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1. LANGENRAUME

1.1. 1.3, 10.11.04
Def: A topological group is a group G equipped with a topology such that the fol-
lowing holds.

(1) The group composition G x G — G, (g, h) — gh is continuous.
(2) The map G — G which maps g to its inverse g~—! is continuous.

Example: 1) Every group G with the discrete topology is a topological group.
2) The group SL(2,R) can be viewed as a subset of R*. This defines a topology on
SL(2,R) which provides SL(2,R) with the structure of a topological group.

Def: Let G be a topological group and let X be a topological space. The group
G acts on X as a continuous transformation group (or as a continuous group of
isometries) if G acts on X as a group of homeomorphisms (or isometries) via a
continuous map ® : G x X — X.

Example: 1) If G is a group equipped with the discrete topology and if G acts on
X as a group of homeomorphisms then G acts on X as a continuous transformation

group.

2) The isometry group O(n) x R” of R™ acts on R” as a continuous transformation
group.

3) The group PSL(2,R) acts on the upper half plane H as a continuous trans-

formation group via ((a,b, ¢, d),z) - 2£5.

Our above definition requires that a group G which acts on a space X is already
equipped with a topology. In the case that X is a proper metric space and G is a
group of homeomorphisms of X there is a natural structure of a topological group
on G such that G acts on X as a continuous transformation group. This structure
is given as follows.

Def: Let X be a proper metric space. The compact-open topology for a group
G of homeomorphisms of X is defined as follows. A neighborhood basis for the
topology consists of sets of the form U(K, ¢, g) where g € G, K C X is a non-empty
compact set, € > 0 and U(K,¢€,g9) = {h € G | d(gz,hz) < e for all z € K}.
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In other words, a set U C @ is defined to be open if for every g € U there is some
compact set K C X and some € > 0 such that U(g, K,¢) C U. It is easy to see that
this defines indeed a topology on a group G of homeomorphisms of X. With respect
to this topology, a sequence ¢g; C G converges to g if and only if for every compact
subset K of X the restriction g;|K converges uniformly to g|K (this is equivalent
to saying that for every € > 0 there is some ig > 0 such that g; € U(K, ¢, g) for all
i > .

Lemma 1.1. Let X be a proper metric space and let G be a group of homeomor-
phisms of X. Then The compact open topology define the structure of a topological
group for G.

Proof: To show that the composition map G x G — G is continuous, let U C G
be an open set and let g,h € G be such that gh € U. Since U is open there is a
compact set K and a number € > 0 such that U(K,u,€) C U. Since h is continuous,
the set hK is compact and the same is true for the closed €/2-neighborhood C of
hK. Let 6 > 0 be sufficiently small that d(gz,9y) < €/2 whenever z,y € C and
d(z,y) < ¢; such a number exists since ¢ is uniformly continuous on the compact
set C. Let h' € U(K,h,d), g' € U(C,g,€/2) and let y € K. Then hz € C and
d(g'h'z,ghz) < d(g'(h'2),g(W2)) + d(g(h'z),ghz) < € since d(h'z,hz) < 4. This
shows continuuity of the composition map.

Continuity of the map which assigns to a homeomorphis g its inverse g~ can be
seen in the same way. O

The following lemma is immediate.

Lemma 1.22: Let G be a group of homeomorphisms on a proper metric space
X. Then G equipped with the compact open topology acts as a continuous transfor-
mation group on X.

Proof: Let @ : G x X — X be the map which describes the action of the group
G. Let U C X be an open set; we have to show that ® ' (U) C G x X is open. To
see this let (g,2) € ® !(z); then ®(g,z) = z. Since U is open there is a number
€ > 0 such that B(z,€) C U. Choose an open neighborhood V of z in X such that
gV C B(z,€/2). Then ®(U(V,€/2,g),V) C U and hence ® is continuous. O

We specialize now to groups of isometries of a proper metric space X. We have.

Proposition 1.23: Let X be a proper metric space X .

(1) Iso(X) equipped with the compact open topology is locally compact and me-
trizable.

(2) A closed subset B of Iso(X) is compact if and only if there is a compact
subset K of X such that gK N K # 0 for all g € B.
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Proof: We show first that Iso(X) is metrizable. For this choose a point zg € X
and let g, h € Iso(X). Since g, h are isometries, for z € B(zg,r) we have d(gz, hz) <
d(9z, gxo) + d(gzo, hzo) + d(hxo,hz) < 2r + d(gxo, hxe) and therefore the series
Yoo, 27 sup{d(gz, hz) | z € B(zo,i)} converges. As a consequence, we can define
a distance D on Iso(X) by

D(g,h) = i2_i sup{d(gz, hz) | z € B(zo,1)}.

i=1

We claim that the identity map as a map from the metric space (Iso(X), D)
to Iso(X) equipped with the compact open topology is continuous. Namely, let
U C Iso(X) be open for the compact open topology and let g € U. Then there is
some compact set K and some € > 0 such that U(K,g,e) C U. Choose a number
m > 0 such that K C B(zg,m) and let V be the €/2™-ball about g in Iso(X), D).

If h € V then d(gy, hy) < € for every y € B(xo,m) and therefore h € U(K, g, €).

Similarly it can be seen that the identity is also continuous as a map from Iso(X)
equipped with the compact oepn topology into (Iso(X), D).

Let B C Iso(X) be a closed subset and let X C X be compact. We show that
A={g€ B|gKNK # 0} is compact. For this it is enough to show that every
sequence g; C A has a subsequence which converges uniformly on compact sets to
an isometry g.

For this observe that if K is a compact subset of a metric space then K has a
countable dense subset. This means that there is a countable subset () of K such
that Q = K. To construct such a set, observe that by compactness, for every j > 1
there is a finite set QQ; = {y{, ... ,yij} of Y such that K C UfilB(yg, 1/2). Then
U;Q; is a countable dense subset of K.

Let (g;) C B be any sequence and let m > 0 be an arbitrary positive integer.
Then there is a number r > 0 such that K C B(zg,m). Since each of the maps
gi is an isometry and g; K N K # @ we have g;B(z9,m) C B(zo.r + 2m) for all
i. Let @ = {q,-..,} be a countable dense subset of B(zg,m). Then for each
g; € Q, the sequence (g;q;); is contained in a compact subset of X and therefore
it admits a convergent subsequence. Using a diagonal procedure we may assume
after passing to a subsequence that (g;q;) converges for each j to some gg; and
d(9qi,9q;) = d(g;,q;) for all i,j. Now if & € B(xg,m) is arbitrary then there is a
sequence (g;); C @ converging to x. Since the maps g; are isometries, the sequence
(9g;) is a Cauchy sequence and hence convergent. As a consequence, we may assume
that that g; — g € Iso(X). Now m > 0 was arbitrary and using a second diagonal
sequence we conclude that (g;) C B has a subsequence which converges in Iso(X)
to an isometry g.

On the other hand, if B C Iso(X) is compact then for any sequence (g;) C B there
is a convergent subsequence and hence for every z € X the sequence (g;z) C X is
bounded. In particular, there is some compact set K such that gK N K # { for all
g € B. This completes the proof of the proposition. |



Corollary 1.24: Let X be a proper metric space. Then a subgroup G C Iso(X)
operates properly discontinuously on X if and only if G is discrete, i.e. its induced
topology 1is discrete.

Proof: Let G C Iso(X) be any discrete subgroup and let K C X be compact.
Then {g € Iso(X) | gK N K # 0} is a compact subset of Iso(X) and hence its
intersection with G is finite. Thus G operates properly discontinuously on X.

Now let G C Iso(X) be a group which acts properly discontinuously on X. Let
B C Iso(X) be a compact subset. Then there is a compact subset K of X such that
gKNK #0 for all g € B, Thus G N B is finite and G C Iso(X) is discrete. O

Example: The group PSL(2,Z) is a discrete subgroup of PSL(2,R) and hence
it acts properly discontinuously on the upper half-plane H.

Example: The hyperbolic plane Let H = {z € C | Imz > 0} be the upper
half-plane. Define W to be the collection of all reparametrizations of piecewise
smooth paths ¢: [a,b] — H. Clearly W is an admissible path family. For v € W

define £(y) = [ (I (&)1 /Tm(y(t)))dt.

Claim: The resulting length structure on H defines a metric on H.

By Lemma 1.19 we only have to show positivity. For this let zg € H be arbitrary;
then there are € > 0, r > 0 such that B(zp,e) = {2 € C | |z — 2| < €} C {r <
Im(z) <1/r} C H.

Let y # 2o € H and let v: [a,b] — H be any piecewise smooth path connecting zo
to y. Assume first that y[a, b] C B(zo,€); then Im(vy(¢)) < 1/r for every t € [a, b] and
hence £(7) is not smaller than r times the euclidean length of 7y, i.e. £() > r|z0 —y].

On the other hand, if there is some ¢ € (a, b] such that |y(t)—z0| = € then the same
argument implies that £(y) > re. As a consequence, we have £(y) > min{r|y—zol|, 7€}
which shows positivity.

Notice that the same argument also shows that the topology defined by the length
structure £ is just the euclidean topology.

Claim: Iso(H) contains the semi-direct product PSL(2, R) x Z, where PSL(2,C)
acts on H as the group of biholomorphic automorphisms via (‘j g) z = gjig and
the generator ¢ of Zs acts by «(z) = —Z.

To show our claim, let z € H be arbitrary. Since the action of A € PSL(2,R) is
holomorphic, is differential at z is the multiplication with the complex number

JA _alcz+d)—(az+b)c 1
= (cz +d)? "~ (ez+d)?’
moreover we have
z2—Z Az — Az Z2—Z Imz
mz=—= Im{d2) 2i ez + d?  Jez +d|?
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As a consequence, for every tangent vector X € T,H be a tangent vector at z we
have

ldA-XI| _ IXI ez +d]* _ [IX]]
ImAz ez +d|? Imz  Imz’
As an immediate consequence, for every piecewise smooth curve v in H and every
A € PSL(2,R) we have £(v) = £(A~). In particular, the group PSL(2,R) X Z5 acts
on H as a group of isometries.

Claim: For 0 < s < t, the distance in H between the horizontal lines {z | Im(z) =
s} and {z | Im(z) = t} equals |logt — log s|.

Namely, if v: [a,b] — H is any piecewise smooth curve connecting a point
v(a) € {z | Im(2) = s} to a point y(b) € {z | Im(z) = t} then I(y) = [’ IOl g >

a Im~(t)
| f: (Il'fn?(g) dt| = |logt — log s|. The discussion of equality in this calculation also

implies that for every a € R the curve 7 = 7i +a (7 € [s,1]) is (up to reparamete-
rization) the unique geodesic connecting si + a to ti + a.

As a consequence, we conclude that H is complete and hence proper. Namely,
for 29 € H and r > 0 the closed ball B(z,r) of radius r about z is contained in
the strip {z € H | Im(z2¢)e™" < Im(z) < Im(zp)e"}) and the same is true for every
curve of almost minimal length connecting zg to a point y € B(zg,r). However, for
such a curve v we have £(y) > (e"Im(zg)) ~'|y(a) —(b)| and hence the ball B(zg,r)
is contained in a compact subset of H and is compact.

Since H is proper, H is geodesic and therefore any two points in H can be
connected by a geodesic. To compute these geodesics we show first that PSL(2, R)
operates transitively on H. This means that for every z € H there is some A €
PSL(2,R) with Ai = z. Namely, the subgroup G = {(Ei ot )|t € R} of PSL(2,R)
maps z € H to (¢ .+ )7 = €'z and hence the subset {z | Im(z) = 1} C H of H
intersects each orbit of this group. Moreover, the subgroup H = {(* { )|t € R} acts
on H as the group of translations z — z + ¢ (¢ € R) and hence every point z € H
with Im(z) = 1 is mapped by such a translation to .

Next we compute the isotropy subgroup of the point i for the group PSL(2,R),
i.e. the subgroup of all A € PSL(2,R) with Ai = 4. For this notice that

(1) Az’=i<:)%zi@ai+b:—c+di,ad—bc=l
(2) Sb=-ca=dad—bc=1= A€ SO(2)

To calculate the geodesics in H, we use the following.

Lemma 1.2. A circle in C is either a circle of the form {|z —a| = r} C C or a line
in C. The group PSL(2,C) maps circles in C to circles and its subgroup P.S L(2,R)
maps circles which intersect the real line R = {z | Im(z) = 0} orthogonally to
circles with the same property.



Proof: The claim is obvious for translations of the form z — z + a (a € C) and
for homotheties of the form z — az (a € C*). The inversion is the map z — L. If
K = {|z+c|? = r} is acircle then 2Z+2¢+Zc+ec = r & 2Z+2¢+Zc+zc+(ce—r) =0
for (c¢ —r) € R and the family of equations for circles can be multiplied with the
real number a # 0 to get azZ + acz + zZac+ d = 0 for a,d € R, ¢¢ > ad (includes
all lines).

But: From a2z + cz + ¢z +d =0 and w = 1 we have ww(azz + cz + ¢z + d) =
a + cw + cw + dww = 0 which is an equation of the same type. Thus the inversion

maps circles to circles.

On the other hand, every element A € PSL(2,C) can be written as a composition

of maps of the above form. Namely, let Az = Zjig, in the case ¢ = 0 we have
Az =Sz + % and hence A is of the required form. So assume that ¢ # 0. Then
z—)z+(—l—>(z+c—l)_1: c _)bc—ad( c )= bc — ad
c c cz+d A Cez+d c(cz +d)
N bc — ad g:bc—ad—l-a(cz—}—d):bc—ad+acz+ad:az+b
clez+d) ¢ c(ez + d) c(ez +d) cz+d
and this determines a decomposition as required. O

Corollary 1.3. A geodesic in H is up to parameterization a circle which intersects
{#z | Im z = 0} orthogonally.

Proof: Notice first that the group PSL(2,R) maps circles or lines which intersect
the line Im = 0 orhogonally to circles and lines with the same property. This simply
follows from the fact that every element of PSL(2,R) is holomorphic and hence its
differential preserves the euclidean angles, moreover the group preserves the line
R U oo.

On the other hand, for every point z € H and every tangent vector 0 # X € T, H
there is a unique circle intersecting RU oo orthogonally which passes through z and
is tangent to X. As a consequence, the action of PSL(2,R) on those circles is
transitive. Namely, if v is any such circle then there is some A € PSL(2,R) such
that Ay(0) = i. The differential at 7 of an element of the isotropy group SO(2) at
© acts on the tangent space at @ by multiplication with a complex number of the
form (—sin Hzl—i-cos 6)2 = (cos#)2—(sin 9)2 2icosOsing — COS 20 + isin 26 and hence this
differential acts by a rotation with the angle 26. In particular, the differentials of
this group act transitively on the space of unit vectors of length 1 and hence this
group acts transitively on the set of circles passing through ¢ which intersect RU oo
orthogonally. This means that the action of PSL(2,R) on the collection C of circles
which intersect R orthogonally is transitive.

Now let 7 : [a,b] — H be any non-degenerate geodesic. Then there is a unique
circle ¢inC passing through y(a),y(b). With an element A € PSL(2,R) we can map
this circle ¢ to the line Re = 0. However, the subsegment of Ac connecting A~y(a)
to Av(b) is the unique geodesic connecting these two points and therefore v C c.
This shows our corollary. |



Next we look at the modular group PSL(2,Z) C PSL(2,R). We have.
Lemma 1.4. The modular group acts properly discontinuously on H.

Proof: We only have to show that the topology on PSL(2,R induced by the
eulidean metric on R* coincides with the compact open topology for PSL(2,R
viewed as a subgroup of the isometry group of H. For this notice that the subgroup
of PSL(2,R) which is generated by the group G = {(‘3t e—’) | t € R} and the
group of translations z — z + ¢ (t € R) acts simply transitive on H, i.e. that for
every z € H there is a unique element g in this group with gi = z. However, this
was shown above. The lemma now follows. |

Notice that the modular group PSL(2,Z) C PSL(2,R) contains the translation
T : Z — z+ 1 which correspond to (1) and the inversion S(z) = —1 which is
defined by the matrix ( % §).

Notice that S is the composition of two reflections, one reflection a+ib — —a+1ib
along {z | Re(z) = 0 and the second reflection 3(z) = 1/7 at the circle [2| =1 (for
|z] = 1 we have 2z = 1 = z = 1/Z and hence for re?’ we have B(re?’) = ¥ /r.

Lemma 1.5. Let B={z € H||[Rez| < %, |z| > 1}; if A € PSL(2,Z)— (') then
AB)NB=4.

Proof: Write Az = %Ig for a,b,c,d € Z,ad —bc =1 = |cz+d|*> = (cz +
d)(cz +d) = ?|z|> + 2Re(2)ed + d®> > 2+ d* — |ed| = (|| — |d|)? + |ed| if ¢ # 0
since |z| > 1,|Rez| < 1. But ¢ = 0 is only possible for A = Id since cd — bc = 1
adn a,b,c,d are integers. Hence the right hand side of the inequality is strictly
positive and it is not smaller than 1 since ¢,d are intergers = |cz + d|? > 1 and
Im Az = |chmT§|2 < Imz for all z € B. The same holds for A~! at point the Az if

Az € B. As a consequence, we have A(B)UB =0 if A# (!,). O



