Skript zur Vorlesung Differentialgeometrie, WS 04/05

Ursula Hamenstädt

1. LÄNGENRÄUME

.1. 1.3, 10.11.04

Def: A topological group is a group G equipped with a topology such that the following holds.

- (1) The group composition $G \times G \to G$, $(g, h) \to gh$ is continuous.
- (2) The map $G \to G$ which maps g to its inverse g^{-1} is continuous.

Example: 1) Every group G with the discrete topology is a topological group. 2) The group $SL(2,\mathbb{R})$ can be viewed as a subset of \mathbb{R}^4 . This defines a topology on $SL(2,\mathbb{R})$ which provides $SL(2,\mathbb{R})$ with the structure of a topological group.

Def: Let G be a topological group and let X be a topological space. The group G acts on X as a continuous transformation group (or as a continuous group of isometries) if G acts on X as a group of homeomorphisms (or isometries) via a continuous map $\Phi: G \times X \to X$.

Example: 1) If G is a group equipped with the discrete topology and if G acts on X as a group of homeomorphisms then G acts on X as a continuous transformation group.

- 2) The isometry group $O(n) \times \mathbb{R}^n$ of \mathbb{R}^n acts on \mathbb{R}^n as a continuous transformation group.
- 3) The group $PSL(2,\mathbb{R})$ acts on the upper half plane H as a continuous transformation group via $((a,b,c,d),z) \to \frac{az+b}{cz+d}$.

Our above definition requires that a group G which acts on a space X is already equipped with a topology. In the case that X is a proper metric space and G is a group of homeomorphisms of X there is a natural structure of a topological group on G such that G acts on X as a continuous transformation group. This structure is given as follows.

Def: Let X be a proper metric space. The *compact-open* topology for a group G of homeomorphisms of X is defined as follows. A neighborhood basis for the topology consists of sets of the form $U(K, \epsilon, g)$ where $g \in G, K \subset X$ is a non-empty compact set, $\epsilon > 0$ and $U(K, \epsilon, g) = \{h \in G \mid d(gx, hx) < \epsilon \text{ for all } x \in K\}$.

In other words, a set $U \subset G$ is defined to be open if for every $g \in U$ there is some compact set $K \subset X$ and some $\epsilon > 0$ such that $U(g, K, \epsilon) \subset U$. It is easy to see that this defines indeed a topology on a group G of homeomorphisms of X. With respect to this topology, a sequence $g_i \subset G$ converges to g if and only if for every compact subset K of X the restriction $g_i | K$ converges uniformly to g | K (this is equivalent to saying that for every $\epsilon > 0$ there is some $i_0 > 0$ such that $g_i \in U(K, \epsilon, g)$ for all $i \geq i_0$.

Lemma 1.1. Let X be a proper metric space and let G be a group of homeomorphisms of X. Then The compact open topology define the structure of a topological group for G.

Proof: To show that the composition map $G \times G \to G$ is continuous, let $U \subset G$ be an open set and let $g,h \in G$ be such that $gh \in U$. Since U is open there is a compact set K and a number $\epsilon > 0$ such that $U(K,u,\epsilon) \subset U$. Since h is continuous, the set hK is compact and the same is true for the closed $\epsilon/2$ -neighborhood C of hK. Let $\delta > 0$ be sufficiently small that $d(gz,gy) < \epsilon/2$ whenever $z,y \in C$ and $d(z,y) < \delta$; such a number exists since g is uniformly continuous on the compact set C. Let $h' \in U(K,h,\delta), g' \in U(C,g,\epsilon/2)$ and let $y \in K$. Then $hz \in C$ and $d(g'h'z,ghz) \leq d(g'(h'z),g(h'z)) + d(g(h'z),ghz) \leq \epsilon$ since $d(h'z,hz) < \delta$. This shows continuouty of the composition map.

Continuity of the map which assigns to a homeomorphis g its inverse g^{-1} can be seen in the same way.

The following lemma is immediate.

Lemma 1.22: Let G be a group of homeomorphisms on a proper metric space X. Then G equipped with the compact open topology acts as a continuous transformation group on X.

Proof: Let $\Phi: G \times X \to X$ be the map which describes the action of the group G. Let $U \subset X$ be an open set; we have to show that $\Phi^{-1}(U) \subset G \times X$ is open. To see this let $(g,z) \in \Phi^{-1}(x)$; then $\Phi(g,z) = x$. Since U is open there is a number $\epsilon > 0$ such that $B(x,\epsilon) \subset U$. Choose an open neighborhood V of z in X such that $gV \subset B(x,\epsilon/2)$. Then $\Phi(U(\overline{V},\epsilon/2,g),V) \subset U$ and hence Φ is continuous. \square

We specialize now to groups of isometries of a proper metric space X. We have.

Proposition 1.23: Let X be a proper metric space X.

- (1) Iso(X) equipped with the compact open topology is locally compact and metrizable.
- (2) A closed subset B of Iso(X) is compact if and only if there is a compact subset K of X such that $gK \cap K \neq \emptyset$ for all $g \in B$.

Proof: We show first that $\operatorname{Iso}(X)$ is metrizable. For this choose a point $x_0 \in X$ and let $g, h \in \operatorname{Iso}(X)$. Since g, h are isometries, for $z \in B(x_0, r)$ we have $d(gz, hz) \leq d(gz, gx_0) + d(gx_0, hx_0) + d(hx_0, hz) \leq 2r + d(gx_0, hx_0)$ and therefore the series $\sum_{i=1}^{\infty} 2^{-i} \sup\{d(gz, hz) \mid z \in B(x_0, i)\}$ converges. As a consequence, we can define a distance D on $\operatorname{Iso}(X)$ by

$$D(g,h) = \sum_{i=1}^{\infty} 2^{-i} \sup \{ d(gz, hz) \mid z \in B(x_0, i) \}.$$

We claim that the identity map as a map from the metric space $(\operatorname{Iso}(X), D)$ to $\operatorname{Iso}(X)$ equipped with the compact open topology is continuous. Namely, let $U \subset \operatorname{Iso}(X)$ be open for the compact open topology and let $g \in U$. Then there is some compact set K and some $\epsilon > 0$ such that $U(K, g, \epsilon) \subset U$. Choose a number m > 0 such that $K \subset \overline{B(x_0, m)}$ and let V be the $\epsilon/2^m$ -ball about g in $\operatorname{Iso}(X), D$). If $h \in V$ then $d(gy, hy) \leq \epsilon$ for every $y \in \overline{B(x_0, m)}$ and therefore $h \in U(K, g, \epsilon)$.

Similarly it can be seen that the identity is also continuous as a map from Iso(X) equipped with the compact oppn topology into (Iso(X), D).

Let $B \subset \text{Iso}(X)$ be a closed subset and let $K \subset X$ be compact. We show that $A = \{g \in B \mid gK \cap K \neq \emptyset\}$ is compact. For this it is enough to show that every sequence $g_i \subset A$ has a subsequence which converges uniformly on compact sets to an isometry g.

For this observe that if K is a compact subset of a metric space then K has a countable dense subset. This means that there is a countable subset Q of K such that $\overline{Q} = K$. To construct such a set, observe that by compactness, for every $j \geq 1$ there is a finite set $Q_j = \{y_1^j, \ldots, y_{k_j}^j\}$ of Y such that $K \subset \bigcup_{i=1}^{k_j} B(y_i^j, 1/2)$. Then $\bigcup_j Q_j$ is a countable dense subset of K.

Let $(g_i) \subset B$ be any sequence and let m > 0 be an arbitrary positive integer. Then there is a number r > 0 such that $K \subset B(x_0, m)$. Since each of the maps g_i is an isometry and $g_iK \cap K \neq \emptyset$ we have $g_iB(x_0, m) \subset B(x_0, r + 2m)$ for all i. Let $Q = \{q_1, \ldots, \}$ be a countable dense subset of $\overline{B(x_0, m)}$. Then for each $q_j \in Q$, the sequence $(g_iq_j)_i$ is contained in a compact subset of X and therefore it admits a convergent subsequence. Using a diagonal procedure we may assume after passing to a subsequence that (g_iq_j) converges for each j to some gq_j and $d(gq_i,gq_j)=d(q_i,q_j)$ for all i,j. Now if $x\in \overline{B(x_0,m)}$ is arbitrary then there is a sequence $(q_j)_j\subset Q$ converging to x. Since the maps g_i are isometries, the sequence (gq_j) is a Cauchy sequence and hence convergent. As a consequence, we may assume that that $g_i\to g\in \operatorname{Iso}(X)$. Now m>0 was arbitrary and using a second diagonal sequence we conclude that $(g_i)\subset B$ has a subsequence which converges in $\operatorname{Iso}(X)$ to an isometry g.

On the other hand, if $B \subset \operatorname{Iso}(X)$ is compact then for any sequence $(g_i) \subset B$ there is a convergent subsequence and hence for every $x \in X$ the sequence $(g_ix) \subset X$ is bounded. In particular, there is some compact set K such that $gK \cap K \neq \emptyset$ for all $g \in B$. This completes the proof of the proposition.

Corollary 1.24: Let X be a proper metric space. Then a subgroup $G \subset \text{Iso}(X)$ operates properly discontinuously on X if and only if G is discrete, i.e. its induced topology is discrete.

Proof: Let $G \subset \text{Iso}(X)$ be any discrete subgroup and let $K \subset X$ be compact. Then $\{g \in \text{Iso}(X) \mid gK \cap K \neq \emptyset\}$ is a compact subset of Iso(X) and hence its intersection with G is finite. Thus G operates properly discontinuously on X.

Now let $G \subset \operatorname{Iso}(X)$ be a group which acts properly discontinuously on X. Let $B \subset \operatorname{Iso}(X)$ be a compact subset. Then there is a compact subset K of X such that $gK \cap K \neq \emptyset$ for all $g \in B$, Thus $G \cap B$ is finite and $G \subset \operatorname{Iso}(X)$ is discrete. \square

Example: The group $PSL(2,\mathbb{Z})$ is a discrete subgroup of $PSL(2,\mathbb{R})$ and hence it acts properly discontinuously on the upper half-plane H.

Example: The hyperbolic plane Let $H = \{z \in \mathbb{C} \mid \text{Im } z > 0\}$ be the upper half-plane. Define \mathcal{W} to be the collection of all reparametrizations of *piecewise smooth* paths $c \colon [a,b] \to H$. Clearly \mathcal{W} is an admissible path family. For $\gamma \in W$ define $\ell(\gamma) = \int_a^b (\|\gamma'(t)\|/\text{Im}(\gamma(t))) dt$.

Claim: The resulting length structure on H defines a metric on H.

By Lemma 1.19 we only have to show positivity. For this let $z_0 \in H$ be arbitrary; then there are $\varepsilon > 0$, r > 0 such that $B(z_0, \varepsilon) = \{z \in \mathbb{C} \mid |z - z_0| < \epsilon\} \subset \{r < \operatorname{Im}(z) < 1/r\} \subset H$.

Let $y \neq z_0 \in H$ and let $\gamma \colon [a,b] \to H$ be any piecewise smooth path connecting z_0 to y. Assume first that $\gamma[a,b] \subset B(z_0,\epsilon)$; then $\operatorname{Im}(\gamma(t)) \leq 1/r$ for every $t \in [a,b]$ and hence $\ell(\gamma)$ is not smaller than r times the euclidean length of γ , i.e. $\ell(\gamma) \geq r|z_0 - y|$.

On the other hand, if there is some $t \in (a, b]$ such that $|\gamma(t) - z_0| = \epsilon$ then the same argument implies that $\ell(\gamma) \geq r\epsilon$. As a consequence, we have $\ell(\gamma) \geq \min\{r|y-z_0|, r\epsilon\}$ which shows positivity.

Notice that the same argument also shows that the topology defined by the length structure ℓ is just the euclidean topology.

Claim: Iso(H) contains the semi-direct product $PSL(2, \mathbb{R}) \ltimes \mathbb{Z}_2$, where $PSL(2, \mathbb{C})$ acts on H as the group of biholomorphic automorphisms via $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ $z = \frac{az+b}{cz+d}$ and the generator ι of \mathbb{Z}_2 acts by $\iota(z) = -\overline{z}$.

To show our claim, let $z \in H$ be arbitrary. Since the action of $A \in PSL(2,\mathbb{R})$ is holomorphic, is differential at z is the multiplication with the complex number

$$dA_z = \frac{a(cz+d) - (az+b)c}{(cz+d)^2} = \frac{1}{(cz+d)^2},$$

moreover we have

$$\operatorname{Im} z = \frac{z - \overline{z}}{2i}, \quad \operatorname{Im}(Az) = \frac{Az - \overline{Az}}{2i} = \frac{z - \overline{z}}{2i|cz + d|^2} = \frac{\operatorname{Im} z}{|cz + d|^2} \quad .$$

As a consequence, for every tangent vector $X \in T_zH$ be a tangent vector at z we have

$$\frac{\|dA_zX\|}{\operatorname{Im} Az} = \frac{\|X\|}{|cz+d|^2} \cdot \frac{|cz+d|^2}{\operatorname{Im} z} = \frac{\|X\|}{\operatorname{Im} z}.$$

As an immediate consequence, for every piecewise smooth curve γ in H and every $A \in PSL(2, \mathbb{R})$ we have $\ell(\gamma) = \ell(A\gamma)$. In particular, the group $PSL(2, \mathbb{R}) \ltimes \mathbb{Z}_2$ acts on H as a group of isometries.

Claim: For 0 < s < t, the distance in H between the horizontal lines $\{z \mid \text{Im}(z) = s\}$ and $\{z \mid \text{Im}(z) = t\}$ equals $|\log t - \log s|$.

Namely, if $\gamma \colon [a,b] \to H$ is any piecewise smooth curve connecting a point $\gamma(a) \in \{z \mid \operatorname{Im}(z) = s\}$ to a point $\gamma(b) \in \{z \mid \operatorname{Im}(z) = t\}$ then $l(\gamma) = \int_a^b \frac{\|\gamma'(t)\|}{\operatorname{Im}\gamma(t)} dt \ge |\int_a^b \frac{(\operatorname{Im}\gamma)'(t)}{\operatorname{Im}\gamma(t)} dt| = |\log t - \log s|$. The discussion of equality in this calculation also implies that for every $a \in \mathbb{R}$ the curve $\tau \to \tau i + a$ $(\tau \in [s,t])$ is (up to reparameterization) the unique geodesic connecting si + a to ti + a.

As a consequence, we conclude that H is complete and hence proper. Namely, for $z_0 \in H$ and r > 0 the closed ball $\overline{B(z_0,r)}$ of radius r about z_0 is contained in the strip $\{z \in H \mid \operatorname{Im}(z_0)e^{-r} \leq \operatorname{Im}(z) \leq \operatorname{Im}(z_0)e^r\}$) and the same is true for every curve of almost minimal length connecting z_0 to a point $y \in B(z_0,r)$. However, for such a curve γ we have $\ell(\gamma) \geq (e^r \operatorname{Im}(z_0))^{-1} |\gamma(a) - \gamma(b)|$ and hence the ball $\overline{B(z_0,r)}$ is contained in a compact subset of H and is compact.

Since H is proper, H is geodesic and therefore any two points in H can be connected by a geodesic. To compute these geodesics we show first that $PSL(2,\mathbb{R})$ operates transitively on H. This means that for every $z \in H$ there is some $A \in PSL(2,\mathbb{R})$ with Ai = z. Namely, the subgroup $G = \{ \begin{pmatrix} e^t & \\ & e^{-t} \end{pmatrix} | t \in \mathbb{R} \}$ of $PSL(2,\mathbb{R})$ maps $z \in H$ to $\begin{pmatrix} e^t & \\ & e^{-t} \end{pmatrix} z = e^{2t}z$ and hence the subset $\{z \mid Im(z) = 1\} \subset H$ of H intersects each orbit of this group. Moreover, the subgroup $H = \{ \begin{pmatrix} 1 & t \\ 1 \end{pmatrix} | t \in \mathbb{R} \}$ acts on H as the group of translations $z \to z + t \ (t \in \mathbb{R})$ and hence every point $z \in H$ with Im(z) = 1 is mapped by such a translation to i.

Next we compute the *isotropy subgroup* of the point i for the group $PSL(2, \mathbb{R})$, i.e. the subgroup of all $A \in PSL(2, \mathbb{R})$ with Ai = i. For this notice that

(1)
$$Ai = i \Leftrightarrow \frac{ai+b}{ci+d} = i \Leftrightarrow ai+b = -c+di, \ ad-bc = 1$$

$$(2) \qquad \Leftrightarrow b = -c, a = d, ad - bc = 1 \Rightarrow A \in SO(2)$$

To calculate the geodesics in H, we use the following.

Lemma 1.2. A circle in $\hat{\mathbb{C}}$ is either a circle of the form $\{|z-a|=r\}\subset \mathbb{C}$ or a line in \mathbb{C} . The group $PSL(2,\mathbb{C})$ maps circles in $\hat{\mathbb{C}}$ to circles and its subgroup $PSL(2,\mathbb{R})$ maps circles which intersect the real line $\mathbb{R}=\{z\mid \mathrm{Im}(z)=0\}$ orthogonally to circles with the same property.

Proof: The claim is obvious for translations of the form $z \to z + a$ ($a \in \mathbb{C}$) and for homotheties of the form $z \to az$ $(a \in \mathbb{C}^*)$. The inversion is the map $z \to \frac{1}{z}$. If $K = \{|z+c|^2 = r\}$ is a circle then $z\overline{z} + z\overline{c} + \overline{z}c + \overline{c}\overline{c} = r \Leftrightarrow z\overline{z} + z\overline{c} + \overline{z}c + \overline{z}c + (c\overline{c} - r) = 0$ for $(c\overline{c}-r) \in \mathbb{R}$ and the family of equations for circles can be multiplied with the real number $\alpha \neq 0$ to get $\alpha z \overline{z} + \overline{\alpha c}z + \overline{z}\alpha c + d = 0$ for $\alpha, d \in \mathbb{R}, c\overline{c} > \alpha d$ (includes all lines).

But: From $\alpha z\overline{z} + cz + \overline{c}\overline{z} + d = 0$ and $w = \frac{1}{z}$ we have $w\overline{w}(\alpha z\overline{z} + cz + \overline{c}\overline{z} + d) = \alpha + c\overline{w} + \overline{c}w + dw\overline{w} = 0$ which is an equation of the same type. Thus the inversion maps circles to circles.

On the other hand, every element $A \in PSL(2,\mathbb{C})$ can be written as a composition of maps of the above form. Namely, let $Az = \frac{az+b}{cz+d}$; in the case c=0 we have $Az = \frac{a}{d}z + \frac{b}{d}$ and hence A is of the required form. So assume that $c \neq 0$. Then

$$z \to z + \frac{d}{c} \to (z + \frac{d}{c})^{-1} = \frac{c}{cz + d} \to \frac{bc - ad}{c^2} (\frac{c}{cz + d}) = \frac{bc - ad}{c(cz + d)}$$

$$\to \frac{bc - ad}{c(cz + d)} + \frac{a}{c} = \frac{bc - ad + a(cz + d)}{c(cz + d)} = \frac{bc - ad + acz + ad}{c(cz + d)} = \frac{az + b}{cz + d}.$$
In this determines a decomposition as required.

and this determines a decomposition as required.

Corollary 1.3. A geodesic in H is up to parameterization a circle which intersects $\{z \mid \text{Im } z = 0\}$ orthogonally.

Proof: Notice first that the group $PSL(2,\mathbb{R})$ maps circles or lines which intersect the line Im = 0 or hogonally to circles and lines with the same property. This simply follows from the fact that every element of $PSL(2,\mathbb{R})$ is holomorphic and hence its differential preserves the euclidean angles, moreover the group preserves the line $\mathbb{R} \cup \infty$.

On the other hand, for every point $z \in H$ and every tangent vector $0 \neq X \in T_zH$ there is a unique circle intersecting $\mathbb{R} \cup \infty$ orthogonally which passes through z and is tangent to X. As a consequence, the action of $PSL(2,\mathbb{R})$ on those circles is transitive. Namely, if γ is any such circle then there is some $A \in PSL(2,\mathbb{R})$ such that $A\gamma(0) = i$. The differential at i of an element of the isotropy group SO(2) at i acts on the tangent space at i by multiplication with a complex number of the form $\frac{1}{(-\sin\theta i + \cos\theta)^2} = \frac{1}{(\cos\theta)^2 - (\sin\theta)^2 - 2i\cos\theta\sin\theta} = \cos 2\theta + i\sin 2\theta$ and hence this differential acts by a rotation with the angle 2θ . In particular, the differentials of this group act transitively on the space of unit vectors of length 1 and hence this group acts transitively on the set of circles passing through i which intersect $\mathbb{R} \cup \infty$ orthogonally. This means that the action of $PSL(2,\mathbb{R})$ on the collection \mathcal{C} of circles which intersect \mathbb{R} orthogonally is transitive.

Now let $\gamma:[a,b]\to H$ be any non-degenerate geodesic. Then there is a unique circle $cin\mathcal{C}$ passing through $\gamma(a), \gamma(b)$. With an element $A \in PSL(2, \mathbb{R})$ we can map this circle c to the line Re = 0. However, the subsegment of Ac connecting $A\gamma(a)$ to $A\gamma(b)$ is the unique geodesic connecting these two points and therefore $\gamma \subset c$. This shows our corollary.

Next we look at the modular group $PSL(2,\mathbb{Z}) \subset PSL(2,\mathbb{R})$. We have.

Lemma 1.4. The modular group acts properly discontinuously on H.

Proof: We only have to show that the topology on $PSL(2,\mathbb{R})$ induced by the eulidean metric on \mathbb{R}^4 coincides with the compact open topology for $PSL(2,\mathbb{R})$ viewed as a subgroup of the isometry group of H. For this notice that the subgroup of $PSL(2,\mathbb{R})$ which is generated by the group $G = \{\left(\begin{smallmatrix} e^t & \\ & e^{-t} \end{smallmatrix}\right) \mid t \in \mathbb{R}\}$ and the group of translations $z \to z + t$ $(t \in \mathbb{R})$ acts simply transitive on H, i.e. that for every $z \in H$ there is a $unique \ element \ g$ in this group with gi = z. However, this was shown above. The lemma now follows.

Notice that the modular group $PSL(2,\mathbb{Z})\subset PSL(2,\mathbb{R})$ contains the *translation* $T:Z\to z+1$ which correspond to $\begin{pmatrix}1&1\\1&\end{pmatrix}$ and the inversion $S(z)=-\frac{1}{z}$ which is defined by the matrix $\begin{pmatrix}0&1\\-1&0\end{pmatrix}$.

Notice that S is the composition of two reflections, one reflection $a+ib \to -a+ib$ along $\{z \mid \text{Re}(z) = 0 \text{ and the second reflection } \beta(z) = 1/\overline{z} \text{ at the circle } |z| = 1 \text{ (for } |z| = 1 \text{ we have } z\overline{z} = 1 \Rightarrow z = 1/\overline{z} \text{ and hence for } re^{i\theta} \text{ we have } \beta(re^{i\theta}) = e^{i\theta}/r.$

Lemma 1.5. Let $B = \{z \in H | |\text{Rez}| < \frac{1}{2}, |\mathbf{z}| > 1\}; \text{ if } A \in PSL(2, \mathbb{Z}) - \left(\begin{smallmatrix} 1 & \\ & 1\end{smallmatrix}\right) \text{ then } A(B) \cap B = \emptyset.$

Proof: Write $Az = \frac{az+b}{cz+d}$ for $a,b,c,d \in \mathbb{Z}$, $ad-bc=1 \Rightarrow |cz+d|^2 = (cz+d)(c\overline{z}+d) = c^2|z|^2 + 2Re(z)cd+d^2 > c^2+d^2-|cd| = (|c|-|d|)^2+|cd|$ if $c\neq 0$ since $|z|>1, |Re\,z|<\frac{1}{2}$. But c=0 is only possible for $A=\mathrm{Id}$ since cd-bc=1 adn a,b,c,d are integers. Hence the right hand side of the inequality is strictly positive and it is not smaller than 1 since c,d are integers $\Rightarrow |cz+d|^2 > 1$ and $\mathrm{Im}\,Az = \frac{\mathrm{Im}\,z}{|cz+d|^2} < \mathrm{Im}\,z$ for $\underline{all}\,z \in B$. The same holds for A^{-1} at point the Az if $Az \in B$. As a consequence, we have $A(B) \cup B = \emptyset$ if $A\neq \binom{1}{1}$.