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Abstract. The disk graph of a handlebody H of genus g ≥ 2 with m ≥ 0

marked points on the boundary is the graph whose vertices are isotopy classes

of disks disjoint from the marked points and where two vertices are connected
by an edge of length one if they can be realized disjointly. We show that for

m = 1 the disk graph contains quasi-isometrically embedded copies of R2. For

m = 2 the disk graph contains for every n ≥ 1 a quasi-isometrically embedded
copy of Rn. The same holds true for sphere graphs of the doubled handlebody

with one or two marked points, respectively.

1. Introduction

The curve graph CG of an oriented surface S of genus g ≥ 0 with m ≥ 0 punctures
and 3g − 3 +m ≥ 2 is the graph whose vertices are isotopy classes of essential (i.e.
non-contractible and not homotopic into a puncture) simple closed curves on S.
Two such curves are connected by an edge of length one if and only if they can be
realized disjointly. The curve graph is a locally infinite hyperbolic geodesic metric
space of infinite diameter [MM99].

A handlebody of genus g ≥ 1 is a compact three-dimensional manifold H which
can be realized as a closed regular neighborhood in R3 of an embedded bouquet of
g circles. Its boundary ∂H is an oriented surface of genus g. We allow that ∂H is
equipped with m ≥ 0 marked points (punctures) which we call spots in the sequel.
The group Map(H) of all isotopy classes of orientation preserving homeomorphisms
of H which fix each of the spots is called the handlebody group of H. The restriction
of an element of Map(H) to the boundary ∂H defines an embedding of Map(H) into
the mapping class group of ∂H, viewed as a surface with punctures [S77, Wa98].

An essential disk in H is a properly embedded disk (D, ∂D) ⊂ (H, ∂H) whose
boundary ∂D is an essential simple closed curve in ∂H, viewed as a surface with
punctures. An isotopy of such a disk is supposed to consist of such disks.

The disk graph DG of H is the graph whose vertices are isotopy classes of essential
disks in H. Two such disks are connected by an edge of length one if and only if
they can be realized disjointly.

A metric space X is said to have asymptotic dimension asdim(X) ≤ n if for every
R > 0 there exists a covering of X by uniformly bounded subsets of X so that any
ball of radius R intersects at most n + 1 sets from the covering. The asymptotic
dimension of a curve graph is finite [BF08].

In [MS13, H19a, H16, H19b] the following is shown.
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Theorem 1. The disk graph of a handlebody of genus g ≥ 2 without spots is
hyperbolic and has finite asymptotic dimension.

The main goal of this work is to show that in contrast to the case of curve graphs,
Theorem 1 is not true if we allow spots on the boundary.

Theorem 2. Let H be a handlebody of genus g ≥ 2 with m ≥ 1 spots.

(1) For m = 1 the disk graph of H contains quasi-isometrically embedded copies
of R2. In particular, it is not hyperbolic.

(2) For m = 2 and g ≥ 3, the disk graph of H contains for every n ≥ 1 a
quasi-isometrically embedded copy of Rn. In particular, it is not hyperbolic,
and its asymptotic dimension is infinite.

The proof of the second part of Theorem 2 uses m = 2 in an essential way.
I do not know whether or not the asymptotic dimension of the disk graph of a
handlebody with a single spot or with m ≥ 3 spots is finite. In view of the results
in [H16], it seems possible that finiteness holds true for all m 6= 2.

Theorem 2 implies that disk graphs can not be used effectively to obtain a geo-
metric understanding of the handlebody group Map(H) of a handlebody H of genus
g ≥ 3 paralleling the program developed by Masur and Minsky for the mapping
class group [MM00]. Note that Map(H) is an exponentially distorted subgroup of
the mapping class group of ∂H [HH12]. The analogue of the strategy of Masur and
Minsky would consist of cutting a handlebody open along an embedded disk which
yields a (perhaps disconnected) handlebody with two spots on the boundary and
studying disk graphs in the cut open handlebody.

Theorem 2 has an analogue for geometric graphs related to the outer automor-
phism group Out(Fg) of the free group on g generators. Namely, doubling the
handlebody H yields a connected sum M = ]gS

2 × S1 of g copies of S2 × S1 with
m marked points. A doubled disk is an embedded essential sphere in M , which
is a sphere which is not homotopically trivial or homotopic into a marked point.
The sphere graph of M is the graph whose vertices are isotopy classes of essential
spheres in M and where two such spheres are connected by an edge of length one
if and only if they can be realized disjointly. As before, an isotopy of spheres is
required to be disjoint from the marked points. The sphere graph of a doubled
handlebody without marked points is hyperbolic [HM13b].

Paralleling the result in Theorem 2 we have

Theorem 3. Let g ≥ 2 and let M be a doubled handlebody of genus g with m ≥ 1
marked points.

(1) If m = 1 and if g is even then the sphere graph of M contains quasi-isome-
trically embedded copies of R2. In particular, it is not hyperbolic.

(2) If m = 2 and g ≥ 3 then the sphere graph of M contains for every n ≥ 1 a
quasi-isometrically embedded copy of Rn. In particular, it is not hyperbolic,
and its asymptotic dimension is infinite.

As in the case of disk graphs, this indicates that sphere graphs can not be used
to obtain an effective geometric understanding of Out(Fg) following the program
developed in [MM00]. Theorem 3 may be related to the fact that in contrast to
mapping class groups [Mo95], for g ≥ 3 the Dehn functions of Out(Fg) and of
the handlebody group Map(H) of a handlebody of genus g is exponential [BV12,
HM13a, HH19].



SPOTTED DISK AND SPHERE GRAPHS 3

The first example known to us of a geometric graph of infinite asymptotic dimen-
sion is due to Sabalka and Savchuk [SS14]. The vertices of this graph are isotopy
classes of essential separating spheres in ]gS

2×S1. Two such spheres are connected
by an edge of length one if and only if they can be realized disjointly. We use the
main idea in [SS14] for the proof of the second part of Theorem 2 and of Theorem
3.

The argument in the proof of the first part of Theorem 3 uses the first part of
Theorem 2 and a result in [HH15] which relates the sphere graph in a connected
sum ]gS

2 × S1 for g even to the arc graph of an oriented surface of genus g/2
with connected non-empty boundary. A corresponding result for odd g and a non-
orientable surface with a single boundary component would yield the first part of
Theorem 3 for odd g ≥ 3, but at the moment, such a result is not available.

Acknowledgement: I am very grateful to the anonymous referees of this paper for
their numerous and detailed comments which made this article readable, starting
from a first version which in retrospect looks undigestible.

2. Once spotted handlebodies and doubled handlebodies

The goal of this section is to construct quasi-isometrically embedded copies of
R2 in the disk graph of a handlebody with a single spot and in the sphere graph of
a doubled handlebody of even genus with a single spot.

Thus let H be a handlebody of genus g ≥ 2 with a single spot. Let H0 be the
handlebody obtained from H by removing the spot and let

Φ : H → H0

be the spot removal map. The image under Φ of an essential diskbounding simple
closed curve in ∂H is an essential diskbounding simple closed curve in ∂H0.

The handlebody H0 without spots can be realized as an I-bundle over a surface
F with a single boundary component. If the surface F is orientable, then the genus
g is even and the I-bundle is trivial. The genus of F equals g/2, and the boundary
∂F of F defines an isotopy class of a separating simple closed curve c on ∂H0 which
decomposes ∂H0 into two surfaces of genus g/2, with a single boundary component.
If the surface F is non-orientable, then the I-bundle is non-trivial and the boundary
∂F defines a non-separating simple closed curve c in ∂H0.

Following [H19a, H16], define an I-bundle generator for H0 to be a simple closed
curve c ⊂ ∂H0 so that H0 can be realized as an I-bundle over a compact surface
F with connected boundary ∂F and such that c is freely homotopic to ∂F ⊂ ∂H0.
The surface F is called the base of the I-bundle. If the I-bundle generator c is
separating, then F is orientable of genus g/2 where g is the genus of H0. If c is
non-separating, then the surface F is non-orientable, and the complement of an
open annulus about c in ∂H0 is the orientation cover of F . The I-bundle over every
essential simple embedded arc in F with endpoints on ∂F is an essential disk in H0

which intersects c in precisely two points (up to isotopy).
An I-bundle generator c in ∂H0 is diskbusting, which means that it has an

essential intersection with every disk (see [MS13, H19a]). Namely, the base F of
the I-bundle is a deformation retract of H0. Thus if γ is any essential closed curve
on ∂H0 which does not intersect c then γ projects to an essential closed curve on
F . Such a curve is not nullhomotopic in H0 and hence it can not be diskbounding.
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The arc graph A(X) of a compact surface X of genus n ≥ 1 with connected
boundary ∂X is the graph whose vertices are isotopy classes of embedded essential
arcs in X with endpoints on the boundary, and isotopies are allowed to move the
endpoints of an arc along ∂X. Two such arcs are connected by an edge of length
one if and only if they can be realized disjointly. The arc graph A(X) of X is
hyperbolic, however the inclusion of A(X) into the arc and curve graph of X is a
quasi-isometry only if the genus of X equals one [MS13] (see also [H16]).

A coarse L-Lipschitz retraction of a metric space (X, d) onto a subspace Y is a
coarse L-Lipschitz map Ψ : X → Y (this means that d(Ψ(x),Ψ(y)) ≤ Ld(x, y) + L
for some L ≥ 1 and all x, y) with the additional property that there exists a number
C > 0 with d(Ψ(y), y) ≤ C for all y ∈ Y . If X is a geodesic metric space then the
image Y of a coarse Lipschitz retraction is a coarsely quasi-convex subspace of X,
i.e. any two points in Y can be connected by a uniform quasi-geodesic in X which
is entirely contained in Y .

For an I-bundle generator c in H0 letRD(c) be the complete subgraph of the disk
graph DG0 of H0 consisting of disks which intersect c in precisely two points. The
boundary of each such disk is an I-bundle over an arc in the base F of the I-bundle
corresponding to c. As two such disks are disjoint if and only if the corresponding
arcs in F are disjoint, the graph RD(c) is isometric to the arc graph A(F ) of F .

Lemma 2.1. There exists a coarsely Lipschitz retraction Θ0 : DG0 → RD(c) whose
restriction to RD(c) is the identity.

Proof. The case that c is a separating I-bundle generator is completely elementary.
Namely, in this case the base F of the I-bundle can be identified with a component
of ∂H0 − c. As c is diskbusting, the map

Υ0 : DG0 → A(F )

which associates to a disk D a component of ∂D ∩ F is coarsely well defined:
Although it depends on choices, any other choice Υ′0 maps a disk D to an arc
disjoint from Υ0(D). If we denote by Q : A(F )→ RD(c) the map which associates
to an arc α in F the I-bundle over α, then the disks Q(Υ0(D)), Q(Υ′0(D)) are
disjoint as well.

Furthermore, if D,D′ are disjoint disks then the arcs Υ0(D),Υ0(D′) are disjoint
and hence dDG0

(QΥ0(D), QΥ0(D′)) ≤ 1. This shows that Q ◦ Υ0 is coarsely one-
Lipschitz. As a disk D ∈ RD(c) intersects F in a single arc, we have QΥ0(D) = D.
This completes the proof of the lemma in the case that c is separating.

The above argument does not immediately extend to non-separating I-bundle
generators. Namely, if c is a non-separating I-bundle generator, then the natural
orientation reversing involution Φ of the corresponding I-bundle which exchanges
the two endpoints of a fiber acts as an orientation reversing involution on the
boundary ∂H0 of H0. This action preserves an embedded open annulus A ⊂ ∂H0

about c, and the action of Φ on ∂H0 − A is free, with quotient a non-orientable
surface F with connected boundary ∂F . A disk which intersects c in precisely
two points then is the I-bundle over an embedded arc in F . Its boundary is a
Φ-invariant simple closed curve on ∂H0. Thus there is no obvious projection of
DG0 onto RD(c) as in the case of a separating I-bundle generator.

To show that the lemma holds true in this case as well, it suffices to show that the
inclusion RD(c)→ DG0 is a quasi-isometric embedding. Namely, if this holds true
then as DG0 is hyperbolic, there exists a coarsely distance non-increasing coarsely
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well defined shortest distance projection DG0 → RD(c), and such a projection is a
coarsely Lipschitz retraction.

That the inclusion RD(c)→ DG0 is indeed a quasi-isometric embedding follows
from Theorem 10.1 of [MS13] (which can only be used indirectly as the “holes” are
not precisely specified) and, more specifically, Corollary 4.6 and Corollary 4.7 of
[H16].

To be more precise, in [H16] we constructed from the disk graph DG0 of H0

another graph EDG0 with the same vertex set by adding additional edges as follows.
If D,E are two disks in H0, and if up to homotopy, D,E are disjoint from an
essential simple closed curve in ∂H0, then we connect D,E by an edge in EDG0.
The graph is called the electrified disk graph of H0.

Let us denote by ERD(c) the subgraph of EDG0 whose vertex set consists of
all disks which intersect the non-separating I-bundle generator c in precisely two
points. Lemma 4.2 of [H16] shows that the map which associates to an arc in the
non-orientable surface F the I-bundle over F is a two-quasi-isometry between the
arc and curve graph of F and ERD(c). Furthermore, by Corollary 4.6 of [H16], the
inclusion EDR(c) → EDG0 is a uniform quasi-isometric embedding (here uniform
means with constants not depending on c).

Let ζ : [0,m] → ERD(c) be a geodesic. Then ζ is a uniform quasi-geodesic in
EDG0. Define the enlargement ζ2 of ζ to be the edge path in ERD(c) obtained
from ζ by replacing each edge ζ[k, k+ 1] by an edge path ζ2[ik, ik+1] with the same
endpoints as follows.

If the disks ζ(k), ζ(k+1) are disjoint, then the edge path ζ2[ik, ik+1] just consists
of the edge connecting these two points. Otherwise ζ(k), ζ(k+1) are disjoint from an
essential simple closed curve in ∂H0. As each disk ζ(j) is an I-bundles over an arc
α(j) in the surface F , this means that there is an essential simple closed curve β ⊂ F
disjoint from both α(k), α(k + 1). We refer to Lemma 4.2 of [H16] for a detailed
explanation. Let X ⊂ ∂H0 be the component of the complement of the preimage
of β in ∂H0 which contains c. Then X is an essential subsurface in ∂H0 which
contains the boundaries of the disks ζ(k), ζ(k + 1). No component of its boundary
is diskbounding, and it contains c as an I-bundle generator. Furthermore, no
essential simple closed curve in X (here essential means non-peripheral) is disjoint
from all disks with boundary in X. A subsurface X of ∂H0 with these properties
is called thick in [H16].

By Corollary 4.6 of [H16], the set of all disks with boundary in X defines an
electrified disk graph for X. Its subgraph of all disks which intersect c in precisely
two points is uniformly quasi-isometrically embedded in the electrified disk graph of
X. Furthermore, it is 2-quasi-isometric to the arc and curve graph of F −β. Define
ζ2[ik, ik+1] to be the path in ERD(c) connecting ζ(k) to ζ(k + 1) which consists of
I-bundles over arcs in F − β defined by a geodesic in the arc and curve graph of
F − β. That is, from a geodesic in the arc and curve graph of F − β we construct
first an edge path of at most twice the length with the property that among two
consecutive vertices, at least one is an arc, and then we view this edge path as an
edge path in the subgraph ERD(c,X) of the electrified disk graph of X consisting
of disks which intersect c in precisely two points.

The resulting edge path ζ2 in ERD(c) has the property that two consecutive
edges are either disjoint, or their boundaries lie in the same proper thick subsurface
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X of ∂H0 containing c as an I-bundle generator, and they are connected by an edge
in the graph ERD(c,X).

By the main result of [H16], the path ζ2 is a uniform quasi-geodesic in the graph
EDG(2, H0) whose vertex set is the set of disks and where two disks are connected by
an edge if either they are disjoint, or if they are disjoint from a multicurve consisting
of at least two components. Furthermore, the graph EDG(2, H0) is hyperbolic, and
it is an electrification of the disk graph of H0.

This construction can be iterated. In the next step, we inspect two consecutive
vertices ζ2(k), ζ2(k + 1) of ζ2. These are disks which intersect c in precisely two
points. If they are not disjoint, then they are consecutive vertices of one of the edge
paths inserted into ζ to construct ζ2. That is, their boundaries are contained in the
same thick subsurface X of ∂H0 containing c as an I-bundle generator, and they
are disjoint from the preimage in ∂H0 of a simple closed curve β in the subsurface
F0 of F which defines X.

The curve β determines a new thick subsurface X̂ ⊂ X of ∂H0 containing c
as an I-bundle generator, and this subsurface can be used to connect ζ2(k) to
ζ2(k + 1) by an edge path. In finitely many steps we construct in this way a path
in the graph RD(c) connecting the endpoints of ζ. Its length roughly equals the
sum of the subsurface projections of its endpoints into all thick subsurfaces of ∂H0

containing c as an I-bundle generator. In particular, by the distance formula in
Corollary 4.7 of [H16], its length is uniformly equivalent to the distance in DG0

between its endpoints. This also follows as by the main result of [H16], the so-
called hierarchy paths, constructed from a geodesic in EDG0 in the above fashion,
are uniform quasi-geodesics in the disk graph.

As a consequence, taking the I-bundle over an arc in F defines an isometry be-
tween the arc graph of F and the graphRD(c), and this graph is quasi-isometrically
embedded in DG0. This is what we wanted to show. �

Our goal is to use I-bundle generators in ∂H0 to construct quasi-isometrically
embedded euclidean planes in the disk graph of H. In analogy to [H19a], we define
an I-bundle generator for the spotted handlebody H to be a simple closed curve in
∂H whose image under the map Φ is an I-bundle generator in ∂H0.

Let (c1, c2) ⊂ ∂H be a pair of non-isotopic disjoint I-bundle generators so that
∂H−{c1∪ c2} has a connected component which is an annulus containing the spot
in its interior. Then up to isotopy, Φ(c1) = Φ(c2) = c for an I-bundle generator c
in H0.

The following construction is due to Kra; we refer to [KLS09] for details and for
some applications. For its formulation, for a pair (c1, c2) of disjoint I-bundle gener-
ators on ∂H as in the previous paragraph let RD(c1, c2) be the complete subgraph
of the disk graph DG of H whose vertex set consists of all disks which intersect each
of the curves c1, c2 in precisely two points. Note that if D ∈ RD(c1, c2) then the
image of D under the spot removing map Φ is contained in RD(c) where c = Φ(ci).

In the next lemma we denote by abuse of notation the map DG → DG0 induced
by the spot forgetful map Φ again by Φ. Furthermore, for the remainder of this
section we represent a disk by its boundary, i.e. we view the disk graph as the com-
plete subgraph of the curve graph of ∂H whose vertex set is the set of diskbounding
curves.
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Lemma 2.2. Let (c1, c2) be a pair of I-bundle generators bounding a punctured
annulus and let c = Φ(c1) = Φ(c2). There exists a simplicial embedding ι : DG0 →
DG with the following properties.

(1) Φ ◦ ι is the identity.
(2) ι maps RD(c) into RD(c1, c2).

Proof. Note first that there is a natural orientation reversing involution ρ0 of ∂H0

which exchanges the endpoints of the fibres of the interval bundle over the base F .
This involution fixes c and preserves up to isotopy each diskbounding simple closed
curve which intersects c in precisely two points.

Choose a hyperbolic metric g0 on ∂H0 which is invariant under ρ0 and let ĉ
be the geodesic representative of c. Choose a point p ∈ ĉ not contained in any
diskbounding simple closed geodesic; this is possible since each diskbounding simple
closed geodesic intersects ĉ transversely in finitely many points and hence the set
of all points of ĉ contained in a diskbounding closed geodesic is countable. View
p as a marked point on ∂H0; then the geodesic representative of a diskbounding
curve α in ∂H0 is a diskbounding curve ι(α) in ∂H0 − {p}. Via identification of a
disk with its boundary, this construction defines a simplicial embedding

ι : DG0 → DG

with the property that Φ ◦ ι equals the identity. Furthermore, we clearly have
ι(RD(c)) ⊂ RD(c1, c2). �

The situation in the following discussion is illustrated in Figure A. Let B be the
connected component of ∂H − {c1, c2} containing the spot (this is a once spotted
annulus). Let Λ be a diffeomorphism of ∂H which preserves the complement of B
(and hence the boundary of B) pointwise and which pushes the spot in B one full
turn around a central loop in B. The isotopy class of Λ is contained in the kernel
of the homomorphism Mod(∂H) → Mod(∂H0) induced by the spot removal map
Φ. The map Λ extends to a diffeomorphism of the handlebody H. This can be
seen as in the case of point-pushing in a surface: Identify the image of B under the
spot removal map Φ with a closed annulus A. Choose a neighborhood N of the
punctured annulus B in H which is homeomorphic to A × [0, 1], with one interior
point removed from A× {0}. Gradually undo the rotation of the marked point as
one moves towards A×{1}∪∂A× [0, 1]. Therefore the diffeomorphism Λ generates
an infinite cyclic group of simplicial isometries of RD(c1, c2) which we denote again
by Λ. With this notation, Φ ◦ Λ = Φ.

Let Θ0 : DG0 → RD(c) be as in Lemma 2.1. Define

Θ = Θ0 ◦ Φ : DG → RD(c).

Observe that Θ(ι(D)) = Θ0(D) for all disks D ∈ DG0. This then implies that
Θ(ι(D)) = D for all D ∈ RD(c). Furthermore, Θ is coarsely Lipschitz (compare
the proof of Lemma 2.1 for a detailed explanation), and we have

Θ(Λ(D)) = Θ(D)

for all disks D.
Recall that RD(c) is isometric to the arc graph A(F ) of F . Define a distance d0

on RD(c)× Z by

d0((α, a), (β, b)) = dRD(c)(α, β) + |a− b|
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Figure A

where dRD(c) denotes the distance in RD(c). Let moreover

Ω = ∪kΛkι(RD(c)).

Lemma 2.3. The map Ψ : Ω → RD(c) × Z which maps D ∈ Λkι(RD(c)) to
Ψ(D) = (Θ(D), k) is a bijective quasi-isometry.

Proof. Recall that Θ(D) = Θ(Λk(D)) for all disks D and all k and that furthermore
the restriction of Θ to ι(RD(c)) is an isometry. In particular, if D0, E0 are distinct
disks in RD(c) then Θ(ι(D0)) 6= Θ(ι(E0)) and hence Ψ(ι(D0)) 6= Ψ(Λk(ι(E0))) for
all k.

We claim that for every disk D ∈ Ω the following hold true.

(1) D 6= Λk(D) for all k 6= 0.
(2) The disks D and Λ(D) can be realized disjointly.
(3) Two disks D ∈ Λkι(RD(c)), E ∈ Λ`ι(RD(c)) are disjoint only if |k− `| ≤ 1.

To this end let D ∈ Ω and for k ∈ Z let Dk = Λk(D). Figure A shows that for
` ≥ 1, the disk Dk+` has precisely 2`− 2 essential intersections with Dk, and these
intersection points are up to isotopy contained in the annulus B. This yields part
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(2) of the above claim, and part (3) follows from the same argument. Furthermore,
the twist parameter k can be recovered from the geometric intersection numbers
between Λk(D) and Λ−1(D), D,Λ(D). For example, if k ≥ 2 then these intersection
numbers equal 2k, 2k−2, 2k−4, respectively, and if k ≤ −2 then these intersection
numbers are −2k − 4,−2k − 2,−2k. This establishes part (1) of the above claim.

Part (1) of the above claim together with the beginning of this proof yields that
the map Ψ is well defined and a bijection. Now Ω ⊂ RD(c1, c2) and the restriction
of the map Θ to RD(c1, c2) is just the map induced by the spot forgetful map and
hence it is one-Lipschitz. Part (3) of the above claim implies that the map Ψ is
two-Lipschitz.

As Λkι(RD(c)) is isometric to A(F ) for all k, the inverse of Ψ which associates
to a pair (D, k) ∈ RD(c) × Z the disk Λk(ι(D)) is coarsely one-Lipschitz. This
shows that indeed, the map Ψ is a quasi-isometry. �

The following proposition is the main remaining step towards a proof of the first
part of Theorem 2.

Proposition 2.4. There is a coarse Lipschitz retraction DG → ∪kΛkι(RD(c)) =
Ω. Moreover, Ω is a coarsely quasi-convex subset of DG.

Proof. As in the proof of Lemma 2.2, let ρ0 be an orientation reversing involution
of ∂H0 which fixes the I-bundle generator c pointwise. This involution determines
an involution ρ of the complement in ∂H of the interior int(B) of the annulus B
which exchanges the curves c1 and c2. Write as before Ω = ∪kΛkι(RD(c)).

Choose a complete finite area hyperbolic metric on ∂H (so that the marked
point becomes a puncture) with the property that the involution ρ of ∂H − int(B)
is an isometry for this metric which maps the geodesic representative ĉ1 of c1 to
the geodesic representative ĉ2 of c2. This metric restricts to a hyperbolic metric on
the once punctured annulus B with geodesic boundary.

Choose a geodesic arc α connecting the two boundary components of B which
is contained in the geodesic representative of one of the curves from ι(RD(c)).
Cutting B open along α yields a once punctured rectangle with geodesic sides,
where two distinguished sides come from the arc α. For any pair of points x1, x2 on
the remaining two sides, choose a simple arc in B connecting these two points which
does not cross through α and let α(x1, x2) ⊂ B be the geodesic representative of
this arc. By convexity, α(x1, x2) is disjoint from α if its endpoints are disjoint from
the endpoints of α.

This construction yields for any pair of points x1 ∈ ĉ1, x2 ∈ ĉ2 an oriented
geodesic arc α(x1, x2) ⊂ B with endpoints x1, x2 such that any two of these arcs
connecting distinct pairs of points on ĉ1, ĉ2 intersect in at most two points. Further-
more, each of these arcs intersects a geodesic representative of a curve in ι(RD(c))
in at most two points.

We use these oriented arcs as follows. Let β be a diskbounding simple closed
curve on ∂H. The intersection of β with ∂H − int(B) consists of a non-empty
collection ζ of finitely many pairwise disjoint simple arcs with endpoints on ĉ1, ĉ2.
Each such arc is freely homotopic relative to ĉ1, ĉ2 to a unique geodesic arc which
meets ĉ1, ĉ2 orthogonally at its endpoints.

We claim that the components of the thus defined collection ζ̂ of geodesic arcs
are pairwise disjoint. However, some of these arcs may have nontrivial multiplicities
as β∩ (∂H− int(B)) may contain several components which are homotopic relative
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to the boundary. To verify the claim, double each component X of the hyperbolic
surface ∂H− int(B) along its boundary. The possibly disconnected resulting closed
hyperbolic surface S admits an isometric involution σ preserving the components
of S whose fixed point set is precisely the image C of the boundary of ∂H − int(B)
in the doubled manifold. The double of the above collection ζ of arcs is a collection
of simple closed curves on S which are invariant under σ.

The free homotopy classes of these closed curves are σ-invariant and hence the
same holds true for their geodesic representatives: Namely, if γ is the geodesic rep-
resentative of such a free homotopy class, then γ intersects the geodesic multicurve
C in precisely two points. Let γ1 be the component of γ − C of smaller length.
Then γ1 ∪ σ(γ1) is a simple closed curve freely homotopic to γ, and its length is at
most the length of γ. But γ is the unique simple closed curve of minimal length in
its free homotopy class and hence γ = γ1∪σ(γ1). Thus γ intersects C orthogonally,

and γ ∩ X is a component of the arc system ζ̂. The claim now follows from the
well known fact that the geodesic representative of a simple closed multicurve on a
hyperbolic surface is a simple closed multicurve.

As a consequence of the above discussion, the order of the endpoints of the
components of β − int(B) on ĉ1 ∪ ĉ2 coincides with the order of the endpoints of

the collection of geodesic arcs ζ̂ which meet ĉ1 ∪ ĉ2 orthogonally at their endpoints
and are freely homotopic to the components of β − int(B). This implies that a

diskbounding simple closed curve β on ∂H can be homotoped to a curve β̂ of the

following form. The restriction of β̂ to ∂H − int(B) consists of a finite collection of
pairwise disjoint geodesic arcs which meet ĉi orthogonally at their endpoints. Some

of these arcs may occur more than once. The restriction of β̂ to the once punctured
annulus B consists of a finite non-empty collection of arcs connecting ĉ1 to ĉ2 and
perhaps a finite number of arcs which go around the puncture and return to the
same boundary component of B. Distinct such arcs have disjoint interiors. The

curve β̂ is uniquely determined by β up to a homotopy with fixed endpoints of the

components of β̂ ∩ B. By construction of the map ι, if β = ι(β′) ∈ ιRD(c) then

β̂ ∩ ∂H − int(B) is just the lift of the geodesic representative of β′ to ∂H − int(B)
for the following hyperbolic metric on ∂H0 − c. Recall that the metric on ∂H
was chosen in such a way that the geodesics ĉ1, ĉ2 have the same length. Then
∂H −B can be glued along the two boundary components to a hyperbolic surface
which can be viewed as a hyperbolic metric on ∂H0. This metric depends on the
choice of a twist parameter, but its restriction to the complement of the geodesic
representative of the curve c does not. In particular, the intersections with B of

the representatives β̂ of the elements β ∈ ιRD(c) are pairwise disjoint.
We use this normal form for diskbounding simple closed curves to define a map

Ξ : DG → Z

as follows. Let β̂ be a closed curve constructed from the simple closed diskbounding

curve β as in the previous paragraph. Let b be one of the components of β̂ ∩ B
with endpoints on ĉ1 and ĉ2, oriented in such a way that it connects ĉ1 to ĉ2. Such
a component exists since otherwise the image of β under the spot removal map is
homotopic to a curve disjoint from the diskbusting curve c on ∂H0. Let x1, x2 be
the endpoints of b on ĉ1, ĉ2.

Let a = α(x1, x2); then b, a are simple arcs in B with the same endpoints which
intersect some core curve of the annulus B in precisely one point. Assume that
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ĉ1, ĉ2 are oriented and define the boundary orientation of B. Then b is homotopic
with fixed endpoints to the arc ĉk1 ·a · ĉ`2 for unique k, ` ∈ Z (read from left to right).
In other words, if we denote by τi the positive Dehn twist about ĉi, viewed as a
diffeomorphism of the punctured disk B with fixed boundary, then b is homotopic
with fixed endpoints to the arc τk1 τ

−`
2 a. Define Ξ(β) = k.

Observe that although this definition depends on the choice of the arcs α(x1, x2)

and on the choice of the component b of B ∩ β̂, the map Ξ is coarsely well defined.

Namely, let b′ be a second component of β̂ ∩B, with endpoints x′1, x
′
2 on ĉ1, ĉ2 and

distinct from b. Then the interior of b′ is disjoint from the interior of b. In particular,
if a′ is an arc in B with the same endpoints as b′ whose interior is disjoint from a,
then b′ is homotopic with fixed endpoints to τ q1 τ

−r
2 a′ for |q − k| ≤ 1, |r − `| ≤ 1.

On the other hand, both arcs a, α(x′1, x
′
2) do not intersect a fixed arc connecting

ĉ1 and hence a′ = τs1 τ
−u
2 α(x′1, x

′
2) for some |s| ≤ 1, |u| ≤ 1. This shows that the

multiplicity k′ of the curve ĉ1 in the description of b′ relative to α(x′1, x
′
2) satisfies

|k − k′| ≤ 2. The same reasoning yields that the map Ξ is coarsely two-Lipschitz.
Furthermore, we have Ξ(ι(RD(c))) ⊂ [−2, 2].

To summarize, the map

(Θ,Ξ) : DG → RD(c)× Z
is coarsely Lipschitz, and its composition with the inverse of the map Ψ from Lemma
2.3 is a coarse Lipschitz retraction of DG onto Ω provided that the map Ξ maps a
point in Λkι(RD(c)) into a uniformly bounded neighborhood of k.

However, if β0 ∈ ιRD(c) and if β = Λk(β0) ∈ Λkι(RD(c)), then the intersections

with H − int(B) of the representatives β̂, β̂0 of β, β0 constructed above coincide.

This implies that up to homotopy with fixed endpoints, β̂ ∩B = Λk(β̂0 ∩B).
On the other hand, point-pushing along a simple closed curve γ based at p

descends to conjugation by γ in π1(∂H0, p). Therefore the image under the map
Λ of a simple arc b in B with endpoints on the two distinct components of ∂B is
homotopic with fixed endpoints to c1bc2 (recall that we oriented c1, c2 so that they
define the boundary orientation of B). As Ξ(ι(RD(c))) ⊂ [−2, 2], it follows that
|Ξ(β)− k| ≤ 2. This shows the proposition. �

To summarize, we obtain

Corollary 2.5. The disk graph of a handlebody H of genus g ≥ 2 with one spot
contains quasi-isometrically embedded copies of R2.

Remark 2.6. In [H19a] we showed that in contrast to handlebodies without spots,
the disk graph of a handlebody H with a single spot on the boundary is not a
quasi-convex subgraph of the curve graph of ∂H.

In the remainder of this section we explain how the above construction can be
used to show the first part of Theorem 3.

Namely, consider the double M0 = ]gS
2×S1 of a handlebody H0 of genus g ≥ 2

without spots. Let M be the manifold M0 equipped with a marked point p. As
before, we call p a spot in M . There is a natural spot removing map Φ : M →M0.

Let SG be the sphere graph of M whose vertices are isotopy classes of embedded
spheres in M which are disjoint from the spot and not isotopic into the spot.
Isotopies are required to be disjoint from the spot as well. Two such spheres are
connected by an edge of length one if they can be realized disjointly. Similarly, let
SG0 be the sphere graph of M0.
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Assume from now on that g = 2n for some n ≥ 1. Choose an embedded oriented
surface F0 ⊂ M0 of genus n with connected boundary such that the inclusion
F0 → M0 induces an isomorphism π1(F0) → π1(M0). We may assume that the
oriented I-bundle H0 over F0 is an embedded handlebody H0 ⊂M0 whose double
equals M0. Thus every embedded essential arc α in F0 with boundary in ∂F0

determines a sphere Υ0(α) in M0 as follows. The interval bundle over α is an
embedded essential disk in H0, with boundary in ∂H0, and we let Υ0(α) be the
double of this disk. By construction, the sphere Υ0(α) intersects the surface F0

precisely in the arc α. By Lemma 4.17 of [HH15], distinct arcs give rise to non-
isotopic spheres, furthermore the map Υ0 preserves disjointness and hence Υ0 is a
simplicial embedding of the arc graph A(F0) of F0 into the sphere graph SG0 of
M0.

Now mark a point p on the boundary ∂F0 of F0 and view the resulting spotted
surface F as a surface in the spotted manifold M . The arc graph A(F ) of F is
the graph whose vertices are isotopy classes of essential arcs in F with endpoints
on the complement of p in the boundary of F . Here we exclude arcs which are
homotopic with fixed endpoints to a subarc of ∂F containing the base point p, and
we require that an isotopy preserves the marked point p and hence endpoints of
arcs can only slide along ∂F − {p}. Two such arcs are connected by an edge if
they can be realized disjointly. Associate to an arc α in F the double Υ(α) of the
I-bundle over α.

The spot removal map Φ : M → M0 induces a simplicial surjection SG → SG0,
again denoted by Φ for simplicity. Similarly, if we let ϕ : F → F0 be the map
which forgets the marked point p ∈ ∂F , then ϕ induces a simplicial surjection
A(F )→ A(F0), denoted as well by ϕ. We then obtain a commutative diagram

(1)

A(F ) A(F0)

SG SG0

ϕ

Υ Υ0

Φ

Similar to the case of the handlebody M0 without spots and the map Υ0, we
obtain

Lemma 2.7. The map Υ is a simplicial embedding of the arc graph A(F ) into the
sphere graph.

Proof. We have to show that the map Υ is injective. As Υ0 is injective and as the
diagram (1) commutes, it suffices to show the following. Let α 6= β ∈ A(F ) be such
that ϕ(α) = ϕ(β); then Υ(α) 6= Υ(β).

Now ϕ(α) = ϕ(β) means that up to exchanging α and β, there exists a number
k > 0 such that β can be obtained from α by k half Dehn twists about the boundary
∂F of F . Here the half Dehn twist T (α) of α is defined as follows.

The orientation of F induces a boundary orientation for ∂F which in turn induces
an orientation on ∂F − {p}. With respect to the order defined by this orientation,
let x be the bigger of the two endpoints x, y of α. Slide x across p to obtain a
new arc T (α), with endpoints x′, y. This arc is not homotopic to α. To see this it
suffices to show that the double DT (α) of T (α) in the double DF of F (which is a
surface with one puncture) is not freely homotopic to the double D(α) of α. This
follows since D(α) and DT (α) can be homotoped in such a way that they bound a
once punctured annulus in DF .
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The same reasoning also shows that the sphere Υ(T (α)) is not homotopic to the
sphere Υ(α). Namely, let χ ⊂ ∂F ∪ {p} be the oriented embedded arc connecting
the intersection point x of α with ∂F to the point x′. This arc contains p in its
interior. Then the sphere Υ(T (α)) is a connected sum of the sphere Υ(α) with the
boundary of a punctured ball which is a thickening of χ. Thus Υ(α) and Υ(T (α))
can be isotoped in such a way that they bound a subset of M homeomorphic to
the complement of an interior point of S2 × [0, 1].

The above construction, applied to the sphere Υ(T (α)) instead of the sphere
Υ(α) and where the point y takes on the role of the point x in the above dis-
cussion, shows that Υ(T 2(α)) is obtained from Υ(α) by point-pushing along the
oriented loop ∂F with basepoint p. This is a diffeomorphism of M which leaves the
complement of a small tubular neighborhood of ∂F pointwise fixed and pushes the
basepoint p along ∂F . As in the proof of Lemma 2.3, this argument can be iterated.
It shows that the sphere Υ(T k(α)) intersects the sphere Υ(α) in k − 1 intersection
circles. These circles are essential since they cut both Υ(T k(α)) and Υ(α) into two
disks and k − 2 annuli, where a disk component of T k(α)− T (α) bounds together
with a disk component of T (α) − T k(α) an embedded sphere enclosing the spot.
Invoking the proof of Lemma 2.3, we conclude that indeed, for k 6= `, Υ(T k(α)) is
not homotopic to Υ(T `(α)).

We showed so far that the map Υ is injective. To complete the proof of the
lemma, it suffices to observe that disjoint arcs are mapped to disjoint spheres. But
this is immediate from the construction. �

Proposition 4.18 of [HH15] shows that there is a one-Lipschitz retraction

Ψ0 : SG0 → Υ0(A(F0))

which is of the form Ψ0 = Υ0◦Θ0 (read from right to left) where Θ0 : SG0 → A(F0)
is a one-Lipschitz map. In particular, Υ0(A(F0)) is a quasi-isometrically embedded
subgraph of SG0 which is quasi-isometric to A(F0). Our goal is to show that there
also is a coarse Lipschitz retraction of SG onto Υ(A(F )) of the form Ψ = Θ ◦ Υ
where Θ : SG → A(F ) is a coarse Lipschitz map. This then yields the first part of
Theorem 3 from the introduction.

To construct the map Θ we use the method from [HH15]. We next explain how
this method can be adapted to our needs.

Let as before F ⊂M be an embedded oriented surface with connected boundary
∂F so that M is the double of the trivial I-bundle over F . We assume that the
marked point p is contained in the boundary ∂F of F . Furthermore, we assume
that the boundary ∂F of F is a smoothly embedded circle in M ∪ {p} (i.e. an
embedded compact one-dimensional submanifold). As before, we use the marked
point p as the basepoint for the fundamental group of M . Then ∂F equipped with
its boundary orientation defines a homotopy class β ∈ π1(M,p) = F2g. As β is
not contained in any free factor, ∂F intersects every sphere in M . Namely, for any
given sphere S in M , the subgroup of π1(M,p) of all homotopy classes of loops
which do not intersect S is a proper free factor of π1(M,p).

As in [HH15] and similar to the construction in Lemma 2.1, the strategy is to
associate to a sphere S in M a component of the intersection F ∩S. However, unlike
in the case of curves on surfaces, there is no suitable normal form for intersections
of spheres with the surface F , and the main work in [HH15] consists of overcoming
this difficulty by introducing a relative normal form which allows one to associate to
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a sphere in M0 an intersection arc with F0 so that the resulting map SG0 → A(F0)
is one-Lipschitz.

For the remainder of this section we outline the main steps in this construction,
adapted to the sphere graph SG of M and the arc graph A(F ) of F . This requires
modifying spheres with isotopies not crossing through p, and modifying the surface
F with homotopies leaving the boundary ∂F pointwise fixed.

For convenience, we record some definitions from [HH15] (the following combines
Definition 4.7 and Definition 4.9 of [HH15]).

Definition 2.8. Let Σ be a sphere or a sphere system.

(1) ∂F intersects Σ minimally if ∂F intersects Σ transversely and if no com-
ponent of ∂F − Σ not containing the basepoint p is homotopic with fixed
endpoints into Σ.

(2) F is in minimal position with respect to Σ if ∂F intersects Σ minimally and
if moreover each component of Σ ∩ F is a properly embedded arc which
either is essential or homotopic with fixed endpoints to a subarc of ∂F
containing the marked point.

A version of the easy Lemma 4.6 of [HH15] states that any closed curve containing
the basepoint can be put into minimal position relative to a sphere system Σ as
defined in the first part of Definition 2.8. The following is a version of Lemma 4.12
of [HH15]. For its formulation, call a sphere system Σ simple if it decomposes M
into a simply connected components.

Lemma 2.9. Let Σ be a simple sphere system in M . Suppose that F is in minimal
position with respect to Σ. Let σ′ be an embedded sphere disjoint from Σ and let
Σ′ be a simple sphere system obtained from Σ by either adding σ′, or removing one
sphere σ ∈ Σ. Then F can be homotoped leaving p fixed to a surface F ′ which is in
minimal position with respect to Σ′.

Proof. As in the proof of Lemma 4.12 of [HH15], removing a sphere preserves
minimal position, so only the case of adding a sphere has to be considered.

Thus let Σ be a simple sphere system and let σ′ be a sphere disjoint from Σ. As-
sume that F is in minimal position with respect to Σ. Let WΣ be the complement
of Σ in M , that is, WΣ is a compact (possibly disconnected) manifold whose bound-
ary consists of 2k boundary spheres σ+

1 , σ
−
1 , · · · , σ

+
k , σ

−
k . The boundary spheres σ+

i

and σ−i correspond to the two sides of a sphere σi ∈ Σ. The surface F intersects
WΣ in a collection of embedded surfaces with boundaries. Each such surface is a
polygonal disk Pi (i = 1, . . . ,m). The sides of each such polygon alternate between
subarcs of ∂F and arcs contained in Σ. There is at most one bigon, that is, a
polygon with two sides, and this polygon then contains the point p in one of its
sides. Each rectangle, if any, is homotopic into ∂F .

The proof of Lemma 4.12 of [HH15] now proceeds by studying the intersection of
each polygonal component of F −Σ with the sphere σ′. This is done by contracting
each such polygonal component P to a ribbon tree T (P ) in such a way that the
boundary components in Σ are contracted to single points in T (P ). If P is not
a rectangle or bigon, then T (P ) has a single vertex which is not univalent. As
such ribbon trees are one-dimensional objects, they can be homotoped with fixed
endpoints on ∂WΣ to trees which are in minimal position with respect to σ′. This
construction applies without change to rectangles and perhaps the bigon which can
be represented by an interval with one endpoint at p and the second endpoint on
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a component of Σ. We refer to the proof of Lemma 4.12 of [HH15] for details. No
adjustment of the argument is necessary. �

The above construction is only valid for simple sphere systems Σ and not for
individual spheres. Furthermore, it is known that the arc system on F ∩Σ obtained
by putting F into minimal position with respect to Σ is not uniquely determined
by Σ. To overcome this difficulty, the work of [HH15] uses as an auxiliary datum a
maximal system A0 of pairwise disjoint essential arcs on the surface F0. Here max-
imal means that any arc which is disjoint from A0 is contained in A0. The system
A0 then binds F0, that is, F −A0 is a union of topological disks. Furthermore, ∂F0

and each arc α ∈ A0 is equipped with an orientation.
Choose an arc system A for F which binds F . If F ⊂M is in minimal position

with respect to Σ, then a homotopy assures that no arc from the arc system A
intersects a component of F − Σ which is a rectangle or a bigon. Then Lemma
4.12 of [HH15] and its proof applies without modification and shows that with
a homotopy, F can be put into normal form with respect to the arc system A,
called A-tight minimal position with respect to Σ. This then yields the statement
of Lemma 4.16 of [HH15]: if F is in A-tight minimal position with respect to the
simple sphere system Σ, then the binding arc system Σ ∩ F is determined by Σ.
In particular, two distinct spheres from Σ intersect F in disjoint essential arcs.
There may in addition be inessential arcs, i.e. arcs which are homotopic with fixed
endpoints to a subsegment of ∂F containing the basepoint p, but these will be
unimportant for our purpose.

Now let σ be an essential sphere in M . Let Σ be a simple sphere system in M
containing σ as a component. We put F into A-tight minimal position with respect
to Σ. Then σ ∩ F consists of a non-empty collection of essential arcs and perhaps
some additional non-essential arcs. Choose one of the essential intersection arcs α
and define Θ(σ) = α. As in [HH15] and Proposition 2.4 we now obtain

Proposition 2.10. The map Θ is a coarsely Lipschitz map. For each arc α ∈
A(F ), we have Θ(Υ(α)) = α. As a consequence, if g = 2n is even then the sphere
graph SG of M contains quasi-isometrically embedded copies of R2.

Proof. Given the above discussion, the proof that Θ is a coarsely Lipschitz map is
identical to the proof that the map Θ0 is a coarsely Lipschitz map in Proposition
4.18 of [HH15] and will be omitted. Moreover, as for α ∈ A(F ), the sphere Υ(α)
intersects F in the unique arc α, we have Θ(Υ(α)) = α.

As a consequence, Θ|Υ(A(F )) is a Lipschitz bijection, with inverse Υ. Then
the subgraph Υ(A(F )) of SG is bilipschitz equivalent to A(F ). Furthermore, the
map Υ ◦ Θ is a Lipschitz retraction of SG onto Υ(A(F )). Then Υ(A(F )) is a
quasi-isometrically embedded subgraph of SG which is moreover quasi-isometric to
A(F ).

Let as before F0 be the surface obtained from F by removing the spot. We are
left with showing that A(F ) is quasi-isometric to A(F0) × Z. However, this was
shown in Lemma 2.3. Namely, in the terminology used before, the boundary ∂F is
an I-bundle generator in the trivial interval bundle H over F , and associating to an
arc α the I-bundle over α defines an isomorphism of A(F ) with the subgraph Ω of
the disk graph of H used in Lemma 2.3. The statement now follows from Lemma
2.3. �
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Remark 2.11. Most likely Proposition 2.10 holds true as well in the case that
g = 2n + 1 is odd, and furthermore this can be deduced with the above argument
using non-orientable surfaces. However, the analogue of Proposition 4.18 of [HH15]
for non-orientable surfaces is not available, and we leave the verification of these
claims to other authors.

3. Handlebodies and doubled handlebodies with two spots

The goal of this section is to show the second part of Theorem 2 and Theorem
3 from the introduction.

We begin with discussing briefly handlebodies of genus one. A handlebody of
genus one with at most one spot on the boundary contains a single disk. This is
used to establish

Proposition 3.1. The disk graph of a solid torus with two spots on the boundary
is a tree.

Proof. Let H be a solid torus with two spots p1, p2 on the boundary. The handle-
body H1 obtained from H by removing the spot p2 is a solid torus with one spot
on the boundary. Let Φ1 : ∂H → ∂H1 be the natural spot removal map.

The handlebody H1 contains a single disk D1, and this disk is non-separating.
If D ⊂ H is any non-separating disk then Φ1(∂D) = ∂D1. Thus by Theorem 7.1
of [KLS09], the complete subgraph of the disk graph of H whose vertex set is the
set of non-separating disks in H is a tree T . This is the Bass-Serre tree for the
splitting of π1(H1, p2) defined by D1. Equivalently, it is the tree dual to the curve
∂D1 with its action of π1(H1, p2).

If D ⊂ H is a separating disk then ∂D decomposes ∂H into a disk with two
spots and a torus with the interior of a closed disk removed. In particular, Φ1(∂D)
is peripheral. There is a single disk in H which is disjoint from D, and this disk
is non-separating. Thus there is a single edge in DG with one endpoint at D. The
second endpoint is a vertex in the tree T .

Now if D is any non-separating disk then cutting H open along D yields a ball
with four spots on the boundary. Two of these spots are the two copies of D.
Any simple closed curve which separates these two distinguished spots from the
remaining two spots is the boundary of a separating disk in H disjoint from D, and
any disk disjoint from D arises in this way. There are countably many such disks.

As a consequence, the disk graph of H is an extension of the tree T which
attaches to each vertex in T a countable collection of edges whose second endpoints
are univalent. Thus this graph is a tree as well. The proposition follows. �

Section 4 of [HH19] contains some closely related results for handlebodies of
genus 2.

In most of the remainder of this paper we investigate a handlebody H of genus
g ≥ 2 with two spots p1, p2 on the boundary. Let H0 be the handlebody of genus
g without spots and let Φ : H → H0 be the spot removing map. A disk D in H
encloses the two spots p1, p2 if Φ(D) ⊂ H0 is homotopic to a point.

We next use the two spots to add a handle to H. The resulting manifold is
a handlebody H ′ of genus g + 1 with one spot. To this end slightly enlarge the
two spots p1, p2 to two small compact disjoint disks B1, B2 in ∂H with pi ∈ ∂Bi.
Identifying these two disks with an orientation reversing diffeomorphism B1 → B2

which maps p1 to p2 yields a handlebody H ′ of genus g + 1. We may view the
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common image of the points p1, p2 as a spot p ∈ ∂H ′. The fundamental group of
H ′ is the free group Fg+1 with g+ 1 generators. We choose the spot p of H ′ as the
basepoint for the fundamental group of H ′.

The following simple observation will be used several times later on.

Lemma 3.2. A disk D in H which encloses the two spots p1, p2 and the choice of
one of the spots pi determines a free splitting π1(H ′, p) = Fg+1 = Fg ∗Z. Changing
the spot changes the splitting by conjugation with a generator of the Z-factor.

Proof. Up to isotopy, we may assume that the disk D is disjoint from the two closed
disks B1 and B2 used in the construction of H ′. Thus D determines a separating
disk D′ in H ′ which only depends on D. This disk cuts H ′ into a handlebody of
genus g with fundamental group Fg and a solid torus T with fundamental group Z
which contains the basepoint p.

Van Kampen’s theorem now shows that D′ defines a free splitting

π1(H ′, p) = Fg+1 = Fg ∗ Z,

unique up to conjugation with an element of the free factor Z. Namely, the base-
point p is contained in the solid torus T . Thus the splitting of π1(H ′, p) obtained
by van Kampen’s theorem is determined by D′ up to conjugation with an element
of π1(T ).

To see that if we fix one of the spots pi then we obtain in fact a uniquely
determined splitting, it suffices to observe that the solid torus T is obtained by
identifying two disks in the boundary of a ball. This ball is fixed, but the disks are
allowed to move within a fixed subdisk D of this boundary. As a disk is contractible,
moving the two disks B1, B2 freely in D gives rise to the same splitting and hence
there is no ambiguity in the construction (in other words, the fundamental group
of the solid torus T appears only after the gluing). �

The construction in Lemma 3.2 can be reversed. Namely, observe that the
handlebody H ′ contains a distinguished non-separating disk V which is the image
of the two disks in ∂H used in the construction. If E ⊂ H ′ is any separating disk
disjoint from V which decomposes H ′ into a solid torus T ⊃ V and a handlebody
of genus g, then E is the image of a disk in H enclosing the two spots under the
glueing construction.

We next investigate the dependence of this splitting on the choice of the disk D
enclosing the two spots. To this end note first that in the splitting Fg+1 = Fg ∗ Z,
a generator a of the free factor Z is the image in H ′ of an embedded oriented arc
in ∂H which is disjoint from D, whose interior is disjoint from B1 ∪B2 and which
connects the spot p1 to p2. As D decomposes the handlebody H into a handlebody
of genus g without spots and a ball with two spots at the boundary, the homotopy
class in H of such an arc with fixed endpoints is unique.

Now let E ⊂ H be another disk which encloses the two spots p1, p2. Assume that
E is not freely homotopic to D and in minimal position with respect to D. This
means in particular that the boundaries ∂D, ∂E intersect in the minimal number
of points among all representatives in their isotopy classes.

The simple closed curves ∂D, ∂E are the boundaries of unique disks D̃, Ẽ ⊂ ∂H
containing the two spots (thus if we think of the spots as missing points, then D̃, Ẽ

should be viewed as twice punctured disks). The intersection D̃∩ Ẽ consists of two
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disjoint disks A1, A2 with one spot at p1, p2, respectively, and a disjoint union of
rectangles. In particular, ∂D ∩ ∂E consists of at least four points.

a1

A1 A2

alpha

beta

Figure B

Use the ordered pair of disks (D̃, Ẽ) to construct a loop γ ⊂ (∂H ∪ {p2}, p2)
based at p2 as follows. First, connect the point p1 to the point p2 by an oriented
arc α whose interior is embedded in D̃. The endpoints of α are the two spots of
H, and they are precisely the spots of the disk Ẽ. Thus there is an embedded arc
β in Ẽ connecting p1 to p2. The loop γ is homotopic to the concatenation of α−1

with β (which we move off the spot p1 with a small deformation). Note that the
inverse of the loop γ is constructed with exactly the same procedure, but with the
roles of the disks D,E exchanged. Furthermore, the homotopy class of γ as a loop
in ∂H0 based at p2 is uniquely determined by the ordered pair (D,E). Namely,
the ambiguity in the above construction consists in the precomposition with the
homotopy class of a loop in D̃ based at p2 which surrounds the marked point p1.

To summarize, each ordered pair (D,E) of disks in H enclosing the two spots
determines uniquely a homotopy class q̂(D,E) ∈ π1(∂H0, p2). We have q̂(E,D) =
q̂(D,E)−1 for all D,E, in particular, q̂(D,D) is the neutral element in π1(∂H0, p2).

Lemma 3.3. The disk E is the image of the disk D under the element of the
handlebody group of H induced by pushing the point p2 along a based loop γ in the
homotopy class q̂(D,E) ∈ π1(∂H0, p2).

Proof. Let γ ⊂ ∂H ∪ {p2} be a loop based at p2 constructed as above from the

ordered pair (D̃, Ẽ) of disks and moved off p1. Moving this loop off p1 depends on
a choice. We first observe that the disk obtained from D by point pushing p2 along
γ does not depend on the choice made. For this it suffices to observe that point
pushing p2 along a loop ζ based at p2 which is entirely contained in the disk D and
encircles p1 preserves the disk D.

Now up to homotopy with fixed basepoint, the loop ζ is embedded in a disk
D̂ ⊃ D̃ which is isotopic to D̃. Point pushing of p2 along ζ can be represented
by a diffeomorphism which fixes ∂H − D̂ pointwise and hence defines an element
of the pure Artin braid group of a disk with two marked points. This pure braid
group is just the group of Dehn twists about the boundary of D̂, and it preserves
this boundary pointwise. But the boundary of D̂ is isotopic to the boundary of D.
This implies that indeed, point pushing of p2 along ζ preserves the disk D.

Let us denote as before by α an embedded arc in D̃ connecting p1 to p2, and
let β be an embedded arc in Ẽ connecting p1 to p2. Assume first that the loop γ
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which is the concatenation of α−1 with β, moved off p1, is simple, that is, it does
not have self-intersections. Thus γ is embedded in ∂H ∪ {p2} and hence there is
an embedded annulus A ⊂ ∂H ∪ {p2} with core curve γ, disjoint from p1. Up to
isotopy, the arc α intersects A in a single embedded segment α0 with one endpoint
p2. Furthermore, we may assume that α0 intersects the core curve γ of A in the
unique point p2.

The point pushing diffeomorphism of p2 along γ equals the identity on (∂H ∪
{p2} − A) ∪ γ. In each of the two components of A − γ, it is a Dehn twist about
the core curve (which is freely homotopic to γ), in one component positive, in
the second negative. As α0 and hence α meets only one component of A − γ,
this diffeomorphism transforms the homotopy class of α with fixed endpoint by
concatenation with γ. As a consequence, the image of the disk D̃ by the point
pushing map along γ is isotopic to a thickening of the arc with endpoints p1, p2

which is homotopic to the concatenation of α with γ (read from left to right). This

arc is homotopic to β and hence this disk is the disk Ẽ.
This construction extends to the case that the curve γ has self-intersections

or, equivalently, that the intersection D̃ ∩ Ẽ has at least one rectangle component.
Namely, parameterize the arc β on the interval [0, 1]. Assuming that β is in minimal
position with respect to α, let 0 = t0 < t1 < · · · < tk = 1 be such that β(ti) are
the intersection points of β with α, with the endpoints included. Let γ1 be the
concatenation of α−1 with an arc ζ1 connecting p1 to p2 which is composed of
β[0, t1] and the subarc α1 of α connecting β(t1) back to p2. With a small homotopy
with fixed endpoint, the arc ζ1 can be pushed off the interior of α. The resulting
loop based at p2 is simple and can be pushed off p1. Denote this loop again by γ1.

In a second step, define a based loop γ2 at p2 as follows. Let 2 ≤ j ≤ k be such
that β(tj) is the first intersection point of β[t1, 1] with the subarc α1 of α (perhaps

this is the endpoint p2 of β). Let γ2 be the concatentation of ζ−1
1 , the subarc β[0, tj ]

of β and the subarc α2 of α connecting β(tj) back to p2. This loop is homotopic

with fixed endpoints to the concatenation of α−1
1 , the arc β[t1, tj ] and the arc α2

and hence it is simple. Furthermore, it can also be described as the concatentation
of ζ−1

1 and an arc ζ2 connecting p1 to p2.
Proceeding inductively, define for ` ≤ m (where m ≤ k is a number computed

from the order in which the rectangle components of D̃ ∩ Ẽ are passed through
by β) a based loop γ` at p2 composed of the arc ζ−1

`−1 and an arc ζ` connecting
p1 to p2 which is a concatenation of a subarc β[0, tj(`)] of β and the subarc of α
connecting β(tj(`)) back to p2. Up to homotopy, the loops γ` are simple, and we
have γ = γ1 ◦ · · · ◦ γm (read from left to right).

By the first part of this proof, the image of D̃ under point pushing along γ1 is
a disk D̃1 which is a thickening of the arc ζ1. By the above construction, the arc
ζ1 intersects γ2 only at the point p2. Thus using again the first part of this proof,
point pushing of D̃1 along the loop γ2 yields a disk D̃2 which is a thickening of the
arc ζ2. As the point pushing group is a group, we also know that D̃2 is the image
of D̃ under point pushing along γ1 ◦ γ2 (read from left to right). In m ≤ k such

steps we deduce that indeed, the disk Ẽ is the image of D̃ under pointpushing of
p2 along γ. �

Let us summarize what we obtain from Lemma 3.3 and its proof. Let D ⊂ H
be a disk enclosing the two spots p1, p2. Its boundary ∂D is a simple closed curve
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in ∂H. It determines the homotopy class of an arc in ∂H0 with endpoints p1, p2.
Let us choose such an arc α ⊂ ∂H0, oriented in such a way that it connects p1 to
p2, and let a be its homotopy class with fixed endpoints as an arc in ∂H0.

Let E ⊂ H be another such disk which determines the homotopy class b of an
oriented arc β ⊂ ∂H0 connecting p1, p2. The concatenation α−1 ◦ β (read from left
to right) is a loop based at p2. It defines the homotopy class a−1 · b ∈ π1(∂H, p2).

Move as before α−1 ◦β off p1. Point pushing p2 along α−1 ·β defines the isotopy
class of a diffeomorphism of ∂H. It can be represented by a diffeomorphism which
equals the identity on the complement of a small neighborhood of α−1 ◦ β, and we
may assume that the point p1 is contained in this neighborhood. The image of the
disk D under this diffeomorphism is the disk E.

The next lemma reverses this observation by describing the image of a disk D
enclosing the two spots under point pushing of the point p2 along a based loop
at p2. As before, all homotopies of arcs are homotopies in the boundary surface,
however the homotopy classes appearing in the lemma are only homotopy classes
with fixed endpoints of arcs where the homotopies are allowed to cross through the
endpoints.

Lemma 3.4. Let D ⊂ H be a disk enclosing the two spots and let α ⊂ ∂H0 be an
arc connecting p1 to p2 which does not cross through the boundary of D. Let E be
the image of D under point pushing p2 along a loop γ based at p2, constructed as
above from a based loop γ ⊂ ∂H ∪ {p2} based at p2. Then an arc β ⊂ ∂H0 which
connects p1 to p2 and does not cross through the boundary of E is homotopic in
∂H0 with fixed endpoints to α ◦ γ (read from left to right).

Proof. Assume for the moment that the based loop γ is simple, that is, it does not
have self-intersections. Recall that p1 6∈ γ. Let A ⊂ ∂H0 be an embedded closed
annulus with core curve γ. By putting the arc α in minimal position with respect
to γ and parameterizing α on [0, 1], we may assume that A ∩ α = ∪ki=1α[t2i−1, t2i]
where k ≥ 1 and where 0 < t1 · · · < t2k = 1. Furthermore, the arc α[t2k−1, t2k]
intersects γ only at p2, and for each i ≤ k − 1 the arc α[t2i−1, t2i] crosses through
A and intersects γ in a single point.

Choose a diffeomorphism supported in A which represents the point pushing
transformation of p2 about γ and preserves γ pointwise as in the proof of Lemma
3.3. This diffeomorphism changes the homotopy class of the arc α[t2k−1, 1] with
fixed endpoints by concatenation with the homotopy class of γ. It does not change
the homotopy class of any of the arcs α[t2i−1, t2i] with fixed endpoints as these arcs
are modified by the concatenation of a Dehn twist about γ and its inverse. Thus
the homotopy class of the arc connecting p1 to p2 which is determined by the image
of D under point pushing along γ is the class of the concatenation α ◦ γ.

As any based loop at γ is homotopic with fixed endpoints to a concatentation
of simple based loops, applying the group law to both point pushing maps and
homotopy classes of arcs in ∂H0 connecting p1 to p2 yields the lemma. �

Remark 3.5. Recall from Lemma 3.2 that each disk D in H enclosing the two
spots defines a free splitting Fg+1 = Fg ∗ Z. Lemma 3.4 immediately implies the
following. If a ∈ Fg+1 is the generator of the Z-factor in the free splitting of Fg+1

defined by the disk D and the choice of the basepoint p1, viewed as a homotopy
class with fixed endpoints of an arc connecting p1 to p2, and if E is the image of D
by point pushing p2 along a loop in the homotopy class q̂(D,E) ∈ π1(∂H0, p2), then
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the Z-factor defined by p1 and the disk E is generated by a · ι∗q̂(D,E) = q(D,E)
(read from left to right) where ι : ∂H ∪ {p2} → H is the inclusion homomorphism.

While Lemma 3.3 and Lemma 3.4 are true for curves in the curve graph of ∂H
which enclose the two spots, we now study more specifically disks enclosing the two
spots of ∂H as elements of the disk graph of H. Namely, as the proof of Lemma 3.3
shows, the image of a disk D enclosing the two spots under point pushing along a
based loop in ∂H ∪{p2} depends in a sensitive way on the loop and not only on its
homotopy class in π1(∂H ∪{p2}, p2) due to clearing intersections which pushes arcs
around the spot p2. Furthermore, paths in the curve graph of ∂H whose vertices
consist of curves enclosing the two spots may be highly inefficient. In fact, as the
curve graph of ∂H is hyperbolic and such paths are also paths in the disk graph of
H, Theorem 2 confirms that this is the case.

The main feature of the disk graph of a handlebody is the possibility that two
points in the disk graph whose boundaries are close in the curve graph have large
distance in the disk graph. An I-bundle generator is the source of such a hole as
explained earlier, and this is the feature we are going to use now as well.

Assume for the moment that the genus g of H0 is even. Choose a compact surface
F ⊂ ∂H0 of genus h = g/2 with connected boundary ∂F so that H0 is the oriented
I-bundle over F . Let Φ be the involution of H0 which exchanges the two endpoints
of the intervals in the interval bundle. Choose a point p2 ∈ ∂F , let p1 = Φ(p2) and
define H = H0 − {p1, p2}. The thickening of the interval with endpoints p1, p2 is a
disk enclosing the two spots.

The disk D can be modified by point pushing p2 along any loop in F based at
p2. It can also be modified by point pushing p1 along any loop in Φ(F ) based at
p1. Since a point pushing diffeomorphism along a loop γ is supported in a small
neighborhood of γ, these point pushing operations commute.

Denote as before by dDG the distance in the disk graph. The following observa-
tion is geared at relating the effects of these two constructions.

Lemma 3.6. Let E ⊂ H be a disk enclosing the two spots which is invariant under
Φ and intersects the fixed point set of Φ in a single arc; then dCG(E,D) ≤ 2.

Proof. Note first that the presence of the two spots in ∂H fills the hole of the I-
bundle generator ∂F . Namely, recall from Lemma 2.1 that the arc graph of F is
quasi-isometrically embedded in the disk graph of H0 by associating to an arc ζ in
F the I-bundle over ζ. However, as we may assume that none of the two endpoints
of the arc equals the point p2, up to isotopy this disk is disjoint from the disk D
enclosing the two spots (a thickening of an interval of the I-bundle) and hence its
distance to D equals one.

Now consider a Φ-invariant disk E enclosing the two spots which intersects the
fixed point set of Φ in a single arc. We view E as a Φ-invariant thickened arc in
∂H connecting p1 to p2. For the proof of the lemma, it suffices to find an essential
arc ζ0 ⊂ F such that the disk E is disjoint from the I-bundle over ζ0. To this
end note first that since E is invariant under Φ and Φ reverses the orientation,
the intersection of E with the open annulus A ⊂ ∂H bounded by ∂F,Φ(∂F ) is
untwisted relative to its foliation by intervals. Namely, by invariance, any twisting
of E about the core curve of the annulus A near F is followed by twisting about the
core curve of the annulus A near Φ(F ) in the opposite direction and hence twisting
can be removed with a homotopy.
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Since the disk E intersects the fixed point set of Φ in a single arc, up to homotopy
its intersection with the annulus A is the union of a rectangle R which connects
∂F to Φ(∂F ), the intersection with A of two small disks B1, B2 centered at p1, p2

and a nested collection of small rectangles surrounding B1, B2, with two opposite
sides on the same component of ∂A (see the proof of Lemma 3.4 for an illustration).
We may assume that the number of such rectangles is minimal in the isotopy class
of E. This is equivalent to stating the E is in minimal position with respect to
∂F,Φ(∂F ).

Choose a fixed point x for Φ in the boundary of the rectangle R and follow the
boundary of E in both directions starting from x until its first intersection point
y with the closure of Bi or the closure of one of the rectangles surrounding Bi.
One of these points is contained in ∂F , and the second points is its image under
Φ. The subsegment of ∂E with endpoints y,Φ(y) which contains x in its interior is
an embedded Φ-invariant arc ζ with one endpoint y ∈ ∂F and the second endpoint
Φ(y) ∈ Φ(∂F ). If E is not isotopic to D, then since E is in minimal position with
respect to ∂F,Φ(∂F ), the arc ζ is not homotopic with fixed endpoints to a fiber of
the interval bundle and hence it intersects F in an essential arc ζ0 with endpoints
on ∂F . Then ζ is contained in the boundary of the I-bundle H over ζ0, and up to
isotopy, the disk E is disjoint from the disk H. As dCD(H,D) = 1, this completes
the proof of the lemma. �

We use Lemma 3.6 to deduce

Corollary 3.7. Let γ ⊂ F be a loop based p2 and let E1, E2 ⊂ H be the disks
enclosing the two spots which are obtained from D by pushing p2 along γ and pushing
p1 along Φ(γ)−1, respectively; then dCG(E1, E2) ≤ 2.

Proof. Since point pushing disks along loops based at p1 defines a group of isome-
tries of DG, it suffices to show that for any loop γ ⊂ F based at p2, the distance in
DG between the disk D and the disk E obtained from D by first point pushing p2

along γ and then point pushing p1 along Φ(γ) equals at most two.
However, such a disk is Φ-invariant by construction. and it intersects the fixed

point set of Φ in a single arc. Hence the corollary follows from Lemma 3.6. �

Remark 3.8. Lemma 3.7 extends to handlebodies of odd genus g = 2h + 1 ≥ 3
as follows. Let F be a non-orientable surface of Euler characteristic −2h with con-
nected boundary ∂F . It can be represented as the connected sum of an orientable
surface of genus h with connected boundary and a projective plane. Equivalently,
F contains an orientable subsurface F0 ⊂ F with two boundary components c0, c1,
and F is obtained from F0 by gluing a Möbius band to the boundary component
c1. The fundamental group of F0 is an index two subgroup of the fundamental
group of F . As the surface F0 is oriented, its preimage in the orientation cover F̃
of F consists of two disjoint copies of F0, and F̃ is obtained from these two copies
of F0 by connecting the two components of the preimage of c1 with an annulus
(which is the orientation cover of the Möbius band). The oriented I-bundle over
F contains the trivial I-bundle over the bordered subsurface F0 as a submanifold.
We then can apply the construction in Corollary 3.7 to point pushing of a point
p2 ∈ ∂F0 ⊂ ∂F along loops in F0 and point pushing of p1 = Φ(p2) along loops
in Φ(F0) where as before, Φ is the orientation reversing involution of H0 which
exchanges the endpoints of the intervals of the I-bundle.
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From now on we fix a disk D enclosing the two spots in H which is a thickening
of an interval in an I-bundle over a compact surface F with connected boundary.
If the genus of H is even then we assume that F is orientable. This disk defines a
free splitting Fg+1 = Fg ∗ Z where the free factor Z is generated by an element a

obtained from an embedded oriented arc in the twice spotted disk D̃ in ∂H with
the same boundary as D which connects p1 to p2. The free factor Fg in the free
splitting Fg+1 = Fg ∗Z is naturally isomorphic to π1(H ∪ p2, p2). Thus a free basis

A = {a1, . . . , ag} of Fg = π1(H ∪ p2, p2) extends to a free basis Â = {a1, . . . , ag, a}
of Fg+1.

We now use a device from [SS14]. Define the Whitehead graph ΓA(x) of a word
x ∈ Fg in a free basis A ∪ A−1 of Fg as follows. The set of vertices of ΓA(x) is
identified with the set A ∪ A−1. Each pair of consecutive letters aiaj in the word

x contributes one edge from the vertex ai to the vertex a−1
j . Thus if the length

of x equals n then ΓA(x) has n − 1 edges, and ΓA(x) has a cut vertex if x ∈ A.
Furthermore, if ΓA(x) has a cut vertex, then the same holds true for the unique
reduced word which defines the same element of Fg as x.

Following [SS14], define the simple g + 1-length

|w|simple
g+1

of any reduced word w in the free basis A = {a1, . . . , ag} of Fg to be the greatest
number t such that w is of the form w1w2 · · ·wt where the Whitehead graph of
wj with respect to the basis A has no cut vertex for each j = 1, . . . , t. If the
Whitehead graph of w has a cut vertex then the simple g+ 1-length of w is defined

to be zero. We have that |w|simple
g+1 is bounded from above by the word length of the

reduced word w with respect to the basis A. Furthermore, |w−1|simple
g+1 = |w|simple

g+1 .

The terminology here is taken from [SS14] although it is not well adapted to the
situation at hand.

The following statement combines Lemma 4.6 and Lemma 4.7 of [SS14],

Lemma 3.9. (1) |u|simple
g+1 ≥ |v|simple

g+1 whenever v is a subword of u.

(2)

|w|simple
g+1 ≤ |u|simple

g+1 + |v|simple
g+1 + 1

if u, v are freely reduced words in the letters A ∪A−1 and w = uv.

Proof. The statement of Lemma 4.7 of [SS14] shows the second part of the lemma
only in the case that w = uv is freely reduced. To show that it is true as stated,

assume that |v|simple
g+1 = 0 and that w is the reduced word representing uv. Then w

is obtained from uv by erasing some letters at the end of u and the beginning of v.
In particular, by the first part of the lemma, the Whitehead graph of the subword
of v which is contained in w has a cut vertex.

As a consequence, if w = w1 · · ·wt where the Whitehead graph of wi does not
have a cut vertex, then as u is reduced, w1 · · ·wt−1 is a subword of u. Then

t− 1 ≤ |u|simple
g+1 by the first part of the lemma and hence |w|simple

g+1 ≤ |u|simple
g+1 + 1

as claimed.
The general case follows from a rather straightforward modification of this argu-

ment and will be omitted. Only the case that |v|simple
g+1 = 0 is used in the sequel. �

The next lemma relates simple g + 1-length to the disk graph DG of H. To
simplify the notation, in the sequel we call a sequence (Di) of disks in H a path
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in DG if for all i the disk Di is disjoint from Di+1. Thus such a sequence is the
set of integral points on a simplicial path in DG connecting its endpoints. For its
formulation, recall from Remark 3.5 that a pair (D,E) of disks enclosing the two
spots p1, p2 determines uniquely an element q(D,E) ∈ π1(H0, p2).

Lemma 3.10. Let (Di)0≤i≤n be a path in DG which begins and ends with a disk
enclosing the two spots p1, p2. Let w = ιq(D0, Dn) ∈ π1(H0, p1); then

|w|simple
g+1 ≤ 2n.

Proof. Assume without loss of generality that the path (Di) connecting D0 to Dn

is of minimal length in DG. First we modify inductively the sequence (Di) without
increasing its length in such a way that each of the disks Di (1 ≤ i ≤ n− 1) either
is non-separating or encloses the spots p1, p2.

The construction proceeds in two steps. In a first step, we replace each separating
disk D2i−1 with odd index by a disk which either is non-separating or encloses the
two spots. We do not change the disks D2i with even index. In a second step, we
then modify the disks with even index and preserve those with odd index.

To carry out the first step, let ` ≤ n/2 and assume that the disk D2`−1 is
separating and does not enclose the spots; otherwise there is nothing to do. If
D2`−2, D2` are contained in distinct components of H−D2`−1 then they are disjoint.
In this case we can remove D2`−1 from the path (Di) and obtain a shorter path
with the same endpoints. Since the path (Di) has minimal length this is impossible.

Thus D2`−2, D2` are contained in the same component V of H −D2`−1. Since
D2`−1 does not enclose the spots, neither of the two components of ∂H −D2`−1 is
a three-holed sphere. Since H has precisely two spots, this implies that the genus
of each of the two components of ∂H − D2`−1 is positive. Now each component
of H −D2`−1 is a handlebody with spots and therefore the component H − V of

H −D2`−1 contains a non-separating disk D̃2`−1. Replace D2`−1 by D̃2`−1.
Replace in this way any disk D2`−1 with an odd index which is separating but

does not enclose p1, p2 by a non-separating disk without modifying the disks D2i

with even index. This implements the first step of the construction. The second
step is exactly identical after exchanging the roles of even and odd index. To
summarize, we may assume from now on that every separating disk in the path
(Di) encloses the two spots.

From the path (Di) we next construct a path (Ej)0≤j≤2u of disks connecting
D0 to Dn whose length 2u is at most four times the length n of the path (Di) and
such that for each j, the disk E2j encloses the spots p1, p2 and the disk E2j−1 is
non-separating.

To this end recall that any two distinct disks which enclose the spots p1, p2

intersect. This means that if the disk Di from the above sequence encloses the
spots then the disks Di−1, Di+1 are non-separating. Thus for the construction of
the path (Ej) it now suffices to replace any consecutive pair Di, Di+1 of disjoint
non-separating disks by a path of length at most four with the same endpoints whose
vertices alternate between non-separating disks and disks enclosing the spots.

Let i < n − 1 be such that the disks Di, Di+1 are both non-separating. If
H − (Di ∪Di+1) is connected then there is a disk B which encloses the spots p1, p2

and which is disjoint from Di∪Di+1. Such a disk can be obtained by thickening an
embedded arc in ∂H−(Di∪Di+1) which connects p1 to p2. Replace the consecutive
pair Di, Di+1 by the path Di, B,Di+1 of length two.
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If H − (Di ∪Di+1) is disconnected and if the spots p1, p2 are both contained in
the same component of ∂H − (Di ∪Di+1) then we can proceed as in the previous
paragraph. Otherwise there is a component of ∂(H−(Di∪Di+1)) which is a surface
of genus g ≥ 1 with three holes. One of the holes is a spot, the other two holes are
boundary components given by the boundary circles of Di, Di+1. Hence there is a
non-separating disk B which is disjoint from Di∪Di+1 and such that H− (Di∪B)
and H − (Di+1 ∪B) are both connected. Replace the consecutive pair Di, Di+1 by
a path of length 4 of the form Di, A1, B,A2, Di+1 so that consecutive disks in this
sequence are disjoint and that the disks A1, A2 both enclose the spots p1, p2. This
completes the construction of the sequence (Ej).

For each j the disk E2j defines a free splitting of Fg+1 of the form Fg ∗ Z. If a
is the generator of the free factor Z for the splitting defined by D0 (in the sense as
before, namely we think of a as a homotopy class of an embedded arc in ∂H which
connects p1 to p2 which does not intersect the boundary of D0, and this homotopy
class determines the free factor Z in the free splitting defined by D0) then for each
j the free factor Z for the free splitting defined by E2j is generated by a ·q(D0, E2j)
where q(D0, E2j) ∈ Fg.

Let wj = q(D0, E2j)
−1q(D0, E2j+2) ∈ Fg. By construction, the disk E2j+1 in H

is non-separating and disjoint from E2j , E2j+2. The set of all loops in H∪{p2} with
basepoint p2 which do not intersect E2j+1 define a free factor Q of Fg of corank
one. Since E2j+1 is disjoint from E2j and E2j+2, the element wj is contained in
the free factor Q.

Since wj ∈ Q, by Theorem 2.4 of [S00] the Whitehead graph of wj has a cut
vertex. But this just means that the simple g+1-length of wj vanishes. An inductive
application of the second part of Lemma 3.9 now shows that the simple g+1-length
of the word q(D0, Dn) ∈ Fg is at most u ≤ 2n. This is what we wanted to show. �

Now we are ready to show the second part of Theorem 2 from the introduction.

Proposition 3.11. For every n ≥ 1, the disk graph of a handlebody H of genus
g ≥ 3 with two spots contains quasi-isometrically embedded copies of Rn.

Proof. Assume first that the genus g = 2h of H is even. We will explain at the end
of this proof how to adjust the argument to handlebodies of odd genus.

Let F ⊂ ∂H0 be an embedded oriented surface with connected boundary ∂F
such that H0 equals the I-bundle over ∂F . Let Φ be the orientation reversing
involution of H0 which exchanges the endpoints of the intervals which make up the
interval bundle. Fix a point p2 ∈ ∂F and let p1 = Φ(p2).

Arrange the h = g/2 ≥ 2 handles of the surface F cyclically around ∂F . Choose
for each handle of F two oriented disjoint essential arcs in the handle with endpoints
on ∂F . We may assume that ∂F is partitioned into h segments I1, . . . , Ih with
disjoint interior, ordered cyclically along ∂F (that is, if h ≥ 3 then Ij ∩ Ij+1

consists of a single point for all j) so that each of these segments Ij contains all
four endpoints of the arcs â2j−1, â2j which are embedded in one of the handles of
F . A small neighborhood of the union of these 2h arcs and the boundary of F is
a ribbon graph, that is, a planar surface F0 ⊂ F . We require that the inclusion
F0 → F induces a surjection on fundamental groups. This is equivalent to stating
that F can be obtained from F0 by attaching a disk to the component of the
boundary of F0 distinct from ∂F .
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If h ≥ 3 then let p2 be the intersection Ih∩I1 and let x = Ih−1∩Ih. If h = 2 then
we require that {p2, x} = I1∩I2. Slide the endpoints of the arcs âi which define the
ribbon graph F0 along ∂F to p2 in such a way that this sliding operation does not
cross through x. The image of each of the arcs âi under this homotopy is a based
oriented loop ai at p2. The union of these loops is an embedded rose R with vertex
p2 (the rose R does not contain the boundary circle of F ). As H0 is an I-bundle
over F , the inclusion R→ H ∪{p2} induces an isomorphism of Q = π1(R, p2) onto
the group π1(H ∪ {p2}, p2) which is isomorphic to the fundamental group of H.
Thus if we write H2 = H ∪ {p2} then we have π1(H2, p2) = Q. In the sequel we
think of the based loops ai (i = 1, . . . , 2h) as generators of the fundamental group
Q of R.

As on p.592 in Subsection 5.2 of [SS14], we consider for t ≥ 1 the element

bt = at+1
1 at+1

2 · · · at+1
g at+1

1 at+1
2 at+1

1 ∈ Q.
We claim that for every t ≥ 1 the image of D under the point pushing map of p2

along bt has distance at most 6 to D in the disk graph DG.
We show the claim first in the case that the genus g of H is at least 6 and hence

the genus of F is at least three. Then bt = uv where u = at+1
1 · · · at+1

g−2 and v =

at+1
g−1a

t+1
g at+1

1 at+1
2 at+1

1 . The word u does not contain the letters ag−1, a
−1
g−1, ag, a

−1
g ,

and the word v does not contain the letters ag−3, a
−1
g−3, ag−2, a

−1
g−2 since g − 3 ≥ 3.

As a consequence, the word u is represented by a loop on the rose R whose image
in the ribbon graph F0 is disjoint from the arcs with endpoints in Ih. Hence up
to homotopy, this loop is disjoint from the I-bundle over each of these two arcs.
Then the same holds true for the image ψu(D) of the disk D under point pushing
along u. In particular, the distance between D and ψu(D) in the disk graph DG
is at most two (see Lemma 3.6 for an explanation). Similarly, the image ψv(D)
of D under the point pushing map ψv is disjoint from an I-bundle over an arc
with endpoints in the interval Ih−1 and hence dDG(D,ψv(D)) ≤ 2. But the point
pushing map ψv acts on the disk graph as a simplicial isometry and consequently
dDG(ψv(D), ψv(ψu(D))) ≤ 2. Together with the triangle inequality, this yields

dDG(D,ψuv(D)) ≤ 4

(here words are read from left to right).
If g = 4 then write bt = uvw where u = at+1

1 at+1
2 , where v = at+1

3 at+1
4 and

w = at+1
1 at+1

2 at+1
1 . Then there is a loop on R representing u, v, w which is disjoint

from an arc with endpoints in I2, I1, I2. As in the previous paragraph, we conclude
that dDG(D,ψs(D)) ≤ 2 for s = u, v, w and by the triangle inequality, the distance
between D and ψbt(D) is at most 6.

This argument can be used inductively and shows the following. For all t ≥ 1
and each k ≥ 1, we have

(2) dDG(D,ψbkt
(D)) ≤ 6k.

Recall that the disk D defines a free splitting π1(H ′, p) = Fg ∗Z where as before,
p ∈ ∂H ′ is the point obtained by identification of p1 and p2. Let a be the generator
of the infinite cyclic group Z, defined by the homotopy class of the arc α in ∂H
connecting p2 to p1 which is disjoint from the boundary of D. As explained in the
discussion preceding Remark 3.5, if u ∈ Q is arbitrary, then the image of D under
the point-pushing map ψu is a disk ψu(D) enclosing the two spots which defines the
free splitting of Fg+1 where the infinite cyclic free factor in the splitting is generated
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by a · q(D,ψu(D)). By the definition of the point pushing map, if we identify Q
with π1(H, p2) = Fg < π1(H ′, p) as described in the beginning of this proof, the
generator of this infinite cyclic free factor is just the element au. We refer to the
discussion before Lemma 3.3 for more details.

Using the above notations, we follow Section 5.2 of [SS14]. For an arbitrary
integer n ≥ 1, define a map Λ : Zn → DG which associates to (k1, . . . , kn) ∈ Zn

the image of the disk D under point-pushing of p2 along the loop bk1
1 b

k2
2 · · · bkn

n ∈ Q
based at p2. We claim that

(3) dDG(Λ(k1, . . . , kn),Λ(`1, . . . , `n)) ≤ 6

n∑
i=1

(|ki − `i|+ 8).

To see this we adapt an argument from p.594 of [SS14]. Our goal is to transform
the disk Λ(k1, . . . , kn) = ψ

b
k1
1 ···b

kn
n

(D) to the disk Λ(`1, . . . , `n) = ψ
b
`1
1 ···b

`n
n

(D) in a

controlled way. These disks are determined by the homotopy classes bk1
1 b

k2
2 · · · bkn

n ∈
Q and b`11 b

`2
2 · · · b`nn ∈ Q, respectively, provided that the base disk D is fixed. To

take full advantage of this fact we will now consider pairs of disks (E, V ) where
we view V as a basepoint, and E as a modification of the basepoint. With this
viewpoint, our goal will be to transform the pair (ψ

b
k1
1 ···b

kn
n

(D), D) to the pair

(ψ
b
`1
1 ···b

`n
n

(D), D) in a way which enables us to estimate distances.

To simplify the discussion, let us introduce the following notation. For an element
u ∈ Q, represented up to homotopy by a unique reduced edge path in the rose R,
let us denote by [a · u]2 the disk ψu(D) obtained from D by point pushing p2 along
u, and denote by [a−1 · u]1 the disk obtained from D by point pushing p1 along
Φ(u). Corollary 3.7 shows that

(4) dCG([a, u]2, [a
−1, u−1]1) ≤ 2.

We first claim that

(5) dDG(ψ
b
k1
1 ···b

kn−1
n−1 bkn

n
(D), ψ

b
k1
1 ···b

kn−1
n−1 b`nn

(D)) ≤ 6|`n − kn|+ 8.

Namely, the estimate (2) and the fact that point-pushing of p2 induces an isom-
etry on DG imply that

dDG(ψbkn
n

(D), ψb`nn
(D)) ≤ 6|`n − kn|.

But for all u, we have ψbun(D) = [a · bun]2 and hence the estimate (4) shows that

dDG([a−1 · b−kn
n ]1, [a

−1 · b−`1n ]1) ≤ 6|kn − `n|+ 4.

Apply to both disks [a−1 · b−kn
n ]1, [a

−1 · b−`nn ]1 point-pushing of the point p1 along

a loop based at p1 representing the homotopy class Φ(b
−kn−1

n−1 · · · b−k1
1 ). As point-

pushing induces an isometry on the disk graph (and composition is read from left
to right), we obtain

dDG([a−1 · b−kn
n b

kn−1

n−1 · · · b
−k1
1 ]1, [a

−1 · b−`nn b
kn−1

n−1 · · · b
−k1
1 ]1) ≤ 6|kn − `n|+ 4.

Using again the estimate (4), this is yields the estimate (5) we wanted to show.
Point-pushing of the point p2 along the loop b−`nn transforms the pair of disks

(ψ
b
k1
1 ···b

kn−1
n−1 b`nn

(D), D) to the pair (ψ
b
k1
1 ···b

kn−1
n−1

D,ψb−`n
n

(D)). As point-pushing acts

as an isometry on the disk graph, we view this operation as a change of basepoints
which does not change distances.
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In a second step, we use the reasoning which led to the estimate (5) to deduce
that

dDG(ψ
b
k1
1 ···b

kn−2
n−2 b

kn−1
n−1

(D), ψ
b
k1
1 ···b

kn−2
n−2 b

`n−1
n−1

(D)) ≤ 6|`n−2 − kn−2|+ 8.

As a next step, we change the basepoint again. Using point-pushing of the point

p2 along the loop b
−`n−1

2 , the pair (ψ
b
k1
1 ···b

kn−2
n−2 b

`n−1
n−1

(D), ψb−`n
n

D) transforms to the

pair

(ψ
b
k1
1 ···b

kn−2
n−2

(D), ψ
b−`n
n b

−`n−1
n−1

D).

Proceeding inductively, in n steps we transform the pair (ψ
b
k1
1 b

k2
2 ···b

kn
n

(D), D) to the

pair (D,ψ
b−`n
n ···b−`1

1
(D)), changing distances by at most

∑
i(6|`i − ki|+ 8).

Now apply one last time point-pushing of the point p2 along the loop b`11 · · · b`nn
to the pair

(D,ψ
b−`n
n ···b−`1

1
(D))

and obtain the pair (ψ
b
`1
1 ···b

`n
n

(D), D). Using again that point pushing is an isom-

etry, we conclude that the distance between the disk Λ(k1, . . . , kn) = ψ
b
k1
1 ···b

kn
n

(D)

and the disk Λ(`1, . . . , `n) = ψ
b
`1
1 ···b

`n
n

(D) is at most
∑

i(6|`i − ki|+ 8) as claimed.

Now Lemma 4.15 of [SS14] and the discussion on the bottom of p.592 and on
the top of p.594 in [SS14] shows that there is a number c > 0 such that

(6)

n∑
i=1

|ki − `i| ≤ c|b−kn
n b

−kn−1

n−1 · · · b−k1
1 b`11 b

`2
2 · · · b`nn |

simple
g+1 .

We give a short summary of the proof of this fact as found in [SS14]. Namely, fol-
lowing Definition 4.9 of [SS14], we say that a word w in the lettersA∪A−1 has conju-
gate reduced length at most k if there exist freely reduced words v1, . . . , v`, u1, . . . , u`
such that.

(a) w = vu1
1 vu2

2 · · · v
u`

` , where v
uj

j = u−1
j vjuj , and

(b) k = (`− 1) + |v1|simple
g+1 + · · ·+ |v`|simple

g+1 .

The number k is called the conjugate reduced g + 1-length associated to the decom-
position. The minimal number k for which such a decomposition exists is called
the conjugate reduced length of w, and it is denoted by |w|cr.

The easy Lemma 4.15 of [SS14] states that |w|simple
g+1 ≥ |w|cr, so it suffices to

estimate |w|cr from below for w = b−kn
n b

−kn−1

n−1 · · · b−k1
1 b`11 b

`2
2 · · · b`nn .

Definition 4.10 of [SS14] is geared to this end. A cancelling pair in the reduced
word w is a pair of subwords of the form u, u−1. A nested family F of cancelling
pairs is a finite collection of disjoint cancelling pairs so that if v, v−1 ∈ F and
u, u−1 ∈ F then v occurs between u, u−1 if and only if this is true for v−1. For such
a family F of cancelling pairs let w − F be the finite collection of subwords of w
obtained by erasing the words from F . Define

|w −F|simple
g+1 = |F|+

∑
w′∈w−F

|w′|simple
g+1 .

The required estimate follows from Lemma 4.11 of [SS14] which states that

(7) |w|cr ≥ min
F

(max
{ |F|

2
− 1,

1

5
|w −F|simple

g+1 − 3
}

).
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To apply this estimate to the above word w, let F be a nested family of cancelling
pairs for w which minimizes the expression on the right hand side of equation (7)
and write d =

∑
|ki − `i|. If |F| ≥ d/10 then we immediately obtain the required

estimate. Otherwise note that by removing a cancelling pair we can at most delete

a subword of a string of the form b
min{ki,`i}
i . Furthermore it is easy to see that

|bst |
simple
g+1 ≥ |s| for all s. Thus if |F| ≤ d/10 then a rough counting of the simple

norm of the subsegments of w−F as carried out in detail on p.593 of [SS14] yields
again the required estimate.

On the other hand, by Lemma 3.10, we have

(8) dDG(Λ(k1, . . . , kn),Λ(`1, . . . , `n)) ≥ 1

2
|b−kn

n b
−kn−1

n−1 · · · b−k1
1 b`11 b

`2
2 · · · b`nn |

simple
g+1 .

The estimates (3), (6) and (8) together show that the distance inDG of the images of

D under the point pushing of p2 along bk1
1 b

k2
2 · · · bkn

n and by b`11 b
`2
2 · · · b`nn is bounded

from above and below by a fixed positive multiple of
∑n

i=1 |ki − `i|. Thus the map
Λ : Zn → DG is a quasi-isometric embedding. The proposition for handlebodies of
even genus is established.

The argument can be adjusted for handlebodies of odd genus as follows. Let H0

be such a handlebody of genus g ≥ 3. Choose a non-separating I-bundle generator
c. Then H0 is the oriented I-bundle over a non-orientable surface F with connected
boundary ∂F = c. The surface F can be obtained from an orientable surface F0

of genus (g − 1)/2 whose boundary consists of 2 connected components c0, c1 by
attaching a Möbius band to c1. The orientation cover of F equals the complement
in ∂H0 of an open annulus with core curve c, and the preimage of F0 consists of
two copies of F0 which are glued along an annulus. The fundamental group of F0

is a free group in g generators, and the inclusion of a component of its preimage in
∂H0 into H0 defines an isomorphism on fundamental groups.

The argument in the beginning of this proof now applies verbatim using the
surface F0 instead of F and noting that we may choose disjoint generating arcs for
the fundamental group of F0 ⊂ F with endpoints on the boundary of F with the
property that there is a partition of ∂F into (g−1)/2+1 ≥ 2 disjoint intervals, each
containing the endpoints of one or two arcs. This suffices to control the distance in
the disk graph of a disk obtained from the base disk D by point pushing p2 along
a loop defined by the word bt in the corresponding generators. The rest of the
argument is identical to the argument for handlebodies of even genus. �

Remark 3.12. The argument in the proof of Proposition 3.11 indirectly uses the
fact that the pure mapping class group of a disk with two punctures is infinite cyclic
and consequently point pushing of p1 leaving p2 fixed commutes (in an appropriate
sense) with point pushing of p2 leaving p1 fixed.

The proof of the upper distance bound which appears in the proof of Proposition
3.11 also applies if we view the disks as elements of the curve graph of the boundary
surface ∂H of the handlebody, but the resulting estimate is irrelevant in this case.
Namely, the distance in the curve graph of all the diskbounding simple closed curves
considered equals two as there exists a curve on ∂H (for example, a component of
the boundary of a tubular neighborhood of the rose R used in the construction)
which is disjoint from all the disks. Such a curve is not diskbounding.

The arguments in the proof of Proposition 3.11 also yield the second part of
Theorem 3.
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Corollary 3.13. The sphere graph of a doubled handlebody ]gS
2×S1 (g ≥ 2) with

two spots contains for every n ≥ 2 a quasi-isometrically embedded copy of Rn.

Proof. The proof of Proposition 3.11 applies almost verbatim to the doubled han-
dlebody M with two spots, i.e. to the connected sum of g copies of S2 × S1 with
two spots p1, p2. If we identify small disjoint compact embedded balls B1, B2 in M
containing the spots p1, p2 on the boundary with an orientation reversing diffeo-
morphism, then we obtain a connected sum N of g + 1 copies of S2 × S1 with one
marked point p which is the image of the identified points p1, p2.

Any sphere in M enclosing the spots (i.e. a sphere whose image under the spot
removal map is contractible) defines a one-edge free splitting of the fundamental
group π1(N, p) of N into the free group Fg with g generators, identified with the
fundamental group of M , and an infinite cyclic group. Namely, as in the case of a
handlebody, such a sphere can be enlarged to an embedded ball in M ∪{p2} which
contains p2 and is disjoint from the ball B1. The splitting is now a consequence of
van Kampen’s theorem.

Point pushing of one of the spots along paths in a fixed embedded rose in M
(which we may assume to be contained in the boundary of an embedded twice
spotted handlebody whose double equals M) acts on these splittings Fg+1 = Fg ∗Z
by appending the point-pushing element to the generator of the free factor Z. Note
that this is an immediate consequence of the argument for the handlebody whose
fundamental group coincides with the fundamental group ofM . Now the calculation
in the proof of Proposition 3.11 only uses information on splittings of the free group
with g + 1 generators and therefore this calculation is also valid for spheres and
yields the corollary. �

References

[BF08] G. Bell, K. Fujiwara, The asymptotic dimension of the curve graph is finite, J. Lond.

Math. Soc. 77 (2008), 33–50.
[BV12] M. Bridson, K. Vogtmann, The Dehn function of Out(Fn) and Aut(Fn), Ann. Inst.

Fourier 62 (2012), 1811-1817.
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[H19a] U. Hamenstädt, Asymptotic dimension and the disk graph I, J. Topology 12 (2019),

658–673.
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