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Abstract. Let ϕ be a Z/2Z-spin structure on a closed oriented surface Σg

of genus g ≥ 4. We determine a generating set of the stabilizer of ϕ in the

mapping class group of Σg consisting of Dehn twists about an explicit collection
of 2g + 1 curves on Σg . If g = 3 then we also determine a generating set of

the stabilizer of an odd Z/4Z-spin structure consisting of Dehn twists about a

collection of 6 curves.

1. Introduction

For some r ≥ 2, a Z/rZ-spin structure on a closed surface Σg of genus g is a
cohomology class ϕ ∈ H1(UTΣg,Z/rZ) which evaluates to one on the oriented fibre
of the unit tangent bundle UTΣg → Σg of Σg. Such a spin structure exists for all
r which divide 2g− 2. If r is even, then it reduces to a Z/2Z-spin structure on Σg.

A Z/2Z-spin structure on Σg has a parity, either even or odd. Thus there is a
notion of parity for all Z/rZ-spin structures with r even. If ϕ,ϕ′ are two Z/rZ-
spin structures on Σg so that either r is odd or r is even and the parities of ϕ,ϕ′

coincide, then there exists an element of the mapping class group Mod(Σg) of Σg
which maps ϕ to ϕ′. Hence the stabilizers of ϕ and ϕ′ in Mod(Σg) are conjugate.

Spin structures naturally arise in the context of abelian differentials on Σg. The
moduli space of such differentials decomposes into strata of differentials whose zeros
are of the same order and multiplicity. Understanding the orbifold fundamental
group of such strata requires some understanding of their projection to the mapping
class group. If the orders of the zeros of the differentials are all multiples of the
same number r ≥ 2, then this quotient group preserves a Z/rZ-spin structure ϕ
on Σg. Hence the orbifold fundamental groups of components of strata relate to
stabilizers Mod(Σg)[ϕ] of spin structures ϕ on Σg.

To make such a relation explicit we define

Definition 1. A curve system on a closed surface Σg is a finite collection of
smoothly embedded simple closed curves on Σg which are non-contractible and
mutually not freely homotopic, and such that any two curves from this collection
intersect transversely in at most one point.
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A curve system defines a curve diagram which is a finite graph whose vertices
are the curves from the system and where two such vertices are connected by an
edge if the curves intersect.

Definition 2. A curve system on Σg is admissible if it decomposes Σg into a
collection of topological disks and if its curve diagram is a tree.

Using a construction of Thurston and Veech (see [Lei04] for a comprehensive
account), admissible curve systems on Σg give rise to abelian differentials on Σg, and
the component of the stratum and hence the equivalence class of a spin structure
(if any) it defines can be read off explicitly from the combinatorics of the curve
system. This makes it desirable to investigate the subgroup of the mapping class
group generated by Dehn twists about the curves of an admissible curve system.

The main goal of this article is to present a systematic study of stabilizers of
suitably chosen curves in the spin mapping class group Mod(Σg)[ϕ] and to use this
information to build generators for this group by induction over subsurfaces. As a
main application we obtain the following.

For g ≥ 3 let Cg and Vg be the collections of 2g+ 1 non-separating simple closed
curves on a closed surface Σg of genus g shown in Figure 1. We show

Figure 1

Theorem 3. (1) Let ϕ be an odd Z/2Z-spin structure on a closed surface Σg
of genus g ≥ 3. Then Mod(Σg)[ϕ] is generated by the Dehn twists about
the curves from the curve system Cg.

(2) Let ϕ be an even Z/2Z-spin structure on a closed surface Σg of genus g ≥ 4.
Then Mod(Σg)[ϕ] is generated by the Dehn twists about the curves from the
curve system Vg.

That the spin mapping class group can be generated by finitely many Dehn twists
or and finite products of Dehn twists is due to Hirose. In [Hi02] he found for any
genus g ≥ 2 a generating set for the stabilizer of an even Z/2Z-spin structure by
finitely many finite products of Dehn twists, and the stabilizer of an odd Z/2Z-spin
structure is treated in [Hi05].

For surfaces of genus g ≥ 5, Calderon [Cal19] and Calderon and Salter [CS19]
identified the image of the orbifold fundamental group of most components of strata
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in the mapping class group by constructing a different but equally explicit gener-
ating set for the spin mapping class group. Earlier Walker [W09, W10] obtained
some information on the image of the orbifold fundamental group of some strata of
quadratic differentials in the mapping class group using completely different tools.

Theorem 3 does not construct generators for the stabilizer of an even Z/2Z-
spin structure on a surface of genus g = 2, 3. Namely, in these cases there is no
admissible curve system with the property that the Dehn twists about the curves
from the system stabilize an even Z/2Z-spin structure and such that the Dehn twists
about these curves generate a finite index subgroup of the mapping class group.
This corresponds to a classification result of Kontsevich and Zorich [KZ03]: There
is no component of a stratum of abelian differentials with a single zero on a surface
of genus 2 and even spin structure. On a surface Σ3 of genus 3, the component
of the stratum of abelian differentials with two zeros of order two and even spin
structure is hyperelliptic and hence the projection of its orbifold fundamental group
to Mod(Σ3) commutes with a hyperelliptic involution and is of infinite index.

Our results can be used to construct an explicit finite set of generators of the
stabilizer of a Z/rZ-spin structure for any r ≤ 2g − 2 and any closed surface Σg,
given by Dehn twists, positive powers of Dehn twists and products of Dehn twists
about two simple closed curves forming a bounding pair. Potentially they can
also be used inductively to find generators by Dehn twists about curves from an
admissible curve system. We carry this program only out in a single case, which is
the odd Z/4Z-spin structure on a surface of genus 3.

Consider the system E6 of simple closed curves on the surface Σ3 of genus 3
shown in Figure 2 which is of particular relevance for the understanding of the
stratum of abelian differentials with a single zero on Σ3 [LM14]. We show

Theorem 4. The subgroup of Mod(Σ3) generated by the Dehn twists about the
curves from the curve system E6 equals the stabilizer of an odd Z/4Z-spin structure
on Σ3.

The strategy for the proofs of the main results is as follows.

For some r ≥ 2 let us consider an arbitrary Z/rZ-spin structure ϕ on a compact
oriented surface S of genus g ≥ 2, perhaps with boundary. Following [HJ89] and
[Sa19], the spin structure can be viewed as a Z/rZ-valued function on oriented
closed curves on S which assumes the value one on the oriented boundary of an
embedded disk in S. Changing the orientation of the curve changes the value of ϕ
on the curve to its negative [HJ89, Sa19].



4 URSULA HAMENSTÄDT

Define a graph CG+
1 as follows. Vertices are nonseparating simple closed curves

c on S with ϕ(c) = ±1, and two such vertices d, e are connected by an edge if d, e
can be realized disjointly and if furthermore, S− (d∪ e) is connected. Thus CG+

1 is
a subgraph of the curve graph of S. The stabilizer Mod(S)[ϕ] of ϕ in the mapping
class group of S acts on CG+

1 as a group of simplicial automorphisms.

In Section 2 we show that for any g ≥ 3 and r ≤ 2g − 2 the graph CG+
1 is

connected. We also note that for an odd Z/2Z-spin structure on a surface of genus
g = 2, this is not true. In Section 3 we verify that the action of the group Mod(S)[ϕ]
on the graph CG+

1 is transitive on vertices.

For a vertex c of CG+
1 we are then led to describing the intersection of Mod(S)[ϕ]

with the stabilizer of c in Mod(S). Most important is the understanding of the
intersection of Mod(S)[ϕ] with the so-called disk pushing subgroup, namely the
kernel of the natural homomorphism of the stabilizer of c to the mapping class
group of the surface obtained from S − c by capping off the two distinguished
boundary components of S − c. This is also carried out in Section 3.

In Section 4 we specialize further to a Z/2Z-spin structure ϕ. We find a pre-
sentation of Mod(S)[ϕ] as a quotient of a Z/2Z-extension of the product of two
copies of the stabilizer of a vertex of CG+

1 , amalgamated over the stabilizer of an
edge of CG+

1 . This is used to prove the first part of Theorem 3 with an argument
by induction on the genus g of the closed surface Σg.

The proof of the second part of Theorem 3 uses similar methods and is contained
in Section 5. A variation of these arguments yield the proof of Theorem 4 in Section
6.

The appendix contains a technical variation of the main result of Section 2 which
is used in Section 5. Its proof follows along exactly the same line as the proof of
the main result of Section 2.

This work is partially motivated by the article [Sa19] of Salter. However, aside
from some simple constructions using curves, the only result from [Sa19] we use is
Proposition 4.9.

Acknowledgement: I am grateful to Dawei Chen, Samuel Grushevsky, Martin
Möller and Nick Salter for useful discussions. This work was completed while the au-
thor was in residence at the MSRI in Berkeley, California, in the fall semester 2019,
supported by the National Science Foundation under Grant No. DMS-1440140.

2. Graphs of curves with fixed spin value

In this section we consider a compact surface S of genus g ≥ 2, with or without
boundary. For a number r ≥ 2 we introduce Z/rZ-spin structures on S and use
these structures to define various subgraphs of the curve graph of S. We then
study connectedness of these graphs. Of primary interest is a graph whose vertices
are nonseparating simple closed curves with spin value ±1. We show that for all
r ≤ 2g − 2 and for all g ≥ 3 this graph is connected. This is used in Section 3 to
study the stabilizer of a spin structure in the mapping class group of S.
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This section is divided into 5 subsections. We begin with summarizing some
information on spin structures. Each of the remaining subsections is devoted to
the investigation of a specific subgraph of the curve graph of S defined by a spin
structure ϕ on S.

2.1. Spin structures. The following is taken from [HJ89], see Definition 3.1 of
[Sa19]. For its formulation, denote by ι the symplectic form on H1(S,Z).

Definition 2.1 (Humphries-Johnson). For a number r ≥ 2, a Z/rZ-spin structure
on S is a Z/rZ-valued function ϕ on isotopy classes of oriented simple closed curves
on S with the following properties.

(1) (Twist linearity) Let c, d be oriented simple closed curves and let Tc be the
left Dehn twist about c; then

ϕ(Tc(d)) = ϕ(d) + ι(d, c)ϕ(c) (mod r).

(2) (Normalization) ϕ(ζ) = 1 for the oriented boundary ζ of an embedded disk
D ⊂ S.

As an additional property, one obtains that whenever c−1 is obtained from c by
reversing the orientation, then ϕ(c−1) = −ϕ(c) (Lemma 2.2 of [HJ89]).

Humphries and Johnson [HJ89] (see Theorem 3.5 of [Sa19]) also give an alterna-
tive description of spin structures. Namely, for some choice of a hyperbolic metric
on S let UTS be the unit tangent bundle of S. It can be viewed as the quotient of
the complement of the zero section in the tangent bundle of S by the multiplicative
group (0,∞) and hence it does not depend on the metric.

The Johnsson lift of a smoothly embedded oriented simple closed curve c on S
is simply the closed curve in UTS which consists of all unit tangents of c defining
the given orientation. The following is Theorem 2.1 and Theorem 2.5 of [HJ89] as
formulated in Theorem 3.5 of [Sa19].

Theorem 2.2 (Humphries-Johnsson). Let S be a compact surface and let ζ be
the oriented fibre of the unit tangent bundle UTS → S. A cohomology class ψ ∈
H1(UTS,Z/rZ) with ψ(ζ) = 1 determines a Z/rZ-spin structure via

α→ ψ(α̃)

where α is an oriented simple closed curve on S and α̃ is its Johnson lift. This
determines a 1-1 correspondence between Z/rZ-spin structures and

{ψ ∈ H1(UTS,Z/rZ) | ψ(ζ) = 1}.

There is another interpretation as follows; we refer to p.131 of [Hai95] for more
information on this construction. Given a number r ≥ 2 which divides 2g − 2, an
application of the Gysin sequence for the Euler class of UTS yields a short exact
sequence

(1) 0→ Z/rZ→ H1(UTS,Z/rZ)→ H1(S,Z/rZ)→ 0.
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By covering space theory, an r-th root of the tangent bundle of S, viewed as a
complex line bundle for some fixed complex structure, is determined by a homo-
morphism H1(UTS,Z/rZ)→ Z/rZ whose composition with the inclusion Z/rZ→
H1(UTS,Z/rZ) is the identity and therefore

Proposition 2.3. There is a natural one-to-one correspondence between the r-th
roots of the canonical bundle of S and splittings of the sequence (1).

A Z/2Z-spin structure on a compact surface S of genus g with empty or con-
nected boundary has a parity which is defined as follows.

A geometric symplectic basis for H1(S,Z) is a system a1, b1, . . . , ag, bg of simple
closed curves on S such that ai, bi intersect in a single point and that ai ∪ bi is
disjoint from aj ∪ bj for i 6= j. Then the parity of the spin structure ϕ equals

(2) Arf(ϕ) =
∑
i

(ϕ(ai) + 1)(ϕ(bi) + 1) ∈ Z/2Z.

This does not depend on the choice of the geometric symplectic basis.

2.2. The graph of nonseparating curves with vanishing spin value. The
curve graph CG of S is the graph whose vertices are essential (that is, neither
nullhomotopic nor homotopic into the boundary) simple closed curves in S and
where two such curves are connected by an edge if they can be realized disjointly.
We can use the spin structure ϕ to introduce various subgraphs of CG and study
their properties. One of the main technical ingrediences to this end is the following
result of Salter (Corollary 4.3 of [Sa19]).

Lemma 2.4 (Salter). Let Σ ⊂ S be an embedded one-holed torus. Then there exists
a simple closed curve c ⊂ Σ with ϕ(c) = 0.

Denote by CG0 ⊂ CG the complete subgraph of the curve graph whose vertex
set consists of nonseparating curves c with ϕ(c) = 0. Note that this is well defined,
that is, it is independent of the choice of an orientation of c. As a fairly easy
consequence of Lemma 2.4 we obtain

Lemma 2.5. Let ϕ be a spin structure on a closed surface of genus g ≥ 3. Then
CG0 is connected.

Proof. We use the following result of Masur-Schleimer [MS06], see Theorem 1.2
of [Put08]. Let SG ⊂ CG be the complete subgraph whose vertex set consists of
separating simple closed curves; then SG is connected. Note that this requires that
g ≥ 3.

Let a, b be vertices of CG0. Choose simple closed curves â, b̂ which intersect a, b
in a single point; such curves exist since a, b are nonseparating. Then the boundary

c, d of a tubular neighborhood of a∪ â and b∪ b̂, respectively, is a separating simple
closed curve which decomposes S into a one-holed torus containing a, b and a surface
of genus g − 1 ≥ 2 with boundary.

Connect c to d by an edge path (ci)0≤i≤k ⊂ SG (here c = c0 and d = ck).
Construct inductively an edge path (ai) ⊂ CG0 connecting a = a0 to b = ak such
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that for each i, ai is disjoint from ci, as follows. Put a0 = a and assume that we
constructed already such a path for some j < k. Then aj is disjoint from cj .

If aj also is disjoint from cj+1 then define aj+1 = aj . Otherwise aj is contained
in the same component Σ of S − cj as cj+1. Choose a one-holed torus T ⊂ S − Σ.
Such a torus exists since cj decomposes S into two surfaces of positive genus with
connected boundary. By Lemma 2.4, this torus contains a nonseparating simple
closed curve aj+1 with ϕ(aj+1) = 0, and this curve is disjoint from both aj and
cj+1. This yields the induction step. �

Remark 2.6. The proof of Lemma 2.5 extends with a bit more care to compact
surfaces of genus at least 3 with connected boundary. We expect that the Lemma
also holds true for g = 2.

2.3. The graph of nonseparating curves with spin value ±1 on a surface
of genus 2. Define CG1 to be the complete subgraph of CG of all nonseparating
simple closed curves c on S with ϕ(c) = ±1. Note that this condition does not
depend on the orientation of c and hence it is indeed a condition on the vertices of
CG. In this subsection we discuss the special case g = 2.

Proposition 2.7. Let ϕ be an odd Z/2Z-spin structure on a closed surface S of
genus 2. Then any two simple closed nonseparating curves c, d on S with ϕ(c) =
ϕ(d) = 1 intersect.

Proof. Let ϕ be a Z/2Z-spin structure on S. Let c be a nonseparating simple closed
curve on S with ϕ(c) = 1. Assume that there is a nonseparating simple closed curve
d with ϕ(d) = 1 which is disjoint from c. As a surface of genus two does not admit
bounding pairs, the surface S − (c ∪ d) is a four-holed sphere. Thus there exists a
simple closed separating curve e which decomposes S into two one-holed tori T1, T2

such that c ∈ T1, d ∈ T2.

Denoting by ι the mod two homological intersection form on H1(S,Z/2Z), there
are two nonseparating simple closed curves v ⊂ T1, w ⊂ T2 so that

(3) ι(v, c) = 1 = ι(w, d) and ι(w, c) = ι(v, d) = 0.

The curves a1 = c, b1 = w, a2 = d, b2 = w define a geometric symplectic basis
for H1(S,Z). Since ϕ(a1) = ϕ(a2) = 1, the formula (2) for the Arf invariant shows
that ϕ is even as claimed. �

2.4. Z/rZ-spin structures for r = 2, 4 on a surface of genus g ≥ 3. In this
subsection we study the graph CG1 for a Z/rZ-spin structure on a surface of genus
g ≥ 3 for r = 2, 4. To this end we introduce two more graphs related to simple
closed curves on surfaces.

Definition 2.8. Let S be a compact surface of genus g ≥ 2. The graph of non-
separating pairs NS is the graph whose vertices are unordered pairs of simple closed
curves (c, d) on S so that S− (c∪ d) is connected. Two such pairs (c, d), (c′, d′) are
connected by an edge of length one if they differ by a single component and can be
realized disjointly.
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For a compact surface of genus g ≥ 3, with or without boundary, the graph NS
of nonseparating pairs is connected (see [H14] for more details and more information
on this graph).

Definition 2.9. Let S be a compact surface S of genus g ≥ 1 with two distin-
guished boundary components A1, A2. The nonseparating arc graph is the graph
whose vertices are isotopy classes of embedded arcs in S connecting A1 to A2. The
endpoints of an arc may move freely along the boundary circles A1, A2 in such an
isotopy class. Two such arcs ε1, ε2 are connected by an edge if ε1, ε2 are disjoint
and S − (ε1 ∪ ε2) is connected.

Our next goal is to show that the nonseparating arc graph is connected. To this
end we evoke an observation of Putman (Lemma 2.1 of [Put08]) which we refer to
as the Putman trick in the sequel.

Lemma 2.10 (Putman). Let G be a graph which admits a vertex transitive iso-
metric action of a finitely generated group Γ and let v be a vertex of G. If for each
element s of a finite generating set S of Γ, the vertex v can be connected to sv by
an edge path in G, then G is connected.

We apply the Putman trick to show

Lemma 2.11. The nonseparating arc graph A(A1, A2) on a compact surface S of
genus g ≥ 1 with two distinguished boundary components A1, A2 is connected.

Proof. Clearly the pure mapping class group PMod(S) of S acts transitively on the
vertices of A(A1, A2), so it suffices to show that there exists a generating set S of
PMod(S) and an arc ε ∈ A(A1, A2) which can be connected to its image ψ(ε) by
an edge path in A(A1, A2) for every element ψ ∈ S.

Now PMod(S) can be generated by Dehn twists Tci about the collection of simple
closed curves c1, . . . , ck shown in Figure 3 (see Section 4.4 of [FM12]).

Thus there exists two disjoint arcs ε1, ε2 connecting A1 to A2 such that ε1 ∪ ε2

Figure 3

projects to an essential nonseparating simple closed curve in the surface obtained
from S by capping off the boundary components A1, A2. Furthermore, ε1 intersects
one of the curves, say the curve c1, in a single point and is disjoint from the
remaining curves, and c1 is disjoint from ε2.

Then Tciε1 = ε1 for i ≥ 2, and ε1 can be connected to Tc1(ε1) by the edge path
ε1, ε2, Tc1ε1. By the Putman trick this implies that A(A1, A2) is connected. �
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Before we proceed we evoke another result of Salter [Sa19]. Namely, let c, d be
disjoint simple closed curves on the compact surface S. Let ε be an embedded arc
in S connecting c to d whose interior is disjoint from c∪d. A regular neighborhood
ν of c ∪ ε ∪ d is homeomorphic to a three-holed sphere. Two of the boundary
components of ν are the curves c, d up to homotopy. We choose an orientation of
c, d in such a way that ν lies to the left. The third boundary component c +ε d,
oriented in such a way that ν is to its right, satisfies [c +ε d] = [c] + [d] where [c]
denotes the homology class of the oriented curve c. The following is Lemma 3.13
of [Sa19].

Lemma 2.12 (Salter). ϕ(c+ε d) = ϕ(c) + ϕ(d) + 1.

We use the graph of nonseparating pairs and the nonseparating arc graph as
auxiliary tools to show

Proposition 2.13. Let r = 2, 4 and let ϕ be a Z/rZ spin structure on a com-
pact surface S of genus g ≥ 3, with or without boundary. Then the graph CG1 is
connected.

Proof. We only consider the case of a Z/4Z-spin structure, the argument for a
Z/2Z-spin structure is identical.

Our strategy is to construct vertices of the graph CG1 from vertices of the graph
NS of nonseparating pairs and use connectedness of NS to construct for any two
vertices of CG1 a connecting edge path.

The construction of a vertex Λ(c, d) of CG1 from a vertex (c, d) of NS is non-
deterministic as follows.

If at least one of the curves c, d, say the curve c, satisfies ϕ(c) = ±1, then
we choose Λ(c, d) = c. Otherwise both ϕ(c), ϕ(d) are even. Connect c, d by an
embedded arc ε in S whose interior is disjoint from c ∪ d. Orient the curves c, d
and c +ε d as described in Lemma 2.12. By Lemma 2.12, we have ϕ(c +ε d) =
ϕ(c)+ϕ(d)+1 and hence ϕ(c+ε d) = ±1. Furthermore, as (c, d) is a nonseparating
pair and [c+ε d] = [c] + [d], the homology class of the oriented curve c+ε d is non-
trivial and therefore c +ε d is nonseparating. We then can define Λ(c, d) = c +ε d.
This construction uses the assumption r = 2, 4.

Let now c, e be two vertices of the graph CG1. By definition, c, e are nonseparat-
ing simple closed curves on S with ϕ(c) = ϕ(e) = ±1. Choose nonseparating simple
closed curves d, f on S so that (c, d) and (e, f) are vertices in NS. By Lemma 2.4
we may assume that ϕ(d), ϕ(f) are even. This guarantees that Λ(c, d) = c and
Λ(e, f) = e. Connect (c, d) to (e, f) by an edge path (ci, di)0≤i≤n in NS; here
(c0, d0) = (c, d) and (cn, dn) = (e, f).

We use the edge path (ci, di) in NS to construct inductively an edge path
(aj)0≤j≤m in CG1 connecting c = a0 to e = am which passes through suitable
choices of the curves Λ(ci, di). More precisely, the construction is done in such a
way that there is an increasing sequence j0 = 0 < j1 < · · · < jn = m such that for
each i ≤ n, the curve aji is a possible choice for Λ(ci, di). By the choice of d, f , this
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path connects c to e as required. The construction is inductive, and the choices for
Λ(ci, di) are determined inductively as well.

Define a0 = c = c0 and assume by induction that for some i ≥ 0 we constructed
a path (as)s≤ji connecting a0 to a choice aji for Λ(ci, di). Our goal is to construct
an edge path (as)ji≤s≤ji+1

⊂ CG1 for some ji+1 ≥ ji+1 which connects aji to some
choice aji+1 for Λ(ci+1, di+1). We distinguish two cases.

Case 1. At least one of the values ϕ(ci) or ϕ(di) equals ±1.

By construction, up to renaming we have aji = ci = Λ(ci, di) in this case.

Consider the pair (ci+1, di+1) ∈ NS. The curves ci+1, di+1 are disjoint from
ci. If at least one of the values ϕ(ci+1), ϕ(di+1) equals ±1, say if this holds
true for ϕ(ci+1), then define ji+1 = ji + 1 and aji+1

= ci+1. Define furthermore
Λ(ci+1, di+1) = ci+1. This is consistent with the requirements for the path (aj).
Note that we may have aji+1

= aji .

Otherwise ϕ(ci+1) and ϕ(di+1) are both even. In particular, we have ci 6=
ci+1, di+1. Cut S open along ci+1 ∪ di+1. The resulting surface is a surface T
of genus g − 2 ≥ 1 with four distinguished boundary components which glue back
to ci+1, di+1. It contains the curve ci. Denote the two boundary components which
project to the curve ci+1 by C1, C2, and denote the two boundary components
which project to the curve di+1 by D1, D2.

By assumption, the curve ci ⊂ S is nonseparating. As the curves C1, C2 and
D1, D2 are identified in S, the curve ci either is nonseparating as a curve in T , or it
separates T into a surface T1 with at least two holes and a surface T2 with at least
three holes in such a way that up to replacing C1 by C2, the surface T1 contains
the curve C1 in its boundary, and T2 contains the curves C2 in its boundary.

As a consequence, there is an embedded arc ε in T − ci which connects one of
the boundary components C1, C2 to one of the boundary components D1, D2. But
this just means that the curve aji+1

= aji+1 = ci+1 +ε di+1 is disjoint from ci,
is nonseparating and satisfies ϕ(aji+1) = ±1. Define Λ(ci+1, di+1) = aji+1 . This
completes the construction in Case 1.

Case 2. ϕ(ci) and ϕ(di) are both even.

By definition of the non-deterministically chosen curve Λ(ci, di), in this case
there exists an embedded arc ε connecting ci to di such that aji = ci+ε di. Assume
by renaming that di+1 = di. The curve ci+1 is disjoint from ci, di, but it may not
be disjoint from ε. Furthermore, ϕ(di+1) = ϕ(di) is even.

Cut S open along ci ∪ di. Let T be the resulting surface with four distinguished
boundary components C1, C2 and D1, D2 which glue to the curves ci, di. For a
suitable numbering, the arc ε connects the boundary components C1 and D1 of T .
We distinguish two subcases.

Subcase 2a. ϕ(ci+1) = ±1.
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As ϕ(di+1) is even we have Λ(ci+1, di+1) = ci+1. Thus we have to construct an
edge path in CG1 connecting aji to aji+1 = ci+1.

We observed in Case 1 above that as ci+1 is nonseparating, it does not separate
the pair of boundary components C1, C2 of T from the pair of boundary components
D1, D2. Thus there are p, q ∈ {1, 2}, and there is an embedded arc η in T which
is disjoint from ci+1 and connects Cp to Dq. If ci+1 does not separate the pair
{C1, D2} from the pair {C2, D1} then we choose η in such a way that it either
connects C1 to D1, or it connects C2 to D2. Choose an arc ε′ in T which is disjoint
from η and connects C1 to D1.

Consider the graph A(C1, D1) of nonseparating arcs in T with one endpoint
on C1 and the second endpoint on D1. By Lemma 2.11, the graph A(C1, D1) is
connected. Connect the arc ε to the arc ε′ by an edge path in A(C1, D1), say the
path (ε`)0≤`≤q where ε0 = ε and εq = ε′. We construct from this system of arcs
additional arcs δk connecting C2 and D2 as follows.

Let ε`, ε`+1 be two adjacent arcs in the path (εs) ⊂ A(C1, D1). By definition,
T − (ε`∪ ε`+1) is connected. Thus there exists an arc δ` connecting C2 to D2 which
is disjoint from ε` and ε`+1. Replace the two arcs ε`, ε`+1 by the ordered sequence
of arcs ε`, δ`, ε`+1.

Doing this construction for each ` yields a sequence βu (0 ≤ u ≤ 2k) of embedded
arcs in the surface T with the following properties.

• β0 = ε, β2k = ε′.
• For each ` < k the arc β2` connects the boundary components C1 and D1,

and the arc β2`+1 connects C2 and D2.
• For all u < 2k the arcs βu, βu+1 are disjoint.

For each u ≤ 2k the simple closed curve bu = ci +βu
di in S is nonseparating,

and as ϕ(ci) and ϕ(di) are even we have ϕ(bu) = ±1. Moreover, the curves bu
and bu+1 are disjoint. Thus (bi)0≤i≤2k is a path in CG1 which connects b0 = aji to
b2k = ci +ε′ di.

Recall that the arc η which is disjoint from ci+1 connects Cp to Dq where p, q ∈
{1, 2}. There are now three possibilities. In the first case, we have p = q = 1. Then
η is a vertex in the graph A(C1, D1), and we may in fact assume that η = ε′. The
above construction then yields an edge path of length 2k in CG1 connecting c+εd to
c+η d. As c+η d is disjoint from ci+1, this edge path extends to an edge path in CG1

of length 2k + 1 which connects c+ε d = aji to ci+1 = aji+2k+1 = aji+1
= Λ(ci, di)

as required.

In the second case, we have p = q = 2. Then the curves ci +ε′ di and ci +η di are
disjoint, and ci +η di is disjoint from ci+1, so we are done as before.

In the case p = 1, q = 2 or p = 2, q = 1, by assumption on η the curve ci+1 sepa-
rates the pair {C1, D2} of boundary components of T from the pair {C2, D1}. Then
the curves ci+ε′ di and ci+η di intersect in two points, and a tubular neighborhood
of ci +ε′ di ∪ ci +η di in the surface T is a four-holed sphere Y embedded in the
interior of T . The surface T − Y has four components, each of which contains one
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of the circles Ci, Di in its boundary. As the circles C1, C2 and D1, D2 are identified
in the surface S, this implies that S − Y has two connected components. Since the
genus of S is at least 3, one of these components, say the component Z, has genus
at least one. It contains two boundary components of S − Y , say the circles A,B,
in its boundary. The simple closed curves A,B are non-separating in S.

If for one of the two circles A,B, say for the circle A, we have ϕ(A) = ±1, then
the string ci +ε′ di, A, ci +η di, ci+1 defines an edge path in CG1 which connects
ci +ε′ di to ci+1 and we are done.

Otherwise ϕ(A), ϕ(B) are both even. Since the genus g of Z is positive, using
once more Lemma 2.4 we can find a non-peripheral non-separating simple closed
curve e ⊂ Z with ϕ(e) = 0. Connect e to the boundary circle A of Z by an arc ζ
in Z and observe that e+ζ A is disjoint from both ci +ε′ di, ci +η di and hence can
be used to construct an edge path in CG1 which connects ci +ε′ d to ci+1 as before.

Together we constructed a path in CG1 which connects aji to cj+1 = aji+1
=

Λ(ci+1, di+1). Observe that this construction is not possible for a surface of genus
two.

Subcase 2b. ϕ(ci+1), ϕ(di+1) are both even.

As in Subcase 2a, choose an embedded arc η in the surface T = S−(ci∪di) which
is disjoint from ci+1 and connects the boundary component Cp to the boundary
component Dq for some p, q ∈ {1, 2}. We showed in Subcase 2a that the curve
aji = ci +ε di can be connected to e = ci +η di by an edge path in CG1. Now T − η
is connected and contains ci+1 and hence there exists an embedded arc ε′ in T − η
which connects ci+1 to the boundary component D′ ∈ {D1, D2} distinct from Dq.
Then the curve aji+1

= ci+1 +ε′ di = Λ(ci+1, di+1) is disjoint from ci+η di and hence
it can be connected to aji by an edge path passing through the curve ci+η di (recall
that di = di+1). Thus the curve aji+1

has all the required properties to complete
the induction step.

Together this shows the proposition. �

2.5. Z/rZ-spin structures on a surface of genus g ≥ 4. In this subsection we
investigate the graph CG1 on a surface of genus g ≥ 4 for an arbitrary r ≥ 2. To
show connectedness we use the following auxiliary graph PS. The vertices of PS
are pairs of disjoint separating curves (c, d) which each decompose S into a surface
of genus g − 1 and a one-holed torus. Thus S − (c ∪ d) is the disjoint union of two
one-holed tori and a surface of genus g − 2. Two such pairs (c1, d1) and (c2, d2)
are connected by an edge if up to renaming, c1 = c2 and d2 is disjoint from c1, d1.
Then S− (c1 ∪d1 ∪d2) is the disjoint union of a surface of genus g− 3 with at least
three holes and three one-holed tori. In particular, the graph PS is only defined if
the genus of S is at least three.

We use the Putman trick to show

Lemma 2.14. For a compact surface S of genus g ≥ 4, perhaps with boundary,
the graph PS is a connected Mod(S)-graph.
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Proof. The mapping class group Mod(S) of the surface S clearly acts on PS, fur-
thermore this action is vertex transitive. Namely, for any two vertices (a1, b1) and
(a2, b2) of PS, the complement S − (ai ∪ bi) is the union of two one-holed tori
and a surface of genus g − 2 with k + 2 boundary components where k ≥ 0 is
the number of boundary components of S. Hence there exists ϕ ∈ Mod(S) with
ϕ(a1, b1) = (a2, b2).

Consider again the curve system H shown in Figure 3 with the property that the
Dehn twists about these curves generate the mapping class group. Choose a pair
of disjoint separating simple closed curves (a, b) which decompose S into a surface
of genus g − 1 and a one-holed torus X(a), X(b) and such that a curve c ∈ H
intersects at most one of the curves a, b. If it intersects one of the curves a, b, then
this intersection consists of precisely two points. For example, we can choose a to
be the boundary of a small neighborhood of c1 ∪ c2, and b to be the boundary of a
small neighborhood of c5 ∪ c6.

Now let c ∈ H and let Tc be the left Dehn twist about c. If c is disjoint from a∪b,
then Tc(a, b) = (a, b) and there is nothing to show. Thus assume that c intersects
a.

The image Tc(a) of a is a separating simple closed curve contained in a small
neighborhood Y of X(a)∪ c. By assumption on c, this surface is a one-holed torus
disjoint from b. As g ≥ 4, the genus of S − (Y ∪ X(b)) is at least one and hence
there is a separating curve e ⊂ S − (Y ∪X(b)) which decomposes S − (Y ∪X(b))
into a one-holed torus and a surface S′. But this means that (a, b) can be connected
to Tc(a, b) = (Tca, b) by the edge path (a, b) → (e, b) → (Tca, b). As the roles of a
and b can be exchanged, the lemma now follows from the Putman trick. �

We are now ready to show

Proposition 2.15. Let ϕ be an r-spin structure (r ≥ 2) on a compact surface S
of genus g ≥ 4. Then the graph CG1 is connected.

Proof. Let S be a compact surface of genus g ≥ 2 and consider the graph PS.
To each of its vertices, viewed as a disjoint pair (c, d) of separating simple closed
curves, we associate in a non-deterministic way a vertex Λ(c, d) of CG1 as follows.

Denote by Σc,Σd the one-holed torus bounded by c, d. If one of the tori Σc,Σd
contains a simple closed curve a with ϕ(a) = ±1 then define Λ(c, d) = a.

Now assume that none of the tori Σc,Σd contains a simple closed curve a with
ϕ(a) = ±1. By Lemma 2.4, there are simple closed non-separating curves a ⊂
Σc, b ⊂ Σd so that ϕ(a) = 0 = ϕ(b). Since the tori Σc,Σd are disjoint, the pair
(a, b) is non-separating, that is, S − (a ∪ b) is connected. Choose an embedded
arc ε in S connecting a to b. By Lemma 2.12, the curve Λ(c, d) = a +ε b satisfies
ϕ(a+ε b) = ±1, furthermore it is nonseparating.

Let a be any vertex of CG1 and let b be any simple closed curve which intersects
a in a single point. Such a curve exists since a is nonseparating. Then a tubular



14 URSULA HAMENSTÄDT

neighborhood of a ∪ b is a torus containing a. Let c be the boundary curve of this
torus and choose a second separating simple closed curve d so that (c, d) ∈ PS.

Let e ∈ CG1 be another vertex. Construct as above a vertex (p, q) ∈ PS so that
e is contained in the one-holed torus cut out by p. Connect (c, d) to (p, q) by an
edge path (ci, di)0≤i≤k in PS. We use this edge path to construct an edge path
(aj) ⊂ CG1 connecting a to e which passes through suitable choices aji (i ≤ k) of
the curves Λ(ci, di).

Define a0 = a and by induction, let us assume that we constructed already the
path (aj)0≤j≤ji for some i ≥ 0. We distinguish two cases.

Case 1: One of the tori Σci ,Σdi contains a curve f with ϕ(f) = ±1.

By construction, in this case we may assume by renaming that f = aji ⊂ Σci .

If ci ∈ {ci+1, di+1} then define aji+1 = aji+1
= aji = Λ(ci+1, di+1) and note that

this is consistent with the requirements for the induction step.

Thus we may assume now that ci 6∈ {ci+1, di+1}. If one of the tori Σci+1
,Σdi+1

,
say the torus Σci+1

, contains a curve h with ϕ(h) = ±1, then as Σci is disjoint
from Σci+1 , the curve h is disjoint from aji and we can define aji+1 = h = aji+1 =
Λ(ci+1, di+1).

Thus assume that neither Σci+1 nor Σdi+1 contains such a curve. Since Σci
and Σci+1 ,Σdi+1 are pairwise disjoint, we can find an embedded arc ε in S − Σci
connecting a simple closed curve u ⊂ Σci+1

with ϕ(u) = 0 to a curve h ⊂ Σdi+1

with ϕ(h) = 0. We then can define aji+1 = u+ε h = Λ(ci+1, di+1) = aji+1
.

Case 2: None of the tori Σci ,Σdi contains a curve f with ϕ(f) = ±1.

In this case there are simple closed curves f ⊂ Σci , h ⊂ Σdi with ϕ(f) = ϕ(h) =
0, and there is an embedded arc ε connecting f to h so that

aji = Λ(ci+1, di+1) = f +ε h.

Assume without loss of generality that di = di+1.

Let us in addition assume for the moment that the arc ε is disjoint from ci+1. If
furthermore there exists a simple closed curve u ⊂ Σci+1 with ϕ(u) = ±1, then this
curve is a choice for Λ(ci+1, di+1) which is disjoint from aji and we are done.

Otherwise cut S open along the simple closed curve h ⊂ Σdi = Σdi+1 and let
H1, H2 be the two boundary components of S − h. By renaming, assume without
loss of generality that ε connects the boundary component H1 to the curve f , i.e.
it leaves the curve h from the side corresponding to H1. Now note that M =
S − h − ε − Σci is a connected surface of genus g − 2 ≥ 2 with two distinguished
boundary circles, one of which is the curve H2, and M ⊃ Σci+1 . Therefore there
exists an embedded arc ε′ ⊂ M connecting H2 to a simple closed curve u ⊂ Σci+1

with ϕ(u) = 0. Define aji+1 = h +ε′ u and note that this definition is consistent
with all requirements. This construction completes the induction step under the
additional assumption that arc ε is disjoint from ci+1.
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We are left with the case that ε is not disjoint from Σci+1
. Cut S open along f∪h

and note that the resulting surface Z has genus g − 2 ≥ 2 and four distinguished
boundary components, say the components F1, F2, H1, H2. Assume that ε connects
F1 to H1.

Consider the nonseparating arc graph A(F1, H1) in Z of arcs connecting F1 to
H1. By Lemma 2.11, this graph is connected. Let εi be a path in A(F1, H1) which
connects ε to an arc ε′ disjoint from Σci+1

. For any two consecutive of such arcs,
say the arcs εj , εj+1, the surface Z − (ε1 ∪ ε2) is connected and hence we can find
a disjoint arc δj connecting F2 to H2. The curves f +εj h, f +δj h, f +εj+1

h are
disjoint and yield a path connecting f +ε h to a curve f +ε′ h which is disjoint from
Σci+1 . We then can apply the construction for the case that the arc connecting f
to h is disjoint from Σci+1

. This completes the proof of the proposition. �

For technical reasons we need a stronger version of Proposition 2.13 and Propo-
sition 2.15. Consider a Z/rZ-spin structure ϕ on a compact surface S of genus g
(with or without boundary) for an arbitrary number r ≥ 2. We introduce another
graph CG+

1 as follows. The vertices of CG+
1 coincide with the vertices of CG1. Any

two such vertices c, d are connected by an edge if c, d are disjoint and if furthermore
S − (c ∪ d) is connected. Thus CG+

1 is obtained from CG1 by removing some of the
edges. In particular, if CG+

1 is connected then then same holds true for CG1. We
use connectedness of CG1 to establish connectedness of CG+

1 .

Lemma 2.16. If the genus g of S is at least 3 then the graph CG+
1 is connected

provided that CG1 is connected.

Proof. Let c, d ∈ CG1 be two vertices which are connected by an edge in CG1 and
which are not connected by an edge in CG+

1 . This means that c, d are disjoint, and
S − (c∪ d) is disconnected. We have to show that c, d can be connected in CG+

1 by
an edge path.

To this end recall that c, d are nonseparating and therefore the disconnected
surface S − (c ∪ d) has two connected components S1, S2. The surface S1 has
genus g1 ≥ 1 and at least two boundary components, and the surface S2 has genus
g2 = g − g1 − 1 ≥ 0 and at least two boundary components.

Choose a simple closed curve di ⊂ Si (i = 1, 2) which bounds with c∪d a pair of
pants Pi. Write Σi = Si − Pi; the genus of Σi equals gi. Glue P1 to P2 along c ∪ d
so that the resulting surface Σ0 is a two-holed torus containing c∪ d in its interior.
Choose a nonseparating simple closed curve e ⊂ Σ0 which intersects both c, d in a
single point. Since ϕ(c) = ±1 we have ϕ(Tce) = ϕ(e)± 1 where Tc is the left Dehn
twist about c. Thus via replacing e by T kc e for a suitable choice of k ∈ Z we may
assume that ϕ(e) = 1. In other words, we may assume that e is a vertex of CG1.

Assume for the moment that g2 ≥ 1. By Lemma 2.4, there exist simple closed
curves a ⊂ Σ1, b ⊂ Σ2 with ϕ(a) = ϕ(b) = 0. Connect a to b by an embedded arc
ε which is disjoint from c ∪ e (and crosses through the curve d). The curve a +ε b
satisfies ϕ(a+ε b) = 1, and it is disjoint from both c and e. Moreover, the surfaces
S − (c ∪ a +ε b) and S − (e ∪ a +ε b) are connected. As a consequence, c can be
connected to e by an edge path in CG+

1 of length two which passes through a+ε b.
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By symmetry of this construction, e can also be connected to d by an edge path
in CG+

1 and hence c can be connected to d by such a path. This completes the proof
in the case that the genus g2 of S2 is positive.

If the genus of S2 vanishes then the genus of S1 equals g1 = g − 1 ≥ 2. Any
nonseparating curve in S1 forms with both c, d a nonseparating pair. To find such
a curve e with ϕ(e) = 1, note that S1 contains two disjoint one-holed tori T1, T2,
and by Lemma 2.4, there are embedded simple closed curves ai ∈ Ti which satisfy
ϕ(ai) = 0. Then for any arc ε in S1 connecting a1 to a2, the curve e = a1 +ε a2 is
nonseparating, and it is connected with both c, d by an edge in CG+

1 . This is what
we wanted to show. �

Corollary 2.17. Let ϕ be a Z/rZ-spin structure on a closed surface Σ of genus
g ≥ 3. Then the graph CG+

1 is connected.

Remark 2.18. The proof of Corollary 2.17 is fairly involved. The main difficulty
is the case g = 3 where we did not find an easier argument.

3. The action of Mod(S)[ϕ] on geometrically defined graphs

In this section we consider an arbitrary Z/rZ-spin structure ϕ on a compact
surface S of genus g ≥ 3, possibly with boundary, for some number r ≥ 2. Our goal
is to gain some information on the stabilizer Mod(S)[ϕ] of ϕ through its action on
the graph CG+

1 introduced in Section 2.

We begin with some information on the stabilizer of a spin structure ϕ on a
compact surface S with boundary. Fix a boundary component C of S. Denote
by PMod(S) the subgroup of the mapping class group Mod(S) of S which fixes
the boundary component C. Thus we have PMod(S) = Mod(S) if and only if the
boundary of S consists of one or two components. Write PMod(S)[ϕ] to denote the
stabilizer of ϕ in PMod(S). This is a subgroup of PMod(S) of finite index. Let Σ
be the surface obtained from S by attaching a disk to C. There is an embedding
S → Σ which induces a surjective homomorphism

Π : PMod(S)→ Mod(Σ).

By a result of Johnson, extending earlier work of Birman (see Section 4.2.5 of
[FM12]), there is an exact sequence

(4) 1→ Z→ ker(Π)
Υ−→ π1(Σ)→ 1

where Z is the infinite cyclic central subgroup of PMod(S) generated by the Dehn
twists about C and where π1(Σ) is a so-called point pushing group.

For the formulation of the following lemma, recall that the integral homology
H1(Σ,Z) of a compact surface Σ of genus g ≥ 2, possibly with boundary, is a free
abelian group Zh for some h ≥ 4. In fact, h = 2g if the boundary of Σ is empty
or connected, and in this case this group is generated by the homology classes of
non-separating simple closed curves on Σ. If the boundary of Σ is disconnected,
then it is still true that H1(Σ,Z) is generated by simple closed possibly peripheral
curves.
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Let ζ : π1(Σ) → H1(Σ,Z) be the natural projection. Then for some m ≥ 1 the
preimage under the homomorphism ζ of the lattice in H1(Σ,Z) which is generated
by m times the simple loop generators of H1(Σ,Z) is a subgroup Λm of π1(Σ) of
finite index. Using the notations from the previous paragraph we have

Lemma 3.1. Assume that the boundary circle C is equipped with the orientation
induced from the orientation of S.

(1) If ϕ(C) = −1 then Υ(ker Π ∩ PMod(S)[ϕ]) = π1(Σ).
(2) If ϕ(C) = 1, then Υ(ker Π ∩ PMod(S)[ϕ]) = Λm where m = r/2 if r is

even, and m = r otherwise.

Proof. Choose a basepoint p for π1(Σ) in the interior of the attached disk. Let
α ⊂ Σ be a simple non-separating loop through the basepoint p. Up to homotopy,
the oriented boundary of a tubular neighborhood of α consists of two simple closed
curves c1, c2 which enclose the circle C. In other words, together with C the curves
c1, c2 bound a pair of pants P in S. We equip the curves ci with the orientation as
boundary curves of P .

By Proposition 3.8 of [Sa19], we have

(5) ϕ(C) + ϕ(c1) + ϕ(c2) = −1

and hence if ϕ(C) = −1 then ϕ(c1) + ϕ(c2) = 0.

Let as before Td be the left Dehn twist about a simple closed curve d. Let
β ⊂ S be an oriented simple closed curve which crosses through the pair of pants
P . As c1, c2 are disjoint, we have ι(T−1

c2 (β), c1) = ι(β, c1) and therefore Definition
2.1 shows that

ϕ(Tc1T
−1
c2 (β)) = ϕ(T−1

c2 (β)) + ι(β, c1)ϕ(c1)(6)

= ϕ(β) + ι(β, c1)ϕ(c1)− ι(β, c2)ϕ(c2).

On the other hand, as c1 +c2 is homologous to the boundary curve C, the homolog-
ical intersection number fulfills ι(β, c1 + c2) = 0. Hence from (5) we conclude that
if ϕ(C) = −1 then ϕ(Tc1T

−1
c2 (β)) = ϕ(β). Since β was an arbitrary simple closed

curve, this shows that Tc1T
−1
c2 ∈ PMod(S)[ϕ]. But Tc1T

−1
c2 ∈ PMod(S) is just the

point-pushing map about α and therefore α is contained in Υ(PMod(S)[ϕ]). We
refer to [FM12] for a comprehensive discussion of the various versions of the Birman
exact sequence.

As the point pushing group π1(Σ) is generated by point pushing maps along
simple loops, this shows the first part of the lemma.

To show the second part of the lemma, assume now that ϕ(C) = 1. Equation
(5) shows that ϕ(c1) + ϕ(c2) = −2 and hence by Formula (6) we have

ϕ(Tc1T
−1
c2 (β)) = ϕ(β) + ι(β, c1)ϕ(c1) + ι(β, c2)(ϕ(c1) + 2).

Now let us assume that the oriented simple closed curve β crosses a single time
through c1, say when it enters P . Then ι(β, c1) = −1, ι(β, c2) = 1 and hence

(7) ϕ(Tc1T
−1
c2 (β)) = ϕ(β)− ϕ(c1) + ϕ(c1) + 2 = ϕ(β) + 2.
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Using this formula r/2 times if r is even, and r times if r is odd, we conclude that
the point pushing map about α is not contained in Mod(S)[ϕ], but it is the case
for its r/2-th power or r-th power, respectively. Namely, putting m = r/2 if r
is even and m = r otherwise, it follows from the above discussion that we have
ϕ((Tc1T

−1
c2 )m(β)) = ϕ(β) for every simple closed curve β which either is disjoint

from P or which crosses through P precisely once. As such curves span the first
homology of Σ, we conclude that the pull-back of ϕ under (Tc1T

−1
c2 )m coincides

with ϕ on a collection of simple closed curves which span H1(S,Z). Corollary
2.6 of [HJ89] then shows that indeed, (Tc1T

−1
c2 )m ∈ PMod(S)[ϕ]. Moreover, by

equation (7), we know that (Tc1T
−1
c2 )k 6∈ PMod(S)[ϕ] if k is not a multiple of m.

On the other hand, by Lemma 3.15 of [Sa19], Dehn twists about separating
simple closed curves in S are contained in Mod(S)[ϕ]. As the commutator subgroup
of π1(Σ) is generated by simple closed separating curves, and for each such curve
α both Dehn twists Tc1 , Tc2 about the boundary curves of a tubular neighborhood
of α as above are contained in PMod(S)[ϕ], this yields the second part of the
lemma. �

Consider again an arbitrary compact surface S of genus g ≥ 2, equipped with a
Z/rZ-spin structure ϕ for some r ≥ 2. We use Lemma 3.1 to analyze the action of
Mod(S)[ϕ] on the graph CG+

1 . We begin with the investigation of the stabilizer of
a vertex c of CG+

1 in Mod(S)[ϕ]. As Mod(S)[ϕ] is a subgroup of Mod(S) of finite
index, the stabilizer Stab(c)[ϕ] of c in Mod(S)[ϕ] is a subgroup of finite index of
the stabilizer Stab(c) of c in Mod(S).

The group Stab(c) can be described as follows. Cut S open along c. The result
is a surface Σ2 of genus g− 1 with two distinguished boundary components C1, C2.
These components are equipped with an orientation as subsets of the oriented
boundary of Σ2. To simplify notations, let Mod(Σ2) be the subgroup of the mapping
class group of Σ2 which preserves the subset C1 ∪ C2 of the boundary. We allow
that an element of Mod(Σ2) exchanges C1 and C2. The stabilizer Stab(c) of c in
the mapping class group Mod(S) of S can be identified with the quotient of the
group Mod(Σ2) by the relation TC1

T−1
C2

= 1 where TCi
denotes the left Dehn twist

about the boundary circle Ci (Theorem 3.18 of [FM12]). In short, we have

Stab(c) = Mod(Σ2)/Z.

The infinite cyclic subgroup of Stab(c) generated by the Dehn twist about c is
central. The quotient group Stab(c)/Z can naturally be identified with the map-
ping class group Mod(Σ2) of a surface of genus g − 1 with two punctures and
perhaps with boundary if the boundary of S is non-trivial. We refer to [FM12] for
a comprehensive discussion of these facts.

Let Σ be the surface obtained from Σ2 by forgetting the punctures. Alternatively,
Σ is obtained from Σ2 by attaching a disk to each boundary component. The group
Mod(Σ2) = Stab(c)/Z fits into the Birman exact sequence

(8) 1→ π1(C(Σ, 2))
ρ−→ Stab(c)/Z→ Mod(Σ)→ 1
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where π1(C(Σ, 2)) is the surface braid group, that is, the fundamental group of the
configuration space of two unordered distinct points in Σ. In particular, π1(C(Σ, 2))
is a normal subgroup of Stab(c)/Z = Mod(Σ2).

The surjective homomorphism

θ : Stab(c)→ Stab(c)/Z = Mod(Σ2)

restricts to a homomorphism Stab(c)[ϕ] → Mod(Σ2). The next proposition gives
some first information on its image under the assumption that ϕ is a Z/2Z-spin
structure and ϕ(c) = 1.

Proposition 3.2. Let ϕ be a Z/2Z-spin structure on S and let c be a simple closed
curve with ϕ(c) = 1. Then ρ(π1(C(Σ, 2))) ⊂ θ(Stab(c)[ϕ]).

Proof. Let π1(PC(Σ, 2)) be the intersection of the fibre of the Birman exact se-
quence (8) with the subgroup of Mod(Σ2) which fixes each of the two distinguished
punctures. Following Section 4.2.5 of [FM12], the group π1(PC(Σ, 2)) can be de-
scribed as follows.

Let C1, C2 be the distinguished boundary components of the surface Σ2 = S −
c. Let Σ1 be the surface obtained from Σ2 by attaching a disk to the boundary
circle C1. Let PStab(c) and PMod(Σ2) be the index two subgroup of Stab(c) and
Mod(Σ2) which preserves each of the two boundary components C1, C2 of S − c.
The inclusion Σ2 → Σ1 induces a surjective homomorphism

Ξ : PStab(c)/Z→ Mod(Σ1)/Z

where as before Mod(Σ1) is required to fix the boundary component C2 of Σ1 and
where the group Z acts as the group of Dehn twists about c and about C2. The
kernel ker(Ξ) of this homomorphism is isomorphic to π1(Σ1) (see [FM12] for more
information on this version of the Birman exact sequence).

The spin structure ϕ pulls back to a spin structure ϕ̂ on Σ2. Since ϕ is a Z/2Z-
spin structure on S and ϕ(c) = 1, the value of ϕ̂ on each of the two boundary circles
C1, C2 coincides with the value of a spin structure on the boundary of an embedded
disk. This implies that ϕ̂ induces a spin structure ϕ′ on Σ1. Or, equivalently, ϕ̂ is
the pull-back of a spin structure ϕ′ on Σ1 via the inclusion Σ2 → Σ1. By Lemma
3.1, the group ker(Ξ) = π1(Σ1) stabilizes ϕ̂, that is, we have ker(Ξ) ⊂ Mod(Σ2)[ϕ̂].

Apply Lemma 3.1 a second time to the homomorphism Mod(Σ1)/Z→ Mod(Σ)
where Σ is obtained from Σ1 by attaching a disk to C2. As the group π1(PC(Σ, 2))
can be described as the quotient by its center Z2 of the kernel of the homomorphism
PMod(Σ2) → Mod(Σ) which is obtained by applying the Birman exact sequence
twice, first to a map which caps off the boundary component C1, followed by the
map which caps off C2, this shows that π1(PC(Σ, 2)) ⊂ θ(Stab(c)[ϕ]. As exchanging
C1 and C2 also preserves ϕ̂ the proposition follows. �

We are now ready to give a complete description of the stabilizer in Mod(S)[ϕ]
of a nonseparating simple closed curve c on S with ϕ(c) = 1 where as before, ϕ is
a Z/2Z-spin structures on a compact surface S of genus g ≥ 3.
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Cut S open along c and write Σ2 = S − c. The spin structure ϕ of S pulls back
to a Z/2Z-spin structure ϕ̂ on Σ2. Denote as before by Σ the surface of genus
g − 1 with empty or connected boundary obtained from Σ2 by capping off the two
distinguished boundary components. We have

Proposition 3.3. The Z/2Z-spin structure ϕ on S induces a Z/2Z-spin structure
ϕc on Σ whose parity coincides with the parity of ϕ. If Π : Stab(c)/Z → Mod(Σ)
denotes the surjective homomorphism induced by the inclusion S − c→ Σ then

Π−1Mod(Σ)[ϕc] = Stab(c)[ϕ]/Z.

Proof. As ϕ is a Z/2Z-spin structure, the value of ϕ on a boundary circle of S − c
corresponding to a component of c coincides with the value of a Z/2Z-spin structure
on the boundary of a disk. Thus ϕ induces a spin structure ϕc on Σ.

To compare the parities of the spin structures ϕ and ϕc, assume that Σ is ob-
tained from S − c by attaching disks D1, D2 to the two boundary components of
S which correspond to the two copies of c. Choose a geometric symplectic basis
a1, b1, . . . , ag−1, bg−1 for Σ, consisting of simple closed oriented curves which do not
intersect the disks D1, D2. Then a1, b1, . . . , ag−1, bg−1 can be viewed as a system
of curves in Σ2 = Σ − (D1 ∪ D2) which maps to a curve system with the same
properties in S by the map Σ2 → S. This curve system can be extended to a
geometric symplectic basis for S containing the curve c, equipped with any orien-
tation. As ϕ(c) = 1 we have ϕ(c) + 1 = 0. The claim now follows from the fact
that ϕc(u) = ϕ(û) for u ∈ {a1, b1, . . . , ag−1, bg−1} where û is the image of u under
the inclusion Σ2 → S, together with the formula (2) for the Arf invariant.

We are left with showing that Stab(c)[ϕ]/Z = Π−1Mod(Σ)[ϕc]. Observe first
that as ϕc is induced from ϕ, we have ΠStab(c)[ϕ]/Z ⊂ Mod(Σ)[ϕc].

To show that in fact equality holds let Σ2 be the surface obtained from S− c by
replacing the boundary components by punctures. The group Stab(c)[ϕ]/Z can be
identified with a subgroup Γc of Mod(Σ2). We view the punctures of Σ2 as marked
points p1, p2 in Σ.

Let θ be any diffeomorphism of Σ which preserves ϕc. Then θ is isotopic to a
diffeomorphism of Σ which equals the identity on a disk D ⊂ Σ containing both
points p1, p2. Thus θ lifts to a diffeomorphism θ′ of Σ2 which preserves the pull-back
of ϕc to a spin structure on Σ2.

The boundary circle ∂D of D can be viewed as a simple closed curve in S − c.
Via the projection S − c → S which identifies the two distinguished boundary
components of S − c, the curve ∂D projects to a separating simple closed curve in
S which decomposes S into a one-holed torus T containing c and a surface of genus
g− 1 with connected boundary. The diffeomorphism θ′ lifts to a diffeomorphism Θ
of S which is the identity on T .

Then Θ∗ϕ is a spin structure on S which defines the same function on H1(S,Z)
as ϕ. Using once more the result of Humphries and Johnson [HJ89] (see Theorem
3.9 of [Sa19]), this implies that Θ stabilizes ϕ. As Θ projects to the mapping class
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of Σ defined by the diffeomorphism θ, this shows surjetivity of the homomorphism
Π : Stab(c)[ϕ]/Z→ Mod(Σ)[ϕc].

On the other hand, by Proposition 3.2 the kernel of the homomorphism Π also is
contained in Stab(c)[ϕ]/Z. Together this completes the proof of the proposition. �

The next observation uses Proposition 4.9 of [Sa19]. For its formulation, recall
from Section 2 the definition of the graph CG+

1 . Its vertices are nonseparating
simple closed curves with prescribed value ±1 of the spin structure. The graph
CG1

+ is well defined if the genus g of S is at least two although it may not have
edges.

Proposition 3.4. Let ϕ be a Z/rZ-spin structure on a compact surface S of genus
g ≥ 2 with empty or connected boundary and where r ≤ 2g. Then for any two
directed edges e1, e2 of the graph CG+

1 there exists a mapping class ζ ∈ Mod(S)[ϕ]
with ζ(e1) = e2. In particular, the action of Mod(S)[ϕ] on CG+

1 is vertex transitive.

Proof. The proof consists of an adjustment of the argument in the proof of Propo-
sition 4.9 of [Sa19].

Recall that a geometric symplectic basis for S is a set {a1, b1, . . . , a2g, b2g} of
simple closed curves on S such that ai, bi intersect in a single point, and ai ∪ bi is
disjoint from aj ∪ bj for j 6= i.

A vertex of CG+
1 is a simple closed curve c on S with ϕ(c) = ±1. In the sequel we

always orient such a vertex c in such a way that ϕ(c) = 1. For a given directed edge
e of CG+

1 with ordered endpoints c, d, we aim at constructing a geometric symplectic
basis B(e) such that a1 = c, a2 = d, ϕ(ai) = 0 for i ≥ 3, ϕ(bi) = 0 for i ≤ g − 1 and
ϕ(bg) = 0 or 1 as predicted by the parity of ϕ. If such a basis B(e1),B(e2) can be

found for any two directed edges e1, e2 of CG+
1 with ordered endpoints c1, d1 and

c2, d2 then there exists a diffeomorphism ζ of S which maps B(e1) to B(e2) and
maps c1, d1 to c2, d2. The pullback ζ∗ϕ of ϕ is a spin structure on S whose values
on B(e1) coincide with the values of ϕ. By a result of Humphries and Johnson
[HJ89], see Theorem 3.9 of [Sa19], this implies that ζ∗ϕ = ϕ and hence the isotopy
class of ζ is contained in Mod(S)[ϕ] and maps the directed edge e1 to the directed
edge e2.

To simplify further, choose any geometric symplectic basis

B = {α1, β1, . . . , αg, βg}

for S with α1 = c, α2 = d. A small tubular neighborhood of αi ∪ βi is a one-holed
torus Ti embedded in S. By Lemma 2.4, for all i ≥ 3 we may replace αi by an
oriented simple closed curve in Ti, again denoted by αi, which satisfies ϕ(αi) = 0.

Assume that βi (i = 1, 2) is oriented in such a way that ι(βi, αi) = 1 where ι
is the symplectic form. As ϕ(Tαi(βi)) = ϕ(βi) + 1, via perhaps replacing βi by
its image under a suitably chosen power of a Dehn twist about αi we may assume
that ϕ(βi) = 0. Therefore for the construction of a geometric symplectic basis B(e)
with the required properties, it suffices to modify successively the curves βi (i ≥ 3)
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while keeping αj (j ≥ 1) and βk for k < i fixed such that ϕ assumes the prescribed
values on the modified curves.

We follow the proof of Proposition 4.9 of [Sa19]. For 1 ≤ i ≤ g let δi be the
boundary curve of the torus Ti which is a small tubular neighborhood of αi ∪ βi,
equipped with the orientation as an oriented boundary circle of S − Ti (i ≥ 1). By
homological coherence (Proposition 3.8 of [Sa19]), we have ϕ(δi) = 1 for all i.

Thus if ε is an embedded arc in S connecting β3 to δ4 whose interior is disjoint
from α3 and all δj for j 6= 3, then ϕ(β3 +ε δ4) = ϕ(β3) + 2. Moreover, β3 +ε δ4 is
disjoint from δj for all j 6= 3.

Repeat this construction with an arc connecting β3 +ε δ4 to δ5 whose interior is
disjoint from all δj for j 6= 3. As there are g − 1 of the curves δj (j 6= 3) and as
r ≤ 2g, in this way we can find a simple closed curve β′3 intersecting α3 in a single
point and disjoint from the curves δj for j 6= 3 so that ϕ(β′3) ∈ {0, 1}.

Let δ′3 be the boundary of a tubular neighborhood of α3∪β′3. Then δ′3 is disjoint
from all the curves δj for j 6= 3. As in the proof of Proposition 4.9 of [Sa19], repeat
this procedure with the curve β4 and the curves δ1, δ2, δ

′
3, . . . , δg. In finitely many

steps we can change the geometric symplectic basis B to a geometric symplectic
basis B′ = {α1, β1, α2, β2, α3, β

′
3, . . . , αg, β

′
g} which fulfills ϕ(β′j) = 0 or 1 for all

3 ≤ j ≤ g.

It remains to further alter β′j for 3 ≤ j ≤ g − 1 to a nonseparating simple
closed curve β′′j with ϕ(β′′j ) = 0, and to alter β′g to a simple closed curve β′′g
with ϕ(β′′g ) = 0 or 1 depending on the parity of the Z/rZ-spin structure ϕ. This
construction is carried out in detail in the proof of Proposition 4.9 of [Sa19] and will
not be presented here as it would require the introduction of a significant amount of
new notation. It takes place in a subsurface of S of genus g−2 which is disjoint from
α1, β1, α2, β2 and contains αi, βi for 3 ≤ i ≤ g. The resulting geometric symplectic
basis has the properties we are looking for. �

Remark 3.5. The proof of Proposition 3.4 can also be used to show the following.
Under the assumption of the proposition, let c, d ⊂ S be two non-separating simple
closed curves with ϕ(c) = ϕ(d) = 0; then there exists some ζ ∈ Mod(S)[ϕ] with
ζ(c) = d. In fact, this case is more explicitly covered by Proposition 4.2 and
Proposition 4.9 of [Sa19].

The next statement is an extension of Proposition 3.4 to surfaces with more than
one boundary component under some restrictions on the spin structure.

Corollary 3.6. For r ≤ 2g let ϕ be a Z/rZ-spin structure on a compact surface
S of genus g ≥ 2 with non-empty boundary which is induced from a spin structure
ϕ′ on a compact surface Σ of genus g with empty or connected boundary by an
inclusion S → Σ which maps each boundary component of S to the boundary of an
embedded disk in Σ. Then for any two vertices c, d of CG+

1 there exists a mapping
class ζ ∈ Mod(S)[ϕ] with ζ(c) = d. In particular, the action of Mod(S)[ϕ] is
transitive on the vertices of CG+

1 .
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Proof. Let Ψ : S → Σ be the natural embedding. Let c, d be vertices of the graph
CG+

1 for the spin structure ϕ on S. Then c, d are nonseparating simple closed
curves and hence their images Ψ(c),Ψ(d) are nonseparating simple closed curves
on Σ. Furthermore, as ϕ is the pull-back of a spin structure ϕ′ on Σ, we have
ϕ′(Ψ(c)) = ϕ′(Ψ(d)) = 1.

By Proposition 3.4, there exists a mapping class θ ∈ Mod(Σ)(ϕ′) which maps
Ψ(c) to Ψ(d). We can choose a diffeomorphism of Σ representing θ which equals the
identity on each component of Σ− S. Thus there exists a lift Θ of θ to a mapping
class of S. This mapping class is contained in Mod(S)[ϕ], and it maps the simple
closed curve c to a simple closed curve d′ whose image under Ψ is isotopic to Ψ(d).

Using once more the Birman exact sequence, this implies that there exists a
mapping class β in the kernel of the homomorphism Mod(S) → Mod(Σ) which
maps d′ to d. But by an iterated application of Lemma 3.1, this kernel is contained
in Mod(S)[ϕ] and hence c can be mapped to d by an element of Mod(S)[ϕ]. �

The augmented Teichmüller space T (S) of the compact surface S is the union
of the Teichmüller space with so-called boundary strata. Each of these boundary
strata is defined by a non-empty system C of pairwise disjoint essential simple closed
curves. The stratum defined by such a curve system can be thought of as the
Teichmüller space of the surface obtained from S by shrinking each component of C
to a node. In other words, such a stratum is a complex manifold which is naturally
biholomorphic to the Teichmüller space of the surface obtained by cutting S open
along the components of C and replacing each boundary component of the resulting
bordered surface by a puncture.

Using Fenchel Nielsen coordinates, the augmented Teichmüller space can be
equipped with a natural topology. For this topology, the usual Teichmüller space
embeds into T (S) as an open dense subset. Furthermore, the inclusion of the
Teichmüller space of a punctured surface defined by the curve system C onto a
boundary stratum of T (S) also is an embedding. We refer to [Wol10] for an detailed
description and for a discussion of the following

Theorem 3.7. The augmented Teichmüller space T (S) is a non locally compact
stratified space. The mapping class group Mod(S) of S acts on T (S), with quotient
the Deligne Mumford compactification of the moduli space of curves of genus g.

Fix again a Z/2Z-spin structure ϕ on a surface S of genus g ≥ 2. Define the
spin Teichmüller space Tspin(S) to be the Teichmüller space of S together with this
spin structure. The group Mod(S)[ϕ] acts on Tspin(S) as a group of biholomorphic
transformations, with quotient the spin moduli space Mϕ = T (S)/Mod(S)[ϕ].

We can define an augmented spin Teichmüller space T spin(S) as the union of
spin Teichmüller space with all strata of augmented Teichmüller space which are
defined by systems of nonseparating simple closed curves c on S with ϕ(c) = 1.
Equipped with the subspace topology, this is a subspace of T (S) which is invariant
under the action of the spin mapping class group. As a corollary of the discussion
in this section, we have
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Corollary 3.8. The quotient T spin(S)/Mod(S)[ϕ] is a partial bordification of the
spin moduli space Tspin(S)/Mod(S)[ϕ]. Its boundary contains the spin moduli space
of the same parity on a surface of genus g − 1 with two marked points (punctures)
as an open dense subset.

Remark 3.9. Corollary 3.8 can be thought of as describing a specific subset of a
Deligne Mumford compactification of the moduli space of curves with a fixed spin
structure. Such a Deligne Mumford compactification was constructed by Cornalba
[Co89].

4. Structure of the spin mapping class group of odd parity

The goal of this section is to prove Theorem 3.

We begin with some additional information on the spin mapping class group.
Fix a Z/rZ-spin structure ϕ on a closed surface Σg of genus g for some r ≥ 2. For
a simple closed curve c on Σg with ϕ(c) = ±1, this spin structure restricts to a
spin structure on the surface Σ2

g−1 of genus g − 1 with two boundary circles c1, c2
obtained by cutting Σg open along c. We denote this spin structure again by ϕ.
Define the group Γ2

g−1 to be the following quotient of the spin mapping class group

Mod(Σ2
g−1)[ϕ].

The group Mod(Σ2
g−1)[ϕ] contains a rank two free abelian central subgroup gen-

erated by the r-th powers of the left Dehn twists Tc1 , Tc2 about the boundary circles
c1, c2 of Σ2

g−1. Define Γ2
g−1 = Mod(Σ2

g−1)[ϕ]/Z where the infinite cyclic subgroup

Z is generated by T rc1T
−r
c2 . Then Γ2

g−1 is isomorphic to the stabilizer in Mod(Σg)[ϕ]

of the curve c. Note that up to isomorphism, the group Γ2
g−1 does not depend on

the vertex c ∈ CG1. Namely, by Proposition 3.4, the stabilizers in Mod(Σg)[ϕ] of
nonseparating simple closed curves c with ϕ(c) = ±1 are all conjugate and hence
isomorphic.

Observe that the group Γ2
g−1 is an infinite cyclic central extension of a finite

index subgroup of the mapping class group of a surface Σg−1,2 of genus g − 1 with
two punctures. Thus it makes sense to talk about its action on isotopy classes
of essential curves on the surfaces Σg−1,2 and Σ2

g−1. The map Σ2
g−1 → Σg−1,2

which contracts each boundary component to a puncture defines a bijection on
such isotopy classes.

We have

Proposition 4.1. Let ϕ be a Z/rZ-spin structure on a closed surface Σg of genus
g ≥ 3. There is a commutative diagram

(9)

Γ2
g−1 Γ2

g−1 ∗A Γ2
g−1 o Z/2Z

Mod(Σg)[ϕ]

ι1

ι2
ρ

where the homomorphisms ι1, ι2 are inclusions, and the homomorphism ρ is sur-
jective. The subgroup A of Γ2

g−1 is the stabilizer in Γ2
g−1 of a nonseparating simple
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closed curve d on Σ2
g−1 with ϕ(d) = ±1. The group Z/2Z acts on Γ2

g−1 ∗A Γ2
g−1 by

exchanging the two factors, and it acts as an automorphism on A.

Proof. Fix a pair of nonseparating simple closed disjoint curves c, d on Σg with

ϕ(c) = ϕ(d) = ±1 which are connected by an edge in the graph CG+
1 , that is, so

that Σg − (c∪ d) is connected. Let Γc,Γd ⊂ Mod(Σg)[ϕ] be the stabilizers of c, d in
the spin mapping class group of Σg. By Corollary 3.6, these groups are naturally
isomorphic to the group Γ2

g−1, and they intersect in the index two subgroup A =
Γc ∩ Γd of the stabilizer of c ∪ d in Mod(Σg)[ϕ] consisting of all elements which
preserve both c, d individually. The full stabilizer of c∪ d in Mod(Σg)[ϕ] is a Z/2Z
extension of Γc∩Γd, where the generator Φ of Z/2Z acts as involution on A = Γc∩Γd
exchanging c and d. This involution extends to an involution of Γc∗AΓd exchanging
the two subgroups Γc,Γd.

By the universal property of free amalgamated products, there is a homomor-
phism

ρ : Γ = Γc ∗A Γd o Z/2Z→ Mod(Σg)[ϕ].

All we need to show is that ρ is surjective, that is, that ρ(Γ) = Mod(Σg)[ϕ].

As Mod(Σg)[ϕ] acts transitively on the vertices of the graph CG+
1 , for this it

suffices to show that its subgroup ρ(Γ) acts transitively on the vertices of CG+
1 as

well. Namely, by construction, the stabilizer of the vertex c of CG+
1 in ρ(Γ) coincides

with its stabilizer in Mod(Σg)[ϕ]. As ρ(Γ) is a subgroup of Mod(Σg)[ϕ], this then
implies equality.

To show transitivity of the action of ρ(Γ) on the vertices of CG+
1 let v ∈ CG+

1 be
any vertex. By Proposition 2.13, and Corollary 2.17, the graph CG+

1 is connected
and hence we can find an edge path (ci) ⊂ CG+

1 connecting c0 = c to ck = v. We
also may assume that c1 = d.

By the assumption ϕ(d) = ±1, for one of the two boundary components d1, d2

of Σg − d, equipped with the orientation as a boundary component of Σg − d, say
the component d1, we have ϕ(d1) = −1. Thus we can attach a disk D to c1 and
obtain a surface Σ′ with spin structure ϕ′ which induces the spin structure ϕ on
Σg − d. As a consequence, the restriction of ϕ to Σg − d fulfills the hypothesis
in Corollary 3.6. As c = c0 and c2 are nonseparating simple closed curves in
Σg − d with ϕ(c) = ϕ(c2) = ±1, Corollary 3.6 shows that there exists an element
Ψ1 ∈ Γd ⊂ ρ(Γ) such that Ψ1(c) = c2. Then the stabilizer of c2 in Mod(Σg)[ϕ]

equals Ψ1ΓcΨ
−1
1 and hence it is contained in ρ(Γ). Thus we can apply Corollary

3.6 to Ψ1ΓcΨ
−1
1 and find an element Ψ2 ∈ ρ(Γ) which maps c1 to c3. Proceeding

inductively and using the fact that Γc is conjugate to Γd in ρ(Γ) by the generator
of the subgroup Z/2Z, this completes the proof of the proposition. �

Recall from the introduction the definition of an admissible curve system on a
closed surface Σg of genus g ≥ 2. The mapping class group of Σg naturally acts
on the family of all admissible curve systems on Σg. Recall also that the curve
diagram of an admissible curve system is a finite tree.
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Since the curve diagram of an admissible curve system C is connected, each curve
c ∈ C intersects at least one other simple closed curve on Σg transversely in a single
point and hence it is non-separating.

We need some technical information on admissible curve systems. To this end
let C be any admissible curve system on an oriented surface S. We require that
the boundary of S is empty, but we allow for the moment that S has punctures.
For admissibility, we require that all complementary components of C are either
topological disks or once punctured topological disks.

The union ∪{c | c ∈ C} is an embedded graph G in S whose vertices are the
intersection points between the curves from C. Choose a basepoint x ∈ G which is
contained in the interior of an edge of G. This edge is contained in a simple closed
curve c0 ∈ C which defines a distinguished vertex v0 in the curve diagram of C.

Construct inductively a family L of homotopy classes of loops in G based at x
as follows. Let L0 be the family consisting of the two based loop which go once
around the simple closed curve c0 ∈ C containing x in either direction. Assume
by induction that for some k ≥ 1 we defined a system of based loops Lk−1. Let
{ck1 , . . . , cks} ⊂ C be the curves in C whose distance in the curve diagram to the
distinguished vertex v0 equals k. Define

Lk = {T±1
cku

d | u ≤ s, d ∈ Lk−1}

and let L = Lb where b ≥ 1 is the maximal distance of a vertex in the curve diagram
of C to the distinguished vertex v0. We have

Lemma 4.2. The loops from the system L generate the fundamental group π1(S, x)
of S.

Proof. Let T be the curve diagram of C and let ζ : [0, p] → T be a path without
backtracking in T which connects the base vertex v0 to a vertex v. Then ∪jζ(j)
is an embedded chain in S, that is, a string of simple closed curves whose curve
diagram is a line segment. The basepoint x is contained in the curve ζ(0).

We show by induction on ` ≥ 1 that the curve system L` contains a system of
based loops supported on the subchain ∪j≤`ζ(j) which generate the fundamental
group of ∪j≤`ζ(j), viewed as an embedded graph in S. Note that this fundamental
group is just the free group in ` generators. The case ` = 0 is clear since in this
case the chain consists of a single simple closed curve, so assume that the claim
holds true for some `− 1 ≥ 0.

For j ≤ p − 1 let yj = ζ(j) ∩ ζ(j + 1). By construction, the loop system L`−1

contains a loop α supported in ∪j≤`−1ζ(j) which passes precisely once through
y`−1. Then α is a concatenation of two paths. The first path α1 connects x to
y`−1, and the second path α2 connects y`−1 back to x. The based loop which
is the concatenation of α1, the loop ζ(`), based at y`−1, and the arc α2 is the
image of α under the Dehn twist about ζ(`) and hence it is contained in the loop
system L`. By induction assumption, the loops from L`−1 which are supported
in the subgraph ∪j≤`−1ζ(j) generate the fundamental group of ∪j≤`−1ζ(j). Since
the graph ∪j≤`ζ(j) is obtained from ∪j≤`−1ζ(j) by attaching the loop ζ(`), we
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conclude that the fundamental group of ∪j≤`ζ(j) is generated by those loops from
the system L` which are supported in ∪j≤`ζ(j). This completes the induction step.

As a consequence, the loops from the loop system L generate the fundamental
group of the graph G. Thus they also generate the fundamental group of the
subsurface of S filled by G which is just a thickening of G. But by definition of
an admissible system, the inclusion G → S induces a surjection on fundamental
groups. The lemma follows. �

As a consequence we obtain

Lemma 4.3. Let C be an admissible curve system on a surface S, possibly with
punctures. Let p be a puncture of S and assume that there are two curves c1, c2 ∈ C
which bound a once punctured annulus, with p as puncture. Then the subgroup Γ
of Mod(S) generated by the Dehn twists about the curves from the curve system C
contains the kernel of the homomorphism Mod(S)→ Mod(Σ) where Σ is obtained
from S by forgetting p.

Proof. Let c be the common projection of the curves c1, c2 to Σ. We assume
that c passes through p. The point pushing map about the curve c is just the
concatentation Tc1T

−1
c2 , and this element is contained in Γ by assumption.

On the other hand, if u is the image of c under a Dehn twist about any of the
curves d ∈ C − {c1, c2}, then the point pushing map about u is just the concaten-
tation TTdc1T

−1
Tdc2

= TdTc1T
−1
c2 T

−1
d and hence this element also is contained in Γ.

Thus the lemma follows from Lemma 4.2. �

For a closed surface Σg of genus g ≥ 2 consider the system Sg of 3g − 2 simple
closed curve on Σg shown in Figure 4. Note that for g = 2, the system Sg is just a

Figure 4

chain of 4 curves which are invariant under the hyperelliptic involution.
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Lemma 4.4. The Dehn twists about the curves from the system Sg preserve an
odd Z/2Z-spin structure on Σg.

Proof. There exists a cyclic subgroup G of the diffeomorphism group of Σg of order
g − 1 which preserves Sg and acts freely on Σg as a group of rotations about the
center curve c0. The group G cyclically permutes the complementary components
of Sg.

As a consequence, the curve system Sg descends to a curve system on a closed
surface Σ2 of genus 2. The curve diagram of this system is just a line segment
of length 4 and hence the Dehn twists about these curves preserve an odd spin
structure on Σ2. This spin structure lifts to a spin structure on Σg which is invariant
under the Dehn twist about the curves from Sg. The parity of this spin structure
is odd, as can also easily be checked explicitly using the formula (2). This is what
we wanted to show. �

We use Lemma 4.3 and Proposition 4.1 to show

Proposition 4.5. Let ϕ be an odd Z/2Z-spin structure on a surface Σg of genus
g ≥ 2. Then the group Mod(Σg)[ϕ] is generated by the Dehn twists about the curves
from the curve system Sg.

Proof. Lemma 4.4 shows that the subgroup Γ of Mod(Σg) generated by the Dehn
twists about the curves from the curve system Sg is a subgroup of Mod(Σg)[ϕ]. We
have to show that it coincides with Mod(Σg)[ϕ].

We proceed by induction on the genus, beginning with genus 2. We observed
above that in this case, the system Sg is just a chain of 4 simple closed curves
invariant under the hyperelliptic involution. The Dehn twists about these curves
are well known to generate the stabilizer Mod(Σ2)[ϕ] of an odd spin structure ϕ on
Σ2 (see [FM12]).

Thus let us assume that the proposition is known for some g − 1 ≥ 2. Consider
the curve system Sg on a surface of genus g. Using the labeling from Figure 4, let
a1 be the simple closed curve on Σg which intersects the curve c1 in a single point
and is disjoint from any other curve from Sg. We know that ϕ(a1) = 1. We aim at
showing that Γ ∩ Stab(a1) = Mod(Σg)[ϕ] ∩ Stab(a1).

To this end cut Σg open along a1. The resulting surface is a surface Σ2
g−1 of genus

g− 1 with two boundary components. Replace these two boundary components by
punctures and let Σg−1,2 be the resulting twice punctured surface. As before, the
spin structure ϕ decends to a spin structure, again denoted by ϕ, on the surface
Σg−1 obtained by closing the punctures, and to a spin structure on Σg−1,2. The
curve system Sg descends to the curve system Sg−1 on Σg−1.

By induction hypothesis, the Dehn twists about the curves from the curve system
Sg−1 generate the spin mapping class group Mod(Σg−1)[ϕ]. On the other hand, we
can apply Lemma 4.3 to each of the two punctures of Σg−1,2 as each of these two
punctures is contained in a once punctured annulus bounded by two curves from
the restriction of Sg to Σg−1,2. We conclude that the point pushing maps about
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these punctures are contained in the group Γ ∩ Stab(a1). As a consequence, the
group Γ ∩ Stab(a1) surjects onto the index two subgroup of Mod(Σg−1,2) which
fixes each of the two punctures.

We have to show that there also is an element of Γ ∩ Stab(a1) which exchanges
the two boundary components of Σg − a1. For this it suffices to find an element of
Γ which fixes the curves c1, c2 and exchanges d1, d2.

If g = 3 then consider the hyperelliptic involution of the surface Σ2 obtained by
cutting Σ3 open along the simple closed curve a1 and removing the punctures. This
element can be represented as an explicit word in the Dehn twists about the curve
c2, c0, c4, c3 (or, rather, their projection to Σ2). The mapping class ψ, viewed as an
element of the mapping class group of Σ3, preserves the curves ci and exchanges d1

and d2.

For g ≥ 4 the same argument can be used. Namely, the element ψ still acts
as an involution on Σg which preserves the curves c1, c2 and exchanges d1 and d2.
However this involution does not preserve the curve system Sg.

To summarize, we showed so far that Γ surjects onto Stab(a1)[ϕ]/Z. Thus to
show that Γ∩Stab(a1) = Mod(Σg)[ϕ]∩Stab(a1) it suffices to show that Γ contains
the square T 2

a1 of the Dehn twist about a1. For an application of Proposition 4.1,
we have to show furthermore that Γ contains an involution Ψ which exchanges the
curve a1 with a curve disjoint from a1. We show first that Γ contains an involution
which maps a1 to a2.

To this end consider again first the case g = 3. The curve system S3 contains a
curves system E6 ⊂ S3 obtained from S3 by deleting the curve d2. This is the curve
system shown in Figure 2 in the introduction. By Theorem 1.4 of [Ma00], there
exists an explicit word c(E6) in the Dehn twists about the curves from the system
E6, the image of the so-called Garside element of the Artin group of type E6, which
acts as a reflection on the curve diagram of E6 exchanging the curves c1 and c3.
Then this reflection exchanges a1 and a2 and hence it has the desired properties.

As before, this reasoning extends to any g ≥ 4. Namely, the element c(E6),
viewed as an element of the mapping class group of Σg, still acts as an involution
on Σg which exchanges a1 and a2 and preserves the subsurface of Σg filled by the
curves c1, c2, c0, c4, c3, d2.

For an application of Proposition 4.1, we are left with showing that the square of
the Dehn twist about a1 is contained in Γ. By the above discussion, we know that
Γ∩Stab(a1) surjects onto Mod(Σg−1,2)[ϕ]. In particular, Γ contains T 2

a2 , viewed as
an element of Stab(a1) ⊂ Mod(Σg). Since a1 is the image of a2 under an involution
contained in Γ, it follows that T 2

a1 ∈ Γ.

To summarize, we showed that Γ ∩ Stab(a1) = Mod(Σg)[ϕ] ∩ Stab(a1), further-
more Γ contains an involution Ψ which exchanges a1 and a2. Proposition 4.1 now
shows that Γ = Mod(Σg)[ϕ]. This completes the proof of the Proposition. �
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We use Proposition 4.5 as the base case for the proof of Theorem 3 from the
introduction. The curve system Cg is shown in Figure 1 in the introduction. Note
that we have C3 = S3.

Theorem 4.6. Let ϕ be an odd Z/2Z-spin structure on a surface Σg of genus g ≥ 3.
Then the group Mod(Σg)[ϕ] is generated by the Dehn twists about the curves from
the curve system Cg.

Proof. The curve system Cg is obtained from the curve system Sg by deleting the
curves d3, . . . , dg−1. Let Γ be the subgroup of Mod(Σg)[ϕ] generated by the Dehn
twists about the curves from the curve system Cg. By Proposition 4.5, it suffices to
show that the Dehn twists Tdi for i = 3, . . . , g− 1 are contained in Γ. Moreover, as
D3 = C3, we may assume that g ≥ 4.

Let ai be the simple closed curve which intersects c2i−1 in a single point and
does not intersect any other curve from Sg. We claim that T 2

a1 ∈ Γ.

To show the claim consider the subsurface Σ1
2 of Σg which is filled by the curves

a1, c0, c1, c2, d1, d2. This is a surface of genus 2 with connected boundary. The
curves d1, d2 bound a one-holed annulus containing the boundary circle C of Σ1

2.

By homological coherence (Proposition 3.8 of [Sa19]), we have ϕ(C) = 1. Thus
the spin structure ϕ descends to a spin structure on Σ1

2, on the surface Σ2,1 obtained
from Σ1

2 by replacing the boundary component by a puncture and on the surface
Σ2 obtained from Σ2,1 by forgetting the puncture, again denoted by ϕ. The curves
of the curve system Cg which are contained in Σ1

2 define a curve system F on Σ1
2

which descends to a curve system on Σ2. The curve diagram of this system is just
a line segment of length 4. As a consequence, the Dehn twists about the curves
from F project onto Mod(Σ2)[ϕ].

On the other hand, F also contains two simple closed curves which enclose the
boundary component of Σ2,1. It now follows from Lemma 4.3 that the subgroup of
Mod(Σ2,1) generated by the Dehn twists about the curves from F equals Mod(Σ2,1).
In particular, this group contains T 2

a1 and therefore T 2
a1 ∈ Γ.

We claim next that T 2
a2 ∈ Γ. To this end consider the subsurface Σ1

3 of Σg which
is filled by the system of curves G = {c1, c2, c0, c4, c3, d1, d2, d3}. This is a surface
of genus 3 with connected boundary. The curves d1, d3 bound a one-holed annulus
containing the boundary circle A of Σ1

3.

The subsurface Σ1
3 of Σg contains the curves c1, c2, c0, c4, c3, d2 whose curve di-

agram is the Dynkin diagram of type E6 (see Figure 2 in the introduction). There
is an involution of Σ1

3 which fixes the curves c0, d2 and exchanges c2, c4 and a1, a2.
By Theorem 1.4 of [Ma00], this involution is contained in the subgroup of the map-
ping class group of Σ1

3 which is generated by the Dehn twists about the curves
c1, c2, c0, c4, c5, d2. As a consequence, there is an element of Γ which exchanges a1

and a2. This implies that T 2
a2 ∈ Γ.

By the chain relation for Dehn twists of surfaces (see p.108 of [FM12]), we have
(T 2
a2Tc3Tc4)3 = Td2Td3 . Since Td2 ∈ Γ, we conclude that Td3 ∈ Γ.
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Now repeat this argument, replacing the curves cj by cj+2 and the curve ai by
ai+1 where the first step discussed above is the case i = 1. In finitely many such
steps we find that indeed Tdi ∈ Γ for all i. This is what we wanted to show. �

5. Structure of the spin mapping class group of even parity

The goal of this section is to prove the second part of Theorem 3. Our strat-
egy is to reduce this result to the first part of Theorem 3 by a change of parity
construction.

Consider for the moment an arbitrary Z/rZ-spin structures ϕ on a compact
surface S of genus g ≥ 4. In the appendix we introduce a graph CG+

2 whose vertices
are ordered pairs (a, b) of nonseparating simple closed curves which intersect in a
single point and hence they fill a one-holed torus T (a, b). Furthermore, it is required
that ϕ(a) = 2 and ϕ(b) = 0. The spin structure on S restricts to a spin structure
ϕ̂ on Σ(a, b) = S − T (a, b).

By homological coherence (Proposition 3.5 of [Sa19]), if we orient the boundary
circle c of Σ(a, b) as the oriented boundary of Σ(a, b) then we have ϕ(c) = 1. Thus
if r = 2 then ϕ descends to a spin structure ϕ̂ on the surface Σ obtained from
Σ(a, b) by capping off the boundary. This spin structure ϕ̂ has a parity, either even
or odd.

Lemma 5.1. A Z/2Z-spin structure ϕ on S induces a Z/2Z-spin structure ϕ̂ on
the surface Σ whose parity is opposite to the parity of ϕ.

Proof. Choose a geometric symplectic basis a1, b1, . . . , ag−1, bg−1 for Σ. This basis
then lifts to a curve system on the surface Σ(a, b) = S−T (a, b). Using the inclusion
Σ(a, b) → S, this basis can be extended to a geometric symplectic basis of S by
adding a, b. As ϕ(a) = ϕ(b) = 0, the parity of ϕ is opposite to the parity of ϕ̂. �

The next observation is an analog of Proposition 3.4. Note that we only require
g ≥ 3 here.

Proposition 5.2. Let ϕ be a Z/rZ-spin structure on a compact surface S of genus
g ≥ 3 with empty or connected boundary and where r ≤ 2g. Then for any two
vertices c, d of the graph CG+

2 there exists a mapping class ζ ∈ Mod(S)[ϕ] with
ζ(c) = d. In particular, the action of Mod(S)[ϕ] is transitive on the vertices of the
graph CG+

2 .

Proof. The proof is very similar to the proof of Proposition 3.4.

Recall that a geometric symplectic basis for S is a set {a1, b1, . . . , a2g, b2g} of
simple closed curves on S such that ai, bi intersect in a single point, and ai ∪ bi is
disjoint from aj ∪ bj for j 6= i.

Let us consider a vertex (a, b) of CG+
2 . It consists of a pair of simple closed

curves which intersect in a single point and such that ϕ(a) = 2 and ϕ(b) = 0.
Our goal is to construct for any such a pair a geometric symplectic basis B(a, b) =
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{a, b, α2, β2, . . . , αg, βg} such that ϕ(αi) = 0 for all i ≥ 2, ϕ(βj) = 0 for 2 ≤ j ≤
g − 1 and ϕ(βg) = 0 or 1 as predicted by the parity of the spin structure ϕ. By
the discussion in the proof of Proposition 3.4, this suffices for the proof of the
proposition.

For the construction of a geometric symplectic basis B(a, b) with the requested
property we proceed as in the proof of Proposition 3.4. Namely, extend a, b in an
arbitrary way to a geometric symplectic basis {a, b, α2, β2, . . . , αg, βg} and modify
this basis in such a way that ϕ(αi) = 0 for all i ≥ 2. Let B be the resulting
geometric symplectic basis. As in the proof of Proposistion 3.4 our task is now to
modify the curves βi (i ≥ 2) while keeping a, b, αi fixed in such a way that ϕ assume
the prescribed values on the modified curves.

This is done exactly as in the proof of Proposition 3.4, following the argument of
Salter [Sa19]. For 1 ≤ i ≤ g let δi be the boundary curve of the torus Ti which is a
small tubular neighborhood of αi∪βi, equipped with the orientation as an oriented
boundary circle of S − Ti (i ≥ 1). By homological coherence (Proposition 3.8 of
[Sa19]), we have ϕ(δi) = 1 for all i.

Thus if ε is an embedded arc in S connecting β2 to δ3 and disjoint from α2 and
all δj for j 6= 2, then ϕ(β2 +ε δ3) = ϕ(β2) + 2. Moreover, β2 +ε δ3 is disjoint from
δj for all j 6= 2.

Repeat this construction with an arc connecting β2 +ε δ3 to δ4 disjoint from all
δj for j 6= 2, 4. As there are g − 1 of the curves δj (j 6= 2) and as r ≤ 2g, with this
construction we can find a simple closed curve β′2 intersecting α2 in a single point
and disjoint from the curves δj for j 6= 2 so that ϕ(β′1) ∈ {0, 1}.

Let δ′2 be the boundary of a tubular neighborhood of α2∪β′2. Then δ′2 is disjoint
from all the curves δj for j 6= 2. As in the proof of Proposition 3.4, repeat this
procedure with the curve β3 and the curves δ1, δ

′
2, . . . , δg. In finitely many steps

we can change the geometric symplectic basis B to a geometric symplectic basis
B′ = {α1, β1, α2, β

′
2, . . . , αg, β

′
g} which fulfills ϕ(β′j) = 0 or 1 for all 2 ≤ j ≤ g. The

remaining step is identical to the argument in the proof of Proposition 4.9 of [Sa19]
and will be omitted. �

Consider again a Z/rZ-spin structure ϕ on a closed surface Σg of genus g ≥ 3.
Let c be a separating simple closed curve on Σg which is the boundary of a small

neighborhood of a vertex (a, b) ∈ CG+
2 . Then c decomposes Σg into a one holed

torus Σ1
1 and a surface Σ1

g−1 of genus g − 1 with connected boundary. The spin

structure restricts to a spin structure on Σ1
1. If r is even then this spin structure

has a parity, and this parity is odd.

Since c is separating, the group Mod(Σ1
g−1)[ϕ]×Mod(Σ1

1)[ϕ] contains a rank two
free abelian central subgroup generated by the left Dehn twists Tc1 , Tc2 about the
boundary circles c1, c2 of Σ1

g−1,Σ
1
1. Define

Γ2
g−1,2 = Mod(Σ1

g−1)[ϕ]×Mod(Σ1
1)[ϕ]/Z

where the infinite cyclic subgroup Z is generated by Tc1T
−1
c2 . Then Γ2

g−1,2 is isomor-
phic to the stabilizer in Mod(Σg)[ϕ] of the curve c. Note that up to isomorphism,
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the group Γ2
g−1,2 does not depend on c since by Proposition 5.2, the stabilizers in

Mod(Σg)[ϕ] of vertices of CG+
2 are all conjugate and hence isomorphic.

Observe that the group Γ2
g−1,2 is an infinite cyclic central extension of the product

of a finite index subgroup of the mapping class group of a surface Σg−1,1 of genus
g − 1 with one punctures and a once punctured torus Σ1,1 . Thus it makes sense to
talk about its action on isotopy classes of essential curves on the surfaces Σg−1,1

and Σ1,1. The map Σ1
g−1 × Σ1

1 → Σg−1,1 × Σ1,1 which contracts each boundary
component to a puncture defines a bijection on such isotopy classes.

The following observation is the analog of Proposition 4.1.

Proposition 5.3. Let ϕ be a Z/rZ-spin structure on a closed surface Σg of genus
g ≥ 4. There is a commutative diagram

(10)

Γ2
g−1,2 Γ2

g−1,2 ∗A Γ2
g−1,2 o Z/2Z

Mod(Σg)[ϕ]

ι1

ι2
ρ

where the homomorphisms ι1, ι2 are inclusions, and the homomorphism ρ is sur-
jective. The subgroup A of Γ2

g−1,2 is the stabilizer in Γ2
g−1,2 of a separating simple

closed curve d on Σ2
g−1 which is defined by a vertex of the graph CG+

2 . The curve

d decomposes Σ1
g−1 into a one-holed torus and a surface of genus g − 2 with two

boundary components. The group Z/2Z acts on Γ2
g−1,2 ∗A Γ2

g−1,2 by exchanging the
two factors, and it acts as an automorphism on A.

Proof. Fix a pair of vertices of the graph CG+
2 which are connected by an edge.

These two vertices then determine a pair of disjoint separating simple closed curves
c, d on Σg which cut from Σg a one-holed torus each. These tori are disjoint. Let
Γc,Γd ⊂ Mod(Σg)[ϕ] be the stabilizers of c, d in the spin mapping class group of
Σg. By Corollary 3.6, these groups are naturally isomorphic to the group Γ2

g−1,2,
and they intersect in the index two subgroup A = Γc ∩ Γd of the stabilizer of c ∪ d
in Mod(Σg)[ϕ] consisting of all elements which preserve both c, d individually. The
full stabilizer of c ∪ d in Mod(Σg)[ϕ] is a Z/2Z extension of Γc ∩ Γd, where the
generator Φ of Z/2Z acts as involution on A = Γc ∩ Γd exchanging c and d. This
involution extends to an involution of Γc∗AΓd exchanging the two subgroups Γc,Γd.

By the universal property of free amalgamated products, there is a homomor-
phism

ρ : Γ = Γc ∗A Γd o Z/2Z→ Mod(Σg)[ϕ].

All we need to show is that ρ is surjective, that is, that ρ(Γ) = Mod(Σg)[ϕ].

As Mod(Σg)[ϕ] acts transitively on the vertices of the graph CG+
2 , for this it

suffices to show that its subgroup ρ(Γ) acts transitively on the vertices of CG+
2 as

well. Namely, by construction, the stabilizer of the vertex c of CG+
1 in ρ(Γ) coincides

with its stabilizer in Mod(Σg)[ϕ]. As ρ(Γ) is a subgroup of Mod(Σg)[ϕ], this then
implies equality.
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To show transitivity of the action of ρ(Γ) on the vertices of CG+
2 let v ∈ CG+

2 be
any vertex. By Proposition 2.13, and Corollary 2.17, the graph CG+

2 is connected
and hence we can find an edge path (ci) ⊂ CG+

2 connecting c0 = c to ck = v. We
also may assume that c1 = d.

By Proposition 5.2, there exists an element Ψ1 ∈ Γd ⊂ ρ(Γ) such that Ψ1(c0) =
c2. Then the stabilizer of c2 in Mod(Σg)[ϕ] equals Ψ1ΓcΨ

−1
1 and hence it is con-

tained in ρ(Γ). Thus we can apply Corollary 3.6 to Ψ1ΓcΨ
−1
1 and find an element

Ψ2 ∈ ρ(Γ) which maps c1 to c3. Proceeding inductively and using the fact that Γc
is conjugate to Γd in ρ(Γ) by the generator of the subgroup Z/2Z, this completes
the proof of the proposition. �

For a surface S of genus g ≥ 3 consider the following system Ug of 3g− 2 simple
closed curve on S. Note that for g = 3, the system Sg is just a chain of 7 curves

Figure 5

which are invariant under a hyperelliptic involution. It follows from the discussion
in Section 4 that the Dehn twists about these curves preserve an even Z/2Z-spin
structure on Σg.

We use Lemma 4.3 and Proposition 4.1 to show

Proposition 5.4. Let ϕ be an even Z/2Z-spin structure on a surface Σg of genus
g ≥ 4. Then the group Mod(Σg)[ϕ] is generated by the Dehn twists about the curves
from the curve system Ug.

Proof. We observed above that the subgroup Γ of Mod(Σg) generated by the Dehn
twist about the curves from the curve system Ug is a subgroup of Mod(Σg)[ϕ]. We
have to show that it coincides with Mod(Σg)[ϕ].

To this end we proceed by induction on the genus, beginning with genus 4. Let
a be the separating simple closed curve which intersects c3 in two points and is
disjoint from the remaining curve from the system U4. It decomposes U4 into a
one holed torus Σ1

1 containing the curves c1, c2, and a surface Σ1
3 of genus 3 with
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connected boundary which contains the curve system S3. As we are looking at a
Z/2Z-spin structure we know that the pair (c1, c2) and hence the curve a defines a
vertex in CG+

2 . The spin structure ϕ induces a spin structure on Σ1
3 and Σ1

1, again
denoted by ϕ. It also induces a spin structure on the closed surface Σ3 of genus 3
obtained from Σ1

3 by capping off the boundary, again denoted by ϕ.

It is well known that the mapping class group of one holed tori is generated by
a pair of Dehn twists about simple closed curves which intersect in a single point.
Thus we have Mod(Σ1

1) ⊂ Γ ∩ Stab(a).

On the other hand, by Proposition 4.5, the Dehn twists about the curves from
the system S3 generate the spin mapping class group Mod(Σ3)[ϕ] of Σ3. Thus the
projection of Γ to Mod(Σ3)[ϕ] is surjective.

To apply Proposition 5.3 we have to show that the point pushing group of
Mod(Σ3,1)[ϕ] is contained in the projection of Γ∩Stab(a). Following Lemma 4.3, to
this end it suffices to show that the point pushing map along a single nonseparating
simple closed curve is contained in Γ.

Consider the curves c0, c7, c6, d1, c5 which defines a curve system of type D5 on
the surface Σ3,1 whose curve diagram is the Dynkin diagram D5. By Theorem 1.5
of [Ma00], there exists an explicit word in the Dehn twists about these curves which
defines the product T 3

a4Ta′4 where a4 is simple closed curve in Σ1
3 which intersects

c4 in a single point and is disjoint from all other curves and where a′4 is the simple
closed curve which bounds together with a4 a once punctured annulus in Σ1

3.

On the other hand, we know by the chain relation [FM12] that T ′a4Ta4 =

(Tc1Tc2Tc3)4. Since Ta4 , Ta′4 commute we deduce that (T ′a4)−2T−2
a4 T

3
a4Ta′4 = Ta4T

−1
a′4
∈

Γ.

If α is an embedded simple closed curve containing the marked point, then the
point pushing map along α is just the product T−1

a1 Ta2 where a1, a2 are the boundary
circles of a once punctured annulus containing α.

By Proposition 5.3 we are left with finding an element Ψ ∈ Γ which maps a
to a curve disjoint from a. However, the curve system U4 contains a subsystem
consisting of the curves ci (i = 0, . . . , 7). The Dehn twists about these curves are
well known to generate the hyperelliptic mapping class group, that is, the subgroup
of the mapping class group which commutes with a hyperelliptic involution. The
hyperelliptic mapping class group contains an element ψ which maps a to a disjoint
curve, e.g. the boundary of a small neighborhood of c0 ∪ c5. The proposition for
g = 4 now follows from Proposition 5.3.

By induction, let us now assume by that the proposition is known for some
g−1 ≥ 4. Consider the curve system Ug on a surface of genus g. Using the labeling
from Figure 5, let a7 be the simple closed curve on Σg which intersects the curve
c7 in a single point and is disjoint from any other curve from Ug. We know that
ϕ(a7) = 1. We aim at showing that Γ ∩ Stab(a1) = Mod(Σg)[ϕ] ∩ Stab(a7).

To this end cut Σg open along a1. The resulting surface is a surface Σ2
g−1 of genus

g− 1 with two boundary components. Replace these two boundary components by
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punctures and let Σg−1,2 be the resulting twice punctured surface. As before, the
spin structure ϕ descends to a spin structure, again denoted by ϕ, on the surface
Σg−1 obtained by closing the punctures, and to a spin structure on Σg−1,2. The
curve system Ug descends to the curve system Ug−1 on Σg−1.

By induction hypothesis, the Dehn twists about the curves from the curve system
Ug−1 generate the spin mapping class group Mod(Σg−1)[ϕ]. On the other hand, we
can apply Lemma 4.3 to each of the two punctures of Σg−1,2 as each of these two
punctures is contained in a once punctured annulus bounded by two curves from
the restriction of Ug to Σg−1,2. We conclude that the point pushing maps about
these punctures are contained in the group Γ ∩ Stab(a1). As a consequence, the
group Γ ∩ Stab(a1) surjects onto Mod(Σg−1,1).

To summarize, we showed so far that Γ surjects onto Stab(a1)[ϕ]/Z where Z is
the intersection of Mod(Σg)[ϕ| with the infinite cyclic group of Dehn twists about
a1. Thus to show that Γ∩ Stab(a) = Mod(Σg)[ϕ]∩ Stab(a) it suffices to show that
Γ contains the square T 2

a1 of the Dehn twist about a1 as well as an involution Ψ
which exchanges a1 with a simple closed curve disjoint from a1.

Consider again first the case g = 4. The curve system U3 contains a curve
system E6 ⊂ U3 obtained from U4 by deleting the curves d2, c1, c2. By Theorem 1.4
of [Ma00], there exists an explicit word c(E6) in the Dehn twists about the curves
from the system E6, the image of the so-called Garside element of the Artin group
of type E6, which acts as a reflection on the curve diagram of E6 exchanging the
curves c1 and c3. Then this reflection exchanges a1 and a2 and hence it has the
desired properties.

As before, this reasoning extends to any g ≥ 5. Namely, the element c(E6),
viewed as an element of the mapping class group of Σg, still acts as an involution
on Σg which exchanges a1 and a2 and preserves the subsurface of Σg filled by the
curves c1, c2, c0, c4, c3, d2.

For an application of Proposition 4.1, we are left with showing that the square of
the Dehn twist about a1 is contained in Γ. By the above discussion, we know that
Γ∩Stab(a1) surjects onto Mod(Σg−1,2)[ϕ]. In particular, Γ contains T 2

a2 , viewed as
an element of Stab(a1) ⊂ Mod(Σg). Since a1 is the image of a2 under an involution
contained in Γ, it follows that T 2

a1 ∈ Γ.

To summarize, we showed that Γ ∩ Stab(a1) = Mod(Σg)[ϕ] ∩ Stab(a1), further-
more Γ contains an involution Ψ which exchanges a1 and a2. Proposition 4.1 now
shows that Γ = Mod(Σg)[ϕ]. This completes the proof of the Proposition. �

We use Proposition 4.5 as the base case for the proof of Theorem 3 from the
introduction. The curve system Vg is defined as in the Theorem 3. Note that we
have V3 = U3.

Theorem 5.5. Let ϕ be an even Z/2Z-spin structure on a surface Σg of genus
g ≥ 4. Then the group Mod(Σg)[ϕ] is generated by the Dehn twists about the
curves from the curve system Vg.
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Proof. The curve system Vg is obtained from the curve system Ug by deleting the
curves d2, . . . , dg−2.

Let Γ be the subgroup of Mod(Σg)[ϕ] generated by the Dehn twists about the
curves from the curve system Vg. By Proposition 4.5, it suffices to show that the
Dehn twists Tdi for i = 2, . . . , g − 2 are contained in Γ.

To see that Td2 ∈ Γ note that d2 is the image of d1 under the hyperelliptic
involution of the surface of genus 3 with connected boundary filled by the curves
d1, d2, c0, c1, c2, c3, c4.

Consider the surface S filled by c1, . . . , c6, d1, d2, d3. This is a surface of genus 4
with connected boundary. The system Vg intersects S in a curve system of type U4.
Thus by what we proved so far, the group of Dehn twists generated by this system
surjects onto the spin mapping class group of the surface obtained by capping off
the boundary. In particular, if we denote by e1, e3 the nonseparating simple closed
curves which intersect c4 in a single point, do not intersect any other curve and
form a bounding pair, then Te1T

−1
e2 ∈ Γ.

Now by Theorem 1.4 of [Ma00], the stabilizer in Γ of the surface of genus 3 with
two boundary components obtained by removing the one-holed torus filled by c1, c2
contains a half-twist which exchanges the two boundary components of the surface.
As the full point pushing group about one of the components is contained in Γ
by the above and Lemma 4.3, the same holds true for the full pointpushing group
about the other.

In other words, we have Td2T
−1
d3
∈ Γ. As Td2 ∈ Γ, we conclude that the same

holds true for Td3 . To generate the remaining twists about the curves di we argue
as in the proof of Theorem 5.5. �

6. Generating the Z/4Z-spin mapping class group in genus 3

The goal of is to prove Theorem 4 from the introduction. Our strategy is similar
to the strategy used in Section 4. We first introduce one more graph of curves
which will be useful to this end.

Consider an odd Z/2Z-spin structure ϕ on a surface Σ3 of genus 3. A separating
simple closed curve a on Σ3 decomposes Σ3 into a one-holed torus T and a surface
Σ1

2 of genus 2 with connected boundary. By homological coherence (Proposition
3.15 of [Sa19]), we have ϕ(c) = 1. In particular, ϕ induces a spin structure on the
surface Σ1

2 which has a parity. Define a to be odd if this parity is odd. Note that
a vertex of the graph CG+

2 defines a separating simple closed curve which is even,
that is, it is not odd.

Let S be the graph whose vertices are odd separating simple closed curves on
(Σ3, ϕ) and where two such curves are connected by an edge if they are disjoint.
Let Φ be a Z/4Z-spin structure on Σ3 whose Z/2Z-reduction equals ϕ. The sta-
bilizer Mod(Σ3)[ϕ] and its subgroup Mod(Σ3)[Φ] act on S as a group of simplicial
automorphisms. The following observation is similar to Proposition 3.4. It uses
some special properties of Z/4Z-spin structures.
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Lemma 6.1. (1) The group Mod(Σ3)[Φ] acts transitively on the vertices of S.
(2) Let a ∈ S be any vertex. Then the stabilizer of a in Mod(Σ3)[Φ] acts

transitively on the edges of S issuing from a.

Proof. A vertex a of S decomposes Σ3 into a one-holed torus T and a surface Σ3−T
of genus 2 with connected boundary and odd spin structure. Since the parity of
the spin structure of ϕ on Σ3 is odd, the torus T contains a simple closed curve c
with ϕ(c) = 1 and hence Φ(c) = ±1. Via perhaps changing the orientation for c we
may assume that Φ(c) = 1, furthermore there is a simple closed curve d in T which
intersects c in a single point and satisfies Φ(d) = 0.

By homological coherence (Proposition 3.15 of [Sa19]), if we orient a as the
oriented boundary of the surface V = Σ3 − T then we have Φ(a) = 1. Since the
spin structure induced on V is odd, a geometric symplectic basis for V consists
of simple closed curves a1, b1, a2, b2 with ϕ(a1) = 1 and hence Φ(a1) = ±1 (up to
ordering). A tubular neighborhood T ′ of a1 ∪ b1 is an embedded bordered torus in
V . Choose an orientation for a1 so that Φ(a1) = 1. After perhaps replacing b1 by
its image under a multiple of a Dehn twist about a1 we may assume that Φ(b1) = 0.

Consider the pair of curves a2, b2. Since the spin structure on V is odd, we have
ϕ(a2) = ϕ(b2) = 0 and hence Φ(a2),Φ(b2) ∈ {0, 2}. Our goal is to modify a2, b2 so
that Φ vanishes on the modified curves. Thus assume without loss of generality that
Φ(a2) = 2. Connect a2 to the boundary curve a of V by an embedded arc ε which is
disjoint from T ′ and b2, and connect b2 to the boundary δ of T ′ by an embedded arc
η which is disjoint from ε and a2. Since Φ(a) = 1 for the orientation as a boundary
curve of V , we obtain that Φ(a2 +ε a) = 0, furthermore this curve is disjoint from
T ′ and intersects b2 in a single point. Replace a2 by a2 +ε a. Similarly, if Φ(b2) = 2
then we replace b2 by b2 +η δ. This process yields a geometric symplectic basis for
Σ3 consisting of simple closed curves disjoint from a.

Given any other odd separating curve a′ on Σ3 we can find in the same way a
geometric symplectic basis for Σ3 consisting of curves disjoint from a′. Then there
is a mapping class which maps a to a′ and identifies the geometric symplectic bases
in such a way that the values of Φ on these curves match up. By the result of
Humphries and Johnson [HJ89], this implies that this mapping class is contained
in Mod(Σ3)[Φ]. In other words, there is an element of Mod(Σ3)[Φ] which maps a
to a′. This shows the first part of the lemma.

The proof of the second part of the lemma is completely analogous but easier
and will be omitted. �

Lemma 6.2. The graph S is connected.

Proof. Consider the curve system C3 on the surface Σ3. There is an odd separating
simple closed curve a which intersects the curve c2 in two points and is disjoint
from the remaining curves from the system C3. Using the Putman trick, Theorem
5.5 and the first part of Lemma 6.1, all we need to show is that the curve a can be
connected to Tc2(a) by an edge path in S.
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However, the curve a′ which intersects the curve c4 in two points and is disjoint
from the remaining curves from the system C3 is separating and odd, and it is
disjoint from both a and Tc2(a). Thus a, a′, Tc2(a) is an edge path in S which
connects a to Tc2(a). �

Using the notations from Figure 2 from the introduction, let d be the separating
simple closed curve on Σ3 which intersects the curve c2 in two points and is disjoint
from the remaining curves from the system E6. We show

Lemma 6.3. The subgroup Γ of Mod(Σ3) which is generated by the Dehn twists
about the curves from the curve system E6 equals the stabilizer Mod(Σ3)[Φ] of an odd
Z/4Z-spin structure Φ on Σ3 if and only if its intersection with Stab(d) coincides
with Stab(d) ∩Mod(Σ3)[Φ].

Proof. Since Γ is a subgroup of Mod(Σ3)[Φ], the condition is clearly necessary, so
we have to show sufficiency. Thus assume that Γ∩Stab(d) = Mod(Σ3)[Φ]∩Stab(d).

By Lemma 6.2, the graph S whose vertices are the odd separating curves and
where two such curves are connected by an edge if they are disjoint is connected.
Moreover, by Lemma 6.1, the group Mod(Σ3)[Φ] acts transitively on the directed
edges of S as a group of simplicial automorphisms. The curve d is odd and hence
a vertex of S.

By Theorem 1.4 of [Ma00], the group Γ contains an involution which induces a
reflection in the curve diagram of the curve system E6 at the edge connecting the
vertices c0 and c3. It maps the simple closed curve d to the separating simple closed
curve d′ which intersects c4 in two points and is disjoint from all other curves from
the system. Since d is odd, the same is true for d′.

We use this as follows. Let e be any vertex of S and let d = d0, d1, d2, . . . , dm = e
be an edge path in S which connects d to e. We may assume that d1 = d′. Since
there exists an element of Γ which maps d to d′, the stabilizer of d′ in Γ is conjugate
to the stabilizer of d and hence by our assumption, it coincides with the stabilizer
of d′ in Mod(Σ3)[Φ]. In particular, by the second part of Lemma 6.1, there exists
an element of Γ which fixes d′ and maps d0 to d2. Arguing inductively as in the
proof of Proposition 4.1, we conclude that Γ acts transitively on the odd separating
curves in Σ3. As Γ is a subgroup of Mod(Σ3)[Φ] and furthermore the stabilizer of
a vertex in Γ coincides with its stabilizer in Mod(Σ3)[Φ], it has to coincide with
Mod(Σ3)[Φ]. The lemma follows. �

Our next goal is to show that the group Γ fulfills the assumption in Lemma
6.3. To this end let a1, a5 be the non-separating simple closed curves on Σ3 which
intersect c1, c5 in a single point and are disjoint from the remaining curves from
the system E6. We have Φ(aj) = ±1, in particular, by Lemma 3.13 of [Sa19], the
intersection of Mod(Σ3)[Φ] with the infinite cyclic group of Dehn twists about the
curve aj is generated by T 4

aj .

Lemma 6.4. For j = 1, 5, the group Γ contains T 4
aj .
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Proof. Consider the subsystem Dj5 (j = 1, 5) obtained from the curve system E6 by
removing the curve cj . By Theorem 1.3 (d) of [Ma00], the mapping class T 4

aj can
be represented as an explicit word in the Dehn twists about the curves from this
curve system. Thus we have T 4

aj ∈ Γ. �

Lemma 6.5. The stabilizer in Γ of the curve d coincides with the stabilizer of d in
Mod(Σ3)[Φ].

Proof. Let T be the one-holed torus component of Σ3−d. The stabilizer Stab(d)[Φ]
of d in Mod(Σ3)[Φ] is the quotient of the product of two subgroups G1, G2 by an
infinite cyclic central subgroup. The group G1 is the group of all isotopy classes of
diffeomorphisms of Σ3 which fix the bordered surface S = Σ3 − T pointwise and
preserve the spin structure Φ. It is isomorphic to the subgroup of the mapping class
group of a one-holed torus which preserves the spin structure Φ. The group G2 is
the group of all isotopy classes of diffeomorphisms of Σ3 which fix T pointwise and
preserve the spin structure Φ. The center of Stab(d)[Φ] is generated by a Dehn
twist Td about d.

Consider the curve system A4 ⊂ E6 which consists of the curves c0, c3, c4, c5. It
is contained in the subsurface Σ1

2 = Σ3 − T of Σ3 of genus 2 which is bounded by
d. The Dehn twists about these curves generate a subgroup A(A4) of Γ∩G2 which
is isomorphic to the braid group in five strands (see [FM12] or [Ma00] for the last
statement). By Theorem 1.4 of [Ma00], the Dehn twist Td can be represented as
an explicit word in the Dehn twists about the curves from the curve system A(A4).
In particular, we have Td ∈ Γ.

Let as before a1 be the simple closed curve which intersects c1 in a single point
and is disjoint from the remaining curves from the system E6. We observed before
that T `a1 ∈ Mod(Σ3)[Φ] if and only if ` is a multiple of 4. Using the fact that the
mapping class group of a bordered torus is the group SL(2,Z), it follows that the
group G1 is generated by the elements T 4

a1 , Tc1 , Td. By Lemma 6.4 and the above
discussion, these elements are contained in Γ and therefore G1 ⊂ Γ,

Let Σ2,1 be the surface obtained from Σ1
2 = Σ3 − T by replacing the bound-

ary component by a puncture, and let Σ2 be obtained from Σ2,1 by forgetting the
puncture. Let ϕ be the Z/2Z-reduction of the spin structure Φ. The spin struc-
ture ϕ induces an odd spin structure on Σ2,1 and Σ2, again denoted by ϕ. The
subgroup A(A4) of Γ ∩ G1 surjects onto the spin mapping class group Mod(Σ2)
[FM12]. Consequently the restriction of the puncture forgetful homomorphism
G2 → Mod(Σ2)[ϕ] to Γ ∩G2 is surjective.

By homological coherence, if we orient d as the oriented boundary of the sur-
face Σ3 − T , then we have Φ(d) = 1. Thus by Lemma 3.1, the intersection
of the pointpushing group π1(Σ2) with the stabilizer of Φ in Mod(Σ2,1) is the
preimage of the sublattice Λ of H1(Σ2,Z) generated by squares of primitive ho-
mology classes of oriented simple closed curves under the natural homomorphism
π1(Σ2)→ H1(Σ2,Z). Or, equivalently, it equals the kernel of the surjective homo-
morphism π1(Σ2) → H1(Σ2,Z/2Z). In particular, Mod(Σ2,1[Φ] ∩ π1(Σ2) contains
the commutator subgroup of π1(Σ2).
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We claim first that the square of the point pushing map along a simple closed
curve α with Φ(α) = ±1 is contained in Γ. To this end note that as Φ(α) = ±1
if and only if we have ϕ(α) = 1 where ϕ is the Z/2Z-reduction of Φ, the group
Mod(Σ2)[ϕ] and hence Γ acts transitively on these curves. Thus by equivariance,
it suffices to verify this claim for a single such curve.

Consider again the simple closed curve a5 ⊂ Σ2,1 with Φ(a5) = ±1 which inter-
sects c5 in a single point and is disjoint from all other curves from the curve system
E6. Let a′ be the simple closed curve which bounds with a5 and the boundary circle
C of Σ2,1 a pair of pants, that is, a5 and a′ bound a holed annulus in Σ1

2. By the
chain relation in the mapping class group (see [FM12]), we have

(Tc0Tc3Tc4)6 = Ta5Ta′ = ζ ∈ Γ.

On the other hand, Lemma 6.4 shows that T 4
a5 ∈ Γ. As Ta5 and Ta′ commute,

we have T−4
a5 ζ

2 = T−2
a5 T

2
a′ ∈ Γ, and this is just the square of the point pushing

transformation (via replacing the boundary circle C by a puncture) along a5. Thus
the square of the point pushing transformation about a5 is contained in Γ, which
is what we wanted to show.

Now the sublattice Λ ⊂ H1(Σ2,Z) is additively generated by elements of the
form 2b where b is an oriented simple closed curve with ϕ(b) = 1 and hence we
conclude that Γ ∩ π1(Σ2) surjects onto Λ.

We are left with showing that the point pushing map along any element in the
commutator subgroup of π1(Σ2) is contained in Γ. As the commutator subgroup
of π1(Σ2) is generated by separating simple closed curves, and as Mod(Σ2)[ϕ] acts
transitively on the separating simple closed curves, it suffices to show the following.
There exists a separating simple closed curve e in Σ2 such that the point pushing
map along e in Σ2 is contained in Γ.

Now by Theorem 1.4 of [Ma00], the Dehn twist about the separating simple
closed curve d′ which intersects c4 in two points and is disjoint from the remaining
curves from E6 is contained in Γ. This separating curve is odd in the sense described
above. The second separating curve which bounds together with the boundary circle
C and d′ a pair of pants is the boundary of a tubular neighborhood of c0 ∪ c1. As
the Dehn twists about c0, c1 are contained in Γ, the same holds true for the Dehn
twist about that curve. We conclude that the point pushing maps about separating
simple closed curves is contained in Γ.

To summarize, the quotient of Γ∩G2 by the infinite cyclic group of Dehn twists
about the boundary curve d contains a generating set for the point pushing subgroup
of G2/Z and hence it contains this point pushing subgroup. As Γ∩G2 surjects onto
the quotient G2/Z by the point pushing subgroup, we conclude that Γ surjects
onto G2/Z. But Γ contains the infinite cyclic center of G2 and hence Γ∩G2 = G2.
Together with the beginning of this proof, we conclude that indeed, Γ ∩ Stab(d) =
Mod(Σ3)[Φ] ∩ Stab(d). �

Remark 6.6. Theorem 4 classifies connected components of the preimage in the
Teichmüller space of abelian differentials of the odd component of the stratum of
abelian differentials on a surface Σ3 of genus 3 with a single zero. Those components
correspond precisely to odd Z/4Z-spin structures on Σ3.
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Remark 6.7. The results in this article give a general recipe for finding generators
of spin mapping class groups. This recipe is motivated by the recent work on
compactifications of strata of abelian differentials in [BCGGM18] and the goal to
obtain a topological interpretation of this compactification.

Appendix A. Additional graphs of nonseparating curves with fixed
spin value

In this appendix we complement the main result in Section 2 by studying con-
nectedness of some additional geometrically defined graphs related to spin struc-
tures. The proofs do not use new ideas. We use the assumptions and notations
from Section 2.

We begin with adding more constraints to the graph CG+
1 . Define a graph CG++

1

as follows. Vertices of CG++
1 are ordered pairs (c, d) of nonseparating simple closed

curves c, d such that ϕ(c) = ±1, ϕ(d) = 0 and that c, d intersect in a single point.
Then c ∪ d fills a one-holed torus T (c, d) ⊂ S. Two such pairs (c, d), (c′, d′) are
connected by an edge if and only if the tori T (c, d) and T (c′, d′) are disjoint. We
use Lemma 2.16 to show

Lemma A.1. For g ≥ 4 the graph CG++
1 is connected.

Proof. Let (a, b), (c, d) be two vertices in the graph CG++
1 . Then a, c are vertices

in the graph CG+
1 . Connect a to c by an edge path (ai) in CG+

1 ; this is possible by
Lemma 2.16. Our goal is to construct inductively a path (cj , dj) ⊂ CG++

1 connecting
(a, b) to (c, d) which passes through vertices (cji , dji) with cji = ai.

To this end observe that if the curve b is disjoint from c1, then we can find a curve

d̂1 which intersects c1 in a single point and is disjoint from (a, b). In particular,

a ∪ b is disjoint from (c1, d̂1).

We can not expect in general that ϕ(d1) = 0. However, as before, there exists

some k ∈ Z such that ϕ(T kc1(d̂1)) = 0. Define d1 = T kc1(d̂1) and note that d1 is
disjoint from a ∪ b and intersects c1 in a single point. Thus the pair (c1, d1) is a
vertex in CG++

1 which is connected to (a, b) by an edge.

Let us now assume that b is not disjoint from c1. Since b intersects a in a single
point, it determines a vertex in the nonseparating arc graph A(A1, A2) of S − a;
here A1, A2 are the two boundary components of S−a which glue back to a. Denote
this arc by b0.

Connect b0 to an arc b′ disjoint from c1 by an edge path (bi) in A(A1, A2). Cut S
open along a∪b. The result is a surface of genus g−1 ≥ 3 with connected boundary,
and S − (b ∪ b1) is a surface of genus g − 2 ≥ 2 with two boundary components.
Recall to this end that by definition of A(A1, A2), this surface is connected.

A surface of genus at least 2 contains a non-separating curve u with ϕ(u) = 1,
and in fact it contains a pair (u, v) ∈ CG++

1 . In other words, there exists a vertex
of CG++

1 which is disjoint from a, b, b1. Connect (a, b) to (a, b1) by the edge path
(a, b)→ (u, v)→ (a, b1) and proceed by induction. �
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Define a graph D as follows. Vertices are ordered pairs (x, y) where x is a vertex
in CG++

1 and where y is a disjoint simple closed non-separating cuve with ϕ(y) = 0.
Two such pairs are connected by an edge if they can be realized disjointly. The
following observation is a straighforward application of Lemma A.1 and the tools
used so far. Its proof will be omitted.

Lemma A.2. For g ≥ 4 the graph D is connected.

Define now a graph CG+
2 as follows. Vertices are pairs (x, y) where x is a non-

separating simple closed curve on S with ϕ(x) = 2 and where y is a simple closed
curve with ϕ(y) = 0 intersecting x in a single point. Two such vertices are connected
by an edge of length one if and only if they can be realized disjointly.

We use this the above constructions to show

Proposition A.3. For g ≥ 4 the graph CG+
2 is connected.

Proof. Given a pair of disjoint simple closed curves (c, d) with ϕ(c) = ±1 and ϕ(d) =
0, cut S open along c, d and denote the boundary components of the resulting
surface by C1, C2, D1, D2. For one of the two choices of C1, C2, say for C1, the
curve c +ε d defined by any embedded arc ε connecting C1 to either of D1, D2

satisfies ϕ(c+ε d) = ±2.

As a consequence, to any vertex (c, d) ∈ D we can associate in a non-deterministic
way a vertex in CG+

2 by replacing the simple closed curve a with ϕ(a) = ±1 in the
pair which defines a vertex of CG++

1 to the simple closed curve component of the
pair which defines a vertex in D.

Adjacent vertices may not give rise to disjoint curves, but this issue can be
resolved using a path in the nonseparating arc graph. Using the fact that the
surface obtained by removing from S a torus and cutting the resulting surface open
along a nonseparating simple closed curve has genus at least 2, we find for any two
such arcs a disjoint curve e with ϕ(e) = ±1. Connect b to this curve with a disjoint
arc. �
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