prove Theorem
zorich
3. Throughout this section we

assume that g ≥ 2, and we use the assumptions and notations from Section
affinein
2.

Let Q+ ⊂ H+ be a component of a stratum and let C+ ⊂ Q+ be an affine
invariant manifold. Recall from Section

affinein
2 that the image of the projection p :

TC+ → Π∗H⊗RC|C+ to absolute periods is a flat subbundle of Π∗H⊗RC|C+ which
is invariant under both the complex structure defined by enlargement of coefficients
(the tensor product) as well as the complex structure of the Hodge bundle. We
denote by 2ℓ ≥ 2 its complex dimension. Then p(TC+) ∩ Π∗H|C+ is a flat bundle
Z = ZR whose fibre is a symplectic subspace of the fibre of Π∗H (recall that the
fibre of Π∗H can be identified with H1(S,R)) of real dimension 2ℓ. As before, by
a flat subbundle of the bundle Π∗H|C+ we mean a bundle which is invariant under
the restriction of the Gauss Manin connection. We call Z the absolute real tangent
bundle of C+. The Gauss Manin connection restricts to a flat connection on Z.

The monodromy of the restriction of the Gauss Manin connection to Z is defined
as the subgroup of GL(2ℓ,R) which is generated by parallel transport along loops
in C+ based at some fixed point p. As the Gauss Manin connection is symplectic,
this monodromy group is a subgroup of Sp(2ℓ,R). Its conjugacy class does not
depend on any choices made.

monodromygroup Definition 4.1. The monodromy group of the affine invariant manifold C+ of rank
ℓ is the subgroup of Sp(2ℓ,R) which is the monodromy of the absolute real tangent
bundle Z of C+ for the restriction of the Gauss Manin connection.

A geometric description of the monodromy group of C+ is as follows. Observe
first that the monodromy coincides with the monodromy of the restriction of the
bundle Z to the intersection C of C+ with the moduli space of area one abelian

differentials. Let C̃ be a component of the preimage of C in the Teichmüller space
of abelian differentials. The stabilizer Stab(C̃) of C̃ in the mapping class group maps
via the natural surjective homomorphism Ψ : Mod(S) → Sp(2g,Z) to a subgroup
of Sp(2g,Z). There is a linear symplectic subspace H ⊂ R2g of dimension 2ℓ which

is preserved by Ψ(Stab(C̃)). The monodromy group of C then is the projection of

Ψ(Stab(C̃)) to the group Sp(H) = Sp(2ℓ,R) of symplectic automorphisms of H.
This description is immediate from the description of the Gauss Manin connection
in Section

hodge
2.1.
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Example 4.2. If C+ is a Teichmüller curve, then the monodromy group of C+
is just the Veech group of C+, acting on the two-dimensional symplectic subspace
of H1(S,R) which is spanned by the real and imaginary part, respectively, of an
abelian differential ω ∈ C+. Thus this monodromy group is a lattice in Sp(2,R) =
SL(2,R), in particular it is Zariski dense in SL(2,R).

For a general affine invariant manifold, it is unclear whether the monodromy
group is a discrete subgroup of Sp(2ℓ,R).

The proof of Theorem
zorich
3 is divided into two steps contained in two subsections.

The first step establishes Zariski density of the (global) monodromy group, and in
a second step, we extend this result to the local monodromy group.

4.1. The monodromy group of affine invariant manifolds. The goal of this
subsection is to show that the monodromy group of any affine invariant manifold
is Zariski dense in Sp(2ℓ,R) (using the above convention). We will make use of
the fact that an abelian differential on S defines a singular euclidean metric on S
with cone points of cone angle a multiple of 2π at the zeros of the differential. This
singular euclidean metric is given by a family of charts, defined on the complement
of the zeros of the differential, with chart transitions being translations. As it is
customary in the literature, if we view an abelian differential on S as a singular
euclidean metric, we refer to these data as a translation surface. We denote such
a translation surface by X or by a pair (X,ω) if we like to specify the abelian
differential ω which defines the translation structure. Note that ω can be read off
from the horizontal and vertical measured foliations of the translation surface.

We begin with evoking a result of Wright
W15
[W15]. He introduced the following

two deformations of a translation surface (X,ω).

The horocycle flow is defined as part of the SL(2,R)-action,

ut =

(
1 t
0 1

)
⊂ SL(2,R),

and the vertical stretch is defined by

at =

(
1 0
0 et

)
⊂ GL+(2,R).

For a collection Y of horizontal cylinders on a translation surface X (i.e. cylinders
foliated by leaves of the horizontal foliation), define the cylinder shear uYt (X) to
be the translation surface obtained by applying the horocycle flow to the cylinders
in Y but not to the rest of X. Similarly, the cylinder stretch aYt (X) is obtained by
applying the vertical stretch only to the cylinders in Y.

The following lemma is a consequence of the work of Wright
W15
[W15]. For its

formulation, a translation surface (X,ω) is called horizontally periodic if it is a
union of horizontal cylinders. Via the natural pairing ⟨, ⟩ between first homology
and first cohomology of S, a class in H1(S,R) defines an element of H1(S,R)∗.
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rational Lemma 4.3. Let C+ be an affine invariant manifold of rank ℓ. Then there exists
a horizontally periodic surface (X,ω) ∈ C+ with the following properties. There is
a decomposition of X into ℓ + 1 collections Y1, . . . ,Yℓ,Yℓ+1 of horizontal cylinder
families. The family Yℓ+1 may be empty. The homology classes of the cylinder
families Yi (i ≤ ℓ) span a subspace of the dual pTC∗

+ of pTC+ of dimension ℓ, and
the moduli of all of the cylinders in each of the collections Yi (i ≤ ℓ) are rational.

For each i ≤ ℓ, the cylinder shear uYi
t (X) remains in C+.

Proof. Let (X,ω) ∈ C+ be a translation surface with the maximal number of parallel
cylinders. We may assume that these cylinders are horizontal. Following the proof
of Theorem 1.10 of

W15
[W15], (X,ω) is horizontally periodic, and the core curves of

the horizontal cylinders span a subspace of the dual pTC∗
+ of pTC+ of dimension

ℓ. No set of core curves of parallel cylinders on a translation surface Y ∈ C+ may
span a subspace of pTC∗

+ of dimension greater than ℓ.

Following Definition 4.4 of
W15
[W15], call two homology classes in H1(S,R) C+-

collinear if they have collinear images in TC∗
+, i.e. if they are scalar multiples. By

Definition 4.6 of
W15
[W15], two cylinders in X are called C+-parallel if they are parallel

at X and at every nearby X ′ ∈ C+. Being C+-parallel is an equivalence relation on
the set of cylinders.

Let Zi (i = 1, . . . , k) be the set of equivalence classes of horizontal cylinders
in (X,ω) for this equivalence relation. By the choice of (X,ω) and the results in
Section 4 of

W15
[W15], we have k = ℓ, i.e. the horizontal cylinders of (X,ω) group into

precisely ℓ equivalence classes. Lemma 4.11 of
W15
[W15] shows that the cylinder shear

of any of the C+-parallel cylinder families Zi remains in C+.

Consider one of the families Zi. The cylinder shear for Zi remains in C+. Corol-
lary 3.4 of

W15
[W15] states that if the moduli of the cylinders in this family are not

all rationally dependent, then there is a proper decomposition Zi = A ∪ B so that
the cylinder shears for the families A,B remain in C+. Thus we can subdivide the

cylinder family Zi = ∪jZj
i where j ≥ 1, where the moduli of the cylinders in each

of the families Zj
i are rationally dependent and such that for each j, the cylinder

shear u
Zj

i
t (X) remains in C+.

By Theorem 5.1 of
W15
[W15], for all i ≤ ℓ the vertical stretch aZi

t of the cylinder
family Zi is contained in C+. This vertical stretch changes the moduli of the cylin-
ders in the family Zi while keeping the moduli of the cylinders in the family Zj

fixed for all j ̸= i. If A1, A2 ⊂ Zi are cylinders with rationally dependent moduli,
then the moduli of their images under the vertical stretch are rationally dependent
as well. As a consequence, by successively modifying (X,ω) with a sequence of ver-
tical stretches of the cylinder families Zi (i = 1, . . . , ℓ) we can assure that the image
surface (X ′, ω′), which is again horizontally periodic, has the following property.
For each i, the moduli of the cylinders in the cylinder family Y1, . . . ,Yℓ which are
the images in X ′ of the families Z1

1 , . . . ,Z1
ℓ are rational.

Let Yℓ+1 = X ′ − ∪iYi. Then the surface (X ′, ω) and the cylinder families Yi

have the properties stated in the lemma. □
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Define a piecewise affine transformation of a translation surface (X,ω) to be
a continuous self-map F : X → X with the following property. There exists an
F -invariant decomposition X = ∪iXi into finitely many components with geodesic
boundary for the singular euclidean metric, and the restriction of F to each of
these components is affine. In contrast to an affine automorphism of (X,ω), we
allow that F is non-trivial but that the restriction of F to some of the components
Xi equals the identity. A cylinder shear of a collection Y of horizontal cylinders
with non-empty complement is such a piecewise affine transformation. If the result
of such a transformation is isometric to (X,ω) then we call the piecewise affine
transformation a piecewise affine automorphism of (X,ω).

A transvection in a 2ℓ-dimensional symplectic vector space over a field K is a
map A ∈ Sp(2ℓ,K) which fixes a subspace of K2ℓ of codimension one and has
determinant one (see

Hl08
[Hl08]). Any map of the form

α→ α+ ι(α, β)β

for some 0 ̸= β ∈ K2ℓ (here as before, ι is the symplectic form) is a transvection.
We call this map a transvection by β. The main consequence of Lemma

rational
4.3 we are

going to use is the following

veechgroup Corollary 4.4. Let C+ be an affine invariant manifold of rank ℓ ≥ 1. Then there
is a horizontally periodic surface (X,ω) ∈ C+, and there is a free abelian group
of rank ℓ of piecewise affine transformations of (X,ω) which preserves C+. This
group of piecewise affine transformations contains a lattice Λ, that is, a subgroup
isomorphic to Zℓ, which acts on (X,ω) as a group of Dehn-multitwists, and it acts
on H1(S,R) as a group of transvections of rank ℓ. This action restricts to a group
of linear automorphisms of pTC∗

+ of rank ℓ.

Proof. Let (X,ω) be a translation surface as in Lemma
rational
4.3. Let Yi (i ≤ ℓ) be one

of the cylinder families whose existence was shown in Lemma
rational
4.3. The moduli of

all cylinders in the family are rational. Moreover, the cylinder shear uYi
t (X) for

this cylinder family remains in C.

As all the moduli of the cylinders are rational, this cylinder shear is eventually
periodic. This means that for each i there exists some number ri > 0 such that for
some fixed marking of the surface X, the surface uYi

ri (X) is the image of X by a
Dehn multitwist Ti about the core curves of the cylinders in Yi.

Since the core curves of the horizontal cylinders in X are pairwise disjoint, the
Dehn multitwists Ti commute. Therefore these multitwists generate a free abelian
group of rank ℓ of piecewise affine automorphisms of X. The multitwist Ti acts as
a transvection on H1(S,R) by a homology class of the form

∑
s b

s
i ζ

s
i where bsi ∈ Z

and where ζsi runs through the homology classes of the waist curves of the oriented
cylinders in the family Yi.

Each of the homology classes ai =
∑

s b
s
i ζ

s
i (i ≤ ℓ) induces a linear functional on

the fibre of TC+ at X. The corollary now follows from the fact that by the choice of
(X,ω), the rank of the subspace of TC∗

+ spanned by these homology classes equals ℓ.
Then the subgroup of Mod(S) generated by the Dehn multitwists Ti (i = 1, . . . , ℓ)
acts on H1(S,R) as an abelian group of transvections of rank ℓ. □
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Our criterion for Zariski density relies on a result of Hall
Hl08
[Hl08]. For its formu-

lation, for a prime p ≥ 2 let Fp be the field with p elements. Then Sp(2g, Fp) is
a finite group. Therefore for every A ∈ Sp(2g, Fp) there is some ℓ ≥ 1 such that
Aℓ = A−1. As a consequence, if G < Sp(2g, Fp) is any subsemigroup then for all
x, y ∈ G we have xy−1 ∈ G as well and hence G < Sp(2g, Fp) is a group.

In the formulation of the following lemma, ι denotes the symplectic form on a
symplectic vector space F 2ℓ

p over Fp of rank 2ℓ.

transvection Lemma 4.5. Let p ≥ 3 be an odd prime and let G < Sp(2ℓ, Fp) be a subgroup
generated by 2ℓ transvections by the elements of a set E = {e1, . . . , e2ℓ} ⊂ F 2ℓ

p

which spans F 2ℓ
p . Assume that there is no nontrivial partition E = E1 ∪ E2 so that

ι(ei1 , ei2) = 0 for all eij ∈ Ej. Then G = Sp(2ℓ, Fp).

Proof. For each i write Ai(x) = x+ ι(x, ei)ei. Let G < Sp(2ℓ, Fp) be the subgroup
generated by the transvections A1, . . . , A2ℓ. Since the vectors e1, . . . , e2ℓ span F 2ℓ

p ,
the intersection of the invariant subspaces of the transvections Ai (i ≤ 2ℓ) is trivial.

We claim that the standard representation of G on F 2ℓ
p is irreducible. Namely,

assume to the contrary that there is an invariant proper linear subspace W ⊂ F 2ℓ
p .

Let 0 ̸= w ∈W ; then there is at least one i so that ι(w, ei) ̸= 0. By invariance, we
have w + ι(w, ei)ei ∈W and hence ei ∈W since Fp is a field.

As a consequence, W is spanned by some of the ei, say by ei1 , . . . , eik , and if j
is such that ι(eis , ej) ̸= 0 for some s ≤ k then ej ∈ W . However, this implies that
W = F 2ℓ

p by the assumption on the set E = {ei}.

To summarize, G is an irreducible subgroup of Sp(2ℓ, Fp) generated by transvec-
tions (where irreducible means that the standard representation of G on F 2ℓ

p is
irreducible). Furthermore, as p is an odd prime by assumption, the order of each
of these transvections is not divisible by 2. Theorem 3.1 of

Hl08
[Hl08] now yields that

G = Sp(2ℓ, Fp) which is what we wanted to show. □

Remark 4.6. By Proposition 6.5 of
FM12
[FM12], Lemma

transvection
4.5 is not true for p = 2.

We use Lemma
transvection
4.5 to establish a criterion for Zariski density of a subgroup

of Sp(2ℓ,R) acting on a 2ℓ-dimensional symplectic subspace of H1(S,R). In its
formulation, we use the standard pairing

⟨, ⟩ : H1(S,R)×H1(S,R) → R
between homology and cohomology to view a class in H1(S,R) as an element
of H1(S,R)∗. A symplectic automorphism of H1(S,R) induces a symplectic au-
tomorphism of H1(S,R). Recall also that the real part Re(q̃) and the imag-
inary part Im(q̃) of a marked abelian differential q̃ define a cohomology class
[Re(q̃)], [Im(q̃)] ∈ H1(S,R).

For a symplectic subspace E of H1(S,R) denote by Sp(E∗) the group of symplec-
tic automorphisms of its dual E∗. The image of Mod(S) under the homomorphism
Ψ is the integral symplectic group Sp(2g,Z) and hence reduction of coefficients
modulo a prime p makes sense. By a weighted oriented simple multicurve c on
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S we mean a simple oriented multicurve with integral weights. Such a weighted
simple multicurve c defines a Dehn multitwist about the components of c, where
the weight of each component determines the multiplicity of the twist about the
component. For some fixed choice of a marking of S, such a weighted oriented
simple multicurve then defines a homology class [c] ∈ H1(S,Z). In the formulation
of the proposition below we use such a fixed choice of a marking for S.

dehngenerate Proposition 4.7. Let C be an affine invariant manifold of rank ℓ, let C̃ be a com-
ponent of the preimage of C in the Teichmüller space of abelian differentials and let
Z = p(T C̃+) ∩Π∗H|C+.

Let c1, . . . , cℓ be pairwise disjoint weighted oriented simple multicurves whose
(marked) homology classes [ci] span a subspace of Z∗ of rank ℓ. Let U ⊂ C be an

open contractible set and assume that there is a component Ũ of the preimage of U
in C̃ such that ⟨[Re(z̃)], [ci]⟩ > 0 for all z̃ ∈ Ũ , all 1 ≤ i ≤ ℓ.

Let Ω(Γ0) ⊂ Mod(S) be the subsemigroup determined by a suitable pair of open

contractible subsets Y ⊂ V of U and the lift Ũ of U as in Proposition
grouplaw
3.12. Then the

subsemigroup of Sp(Z∗) generated by Ψ(Ω(Γ0)) and the transvections Ψ(Tci) which
are the images of the Dehn multitwists Tci about the multicurves ci is Zariski dense
in Sp(Z∗). If ℓ = g then for all but finitely many primes p ≥ 3, this semigroup
surjects onto Sp(2g, Fp).

Proof. Let C be an affine invariant manifold of rank ℓ. Let U ⊂ C be an open con-
tractible set with the properties stated in the proposition and let Ũ be a component
of the preimage of U in the Teichmüller space of marked abelian differentials. Via
perhaps decreasing the size of U we may assume that Ũ has a product structure,
defined by disjoint compact balls D,K of dimension dimC(C+)− 1 in the sphere of
projective measured foliations on S as in Definition

productstructure
3.6. The real parts Re(z̃) of

the differentials z̃ ∈ Ũ project to an open subset of the 2ℓ-dimensional subspace Z
of H1(S,R) as defined in the proposition.

Let Y ⊂ V ⊂ U be a pair of open subsets of U as in Proposition
shadowing
3.3 and use

these sets and a fixed component Ṽ ⊂ Ũ of the preimages of V to construct the
subsemigroup Ω(Γ0) of Mod(S).

Let c1, . . . , cℓ be pairwise disjoint simple oriented weighted multicurves. With
respect to some fixed marking of S, used for the choice of the lift Ũ of U , assume
that the homology classes [ci] of ci span a linear subspace L of Z∗ of dimension
ℓ. As the multicurves ci are pairwise disjoint, this subspace is isotropic. The
projection which associates to a marked abelian differential z̃ ∈ Ũ the cohomology
class [Re(z̃)] ∈ H1(S,R) of its real part Re(z̃) maps the open subset Ṽ of C̃ to an
open subset of the dual L∗ of L.

Note that any periodic orbit passing through Y defines an element of the group
Ω(Γ0). Recall that periodic point for Φt are dense; for components of strata,
this was established in detail in

H13
[H13], and for affine invariant manifolds it is

a consequence of Proposition
shadowing
3.3. Thus we can choose a lift z̃ ∈ Ỹ ⊂ Ṽ of

a periodic point z ∈ Y for Φt which defines a pseudo-Anosov mapping class
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φ ∈ Ω(Γ0) < Mod(S). The mapping class φ preserves the Φt-orbit of z̃. Recall the
assumption ⟨[Re(z̃)], [ci]⟩ > 0 for all i.

There is a number κ > 1 such that φ∗Re(z̃) = κ−1Re(z̃), moreover κ is the
Perron Frobenius eigenvalue for the action of φ on H1(S,R). In particular, φ∗

preserves the subspace kerRe(z̃) and acts on the cone ⟨Re(z̃), ·⟩ > 0 as an ex-
pansion, with attracting invariant line spanned by Re(z̃)∗. This implies that as
k → ∞ the homology classes [φkci] converge up to rescaling to a class u ∈ H1(S,R)
whose contraction with the intersection form ι defines ±[Re(z̃)], viewed as a lin-
ear functional on H1(S,R). By this we mean that ι(u, a) = ⟨±[Re(z̃)], a⟩ for all
a ∈ H1(S,R). As a consequence, for all sufficiently large n > 0 and all i, j ≤ ℓ we
have ι([φnci], [cj ]) ̸= 0.

Let G < Mod(S) be the group generated by the semigroup Ω(Γ0) as well as the
Dehn multitwists Ti = Tci (i ≤ ℓ). Then G contains the multitwists φnTiφ

−n =
Tφnci (see Fact 3.7 on p.73 of

FM12
[FM12] for this equation).

Let A1 < Z∗ be the linear subspace of rank ℓ which is the common fixed set
in Z∗ for the transvections Ψ(Tci) of Z∗ (i = 1, . . . , ℓ). Then A1 is a Lagrangian
subspace of the symplectic vector space Z∗. Let A2 ⊂ A1 be the common fixed set
in Z∗ of the transvections which are the images under the map Ψ of all multitwists
Ti, φ

nTjφ
−n. Since ι([φnci], [cj ]) ̸= 0 for sufficiently large n, the linear subspace A2

of A1 is of codimension s ≥ 1. Let i1, . . . , is ⊂ {1, . . . , ℓ} be such that the homology
classes [cj ], [φ

ncip ] ∈ H1(S,Z) (j ≤ ℓ, p ≤ s) are independent over R and that the
common fixed set in Z∗ of the transvections defined by the corresponding Dehn
multitwists is A2.

Since the set of real parts of differentials in Ỹ define an open subset of the
symplectic vector space Z, we can find some ỹ ∈ Ỹ and some a ∈ A2 so that
⟨[Re(ỹ)], a⟩ ̸= 0. As this condition is open, and periodic points are dense, we may
assume as before that ỹ is the preimage of a periodic point of Y . Argue now as
in the previous paragraph and find a multitwist β in the subgroup G of Mod(S)
generated by Ω(Γ0) and the Dehn multitwists Tci so that the common fixed set of
the subgroup generated by Ψ(β) and A2 has codimension at least one in A2.

Repeat this construction. In at most ℓ steps we find integral homology classes
a1, . . . , aℓ, aℓ+1, . . . , a2ℓ ∈ H1(S,Z) (where for i ≤ ℓ the class ai is the class [ci] of
the oriented weighted multicurve ci) with the following properties.

(1) Let W ⊂ H1(S,R) be the real vector space spanned by the classes ai. The
dimension of W equals 2ℓ. Viewing W as a linear subspace of H1(S,R)∗,
its restriction to Z is non-degenerate. In particular, W is a symplectic
subspace of H1(S,R).

(2) ι(aj , ai) ̸= 0 for all i ≤ ℓ, j ≥ ℓ+ 1.
(3) For each j the transvection b → b + ι(b, aj)aj is contained in the group

generated by Ψ(Ω(Γ0)) and the transvections Ψ(Tci) (i ≤ ℓ).

By the choice of the homology classes ai, the (2ℓ, 2ℓ)-matrix (ι(ai, aj)) whose
(i, j)-entry is the homology intersection number ι(ai, aj) is integral and of maximal
rank. Choose a prime p ≥ 5 so that each of the entries of (ι(ai, aj)) is prime to p. All
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but finitely many primes will do. Then the reduction mod p of the matrix (ι(ai, aj))
is of maximal rank as well. In particular, if Fp denotes the field with p elements then
the reductions mod p of the homology classes ai span a 2ℓ-dimensional symplectic
subspace Wp of H1(S, Fp).

Let Λ < Sp(W ) be the subgroup of the symplectic group ofW which is generated
by the transvections with the elements ai. Its reduction Λp mod p acts on Wp as a
group of symplectic transformations. Lemma

transvection
4.5 shows thatWp = Sp(2ℓ, Fp). Note

that property (2) above guarantees that all conditions in Lemma
transvection
4.5 are fulfilled.

Then Λ is a Zariski dense subgroup of the group of symplectic automorphisms of
W

Lu99
[Lu99]. By duality, this implies that the subgroup G of Sp(Z∗) generated by

Ψ(Tci) and Ψ(Ω(Γ0)) is Zariski dense in Sp(Z∗).

Now assume that ℓ = g. The Dehn multitwists Tci define elements of Sp(2g,Z).
All elements of Sp(2g,R) constructed in the above way are integral, and the above
proof shows that the subgroup of Sp(2g,Z) constructed in the above way surjects
onto Sp(2g, Fp) for all but finitely many p. □

Let again C+ be an affine invariant manifold of rank ℓ ≥ 1. Recall from Definition
monodromygroup
4.1 the definition of the monodromy group of an affine invariant manifold C+ of rank
ℓ. We can now summarize the discussion in this section as follows.

zariskidense Corollary 4.8. For any affine invariant manifold C+ of rank ℓ, the monodromy
group of C+ is Zariski dense in Sp(2ℓ,R).

Proof. Let C+ be an affine invariant manifold of rank ℓ ≥ 1, and let C ⊂ C+ be its
subset of differentials of area one.

Choose a translation surface (X,ω) ∈ C with the properties stated in Corollary
veechgroup
4.4. Denote by Λ the free abelian group of rank ℓ of Dehn multitwists which is
contained in the group of piecewise affine automorphisms of X whose existence was
shown in Corollary

veechgroup
4.4.

Choose a marking of the translation surface, i.e. a lift ω̃ of ω to the Teichmüller
space of abelian differentials. By construction, we have ⟨[Re(ω̃), [ci]⟩ > 0 for all

i. As this is an open condition, we can find an open neighborhood Ũ of ω̃ in the
component C̃ of the preimage of C such that this condition is fulfilled for all z̃ ∈ Ũ .
We may assume that Ũ projects to a contractible subset U of C. The corollary now
follows from Proposition

dehngenerate
4.7. □

4.2. The local monodromy group of affine invariant manifolds. The goal
of this subsection is to complete the proof of Theorem

zorich
3. We use the following

localzariskidef Definition 4.9. An affine invariant manifold C of rank ℓ is locally Zariski dense
if for every open contractible subset U of Cgood the subsemigroup of Sp(2ℓ,R)
generated by the monodromy of those periodic orbits for Φt in C which pass through
U is Zariski dense in Sp(2ℓ,R).
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Here as before, monodromy means monodromy of the restriction of the Gauss
Manin connection to the bundle Z → C, and this is computed with respect to a
fixed trivialization of Z over U which is parallel for the Gauss Manin connection.
Replacing such a trivialization by another one changes the local monodromy group
by a conjugation. We refer to Section

connection
2.2 for details.

We begin with reducing the statement of Theorem
zorich
3 to a statement on local

Zariski density near a single point. For the next lemma, call a point q ∈ C transitive
if its orbit under the Teichmüller flow is dense in C. Transitive points are known
to exist and are dense in C and hence in Cgood

EMM15
[EMM15].

reduction Lemma 4.10. An affine invariant manifold C of rank ℓ is locally Zariski dense if
and only if there exists a transitive point q ∈ Cgood with the following property. For
every open contractible neighborhood Uof q, the subgroup of Sp(2ℓ,R) generated by
the monodromy of those periodic orbits for Φt in C which pass through U is Zariski
dense in Sp(2ℓ,R).

Proof. That the condition stated in the lemma is necessary is obvious from the
definition of local Zariski density. We have to show that it is also sufficient.

To this end let q ∈ Cgood be a transitive point as in the statement of the lemma.
Let U be any open subset of C. Let z ∈ U ∩ Cgood be an arbitrary transitive point;
such a point exists since Cgood is an open and dense Φt-invariant subset of C and
the set of transitive points is dense. Write U = Uz and let Uq be a neighborhood
of q.

By Proposition
shadowing
3.3, we can find neighborhoods Yz ⊂ Vz ⊂ Uz of z, Yq ⊂ Vq ⊂

Uq of q and a number n > 0 with the following properties. The sets Vz, Vq are
contractible. Write Y = {Yq, Yz} and let u0, u1, u2, u3 be a periodic (n,Y)-pseudo-
orbit for Φt, with u0 = u3 ∈ Yz and u1, u2 ∈ Yq. There are numbers ti > n such
that Φtiui ∈ Yκ(i+1) where κ(i+1) = q for i = 0, 1 and κ(i+1) = z otherwise. Such
a pseudo-orbit exists since the Teichmüller flow on C is topologically transitive.

Let V = {Vq, Vz} and let η be a V-characteristic curve for this pseudo-orbit.
Then η determines a parametrized periodic orbit ν for Φt beginning in Vz, and this
orbit passes through Vq.

Choose a component C̃ of the preimage of C in the Teichmüller space of abelian
differentials and let Ṽz ⊂ C̃ be a component of the preimage of Vz. Let ũ0 be
the preimage of u0 in Ṽz. For this fixed choice, the parametrized periodic orbit ν
determines a pseudo-Anosov element Ω(ν) ∈ Mod(S) as follows. Let η̃ be the lift
of the characteristic curve η for the pseudo-orbit beginning at ũ0. Then Ω(ν) maps
the endpoint of η̃ back to its starting point.

To this end let Ṽq ⊂ C̃ be the component of the preimage of Vq which con-
tains Φt0 ũ0. If η′ is a characteristic curve of a pseudo-orbit defined by points
u0, u

′
1, u2, u3 = u0, with u′1 ∈ Yq, and times t0, t

′
1, t2 > n, and if ν′ is the corre-

sponding periodic orbit, then the element Ω(ν′)−1 ◦ Ω(ν) (read from right to left)

of Mod(S) maps the endpoint of the lift beginning in Ṽz of the concatentation
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(η′)−1 ◦ η back to its starting point ũ0. Recall that this makes sense since η, η′

begin and end at the same point u0 ∈ Yz.

Thus Ψ(Ω(ν′)−1 ◦Ω(ν)) equals the holonomy for parallel transport with respect
to the Gauss Manin connection of the following loop. Fix the point u0 ∈ Yz as
a basepoint. The (n,Y)-pseudo-orbit given by the points u0, u1, u2 and the times
t0, t1 determine the homotopy class with fixed endpoints of an arc β connecting
u0 to u2, and there is an arc β′ for the (n,Y)-pseudo-orbit given by the points
u0, u

′
1, u2 and the times t0, t

′
1. These arcs are constructed in such a way that they

end at u2. The holonomy of the concatenation of β with the inverse of β′ equals
the element Ψ(Ω(ν′)−1 ◦ Ω(ν)) (again read from right to left).

Now parallel transport along the distinguished orbit segment connecting u0 to
u1 identifies the fibre of Z ⊂ Π∗H at u0 with the fibre of Z at u1 as a symplectic
vector space. This identification conjugates Ψ(Ω(ν′)−1 ◦Ω(ν)) to Ψ(Ω(ξ′)−1 ◦Ω(ξ))
where Ω(ξ),Ω(ξ′) are the elements of Mod(S) constructed in the same way from

Ṽq and from parametrized periodic orbits of Φt through Vq determined by the one-
segment periodic pseudo-orbits (u1, t1) and (u′1, t

′
1). Furthermore, the conjugating

element does not depend on ν, ν′.

To complete the proof just note that a subsemigroup G of Sp(2ℓ,R) is Zariski
dense if and only if for any h ∈ Sp(2ℓ,R) the conjugate hGh−1 is Zariski dense if and
only if there exists an element g ∈ G such that g−1G ⊂ Sp(2ℓ,R) is not contained
in any proper algebraic subvariety of Sp(2ℓ,R). Thus under the assumption of the
lemma, the affine invariant manifold C is indeed locally Zariski dense. □

We need the following technical statement which is well known for components
of strata. For its formulation, recall from Definition

productstructure
3.6 the definition of a set with

a product structure.

productset Lemma 4.11. Let C̃ be a component of the preimage of an affine invariant man-
ifold C in the Teichmüller space of abelian differentials. Let α̃ : [0, 1] → C̃ be a
smooth path which consists of differentials with the same horizontal projective mea-
sured foliation. Then there exists an open set Ṽ ⊂ C̃ with a product structure which
contains α̃.

Proof. Cover the compact path α̃ by finitely many open subsets Wi (i = 0, . . . , k)

of C̃ whose closuresWi have a product structure as in Definition
productstructure
3.6. These product

structures are defined by compacts balls Di,Ki ⊂ PMF , a map Λi : Di×Ki →Wi

and a number ϵi > 0. For each i, the set Di coincides with the set of all horizontal
projective measured foliations of all points in Wi. Let int(Di) be the interior of Di

(this is meant to be the interior of the Di viewed as an m-dimensional ball in PMF
and not the interior of Di as a subset of PMF , in particular, it is dense in Di).
As the horizontal projective measured foliation of any point on α̃ coincides with
the horizontal projective measured foliation µ of ω̃ = α̃(0), we have µ ∈ int(Di) for
each i.

Up to renumbering, we may assume that Wi ∩Wi+1 ∩ α̃ ̸= ∅ for all i. We now
show by induction on j ≤ k that the set ∩i≤j int(Di) is an open neighborhood of µ
in each of the sets Di (i ≤ j).
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The case j = 0 is obvious, so assume that the claim is known for some 0 ≤ j < k.
This means that Ej = ∩i≤j int(Di) is an open neighborhood of µ in each of the sets
int(Di) for i ≤ j. Note however that Ej may not be an open subset of PMF .

Let Ej be the closure of Ej inDj . As Ej is an open neighborhood of µ in int(Dj),

the subset Zj of Wj with a product structure which is defined by Ej ,Kj and the
restriction of Λj contains an open neighborhood of α̃ ∩Wj (compare the remark
after Definition

productstructure
3.6). Thus by the assumption on the sets Wu, the intersection

Zj ∩Wj+1 contains an open neighborhood in C̃ of Wj ∩Wj+1 ∩ α̃. But this is only
possible if Ej ∩ int(Dj+1) is an open neighborhood of µ in both Ej , Dj+1. The
induction step follows.

Let E ⊂ Ek be a compact neighborhood of µ in Ek which is homeomorphic to a
closed ball of dimension m. Then E is a compact neighborhood of µ in each of the
sets int(Di), and by construction,

α̃ ⊂ ∪i ∪−ϵi≤t≤ϵi Φ
tΛi(E ×Ki).

It now follows from the definition of a subset of C̃ with a product structure that
there is a neighborhood of α̃ in C̃ with a product structure which is of the form
∪−δ≤t≤δΦ

tΛ(E × ∪iKi). Here for a point (ξ, η) ∈ E × Ki, the point Λ(ξ, η) is

obtained from Λi(ξ, η) by postcomposition with Φσi(ξ,η) where σi : E ×Ki → R is
a continuous function. The lemma follows. □

Now we are ready to show

zariski Theorem 4.12. An affine invariant manifold is locally Zariski dense.

Proof. Let C+ be an affine invariant manifold of rank ℓ ≥ 1, and let C ⊂ C+ be its
subset of differentials of area one. By Lemma

reduction
4.10, it suffices to show the existence

of a single transitive point q ∈ Cgood with the following property. For every open
neighborhood U of q, the subgroup of Sp(2ℓ,R) generated by the monodromies of
those periodic orbits for Φt in C which pass through U is Zariski dense in Sp(2ℓ,R).

Choose a translation surface (X,ω) ∈ C with the properties stated in Corollary
veechgroup
4.4. Denote by H the free abelian group of rank ℓ of Dehn multitwists which is
contained in the group of piecewise affine automorphisms of X whose existence was
shown in Corollary

veechgroup
4.4.

Let C̃ be a component of the preimage of C in the Teichmüller space of abelian
differentials and let ω̃ be a preimage of ω in C̃. Denote by [ci] (1 ≤ i ≤ ℓ) the
homology classes of the marked weighted oriented multicurves which determine the
Dehn multitwists Ti generating the group H. By construction, the real part Re(ω̃)
of ω̃ satisfies ⟨Re(ω̃), [ci]⟩ > 0 for all i. Thus we can find an open neighborhood

Ũ of ω̃ in C̃ such that ⟨Re(z̃), [ci]⟩ > 0 for all z̃ ∈ Ũ . We also require that the

projection U of Ũ to C is contractible. Such a neighborhood always exists although
the differential ω may not be contained in Cgood.

By Proposition
dehngenerate
4.7, it suffices to find a birecurrent point q ∈ U such that for each

i ≤ ℓ and every neighborhood V ⊂ U of q, the Dehn multitwist Ti is contained in
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the subgroup of Mod(S) which is generated by the periodic orbits of the Teichmüller

flow through V and is determined by the lift Ṽ of V contained in Ũ .

The cylinder shears of the marked translation surface (X̃, ω̃) which are lifts of the
cylinder shears of (X,ω) used to construct the Dehn multitwists Ti which generate
the group H preserve the horizontal projective measured foliation µ of ω̃, but they
deform the vertical projective measured foliation. These cylinder shears define ℓ
smooth paths α̃i (i = 1, . . . , ℓ) in C̃ beginning at ω̃ and connecting ω̃ to Tiω̃.

By Lemma
productset
4.11, for each i ≤ ℓ there is a closed subset of C̃ with a product

structure as defined in Definition
productstructure
3.6 whose interior contains the entire path α̃i ⊂ C̃.

Recall that such a neighborhood Ã is determined by compact disjoint balls D,K of
dimension m = dimC(C+)−1 in the Thurston sphere PMF of projective measured

foliations, a number ϵ > 0 and a map Λ : D×K → C̃ with the properties stated in
Definition

productstructure
3.6 so that

Ã = ∪−ϵ≤t≤ϵ ∪(µ,ν)∈D×K ΦtΛ(µ, ν).

Do this construction for all i ≤ ℓ and as well for the maps T−1
i . This results in a

neighborhood W of ω̃ in C̃ with a product structure with the following properties.

(1) There are compact disjoint sets D,K in the Thurston sphere PMF of
projective measured foliations, homeomorphic to closed balls of dimension
m, there is a number ϵ > 0 and there is a map Λ : D ×K → W with the
properties stated in Definition

productstructure
3.6 such that W = ∪−ϵ≤t≤ϵΦ

tΛ(D ×K).
(2) There exists a compact neighborhood R of µ inD homeomorphic to a closed

ball of dimension m so that TjR ⊂ D for all j ≤ ℓ.
(3) There is a compact neighborhoodB ⊂ K of the vertical projective measured

foliation of ω̃ such that T−1
j (B) ⊂ K for all j.

Let A be the projection to C of the set

Ã = ∪−ϵ≤t≤ϵΦ
tΛ(R×B).

Then A is a closed neighborhood of ω. We may adjust A in such a way that A is
contractible; this is always possible in spite of the fact that ω may not be contained
in Cgood (see Section 2 of

H13
[H13] for a detailed discussion of this standard fact). Up

to passing to a finite branched cover of C, we then may assume that the absolute
real tangent bundle Z of C admits a trivialization over A which is parallel for the
Gauss Manin connection. To this end recall that there is a finite branched cover
of Mg which is the quotient of Teichmüller space by a torsion free subgroup of
Mod(S) of finite index and recall the discussion in subsection

connection
2.2.

We now show that for any birecurrent point q contained in the interior of A and
every pair of open neighborhoods Y ⊂ V of q with the properties stated in Theorem
shadowing
3.3, with corresponding set Γ0 or periodic orbits for Φt, the subgroup of Mod(S)
generated by Ω(Γ0) contains the Dehn multitwists Ti (i ≤ ℓ).
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Thus let q ∈ Y ⊂ V ⊂ A as above. By perhaps decreasing the size of V we may
assume that the component Ỹ ⊂ Ã of the preimage of Y in C̃ which is contained in
Ã equals the interior of the set

Y = ∪−δ′≤t≤δ′Φ
tΛ(R′ ×B′)

for some closed balls R′ ⊂ R, B′ ⊂ B and for a number δ′ < δ. Using the
neighborhoods Y ⊂ V of q, construct a set Γ0 of periodic orbits passing through
V as in Proposition

grouplaw
3.12. Denote by Ω(Γ0) the corresponding subsemigroup of

Mod(S) constructed with the above component Ṽ of the preimage of V and let
G < Mod(S) be the subgroup generated by Ω(Γ0).

Let z ∈ Y be a periodic point for Φt as constructed in Proposition
grouplaw
3.12, and let

γ be the closed Φt-orbit of z. Let z̃ be the lift of z to Ã. The component γ̃ of the
preimage of γ which passes through z̃ is stabilized by a pseudo-Anosov mapping
class φ. We claim that for every j ≤ ℓ there is a number k > 0 such that for the
Dehn multitwist T = Tj , we have φk ◦ T ◦ φk ∈ Ω(Γ0). Since G is a group, this
implies that Tj ∈ G for all j.

We establish the existence of numbers k > 0, n > 0 with the above property
using a fixed point argument for the action of Mod(S) on the sphere of projective
measured foliations which is motivated by the argument in the proof of Proposition
5.4 of

H13
[H13] (compare the proof of Proposition

shadowing
3.3).

Let τ > 0 be the period of γ; then φ(z̃) = Φ−τ (z̃) (up to perhaps exchanging φ
and φ−1). The horizontal projective measured foliation ζ ∈ R′ of z̃ is the attracting
fixed point for the action of the map φ on the sphere PMF of projective measured
foliations of S. As φ preserves the component C̃ of the preimage of C containing z̃
and acts with north-south dynamics on PMF , there exists some large k0 > 0 such
that φk(D) is contained in the interior of R′ for all k ≥ k0 where D ⊂ PMF is as
in (1) above. Then Tφk(D) is contained in the interior of D (recall to this end that
TR′ ⊂ D) and hence for any k > k0, φ

k ◦ T ◦ φk(D) is contained in the interior
of R′. Since the attracting fixed point of φ−1 is contained in the interior of B′, by
perhaps increasing k0 we also may assume that φ−k maps K into the interior of B′

for all k ≥ k0.

As φ is pseudo-Anosov, for large enough k > k0 the mapping class φk ◦T ◦φk is
pseudo-Anosov (observe that for large k, this element acts with positive translation
on the curve graph of S). Now φk ◦T ◦φk(R′) is contained in the interior of R′ and
hence the attracting fixed point of φk ◦ T ◦ φk is contained in the interior of R′.

The same argument shows that for sufficiently large k, the repelling fixed point
of φk ◦T ◦φk (which is the attracting fixed point of φ−k ◦T−1 ◦φ−k) is contained in
the interior of B′. Namely, T−1(B′) ⊂ K by construction and hence φ−k◦T−1◦φ−k

maps B′ into its interior by the choice of k. In particular, we may assume that the
periodic orbit of Φt defined by φk ◦ T ◦ φk passes through Y .

As a consequence, the pseudo-Anosov elements φ and φk ◦ T ◦ φk are contained
in the group G and hence G contains the multitwist T = Tj . As this argument is
valid for each j ≤ ℓ, we deduce that the group G contains each of the multi-twists
Tj .
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Theorem
zariski
4.12 now follows from Proposition

dehngenerate
4.7 if we can make sure that for

each z̃ ∈ Ṽ and each i we have ⟨[Re(z̃), [ci]⟩ > 0. But by construction, we have
⟨[Re(ω̃), [ci]⟩ > 0 for all i, and the set D ⊂ PMF in the definition of the neighbor-
hood W of ω̃ as constructed above can be chosen to project to an arbitrarily small
neighborhood of the projective class of [Re(ω̃)]. Thus by continuity, we may choose
the set D as in (1) above in such a way that indeed, ⟨[Re(ũ), [ci]⟩ > 0 for all i and
all ũ ∈W . Theorem

zariski
4.12 now follows from Proposition

dehngenerate
4.7. □

moregeneral Remark 4.13. More generally, let C be any affine invariant manifold and let c be
a cocycle for the Teichmüller flow on C with values in a simple algebraic group of
non-compact type. We conjecture that if c is Zariski dense, then it is locally Zariski
dense. However, the proof of Theorem

zariski
4.12 uses some specific information on the

cocycle and does not immediately extend to such a more general statement.

For a prime p let Λp : Sp(2g,Z) → Sp(2g, Fp) be reduction mod p. Recall from
the remark before Lemma

transvection
4.5 that a sub-semigroup of a finite group G is a subgroup

of G. The proof of Theorem
zariski
4.12 and Proposition

dehngenerate
4.7 shows the following version

of Theorem
zorich
3 for affine invariant manifolds of rank g.

reductiontwo Corollary 4.14. Let C be an affine invariant manifold of rank g. Then for all but
finitely many primes p ≥ 3, we have {ΛpΨ(Ω(γ)) | γ ∈ Γ0} = Sp(2g, Fp).

Let again C+ be an affine invariant manifold of rank ℓ ≤ g and let C̃+ be a compo-
nent of the preimage of C+ in the Teichmüller space of marked abelian differentials.
Then the projected tangent space p(TC+) can be identified with the complexifica-
tion of a 2ℓ-dimensional symplectic subspace V of R2g = H1(S,R). The stabilizer
in Sp(2g,R) of this subspace is the subgroup G = Sp(V ) × Sp(V ⊥) of Sp(2g,R)
where V ⊥ is the orthogonal complement of V with respect to the symplectic form.
Thus the group G is isomorphic to Sp(2ℓ,R)× Sp(2(g − ℓ),R).

Let P : G→ Sp(V ) = Sp(2ℓ,R) be the natural projection. Theorem
zariski
4.12 shows

that P (G ∩ Sp(2g,Z)) is a Zariski dense subgroup of Sp(2ℓ,R). The following
consequence of this fact was communicated to me by Yves Benoist. Although it is
not used in the sequel, we include it here since it relates affine invariant manifolds
to proper subvarieties of Ag.

latticeordense Proposition 4.15. If P (G ∩ Sp(2g,Z)) is Zariski dense in Sp(2ℓ,R) then either
P (G ∩ Sp(2g,Z)) is a lattice in Sp(2ℓ,R) or dense.

Proof. Using the above notations, write GZ = Sp(2g,Z)∩G and let F < Sp(2ℓ,R)
be the Zariski closure of GZ.

The group F is defined over Q. Namely, the set of polynomials P which vanish
on GZ is invariant under the Galois action. As a consequence, either FZ = GZ is a
lattice in F , or there is a nontrivial character on F defined over Q.

Assume for contradiction that there exists a nontrivial character on F defined
over Q. Define

F 0 = ∩{ker(χ) | χ is a character on F defined over Q}.
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Then F 0 = F since up to multiplication with an integer, the evaluation on GZ of a
nontrivial character χ defined over Q has to be integral in C∗ which is impossible.
This contradiction yields that FZ is a lattice in F .

The group G1 = Sp(2ℓ,R) is simple, and ∆ = P (GZ) < G1 is Zariski dense.
Then ∆ < G1 either is discrete or dense. We have to show that if ∆ is discrete
then ∆ is a lattice.

Thus assume that ∆ is discrete. Consider the surjective homomorphism φ : F →
G1. Its kernel K is a locally compact group which intersects the lattice FZ in a
discrete subgroup. The exact sequence

1 → K → F → G1 → 1

induces a sequence

K/K ∩ FZ → F/FZ → G1/φ(FZ).

Now the Haar measure on F can locally be represented as a product of the Haar
measure on the orbits of K and the quotient Haar measure. If the volume of
G1/φ(FZ) is infinite then this shows that the volume of F/FZ has to be infinite.
But FZ is a lattice in F which is a contradiction. □

higher Remark 4.16. If C is a Teichmüller curve, then the group P (G∩Sp(2g,Z)) is just
the Veech group of C, which is a lattice in SL(2,R). The image under the Torelli
map of the projection to moduli space of such a Teichmüller curve is a Kobayashi
geodesic in the quotient of Siegel upper half-space Dg by Sp(2g,Z).

If C is algebraically primitive, then this Kobayashi geodesic is contained in a
Hilbert modular variety defined by an order o in the trace field of C

Mo06
[Mo06]. This

Hilbert modular variety is the quotient of an embedded copy of H2 × · · · × H2 in
Siegel upper half-space Dg by its stabilizer SL(2, o) in Sp(2g,Z). The finite area
Riemann surface Σ obtained by projecting C to the moduli space of curves admits
a modular embedding into SL(2, o)\H2 × · · · ×H2 whose composition with the first
factor projection H2 × · · · ×H2 → H2 is a finite area Riemann surface.

Proposition
latticeordense
4.15 suggests that we may expect a similar picture for affine invariant

manifolds of higher rank.

5. Equidistribution for cocycles with values in finite groups
equidistribution

In this section we consider a component Q of a stratum of area one abelian
or quadratic differentials. We continue to use the assumptions and notations from
Section

affinein
2-

localzariski
4. Our goal is to establish an equidistribution result for a cocycle over the

Teichmüller flow with values in a finite group G constructed from a homomorphism
ρ : Mod(S) → G.
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5.1. A cocycle for the Teichmüller flow. The Kontsevich Zorich cocycle for the
Teichmüller flow is the measurable Sp(2g,Z)-valued cocycle arising from the Hodge

bundle Π∗H → Q. More precisely, choose a measurable fundamental domain Z̃ for
the action of Mod(S) on the Teichmüller space of area one quadratic (or abelian)

differentials. For q ∈ Q let q̃ be the unique lift of q to Z̃ Then for any t ≥ 0, the point
Φt(q̃) is contained in a translate of Z by the action of the mapping class group, say
the translate φ(Z) for some φ ∈ Mod(S). Define c(q, t) = Ψ(Φtq) ∈ Sp(2g,Z). It is
straightforward that this defines indeed a measurable cocycle for the Teichmüller
flow which however depends on choices. For example, replacing Z by its image
under φ ∈ Mod(S) changes the cocycle by its conjugate under Ψ(φ).

Since the image of the cocycle is contained in the intergral symplectic group, for
any odd prime p we can reduce the image modulo p and hence obtain in this way
a measurable cocycle with values in the finite group Sp(2g, Fp), The goal of this
section is to study statistical properties of this cocycle. Note that in the context
of random walks on the finite group G = Sp(2g, Fp), it is well known that such
walks equidistribute, that is, as the time t tends to infinity, the probability for a
sample path to end at a fixed element a ∈ G tends to 1/|G| where |G| denotes the
cardinality of G. Our main goal is to show that this also holds true if we replace
the random walk by the Teichmüller flow on a component of a stratum of abelian
or quadratic differentials and use the mod p reduction of the Kontsevich Zorich
cocycle.

Our strategy is to study the evaluation of the G-valued cocycle on the semigroup
Γ0 constructed in Section

nonuniform
3 and establish a precise estimate on the Masur-Veech

volume of the set of points on which the cocycle takes a prescribed value using
mixing of the Teichmüller flow.

Choose a Birkhoff regular (and hence transitive) point q ∈ Qgood for the Masur
Veech measure and a contractible neighborhood V of q. We then can find an open
neighborhood Y ⊂ V of q with the following property. If y ∈ Y and T > 0 are such
that ΦT y ∈ Y , then a V -characteristic curve for the periodic pseudo-orbit defined
by y, T determines a periodic orbit γ passing through V . Note that we do not have
to specify a number R(δ) > 0 as a minimal return time to Y so that Theorem

shadowing
3.3

can be applied because we can choose Y sufficiently small that any return time to
Y is bigger than the threshold from Theorem

shadowing
3.3.

By perhaps decreasing Y we may assume that Y has a product structure of the
form specified in Example

standardproduct
3.8. This means that there are open ball neighborhoods

Ai of q in W i
loc(q) (i = ss, su), and there is a number β > 0 such that

YY (3) Y = V (Ass, Asu, β) = ∪−β<t<βΦ
tV (Ass, Asu).

We may assume that the return time to Y is bigger than 2β and that moreover the
Masur Veech measure of the boundary of Y vanishes.

Let B be the closure of the set Φ−βV (Ass, Asu). Note that B is a compact
transversal for the Teichmüller flow. We equip B with the projection µ of the
Masur Veech measure in Y . This is defined by

µ(C) = λ
(
∪0≤t≤2βΦ

tC
)

(C ⊂ B).
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The measure of the boundary of B vanishes.

For y ∈ Q let T (y) ∈ (0,∞] (or S(y) ∈ [−∞, 0)) be the first positive (or the first
negative) hitting time with B of the Φt-orbit of y. Since B is closed, the functions
y → T (y) and y → S(y) are measurable on Q. By ergodicity of the Teichmüller
flow for the Masur Veech measure, the set

Ω = {y ∈ B | T (Φsy) <∞, S(Φsy) > −∞ for all s ∈ R}
has full measure for µ.

The suspension of the Teichmüller flow over B is defined by the first return to
B. This suspension is the Borel set

B = {(y, t) ∈ Ω× [0,∞) | 0 ≤ t ≤ T (y) <∞}/ ∼

where the equivalence relation ∼ identifies (y, T (y)) with (ΦT (y)y, 0) if ΦT (y)y ∈
Ω and is trivial otherwise. . In the sequel we identify B with the Borel set
∪y∈Ω ∪0≤t<T (y) Φ

ty ⊂ Q. This set has full Masur Veech measure and contains

a subset B̂ of full Masur Veech measure which is invariant under Φt and consists of
points whose Φt-orbit intersects B for arbitrarily large time.

We use this suspension to define a map θ : Q × [0,∞) → G as follows. Denote
as before by Γ0 the collection of all parametrized periodic orbits for Φt constructed
from the pair Y ⊂ V . We use the convention from Proposition

grouplaw
3.12 that words in

Ω(Γ0) are read from left to right. Define θ(z, 0) = e (the identity in G) for all z,
and θ(z, s) = e for all s so that ∪0≤u<sΦ

uz∩B = ∅. For z ∈ B assume by induction
that θ(z, s) has been defined for some s ≥ 0. Let t ∈ (0,∞) be the smallest
positive number so that Φs+tz ∈ B. Define θ(z, u) = θ(z, s) for s ≤ u < s + t,
and let θ(z, s+ t) = θ(z, s)g where g ∈ G is determined as follows. Since Φsz ∈ B
there is a largest number u ≤ s such that Φuz = y ∈ B; then Φs+t−uy ∈ B and
T (y) = s+ t− u. Let γ ∈ Γ0 be the parametrized periodic orbit for Φt defined by
the periodic pseudo-orbit ∪β≤v≤T (y)+βΦ

vy; then g = ρ(Ω(γ)).

The following is immediate from Proposition
grouplaw
3.12 and the definition of θ.

cocycle Lemma 5.1. θ(z, t) is a G-valued measurable cocycle for the Teichmüller flow.

Proof. Since B is a closed transversal for the Teichmüller flow and Ω ⊂ B is mea-
surable, the first return time y → T (y) is a measurable function on Ω and hence
the same holds true for the function θ.

The cocycle equality for θ means that θ(z, s+ t) = θ(z, s)θ(Φsz, t) for all z and
all s, t ≥ 0. This is clear if the orbit segment connecting Φsv to Φs+tv does not
cross through B.

Assume now that there is a single such crossing point in the interior of this
segment. By definition, we then have θ(z, s + t) = θ(z, s)g where g is determined
as follows. Let y ∈ Ω be such that Φsz = Φuy for some u ∈ [0, T (y)) and let
γ be the periodic orbit for Φt determined by the pseudo-orbit (y, T (y)). Then
g = ρ(Ω(γ)) = θ(Φsz, t) and hence the cocycle equation follows from Proposition
grouplaw
3.12. □
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By the cocycle equality, the image of θ is a subsemigroup of the finite group G
and hence a subgroup. In the sequel we assume that this group is all of G. Our
goal is to show that the cocycle θ is equidistributed in a sense which is motivated
by equidistribution of random walks on the finite group G.

5.2. Random walks on finite groups. In this section we summarize some result
on random walks on the finite group G needed in the sequel.

Let P(G) be the space of all probability measures on the finite group G equipped
with the ℓ∞-norm. Then P(G) is a compact convex subset of a finite dimensional
Banach space. For a number σ ≥ 0 define P(G, σ) ⊂ P(G) to be the subspace of
all measures µ with min{µ(g) | g ∈ G} ≥ σ.

The convolution of two probability measures ν, µ on G is defined by

convolutionconvolution (4) µ ∗ ν(g) =
∑
h∈G

µ(h)ν(h−1g).

A measure µ is stationary if µ ∗ µ = µ.

The next lemma quantifies the fact that iterated convolutions of a measure µ
which gives positive mass to every element of G converge to the equilibrium measure
ν on G defined by ν(g) = 1/|G| for all g ∈ G.

equionfinite Lemma 5.2. Let G be a finite group of order N and let σ > 0.

(1) If µ ∈ P(G, σ) and ν ∈ P(G) then µ ∗ ν ∈ P(G, σ).
(2) For all 0 < σ ≤ κ < 1/N there exists a number δ = δ(σ, κ) > 0 with

the following property. Let µ1 ∈ P(G, κ), µ2 ∈ P(G, σ); then µ2 ∗ µ1 ∈
P(G, κ+ δ).

Proof. Convolution ∗ is a continuous convex bilinear map on the compact convex
space of all probability measures on G.

Let 0 ≤ σ ≤ κ < 1/N and let µ1 ∈ P(G, κ), µ2 ∈ P(G, σ). Then for every g ∈ G
we have

µ2 ∗ µ1(g) =
∑
h

µ2(h)µ1(h
−1g) ≥

∑
h

κµ2(h) = κ.

Equality holds only if σ = 0 and µ2(h) = 0 for all h with µ1(h
−1g) > κ.

Thus if σ > 0 then min{µ2 ∗ µ1(g) | g ∈ G} > κ and hence µ1 ∗ µ2 ∈ P(σ + δ)
for some δ > 0 depending on µ1, µ2. The lemma now follows from continuity of the
convolution and compactness of P(G, σ) and P(G, κ). □

The following characterization of stationary measures is well known and included
here for completeness. For its formulation, denote by µ(n) the n-fold convolution
of µ with itself.

stationary Lemma 5.3. (1) Let ν be a stationary measure on G. Then there exists a
subgroup H of G such that ν(h) = 1/|H| for all h ∈ H, and ν(g) = 0 for
g ∈ G−H.
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(2) Let µ ∈ P(G) and let H be the subgroup of G generated by supp(µ); then
as n→ ∞, µ(n) converges in P(G) to the stationary measure supported on
H.

Proof. Let ν be a stationary measure on G. We claim that {g ∈ G | ν(g) > 0} = H
is a subgroup of G. Namely, if g, h ∈ G and if ν(g), ν(h) > 0 then ν(gh) ≥
ν(g)ν(g−1gh) > 0 which yields the claim.

Thus by perhaps replacing G by H, it suffices to show that every positive station-
ary measure on G is the equilibrium measure ν(g) = 1/|G| for all g ∈ G. However,
this is immediate from Lemma

equionfinite
5.2.

This shows the first part of the lemma. The second part is equally well known,
and its proof will be omitted. □

improvement Lemma 5.4. Let µ, ν ∈ P(G) and assume that supp(µ) = H, supp(ν) = H ′ are
subgroups of G. Then the subgroup of G generated by the support of µ ∗ ν contains
both H,H ′.

Proof. Assume that supp(µ) is a subgroup H of G, and supp(ν) is a subgroup H ′.
In the case that H = G (or H ′ = G), the statement of the lemma is immediate
from the first part of Lemma

equionfinite
5.2. Thus assume that H,H ′ are proper subgroups of

G.

Let g ∈ H ′; as µ(e) > 0, we have µ ∗ ν(g) ≥ µ(e)ν(g) > 0 and similarly for
g ∈ H. This shows the lemma. □

We use these statements for the proof of the following simple lemma which will
be used in the proof of the main technical result in this section.

positive Lemma 5.5. Let Υ ⊂ P(G) be a closed subset with the following properties.

• For all g ∈ G, there exists a point ξg ∈ Υ with ξg(g) > 0.
• There exists a number c > 0, and for any ξ, η ∈ Υ there exists some ζ ∈ Υ
such that ζ(g) ≥ cξ ∗ η(g) for all g ∈ G.

Then there exists some ξ ∈ Υ with ξ(g) > 0 for all g ∈ G.

Proof. Let ξ ∈ Υ be such that min{ξ(g) | g} is maximal among all points in Υ. If
there is more than one point with this property then choose ξ in such a way that
the number of elements g ∈ G for which the minimal value is atteint is minimal.

Our goal is to show that ξ(g) > 0 for all g ∈ G. We argue by contradiction and
we assume that min{ξ(g) | g ∈ G} = 0.

Let H < G be the subgroup which is generated by the support of ξ. We first
show that ξ(h) > 0 for all h ∈ H. Since ξ vanishes on G−H, by the choice of ξ and
by the second part of Lemma

stationary
5.3, for this it suffices to show that for every n ≥ 0

there exists a measure ηn ∈ Υ such that ηn ≥ cnξ(n).
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We establish this fact by induction on n. The case n = 0 is obvious, so assume
that the statement holds true for all k < n for some n ≥ 1. Assume by induction
that ηn−1 ∈ Υ is such that ηn−1 ≥ cn−1ξ. By the second property of the set Υ
stated in the lemma, there exists a measure ηn so that

ηn(g) ≥ cηn−1 ∗ ξ(g)

= c
∑
h

ηn−1(h)ξ(h
−1g) ≥ c

∑
h

cn−1ξ(n−1)(h)ξ(h−1g) ≥ cnξ(n)(g)

which completes the induction step.

As a consequence, there exists a point ν ∈ Υ with ν(h) > 0 for all h ∈ H and
hence ξ(h) > 0 for all h ∈ H by the definition of ξ.

On the other hand, if H ̸= G then by the above reasoning, applied to ξg for some
g ∈ G − H we can find some ζ ∈ Υ whose support is a subgroup H ′ of G which
intersects G − H. It now follows from Lemma

improvement
5.4 and the above discussion that

there exists a measure ζ ∈ Υ whose support is a proper superset of the support
of ξ. This contradicts once more the choice of ξ and completes the proof of the
lemma. □

5.3. Volume control. The goal of this subsection is to show that for any compo-
nent Q of a stratum of abelian or quadratic differentials, the cocycle θ constructed
in the previous subsection equidistributes with respect to the Masur Veech measure
λ. By this we mean the following. Consider the set Y defined in (

Y
3) which is used

for the construction of θ. Then for each g ∈ G we have

lim
T→∞

λ{z ∈ Y | θ(z, T ) = g} = λ(Y )/|G|.

The idea of proof for this statement is to use the fact that the measure λ is
Bernoulli

M82
[M82] and make the idea precise that the cocycle θ has properties remi-

niscent of the Markov property which guarantees independence of the distribution
of the random variable defined by θ. For the volume control we need we have to
partition a subset of Y = V (Ass, Asu, β) of full measure into sufficiently small sets
of the form V (Css, Asu, β) whose boundaries have measure zero. The choice of this
partition depends on an a-priori chosen error term ϵ > 0. This construction is the
main technical result of this article.

Recall that there are families λss, λsu of conditional measures for λ on the leaves
of the strong stable foliation W ss and the strong unstable foliation W su, respec-
tively, with the following properties. We have dλ = dλss × dλsu × dt, the measures
λsu are the images of the measures λss under the flip v → −v, and the transforma-
tion rule dλss ◦ Φt = e−htdλss is fulfilled where h is the complex dimension of the
stratum Q+ which consists of all non-trivial scalings of the points in Q.

Denote as before by Bss(y, r) the ball of radius r about y for the modified Hodge
distance in the local strong stable manifold of y. The following easy but technical
observation is immediate from the construction of the Masur Veech measure from
period coordinates. We refer to Section 2 of

H13
[H13] for a detailed discussion of this

fact. As in Example
standardproduct
3.8, for y ∈ Ass denote by Ξy : Asu → Ξy(A

su) ⊂W su
loc(y) the

holonomy homeomorphism.
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local Lemma 5.6. For every ϵ > 0 there exists a number r(ϵ) > 0 with the following
property. Let y ∈ Ass; then the Jacobian of the natural diffeomorphism

Bss(y, r(ϵ))× ΞyA
su × (−β, β) → V (Bss(y, r(ϵ)), Asu, β)

with respect to the measures λss × λsu × dt on Bss(y, r(ϵ))× ΞyA
su × (−β, β) and

the Masur Veech measure on V (Bss(y, r(ϵ)), Asu, β) is contained in the interval
[1− ϵ, (1− ϵ)−1].

In the sequel if a set V (A,B, β) with a good product structure, i.e. a product
structure as in Example

standardproduct
3.8, fulfills the conclusion in Lemma

local
5.6 then we say that

the Masur Veech measure on V (A,B, β) is an (1 − ϵ)-approximate product. We
will use Lemma

local
5.6 for subsets of Y of the form V (Css, Asu, β) where Css is a

measurable subset of Ass of diameter at most r(ϵ) for the Hodge distance.

The main technical tool for the control of the cocycle θ is Proposition 4.6 of
H18
[H23] which provides a quantitative control of non-uniform hyperbolicity of the
Teichmüller flow. We next review this result in the form we need.

Consider for the moment an arbitrary set Z = V (A,B, ζ) with a good product
structure. Later Z will always be of the form Z = V (Css, Asu, ζ) for some open
subset Css of Ass and some ζ ≤ β. Define the local leaf W s

loc,Z(y) through y of the
stable foliation of Z to be the intersection of Z with a neighborhood of y in the
leaf of the stable foliation through y (which is defined as W s(y) = ∪tΦ

tW ss(y))
chosen in the following way. If A is connected, then we choose W s

loc,Z(y) to be the

connected component of Z ∩W s(y) containing y. If A is disconnected, then we
assume that V (A,B, ζ) ⊂ V (A′, B′, ζ ′) = Z ′ where A′ is connected, and then we
define W s

loc,Z(y) = Z ∩W s
loc,Z′(y). The choice of Z ′ will be clear from the context.

If z ∈ A then this local leaf is just the set ∪−ζ<t<ζΦ
tA. The local leaf Wu

loc,Z(y) of
the unstable foliation through y is defined in the same way, starting with a leaf of
the strong unstable foliation.

We say that a subset Z0 of Z is saturated for the local stable foliation (or saturated
for the local unstable foliation) if for all y ∈ Z0, the local stable manifold W s

loc,Z(y)

(or the local unstable manifold Wu
loc,Z(y)) is contained in Z0.

saturated Lemma 5.7. A subset Z0 of Z = V (A,B, ζ) is saturated for the local stable folia-
tion (or the local unstable foliation) if and only if there exists a subset E of B (or
a subset E′ of A) such that Z0 = V (A,E, ζ) (or Z0 = V (E′, B, ζ)).

Proof. Let F : A × B × (−ζ, ζ) → V (A,B, ζ) be the map which associates to a
triple (z, x, s) the point F (z, x, s) = ΦsΞz(x); here notations are as in Example

standardproduct
3.8.

By construction, the set F (A × {x} × (−ζ, ζ)) equals the local stable manifold of
x. The first part of the lemma is now immediate from the definition of the sets
V (A,B, ζ).

The proof for local unstable manifolds is completely analogous and will be omit-
ted. □

The (very technical) Proposition 4.6 of
H18
[H23] now states the following.
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prop46 Proposition 5.8. For every ϵ > 0 there are open subsets Z1(ϵ) ⊂ Z2(ϵ) ⊂ Z =
V (A,B, ζ), and there is a number T (ϵ) > 0 such that the following properties hold
true.

(a) For some m > 10/ϵ, we have Z2(ϵ) = V (A,B, ζ/m).
(b) λ(Z2(ϵ)) ≤ (1− ϵ)−1λ(Z1(ϵ)).
(c) A Φt-orbit intersects Z1(ϵ) in arcs of length 2t0 = 2ζ/m.
(d) Write

Z3(ϵ) = ∪−t0(m−2)≤t≤t0(m−2)Φ
tZ1(ϵ) ⊂ V (A,B, ζ).

Let z ∈ Z1(ϵ) and let T > T (ϵ) be such that ΦT z ∈ Z3(ϵ). Then there exists
an open path connected set C(z, T ) ⊂ Z2(ϵ) containing z with the following
properties.

• ΦTC(z, T ) ⊂ Z.
• λ(C(z, T )) ∈ [(1− ϵ)2e−hTλ(Z2(ϵ)), (1− ϵ)−2e−hTλ(Z2(ϵ))].
• The characteristic curves of the periodic pseudo-orbits given by any u ∈
C(z, T ) and the time parameter T determine the same parametrized
periodic orbit γ for Φt, with basepoint contained in a distinguished
component γ(z, T ) of the intersection of γ with Z.

• The sets C(z, T ) are saturated for the local stable foliation of Z2(ϵ).
• The sets ΦTC(z, T ) are saturated for the local strong unstable foliation

of Z.
(e) If ϵ < δ then Z3(ϵ) ⊃ Z3(δ).

By (a), (c) and (e) above, for each ϵ > 0, the set Z1(ϵ) is of the form

Z1(ϵ) = ∪−t0≤t≤t0Φ
tA(ϵ)

where A(ϵ) ⊂ V (A,B) is an open set and such that furthermore A(ϵ) ⊃ A(δ) for
ϵ < δ and ∪ϵA(ϵ) = V (A,B). Note however that the sets Z1(ϵ) are not required
to have a product structure. The sets C(z, T ) are saturated for the local stable
foliation of Z2(ϵ) = V (A,B, t0) and hence by Lemma

saturated
5.7, they are of the form

C(z, T ) = V (A,U(z), t0)

for some path connected subset U(z) of Asu. By construction, the value of θ(·, T )
is constant on the sets C(z, T ).

The main equidistribution result for the cocycle θ will be derived from a precise
volume estimate for the intersection of the fixed set Y as in (

Y
3) with Φ−TY for

some large T > 0 under control of the cocycle θ. The following proposition is its
main technical part. It can be viewed as stating that for independent times in the
future, the cocycle θ with values in the finite group G are independent. Recall that
the Masur Veech measure is mixing for the Teichmüller flow and hence as T → ∞,
we have λ(ΦTY ∩ Y ) → λ(Y )2 as T → ∞.

maintechnical Proposition 5.9. Let Si, Ti ⊂ (0,∞) be sequences so that Si → ∞, Ti → ∞ and
that furthermore for each g ∈ G there exist numbers a(g), b(g) ≥ 0 such that

λ{y ∈ Y | ΦSiy ∈ Y, θ(y, Si) = g} → a(g)λ(Y )2 (i→ ∞)

and similarly

λ{y ∈ Y | ΦTiy ∈ Y, θ(y, Ti) = g} → b(g)λ(Y )2 (i→ ∞).
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Then up to passing to a subsequence, we have

λ{y ∈ Y | ΦSiy ∈ Y,ΦSi+Tiy ∈ Y, θ(y, Si + Ti) = g} → (
∑
h

a(h)b(h−1g))λ(Y )3.

Proof. We divide the proof of the proposition into five steps.

Step 1:

Let Z = V (A,B, ζ) ⊂ Y be an arbitrary subset with a good product structure.
Let ϵ > 0 and let Z1(ϵ), Z2(ϵ), Z3(ϵ) ⊂ Z be as in Proposition

prop46
5.8. Then Z2(ϵ) =

V (A,B, ζ/m) for some m > 10/ϵ, and λ(Z1(ϵ)) ≥ (1 − ϵ)λ(Z2(ϵ)). Since λ is
invariant under Φt and as m > 10/ϵ and hence ζ/m < ϵζ/10, we also have

z3zz3z (5) λ(Z3(ϵ)) ≥ (1− ϵ)2λ(Z).

Let T (ϵ) > 0 be as in Proposition
prop46
5.8.

As λ is mixing for the Teichmüller flow, for large enough T > T (ϵ) we have

λ{z ∈ Z1(ϵ) | ΦT z ∈ Z3(ϵ)}mixing1mixing1 (6)

∈ [(1− ϵ)λ(Z1(ϵ))λ(Z3(ϵ)),(1− ϵ)−1λ(Z1(ϵ))λ(Z3(ϵ))]

and similarly

mixing2mixing2 (7) λ{z ∈ Z2(ϵ) | ΦT z ∈ Z} ∈ [(1− ϵ)λ(Z2(ϵ))λ(Z), (1− ϵ)−1λ(Z2(ϵ))λ(Z)].

For large enough T > T (ϵ) let

C(T, ϵ) = ∪{C(z, T ) | z ∈ Z1(ϵ),Φ
T z ∈ Z3(ϵ)} ⊂ Z2(ϵ)

(notations as in Proposition
prop46
5.8). Since z ∈ C(z, T ) for all z ∈ Z1(ϵ), by the estimate

(
mixing1
6), the estimate (

z3z
5) and property (2) of Proposition

prop46
5.8, we have λ(C(T, ϵ)) ≥

(1 − ϵ)λ(Z1(ϵ))λ(Z3(ϵ)) ≥ (1 − ϵ)4λ(Z2(ϵ))λ(Z). A similar estimate using (
mixing2
7) and

the fact that C(T, ϵ) ⊂ Z2(ϵ) the yields

mixing9mixing9 (8) λ(C(T, ϵ))/λ(Z2(ϵ))λ(Z) ∈ [(1− ϵ)4, (1− ϵ)−4].

Furthermore, the sets C(z, T ) are saturated for the local stable foliation of Z2(ϵ)
and hence by Lemma

saturated
5.7, the same holds true for C(T, ϵ). As the value of θ(·, T )

is constant on each of the sets C(z, T ) we conclude the following.

For g ∈ G and all large enough T , let

C(T, ϵ, g) = {z ∈ C(T, ϵ) | θ(z, T ) = g};
then C(T, ϵ, g) is saturated for the local stable foliation of C(T, ϵ) and hence of
Z2(ϵ) = V (A,B, ζ/m). By Lemma

saturated
5.7, this implies that

mixing8mixing8 (9) C(T, ϵ, g) = V (A,E(T, ϵ, g), ζ/m)

for some open subset E(T, ϵ, g) of B, and we have

mixing17mixing17 (10)
∑
g∈G

λ(C(T, ϵ, g)) = λ(C(T, ϵ)).

Step 2:
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Using the notations from Step 1 above, we now apply Proposition
prop46
5.8 to the set

Z2(ϵ) = V (A,B, ζ/m) with the same ϵ > 0. We find a number n > 10/ϵ and a

subset Ẑ1(ϵ) ⊂ Ẑ2(ϵ) = V (A,B, ζ/mn) so that the conclusions of Proposition
prop46
5.8

hold true for these sets and a number T̂ (ϵ) > 0, with

Ẑ3(ϵ) = ∪−(2n−2)ζ/mn≤t≤(2n−2)ζ/mnΦ
tẐ1(ϵ) ⊂ Z2(ϵ).

Let S > T̂ (ϵ) be sufficiently large and assume that z ∈ Ẑ1(ϵ) is such that

ΦSz ∈ Ẑ3(ϵ). Denote by Ĉ(z, S) ⊂ Ẑ2(ϵ) the set constructed in Proposition
prop46
5.8. It

is saturated for the local stable foliation of Ẑ2(ϵ), and ΦSĈ(z, S) ⊂ Z2(ϵ). Thus by
Lemma

saturated
5.7, there exists a set U(z) ⊂ B such that

Ĉ(z, S) = V (A,U(z), ζ/mn).

Since the sets C(T, ϵ, g) are saturated for the local stable foliation of Z2(ϵ) and

the map ΦS maps a local leaf of the stable foliation of Ĉ(z, S) into a local leaf of

the stable foliation of Z2(ϵ), we conclude that Ĉ(z, S) ∩Φ−SC(T, ϵ, g) is saturated

for the local stable foliation of Ẑ2(ϵ) and hence this set is of the form

Ĉ(z, S) ∩ Φ−SC(T, ϵ, g) = V (A,U(z) ∩ Φ−SΞΦSzE(T, ϵ, g), ζ/nm).

Here we write ΞΦSz = Ξy if y ∈ A and ΦSz ∈ ∪−ζ<t<ζΦ
tΞyB, and recall from

the definition (
mixing8
9) that E(T, ϵ, g) ⊂ B. The notation makes clear that we take the

image under the map Φ−S of a subset of the local strong unstable manifold of ΦSz
in Ẑ2(ϵ).

Step 3.

Now let us furthermore assume that the Masur Veech measure on the set Z =
V (A,B, ζ) is an (1 − ϵ)-approximate product. This can always been achieved by
decreasing the size of Z. Then we have

λ(Ĉ(z, S) ∩ Φ−SC(T, ϵ, g))/λss(A)λsu(U(z) ∩ Φ−SΞΦSzE(T, ϵ, g))2ζ/nmmixing14mixing14 (11)

∈[1− ϵ, (1− ϵ)−1].

Since the conditional measures λsu on strong unstable manifolds transform under
the Teichmüller flow by λsu ◦ Φ−S = e−hSλsu and since furthermore ΦSĈ(z, S) is
saturated for the local strong unstable foliation of Z2(ϵ) (since the leaves of the
strong unstable foliation of Z which intersect Z2(ϵ) are precisely the leaves of the
local strong unstable foliation of Z2(ϵ)), we conclude that

λ(Ĉ(z, S) ∩ Φ−SC(T, ϵ, g))/e−hSλss(A)λsu(E(T, ϵ, g))2ζ/nmmixing3mixing3 (12)

∈[(1− ϵ)2, (1− ϵ)−2].

The difference in the error term (1− ϵ)2 compared to the estimate (
mixing14
11) arises from

replacing λsu(ΞΦSzE(T, ϵ, g)) by λsuE(T, ϵ, g), and these two quantities deviate by
the Jacobian of the holonomy map which is contained in the interval [1−ϵ, (1−ϵ)−1]
by assumption. Observe that this formula is consistent with Proposition

prop46
5.8.

From now on we use the notation =
(1−ϵ)k

for an equality which holds true up to

multiplying one of the sides by a factor contained in [(1− ϵ)k, (1− ϵ)−k].
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The volume estimate in part (d) of Proposition
prop46
5.8 and the assumption that the

measure λ on Z ⊃ Z2(ϵ) is an (1− ϵ)-approximate product yield

λ(Ĉ(z, S)) =
(1−ϵ)3

e−hSλss(A)λsu(B)2ζ/nm.

Insertion of this estimate into the estimate (
mixing3
12) then shows that

mixing20mixing20 (13) λ(Ĉ(z, S) ∩ Φ−SC(T, ϵ, g))λsu(B) =
(1−ϵ)5

λ(Ĉ(z, S))λsu(E(T, ϵ, g)).

As the measure λ on Z is a (1− ϵ)-approximate product, we have

mixing18mixing18 (14) λsu(E(T, ϵ, g))λss(A)2ζ/m =
(1−ϵ)

λ(C(T, ϵ, g)).

Now note that λss(A)2ζ/m =
(1−ϵ)

λ(Z2(ϵ))/λ
su(B). Summing the approximate

equality (
mixing18
14) over g ∈ G and using the estimate (

mixing9
8) and the equations (

mixing8
9,
mixing17
10) yields

mixing13mixing13 (15)
∑
g∈G

λsu(E(T, ϵ, h−1g))/λsu(B) =
(1−ϵ)6

λ(Z).

Step 4.

Recall that the cocycle θ is constant on Ĉ(z, S), with constant value θ(z, S). For
g ∈ G write

Ĉ(S, ϵ, g) = ∪z{Ĉ(z, S) | θ(z, S) = g}

and let Ĉ(S, ϵ) = ∪g∈GĈ(S, ϵ, g).

The estimate (
mixing14
11) is valid for all g ∈ G and all z ∈ Ẑ1(ϵ) such that ΦSz ∈ Ẑ3(ϵ).

Moreover, for fixed g ∈ G the set Ĉ(S, ϵ, g) is a disjoint union of some of the sets
C(z, S). Thus summing the estimate (

mixing20
13) over all g, h ∈ G und insertion of the

estimate (
mixing13
15) together with the analog of the estimate (

mixing9
8) for the measures of the

sets Ĉ(S, ϵ) implies ∑
h∈G

∑
g∈G

λ(Ĉ(S, ϵ, h) ∩ Φ−SC(T, ϵ, h−1g))mixing15mixing15 (16)

=
(1−ϵ)5

∑
h∈G

∑
g∈G

λ(Ĉ(S, ϵ, h))λsu(E(T, ϵ, h−1g))/λsu(B)

=
(1−ϵ)15

λ(Ẑ2(ϵ))λ(Z2(ϵ))λ(Z).

On the other hand, as the Teichmüller flow Φt is mixing of all orders
AGY06
[AGY06],

for sufficiently large S, T we also have

mixing11mixing11 (17) λ{z ∈ Ẑ2(ϵ) | ΦSz ∈ Z2(ϵ),Φ
S+T z ∈ Z} =

(1−ϵ)
λ(Ẑ2(ϵ))λ(Z2(ϵ))λ(Z).



46 URSULA HAMENSTÄDT

Comparison with the estimate (
mixing15
16) and using the estimate (

mixing9
8) for both Ĉ(S, ϵ) and

C(T, ϵ) then shows that

λ{z ∈ Ẑ2(ϵ) |ΦS(z) ∈ Z2(ϵ),Φ
S+T z ∈ Z, θ(z, S + T ) = g}mixing6mixing6 (18)

E =
(1−ϵ)24

(∑
h∈G

λ{z ∈ Ẑ2(ϵ) | ΦSz ∈ Z2(ϵ), θ(z, S) = h}(19)

λ{z ∈ Z2(ϵ) | ΦT z ∈ Z, θ(z, T ) = h−1g)}
)
/λ(Z2(ϵ)).(20)

Step 5.

In Step 3 above, for a fixed number ϵ > 0 and a fixed set Z = V (A,B, ζ) with a
good product structure and the additional property that the Masur Veech measure
on Z is an (1 − ϵ)-approximate product, for sufficiently large m,n we considered

the sets Z2(ϵ) = V (A,B, ζ/m) and Ẑ2(ϵ) = V (A,B, ζ/mn) ⊂ Z2(ϵ) and obtained
for a fixed g ∈ G an estimate for the Masur Veech measure of the set

{z ∈ Ẑ2(ϵ) | ΦSz ∈ Z2(ϵ),Φ
S+T z ∈ Z, θ(v, S + T ) = g}

for all sufficiently large S, T .

By replacing the time S by S + kζ/mn for some k ∈ [−mn,mn], this estimate

is equally valid if we replace Ẑ2(ϵ) by Φ−kζ/mnẐ2(ϵ) provided that S is sufficiently
large. Assuming now that mn = 2ℓ+ 1 for some integer ℓ, we have

Z = ∪−ℓ≤k≤ℓΦ
2kζ/mnẐ2(ϵ).

Summing the estimate (
mixing6
18) over all k ∈ [−ℓ, ℓ] then yields that we have

λ{z ∈ Z | ΦS(z) ∈ Z2(ϵ),Φ
S+T z ∈ Z, θ(z, S + T ) = g}mixing5mixing5 (21)

=
(1−ϵ)24

∑
h∈G

λ{z ∈ Z | ΦSz ∈ Z2(ϵ), θ(z, S) = h}

λ{z ∈ Z2(ϵ) | ΦT z ∈ Z, θ(z, T ) = h−1g}/λ(Z2(ϵ)).

On the other hand, assuming that m = 2p + 1 for some integer p, the estimate
is also valid if we replace Z2(ϵ) by Φkζ/mZ2(ϵ) for −p ≤ k ≤ p. Then summing
the estimate (

mixing5
21) over k ∈ [−p, p] and using the fact that λ(Z2(ϵ)) = λ(Z)/2m, we

deduce that

λ{z ∈ Z |ΦSz ∈ Z,ΦS+T ∈ Z, θ(z, S + T ) = g}λ(Z)mixing16mixing16 (22)

=
(1−ϵ)24

∑
h∈G

λ{z ∈ Z |ΦSz ∈ Z, θ(z, S) = h}λ{z ∈ Z | ΦT z ∈ Z, θ(z, T ) = h−1g}.

The above discussion depended on the choice of the number ϵ > 0, and it used
the fact that on the subset Z = V (A,B, ζ) of Y , the Masur Veech measure is
an (1 − ϵ)-approximate product. The proposition now follows from the following
observation.

Fix again a number ϵ > 0. Recall that Y = V (Ass, Asu, β). By subdividing an
open subset of Ass of full λss-measure into finitely many open connected subsets
of small diameter (with boundary of vanishing λss-measure), we obtain a partition
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of an open subset of Y of full measure into finitely many open connected sets of
the form Zi = V (Ai, A

su, β) with the property that the Masur Veech measure on
each of these sets is an (1 − ϵ)-approximate product. Let Y = ∪iZi be such a
decomposition. Fix numbers i, j, k and use the above construction for the return
maps from Zj to Zi and from there to Zk. For large enough S, T , this yields an
estimate of the measure of the sets

Ω(i, j, k, g) = {z ∈ Zi | ΦSz ∈ Zj ,Φ
S+T z ∈ Zk, θ(z, S + T ) = g}

which is identical to the estimate (
mixing16
22).

As the sets Ω(i, j, k, g) are pairwise disjoint, summing their measures shows that
for large enough S, T we have

λ{z ∈ Z | ΦSz ∈ Z,ΦS+T z ∈ Z, θ(z, S + T ) = g}λ(Z)mixing7mixing7 (23)

=
(1−ϵ)24

(∑
h∈G

λ{z ∈ Z | ΦSz ∈ Z, θ(z, S) = h}λ{z ∈ Z | ΦT z ∈ Z, θ(z, T ) = h−1g}
)

But as S, T → ∞ we can let ϵ tend to zero which yields the asymptotic formula
stated in the proposition. □

Our goal is to apply Proposition
maintechnical
5.9 for a control of the cocycle θ in the way

explained in Lemma
stationary
5.3. To this end note that by the mixing property of the

Teichmüller flow, using the notations from Proposition
maintechnical
5.9, the values a(g) ≥ 0

(g ∈ G) obtained from a suitable chosen sequence Si → ∞ satisfy
∑

g a(g) = 1.
For an application of the simple argument in Lemma

stationary
5.3 we need to assure that

a(g) > 0 for all g ∈ G. That this always holds true is shown in the following lemma.

maintechnical2 Lemma 5.10. There exists a number σ > 0 with the following property. Let Ti ⊂
(0,∞) be a sequence so that Ti → ∞ and that furthermore for each g ∈ G there
exists a number a(g) ≥ 0 such that

λ{y ∈ Y | ΦTiy ∈ Y, θ(y, Si) = g} → a(g)λ(Y )2 (Ti → ∞);

then a(g) ≥ σ for all g ∈ G.

Proof. We first claim that there are numbers κ > 0, R0 > 0 with the following
property. For all sufficiently large T > 0 and every g ∈ G there exists a number
R = R(g, T ) < R0 such that

λ{y ∈ Y | ΦT+Ry ∈ Y, θ(y, T +R) = g} ≥ κ.

To show the claim recall that by assumption, the cocycle θ is onto G. Using
Proposition

prop46
5.8 for Y = V (Ass, Asu, β), with the notations from the proposition,

for every ϵ > 0 and for every g ∈ G there exists a number T (g) > T (ϵ), and there
is some zg ∈ Z1(ϵ) such that ΦT (g)zg ∈ Z3(ϵ) and θ(zg, T (g)) = g.

Now let T0 > T (ϵ) be sufficiently large that the estimate (
mixing7
23) in the proof of

Proposition
maintechnical
5.9 is valid for this ϵ and all S, T ≥ T0. Let N be the order of the

group G. Using the above notations, for a given number T > T0 choose some
h = h(T ) ∈ G so that

λ{z ∈ Z1(ϵ) | ΦT z ∈ Z3(ϵ), θ(z, T ) = h} ≥ (1− ϵ)λ(Z1(ϵ))λ(Z3(ϵ))/N.
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Such an element exists by the choice of T0 (which controls the mixing property of
the Teichmüller flow).

Recall from Proposition
prop46
5.8 the definition of the sets C(z, T ) for z ∈ Z1(ϵ) and

ΦT z ∈ Z3(ϵ) (here T > T (ϵ)). By the reasoning used in the proof of Proposition
maintechnical
5.9, for large enough T and putting once more h = h(T ) we have

λ{y ∈ C(zgh−1 , T (gh−1)) | ΦT (gh−1)+T y ∈ Y, θ(y, T (gh−1) + T ) = g}mixing30mixing30 (24)

≥ λ(C(zgh−1 , T (gh−1))λ(Z1(ϵ))λ(Z2(ϵ))(1− ϵ)24/N.

Since the sets C(zg, T (g)) are all open, and their number is finite, the right hand side
of inequality (

mixing30
24) is bounded from below by a positive constant which is independent

of g. This shows the claim for R0 = max{T (h) | h ∈ G}.

As λ is a probability measure and as the group G is finite, we can find a sequence
Ti → ∞ such that for every g ∈ G the sequence

χ(Ti, g) = λ{z ∈ Y | ΦTiz ∈ Y, θ(z, Ti) = g}/λ(Y )2

converges as i → ∞ to some number χ(g) ≥ 0. Note that by the mixing property,
we have

∑
g χ(g) = 1, independent of the sequence. In other words, we can view χ

as a probability measure on the group G.

Let Υ ⊂ P(G) be the closure of the set of all probability measures on G obtained
in this way. We claim that this set has the properties stated in Lemma

positive
5.5.

Namely, let g ∈ G be arbitrary. By the beginning of this proof, there exists a
sequence Ti → ∞ such that for each i we have

λ{y ∈ Y | ΦTiy ∈ Y, θ(y, Ti) = g} ≥ κ.

By passing to a subsequence we may assume that the sequence fulfills the condition
in the definition of the set Υ. This shows that for all g ∈ G there exists some
ξg ∈ Υ with ξg(g) ≥ κ. The second property in Lemma

positive
5.5 with c = λ(Y )2 is the

statement of Proposition
maintechnical
5.9.

From Lemma
positive
5.5 and the definition of Υ we obtain the existence of a sequence

Si → ∞ and a number κ > 0 such that

lim
i→∞

λ{y ∈ Y | ΦSiy ∈ Y, θ(y, Si) = g} ≥ κ

for all g ∈ G. Now let Rj → ∞ be any sequence such that for each g ∈ G, the limit

lim
j→∞

λ{y ∈ Y | ΦRjy ∈ Y, θ(y,Rj) = g} = χ(g)

exists. We claim that χ(g) ≥ κ2 for all g. This then completes the proof of the
lemma.

To this end apply Proposition
maintechnical
5.9 to the sequences Si, Ti = Rj(i) − Si where

i→ ∞ and where j(i) is chosen in such a way that Rj(i)−Si → ∞. For sufficiently
large i the conclusion of the lemma holds true for Si and Rj(i)−Si up to some error

of at most ϵκ2. An application of Proposition
maintechnical
5.9 and Lemma

equionfinite
5.2 implies that for

each g ∈ G, we have

λ{y ∈ Y | ΦSiy ∈ Y,ΦRj(i)−Siy ∈ Y, θ(y,Rj(i)) = g} ≥ (1− ϵ)κ2.
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As this estimate is valid for all sufficiently large j = j(i) the lemma follows. □

For functions a, b : [0,∞) → (0,∞) define a ∼ b if a(R)/b(R) → 1 (R → ∞).
Using the earlier notations, and in particular the definition of the set Y in (

Y
3) and

the set Γ0 of parametrized periodic orbits defined by Y , we are now ready to show

equiproject Proposition 5.11. For g ∈ G and for R > 0 define

L(R, g) = {γ ∈ Γ0(Y ) | ℓ(γ) ≤ R, ρ(Ω(γ)) = g}.
Then as R→ ∞,

♯L(R, g) ∼ ehRλ(Y )

2hβ|G|
.

Proof. By construction, each of the parametrized periodic orbits γ ∈ Γ0 contains a
distinguished subarc of length 2β with midpoint in the set V ⊃ Y . Let Γ̂0 ⊂ Γ0 be
the subset of all such orbits whose distinguished subarc is contained in Y .

For each g ∈ G, we construct from the periodic orbits γ ∈ Γ̂0 with ρ(Ω(γ)) = g
a Φt invariant Borel measure λg on Q which is a positive multiple of the Masur
Veech measure λ.

To this end recall that any component of an intersection of an orbit of Φt with
Y is an arc of length 2β. Define

C(R− 2β,R, g) = {γ ∈ Γ̂0 | R− 2β < ℓ(γ) ≤ R, ρ(Ω(γ)) = g}.
Let h be the entropy of the Masur Veech measure on Q. We claim that up to
passing to a subsequence, for every g ∈ G the measures

measuresmeasures (25) he−hR(1− e−2hβ)−1
∑

γ∈C(R−2β,R,g)

δ[γ(−β),γ(β)]

converge as R→ ∞ to a measure λ̂g on Y with λ̂g(Y ) ∈ [0, λ(Y )]. Here δ[γ(−β),γ(β)]

is the restriction to γ[−β, β] of the Φt-invariant measure δγ supported on γ.

To show the claim it suffices to control the total mass of the measure defined in
(
measures
25). This mass can be computed as follows. Let Γ be the set of all (unparametrized)
periodic orbits for Φt which are contained in Q. For each periodic orbit γ ∈ Γ, let
n(γ) ≥ 0 be the number of components of the intersection γ ∩Y , and let n(γ, g) be
the number of intersection components so that a parametrization of γ with starting
point in the component defines a point γ̂ ∈ Γ0 with ρ(γ̂) = g. Define b(γ, g) = 0 if
n(γ) = 0, and define b(γ, g) = n(γ, g)/n(γ) otherwise. Clearly

∑
g b(γ, g) = 1 for

all γ with n(γ) > 0.

For R > 2β let Γ(R − 2β,R) be the set of all (unparametrized) periodic orbits
for Φt of length contained in the interval (R − 2β,R]. By Corollary 5.4 of

H18
[H23],

the measures

νR,2β = he−hR(1− e−2hβ)−1
∑

γ∈Γ(R−2β,R)

δγ

converge weakly to the Masur Veech measure λ, and limR→∞ νR,2β(Q) = 1 (which
means that there is no escape of mass).
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Define a Φt-invariant Borel measure

nudefnudef (26) ν(R, g) = he−hR(1− e−2hβ)−1
∑

γ∈Γ(R−2β,R)

b(γ, g)δγ .

By construction, we have∑
g

ν(R, g)(Y ) = he−hR(1− e−2hβ)−1
∑

γ∈Γ(R−2β,R)

δγ(Y ).

Thus the measures ν(R, g) are precompact in the space of all Φt-invariant Borel
measures on the component Q.

If Ri → ∞ is a sequence such that for each g ∈ G the measures ν(Ri, g) converge
weakly to a measure λg, then ν(Ri, g)(Q) → λg(Q) and

∑
g λg = λ. Furthermore,

the measures λg are invariant under the Teichmüller flow Φt. As the Masur Veech
measure is ergodic under the action of Φt, for each g ∈ G there exists a number
c(g) ∈ [0, 1] so that λg = c(g)λ.

A priori, the measures λg depend on the choice of the sequence Ri → ∞ used to
construct them. By Lemma

maintechnical2
5.10 and its proof, there is however a number σ > 0

such that λg(Q) ≥ σ independent of the sequence Ri.

Namely, using the terminology of Proposition
prop46
5.8, each parametrized periodic

orbit γ ∈ Γ0 with γ(0) ∈ Z2(ϵ) and period R determines a component C(γ(0), R) of
Z2(ϵ)∩Φ−RZ, and vice versa, such a component determines a parametrized periodic
orbit which passes through Y (see

H18
[H23] for details of this fact). The additional

constraint ρ(γ) = g for some g ∈ G is then equivalent to stating that the value of
the cocycle θ(·, T ) equals g on such a component.

We now use an argument which is similar to the reasoning in the proof of Lemma
maintechnical2
5.10. Namely, call a sequence Ri → ∞ admissible if for each g ∈ G the measures
ν(Ri, g) converge weakly to a measure λg = c(g)λ.

Let Ri be any admissible sequence, with limiting measures c(g)λ. Choose a
subsequence Rij so that for each g ∈ G the measures ν(Rij/2, g) weakly converge

as well. By Proposition
maintechnical
5.9, if these measures converge to measures λ̂h then for

each g we have

mixing10mixing10 (27) ν(Tij , g){y ∈ Y | ΦRij
/2 ∈ Y,ΦRij z ∈ Y } →

∑
h

λ̂h(Y )λ̂h−1g(Y ).

On the other hand, λg = c(g)λ is a multiple of the Lebesgue measure and hence it
is mixing of all orders. Since ν(Tij , g) → λg, this implies that the limit of the left

hand side of the expression (
mixing10
27) equals c(g)λ(Y )3.

Now the formula (
mixing10
27) together with Lemma

equionfinite
5.2 and the definition of the lim-

iting measures λg shows that necessarily c(g) = 1/N for all N . As Ri was an
arbitrary admissible sequence, we deduce that indeed, λg(Q) = 1/|G| for all g ∈ G,
independent of the sequence Ri. □
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6. Stretch factors
galois

In this section we complete the proofs of the main results of the introduction us-
ing group sieving for reductions modulo a prime of the symplectic group Sp(2g,Z).
We begin with discussing periodic orbits in a component Q of a stratum of abelian
differentials.

Let p ≥ 3 be an odd prime and let Fp be the field with p elements. Let

Λp : Sp(2g,Z) → Sp(2g, Fp)

be reduction modulo p. Consider a nested pair of sets Y ⊂ V as in Section
equidistribution
5 and use

these sets to construct the set Γ0 of parametrized periodic orbits in Q. We showed
in Corollary

reductiontwo
4.14 that for all but finitely many primes p we have Λp(ΨΩ(Γ0)) =

Sp(2g, Fp). Here as before, Ω(γ) ∈ Mod(S) is the pseudo-Anosov mapping class
defined by the parametrized orbit γ, and Ψ : Mod(S) → Sp(2g,Z) is the canonical
homomorphism.

The following corollary is an immediate consequence of Proposition
equiproject
5.11. For its

formulation, let N(p) be the order of the group Sp(2g, Fp).

equiproject2 Corollary 6.1. Let Q be a component of a stratum of abelian differentials and let
p ≥ 3 be an odd prime such that Λp(Ψ ◦ Ω(Γ0)) = Sp(2g, Fp). Let B ∈ Sp(2g, Fp)
be arbitrary and for R > 0 define

B(R,B) = {γ ∈ Γ0 | ℓ(γ) ≤ R,Λp(ΨΩ(γ)) = B}.

Then as R→ ∞,

♯B(R,B) ∼ ehRλ(Y )

2hβN(p)
.

As in the introduction, let Γ be the set of all periodic orbits for Φt in the
component Q. For a periodic orbit γ for Φt denote by A(γ) ∈ Sp(2g,Z) the image
under the homomorphism Ψ of some (arbitrarily chosen) pseudo-Anosov element of
Mod(S) which preserves a flow line for the Teichmüller flow projecting onto γ. Let
[A(γ)] be the conjugacy class of A(γ); this class not depend on any choices made.

The characteristic polynomial of a symplectic matrix A ∈ Sp(2g,Z) is reciprocal
of degree 2g. The roots of such a polynomial come in pairs: If α is a root then so
is α−1. We call the extension of Q defined by the characteristic polynomial of A
simply the field of A. It only depends on the conjugacy class of A. Its degree over
Q equals 2g if and only if the polynomial is irreducible over Q.

We are now ready to complete the proof of Theorem
theolyapunov
1 from the introduction.

full Theorem 6.2. Let Q be a component of a stratum of abelian differentials. The
set of all γ ∈ Γ such that the field of [A(γ)] is of degree 2g over Q, separable and
totally real is typical.
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Proof. We show first that for a typical periodic orbit γ ∈ Γ the characteristic
polynomial of [A(γ)] is irreducible.

Using the notations from Corollary
equiproject2
6.1, let p0 ≥ 5 be large enough so that

Ψ(Ω(Γ0)) surjects onto Sp(2g, Fp) for all p ≥ p0. Let p ≥ p0 and let as before
N(p) be the order of Sp(2g, Fp). By Corollary

equiproject2
6.1, for every B ∈ Sp(2g, Fp) and

for all large enough R the proportion of the elements γ ∈ Γ0 of length at most R
which satisfy Λp ◦ Ψ ◦ Ω(γ) = B roughly equals 1

N(p) . On the other hand, if we

denote by Rp(2g) the subset of Sp(2g, Fp) of elements with reducible characteristic
polynomial then

|Rp(2g)|
N(p)

< 1− 1

3g

(see Theorem 6.2 of
R08
[R08] for a reference to this classical result of Borel).

We follow the proof of Theorem 6.2 of
R08
[R08]. Let p1, . . . , pk be k distinct primes

bigger than p0, and let K = p1 · · · pk. Then the reduction ΛK(A) modulo K of any
element A ∈ Sp(2g,Z) is defined, and we have

ΛK(A) = Λp1
(A)× · · · × Λpk

(A).

Namely, for distinct primes p ̸= q ≥ 5, the groups Sp(2g, Fp) and Sp(2g, Fq) are
non-isomorphic simple groups. This implies that if Γ is any group and if ρp :
Γ → Sp(2g, Fp) and ρq : Γ → Sp(2g, Fq) are surjective homomorphisms, then the
homomorphism ρp × ρq : Γ → Sp(2g, Fp) × Sp(2g, Fq) is surjective. In particular,
we have

Sp(2g,K) = Sp(2g, Fp1
)× · · · × Sp(2g, Fpk

).

As ΨΩ(Γ0) surjects onto Sp(2g, Fp) for all p ≥ p0, the reduction mod K defines
a surjective homomorphism of the semigroup ΨΩ(Γ0) < Sp(2g,Z) onto the finite
group Sp(2g,K) = ΛK(ΨΩ(Γ0)). On the other hand, if A ∈ Sp(2g,Z) has a
reducible characteristic polynomial, then the same holds true for Λpi

(A) for all
i. By the reasoning in the previous paragraph, the proportion of the number of
elements in Sp(2g,K) with this property is at most (1− 1

3g )
k.

By Corollary
equiproject2
6.1, this implies that for a given number k ≥ 1 and all large enough

R, the proportion of all orbits γ ∈ Γ0 of length at most R with the property that
the characteristic polynomial of Ψ(Ω(γ)) is reducible is at most of the order of
(1 − 1

3g )
k. As k was arbitrarily chosen, we conclude that the degree of the field

extension of Q defined by typical periodic orbit of Φt equals 2g.

We next claim that for a typcial orbit γ ∈ Γ, the field of A(γ) is separable and
totally real. Namely, as the Lyapunov spectrum of Q is simple

AV07
[AV07], Theorem

1 of
H18
[H23] shows that for a typical periodic orbit γ, the absolute values of the

eigenvalues of [A(γ)] are pairwise distinct. But this just means that the field of
[A(γ)] is totally real and separable. □

For a symplectic matrix A ∈ Sp(2g,Z), the field of A is an extension of degree
at most two of its trace field, defined as the characteristic polynomial of A+ A−1.
For a periodic orbit γ ⊂ Q, we call the trace field of [A(γ)] the trace field of γ.
The trace field γ can also be read off directly from a point ω ∈ γ. Namely, let ω̃
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be a lift of ω to a marked abelian differential on the surface S. The periods of ω̃
define an abelian subgroup Λ = ω̃(H1(S,Z)) of C of rank two. Let e1, e2 ∈ Λ be
two points which are linearly independent over R. Let K be the smallest subfield
of R such that every element of Λ can be written as ae1 + be2, with a, b ∈ K; then
Λ⊗K K = K2 (see the appendix of

KS00
[KS00] for more details).

algebraic Definition 6.3. The periodic orbit γ is called algebraically primitive if the trace
field K of γ is a totally real separable number field of degree g over Q.

The following corollary summarizes the discussion.

periodicprim Corollary 6.4. For every component Q of a stratum of abelian differentials, alge-
braically primitive periodic orbits for Φt are typical.

We are left with the proof of Theorem
stretch
2 from the introduction. Recall that

we always require that strata of quadratic differentials are not strata of squares of
holomorphic one-forms. By a slight abuse of notation, for a periodic orbit γ for the
Teichmüller flow on a component D of the moduli space of quadratic differentials we
denote by Ω(γ) an arbitrarily chosen pseudo-Anosov mapping class whose conjugacy
class defines γ.

stretch2 Theorem 6.5. Let D be a component of a stratum of quadratic differentials with
m ≥ 1 zeros and k ≤ m zeros of odd order. Then for a typical periodic orbit γ ⊂ D,
the algebraic degree of the stretch factor of Ω(γ) ∈ Mod(S) equals 2g − 2 + k.

Proof. Let D be a component of a stratum of quadratic differentials with m ≥ 1
zeros and k ≤ m zeros of odd order. As the total orders of all zeros equals 4g−4, the
number k is necessarily even. Then D is a complex orbifold of dimension 2g−2+m.

For each quadratic differential q on S which is not the square of a holomorphic
one-form, there is a two-sheeted cover S′ of S, ramified precisely at the zeros of
odd orders of q, such that q lifts to an abelian differential on S′. This double cover
is constructed as follows.

Let S0 be the surface obtained from S by removing the zeros of q of odd order.
Then for every point x ∈ S0, there exists a local square root of q near x, unique up
to multiplication by −1. Thus there exists a unique two-sheeted cover S′

0 of S0 on
which such a square root is globally defined. This cover is the cover of S0 whose
fibre over a point x are the two choices of the square roots of q at x. It is connected
since q is not the square of a holomorphic one-form. The double cover π : S′

0 → S0

does not depend on the particular choice of q in the component D of a stratum.

The preimages of the punctures of S0 are punctures of S
′
0. Furthermore, a loop in

S0 going around a puncture p of S0 reverses the sign of a square root of q and hence
the covering projection π extends to a branched cover S′ → S where S′ is obtained
from S′

0 by filling in the punctures. This branched cover is ramified precisely at the
punctures of S0, i.e. at the zeros of q of odd order. As a consequence, the cover
S′ → S is ramified at precisely k points. The quadratic differential q lifts to an
abelian differential on S′ with 2m − k zeros. This shows that the component D
lifts to an affine invariant manifold C in a component Q of a stratum in the moduli
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space of abelian differentials on S′, consisting of abelian differentials with 2m − k
zeros.

By the Riemann Hurwitz formula, the genus g′ of S′ equals 2g−1+ k
2 and hence

dimH1(S′,R) = 4g − 2 + k. The surface S is the quotient of S′ by an involution ι
which exchanges the two sheets in the cover.

The involution ι acts on the real cohomology H1(S′,R) of S′. This cohomology
decomposes over R as

H1(S′,R) = E1 ⊕ E2
where E1 is the eigenspace for ι with respect to the eigenvalue 1, and E2 is the
eigenspace for ι with respect to the eigenvalue −1. As the action of ι on H1(S′,R)
is a symplectic transformation, this decomposition is orthogonal for the symplectic
form on H1(S′,R). The vector space E1 is precisely the pullback of H1(S,R) under
the branched covering map and hence its dimension equals 2g. Thus dim(E2) =
2g − 2 + k.

We next observe that E2 ⊗ C has a natural identification with the projection of
TC+ = C × (0,∞) to absolute periods. To this end note that by construction, if
q′ ∈ C+ then ι∗q′ = −q′. Hence by equivariance, the projection of TC+ to absolute
periods is contained in E2 ⊗ C.

Let Σ be the zero set of a differential in Q+ = Q×(0,∞). The set Σ contains the
k ramification points of a differential in C+. The involution ι acts as an involution on
the dualH1(S

′,Σ;Z)∗ of the homology group of S′ relative to Σ. Period coordinates,
for Q+ take values in H1(S

′,Σ;Z)∗, and the linear equation for C+ is the equation
ι∗ω+ω = 0. Namely, if ω is any point with this property, then ω2 is ι-invariant and
projects to a quadratic differential on S which is not the square of a holomorphic
one-form. By construction, this quadratic differential is contained in the component
D.

By naturality of period coordinates, the map which associates to an abelian
differential ω with ι∗ω + ω = 0 its projection to absolute periods is a submersion
into E2 ⊗ C. As a consequence, the projection of TC+ to absolute periods equals
the vector space E2 ⊗ C.

Since ι descends to an element of Sp(2g′,Z) whose square is the identity, the
decomposition H1(S′,R) = E1 ⊕ E2 is defined over Z[ 12 ]. Thus the stabilizer of
this decomposition in the group Sp(2g′,Z) projects to a lattice in the group of
symplectic automorphisms of E2.

A periodic orbit γ for the Teichmüller flow in D determines a pseudo-Anosov
mapping class which preserves the zeros of odd order and hence lifts to a mapping
class of the branched cover S′ of S. This mapping class projects to a Perron
Frobenius automorphism of E2 whose Perron Frobenius eigenvalue is just the stretch
factor of the pseudo-Anosov element of Mod(S) defining γ.

By Theorem
zariski
4.12, the affine invariant manifold C is locally Zariski dense (this can

also be seen directly in this explicit case). Furthermore, for all but finitely many
primes p the local monodromy surjects onto the mod p reduction of the intregral
symplectic group. Using Corollary

equiproject2
6.1 for the Teichmüller flow on D and cocycles
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defined by the action of this flow on the mod p homology on C in the same way as
in the proof of Theorem

full
6.2, we conclude that the algebraic degree of the stretch

factor of a pseudo-Anosov mapping class defined by a typical periodic orbit for Φt

on D equals 2g − 2 + k. This is what we wanted to show. □

We are left with showing the Corollary Ê from the introduction. To this end
we proceed by induction on the genus g of S. As there are strata of quadratic
differentials with k zeros of odd order for any even number k ≤ 4g − 4, the case
g = 2 follows from Theorem

stretch2
6.5 applied to the numbers k = 0, 2, 4. Note that

the strata of quadratic differentials used in this construction are well known to be
non-empty.

Assume now that the corollary is known for every genus 2 ≤ h ≤ g − 1. By
Corollary

stretch2
6.5, applied to all even numbers k ∈ [0, 4g − 4], we find that for every

even number 2g − 2 ≤ m ≤ 6g − 6 there are infinitely many distinct conjugacy
classes of pseudo-Anosov mapping classes with stretch factor of degree m over Q.

To cover the cases m ≤ 2g − 4 we consider first the case that g − 1 = 2n is even
(n ≥ 1). Then a surface S of genus g is a double cover of a surface S′ of genus n+1.
Let Π : S → S′ be the covering projection. The pullback by Π of a component of
a stratum of abelian or quadratic differentials on S′ is an affine invariant manifold
for the Teichmüller flow on S. For pseudo-Anosov mapping class φ on S′ there
exists some k > 0 such that φk lifts to a pseudo-Anosov mapping class on S whose
stretch factor is the k-th power of the stretch factor of φ.

By induction hypothesis, for each even number m ≤ 6(n+ 1)− 6 = 6n = 3g − 3
there are infinitely many conjugacy classes of pseudo-Anosov mapping classes for
S′ whose stretch factor is an algebraic integer of degree m. The induction step
follows. In particular, we obtain the statement for g = 3.

If g = 2n ≥ 4 is even then by the Riemann Hurwitz formula, S is a double cover
of a surface S′ of genus n, branched at two points. Note that as n ≥ 2, there are no
constraints for the construction of such a double branched cover. Indeed, S is just
the orientation cover of a quadratic differential on S′ with two simple zeros and all
other zeros of even degree.

Let D be a component of a stratum of quadratic differentials on S′ with two
simple zeros p1, p2 and all other zeros of even order. Then the points p1, p2 are
the branch points of the cover. The covering map Π : S → S′ commutes with the
Teichmüller flows on D and on its preimage, which is an affine invariant manifold
in the moduli space of quadratic differentials on S. The preimage of a differential
q ∈ D is a differential on S. If q is a periodic point for the Teichmüller flow on D
then q lifts to a periodic point for the Teichmüller flow on S with the same stretch
factor.

By induction hypothesis, for each even number m ≤ 6k − 6 = 3g − 6 there are
infinitely many conjugacy classes of mapping classes on S′ with stretch factor of
algebraic degree m. These mapping classes lift to S. As 2g − 2 ≤ 3g − 6 for all
g ≥ 4, the induction step follows. This completes the proof of the corollary from
the introduction.
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Remark 6.6. The above results do not answer any of the more specific questions
on stretch factors one might ask, and in contrast to Theorem

theolyapunov
1, they do not imply

that the extension of Q by a typical stretch factor is a totally real number field.
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