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Abstract. The disk graph of a handlebody H of genus g ≥ 2 with m ≥ 0

marked points on the boundary is the graph whose vertices are isotopy classes

of disks disjoint from the marked points and where two vertices are connected
by an edge of length one if they can be realized disjointly. We show that for

m = 1 the disk graph contains quasi-isometrically embedded copies of R2. The

same holds true for sphere graphs of the doubled handlebody with one marked
points provided that g is even.

1. Introduction

The curve graph CG of an oriented surface S of genus g ≥ 0 with m ≥ 0 punctures
and 3g−3 +m ≥ 2 is the graph whose vertices are isotopy classes of essential (that
is, non-contractible and not homotopic into a puncture) simple closed curves on S.
Two such curves are connected by an edge of length one if and only if they can be
realized disjointly. The curve graph is a locally infinite hyperbolic geodesic metric
space of infinite diameter [MM99].

A handlebody of genus g ≥ 1 is a compact three-dimensional manifold H which
can be realized as a closed regular neighborhood in R3 of an embedded bouquet of
g circles. Its boundary ∂H is an oriented surface of genus g. We allow that ∂H is
equipped with m ≥ 0 marked points (punctures) which we call spots in the sequel.
The group Map(H) of all isotopy classes of orientation preserving homeomorphisms
of H which fix each of the spots is called the handlebody group of H. The restriction
of an element of Map(H) to the boundary ∂H defines an embedding of Map(H) into
the mapping class group of ∂H, viewed as a surface with punctures [S77, Wa98].

An essential disk in H is a properly embedded disk (D, ∂D) ⊂ (H, ∂H) whose
boundary ∂D is an essential simple closed curve in ∂H, viewed as a surface with
punctures. An isotopy of such a disk is supposed to consist of such disks.

The disk graph DG of H is the graph whose vertices are isotopy classes of essential
disks in H. Two such disks are connected by an edge of length one if and only if
they can be realized disjointly.

In [MS13, H19, H16] the following is shown.

Theorem 1. The disk graph of a handlebody of genus g ≥ 2 without spots is
hyperbolic.

The main goal of this article is to show that in contrast to the case of curve
graphs, Theorem 1 is not true if we allow spots on the boundary.
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Theorem 2. Let H be a handlebody of genus g ≥ 2 with one spot. Then the disk
graph of H contains quasi-isometrically embedded copies of R2. In particular, it is
not hyperbolic.

Theorem 2 implies that disk graphs can not be used effectively to obtain a
geometric understanding of the handlebody group Map(H) of a handlebody H
of genus g ≥ 3 paralleling the program developed by Masur and Minsky for the
mapping class group [MM00]. The analogue of the strategy of Masur and Minsky
would consist of cutting a handlebody open along an embedded disk which yields
a (perhaps disconnected) handlebody with one or two spots on the boundary and
studying disk graphs in the cut open handlebody.

A systematic study of groups to which the strategy laid out by Masur and Minsky
can be applied was recently initiated by Behrstock, Hagen and Sisto [BHS17], and
these groups are called hierarchically hyperbolic. Such groups have quadratic Dehn
functions, but for g ≥ 3 the Dehn function of Map(H) is exponential [HH19]. Hence
Map(H) can not be hierarchically hyperbolic. However, the geometric mechanism
behind an exponential Dehn function for Map(H) is not detected by the failure of
being hierarchically hyperbolic in an obvious way.

Theorem 2 has an analogue for geometric graphs related to the outer automor-
phism group Out(Fg) of the free group on g ≥ 2 generators. Namely, doubling the
handlebody H yields a connected sum M = ]gS

2×S1 of g copies of S2×S1 with m
marked points. A deep result of Laudenbach [L74] shows that Out(Fn) is a cofinite
quotient of the groups of isotopy classes of homeomorphisms of M .

A doubled disk is an embedded essential sphere in M , which is a sphere which
is not homotopically trivial or homotopic into a marked point. The sphere graph
of M is the graph whose vertices are isotopy classes of embedded essential spheres
in M and where two such spheres are connected by an edge of length one if and
only if they can be realized disjointly. As before, an isotopy of spheres is required
to be disjoint from the marked points. The sphere graph of a doubled handlebody
without marked points is hyperbolic [HM13b].

Paralleling the result in Theorem 2 we have

Theorem 3. Let g ≥ 2 and let M be a doubled handlebody of genus g with one
marked point. If g is even then the sphere graph of M contains quasi-isometrically
embedded copies of R2. In particular, it is not hyperbolic.

The argument in the proof of Theorem 3 uses Theorem 2 and a result in [HH15]
which relates the sphere graph in a connected sum ]gS

2 × S1 for g even to the arc
graph of an oriented surface of genus g/2 with connected non-empty boundary. A
corresponding result for odd g and a non-orientable surface with a single boundary
component would yield Theorem 3 for odd g ≥ 3, but at the moment, such a result
is not available.

As in the case of disk graphs, this indicates that sphere graphs are of limited
use for obtaining an effective geometric understanding of Out(Fg). Note that as
in the case of the handlebody group, for g ≥ 3 the Dehn function of Out(Fg) is
exponential [BV12, HM13a].

In a sequel to this article [H12], it is shown that the disk graph of a handlebody
of genus g ≥ 2 with two spots contains quasi-isometrically embedded Rn for any
n ≥ 1, and the same holds true for the sphere graph of a doubled handlebody with
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two spots. We conjecture that the disk graph of a handlebody H with m ≥ 3 spots
is quasi-isometrically embedded into the curve graph of ∂H.

Acknowledgement: I am very grateful to the anonymous referee of this paper for
numerous and detailed comments which helped to improved the exposition.

2. Once spotted handlebodies

The goal of this section is to construct quasi-isometrically embedded copies of
R2 in the disk graph of a handlebody with a single spot.

Thus let H be a handlebody of genus g ≥ 2 with a single spot. Let H0 be the
handlebody obtained from H by removing the spot and let

Φ : H → H0

be the spot removal map. The image under Φ of an essential (that is, not con-
tractible or homotopic into the spot) diskbounding simple closed curve in ∂H is an
essential diskbounding simple closed curve in ∂H0.

The handlebody H0 without spots can be realized as a fiber bundle over a surface
F with non-empty connected boundary ∂F whose fiber is the closed interval I =
[0, 1]. Such a fiber bundle is called an I-bundle. We summarize from Section 3 of
[H16] (p.381-383) some properties of such I-bundles used in the sequel.

There are two different ways a handlebody H0 of genus g can arise as an I-bundle
over a surface F with connected boundary ∂F . In the first case, the surface F is
orientable. Then the genus g of H0 is even and the I-bundle is trivial. The genus
of F equals g/2, and the boundary ∂F of F defines an isotopy class of a separating
simple closed curve c on ∂H0 which decomposes ∂H0 into two surfaces of genus
g/2, with a single boundary component.

If the surface F is non-orientable, then the I-bundle is non-trivial and the bound-
ary ∂F defines a non-separating simple closed curve c in ∂H0. An example is the
orientable I-bundle over the connected sum of g projective planes with a disk. The
complement of an open annulus about c in ∂H0 is the orientation cover of F .

Following Definition 3.3 of [H16], define an I-bundle generator for H0 to be an
essential simple closed curve c ⊂ ∂H0 so that H0 can be realized as an I-bundle
over a compact surface F with connected boundary ∂F and such that c is freely
homotopic to ∂F ⊂ ∂H0. The surface F is then called the base of the I-bundle.

An I-bundle generator c in ∂H0 is diskbusting, which means that it has an
essential intersection with every disk (see [MS13, H19]). Namely, the base F of the
I-bundle is a deformation retract of H0. Thus if γ is any essential closed curve on
∂H0 which does not intersect c, then γ projects to an essential closed curve on F .
Such a curve is not nullhomotopic in H0 and hence it can not be diskbounding.

As established in [MS13, H16, H19], I-bundle generators play a special role for
the geometry of the disk graph of H0. Our goal is to take advantage of this fact for
the understanding of the geometry of the handlebody with one spot. To this end
define the arc graph A(X) of a compact surface X of genus n ≥ 1 with connected
boundary ∂X to be the graph whose vertices are isotopy classes of embedded essen-
tial arcs in X with endpoints on the boundary, and isotopies are allowed to move
the endpoints of an arc along ∂X. Two such arcs are connected by an edge of
length one if and only if they can be realized disjointly. The arc graph A(X) of X
is hyperbolic [MS13].
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For an I-bundle generator c in H0 let RD(c) be the complete subgraph of the
disk graph DG0 of H0 consisting of disks which intersect c in precisely two points.
The boundary of each such disk is an I-bundle over an arc in the base F of the
I-bundle corresponding to c (see the discussion preceding Lemma 4.2 of [H16]).
Namely, the I-bundle over an arc in F with endpoints on ∂F is an embedded disk
in H0. On the other hand, the boundary of a disk in H0 defines the trivial element
in the fundamental group of H0. Thus if β is a diskbounding simple closed curve in
∂H0 which intersects c in a precisely two points, then the homotopy classes relative
to c of the two components of β − c are exchanged under the orientation reversing
involution of H0 which exchanges the endpoints of a fiber in the I-bundle. As β has
two essential intersections with c, this then implies that up to homotopy, the two
components of β − c trace through the two different preimages of the same points
in F .

Now two disks intersecting c in precisely two points are disjoint if and only if the
corresponding arcs in F are disjoint and hence we have

Lemma 2.1. The graph RD(c) is isometric to the arc graph A(F ) of F .

The arc graph of a surface F with non-empty boundary ∂F is a complete sub-
graph of another geometrically defined graph, the so-called arc and curve graph.
Its vertices are essential simple closed curves in F or arcs with endpoints on ∂F ,
and two such arcs or curves are connected by an edge of length one if they can
be realized disjointly. The arc and curve graph contains the curve graph of F as
a complete subgraph, and the inclusion of the curve graph into the arc and curve
graph is known to be a quasi-isometry unless F is a sphere with at most three
holes or a projective plane with at most three holes (Lemma 4.1 of [H16]). Recall
that a map ϕ : X → Y be tween two metric spaces X,Y is an L-quasi-isometric
embedding if for all x, y ∈ X we have

d(x, y)/L− L ≤ d(ϕ(x), ϕ(y)) ≤ Ld(x, y) + L,

and it is called an L-quasi-isometry if moreover its image is L-dense, that is, for
every y ∈ Y there exists some x ∈ X such that d(ϕ(x), y) ≤ L.

The arc graph A(F ) of F is 1-dense in the arc and curve graph of F , but the
inclusion of A(F ) into the arc and curve graph of F is a quasi-isometry only if the
genus of X equals one [MS13] (see also [H16]).

A coarse L-Lipschitz retraction of a metric space (X, d) onto a subspace Y is a
coarse L-Lipschitz map Ψ : X → Y (this means that d(Ψ(x),Ψ(y)) ≤ Ld(x, y) + L
for some L ≥ 1 and all x, y) with the additional property that there exists a number
C > 0 with d(Ψ(y), y) ≤ C for all y ∈ Y . If X is a geodesic metric space then the
image Y of a coarse Lipschitz retraction is a coarsely quasi-convex subspace of X,
that is, any two points in Y can be connected by a uniform quasi-geodesic (for the
metric of X) which is entirely contained in Y .

Lemma 2.2. Let c be an I-bundle generator of the handlebody H0. There exists a
coarsely Lipschitz retraction Θ0 : DG0 → RD(c) whose restriction to RD(c) is the
identity.

Proof. If c is a separating I-bundle generator, then the base F of the I-bundle can
be identified with a component of ∂H0 − c. Note that the choice of F is the choice
of one of the two components of ∂H0 − c, and this choice will be fixed throughout
this proof.
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Since the boundary ∂D of a disk D is an embedded simple closed curve in ∂H0

and as c is diskbusting, the intersection ∂D ∩ F consists of a non-empty collection
of pairwise disjoint simple arcs with endpoints on ∂F . The map

Υ0 : DG0 → A(F )

which associates to a disk D a component of ∂D ∩ F is coarsely well defined:
Although it depends on choices, any other choice Υ′0 maps a disk D to an arc
disjoint from Υ0(D). If we denote by Q : A(F )→ RD(c) the map which associates
to an arc α in F the I-bundle over α, then the disks Q(Υ0(D)), Q(Υ′0(D)) are
disjoint as well.

Furthermore, if D,D′ are disjoint disks then the arcs Υ0(D),Υ0(D′) are disjoint
and hence dDG0

(QΥ0(D), QΥ0(D′)) ≤ 1. This shows that Q ◦ Υ0 is coarsely one-
Lipschitz. As a disk D ∈ RD(c) intersects F in a single arc, we have QΥ0(D) = D.
Thus the map Q ◦ Υ0 is indeed a one-Lipschitz retraction which completes the
proof of the lemma in the case that c is separating. Note however that the relation
between the two Lipschitz retractions constructed in this way from the two distinct
components of ∂H0 − c is unclear.

The above argument does not extend to non-separating I-bundle generators in
any straightforward way. Namely, if c is a non-separating I-bundle generator,
then although up to homotopy, a disk which intersects c in precisely two points is
invariant under the natural orientation reversing involution Ω of the corresponding
I-bundle which exchanges the two endpoints of a fiber, the projection to F of
the boundary of some other disk may have self-intersections, and hence there is
no obvious projection of DG0 onto RD(c) as in the case of a separating I-bundle
generator.

Our strategy is to establish instead that the inclusion RD(c)→ DG0 is a quasi-
isometric embedding. Namely, if this holds true then as DG0 is hyperbolic, the
subspaceRD(c) is quasi-convex, that is, there exists a constant C > 0 such that any
geodesic in DG0 connecting two points inRD(c) is contained in the C-neighborhood
ofRD(c). Then a (coarsely well defined) shortest distance projectionDG0 → RD(c)
is a coarsely Lipschitz retraction by hyperbolicity.

That the inclusion RD(c)→ DG0 is indeed a quasi-isometric embedding follows
from Theorem 10.1 of [MS13] (which can only be used indirectly as the “holes” are
not precisely specified) and, more specifically, Corollary 4.6 and Corollary 4.7 of
[H16]. These formulas establish that the distance in the disk graph between two
disks D,E which intersect a given I-bundle generator c with base F in precisely
two points equals the distance in A(F ) between the projections of ∂D and ∂E to F
up to a uniform constant not depending on c. In view of Lemma 2.1, this is what
we want to show.

The details are as follows. Construct from the disk graph DG0 of H0 another
graph EDG0 with the same vertex set by adding additional edges as follows. If
D,E are two disks in H0, and if up to homotopy, D,E are disjoint from an essential
simple closed curve in ∂H0, that is, a simple closed curve which is not homotopic to
zero, then we connect D,E by an edge in EDG0. This graph is called the electrified
disk graph of H0 [H16].

Let us denote by ERD(c) the subgraph of EDG0 whose vertex set consists of
all disks which intersect the non-separating I-bundle generator c in precisely two
points. Lemma 4.2 and Lemma 4.1 of [H16] show that the map which associates
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to an arc in the non-orientable surface F the I-bundle over F is a uniform quasi-
isometry between the arc and curve graph of F and ERD(c). Furthermore, by
Corollary 4.6 of [H16], the inclusion EDR(c)→ EDG0 is a uniform quasi-isometric
embedding. Here uniform means with constants not depending on c.

Let ζ : [0,m] → ERD(c) be a geodesic. Then ζ is a uniform quasi-geodesic in
EDG0. Define the enlargement ζ2 of ζ to be the edge path in ERD(c) obtained
from ζ by replacing each edge ζ[k, k+ 1] by an edge path ζ2[ik, ik+1] with the same
endpoints as follows.

If the disks ζ(k), ζ(k+1) are disjoint, then the edge path ζ2[ik, ik+1] just consists
of the edge connecting these two points. Otherwise ζ(k), ζ(k+1) intersect, but they
are disjoint from an essential simple closed curve in ∂H0. As each disk ζ(j) is an
I-bundles over an arc α(j) in the surface F , this means that there is an essential
simple closed curve β ⊂ F disjoint from both ζ(k), ζ(k + 1). We refer to Lemma
4.2 of [H16] for a detailed explanation.

An essential subsurface of F containing ∂F is a component of F − ξ where ξ is a
collection of pairwise disjoint mutually not freely homotopic essential non-boundary
parallel simple closed curves in F . If ζ(k), ζ(k + 1) are disjoint from an essential

simple closed curve in F , then the subsurface X̂ of F filled by ζ(k), ζ(k + 1),
defined to be the intersection of all essential subsurfaces of F which contain ζ(k),
ζ(k + 1), ∂F , is not all of F .

Let X ⊂ ∂H0 be the preimage of X̂ in ∂H0. Then X is an essential subsurface
of ∂H0 which contains the boundaries of the disks ζ(k), ζ(k + 1) and is invariant
under the orientation reversing involution Ω. No component of its boundary is
diskbounding, and it contains c as an I-bundle generator. Furthermore, no essential
simple closed curve in X (here essential means non-peripheral) is disjoint from all
disks with boundary in X. This follows from the fact that no essential simple closed
curve in X is disjoint from both ζ(k) and ζ(k + 1) as ζ(k), ζ(k + 1) are invariant

under Ω and their projection to F fill the projection X̂ of X. A subsurface X of
∂H0 with these properties is called thick in [H16].

The complete subgraph EDG(X) of EDG0 whose vertex set is the set of all disks
with boundary in X is an electrified disk graph for X. By Corollary 4.6 of [H16],
its subgraph ERD(c,X) of all disks which intersect c in precisely two points is
uniformly quasi-isometrically embedded in the electrified disk graph of X. Note
that Corollary 4.6 of [H16] only states that this graph is uniformly quasi-convex,
however Corollary 2.8 of [H16] shows that indeed, the inclusion of each of these
graphs into the electrified disk graph of X is a uniform quasi-isometric embedding.
Furthermore, by Lemma 4.2 of [H16], the graph ERD(c,X) is 4-quasi-isometric

to the arc and curve graph of X̂ where we require arcs to have endpoints on the
distinguished boundary component c of X̂.

Now if X̂ is the complement of an orientation reversing simple closed curve
disjoint from c, then X is the complement in ∂H0 of an essential simple closed
curve. In this case we define ζ2[ik, ik+1] to be the path in ERD(c,X) connecting

ζ(k) to ζ(k + 1) which consists of I-bundles over arcs in X̂ defined by a geodesic

in the arc and curve graph of X̂. That is, from a geodesic in the arc and curve
graph of X̂ we construct first an edge path of at most twice the length with the
property that among two consecutive vertices, at least one is an arc, and then we
view this edge path as an edge path in the graph ERD(c,X). Thus by Corollary
4.6 of [H16], ζ2[ik, ik+1] is a uniform quasi-geodesic in EDG(X). If the complement
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of X̂ contains an orientation preserving simple closed curve which does not bound
a Möbius band, then the complement of X in ∂H0 contains at least two disjoint
simple closed curves and we define ζ2[ik, ik+1] to be the edge between ζ(k) and
ζ(k + 1).

The resulting edge path ζ2 in ERD(c) has the property that two consecutive
vertices, which are disks D,E intersecting c in two points, are either disjoint, or
their boundaries lie in the same proper thick Ω-invariant subsurface X of ∂H0

containing c as an I-bundle generator. Moreover, D,E are connected by an edge
in the graph ERD(c,X). In particular, the complement of the subsurface of ∂H0

filled by D,E contains at least two disjoint essential simple closed curves.
Let EDG(2, ∂H0) be the graph whose vertex set is the set of disks and where two

disks are connected by an edge if either they are disjoint, or if they are disjoint from
a multicurve consisting of at least two non-homotopic components. By Theorem
5.5 of [H16], the graph EDG(2, ∂H0) is hyperbolic, and it is an electrification of the
disk graph of H0. This means that it has the same vertex set as the disk graph of
H0, and it is obtained from this disk graph by adding edges.

Theorem 5.5 of [H16] also shows that the path ζ2 is a uniform quasi-geodesic in
EDG(2, ∂H0). Namely, following Section 5 of [H16], define a simple closed curve
γ ⊂ ∂H0 to be admissible if γ is neither diskbounding nor diskbusting. Each
such curve defines a thick subsurface of ∂H0. Write EDG(∂H0 − γ) to denote the
electrified disk graph of ∂H0 − γ and let F(γ) to be the complete subgraph of
EDG(2, ∂H0) whose vertex set consists of all disks which are disjoint from γ. A
disk D ⊂ F(γ) defines a vertex in EDG(∂H0 − γ).

Following Section 2 of [H16], define the enlargement of a uniform quasi-geodesic
η : [0, n] → EDG0 with no backtracking as follows. Assume that η(j), η(j + 1) ∈
EDG(∂H0 − γ) for some admissible simple closed curve γ and some j < n; then
replace the edge η[j, j+1] by a geodesic (or uniform quasi-geodesic) in EDG(∂H0−
γ). Note that if η(j), η(j + 1) are disjoint from an essential simple closed curve in
∂H0−γ, then there is an edge between η(j), η(j+1) in EDG(∂H0−γ). Theorem 5.5
of [H16] states that enlargements of uniform quasi-geodesics in EDG0 are uniform
quasi-geodesics in EDG(2, ∂H0).

Now the above construction takes as input a geodesic in RD(c) and associates
to it an enlargement, chosen in such a way that this enlargement consists of disks
whose boundaries intersect c in precisely two points. Using once more Theorem
5.5 of [H16], this shows that inclusion defines a quasi-isometric embedding of the
complete subgraph of EDG(2, ∂H0) of disks which intersect c in precisely two points
into the graph EDG(2, ∂H0).

This construction can be iterated. In the next step, we modify the path ζ2 to a
path ζ3 by replacing suitable edges by edge paths as follows. Consider two consecu-
tive vertices ζ2(k), ζ2(k+1) of ζ2. These are disks which intersect c in precisely two
points. If they are not disjoint, then there exists an essential simple closed curve
γ ⊂ F which is disjoint from both ζ2(k), ζ2(k + 1). If γ is orientation preserving
and does not bound a Möbious band, then γ has two disjoint preimages γ1, γ2 in
∂H0, and the complement of these preimages is an Ω-invariant thick subsurface X
of ∂H0 containing c as an I-bundle generator. Replace ζ2[k, k+ 1] by a geodesic in
EDG(X) with the same endpoints. This geodesic can be chosen to be the preimage
of a geodesic in the arc and curve graph of F − γ. Proceed in the same way if the
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complement of the subsurface of F filled by ζ(k) ∩ F, ζ(k + 1) ∩ F only contains
orientation reversing primitive simple closed curves.

In finitely many steps we construct in this way a path in the graph RD(c)
connecting the endpoints of ζ. Its length roughly equals the sum of the subsurface
projections of the projection of its endpoints to F , where the sum is over all essential
subsurfaces of F containing the boundary ∂F . In particular, by the distance formula
in Corollary 6.3 of [H16], its length does not exceed a uniform multiple of the
distance in DG0 between its endpoints. The statement also follows as by the main
result of [H16], the so-called hierarchy paths, constructed from a geodesic in EDG0

in the above inductive fashion, are uniform quasi-geodesics in the disk graph.
As a consequence, taking the I-bundle over an arc in F defines an isometry be-

tween the arc graph of F and the graphRD(c), and this graph is quasi-isometrically
embedded in DG0. This is what we wanted to show. �

Our goal is to use I-bundle generators in ∂H0 to construct quasi-isometrically
embedded euclidean planes in the disk graph of H. In analogy to [H19], we define
an I-bundle generator for the spotted handlebody H to be a simple closed curve in
∂H whose image under the spot forgetful map Φ is an I-bundle generator in ∂H0.

Let (c1, c2) ⊂ ∂H be a pair of non-isotopic disjoint I-bundle generators so that
∂H−{c1∪ c2} has a connected component which is an annulus containing the spot
in its interior. Then up to isotopy, Φ(c1) = Φ(c2) = c for an I-bundle generator c
in H0.

The following construction is due to Kra; we refer to [KLS09] for details and for
some applications. For its formulation, for a pair (c1, c2) of disjoint I-bundle gener-
ators on ∂H as in the previous paragraph let RD(c1, c2) be the complete subgraph
of the disk graph DG of H whose vertex set consists of all disks which intersect each
of the curves c1, c2 in precisely two points. Note that if D ∈ RD(c1, c2) then the
image of D under the spot removing map Φ is contained in RD(c) where c = Φ(ci).

In the next lemma we denote by abuse of notation the map DG → DG0 induced
by the spot forgetful map Φ again by Φ. Furthermore, for the remainder of this
section we represent a disk by its boundary, that is, we view the disk graph as
the complete subgraph of the curve graph of ∂H whose vertex set is the set of
diskbounding curves.

Lemma 2.3. Let (c1, c2) be a pair of I-bundle generators bounding a punctured
annulus and let c = Φ(c1) = Φ(c2). There exists a simplicial embedding ι : DG0 →
DG with the following properties.

(1) Φ ◦ ι is the identity.
(2) ι maps RD(c) into RD(c1, c2).

Proof. Note first that there is a natural orientation reversing involution ρ0 of ∂H0

which exchanges the endpoints of the fibres of the interval bundle over the base F .
This involution fixes c and preserves up to isotopy each diskbounding simple closed
curve which intersects c in precisely two points. We refer to the discussion before
Lemma 2.1 for this fact.

Choose a hyperbolic metric g0 on ∂H0 which is invariant under ρ0 and let ĉ be
the geodesic representative of c. This makes sense since the geodesic representative
of a simple closed curve is simple. Choose a point p ∈ ĉ not contained in any
diskbounding simple closed geodesic; this is possible since each diskbounding simple
closed geodesic intersects ĉ transversely in finitely many points and hence the set
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of all points of ĉ contained in a diskbounding closed geodesic is countable. View
p as a marked point on ∂H0; then the geodesic representative of a diskbounding
curve α in ∂H0 is a diskbounding curve ι(α) in ∂H0 − {p}. Via identification of a
disk with its boundary, this construction defines a simplicial embedding

ι : DG0 → DG
with the property that Φ ◦ ι equals the identity. Note that ι is simplicial and hence
one-Lipschitz because the geodesic representatives of two disjoint simple closed
curves are disjoint. Furthermore, we clearly have ι(RD(c)) ⊂ RD(c1, c2). �

The situation in the following discussion is illustrated in Figure A. Let B be the
connected component of ∂H − {c1, c2} containing the spot (this is a once spotted
annulus). Let Λ be a diffeomorphism of ∂H which preserves the complement of B
(and hence the boundary of B) pointwise and which pushes the spot in B one full
turn around a central loop in B. The isotopy class of Λ is contained in the kernel
of the homomorphism Mod(∂H) → Mod(∂H0) induced by the spot removal map
Φ. The map Λ extends to a diffeomorphism of the handlebody H. This can be
seen as in the case of point-pushing in a surface: Identify the image of B under the
spot removal map Φ with a closed annulus A. Choose a neighborhood N of the
punctured annulus B in H which is homeomorphic to A × [0, 1], with one interior
point removed from A× {0}. Gradually undo the rotation of the marked point as
one moves towards A×{1}∪∂A× [0, 1]. Therefore the diffeomorphism Λ generates
an infinite cyclic group of simplicial isometries of RD(c1, c2) which we denote again
by Λ. With this notation, Φ ◦ Λ = Φ.

Let Θ0 : DG0 → RD(c) be as in Lemma 2.2. Define

(1) Θ = Θ0 ◦ Φ : DG → RD(c).

Observe that Θ(ι(D)) = Θ0(D) for all disks D ∈ DG0. This then implies that
Θ(ι(D)) = D for all D ∈ RD(c). Furthermore, Θ is coarsely Lipschitz. Namely,
the puncture forgetful map Φ is simplicial and hence one-Lipschitz, and the map
Θ0 is a coarse Lipschitz retraction by Lemma 2.2. Moreover, we have

Θ(Λ(D)) = Θ(D)

for all disks D.
Recall from Lemma 2.1 that RD(c) is isometric to the arc graph A(F ) of F .

Define a distance d0 on RD(c)× Z by

d0((α, a), (β, b)) = dRD(c)(α, β) + |a− b|
where dRD(c) denotes the distance in RD(c). Let moreover

Ω = ∪kΛkι(RD(c)),

equipped with the restriction of the distance function of DG.
In the following lemma, the fact that the map Ψ is well defined is part of the

claim which is established in its proof.

Lemma 2.4. The map Ψ : Ω → RD(c) × Z which maps D ∈ Λkι(RD(c)) to
Ψ(D) = (Θ(D), k) is a bijective quasi-isometry.

Proof. Recall that Θ(D) = Θ(Λk(D)) for all disks D and all k and that furthermore
the restriction of Θ to ι(RD(c)) is an isometry. In particular, if D0, E0 are distinct
disks in RD(c) then Θ(ι(D0)) 6= Θ(ι(E0)) and hence ι(D0) 6= Λk(ι(E0)) for all k.

We claim that for every disk D ∈ Ω the following hold true.
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Figure A

(1) D 6= Λk(D) for all k 6= 0.
(2) If D ∈ ι(RD(c)) then ΛkD 6∈ ι(RD(c)) for all k 6= 0.
(3) The disks D and Λ(D) can be realized disjointly.
(4) Two disks D ∈ Λkι(RD(c)), E ∈ Λ`ι(RD(c)) are disjoint only if |k− `| ≤ 1.

To show the claim let D ∈ Ω and for k ∈ Z let Dk = Λk(D). Figure A shows that
for ` ≥ 1, the diskDk+` has precisely 2`−2 essential intersections withDk, and these
intersection points are up to isotopy contained in the annulus B. This yields part
(3) of the above claim, and part (4) follows from the same argument. Furthermore,
the twist parameter k can be recovered from the geometric intersection numbers
between Λk(D) and Λ−1(D), D,Λ(D). For example, if k ≥ 2 then these intersection
numbers equal 2k, 2k−2, 2k−4, respectively, and if k ≤ −2 then these intersection
numbers are −2k − 4,−2k − 2,−2k. This establishes part (1) of the above claim,
and part (2) follows from part (1) and the fact that the map ι is an embedding. In
particular, Ω = tkΛkι(RD(c)) (disjoint union).

As a consequence, there exists a map Ψ as claimed in the statement of the lemma,
and this map is a bijection. Now Ω ⊂ RD(c1, c2) and the restriction of the map
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Θ to RD(c1, c2) is just the map induced by the spot forgetful map and hence it is
one-Lipschitz. Part (4) of the above claim implies that the map Ψ is two-Lipschitz.

As Λkι(RD(c)) is isometric to A(F ) for all k, the inverse of Ψ which associates
to a pair (D, k) ∈ RD(c) × Z the disk Λk(ι(D)) is coarsely one-Lipschitz. This
shows that indeed, the map Ψ is a quasi-isometry. �

The following proposition is the main remaining step towards a proof of Theorem
2.

Proposition 2.5. There is a coarse Lipschitz retraction DG → ∪kΛkι(RD(c)) =
Ω. Moreover, Ω is a coarsely quasi-convex subset of DG.

Proof. For the construction of the Lipschitz retraction, we take advantage of the
fact that any free homotopy class on a complete hyperbolic surface of finite area
can be represented by a unique closed geodesic.

As in the proof of Lemma 2.3, let ρ0 be an orientation reversing involution of
∂H0 which fixes the I-bundle generator c pointwise. This involution determines an
involution ρ of the complement in ∂H of the interior int(B) of the annulus B which
exchanges the curves c1 and c2. Write as before Ω = ∪kΛkι(RD(c)).

Choose a complete finite area hyperbolic metric on ∂H (so that the marked
point becomes a puncture) with the property that the involution ρ of ∂H − int(B)
is an isometry for this metric which maps the geodesic representative ĉ1 of c1 to the
geodesic representative ĉ2 of c2. This metric restricts to a hyperbolic metric on the
once punctured annulus B with geodesic boundary. We use this hyperbolic metric
to determine for each pair of points xi ∈ ĉi (i = 1, 2) a sample arc in B connecting
these two points as follows.

Choose a shortest geodesic arc α connecting the two boundary components of
B. By perhaps pulling back the hyperbolic metric with a diffeomorphism of B
which preserves the boundary of B pointwise, we may assume that α is contained
in the geodesic representative of one of the curves from ι(RD(c)). Cutting B open
along α yields a once punctured right angled rectangle R with geodesic sides, where
two distinguished sides come from the arc α. For any pair of points x1, x2 on the
remaining two sides, choose a shortest geodesic arc α(x1, x2) in R connecting these
two points. Such an arc is simple, but it may not be unique. By convexity, α(x1, x2)
is disjoint from α if its endpoints are disjoint from the endpoints of α. Note that as
the spot of ∂H is a puncture for the hyperbolic metric, the geodesic arcs α(x1, x2)
are disjoint from the spot, and α(x1, x2) is not necessarily a shortest arc in B with
fixed endpoints.

This construction yields for any pair of points x1 ∈ ĉ1, x2 ∈ ĉ2 an oriented
geodesic arc α(x1, x2) ⊂ B with endpoints x1, x2 such that any two of these arcs
connecting distinct pairs of points on ĉ1, ĉ2 intersect in at most two points. Further-
more, each of these arcs intersects a geodesic representative of a curve in ι(RD(c))
in at most two points.

The geodesic arcs α(x1, x2) serve as a base marking to measure the twisting
of a diskbounding simple closed curve relative to a simple closed curve in the set
ι(RD(c)) ⊂ DG. This is reminiscent to the definition of a twist parameter for a
simple closed curve crossing through c relative to a fixed marking of the surface
∂H0. As we have to measure twisting about the puncture, we have to take care
of a pair of twist parameters about the simple closed curves c1, c2. Our strategy
to this end is to put the intersection of a simple closed diskbounding curve β with
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∂H −B into a normal form and use this normal form and the a priori chosen arcs
α(x1, x2) to determine a twisting datum for β. We next construct such a normal
form for the intersection of β with ∂H −B using hyperbolic geometry.

Thus let β be a diskbounding simple closed curve on ∂H. The intersection of
β with ∂H − int(B) consists of a non-empty collection ζ of finitely many pairwise
disjoint simple arcs with endpoints on ĉ1, ĉ2. Each such arc is freely homotopic
relative to ĉ1, ĉ2 to a unique geodesic arc which meets ĉ1, ĉ2 orthogonally at its
endpoints.

We claim that the components of the thus defined collection ζ̂ of geodesic arcs
are pairwise disjoint. However, some of these arcs may have nontrivial multiplicities
as β∩ (∂H− int(B)) may contain several components which are homotopic relative
to the boundary. To verify the claim, double each component X of the hyperbolic
surface ∂H−int(B) along its boundary. The resulting, possibly disconnected, closed
hyperbolic surface S admits an isometric involution σ preserving the components
of S whose fixed point set is precisely the image C of the boundary of ∂H − int(B)
in the doubled manifold. The double of the above collection ζ of arcs is a collection
of simple closed curves on S which are invariant under σ.

The free homotopy classes of these closed curves are σ-invariant and hence the
same holds true for their geodesic representatives: Namely, if γ is the geodesic rep-
resentative of such a free homotopy class, then γ intersects the geodesic multicurve
C in precisely two points. Let γ1 be the component of γ − C of smaller length.
Then γ1 ∪ σ(γ1) is a simple closed curve freely homotopic to γ, and its length is at
most the length of γ. But γ is the unique simple closed curve of minimal length in
its free homotopy class and hence γ = γ1∪σ(γ1). Thus γ intersects C orthogonally,

and γ ∩ X is a component of the arc system ζ̂. The claim now follows from the
well known fact that the geodesic representative of a simple closed multicurve on a
hyperbolic surface is a simple closed multicurve.

As a consequence of the above discussion, the order of the endpoints of the
components of β − int(B) on ĉ1 ∪ ĉ2 coincides with the order of the endpoints of

the collection of geodesic arcs ζ̂ which meet ĉ1 ∪ ĉ2 orthogonally at their endpoints
and are freely homotopic to the components of β − int(B). This implies that a

diskbounding simple closed curve β on ∂H can be homotoped to a curve β̂ of the
following form.

(i) The restriction of β̂ to ∂H− int(B) consists of a finite collection of pairwise
disjoint geodesic arcs which meet ĉi orthogonally at their endpoints. Some
of these arcs may occur more than once.

(ii) The restriction of β̂ to the once punctured annulus B consists of a finite non-
empty collection of arcs connecting ĉ1 to ĉ2 and perhaps a finite number
of arcs which go around the puncture and return to the same boundary
component of B. Distinct such arcs have disjoint interiors.

The curve β̂ is uniquely determined by β and the choice of the hyperbolic metric

on ∂H up to a homotopy of the components of β̂ ∩ B with fixed endpoints (note

that the above construction does not determine uniquely the intersection of β̂ with
B). This completes the construction of a normal form for a diskbounding simple
closed curve β on ∂H.

The goal is to use this normal form to construct a Lipschitz retraction of DG
as stated in the proposition by associating to a diskbounding simple closed curve
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β in DG a pair Ψ−1(Θ(β), k) where Ψ is as in Lemma 2.4, where Θ is as in (1)
and where k is a twist parameter, read off from the intersection of the normal
form with the once punctured annulus B. We first check compatibility of this twist
parameter construction with the twist parameter stemming from the decomposition
Ω = ∪kΛkι(RD(c)).

By construction of the map ι, if β = ι(β′) ∈ ιRD(c) then β̂ ∩ ∂H − int(B) is
just the lift of the geodesic representative of β′ to ∂H − int(B) for the following
hyperbolic metric on ∂H0−c. Recall that the metric on ∂H was chosen in such a way
that there exists an orientation reversing involution ρ which maps ĉ1 to ĉ2. Cutting
int(B) off ∂H and gluing c1 to c2 with the isometric involution ρ constructs from
∂H−int(B) a hyperbolic surface which can be viewed as a hyperbolic metric on ∂H0.
Using this metric for the construction of the embedding ι : RD(c) → RD(c1, c2),

we conclude that the intersections with B of the representatives β̂ of the elements
β ∈ ιRD(c) are pairwise disjoint.

Define a map

Ξ : DG → Z

as follows. Let β̂ be a closed piecewise geodesic curve with properties (i),(ii) above
which is constructed from the simple closed diskbounding curve β. Let b be one of

the components of β̂ ∩B with endpoints on ĉ1 and ĉ2, oriented in such a way that
it connects ĉ1 to ĉ2. Such a component exists since otherwise the image of β under
the spot removal map is homotopic to a curve disjoint from the diskbusting curve
c on ∂H0. Let x1, x2 be the endpoints of b on ĉ1, ĉ2.

Let a = α(x1, x2); then b, a are simple arcs in B with the same endpoints which
intersect some core curve of the annulus B in precisely one point. Assume that
ĉ1, ĉ2 are oriented and define the boundary orientation of B. Then b is homotopic
with fixed endpoints to the arc ĉk1 ·a · ĉ`2 for unique k, ` ∈ Z (read from left to right).
In other words, if we denote by τi the positive Dehn twist about ĉi, viewed as a
diffeomorphism of the punctured disk B with fixed boundary, then b is homotopic
with fixed endpoints to the arc τk1 τ

−`
2 a. Define Ξ(β) = k.

Observe that although this definition depends on the choice of the arcs α(x1, x2)

and on the choice of the component b of B ∩ β̂, the map Ξ is coarsely well defined.

Namely, let b′ be a second component of β̂ ∩ B, with endpoints x′1, x
′
2 on ĉ1, ĉ2

and distinct from b. Then the interior of b′ is disjoint from the interior of b. In
particular, if a′ is an arc in B with the same endpoints as b′ whose interior is
disjoint from a, then b′ is homotopic with fixed endpoints to τ q1 τ

−r
2 a′ for |q −

k| ≤ 1, |r − `| ≤ 1. On the other hand, the arcs a = α(x1, x2), α(x′1, x
′
2) do

not have an essential intersection with a fixed arc connecting ĉ1 to ĉ2 and hence
a′ = τs1 τ

−u
2 α(x′1, x

′
2) for some |s| ≤ 1, |u| ≤ 1. This shows that the multiplicity k′

of the curve ĉ1 in the description of b′ relative to α(x′1, x
′
2) satisfies |k − k′| ≤ 2.

The same reasoning yields that the map Ξ is coarsely two-Lipschitz. Furthermore,
we have Ξ(ι(RD(c))) ⊂ [−2, 2]. Namely, recall that we chose the geodesic arc α in
the beginning of this proof to be contained in one of the curves ι(RD(c)) (which is
nothing else but a normalization assumption).

To summarize, the map

(Θ,Ξ) : DG → RD(c)× Z
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is coarsely Lipschitz, and its composition with the inverse of the map Ψ from Lemma
2.4 is a coarse Lipschitz retraction of DG onto Ω provided that the map Ξ maps a
point in Λkι(RD(c)) into a uniformly bounded neighborhood of k.

However, if β0 ∈ ι(RD(c)) and if β = Λk(β0) ∈ Λkι(RD(c)), then the intersec-

tions withH−int(B) of the representatives β̂, β̂0 of β, β0 constructed above coincide.

This implies that up to homotopy with fixed endpoints, β̂ ∩B = Λk(β̂0 ∩B).
On the other hand, point-pushing along a simple closed curve γ based at p

descends to conjugation by γ in π1(∂H0, p). Therefore the image under the map
Λ of a simple arc b in B with endpoints on the two distinct components of ∂B is
homotopic with fixed endpoints to c1bc2 (recall that we oriented c1, c2 so that they
define the boundary orientation of B). As Ξ(ι(RD(c))) ⊂ [−2, 2], it follows that
|Ξ(β)− k| ≤ 2. This shows the proposition. �

To summarize, we obtain

Corollary 2.6. The disk graph of a handlebody H of genus g ≥ 2 with one spot
contains quasi-isometrically embedded copies of R2.

Proof. A subgraph Γ of a metric graph G is uniformly quasi-isometrically embedded
if there exists a coarsely Lipschitz retraction G → Γ. Proposition 2.5 shows that
for any I-bundle generator c in ∂H0, there is a coarsely Lipschitz retraction of DG
onto its subgraph Ω = ∪kΛkι(RD(c)), and by Lemma 2.4, Ω is quasi-isometric to
the direct product RD(c) × Z. Thus as by Lemma 2.1, RD(c) is quasi-isometric
to the arc graph of the base F of the I-bundle determined by c and hence has
infinite diameter, the product of any biinfinite geodesic in RD(c) and Z defines a
quasi-isometrically embedded Z2 in DG. �

Remark 2.7. In [H19] we showed that in contrast to handlebodies without spots,
the disk graph of a handlebody H with a single spot on the boundary is not a
quasi-convex subgraph of the curve graph of ∂H. We do not know whether DG
contains quasi-isometrically embedded euclidean spaces of dimension bigger than
two.

3. Once spotted doubled handlebodies

In this section we consider the connected sum M = ]gS
2×S1 of an even number

g = 2n ≥ 2 of copies of S2×S1 with one spot (marked point). We explain how the
construction that led to the proof of Theorem 2 can be used to show Theorem 3:
The sphere graph of M contains quasi-isometrically embedded copies of R2.

Consider the double M0 = ]gS
2×S1 of a handlebody H0 of genus g ≥ 2 without

spots. Let M be the manifold M0 equipped with a marked point p. As before, we
call p a spot in M . There is a natural spot removing map Φ : M →M0.

The vertices of the sphere graph SG of M are isotopy classes of embedded spheres
in M which are disjoint from the spot and not isotopic into the spot. Isotopies are
required to be disjoint from the spot as well. Two such spheres are connected by
an edge of length one if they can be realized disjointly. Similarly, let SG0 be the
sphere graph of M0.

Choose an embedded oriented surface F0 ⊂M0 of genus n with connected bound-
ary such that the inclusion F0 → M0 induces an isomorphism π1(F0) → π1(M0).
We may assume that the oriented I-bundle H0 over F0 is an embedded handlebody
H0 ⊂M0 whose double equals M0. Thus every embedded essential arc α in F0 with
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boundary in ∂F0 determines a sphere Υ0(α) in M0 as follows. The interval bundle
over α is an embedded essential disk in H0, with boundary in ∂H0, and we let
Υ0(α) be the double of this disk. By construction, the sphere Υ0(α) intersects the
surface F0 precisely in the arc α. By Lemma 4.17 of [HH15], distinct arcs give rise
to non-isotopic spheres, furthermore the map Υ0 preserves disjointness and hence
Υ0 is a simplicial embedding of the arc graph A(F0) of F0 into the sphere graph
SG0 of M0.

Now mark a point p on the boundary ∂F0 of F0 and view the resulting spotted
surface F as a surface in the spotted manifold M . The arc graph A(F ) of F
is the graph whose vertices are isotopy classes of essential simple arcs in F with
endpoints on the complement of p in the boundary of F . Here we exclude arcs
which are homotopic with fixed endpoints to a subarc of ∂F containing the base
point p, and we require that an isotopy preserves the marked point p and hence
endpoints of arcs can only slide along ∂F − {p}. Two such arcs are connected by
an edge if they can be realized disjointly. Associate to an arc α in F the double
Υ(α) of the I-bundle over α.

The spot removal map Φ : M → M0 induces a simplicial surjection SG → SG0,
again denoted by Φ for simplicity. Similarly, if we let ϕ : F → F0 be the map
which forgets the marked point p ∈ ∂F , then ϕ induces a simplicial surjection
A(F )→ A(F0), denoted as well by ϕ. We then obtain a commutative diagram

(2)

A(F ) A(F0)

SG SG0

ϕ

Υ Υ0

Φ

Similar to the case of the handlebody M0 without spots and the map Υ0, we
obtain

Lemma 3.1. The map Υ is a simplicial embedding of the arc graph A(F ) into the
sphere graph.

Proof. We have to show that the map Υ is injective. As Υ0 is injective and as the
diagram (2) commutes, it suffices to show the following. Let α 6= β ∈ A(F ) be such
that ϕ(α) = ϕ(β); then Υ(α) 6= Υ(β).

Now ϕ(α) = ϕ(β) means that up to exchanging α and β, there exists a number
k > 0 such that β can be obtained from α by k half Dehn twists about the boundary
∂F of F . Here the half Dehn twist T (α) of α is defined as follows.

The orientation of F induces a boundary orientation for ∂F which in turn induces
an orientation on ∂F − {p}. With respect to the order defined by this orientation,
let x be the bigger of the two endpoints x, y of α. Slide x across p to obtain a
new arc T (α), with endpoints x′, y. This arc is not homotopic to α. To see this it
suffices to show that the double DT (α) of T (α) in the double DF of F (which is a
surface with one puncture) is not freely homotopic to the double D(α) of α. This
follows since D(α) and DT (α) can be homotoped in such a way that they bound a
once punctured annulus in DF .

The same reasoning also shows that the sphere Υ(T (α)) is not homotopic to the
sphere Υ(α). Namely, let χ ⊂ ∂F ∪ {p} be the oriented embedded arc connecting
the intersection point x of α with ∂F to the point x′. This arc contains p in its
interior. Then the sphere Υ(T (α)) is a connected sum of the sphere Υ(α) with the
boundary of a punctured ball which is a thickening of χ. Thus Υ(α) and Υ(T (α))
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can be isotoped in such a way that they bound a subset of M homeomorphic to
the complement of an interior point of S2 × [0, 1].

The above construction, applied to the sphere Υ(T (α)) instead of the sphere
Υ(α) and where the point y takes on the role of the point x in the above dis-
cussion, shows that Υ(T 2(α)) is obtained from Υ(α) by point-pushing along the
oriented loop ∂F with basepoint p. This is a diffeomorphism of M which leaves the
complement of a small tubular neighborhood of ∂F pointwise fixed and pushes the
basepoint p along ∂F . As in the proof of Lemma 2.4, this argument can be iterated.
It shows that the sphere Υ(T k(α)) intersects the sphere Υ(α) in k − 1 intersection
circles. These circles are essential since they cut both Υ(T k(α)) and Υ(α) into two
disks and k − 2 annuli, where a disk component of T k(α)− T (α) bounds together
with a disk component of T (α) − T k(α) an embedded sphere enclosing the spot.
Invoking the proof of Lemma 2.4, we conclude that indeed, for k 6= `, Υ(T k(α)) is
not homotopic to Υ(T `(α)).

We showed so far that the map Υ is injective. To complete the proof of the
lemma, it suffices to observe that disjoint arcs are mapped to disjoint spheres. But
this is immediate from the construction. �

Proposition 4.18 of [HH15] shows that there is a one-Lipschitz retraction

Ψ0 : SG0 → Υ0(A(F0))

which is of the form Ψ0 = Υ0◦Θ0 (read from right to left) where Θ0 : SG0 → A(F0)
is a one-Lipschitz map. In particular, Υ0(A(F0)) is a quasi-isometrically embedded
subgraph of SG0 which is quasi-isometric to A(F0). Our goal is to show that there
also is a coarse Lipschitz retraction of SG onto Υ(A(F )) of the form Ψ = Θ ◦ Υ
where Θ : SG → A(F ) is a coarse Lipschitz map. This then yields Theorem 3 from
the introduction.

To construct the map Θ we use the method from [HH15]. We next explain how
this method can be adapted to our needs.

Let as before F ⊂M be an embedded oriented surface with connected boundary
∂F so that M is the double of the trivial I-bundle over F . We assume that the
marked point p is contained in the boundary ∂F of F . Furthermore, we assume
that the boundary ∂F of F is a smoothly embedded circle in M ∪ {p} (i.e. an
embedded compact one-dimensional submanifold). We use the marked point p
as the basepoint for the fundamental group of M . Then ∂F equipped with its
boundary orientation defines a homotopy class β ∈ π1(M,p) = π1(F, p) = F2g (the
free group in 2g generators). Since β is the oriented boundary curve of F , it is
an iterated commutator in a standard set of generators of F2g and hence β is not
contained in any free factor (Whitehead graphs are a convenient tool to verify this
fact). Thus ∂F intersects every sphere in M . Namely, for any given sphere S in M ,
the subgroup of π1(M,p) of all homotopy classes of loops which do not intersect S
is a proper free factor of π1(M,p).

As in [HH15] and similar to the construction in Lemma 2.2, the strategy is to
associate to a sphere S in M a component of the intersection F ∩S. However, unlike
in the case of curves on surfaces, there is no suitable normal form for intersections
of spheres with the surface F , and the main work in [HH15] consists of overcoming
this difficulty by introducing a relative normal form which allows to associate to a
sphere in M0 an intersection arc with F0 so that the resulting map SG0 → A(F0)
is one-Lipschitz.
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For the remainder of this section we outline the main steps in this construction,
adapted to the sphere graph SG of M and the arc graph A(F ) of F . This requires
modifying spheres with isotopies not crossing through p, and modifying the surface
F with homotopies leaving the boundary ∂F pointwise fixed.

For convenience, we record some definitions from [HH15] (the following combines
Definition 4.7 and Definition 4.9 of [HH15]).

Definition 3.2. Let Σ be a sphere or a sphere system.

(1) ∂F intersects Σ minimally if ∂F intersects Σ transversely and if no com-
ponent of ∂F − Σ not containing the basepoint p is homotopic with fixed
endpoints into Σ.

(2) F is in minimal position with respect to Σ if ∂F intersects Σ minimally and
if moreover each component of Σ ∩ F is a properly embedded arc which
either is essential or homotopic with fixed endpoints to a subarc of ∂F
containing the marked point.

A version of the easy Lemma 4.6 of [HH15] states that any closed curve containing
the basepoint can be put into minimal position relative to a sphere system Σ as
defined in the first part of Definition 3.2. The following is a version of Lemma 4.12
of [HH15]. For its formulation, call a sphere system Σ simple if it decomposes M
into a simply connected components.

Lemma 3.3. Let Σ be a simple sphere system in M . Suppose that F is in minimal
position with respect to Σ. Let σ′ be an embedded sphere disjoint from Σ and let
Σ′ be a simple sphere system obtained from Σ by either adding σ′, or removing one
sphere σ ∈ Σ. Then F can be homotoped leaving p fixed to a surface F ′ which is in
minimal position with respect to Σ′.

Proof. As in the proof of Lemma 4.12 of [HH15], removing a sphere preserves
minimal position, so only the case of adding a sphere has to be considered.

Thus let Σ be a simple sphere system and let σ′ be a sphere disjoint from Σ. As-
sume that F is in minimal position with respect to Σ. Let WΣ be the complement
of Σ in M , that is, WΣ is a compact (possibly disconnected) manifold whose bound-
ary consists of 2k boundary spheres σ+

1 , σ
−
1 , · · · , σ

+
k , σ

−
k . The boundary spheres σ+

i

and σ−i correspond to the two sides of a sphere σi ∈ Σ. The surface F intersects
WΣ in a collection of embedded surfaces with boundaries. Each such surface is a
polygonal disk Pi (i = 1, . . . ,m). The sides of each such polygon alternate between
subarcs of ∂F and arcs contained in Σ. There is at most one bigon, that is, a
polygon with two sides, and this polygon then contains the point p in one of its
sides. Each rectangle, if any, is homotopic into ∂F .

The proof of Lemma 4.12 of [HH15] now proceeds by studying the intersection of
each polygonal component of F −Σ with the sphere σ′. This is done by contracting
each such polygonal component P to a ribbon tree T (P ) in such a way that the
boundary components in Σ are contracted to single points in T (P ). If P is not
a rectangle or bigon, then T (P ) has a single vertex which is not univalent. As
such ribbon trees are one-dimensional objects, they can be homotoped with fixed
endpoints on ∂WΣ to trees which are in minimal position with respect to σ′. This
construction applies without change to rectangles and perhaps the bigon which can
be represented by an interval with one endpoint at p and the second endpoint on
a component of Σ. We refer to the proof of Lemma 4.12 of [HH15] for details. No
adjustment of the argument is necessary. �
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The above construction is only valid for simple sphere systems Σ and not for
individual spheres. Furthermore, it is known that the arc system on F ∩Σ obtained
by putting F into minimal position with respect to Σ is not uniquely determined
by Σ. To overcome this difficulty, the work of [HH15] uses as an auxiliary datum a
maximal system A0 of pairwise disjoint essential arcs on the surface F0. Here max-
imal means that any arc which is disjoint from A0 is contained in A0. The system
A0 then binds F0, that is, F −A0 is a union of topological disks. Furthermore, ∂F0

and each arc α ∈ A0 is equipped with an orientation.
Choose an arc system A for F which binds F . If F ⊂M is in minimal position

with respect to Σ, then a homotopy assures that no arc from the arc system A
intersects a component of F − Σ which is a rectangle or a bigon. Then Lemma
4.12 of [HH15] and its proof applies without modification and shows that with
a homotopy, F can be put into normal form with respect to the arc system A,
called A-tight minimal position with respect to Σ. This then yields the statement
of Lemma 4.16 of [HH15]: if F is in A-tight minimal position with respect to the
simple sphere system Σ, then the binding arc system Σ ∩ F is determined by Σ.
In particular, two distinct spheres from Σ intersect F in disjoint essential arcs.
There may in addition be inessential arcs, i.e. arcs which are homotopic with fixed
endpoints to a subsegment of ∂F containing the basepoint p, but these will be
unimportant for our purpose.

Now let σ be an essential sphere in M . Let Σ be a simple sphere system in M
containing σ as a component. We put F into A-tight minimal position with respect
to Σ. Then σ ∩ F consists of a non-empty collection of essential arcs and perhaps
some additional non-essential arcs. Choose one of the essential intersection arcs α
and define Θ(σ) = α. As in [HH15] and Proposition 2.5 we now obtain

Proposition 3.4. The map Θ is a coarsely Lipschitz map. For each arc α ∈ A(F ),
we have Θ(Υ(α)) = α. As a consequence, if g = 2n is even then the sphere graph
SG of M contains quasi-isometrically embedded copies of R2.

Proof. Given the above discussion, the proof that Θ is a coarsely Lipschitz map is
identical to the proof that the map Θ0 is a coarsely Lipschitz map in Proposition
4.18 of [HH15] and will be omitted. Moreover, as for α ∈ A(F ), the sphere Υ(α)
intersects F in the unique arc α, we have Θ(Υ(α)) = α.

As a consequence, Θ|Υ(A(F )) is a Lipschitz bijection, with inverse Υ. Then
the subgraph Υ(A(F )) of SG is bilipschitz equivalent to A(F ). Furthermore, the
map Υ ◦ Θ is a Lipschitz retraction of SG onto Υ(A(F )). Then Υ(A(F )) is a
quasi-isometrically embedded subgraph of SG which is moreover quasi-isometric to
A(F ).

Let as before F0 be the surface obtained from F by removing the spot. We are
left with showing that A(F ) is quasi-isometric to A(F0) × Z. However, this was
shown in Lemma 2.4. Namely, in the terminology used before, the boundary ∂F is
an I-bundle generator in the trivial interval bundle H over F , and associating to an
arc α the I-bundle over α defines an isomorphism of A(F ) with the subgraph Ω of
the disk graph of H used in Lemma 2.4. The statement now follows from Lemma
2.4. �

Remark 3.5. Most likely Proposition 3.4 holds true as well in the case that g =
2n+ 1 is odd, and furthermore this can be deduced with the above argument using
non-orientable surfaces. However, the analogue of Proposition 4.18 of [HH15] for
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non-orientable surfaces is not available, and we leave the verification of these claims
to other authors.
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