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Abstract. The disk graph of a handlebody H of genus g ≥ 2 with m ≥ 0

marked points on the boundary is the graph whose vertices are isotopy classes

of disks disjoint from the marked points and where two vertices are connected
by an edge of length one if they can be realized disjointly. We show that for

m = 2 the disk graph contains quasi-isometrically embedded copies of R2.

Furthermore, the sphere graph of the doubled handlebody of genus g ≥ 4 with
two marked points contains for every n ≥ 1 a quasi-isometrically embedded

copy of Rn.

1. Introduction

The curve graph CG of an oriented surface S of genus g ≥ 0 with m ≥ 0 punctures
and 3g−3 +m ≥ 2 is the graph whose vertices are isotopy classes of essential (that
is, non-contractible and not homotopic into a puncture) simple closed curves on S.
Two such curves are connected by an edge of length one if and only if they can be
realized disjointly. The curve graph is a locally infinite hyperbolic geodesic metric
space of infinite diameter [MM99].

A handlebody of genus g ≥ 1 is a compact three-dimensional manifold H which
can be realized as a closed regular neighborhood in R3 of an embedded bouquet of
g circles. Its boundary ∂H is an oriented surface of genus g. We allow that ∂H is
equipped with m ≥ 0 marked points (punctures) which we call spots in the sequel.
The group Map(H) of all isotopy classes of orientation preserving homeomorphisms
of H which fix each of the spots is called the handlebody group of H. The restriction
of an element of Map(H) to the boundary ∂H defines an embedding of Map(H) into
the mapping class group of ∂H, viewed as a surface with punctures [S77, Wa98].

An essential disk in H is a properly embedded disk (D, ∂D) ⊂ (H, ∂H) whose
boundary ∂D is an essential simple closed curve in ∂H, viewed as a surface with
punctures. An isotopy of such a disk is supposed to consist of such disks.

The disk graph DG of H is the graph whose vertices are isotopy classes of essential
disks in H. Two such disks are connected by an edge of length one if and only if
they can be realized disjointly. Thus by identifying a disk with its boundary circle,
the disk graph is a subgraph of the curve graph of ∂H which is invariant under the
handlebody group Map(H).

If H does not have spots, then it is known that the disk graph is a quasi-convex
subgraph of CG. This means that for any two points D,E ∈ DG, any geodesic
in CG connecting ∂D to ∂E is contained in a uniformly bounded neighborhood of
DG. However, the inclusion DG → CG is not a quasi-isometric embedding [MS13].
More precisely, there are uniformly quasi-isometrically embedded subgraphs of DG,
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so-called holes, whose diameter in DG is arbitrarily large but whose diameter in the
curve graph is uniformly bounded.

A metric space X is said to have asymptotic dimension asdim(X) ≤ n if for every
R > 0 there exists a covering of X by uniformly bounded subsets of X so that any
ball of radius R intersects at most n + 1 sets from the covering. The asymptotic
dimension of a curve graph is finite [BF08] (see also [BB19] for a quantitative
statement).

In [MS13, H19a, H16, H19b, H21] the following is shown.

Theorem 1. (1) The disk graph of a handlebody of genus g ≥ 2 without spots
is hyperbolic and has finite asymptotic dimension.

(2) The disk graph of a handlebody of genus g ≥ 2 with a single spot on the
boundary contains quasi-isometrically embedded R2. In particular, it is not
hyperbolic.

The mechanism for part (2) of Theorem 1 consists in taking advantage of specific
holes for the disk graph of a handlebody without spots which arise from representing
the handlebody as a (possibly non-oriented) I-bundle over a compact surface F
with connected boundary together with a point pushing construction about the
boundary circle of F .

The first main goal of this work is to extend the second part of Theorem 1 to
handlebodies with two spots.

Theorem 2. The disk graph of a handlebody H of genus g ≥ 2 with 2 spots on the
boundary contains quasi-isometrically embedded R2. If g is even, then it contains
quasi-isometrically embedded R3. In particular, it is not hyperbolic.

The proof of Theorem 2 uses the presence of precisely two spots in an essential
way, and it is not an extension of the proof of the second part of Theorem 1.

Theorem 2 shows that disk graphs can not be used effectively to obtain a geo-
metric understanding of the handlebody group Map(H0) of a handlebody H0 of
genus g ≥ 3 with no spots paralleling the program developed by Masur and Minsky
for the mapping class group [MM00].

The analogue of the strategy of Masur and Minsky would consist in taking ad-
vantage of hyperbolicity of the disk graph on which the handlebody group acts
coarsely transitively. One then analyzes the point stabilizers for this action. That
this is a valuable approach for the geometric study of the handlebody group follows
from the fact that the stabilizer of a disk is an undistorted subgroup of the handle-
body group [He21]. But the second part of Theorem 1 and Theorem 2 yield that
the geometry of the stabilizer of a disk can not be studied effectively by cutting a
handlebody open along an embedded disk which results in a (perhaps disconnected)
handlebody with two spots on the boundary and, in an inductive procedure, using
knowledge of the geometry of the disk graph of the cut open handlebody. This
failure of such an inductive approach may be a witness for the fact that Map(H0)
is an exponentially distorted subgroup of the mapping class group of ∂H0 [HH12],
and its Dehn function is exponential [HH21].

Theorem 2 has a stronger analogue for geometric graphs related to the outer
automorphism group Out(Fg) of the free group on g generators. Namely, doubling
the handlebody H yields a connected sum M = ]gS

2 × S1 of g copies of S2 × S1

with m marked points. A doubled disk is an embedded essential sphere in M , that
is, a sphere which is not homotopically trivial or homotopic into a marked point.
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The sphere graph of M is the graph whose vertices are isotopy classes of essential
spheres in M and where two such spheres are connected by an edge of length one
if and only if they can be realized disjointly. As before, an isotopy of spheres is
required to be disjoint from the marked points. The sphere graph of a doubled
handlebody without marked points is hyperbolic [HM13b]. If g is even, then the
sphere graph of a doubled handlebody with one marked point on the boundary
contains quasi-isometrically embedded R2 [H21].

The following is the second main result of this article.

Theorem 3. The sphere graph of a doubled handlebody of genus g ≥ 4 with 2
marked points contains for every n ≥ 1 a quasi-isometrically embedded copy of Rn.
In particular, it is not hyperbolic, and its asymptotic dimension is infinite.

The sphere graph of a doubled handlebody of genus g ≥ 2 with two marked
points is isomorphic to the subgraph of the sphere graph of a doubled handlebody
]g+1S

1 × S2 of genus g + 1 with no marked point consisting of all spheres which
are disjoint from a fixed non-separating sphere (see Section 4 for details). As in the
case of disks in a handlebody and the handlebody group, for g ≥ 3 the stabilizer
of a sphere in ]gS

1 × S2 is an undistorted subgroup of Out(Fg) [HM13a] and thus
Theorem 3 may among others witness the fact that the Dehn function of Out(Fg)
is exponential [BV12]. Note that unlike for the disk graph, it seems to be unknown
whether or not for h ≥ 3 the sphere graph of ]hS

1 × S2 has finite asymptotic
dimension.

The first example known to us of a geometric graph of infinite asymptotic dimen-
sion is due to Sabalka and Savchuk [SS14]. The vertices of this graph are isotopy
classes of essential separating spheres in ]gS

2×S1. Two such spheres are connected
by an edge of length one if and only if they can be realized disjointly. We use the
main construction of [SS14] for the proof of Theorem 3.

Note that Theorem 2 and Theorem 3 do not exclude the possibility that the
graph of non-separating disks or non-separating spheres in a handlebody with two
spots or a doubled handlebody with two spots is hyperbolic.

The article is subdivided into four sections. In Section 2, we introduce disks in
a handlebody of genus g ≥ 2 enclosing the two spots. We show how one can pass
from a disk D enclosing the two spots to another disk E enclosing the two spots
in two explicit but different ways with a point pushing diffeomorphism. Namely,
we can use point pushing of either of the two spots, resulting in different elements
of the handlebody group. The effect on disks of such point pushing transforma-
tions can be controlled provided that they are supported in disjoint subsurfaces of
the boundary of the handlebody. As a byproduct of this analysis, we obtain the
following statement of independent interest.

Theorem 4. Let Σ be a compact oriented surface with nonempty boundary ∂Σ,
possibly with a finite number of interior points (punctures) removed. Let p1 ∈ ∂Σ
be a fixed point and let p2 ∈ Σ be a marked interior point. Then point pushing the
marked point p2 determines a bijection between π1(Σ, p2) and the set A(p1, p2) of
isotopy classes of arcs in Σ connecting p1 and p2.

The boundary of a handlebody H of even genus 2h contains preferred subsurfaces
carrying the entire topology of the handlebody. These subsurfaces are compact
surfaces F of genus h with connected boundary so that H is an orientable I-bundle
over F (that is, a fiber bundle over F with fiber the interval [0, 1]). The orientation
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reversing involution Ψ of H which exchanges the endpoints of the fibers maps F
to a disjoint subsurface of the boundary. If we choose one of the spots p in the
interior of F and assume that the second spot equals Ψ(p), then point pushing
of p along loops in F commutes with point pushing of Ψ(p) along loops in Ψ(F ).
This is explained in detail in Section 3. A variation of this construction extends to
handlebodies of odd genus. We use this to prove Theorem 2.

In Section 4, we apply the discussion in Section 3 and the main construction of
[SS14] to the double of a handlebody with two spots and establish Theorem 3.

Acknowledgement: I am grateful to Peter Teichner for pointing out that Theorem
4 may be of independent interest.

2. Disks enclosing the spots

The goal of this section is to introduce disks enclosing the two spots, establish
some first properties of these disks and prove Theorem 4. To simplify the termi-
nology, when we talk about disks in the sequel, we always identify disks which are
isotopic in the sense explained in the introduction.

We begin with discussing briefly handlebodies of genus one. A handlebody of
genus one with at most one spot on the boundary contains a single disk up to
isotopy. This is used to establish

Proposition 2.1. The disk graph of a solid torus with two spots on the boundary
is a tree.

Proof. Let H be a solid torus with two spots p1, p2 on the boundary. The handle-
body H1 obtained from H by removing the spot p2 is a solid torus with one spot
on the boundary. Let Φ1 : ∂H → ∂H1 be the natural spot removal map.

The handlebody H1 contains a single disk D1, and this disk is non-separating.
If D ⊂ H is any non-separating disk then Φ1(∂D) = ∂D1. Thus by Theorem 7.1
of [KLS09], the complete subgraph of the disk graph of H whose vertex set is the
set of non-separating disks in H is a tree T . This is the Bass-Serre tree for the
splitting of π1(∂H1, p2) = F2 defined by D1. Equivalently, it is the tree dual to the
curve ∂D1 and its images under the action of π1(∂H1, p2).

If D ⊂ H is a separating disk then ∂D decomposes ∂H into a disk with two
spots and a torus with the interior of a closed disk removed. In particular, Φ1(∂D)
is peripheral. There is a single disk in H which is disjoint from D, and this disk
is non-separating. Thus there is a single edge in DG with one endpoint at D. The
second endpoint is a vertex in the simplicial tree T .

As a consequence, the disk graph of H is an extension of the simplicial tree T
which attaches to each vertex of T an at most countable collection of edges whose
second endpoints are univalent. Thus this graph is a tree as well. The proposition
follows. �

Remark 2.2. The disk graph of a solid torus H with two spots on the boundary
is a tree with countable valency. Namely, if D is any non-separating disk in H then
cutting H open along D yields a ball with four spots on the boundary. Two of these
spots are the two copies of D. Any simple closed curve which separates these two
distinguished spots from the remaining two spots is the boundary of a separating
disk in H disjoint from D, and any separating disk disjoint from D arises in this
way. There are countably many such disks.
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Remark 2.3. It also follows from similar considerations that the disk graph of a
handlebody H with two spots is connected (for which the usual surgery argument
[H19a] is problematic as surgery may lead to peripheral disks). Namely, denote by
H1 the handlebody obtained from H by removing the spot p2, and let Φ1 : H → H1

be the spot forgetful map. By Theorem 7.1 of [KLS09], for any non-separating disk
D ⊂ H, the preimage of Φ1(D) ⊂ H1 under the map Φ1 is the Bass Serre tree
for the graph of groups decomposition of π1(∂H1, p2) defined by D and the point
p2 ∈ ∂H1 − Φ1(D). In particular, this preimage is connected. On the other hand,
any disk in H is disjoint from a disk which projects onto a non-separating disk in
H1. As the disk graph DG1 of H1 is easily seen to be connected and furthermore
there is a simplicial embedding Λ : DG1 → DG so that Φ1 ◦ Λ = Id (see Section 7
of [KLS09]), this yields that DG is indeed connected.

In the sequel we always denote by H a handlebody of genus g ≥ 2 with two spots
p1, p2 on the boundary, and we denote by H0 the handlebody obtained from H by
removing the spots. There is a natural spot removal map

Φ : H → H0.

We say that a disk D encloses the spots if Φ(D) ⊂ H0 is contractible. Equivalently,
the boundary of D is a simple closed curve in ∂H which bounds a twice punctured
disk D̃ ⊂ ∂H, with punctures at p1, p2.

Let E ⊂ H be another disk which encloses the two spots p1, p2. Assume that E is
in minimal position with respect to D. This means in particular that the boundaries
∂D, ∂E intersect in the minimal number of points among all representatives in their
isotopy classes.

The simple closed curves ∂D, ∂E are the boundaries of unique disks D̃, Ẽ ⊂ ∂H
containing the two spots (thus if we think of the spots as missing points, then D̃, Ẽ
should be viewed as twice punctured disks). If D is not isotopic to E then the

intersection D̃ ∩ Ẽ consists of two disjoint disks A1, A2 with one spot at p1, p2,
respectively, and a disjoint union of rectangles. In particular, ∂D ∩ ∂E consists of
at least four points.

Denote as before by H1 the handlebody obtained from H by removing the spot
p2 and let Φ1 : H → H1 be the spot forgetful map. Use the ordered pair of disks
(D̃, Ẽ) to construct a loop γ ⊂ (∂H∪{p2}, p2) based at p2 as follows. First, connect
the point p1 to the point p2 by an oriented arc α, that is, the image of the closed
interval [0, 1] under a topological embedding, whose interior is embedded in D̃. The
endpoints of α are the two spots of H, and they are precisely the spots of the disk
Ẽ. Thus there is an arc β in Ẽ connecting p1 to p2. The loop γ is homotopic
to the concatenation of α−1 with β (which we move off the spot p1 with a small
deformation). Note that the inverse of the loop γ is constructed with exactly the
same procedure, but with the roles of the disks D,E exchanged. Furthermore, the
homotopy class of γ as a loop in ∂H1 based at p2 is uniquely determined by the
ordered pair (D,E) up to the precomposition with the homotopy class of a loop in

D̃ based at p2 which surrounds the marked point p1.
The fundamental group π1(∂H1, p2) of ∂H1 is the free group in 2g generators.

Let c ∈ π1(∂H1, p2) be the element which can be represented by a loop in D̃
surrounding the marked point p1. If we write composition from left to right, then
the above discussion shows that each ordered pair (D,E) of disks in H enclosing the
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two spots determines uniquely the right coset of a homotopy class in π1(∂H1, p2)
by the infinite cyclic group generated by c.

To avoid working with cosets, we now replace the spot p1 in ∂H1 by a boundary
component. Let Σ be the resulting bordered surface. Attaching to the boundary
∂Σ of Σ a disk yields the boundary of the handlebody H0 without spot. Fix a
point p1 in ∂Σ and denote by A(p1, p2) the set of isotopy classes of arcs in Σ with
fixed endpoints p1, p2. Such an arc can be viewed as an arc in ∂H with endpoints
at the spots, and a thickening of such an arc defines a disk Ẽ ⊂ ∂H enclosing the
two spots. Vice versa, any disk in H enclosing the two spots determines an arc
in A(p1, p2), unique up to the ambiguity of Dehn twisting the spot p1 about the
boundary of Σ. Thus understanding isotopy classes of disks enclosing the two spots
amounts to understanding A(p1, p2).

More generally, let for the moment Σ be any compact surface with non-empty
boundary ∂Σ and perhaps a finite number of points removed. Choose a point p2

in the interior of Σ. This choice determines a subgroup of the mapping class group
Mod(Σ−{p2}) of Σ−{p2} which is isomorphic to the fundamental group π1(Σ, p2)
of the surface Σ. This group is the fiber group of the Birman exact sequence

0→ π1(Σ, p2)→ Mod(Σ− {p2})→ Mod(Σ)→ 0

obtained from the map Σ − {p2} → Σ which forgets the spot p2. Its elements are
called point pushing maps. If γ ⊂ Σ is a based loop at p2, then the point pushing
map along γ can be represented by a diffeomorphism supported in an arbitrarily
small neighborhood of γ.

Let as before A(p1, p2) be the set of isotopy classes of arcs with endpoints p1, p2.
For ease of exposition, we view such arcs α, β as arcs connecting p1 to p2. Then
the composition α−1 ◦ β (read from left to right) is a based loop at p2 whose
homotopy class we denote by q(α, β). Note that q(α, β) ∈ π1(Σ, p2) only depends
on the isotopy class of α, β. For easier exposition, in the sequel we always represent
isotopy classes of arcs by actual arcs and note that the statements we make do not
depend on the choice of such representatives.

Lemma 2.4. Let α, β ∈ A(p1, p2). Then β is the image of α under the element of
the mapping class group of Σ− {p2} obtained by pushing the point p2 along a loop
in the homotopy class q(α, β).

Proof. Let γ ⊂ Σ∪{p2} be a loop based at p2 constructed as above from the ordered
pair (α, β) of arcs, and moved off Σ 3 p1.

Assume first that the loop γ is simple, that is, it does not have self-intersections.
Thus γ is embedded in Σ and hence there is an embedded annulus A ⊂ Σ with
core curve γ, disjoint from p1. Up to isotopy, the arc α intersects A in a single
embedded segment α0 with one endpoint p2. Furthermore, we may assume that α0

intersects the core curve γ of A in the unique point p2.
The point pushing homeomorphism of p2 along γ equals the identity on (Σ−A)∪

γ. In each of the two components of A− γ, it is a Dehn twist about the core curve
(which is freely homotopic to γ), in one component positive, in the second negative.
As α0 and hence α meets only one component of A − γ, this homeomorphism
transforms the homotopy class of α with fixed endpoint by concatenation with γ.
As a consequence, the image of the arc α by the point pushing map along γ is
homotopic to the concatenation of α with γ (read from left to right). This arc is
homotopic with fixed endpoints to β, and in fact isotopic to β.
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This construction extends to the case that the curve γ has self-intersections.
Namely, parameterize the arc β on the interval [0, 1]. Assuming that β is in minimal
position with respect to α, let 0 = t0 < t1 < · · · < tk = 1 be such that β(ti) are
the intersection points of β with α, with the endpoints included. Let γ1 be the
concatenation of α−1 with an arc ζ1 connecting p1 to p2 which is composed of
β[0, t1] and the subarc α1 of α connecting β(t1) back to p2. With a small homotopy
with fixed endpoints, the arc ζ1 can be pushed off the interior of α. The resulting
loop based at p2 is simple and can be pushed off p1. Denote this loop again by γ1.

In a second step, define a based loop γ2 at p2 as follows. Let 2 ≤ j ≤ k be such
that β(tj) is the first intersection point of β(t1, 1] with the subarc α1 of α (perhaps

this is the endpoint p2 of β). Let γ2 be the concatentation of ζ−1
1 , the subarc β[0, tj ]

of β and the subarc α2 of α connecting β(tj) back to p2. This loop is homotopic

with fixed endpoints to the concatenation of α−1
1 , the arc β[t1, tj ] and the arc α2

and hence it is simple. Furthermore, it can also be described as the concatentation
of ζ−1

1 and an arc ζ2 connecting p1 to p2.
Proceeding inductively, define for ` ≤ m (where m ≤ k is a number computed

from the order in which the points of α ∩ β are passed through by β) a based loop
γ` at p2 composed of the arc ζ−1

`−1 and an arc ζ` connecting p1 to p2 which is a
concatenation of a subarc β[0, tj(`)] of β and the subarc of α connecting β(tj(`))
back to p2. Up to homotopy, the loops γ` are simple, and we have γ = γ1 ◦ · · · ◦ γm
(read from left to right).

By the first part of this proof, the image of α under point pushing along γ1 is
the arc ζ1. By the above construction, the arc ζ1 intersects γ2 only at the point
p2. Thus using again the first part of this proof, point pushing of ζ1 along the loop
γ2 yields the arc ζ2. As the point pushing group is a group, we also know that ζ2
is the image of α under point pushing along γ1 ◦ γ2 (read from left to right). In
m ≤ k such steps we deduce that indeed, the arc β is isotopic to the image of α
under pointpushing of p2 along γ. �

As a corollary, we obtain Theorem 4 from the introduction.

Corollary 2.5. Let α ∈ A(p1, p2) be a fixed basepoint. Then the map which as-
sociates to an element γ ∈ π1(Σ, p2) the image of α under point pushing along γ
defines a bijection π1(Σ, p2)→ A(p1, p2).

Proof. Lemma 2.4 shows that up to homotopy, any arc β ∈ A(p1, p2) can be ob-
tained from the fixed arc α by point pushing along a loop γ. Since two point
pushing homeomorphisms along homotopic loops are isotopic, the isotopy class of
the resulting arc only depends on the homotopy class of the loop γ. Thus the map
Λ which associates to a homotopy class [γ] ∈ π1(Σ, p2) the isotopy class of the
image of α by point pushing along a based loop in the class [γ] is surjective.

On the other hand, using again Lemma 2.4 and its proof, if β is obtained from
α by point pushing along a based loop γ, then the homotopy class of β with fixed
endpoints equals the homotopy class of the concatenation α ◦ γ. This means that
point pushing along non-homotopic loops gives rise to arcs in different homotopy
classes with fixed endpoints and hence to arcs which are not isotopic. This shows
that the map Λ is injective as well. �

Corollary 2.5 needs to be slightly modified to obtain a statement about disks
in the handlebody H enclosing the two spots, or, equivalently, arcs with fixed
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endpoints on a compact oriented surface, where the endpoints are interior points
of the surface. Namely, looking again at two disks D̃, Ẽ enclosing the two spots
p1, p2 and arcs α ⊂ D̃, β ⊂ Ẽ connecting the two spots, point pushing D̃ along
γ = α−1 ◦β requires moving γ off p1 which depends on a choice. Two choices differ
by the homotopy class of a based loop at p2 which is entirely contained in D̃ and
encloses the spot p1. The next lemma shows that the disk E is independent of the
choice made.

Lemma 2.6. The isotopy class of the disk D̃ is fixed by point pushing p2 along a
loop ζ based at p2 which is entirely contained in the disk D̃ and encircles p1.

Proof. Up to homotopy with fixed basepoint, the loop ζ is embedded in a disk
D̂ ⊂ D̃ which is isotopic to D̃, in particular, it contains the two marked points
p1, p2 in its interior, and whose closure in ∂H is contained in the interior of D̃.
Point pushing of p2 along ζ can be represented by a diffeomorphism which fixes
∂H − D̂ and hence ∂D̃ pointwise. As a consequence, point pushing of p2 along ζ
preserves the disk D̂. �

Remark 2.7. Replacing one of the spots by a boundary component and marking a
point on this component removes the ambiguity in the point pushing construction.

Let us summarize what we obtained so far. Let D ⊂ H be a disk enclosing the
two spots p1, p2. Its boundary ∂D is a simple closed curve in ∂H. It determines
the homotopy class of an arc in ∂H0 with endpoints p1, p2. Let us choose such an
arc α ⊂ ∂H0, oriented in such a way that it connects p1 to p2, and let a be its
homotopy class with fixed endpoints as an arc in ∂H0.

Let E ⊂ H be another such disk which determines the homotopy class b of an
oriented arc β ⊂ ∂H0 connecting p1, p2. The concatenation α−1 ◦ β (read from left
to right) is a loop based at p2. It defines a right coset a−1 · b ∈ 〈c〉\π1(∂H1, p2)
where c is a loop encircling the spot p1 which is entirely contained in the twice
punctured disk D̃ ⊂ ∂H whose boundary equals the boundary of D.

Move as before α−1 ◦ β off p1. Point pushing p2 along the this defined loop
α−1 ◦ β in ∂H1 defines the isotopy class of a homeomorphism of ∂H. It can be
represented by a homeomorphism which equals the identity on the complement of a
small neighborhood of α−1◦β, and we may assume that the point p1 is not contained
in this neighborhood. The image of the disk D under this homeomorphism is the
disk E. Thus Lemma 2.4 describes an algorithm which begins with a pair of disks
(D,E) enclosing the two spots and determines from this pair up to an ambiguity
arising from choosing how to move off the spot p1 a point pushing homeomorphism
of ∂H which transforms D into E. As this ambiguity corresponds to the choice of
a representative of the corresponding coset 〈c〉\π1(∂H ∪ {p2}, p2), we conclude the
following

Corollary 2.8. The point pushing map induces a bijection from the set of cosets
〈c〉\π1(∂H∪{p2}, p2) onto the set of isotopy classes of disks in H enclosing the two
spots.

The same construction is also valid for point pushing the point p1. In this case,
the point pushing map constructed in the above fashion which transforms D into
E is point pushing of p1 along the based loop α ◦ β−1, moved off p2.
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3. I-bundles and disk graphs

While Lemma 2.4 and Corollary 2.5 do not use specific properties of disks and
can be viewed as statements about essential simple closed curves on ∂H which
become homotopically trivial after closing the spots, we now turn to the study
of disks enclosing the two spots as vertices of the disk graph of H. Note that
the description of a disk E enclosing the two spots as the image of a disk D by
point pushing along an element in π1(∂H ∪ {p2}, p2) established in Lemma 2.4
coarsely determines a path in the curve graph of ∂H connecting ∂D to ∂E (that
is, consecutive vertices intersect in uniformly few points and hence are uniformly
close in the curve graph), but such a path may be highly inefficient. In fact, as the
curve graph of ∂H is hyperbolic and such paths are also paths in the disk graph
of H, it can be deduced from the proof of Theorem 2 below that this is indeed the
case.

Following [H19a, H16], define an I-bundle generator for H0 to be a simple closed
curve c ⊂ ∂H0 so that H0 can be realized as an I-bundle over a compact surface
F with connected boundary ∂F and such that c is the core curve of the vertical
boundary of the I-bundle.1 This vertical boundary is an annulus bounded by the
two preimages of ∂F . The surface F is called the base of the I-bundle. If the
I-bundle generator c is separating, then F is orientable of genus g/2 where g is the
genus of H0. If c is non-separating, then the surface F is non-orientable, and the
complement of an open annulus about c in ∂H0 is the orientation cover of F . The
I-bundle over every essential arc in F with endpoints on ∂F is an essential disk in
H0 which intersects c in precisely two points (up to isotopy).

An I-bundle generator c in ∂H0 is diskbusting, which means that it has an
essential intersection with every disk (see [MS13, H19a]). Namely, the base F of
the I-bundle is a deformation retract of H0. Thus if γ is any essential closed curve
on ∂H0 which does not intersect c then γ projects to an essential closed curve on
F . Such a curve is not nullhomotopic in H0 and hence it can not be diskbounding.

The arc graph A(X) of a compact surface X of genus n ≥ 1 with connected
boundary ∂X and possibly marked points (punctures) in the interior of X is the
graph whose vertices are isotopy classes of essential arcs in X with endpoints on
the boundary, and isotopies are allowed to move the endpoints of an arc along ∂X.
Two such arcs are connected by an edge of length one if and only if they can be
realized disjointly. The arc graph A(X) of X is hyperbolic, however the inclusion
of A(X) into the arc and curve graph of X is a quasi-isometry only if X is of genus
one, with at most one marked point [MS13] (see also [H16]).

For an I-bundle generator c in ∂H0 let RD(c) be the complete subgraph of
the disk graph DG0 of H0 consisting of disks which intersect c in precisely two
points. Each such disk is an I-bundle over an arc in the base F of the I-bundle
corresponding to c. We refer to the discussion preceding Lemma 2.1 of [H21] for
details. As two such disks are disjoint if and only if the corresponding arcs in F are
disjoint, the graph RD(c) is isometric to the arc graph A(F ) of F . The following is
a consequence of [MS13, H16, H19a]. We refer to Lemma 2.2 of [H21] for a detailed
proof.

1The assumption of connectedness of the boundary of the base of the I-bundle is not used in
[H19a, H16] but it is needed here to ensure that the I-bundle generator is diskbusting.
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Lemma 3.1. For each I-bundle generator c of ∂H0, the inclusion RD(c) → DG0

is a quasi-isometric embedding.

As the I-bundle over an arc with endpoints on ∂F intersects the curve c in
precisely two points, such I-bundles over arcs with large distance in the arc graph
of F give rise to disks with large distance in the disk graph of H0. However, the
distance in the curve graph of their boundary circles is at most 4. In [MS13], such
a subspace of the disk graph is called a hole.

Let as before F be the base of the I-bundle determined by the I-bundle generator
c. Let Ψ be the involution of H0 which exchanges the two endpoints of the intervals
in the interval bundle. Its fixed point set intersects ∂H0 in the I-bundle generator
c. Let F̃ ⊂ ∂H0 be the preimage of F ; this is the complement of an annulus
in ∂H0 with core curve c. Choose a point p1 ∈ ∂F̃ , let p2 = Ψ(p1) and define
H = H0 − {p1, p2}. The boundary of the thickening of the interval with endpoints
p1, p2 is the boundary of a disk D enclosing the two spots. A disk in RD(c) which
is disjoint from p1, p2 defines a disk in H which is invariant under Ψ up to isotopy
and is disjoint from D.

Push the points p1, p2 = Ψ(p1) slightly into the interior of F̃ so that F̃ can be
thought of as a two-sheeted cover of a surface F+ with connected boundary and
one marked point (spot) in its interior. Let A(F+) be the arc graph of the surface
F+, and let RD+(c) be the subgraph of the disk graph DG of H whose vertices are
Ψ-invariant disks, with boundaries intersecting the fixed point set of Ψ in precisely
two points.

For some ` ≥ 1, a coarse `-Lipschitz retraction of a geodesic metric space X onto
a subspace Y ⊂ X is a coarse `-Lipschitz map E : X → Y (that is, a map which
is `-Lipschitz up to a uniform additive constant) such that there exists a number
k > 0 with d(Ey, y) ≤ k for all y ∈ Y . The subspace Y ⊂ X is quasi-isometrically
embedded in X. Since X is a length space and quasi-geodesics do not have to be
continuous, this is equivalent to stating that any two points in Y can be connected
by a uniform quasi-geodesic in X which is entirely contained in Y . In analogy to
Lemma 3.1, we have

Lemma 3.2. There exists a coarse two-Lipschitz retraction Ω : DG → RD+(c).
Furthermore, RD+(c) is isometric to the arc graph A(F+).

Proof. A disk which is Ψ-invariant and whose boundary intersects the fixed point
set of Ψ in precisely two points is the I-bundle over an arc in F+, and two such
disks are disjoint if and only if their defining arcs in F+ are disjoint. Furthermore,
the I-bundle over any nontrivial arc α in F+ is a disk in H. Thus the map which
associates to an arc α ∈ A(F+) the I-bundle over α is an isometry of A(F+) onto
RD+(c).

Let dDG be the distance in the disk graph DG of H. To construct a coarse
Lipschitz retraction Ω : DG → RD+(c) we proceed along the lines of the proof
of Lemma 2.2 of [H21]. Assume first that the I-bundle generator c is separating.
Then F+ can be identified with a subsurface of ∂H. There are two different choices
for such an identification, and we pick one of them.

Let D ⊂ H be any disk. Since the two marked points on ∂H are contained in
different components of ∂H − c and the image of c under the spot forgetful map
Φ : H → H0 is diskbusting, the boundary of D intersects c and hence F+. Take
any component of F+ ∩ ∂D and associate to D the Ψ-invariant disk Ω(D) which
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is the I-bundle over this intersection component. The disk Ω(D) coarsely does
not depend on choices: Another choice of intersection arc gives rise to a disjoint
disk. Moreover, the images under Ω of disjoint disks are disjoint and hence this
construction defines a coarse one-Lipschitz map Ω : DG → RD+(c) which satisfies
Ω(D) = D for every D ∈ RD+(c). Thus Ω is a coarse one-Lipschitz retraction, and
the inclusion RD+(c)→ DG is indeed a quasi-isometric embedding. This completes
the proof for separating I-bundle generators.

This construction can be modified to cover the case of a non-separating I-bundle
generator c as well, that is, when F+ is a non-orientable surface with one marked
point. Namely, a non-orientable surface F+ of Euler characteristic −2h with con-
nected boundary ∂F and one marked point can be represented as the connected
sum of an orientable surface of genus h with connected boundary and one marked
point in the interior and a projective plane. Equivalently, F+ contains an orientable
subsurface F+

0 ⊂ F+ with two boundary components ∂F+, e, and F+ is obtained
from F+

0 by gluing a Möbius band to the boundary component e. The fundamental
group of F+

0 is an index two subgroup of the fundamental group of F+. As the

surface F+
0 is oriented, its preimage in the orientation cover F̃+ of F+ consists of

two disjoint copies of F+
0 , and F̃+ is obtained from these two copies of F+

0 by con-
necting the two components e1, e2 of the preimage of e with an annulus (which is
the orientation cover of the Möbius band). The oriented I-bundle over F+ contains
the trivial I-bundle over the bordered subsurface F+

0 as a submanifold.
Identify F+

0 with a subsurface of ∂H containing the marked point p1. The
boundary of F+

0 consists of a simple closed curve c1 isotopic to c and a component
e1 of the preimage of the boundary of the Möbius band. Denote as before by Ψ the
orientation reversing involution of H defined by the I-bundle. Let D ∈ DG be any
disk. Since an I-bundle generator in H0 is diskbusting and the surface F+

0 contains
one but not both of the marked points, the boundary curve ∂D of D intersects the
surface F+

0 nontrivially in a collection of pairwise disjoint arcs. If there is such an
arc α with both endpoints on c1 then the I-bundle over α is a disk. Define Ω(D)
to be this disk. Its intersection with F+

0 is disjoint from ∂D. The disk Ω(D) is
coarsely well defined, that is, choosing another component of ∂D ∩ F+

0 with both
endpoints on c1 gives rise to a disjoint disk.

Assume next that ∂D does not contain an arc with both endpoints on c1 but
that there is such an intersection arc α with one endpoint on c1 and the second
endpoint y on e1. Let α̂ be the projection of α to F+. Connect the projection of
y ∈ e1 to the core curve of the Möbius band, attach an arc making one full turn
around the core curve of the Möbius band (in either direction), connect back to the
projection of y and backtrack to ∂F+ with the inverse of α̂. Up to homotopy, this
construction defines an embedded arc in F+ with both endpoints on ∂F+. Define
Ω(D) ∈ RD(c)+ to be the I-bundle over this arc. The disk Ω(D) depends on the
choice of the component α of ∂D ∩ F+

0 and on the choice of the direction of the
loop around the core curve of the Möbius band. However, any two distinct choices
give rise to disks whose boundaries intersect in at most two points contained in the
preimage of the Möbius band. Such disks are disjoint from the I-bundle over some
arc in F+

0 with both endpoints on c1 and hence their distance in DG is at most two.
Finally if every component of ∂D ∩ F+

0 is an arc with both endpoints on e1

then up to homotopy, ∂D is disjoint from the simple closed curve c in ∂H whose
projection to ∂H0 is diskbusting. As the projection of ∂D to ∂H0 is diskbounding,
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this implies that the projection of ∂D to H0 is contractible, in other words, D
encloses the two spots. In this case let α be an arc in F+

0 disjoint from ∂D which
connects the spot p1 ∈ F+

0 to a point y ∈ e1. Let α̂ be the projection of α into
F+. It connects the spot in F+ to the boundary e of the Möbius band. As in the
previous paragraph, connect the projection of y ∈ e1 to the core curve of the Möbius
band, attach an arc making one full turn around the core curve of the Möbius band
(in either direction) and connect back to the spot with the inverse of α̂. Up to
homotopy, this defines an embedded essential loop in F+ based at the spot which
lifts to a Ψ-invariant arc in F̃+ connecting the two spots. Define Ω(D) to be the
disk enclosing the two spots whose boundary is the boundary of the thickening of
this arc. Note that for a fixed choice of α̂, this construction only depends on the
choice of the direction of the arc going around the Möbius band, that is, any two
distinct choices intersect in precisely four points near the spots and are uniformly
close in the disk graph.

Let Ω : DG → RD+(c) be the coarsely defined map constructed above. We claim
that Ω is coarsely two-Lipschitz.

To show that this is the case it suffices to show that if D,D′ are disjoint, then
their images intersect in at most two points. That this holds indeed true for disks
whose intersections with F+

0 contain an arc with at least one endpoint on c1 is
immediate from the above discussion. If this is not the case for say the disk D,
then D encloses the two spots. Then D′ does not enclose the two spots as two disks
enclosing the two spots are not disjoint. But then for suitable choices made in the
above construction, the boundaries of the disks Ω(D),Ω(D′) intersect in at most
four points, and these points are contained in the preimage of the Möbius band.
Once again, the distance between Ω(D),Ω(D′) is at most two.

To complete the proof of the lemma it now suffices to show that if D ∈ RD+(c)
then the distance between D and Ω(D) is uniformly bounded. To this end note
that if ∂D ∩ F+

0 contains an arc with both endpoints on c1 then Ω(D) = D.
If ∂D ∩ F+

0 contains an arc with one endpoint on c1 and the second endpoint
on e1, then the two arcs α, β ⊂ F+ which define ∂D, ∂Ω(D) may not be disjoint.
However, by construction, up to homotopy these arcs only intersect in the interior
of the Möbius band. As we can find an arc in the surface F+ which is disjoint from
both α, β as well as the Möbius band, we conclude that the distance in A(F+)
between α and β is at most two. As a consequence, the distance between D and
Ω(D) in RD+(c) is at most two.

We are left with looking at disks in RD+(c) enclosing the two spots. Now Ω
is a coarsely two-Lipschitz map, and every disk in RD+(c) which encloses the two
spots is disjoint from a disk which is the I-bundle over an arc in the surface F+

0 ,
and such a disk is mapped to itself by Ω. Thus by the triangle inequality, we obtain
that indeed dDG(D,Ω(D)) ≤ 3 for all D ∈ RD+(c). The lemma follows. �

Remark 3.3. The construction in the proof of Lemma 3.2 yields in fact two distinct
coarse Lipschitz retractions. If the I-bundle generator c is separating, then we
obtain one such retraction for each of the two components of ∂H − c. If the I-
bundle generator is non-separating, then there is one retraction for each choice of
a component of the preimage of the boundary of an embedded Möbius band in the
base of the I-bundle.
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Let as before c ⊂ ∂H be an I-bundle generator, with base F+ and involution Ψ,
and let F+

0 ⊂ ∂H be a once punctured subsurface whose boundary either is isotopic
to c if c is separating, or consists of two connected components, say c1, e1, where c1
is isotopic to c and e1 is a preimage of the boundary of a Möbius band in the base
of the I-bundle otherwise.

Denote by A(F+
0 ) the subgraph of the arc graph of F+

0 consisting of arcs with
both endpoints on the boundary component c1 of ∂F+

0 . If c is separating then
A(F+

0 ) equals the arc graph of F+
0 , and it is isometric to the arc graph of the

surface F+. In the case that c is non-separating, then as the projection of F+
0

into F+ is an embedding onto a subsurface of F+ containing the boundary, this
subsurface is a hole for the arc graph A(F+) of F+ in the sense of [MS13]. As a
consequence, the arc graph A(F+

0 ) quasi-isometrically embeds into the arc graph
A(F+).

The following statement is in some sense an inverse of Lemma 3.2. In its formu-
lation, we write ≈ to denote an equality up to a universal multiplicative constant.
Furthermore, write dDG to denote the distance in the disk graph, and let dA(F+

0 )

be the distance in the arc graph of F+
0 . Let p1 be the spot contained in F+

0 . For
two disks D,E whose intersections with F+

0 contain at least one arc with both end-
points on c1 we write dA(F+

0 )(∂D ∩F
+
0 , ∂E ∩F

+
0 ) to denote the distance in A(F+

0 )

between any two such arcs. This is coarsely well defined.

Lemma 3.4. Let D be a disk with the property that ∂D∩F+
0 contains an arc with

both endpoints on c1 and let E be a disk which is obtained from the disk D by point
pushing p1 along a loop in F0 = F+

0 ∪ {p1} based at p1. Then

dDG(D,E) ≈ dA(F+
0 )(∂D ∩ F

+
0 , ∂E ∩ F

+
0 ).

Proof. Let Ω1 : DG → RD+(c) be the coarse two-Lipschitz retraction constructed
in Lemma 3.2 from the surface F+

0 (see Remark 3.3). By assumption, the in-
tersection with F+

0 of ∂D contains an arc α0 with both endpoints on c1, and
the intersection of F+

0 with ∂E contains the image ζ0 of α0 under point pushing
along p1. Thus we may assume that the images of D,E under the map Ω1 are
Ψ-invariant disks D̂, Ê which intersect F+

0 in the arcs α0, ζ0. By Lemma 3.2, we

have dCG(D,E) ≥ 1
2dDG(D̂, Ê)−m where m > 0 is a universal constant. Since the

isometry RD+(c) → A(F+) associates to a disk in RD+(c) the projection of its
boundary into F+, this implies that dDG(D,E) is not smaller than a fixed positive
multiple of dA(F+

0 )(∂D ∩ F
+
0 , ∂E ∩ F

+
0 ). Thus it remains to show that dDG(D,E)

is bounded from above by a fixed positive multiple of dA(F+
0 )(α0, ζ0).

We say that an arc in F+
0 encloses the spot p1 if it is the boundary of a thickening

of an arc connecting the preferred boundary component c1 of F+
0 to the spot p1.

Any two such arcs which are not isotopic intersect. Let αi ⊂ A(F+
0 ) be a geodesic

connecting α0 ⊂ ∂D ∩ F+
0 to αm = ζ0 ⊂ ∂E ∩ F+

0 . We begin with replacing this
path by a path βj of length at most 2m such that for all j, the arc β2j+1 encloses
the spot p1. To this end it suffices to proceed as follows. If i < m is such that both
αi, αi+1 do not enclose the spot, then as αi, αi+1 are disjoint, there exists an arc

β̂ enclosing the spot p1 which is disjoint from both αi, αi+1. Replace the edge in
A(F+

0 ) connecting αi to αi+1 by the path of length two with the same endpoints

which passes through β̂. Since no two adjacent vertices in the path αi can enclose
the spot p1, this yields a path βj as required.
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By the analogue of Corollary 2.5, the arc β2j+1 is obtained from β2j−1 by point
pushing p1 along a loop γj ⊂ F+

0 based at p1. Since both β2j−1 and β2j+1 are
disjoint from β2j , the same holds true for γj . By concatenation, for each j, the arc
β2j−1 is obtained from β0 = α0 by point pushing with the loop γ̂j = γ1 · · · · · γj−1

(read from left to right). As the arc β2j is disjoint from the image of α0 by point

pushing along γ̂j−1, it is the image under point-pushing along γ̂j−1 of an arc β̂2j

disjoint from α0. As such an arc β̂2j is contained in the boundary of a disk in

RD+(c) which is disjoint from α0, the arc β2j is contained in the boundary of
a disk as well, and this disk is disjoint from the disk obtained from D by point
pushing along γ̂j−1.

As a consequence, the path βj is a projection to F+
0 of a path in DG connecting

D to E. This shows that indeed, dDG(D,E) does not exceed 2dA(F+
0 )(α0, ζ0) =

2dA(F+
0 )(∂D ∩ F

+
0 , ∂E ∩ F

+
0 ). This completes the proof of the lemma. �

For the formulation of the following corollary, note that the interval in the vertical
boundary of an I-bundle with generator c whose endpoints are the two spots defines
a basepoint for the arc graph of the annulus A with core curve c, and it defines a
disk D enclosing the two spots. We call a simple closed curve a ⊂ ∂H untwisted
if the subsurface projection of a into this annulus has distance at most two to this
basepoint. Note that this subsurface projection measures the amount of twisting
relative to a base arc of an arc in the annulus A connecting two points in the distinct
boundary components of A.

If c is a separating I-bundle generator then define DG(c) ⊂ DG to be the set of
all disks which intersect c in precisely two points. If c is a non-separating I-bundle
generator then let DG(c) ⊂ DG be the set of all disks which intersect c in precisely
two points and are disjoint from the preimage of the boundary of a Möbius band
in the base of the I-bundle.

Corollary 3.5. For any I-bundle generator c ⊂ ∂H, the inclusion DG(c) → DG
is a quasi-isometric embeddeding. Furthermore, if D,D′ are two such disks whose
intersections with the annulus A with core curve c are untwisted, then

dDG(D,D′) ≈ max{dA(F+)(Ω1(D),Ω1(D′)), dA(Ψ(F+))(Ω2(D),Ω2(D′))}

where Ω1,Ω2 are the two distinct coarse Lipschitz retractions DG → RD+(c).

Proof. Let Ω1,Ω2 : DG → RD+(c) be the two coarse Lipschitz retractions defined
by the choices of the surfaces F+

0 ,Ψ(F+
0 ) ⊂ ∂H as before. Let D ∈ DG(c) be

untwisted. We observed in Lemma 3.4 and its proof that any disk D1 ∈ RD+(c)
whose intersection with the annulus A is untwisted (or, more generally, untwisted
with respect to D) and which encloses the two spots can be obtained from D by
point pushing the point p1 along a loop α in F+

0 and point pushing p2 = Ψ(p1) along
a loop β in Ψ(F+

0 ). Since these point pushing operations clearly commute, the disk
D1 does not depend on the order in which these point pushing transformations are
carried out.

By Lemma 3.2, the distance between D1 and D is proportional to the maximum
of the distance in the arc graph A(F+) of the projections of the intersections ∂D∩
F+

0 , ∂D1 ∩ F+
0 ∈ A(F+

0 ) and ∂D ∩Ψ(F+
0 ), ∂D1 ∩Ψ(F+

0 ) ∈ A(Ψ(F+
0 )). As the set

of disks enclosing the two spots is one-dense in DG(c), this yields the statement of
the corollary. �
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Corollary 3.6. (1) If g = 2h is even then DG contains quasi-isometrically
embedded Z3.

(2) If g is odd then DG contains quasi-isometrically embedded Z2.

Proof. Let g = 2h be even and let c ⊂ ∂H0 be a separating I-bundle generator.
Using the above notations, let α be a bi-infinite quasi-geodesic in A(F+

0 ) start-
ing at α(0) where α(0) is the intersection of F+

0 with the boundary of the disk
D ∈ RD+(c). Such quasi-geodesics exists since the arc graph A(F+

0 ) is of infinite
diameter. By what we showed so far, for all s, t there exists a disk ζ(s, t) whose
projection to F+

0 equals α(s) and whose projection to Ψ(F+
0 ) is of distance at most

two to Ψ(α(t)). Corollary 3.5 then shows that

dDG(ζ(s, t), ζ(s′, t′)) ≈ max{s− s′, t− t′}.
Thus the image of ζ : Z2 → DG is uniformly quasi-isometric to Z2 equipped with
the maximum norm. As this norm is quasi-isometric to the standard Euclidean
norm, we conclude that DG contains quasi-isometrically embedded Z2.

Let A ⊂ ∂H0 be an annulus neighborhood about c. For a fixed pair of points on
the boundary of A (say the marked points p1, p2) the curve graph CG(A) of A can
be identified with the set of homotopy classes of arcs connecting the two boundary
components of A where a homotopy is not allowed to cross through the points
p1, p2. There exists a coarsely well defined subsurface projection Π : CG(∂H) →
CG(A) which maps a simple closed curve crossing through A to a component of its
intersection with A. Here as before, CG(X) is the curve graph of the surface X.

Since c is separating by assumption, any diskbounding simple closed curve has
an essential intersection with A. Hence the restriction to DG of the subsurface
projection CG(H) → CG(A) = Z is a Lipschitz retraction into Z which commutes
with the two Lipschitz retractions defined by the surfaces F+

0 and Ψ(F+
0 ). On the

other hand, iterated point pushing one of the points pi about the core curve of the
annulus keeping the second point fixed shows that the image of this projection is
all of Z. Together this shows that there are embedded Z3 in DG.

Now let g be odd. By Corollary 3.5 and the discussion in the beginning of this
proof, we only have to observe once more that the diameter of A(F+

0 ) ⊂ A(F+) is
infinite, which is well known (see [MS13]). �

4. Free splittings and sphere graphs

This section is devoted to the proof of Theorem 3. We begin with looking again
at a handlebody H of genus g ≥ 2 with two spots p1, p2 on the boundary. Let H0 be
the handlebody of genus g without spots and let Φ : H → H0 be the spot removing
map. Recall that a disk D in H encloses the two spots p1, p2 if Φ(D) ⊂ H0 is
homotopic to a point.

We next use the two spots to add a handle to H. The resulting manifold is
a handlebody H ′ of genus g + 1 with one spot. To this end slightly enlarge the
two spots p1, p2 to two small compact disjoint disks B1, B2 in ∂H with pi ∈ ∂Bi.
Identifying these two disks with an orientation reversing diffeomorphism B1 → B2

which maps p1 to p2 yields a handlebody H ′ of genus g + 1. We may view the
common image of the points p1, p2 as a spot p ∈ ∂H ′. The fundamental group of
H ′ is the free group Fg+1 with g+ 1 generators. We choose the spot p of H ′ as the
basepoint for the fundamental group of H ′.

The following simple observation will be used several times later on.
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Lemma 4.1. A disk D in H which encloses the two spots p1, p2 and the choice of
one of the spots pi determines a free splitting π1(H ′, p) = Fg+1 = Fg ∗Z. Changing
the spot changes the splitting by conjugation with a generator of the Z-factor.

Proof. Up to isotopy, we may assume that the disk D is disjoint from the two closed
disks B1 and B2 used in the construction of H ′. Thus D determines a separating
disk D′ in H ′ which only depends on D. This disk cuts H ′ into a handlebody of
genus g with fundamental group Fg and a solid torus T with fundamental group Z
which contains the basepoint p.

Van Kampen’s theorem now shows that D′ defines a free splitting

π1(H ′, p) = Fg+1 = Fg ∗ Z,

unique up to conjugation with an element of the free factor Z. Namely, the base-
point p is contained in the solid torus T . Thus the splitting of π1(H ′, p) obtained
by van Kampen’s theorem is determined by D′ up to conjugation with an element
of π1(T ).

To see that if we fix one of the spots pi then we obtain in fact a uniquely
determined splitting, it suffices to observe that the solid torus T is obtained by
identifying two disks in the boundary of a ball. This ball is fixed, but the disks are
allowed to move within a fixed subdisk D of this boundary. As a disk is contractible,
moving the two disks B1, B2 freely in D gives rise to the same splitting and hence
there is no ambiguity in the construction (in other words, the fundamental group
of the solid torus T appears only after the gluing). �

The construction in Lemma 4.1 can be reversed. Namely, observe that the
handlebody H ′ contains a distinguished non-separating disk V which is the image
of the two disks in ∂H used in the construction. The spot of H ′ is contained in the
boundary of V . If E ⊂ H ′ is any separating disk disjoint from V which decomposes
H ′ into a solid torus T ⊃ V and a handlebody of genus g, then E is the image of
a disk in H enclosing the two spots under the gluing construction.

Remark 4.2. By Lemma 4.1, each disk D in H enclosing the two spots defines
a free splitting Fg+1 = Fg ∗ Z. Here the Fg-factor in the free product is identified
with the fundamental group π1(H ∪ {p2}, p2). Lemma 2.4 immediately implies the
following. Let a ∈ Fg+1 be the generator of the Z-factor in the free splitting of
Fg+1 defined by the disk D and the choice of the basepoint p1, where a is viewed
as a homotopy class with fixed endpoints of an arc connecting p1 to p2. Let E be
the image of D by point pushing p2 along a loop in the homotopy class q(D,E) ∈
π1(∂H0, p2) defined as the class of the concatenation of an arc α connecting p2 to
p1 which is disjoint from D with an arc β connecting p2 to p1 which is disjoint from
E (compare Lemma 2.4). Via the inclusion ∂H0 → H0, this homotopy class defines
a homotopy class ι∗q(D,E) ∈ π1(H ∪{p2}, p2) = π1(H0, p2) (here the last equation
is the identification of fundamental groups under the spot closing map). Then the
Z-factor defined by p1 and the disk E is generated by a · ι∗q(D,E) (read from left
to right).

From now on we fix a disk D enclosing the two spots in H which is a thickening
of an interval in an I-bundle over a compact surface F with connected boundary.
If the genus of H is even then we assume that F is orientable. This disk defines a
free splitting Fg+1 = Fg ∗ Z where the free factor Z is generated by an element a
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obtained from an embedded oriented arc in the twice spotted disk D̃ in ∂H with
the same boundary as D which connects p1 to p2.

Double the handlebody H to a connected sum M of g copies of S1 × S2 with
two spots. This defines an embedding J : H →M . Any disk E in H doubles to an
essential sphere Π(E) ⊂ M , and E encloses the two spots if and only if this holds
true for Π(E). Furthermore, disjoint disks give rise to disjoint spheres. Hence the
doubling map Π : DG → SG is simplicial, where SG is the sphere graph of M . The
following observation shows that the map Π is not bilipschitz onto its image.

Lemma 4.3. For each I-bundle generator c ⊂ ∂H, the image of the subgraph
RD+(c) under the map Π has diameter at most two in the sphere graph SG.

Proof. As any disk in RD+(c) is at distance one from a disk E ∈ RD+(c) enclosing
the two spots, it suffices to show that two disks D,E ∈ RD+(c) enclosing the two
spots are mapped by Π to the same sphere enclosing the two spots.

A disk E ∈ RD+(c) enclosing the two spots is the image of the base disk D by
point pushing the point p2 along a based loop ζ ∈ π1(F0, p2), followed by point
pushing p1 along the based loop Ψ(ζ) ∈ π1(Ψ(F0), p1).

Let α be an arc connecting p1 to p2 which is disjoint from D. Lemma 2.4,
applied to both the point pushing of p1 and of p2, shows that up to an ambiguity
arising from clearing intersections with the spots, an arc connecting p1 to p2 which
is disjoint from E is homotopic with fixed endpoints to Ψ(ζ)−1 ◦ α ◦ ζ (read from
left to right).

Note that the reflection Ψ acts as the identity on the fundamental group of H,
taken at a fixed point for Ψ. Thus the loop obtained by connecting the fixed point
q for Ψ in α to p2, concatenating with ζ and going back to q along α is homotopic
to its image under Ψ. Now a sphere in the doubled handlebody M enclosing the
two spots is the boundary of the thickening of an arc connecting the two spots.
By the above discussion, the arc defining the sphere Π(E) is homotopic to the arc
which defines the sphere Π(D). Informally, a sphere S enclosing the two spots
p1, p2 determines uniquely an isomorphism of the fundamental group of M based
at p1 with the fundamental group of M based at p2 by connecting p1 to p2 with an
arc not crossing through S. With this identification, point pushing S along loops
at p1, p2 defining the same element in the fundamental group of M gives rise to
the same sphere. Note that the loops ζ and α−1 ◦ ψ(ζ) ◦ α are contained in the
boundary ∂H of the handlebody, and they are not homotopic as elements of the
fundamental group of ∂H. This shows the lemma. �

We shall construct spheres as doubles of disks in the handlebody H and keep
track of distances using Lemma 4.3. Let again D be a disk which is the thickening
of an interval in the I-bundle defined by the I-bundle generator c. It defines the
generator a of the Z-factor of the splitting Fg+1 = Fg ∗ Z defined by D.

Let dSG be the distance in the sphere graph. For ease of bookkeeping, define a
function dD̂G on pairs of disks in H by

dD̂G(E,F ) = dSG(Π(E),Π(F )).

Note that dD̂G is symmetric and fulfills the triangle inequality, but by Lemma 4.3
and by Lemma 3.2, it is not comparable to the distance on DG. Furthermore, we
have dD̂G(E,F ) ≤ dDG(E,F ) for all disks E,F since the map Π is one-Lipschitz.
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Recall that point pushing one of the two spots in H is a diffeomorphism of
H which extends to a diffeomorphism of M and hence induces an isometry on
the sphere graph SG. In other words, such a map preserves the function dD̂G .
Informally, we say that such a map is an isometry for dD̂G .

Consider as before an embedded subsurface F0 of ∂H0 determined by an I-bundle
generator c. If g is even then we assume that c is separating and F0 is isotopic to
a component of ∂H0 − c. If g is odd then F0 is a component of the complement
of the preimage of the core curve of a Möbius band in the orientation cover of the
non-orientable base of a non-separating I-bundle generator c ⊂ ∂H0. Let Ψ be the
orientation reversing involution of H0 determined by the I-bundle generator c. Let
p2 ∈ F0 be a point in the interior of F0 and let p1 = Ψ(p2). Let D ∈ RD+(c) be a
disk isotopic to the thickening of a fiber arc of the I-bundle with endpoints p1, p2,
thought of as being constructed by slightly pushing a point on ∂F0 inside F0.

Let us denote by [a, u]2 the disk obtained from D by point pushing p2 along a
loop γ based at p2 in the surface F0, in the homotopy class u ∈ π1(F0, p2), and
by [a−1, u]1 the disk obtained from D by point pushing p1 along the based loop
Ψ(γ) ⊂ Ψ(F ) in the homotopy class Ψ(u). With this notation, for all u ∈ π1(F0, p2)
we have

(1) dD̂G([a, u]2, [a
−1, u−1]1) ≤ 2.

Namely, point pushing p1 along the loop Ψ(γ) is an isometry for dD̂G , and the image

of the disk [a, u]2 under this point pushing map is a disk which is invariant under
Ψ and hence contained in the subspace RD+(c). The image of this space under the
projection map Π has diameter two by Lemma 4.3.

Now if we write composition from left to right, then as point pushing along based
loops at p1 preserves dD̂G , for homotopy classes b1, b2, c ∈ π1(F0, p2) we obtain from

(1) that

dD̂G([a, c · b1]2, [a, c · b2]2) ≤ dD̂G([a−1, b−1
1 · c−1]1, [a

−1, b−1
2 · c−1]1) + 4(2)

= dD̂G([a−1, b−1
1 ]1, [a

−1, b−1
2 ]1) + 4 ≤ dD̂G([a, b1]2, [a, b2]2) + 8.

The free factor Fg in the free splitting Fg+1 = Fg ∗Z defined by a disk enclosing
the two spots is naturally isomorphic to π1(H ∪ p2, p2). Thus a free basis A =

{a1, . . . , ag} of Fg = π1(H ∪ p2, p2) extends to a free basis Â = {a1, . . . , ag, a} of
Fg+1.

We now use a device from [SS14]. Define the Whitehead graph ΓA(x) of a word
x ∈ Fg in a free basis A ∪ A−1 of Fg as follows. The set of vertices of ΓA(x) is
identified with the set A ∪ A−1. Each pair of consecutive letters aiaj in the word

x contributes one edge from the vertex ai to the vertex a−1
j . Thus if the length

of x equals n then ΓA(x) has n − 1 edges, and ΓA(x) has a cut vertex if x ∈ A.
Furthermore, if ΓA(x) has a cut vertex, then the same holds true for the unique
reduced word which defines the same element of Fg as x.

Following [SS14], define the simple g + 1-length

|w|simple
g+1

of any reduced word w in the free basis A = {a1, . . . , ag} of Fg to be the greatest
number t such that w is of the form w1w2 · · ·wt where the Whitehead graph of
wj with respect to the basis A has no cut vertex for each j = 1, . . . , t. If the
Whitehead graph of w has a cut vertex then the simple g+ 1-length of w is defined
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to be zero. We have that |w|simple
g+1 is bounded from above by the word length of the

reduced word w with respect to the basis A. Furthermore, |w−1|simple
g+1 = |w|simple

g+1 .

The terminology here is taken from [SS14] although it is not well adapted to the
situation at hand.

The following statement combines Lemma 4.6 and Lemma 4.7 of [SS14],

Lemma 4.4. (1) |u|simple
g+1 ≥ |v|simple

g+1 whenever v is a subword of u.

(2)

|w|simple
g+1 ≤ |u|simple

g+1 + |v|simple
g+1 + 1

if u, v are freely reduced words in the letters A ∪A−1 and w = uv.

Proof. The statement of Lemma 4.7 of [SS14] shows the second part of the lemma
only in the case that w = uv is freely reduced. To show that it is true as stated,

assume that |v|simple
g+1 = 0 and that w is the reduced word representing uv. Then w

is obtained from uv by erasing some letters at the end of u and the beginning of v.
In particular, by the first part of the lemma, the Whitehead graph of the subword
of v which is contained in w has a cut vertex.

As a consequence, if w = w1 · · ·wt where the Whitehead graph of wi does not
have a cut vertex, then as u is reduced, w1 · · ·wt−1 is a subword of u. Then

t− 1 ≤ |u|simple
g+1 by the first part of the lemma and hence |w|simple

g+1 ≤ |u|simple
g+1 + 1

as claimed.
The general case follows from a rather straightforward modification of this argu-

ment and will be omitted. Only the case that |v|simple
g+1 = 0 is used in the sequel. �

The next lemma relates simple g + 1-length to the sphere graph SG of M . To
simplify the notation, in the sequel we call a sequence (Si) of spheres in M a path
in SG if for all i the sphere Si is disjoint from Si+1. Thus such a sequence is the
set of integral points on a simplicial path in SG connecting its endpoints. Recall
from Lemma 2.4 and its analogue for spheres that an ordered pair (S,U) of spheres
enclosing the two spots p1, p2 determines uniquely an element b(S,U) ∈ π1(M,p2),
which is represented by the concatenation of an arc connecting p2 to p1 not crossing
through S with an arc connecting p1 to p2 not crossing through U .

Lemma 4.5. Let (Si)0≤i≤n be a path in SG which begins and ends with a sphere
enclosing the two spots p1, p2. Let w = b(S0, Sn) ∈ π1(M,p2); then

|w|simple
g+1 ≤ 2n.

Proof. Assume without loss of generality that the path (Si) connecting S0 to Sn

is of minimal length in SG. First we modify inductively the sequence (Si) without
increasing its length in such a way that each of the spheres Si (1 ≤ i ≤ n−1) either
is non-separating or encloses the spots p1, p2.

The construction proceeds in two steps. In a first step, we replace each separating
sphere S2i−1 with odd index by a sphere which either is non-separating or encloses
the two spots. We do not change the spheres S2i with even index. In a second step,
we then modify the spheres with even index and preserve those with odd index.

To carry out the first step, let ` ≤ n/2 and assume that the sphere S2`−1 is
separating and does not enclose the spots; otherwise there is nothing to do. If
S2`−2, S2` are contained in distinct components of M−S2`−1 then they are disjoint.
In this case we can remove S2`−1 from the path (Si) and obtain a shorter path with
the same endpoints. Since the path (Si) has minimal length this is impossible.
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Thus S2`−2, S2` are contained in the same component W of M − S2`−1. Since
S2`−1 does not enclose the spots, neither of the two components of M − S2`−1 is
a ball with two balls (or points) removed from the interior. Since M has precisely
two spots, this implies that the image of the fundamental group of each of the two
components of M − S2`−1 in the fundamental group of M is non-trivial. Now each
component of M − S2`−1 is a connected sum of S1 × S2 with some balls removed
and therefore the component M−W of M−S2`−1 contains a non-separating sphere

S̃2`−1. Replace S2`−1 by S̃2`−1.
Replace in this way any sphere S2`−1 with an odd index which is separating but

does not enclose p1, p2 by a non-separating sphere without modifying the spheres
S2i with even index. This implements the first step of the construction. The
second step is exactly identical after exchanging the roles of even and odd index.
To summarize, we may assume from now on that every separating sphere in the
path (Si) encloses the two spots.

From the path (Si) we next construct a path (Uk)0≤k≤2u of spheres connecting
S0 to Sn whose length 2u is at most four times the length n of the path (Si) and
such that for each j ≤ u, the sphere U2j encloses the spots p1, p2 and the sphere
U2j−1 is non-separating.

To this end recall that any two distinct spheres which enclose the spots p1, p2

intersect. This means that if the sphere Si from the above sequence encloses the
spots then the spheres Si−1, Si+1 are non-separating. Thus for the construction
of the path (Uk) it now suffices to replace any consecutive pair Si, Si+1 of disjoint
non-separating spheres by a path of length at most four with the same endpoints
whose vertices alternate between non-separating spheres and spheres enclosing the
spots.

Let i < n − 1 be such that the spheres Si, Si+1 are both non-separating. If
M−(Si∪Si+1) is connected then there is a sphere B which encloses the spots p1, p2

and which is disjoint from Si ∪ Si+1. Such a sphere can be obtained by thickening
an arc in M − (Si ∪ Si+1) which connects p1 to p2. Replace the consecutive pair
Si, Si+1 by the path Si, B, Si+1 of length two.

If M − (Si ∪ Si+1) is disconnected and if the spots p1, p2 are both contained in
the same component of M − (Si ∪ Si+1), then we can proceed as in the previous
paragraph. Otherwise there is a component of M−(Si∪Si+1) which is a connected
sum of h ≥ 1 copies of S1×S2 with three points or open balls removed. One of the
holes is a spot, the other two holes are bounded by spheres which glue to the spheres
Si, Si+1. Hence there is a non-separating sphere B which is disjoint from Si ∪Si+1

and such that M − (Si ∪B) and M − (Si+1 ∪B) are both connected. Replace the
consecutive pair Si, Si+1 by a path of length 4 of the form Si, A1, B,A2, Si+1 where
the spheres A1, A2 both enclose the spots p1, p2. This completes the construction
of the sequence (Uk).

For each j the sphere U2j defines a free splitting of Fg+1 of the form Fg ∗Z. If a
is the generator of the free factor Z for the splitting defined by S0 (in the sense as
before, namely we think of a as a homotopy class of an arc in M which connects p1

to p2 and does not intersect the sphere S0, and this homotopy class determines the
free factor Z in the free splitting defined by S0), then for each j the free factor Z for
the free splitting defined by U2j is generated by a · b(S0, U2j) where b(S0, U2j) ∈ Fg.

Let wj = b(S0, U2j)
−1b(S0, U2j+2) ∈ Fg. By construction, the sphere U2j+1 in H

is non-separating and disjoint from U2j , U2j+2. The set of all loops in M∪{p2} with
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basepoint p2 which do not intersect U2j+1 defines a free factor Q of Fg of corank
one. Since U2j+1 is disjoint from U2j and U2j+2, the element wj is contained in the
free factor Q.

Since wj ∈ Q, by Theorem 2.4 of [S00] the Whitehead graph of wj has a cut
vertex. But this just means that the simple g+1-length of wj vanishes. An inductive
application of the second part of Lemma 4.4 now shows that the simple g+1-length
of the word b(S0, Sn) ∈ Fg is at most u ≤ 2n. This is what we wanted to show. �

Now we are ready to show Theorem 2 from the introduction.

Theorem 4.6. For every g ≥ 4 and every n ≥ 1, the sphere graph of a connected
sum ]gS

1 × S2 with two spots contains quasi-isometrically embedded copies of Rn.

Before we provide the proof, we outline the strategy for the argument which is
adapted from [SS14]. View as before the manifold M as the double of a handlebody
H, and represent the handlebody H as an I-bundle over a compact surface F with
boundary. A sphere E in M enclosing the two spots is obtained from a base sphere
S enclosing the two spots by point pushing the spot p2 along a loop in F , based at
p2.

Point pushing induces an isometry of the sphere graph, which yields that for any
homotopy classes u, b1, b2 ∈ π1(F, p2) we have

dSG([a, b1]2, [a, b2]2) = dSG([a, b1 · u]2, [a, b2 · u]2)

(recall that we write concatenation from the left to the right). On the other hand,
the estimate (2) shows that a similar relation holds for precomposition with a fixed
homotopy class of a based loop in (F, p2), which distinguishes the sphere graph
of M from the disk graph of the handlebody H. This allows to estimate from
above the distance in SG of two spheres enclosing the two spots which are obtained
by point pushing the base sphere enclosing the two spots along suitably chosen
loops. A lower bound for such distances was established in Lemma 4.5. An explicit
construction of point pushing loops, taken from [SS14], whose effect on the base
sphere can be controlled using this mechanism leads to the proof of the theorem.

Proof of Theorem 4.6. As before, we view M as the double of the handlebody H.
Assume first that the genus g = 2h of H is even. We will explain at the end of this
proof how to adjust the argument to the case that g is odd.

Let F ⊂ ∂H0 be an embedded oriented surface with connected boundary ∂F such
that H0 equals the I-bundle over F . Let Ψ be the orientation reversing involution
of H0 which exchanges the endpoints of the intervals which make up the interval
bundle. Fix a point p2 ∈ ∂F and let p1 = Ψ(p2).

Arrange the h = g/2 ≥ 2 handles of the surface F cyclically around ∂F . Choose
for each handle of F two oriented disjoint non-homotopic essential arcs in the handle
with endpoints on ∂F . We may assume that ∂F is partitioned into h segments
I1, . . . , Ih with disjoint interior, ordered cyclically along ∂F (that is, if h ≥ 3 then
Ij ∩ Ij+1 consists of a single point for all j) so that each of these segments Ij is
contained in the boundary of one of the handles and contains all four endpoints of
the arcs â2j−1, â2j which are embedded in that handle. The figure shows how this
can be done.

A small neighborhood of the union of these 2h arcs and the boundary of F is
a ribbon graph, that is, a planar surface F0 ⊂ F . We require that the inclusion
F0 → F induces a surjection on fundamental groups. This is equivalent to stating
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that F can be obtained from F0 by attaching a disk to each component of the
boundary of F0 distinct from ∂F .

If h ≥ 3 then let p2 be the intersection Ih∩I1 and let x = Ih−1∩Ih. If h = 2 then
we require that {p2, x} = I1∩I2. Slide the endpoints of the arcs âi which define the
ribbon graph F0 along ∂F to p2 in such a way that this sliding operation does not
cross through x. The image of each of the arcs âi under this homotopy is a based
oriented loop ai at p2. The union of these loops is an embedded rose R with vertex
p2 (the rose R does not contain the boundary circle of F ). As H0 is an I-bundle
over F , the inclusion R→ H ∪{p2} induces an isomorphism of Q = π1(R, p2) onto
the group π1(H ∪ {p2}, p2) which is isomorphic to the fundamental group of H.
Thus if we write H2 = H ∪ {p2} then we have π1(H2, p2) = Q. In the sequel we
think of the based loops ai (i = 1, . . . , 2h) as generators of the fundamental group
Q of R.

As on p.592 in Subsection 5.2 of [SS14], we consider for t ≥ 1 the element

bt = at+1
1 at+1

2 · · · at+1
g at+1

1 at+1
2 at+1

1 ∈ Q.

Let D be the disk in H enclosing the two spots which is a thickening of the fiber of
the interval bundle with endpoints p1, p2. We claim that for every t ≥ 1 the image
of D under the point pushing map of p2 along bt has distance at most 6 to D in
the disk graph DG of H.

We show the claim first in the case that the genus g = 2h of H is at least 6 and
hence the genus of F is at least three. Then bt = uv where u = at+1

1 · · · at+1
g−2 and v =

at+1
g−1a

t+1
g at+1

1 at+1
2 at+1

1 . The word u does not contain the letters ag−1, a
−1
g−1, ag, a

−1
g ,

and the word v does not contain the letters ag−3, a
−1
g−3, ag−2, a

−1
g−2 since g − 3 ≥ 3.

As a consequence, the word u is represented by a loop in the rose R whose image
in the ribbon graph F0 is disjoint from the arcs with endpoints in Ih. Hence up
to homotopy, this loop is disjoint from the I-bundle over each of these two arcs.
Then the same holds true for the image ψu(D) of the disk D under the point
pushing map ψu along u. In particular, the distance between D and ψu(D) in the
disk graph DG is at most two (see Lemma 3.4). Similarly, the image ψv(D) of D
under the point pushing map ψv along v is disjoint from an I-bundle over an arc
with endpoints in the interval Ih−1 and hence dDG(D,ψv(D)) ≤ 2. But the point
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pushing map ψv acts on the disk graph as a simplicial isometry and consequently
dDG(ψv(D), ψv(ψu(D))) ≤ 2. As bt = uv, together with the triangle inequality this
yields

dDG(D,ψbt(D)) ≤ 4

(here words are read from left to right).
If g = 4 then write bt = uvw where u = at+1

1 at+1
2 , where v = at+1

3 at+1
4 and

w = at+1
1 at+1

2 at+1
1 . Then there is a loop in R representing u, v, w which is disjoint

from an arc with endpoints in I2, I1, I2. As in the previous paragraph, we conclude
that dDG(D,ψs(D)) ≤ 2 for s = u, v, w. Thus by the triangle inequality, we have
dCG(D,ψbt(D)) ≤ 6.

This argument can be used inductively and shows the following. For all t ≥ 1
and each k ≥ 1, we have

(3) dDG(D,ψbkt
(D)) ≤ 6k.

Recall that the disk D defines a free splitting π1(H ′, p) = Fg ∗Z where as before,
p ∈ ∂H ′ is the point obtained by identification of p1 and p2. Let a be the generator
of the infinite cyclic group Z, defined by the homotopy class of the arc α in ∂H
connecting p2 to p1 which is disjoint from the boundary of D. As explained in the
discussion preceding Remark 4.2, if u ∈ Q is arbitrary, then the image of D under
the point-pushing map ψu is a disk ψu(D) enclosing the two spots which defines the
free splitting of Fg+1 where the infinite cyclic free factor in the splitting is generated
by a · ι∗q(D,ψu(D)). By the definition of the point pushing map, if we identify Q
with π1(H, p2) = Fg < π1(H ′, p) as described in the beginning of this proof, the
generator of this infinite cyclic free factor is just the element au. We refer to the
discussion before Lemma 4.1 for more details.

Using the above notations, we follow Section 5.2 of [SS14]. For an arbitrary
integer n ≥ 1, define a map Λ : Zn → DG which associates to (k1, . . . , kn) ∈ Zn

the image of the disk D under point-pushing of p2 along the loop bk1
1 b

k2
2 · · · bkn

n ∈ Q
based at p2. We claim that

(4) dD̂G(Λ(k1, . . . , kn),Λ(`1, . . . , `n)) ≤ 6

n∑
i=1

(|ki − `i|+ 8).

To see this we adapt an argument from p.594 of [SS14]. Our goal is to transform
the disk Λ(k1, . . . , kn) = ψ

b
k1
1 ···b

kn
n

(D) to the disk Λ(`1, . . . , `n) = ψ
b
`1
1 ···b

`n
n

(D) in a

controlled way. These disks are determined by the homotopy classes bk1
1 b

k2
2 · · · bkn

n ∈
Q and b`11 b

`2
2 · · · b`nn ∈ Q, respectively, provided that the base disk D is fixed. To

take full advantage of this fact we will now consider pairs of disks (E, V ) where
we view V as a basepoint, and E as a modification of the basepoint. With this
viewpoint, our goal will be to transform the pair (ψ

b
k1
1 ···b

kn
n

(D), D) to the pair

(ψ
b
`1
1 ···b

`n
n

(D), D) in a way which enables us to estimate the function dD̂G .

To simplify the discussion, let us resume the following notation. For an element
u ∈ Q, represented up to homotopy by a unique reduced edge path in the rose R,
let us denote by [a · u]2 the disk ψu(D) obtained from D by point pushing p2 along
u, and denote by [a−1 · u]1 the disk obtained from D by point pushing p1 = Ψ(p2)
along Ψ(u). Inequality (1) shows that

(5) dD̂G([a, u]2, [a
−1, u−1]1) ≤ 2.
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We first claim that

(6) dD̂G(ψ
b
k1
1 ···b

kn−1
n−1 bkn

n
(D), ψ

b
k1
1 ···b

kn−1
n−1 b`nn

(D)) ≤ 6|`n − kn|+ 8.

Namely, the estimate (3) and the fact that point-pushing of p2 induces an isom-
etry for dD̂G on DG imply that

dD̂G(ψbkn
n

(D), ψb`nn
(D)) ≤ 6|`n − kn|.

We now use the inequality (2). As ψbun
(D) = [a · bun]2 for all u, the estimate (5)

shows that
dD̂G([a−1 · b−kn

n ]1, [a
−1 · b−`nn ]1) ≤ 6|kn − `n|+ 4.

Apply to both disks [a−1 · b−kn
n ]1, [a

−1 · b−`nn ]1 point-pushing of the point p1 along

a loop based at p1 representing the homotopy class Ψ(b
−kn−1

n−1 · · · b−k1
1 ). As point-

pushing induces an isometry on the disk graph (and composition is read from left
to right), we obtain

dD̂G([a−1 · b−kn
n b

−kn−1

n−1 · · · b−k1
1 ]1, [a

−1 · b−`nn b
−kn−1

n−1 · · · b−k1
1 ]1) ≤ 6|kn − `n|+ 4.

Using again the estimate (5), this yields the estimate (6) we wanted to show.
Point-pushing of the point p2 along the loop b−`nn transforms the pair of disks

(ψ
b
k1
1 ···b

kn−1
n−1 b`nn

(D), D) to the pair (ψ
b
k1
1 ···b

kn−1
n−1

D,ψb−`n
n

(D)). As point-pushing acts

as an isometry for dD̂G , we view this operation as a change of basepoints which
does not change distances.

In a second step, we use the reasoning which led to the estimate (6) to deduce
that

dD̂G(ψ
b
k1
1 ···b

kn−2
n−2 b

kn−1
n−1

(D), ψ
b
k1
1 ···b

kn−2
n−2 b

`n−1
n−1

(D)) ≤ 6|`n−1 − kn−1|+ 8.

As a next step, we change the basepoint again. Using point-pushing of the point

p2 along the loop b
−`n−1

2 , the pair (ψ
b
k1
1 ···b

kn−2
n−2 b

`n−1
n−1

(D), ψb−`n
n

D) transforms to the

pair
(ψ

b
k1
1 ···b

kn−2
n−2

(D), ψ
b−`n
n b

−`n−1
n−1

D).

Proceeding inductively, in n steps we transform the pair (ψ
b
k1
1 b

k2
2 ···b

kn
n

(D), D) to

the pair (D,ψ
b−`n
n ···b−`1

1
(D)), changing the value of the function dD̂G by at most∑

i(6|`i − ki|+ 8).

Now apply one last time point-pushing of the point p2 along the loop b`11 · · · b`nn
to the pair

(D,ψ
b−`n
n ···b−`1

1
(D))

and obtain the pair (ψ
b
`1
1 ···b

`n
n

(D), D). Using again that point pushing preserves

dD̂G , we conclude that

dSG(ΠΛ(k1, . . . , kn),ΠΛ(`1, . . . , `n)) ≤
∑
i

(6|`i − ki|+ 8)

as claimed.
Now Lemma 4.15 of [SS14] and the discussion on the bottom of p.592 and on

the top of p.594 in [SS14] shows that there is a number c > 0 such that

(7)

n∑
i=1

|ki − `i| ≤ c|b−kn
n b

−kn−1

n−1 · · · b−k1
1 b`11 b

`2
2 · · · b`nn |

simple
g+1 .
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We give a short summary of the proof of this fact as found in [SS14]. Namely, fol-
lowing Definition 4.9 of [SS14], we say that a word w in the lettersA∪A−1 has conju-
gate reduced length at most k if there exist freely reduced words v1, . . . , v`, u1, . . . , u`
such that.

(a) w = vu1
1 vu2

2 · · · v
u`

` , where v
uj

j = u−1
j vjuj , and

(b) k = (`− 1) + |v1|simple
g+1 + · · ·+ |v`|simple

g+1 .

The number k is called the conjugate reduced g + 1-length associated to the decom-
position. The minimal number k for which such a decomposition exists is called
the conjugate reduced length of w, and it is denoted by |w|cr.

The easy Lemma 4.15 of [SS14] states that |w|simple
g+1 ≥ |w|cr, so it suffices to

estimate |w|cr from below for w = b−kn
n b

−kn−1

n−1 · · · b−k1
1 b`11 b

`2
2 · · · b`nn .

Definition 4.10 of [SS14] is geared to this end. A cancelling pair in the reduced
word w is a pair of subwords of the form u, u−1. A nested family F of cancelling
pairs is a finite collection of disjoint cancelling pairs so that if v, v−1 ∈ F and
u, u−1 ∈ F then v occurs between u, u−1 if and only if this is true for v−1. For such
a family F of cancelling pairs let w − F be the finite collection of subwords of w
obtained by erasing the words from F . Define

|w −F|simple
g+1 = |F|+

∑
w′∈w−F

|w′|simple
g+1 .

The required estimate follows from Lemma 4.11 of [SS14] which states that

(8) |w|cr ≥ min
F

(max
{ |F|

2
− 1,

1

5
|w −F|simple

g+1 − 3
}

).

To apply this estimate to the above word w, let F be a nested family of cancelling
pairs for w which minimizes the expression on the right hand side of equation (8)
and write d =

∑
|ki − `i|. If |F| ≥ d/10 then we immediately obtain the required

estimate. Otherwise note that by removing a cancelling pair we can at most delete

a subword of a string of the form b
min{ki,`i}
i . Furthermore it is easy to see that

|bst |
simple
g+1 ≥ |s| for all s. Thus if |F| ≤ d/10 then a rough counting of the simple

norm of the subsegments of w−F as carried out in detail on p.593 of [SS14] yields
again the required estimate.

On the other hand, by Lemma 4.5, we have
(9)

dSG(ΠΛ(k1, . . . , kn),ΠΛ(`1, . . . , `n)) ≥ 1

2
|b−kn

n b
−kn−1

n−1 · · · b−k1
1 b`11 b

`2
2 · · · b`nn |

simple
g+1 .

The estimates (4), (7) and (9) together show that the distance in SG of the images

of Π(D) under the point pushing of p2 along bk1
1 b

k2
2 · · · bkn

n and by b`11 b
`2
2 · · · b`nn is

bounded from above and below by a fixed positive multiple of
∑n

i=1 |ki− `i|. Thus
the map Λ : Zn → SG is a quasi-isometric embedding. The theorem in the case
that g is even follows,

The argument can be adjusted to the case that g is odd as follows. Let H0 be
a handlebody of odd genus g ≥ 5. Choose a non-separating I-bundle generator c.
Then H0 is the oriented I-bundle over a non-orientable surface F with connected
boundary ∂F = c. The surface F can be obtained from an orientable surface F0 of
genus (g − 1)/2 ≥ 2 whose boundary consists of 2 connected components c0, c1 by
attaching a Möbius band to c1. The orientation cover of F equals the complement
in ∂H0 of an open annulus with core curve c, and the preimage of F0 consists of
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two copies of F0 which are glued along an annulus. The fundamental group of F0

is a free group in g generators, and the inclusion of a component of its preimage in
∂H0 into H0 defines an isomorphism on fundamental groups.

The argument in the beginning of this proof now applies verbatim using the
surface F0 instead of F and noting that we may choose disjoint generating arcs for
the fundamental group of F0 ⊂ F with endpoints on the boundary of F with the
property that there is a partition of ∂F into (g−1)/2+1 ≥ 2 disjoint intervals, each
containing the endpoints of one or two arcs. This suffices to control the distance in
the disk graph of a disk obtained from the base disk D by point pushing p2 along
a loop defined by the word bt in the corresponding generators. The rest of the
argument is identical to the argument for connected sums of an even number g ≥ 4
of copies of S1 × S2 with two spots. �
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[H19a] U. Hamenstädt, Asymptotic dimension and the disk graph I, J. Topol. 12 (2019), 658–

673.
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