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Abstract. We show that a discrete group Γ which admits a non-elementary
isometric action on a Hadamard manifold of bounded negative curvature ad-

mits an isometric action on an Lp-space V for some p > 1 with H1(Γ, V ) ̸= 0.

1. Introduction

A countable group Γ has property (T) if every affine isometric action of Γ on an
L2-space has a fixed point. Among the most prominent examples of such groups
are lattices in higher rank simple Lie groups.

For such higher rank lattices, much more is true. Namely, any affine uniformly
Lipschitz action on a Hilbert space has a fixed point [O22, dLdlS23]. Moreover, any
isometric action on a uniformly convex Banach space has a fixed point [BFGM07],
[dLdlS23].

On the other hand, it is known that any hyperbolic group Γ admits a proper
isometric action on some Lp-space [Yu05, Ni13], in spite of the fact that many such
groups have property (T). In particular, cocompact lattices in the rank one simple
Lie groups Sp(2m, 1), F−20

4 admit proper affine isometric action on an Lp-space
where p > 2 can explicitly be estimated.

Property (T) and its strengthenings can be viewed as a vanishing result for
degree one group cohomology with coefficients in a representation of Γ. The goal of
this article is to point out that the construction of representations in an Lp-space
with nontrivial first cohomology can be carried out for arbitrary countable groups
which admit non-elementary isometric actions on Hadamard manifolds of bounded
negative curvature. Here an isometric action of a group on a space Y which is
hyperbolic in the sense of Gromov is elementary if either it has a bounded orbit or
if its action on the Gromov boundary of Y has a global fixed point.

Theorem. Let Γ be a discrete group which admits a non-elementary isometric
action on a Hadamard manifoldM of bounded negative curvature. Then there exists
a number p > 1 and a representation of Γ on an Lp-space V with H1(Γ, V ) ̸= 0.
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This result is likely to be far from optimal since the requirement that Γ acts on a
smooth manifold of bounded negative curvature rather than on an arbitrary Gromov
hyperbolic geodesic metric space Y is very strong. However, some assumptions on
Y are necessary for the statement of the theorem to hold true. Namely, there
are finitely generated groups Γ which admit acylindrical and hence non-elementary
actions on some hyperbolic geodesic metric space, but such that for any p > 1, any
affine isometric action of Γ on an Lp-space has a fixed point [MO19]. We refer to the
very recent article [DMcK23] for a comprehensive discussion of related results. For
finitely generated groups acting properly discontinuously, a version of the Theorem
is contained in [BMV05].

Corollary. Let Γ be a countable subgroup of a simple rank one Lie group G. If
Γ is not contained in a compact or parabolic subgroup of G then there exists a
representation of Γ on an Lp-space V with H1(Γ, V ) ̸= 0.

If G does not have property (T), that is, if G = SO(n, 1) or G = SU(n, 1),
then this result is well known, and we can in fact choose p = 2 (Theorem 2.7.2 of
[BHV08]).

The proof of Theorem 1 uses an idea due to Nica [Ni13]. Namely, let M be
a Hadamard manifold of bounded negative curvature, with ideal boundary ∂M .
The geodesic flow Φt acts on the unit tangent bundle T 1M of M preserving the

Lebesgue Liouville measure λ. This measure disintegrates to a Radon measure λ̂
on the space of geodesics ∂M × ∂M −∆ which is invariant under the action of the
isometry group Iso(M) ofM . In particular, for any p ≥ 1, Iso(M) acts isometrically

on Lp(∂M × ∂M − ∆, λ̂). For sufficiently large p we construct a cocycle for this
action and show that its restriction to the subgroup Γ is unbounded provided that
the action of Γ is non-elementary.

The organization of this article is as follows. In Section 2 we study actions of
a group Γ on compact metric measure spaces and formulate a condition for such
an action which is sufficient for the construction of a cocycle with values in an Lp-
space. In Section 3 we impose some further constraints which guarantee that the
cocycle yields a nontrivial cohomology class. In Section 4 we construct an Ahlfors
regular distance function on the ideal boundary ∂M of a Hadamard manifold M
of bounded negative curvature with the additional assumption that the covariant
derivative of the curvature tensor is uniformly bounded in norm. The distance
function d will in general not be a Gromov metric on ∂M , but it is contained in
its coarse conformal gauge. In Section 5 we verify that the conditions formulated
in Section 2 and Section 3 are fulfilled for the action of the isometry group of M
on (∂M, d). This yields the proof of Theorem 1 under the additional assumption
of bounded covariant derivative of the curvature tensor. Smoothing a given metric
with the Ricci flow [K05] removes this additional assumption.

The appendix contains some regularity result for the shape operator of horo-
spheres of a Hadamard manifold of bounded negative curvature and bounded co-
variant derivative of the curvature tensor which is used in an essential way in the
construction of the Ahlfors regular metric d on ∂M and which we were unable to
locate in the literature.
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2. Actions on compact metric measure spaces

In this section X denotes a compact Hausdorff space.

Definition 2.1. A width on X is a continuous symmetric function ι : X × X →
[0,∞) with ι(x, x) = 0 for all x ∈ X. We call a space X equipped with a width a
width space.

Example 2.2. IfX is metrizable then a metric d onX defining the given topology is
an example of a width, and the same holds true for the trivial functionX×X → {0}.
If ι is a width and if α > 0 is arbitrary, then ια is a width.

A width is not required to satisfy the triangle inequality. Note however that by
continuity of ι and compactness of X and hence of X ×X, a width is a bounded
function.

Definition 2.3. Let (X, ι), (Y, d) be two width spaces. A map F : X → Y is
Lipschitz continuous if there exists a number L > 0 such that d(Fx, Fy) ≤ Lι(x, y)
for all x, y.

If F : X → Y is Lipschitz, and if x, y ∈ X are such that ι(x, y) = 0, then
d(Fx, Fy) = 0.

Most width spaces admit very few Lipschitz functions.

Example 2.4. Let I ⊂ R be the unit interval, equipped with the standard metric
d. Then the space (I, d2) is a width space for which any Lipschitz function f :
(I, d2) → R is constant. This can be seen by noting that such a Lipschitz function
is differentiable everywhere, with vanishing differential. In other words, raising a
metric to a power bigger than one destroys Lipschitz functions but also the triangle
inequality. Note however that for α ∈ (0, 1) the snowflake (I, dα) is a metric space.

Let Γ be a countable group which acts as a group of homeomorphisms on the
width space (X, ι). We assume that the diagonal action of Γ on X ×X preserves
the fat diagonal ∆ = {(x, y) ∈ X | ι(x, y) = 0} in X ×X. Note that ∆ is a closed
subset of X ×X by continuity of ι.

Assume that Γ preserves the measure class of a Borel probability measure µ on
X of full support without atoms. Then for all φ ∈ Γ and for µ-almost every x ∈ X,
the Jacobian of φ is defined at x. Here by Jacobian we denote the Radon Nikodym
derivative of φ∗µ with respect to µ. In the sequel we also speak about the Radon
Nikodym derivative of φ, and we denote it by RN(φ).

Following [Ni13], for a number Q > 0 define

ν = ι−2Qµ× µ,

which is thought of as a measure on X ×X −∆. The following is fairly immediate
from the above discussion.
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Lemma 2.5. The measure ν on X × X − ∆ is locally finite and quasi-invariant
under the diagonal action of Γ. The Radon Nikodym derivative RNν(φ) of φ with
respect to ν equals

(1) RNν(φ)(x, y) = ι(φ(x), φ(y))−2QRN(φ)(x)RN(φ)(y)ι(x, y)2Q.

Proof. Since µ is quasi-invariant under the action of Γ, and Γ preserves the fat
diagonal, the same holds true for ν. Let φ ∈ Γ and let (x, y) ∈ X × X − ∆. It
is straightforward that the formula (1) computes the Radon Nikodym derivative
RNν(φ)(x, y) of φ at (x, y) with respect to the measure ν.

That the measure ν on X ×X −∆ is locally finite is immediate from continuity
of the width ι and finiteness of µ. □

We now formulate a condition for a measure class preserving action of a group
Γ on (X, ι, µ) which ensures that there exists a cocycle for the action with values
in Lp(ν).

Condition (∗): The group Γ acts by bi-Lipschitz transformations on (X, ι),
and for every φ ∈ Γ, the Radon Nikodym derivative RN(φ) of φ is a Lipschitz
continuous function (X, ι) → (0,∞) which is bounded away from zero.

Note that under Condition (∗), by compactness of X and continuity, for each
φ ∈ Γ the Radon Nikodym derivative RN(φ) of φ∗µ with respect to µ is a bounded
function on X. Moreover, since for each φ there exists a number L > 0 (the
Lipschitz constant of φ−1) such that ι(x, y) ≤ Lι(φ(x), φ(y)) for all (x, y) ∈ X ×
X −∆, Lemma 2.5 shows that the function RNν(φ) is bounded as well.

As a consequence, for each p > 1 we obtain a representation of Γ on the space

Lp(ν) = {f : X ×X −∆ → R,
∫

|f |pdν <∞}

by

(2) (φf)(x, y) = f(φ−1(x), φ−1(y)).

Namely, since for each φ ∈ Γ the function RNν(φ) is pointwise uniformly bounded,
via the formula (2), each φ ∈ Γ acts as a bounded linear operator on Lp(ν) for
every p ≥ 1. The action is isometric if and only if the action of Γ on (X×X−∆, ν)
is measure preserving.

Following Bourdon and Pajot [BP03], for p ≥ 2Q define the Besov space Bp(X)
to consist of all measurable functions f : X → R for which the Besov semi-norm

∥f∥Bp =
(∫ ∫

|f(x)− f(y)|pι−2Q(x, y)dµ(x)dµ(y)
)1/p

is finite.

Lemma 2.6. For each p ≥ 2Q, the space of Lipschitz function (X, ι) → R embeds
into Bp.



Lp-COHOMOLOGY FOR GROUPS OF ISOMETRIES OF HADAMARD SPACES 5

Proof. Let f : (X, ι) → R be Lipschitz continuous. Then there exists a number
L > 0 with |f(x)− f(y)| ≤ Lι(x, y) for all x, y.

By continuity of ι, for all ϵ > 0 the set

D(ϵ) = {(x, y) ∈ X ×X | ι(x, y) ≥ ϵ}

is a compact subset ofX×X−∆, andD(ϵ) ⊂ D(δ) for ϵ > δ, ∪ϵ>0D(ϵ) = X×X−∆.
For all ϵ > 0 we have∫

D(ϵ)

|f(x)− f(y)|pι−2Q(x, y)dµ(x)dµ(y) ≤ Lp
∫
D(ϵ)

ι(x, y)p−2Qdµ(x)dµ(y) ≤ C

for a universal constant C > 0 since p ≥ 2Q by assumption, since ι is a bounded
function and µ× µ is a probability measure.

The statement now follows from Lebesgue’s dominated convergence theorem,
applied to the functions

Fϵ(x, y) =

{
|f(x)− f(y)|p if (x, y) ∈ D(ϵ)

0 otherwise

and the measure ν. □

Via the map which associates to f ∈ Bp the function Ψ(f)(x, y) = f(x)− f(y),
the Besov space Bp embeds into Lp(X ×X −∆, ν).

For φ ∈ Γ and (x, y) ∈ X ×X define

(3) cφ(x, y) = logRN(φ)(x)− log RN(φ)(y).

Then cφ is a measurable cocycle for the diagonal action of Γ on X×X. This means
that

cφ◦ψ(x, y) = cφ(ψ(x, y)) + cψ(x, y)

for all (x, y) ∈ X ×X and all φ,ψ ∈ Γ.

The following lemma explains the significance of Condition (∗).

Lemma 2.7. Assume condition (∗). Then for p ≥ 2Q and each φ ∈ Γ, we have
log RN(φ) ∈ Bp. In particular, the cocycle cφ on X×X−∆ consists of Lp-integrable
functions with respect to ν.

Proof. By assumption, the function RN(φ) assumes values in a compact interval
[a, b] ⊂ (0,∞), moreover as a function (X, ι) → [a, b], it is Lipschitz continuous.

Now the restriction of the function log to a compact interval [a, b] ⊂ (0,∞)
is Lipschitz continuous and hence the same holds true for the composition x →
log(RN(φ(x))) since the composition of Lipschitz functions is Lipschitz. Thus the
lemma now follows from Lemma 2.6. □
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Remark 2.8. By the formula (1), if Condition (∗) holds true then for p ≥ 2Q the
group Γ admits an isometric action on Lp(ν) via

(φ, f)(x, y) = f(φ−1(x), φ−1(y))RNν(φ)
−1/p(x, y).

In other words, we obtain a representation Π of Γ into the group of linear isometries
of Lp(ν).

A cocycle for this isometric action is a function a : Γ → Lp(ν) such that

a(φ ◦ ψ) = Π(φ)(a(ψ)) + a(φ).

Thus the cocycle c is a cocycle for this isometric representation if and only if ν
is invariant under the action of Γ. A necessary condition for this to hold is that
the functions RNν(φ) are uniformly bounded, independent of φ. In general, it is
unclear whether there exists a constant Q > 0 such that this boundedness condition
holds true.

Example 2.9. Consider the standard projective action of the group Γ = SL(n,Z)
on X = RPn−1 (n ≥ 2). This action is by diffeomorphisms and hence if µ denotes
the volume form induced by the round metric, then the Radon Nikodym derivatives
of the elements of Γ are Lipschitz continuous. Thus for any Q ≥ 1 and any p ≥ 2Q
one obtains a cocycle c with values in the space of functions which are composed
of pull-backs of functions in the Besov space Bp via the first and second factor
projection. For n = 2 and Q = 1, p ≥ 2, this is a cocycle for an isometric action
on an Lp-space which defines a nontrivial cohomology class for Γ. For n ≥ 3 it is
unclear whether there exists Q ≥ 1, p ≥ 2Q such that this cocycle is a cocycle for
an isometric action on Lp. By the main result of [BFGM07], if such numbers p,Q
exist then the cocycle is a coboundary.

3. Measure preserving actions on products

The goal of this section is to find conditions which guarantee that the cocycle for
the group Γ constructed in Section 2 defines a nontrivial class in the first cohomology
of Γ with coefficients in the representation.

Assume for the remainder of this section that (X, d, µ) is a compact Ahlfors
regular metric measure space of dimension Q ≥ 1. This means that (X, d) is a
metric space, and there exists a number C > 0 such that

µ(B(ξ, r)) ∈ [C−1rQ, CrQ]

for all ξ ∈ X and all r ≤ diam(X)/2, where B(ξ, r) denotes the open ball of radius
r about ξ. Assume furthermore that the countable group Γ acts on (X, d) as a
group of bi-Lipschitz homeomorphisms. This implies that Γ preserves the measure
class of µ. In particular, for every φ ∈ Γ and µ-almost every x ∈ X the Radon
Nikodym dervative RN(φ)(x) of φ∗µ with respect to µ exists at x. Put

⟨φ, x⟩ = logRN(φ)(x);

then cφ(x, y) = ⟨φ, x⟩ − ⟨φ, y⟩.
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A homeomorphism φ of a compact metric space (X, d) has an attracting fixed
point x if there exists a compact neighborhood U of x such that φ(U) ⊂ U and

∩j>0φ
j(U) = {x}.

Write as before ν = d−2Qµ × µ, viewed as a measure on X × X − ∆. For a
measure class preserving map φ put RNν(φ) = dφ∗ν/dν.

Proposition 3.1. Let (X, d, µ) be an Ahlfors regular metric measure space of di-
mension Q ≥ 1. Assume that Γ acts on X preserving the measure class of µ.
Assume moreover that there is φ ∈ Γ and a number C > 0 with the following
properties.

(1) φ−1 has an attracting fixed point.
(2) For all ℓ ∈ Z we have RNν(φ

ℓ) ∈ [C−1, C].

Then for p ≥ 2Q and m > 0 there is a number k0 = k0(φ, p,m) > 0 such that

∥cφk∥pLp ≥ m

for all k ≥ k0.

Proof. Let φ ∈ Γ and assume that φ−1 admits an attracting fixed point z ∈ X.
Assume moreover that there exists a number C > 0 such if we denote by RN(φℓ)
the Radon Nikodym derivative of φℓ with respect to µ then we have

(4) RNν(φ
ℓ)(x, y) = RN(φℓ)(x)RN(φℓ)(y)d(φℓ(x), φℓ(y))−2Qd(x, y)2Q ∈ [C−1, C]

for all ℓ ∈ Z and almost all (x, y) ∈ X × X − ∆. By enlarging C if necessary we
may moreover assume that for all x ∈ X and all r < diam(X) we have

µ(B(x, r)) ∈ [C−1rQ, CrQ].

Let b > 0 be such that the closed ball B̄(z, b) of radius b about z is contained in
a compact neighborhood U of z as in the definition of an attracting fixed point. By
assumption, there exists a number ℓ0 > 0 such that φ−ℓ0(U) ⊂ B̄(z, b) and hence

φ−ℓB̄(z, b) ⊂ φ−ℓ0(φ−ℓ+ℓ0U) ⊂ φ−ℓ0U ⊂ B̄(z, b) for all ℓ ≥ ℓ0.

The same argument also shows that if φ−jB(z, b) ⊂ B(z, δ) for some δ > 0, then
φ−kB(z, b) ⊂ B(z, δ) for all k ≥ ℓ0 + j.

Let τ = max{diam(X)/b, (2C2)1/Q} > 2. Then for all r ≤ b we have

(5) µ(B(z, r)−B(z, τ−1r)) ≥ C−1rQ − Cτ−QrQ ≥ C−1rQ/2.

Choose a sequence jm → ∞ such that

(6) φ−jmB(z, b) ⊂ B(z, bτ−8m)

for allm ≥ 1. Note that we then have φ−kB(z, b) ⊂ B(z, bτ−8m) for any k ≥ jm+ℓ0
and any m.

Let m ≥ 1 be arbitrary. We claim that there is a universal constant u > 0
such that for all ℓ ≤ m − 2, all x ∈ B(z, bτ−8ℓ) − B(z, bτ−8ℓ−2) and all y ∈
B(z, bτ−8ℓ−6)−B(z, bτ−8ℓ−8) we have ⟨φjm , y⟩ − ⟨φjm , x⟩ ≥ u.
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To see that this is the case, note that since ℓ ≤ m− 2, we have

φjmx, φjmy ∈ X −B(z, b)

and hence d(z, φjmx) ∈ [b, τb], d(z, φjmy) ∈ [b, τb] (recall that diam(X) ≤ τb). Now
let us assume for the moment that the Radon Nikodym derivative of φjm exists a
z. Then together with the assumption (4) and the fact that φjmz = z for all m, we
conclude that

RN(φjm)(z)RN(φjm)(y)d(φjm(z), φjm(y))−2Qd(z, y)2Q

RN(φjm)(z)RN(φjm)(x)d(φjm(z), φjm(x))−2Qd(z, x)2Q
(7)

∼RN(φjm)(y)d(z, y)2Q

RN(φjm)(x)d(z, x)2Q
∼ const.

Here the first ∼ in the estimate means equality up to a factor contained in the
interval [τ−4Q, τ4Q] (by erasing two factors in the numerator and denominator using
the above estimate), and the second ∼ means that value of the ratio is contained in
the interval [C−2τ−4Q, C2τ4Q] (which follows from the fact that by (4), the ratio of
numerator and denominator in the first term of the expression (7) is at most C2).

Now d(z,y)2Q

d(z,x)2Q
≤ τ−8Q, and as τ−8QC2τ4Q ≤ τ−3Q, taking the logarithm yields the

claim.

The Radon Nikodym derivative of φjm with respect to µ may not exist at z.
However, it exists almost everywhere and hence by Ahlfors regularity of µ, we can
find a point ẑ arbitrarily close to z which is mapped by φjm into an arbitrarily
small neighborhood of z and such that the Radon Nikodym derivative of φjm exists
at ẑ. Replacing z by ẑ in formula (7) then yields the statement we were looking
for.

On the other hand, by (5), and Ahlfors regularity of µ, there exists a universal
constant κ > 0 such that

ν((B(ξ, bτ−8ℓ)−B(ξ, bτ−8ℓ−2))× (B(ξ, bτ8ℓ−6)−B(ξ, bτ8ℓ−8))) ≥ κ

for all ℓ ∈ [2,m]. Since the value of cφjm on these sets is bounded from below by
u > 0, we have ∫

|cφjm |pdν ≥ (m− 2)upκ.

As the right hand side of this inequality tends to ∞ as m → ∞, the proposition
follows. □

4. An Ahlfors regular metric on the boundary of a Hadamard
manifold

In this section we consider an n-dimensional simply connected complete Rie-
mannian manifold (n ≥ 2) of sectional curvature contained in the interval [−b2,−a2]
for numbers 0 < a < b <∞. We also require that there is a universal upper bound
for the norm of the covariant derivative ∇R of the curvature tensor R of M . Our
goal is to construct a metric d on the ideal boundary ∂M of M with the following
properties.

(1) d is Ahlfors regular.



Lp-COHOMOLOGY FOR GROUPS OF ISOMETRIES OF HADAMARD SPACES 9

(2) The Ahlfors regular measure µ defined by d is contained in the Lebesgue
measure class.

(3) Isometries of M act by bi-Lipschitz transformations on (∂M, d).

Note that for general Hadamard manifolds of bounded negative curvature, it is not
clear whether (2) makes sense, and it is to this end that we shall use the assumption
that |∇R| is bounded.

A point ξ ∈ ∂M determines a Busemann function bξ at ξ. Its level sets are the
horospheres at ξ. By the assumption on M , these Busemann functions are of class
C3, and their gradients grad bξ are C2-vector fields on M [Shc83].

Let T 1M be the unit tangent bundle of M . The metric on M induces a natural
metric on T 1M , the Sasaki metric. This metric defines a distance function and
hence a Hölder structure for functions on T 1M . The canonical projection

Π : T 1M →M

is a Riemannian submersion.

For a point x ∈M and a unit tangent vector v ∈ T 1
xM let m(v) > 0 be the mean

curvature at x of the horosphere in M whose outer normal field passes through v.
That is, the horosphere is a level set of the Busemann function defined by the ideal
boundary point γv(−∞) ∈ ∂M , where γv denotes the geodesic with initial velocity
γ′v(0) = v.

The following result is perhaps well known. We provide a proof in the appendix
(Corollary A.2).

Proposition 4.1. The function m : v → m(v) on T 1M is Hölder continuous.

We next observe

Lemma 4.2. There exists a number C0 > 0 with the following property. Let γ ⊂M
be any geodesic and let t > 0; then

|
∫ t

0

m(γ′(s))ds−
∫ t

0

m(−γ′(s))ds| ≤ C0.

Proof. The Lebesgue Liouville measure λ on T 1M is the measure defined by the vol-
ume form of the Sasaki metric. This volume form, again denoted by λ, is invariant
under the geodesic flow Φt : v → γ′v(t). It can be described as follows.

The tangent bundle TT 1M of T 1M has an orthogonal decomposition as TT 1M =
H ⊕ V where V is the vertical tangent bundle, that is, the tangent bundle of the
fibers of the fibration T 1M →M , and where H is the horizontal bundle defined by
the Levi Civita connection. Then

λ = ωH ∧ ωV

where ωH is an n-form which annihilates V, ωV is an (n − 1)-form which annihi-
lates H and such that ωV , ωH are defined by a choice of an orientation and the
Riemannian metric on H,V.
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The contraction ιXλ of λ with the generatorX of the geodesic flow Φt is a smooth
(2n − 2)-form ω which is invariant under Φt and which equals ιXωH ∧ ωV . This
(2n−2)-form then defines a Radon measure on the space of geodesics ∂M×∂M−∆
which is invariant under the action of Iso(M).

There exists another natural 2n − 2-form on T 1M which is defined as follows.
For a given vector v ∈ T 1M we can consider the submanifolds W ss(v),W su(v) of
T 1M defined by the inner and outer normal field of the horosphere through Π(v)
at γv(∞) and γv(−∞), respectively. By the assumption on M , this construction
defines two continuous foliations W ss,W su of T 1M , with leaves of class C2. Thus
the tangent bundles TW ss, TW su of these foliations are defined, and by Proposition
A.1, they are Hölder continuous subbundles of TT 1M of dimension n− 1 which do
not intersect.

Namely, for v ∈ T 1M the orthogonal complement v⊥ of v in TΠ(v)M has a
natural isometric identification with both the orthogonal complement of X in Hv

and the fiber Vv. A tangent vector Y of TW su at v ∈ T 1M decomposes into

Y = Y h + Y v where Y h ∈ X⊥ ⊂ Hv, Y
v ∈ Vv.

With respect to the natural isometric identification of X⊥ ⊂ Hv and Vv, the linear
map which sends Y h to Y v is given by the shape operator for the outer normal
field of the horosphere defined by γv(−∞), and this shape operator is a symmetric
linear operator whose eigenvalues are bounded from above and below by universal
positive constants.

Similarly, a tangent vector Z of TW ss at v decomposes as

Z = Zh + Zv where Zh ∈ Hv, Z
v ∈ Vv

and the linear map X⊥ ⊂ Hv → Vv which sends Zh to Zv is the shape operator for
the inner normal field of the horosphere defined by γv(∞), and this shape operator
is a symmetric linear operator whose eigenvalues are bounded from above and below
by universal negative constants. Using Proposition A.1, this shows that the bundles
TW ss, TW su are Hölder continuous and furthermore, the angle with respect to the
Sasaki metric between a nonzero vector of TW ss and a nonzero vector of TW su

over a point v ∈ T 1M is bounded from below by a universal positive constant not
depending on v.

Thus we obtain another continuous (2n− 2)-form ω̃ on T 1M by defining

ω̃ = ωsu ∧ ωss

where the n− 1-form ωss annihilates TW su⊕RX and restricts to the volume form
on the leaves of the foliation W ss which is induced from the pull-back of the metric
on horospheres in M , and similarly for ωsu. The (2n − 2)-form ω̃ annihilates the

generator of the geodesic flow and hence it can be represented as ιX λ̃ for a 2n− 1-
form λ̃. Then λ̃ = κλ for a continuous function κ : T 1M → R. By the above
discussion, there exists a constant C > 0 such that κ(T 1M) ⊂ [C−1, C].

The volume form λ̃ is in general not invariant under the geodesic flow Φt, but it
is quasi-invariant, and its Lie derivative LX λ̃ in direction of the generator X of Φt

equals
LX λ̃(v) = (m(v)−m(−v))λ̃
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since by construction and the properties of the mean curvature of horospheres we
have

(
d

dt
ωsu ◦ Φt|t=0)(v) = m(v)ωsu(v) and (

d

dt
ωss ◦ Φt|t=0)(v) = −m(−v)ωss(v).

As a consequence, for v ∈ T 1M and t > 0 the logarithm at v of the Jacobian of
Φt with respect to the measure λ̃ can be represented as

(8)

∫ t

0

m(Φsv)ds−
∫ t

0

m(−Φsv)ds.

On the other hand, the measure λ is invariant under Φt, and it equals a uniformly
bounded multiple of the measure λ̃. Thus the Jacobian of Φt with respect to λ̃ is
uniformly bounded, independent of the basepoint and t. Then the same holds true
for the integral (8) which shows the lemma. □

For v ∈ T 1M define

f(v) =
1

2
(m(v) +m(−v)).

Since the function m is Hölder continuous, the same holds true for the function f .
Furthermore, f takes values in a fixed interval [c, d] for 0 < c < d since the mean
curvature of horospheres is bounded from above and below by a positive constant
only depending on the curvature bounds.

We now use a construction which is well known in the case that the manifold
M is the universal covering of a closed manifold, see for example the articles [L95]
and [H97].

For x ∈ M we shall define a Gromov type product (|)x on ∂M based at x.
To this end consider first a point ξ ∈ ∂M and two points x, y ∈ M . There are
unique geodesic rays γ, η : [0,∞) → M connecting x, y to ξ, that is, such that
γ(0) = x, γ(∞) = ξ and η(0) = y, η(∞) = ξ. Given the parameterization for γ,
there exists a unique preferred parameterization η̂ of η (extended to a geodesic line)
with η̂(u) = η(0) for some u ∈ R and so that γ, η̂ are strongly asymptotic, that is,

lim
t→∞

d(γ(t), η̂(t)) = 0.

We have

Lemma 4.3. The limit

qξ(x, y) = lim
t→∞

(∫ t

0

f(γ′(s))ds−
∫ t

u

f(η̂′(s))ds
)

exists.

Proof. Let d be the Sasaki metric on T 1M . If −a2 < 0 is an upper curvature bound
for M then we have

d(γ′(s), η̂′(s)) ≤ C0e
−as

for some C0 > 0 depending on γ, η.
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Since by Proposition 4.1 the function f is Hölder continuous, there exist numbers
C1 > 0, α > 0 so that

|f(γ′(s))− f(η̂′(s))| ≤ C1d(γ
′(s), η̂′(s))α ≤ C1C

α
0 e

−αas for all s.

As the function s → e−αas is integrable on [0,∞), this yields the existence of the
limit

lim
t→∞

(∫ t

0

f(γ′(s))ds−
∫ t

u

f(η̂′(s))ds
)
.

□

Note that qξ(x, y) = −qξ(y, x).

For x ∈ M and two points ξ ̸= η ∈ ∂M let ρ be the geodesic connecting ξ to η.
Choose a point y ∈ ρ and define

(ξ | η)x =
1

2
(qξ(x, y) + qη(x, y)).

Thus (ξ | η)x = (η | ξ)x for all ξ, η. We have

Lemma 4.4. (ξ | η)x does not depend on the choice of y ∈ ρ.

Proof. Parameterize ρ in such a way that ρ(0) = y and ρ(∞) = ξ. Replacing y by

ρ(t) for some t > 0 adds the integral
∫ t
0
f(ρ′(s))ds to qξ(x, y) and adds the integral

−
∫ t
0
f(−ρ′(s))ds to qη(x, y). Since f is invariant under the flip v → −v, the lemma

follows. □

As a consequence of Lemma 4.4, (ξ | η)x only depends on ξ, η, x. We use these
Gromov type products to define a cross ratio [, , , ]x on ∂M by

[ξ1, ξ2, ξ3, ξ4]x = (ξ1 | ξ3)x + (ξ2 | ξ4)x − (ξ1 | ξ4)x − (ξ2 | ξ3)x.
We have

Lemma 4.5. [, , , ]x does not depend on x.

Proof. Let y ∈M be another point and let ξ, η ∈ ∂M . Then we have

(ξ | η)y = (ξ | η)x + qξ(y, x) + qη(y, x).

This formula yields an expression for [ξ1, ξ2, ξ3, ξ4]y − [ξ1, ξ2, ξ3, ξ4]x as a sum of
terms qξi(y, x) (i = 1, . . . , 4). Each of these terms appears twice in this expression,
with opposite signs, and hence the terms cancel. □

By construction, for any isometry φ of M , for any quadruple (ξ1, ξ2, ξ3, ξ4) of
distinct points in ∂M and any x ∈M we have

[φ(ξ1), φ(ξ2), φ(ξ3), φ(ξ4)]φ(x) = [ξ1, ξ2, ξ3, ξ4]x

and therefore we obtain

Corollary 4.6. The isometry group of M preserves [, , , ]x.

Fix again a point x ∈M . We have
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Lemma 4.7. There exists a number κ > 0 such that the product (|)x satisfies the
κ-ultrametric inequality

(ξ | η)x ≥ min{(ξ | ζ)x, (ζ | η)x} − κ.

Proof. The proof is standard and we only give a sketch. Namely, consider pairwise
distinct points ξ, ζ, η ∈ ∂M . These points define a geodesic triangle which is δ0-thin
for some δ0 > 0 (a side is contained in the δ0-neighborhood of the union of the other
sides) since M is hyperbolic in the sense of Gromov.

As the function f is uniformly Hölder continuous and bounded from above and
below by uniform positive constants, we know that there exists a number m > 0
with the following property. Let y be the shortest distance projection of x into the
geodesic θ connecting ξ to η and let ρ : [0, T ] →M be the geodesic connecting x to
y; then

|(ξ | η)x −
∫ T

0

f(ρ′(s))ds| ≤ m.

Namely, for this choice of a point y ∈ θ, we have |qξ(x, y)−
∫ T
0
f(ρ′(s))ds| ≤ m for

a universal constant m > 0, and the same estimate also holds true for qη(x, y).

On the other hand, we also know that y is contained in the δ0-neighborhood of
one of the geodesics connecting ξ to ζ or connecting η to ζ, say the geodesic γ con-
necting ξ to ζ. Let y′ ∈ γ be such that d(y, y′) ≤ δ0. Let z be the shortest distance
projection of x into γ. Assume without loss of generality that y′ is contained in the
subray of γ connecting z to ξ.

Consider the geodesic triangle T with vertices x, z, y′. It has a right angle at z.
Let ρ1 : [0, T1] → M,ρ2 : [0, T2] → M be the sides of T with vertex x and second
vertex z, y′, respectively, Using once more Hölder continuity of f and the fact that
f is bounded from above and below by a universal positive constant, we conclude
that ∫ T1

0

f(ρ′1(s))ds ≤
∫ T2

0

f(ρ′2(s))ds+ ℓ

for a universal constant ℓ > 0. But this means

(ξ | η)x − (ξ | ζ)x ≥ −2m− ℓ

which is what we wanted to show. □

A quasimetric on a space X is a symmetric function q : X ×X → [0,∞) which
vanishes only for x = y and satisfies for some K > 0

q(x, y) ≤ K(q(x, z) + q(z, y)) for all x, y, z.

As a consequence of Lemma 4.7, if for ϵ > 0, we define

δx,ϵ(ξ, η) = e−ϵ(ξ|η)x

then we have

Lemma 4.8. δx,ϵ is a quasimetric on ∂M .
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Quasimetrics with multiplicative constant sufficiently close to 1 are known to be
bi-Lipschitz equivalent to metrics and hence we have

Lemma 4.9. For sufficiently small ϵ > 0 the function δx,ϵ is bi-Lipschitz equivalent
to a metric dx.

Let now λx be the measure on ∂M which is the image of the Lebesgue measure
on the round sphere TxM under the natural homeomorphism T 1

xM → ∂M . The
following is the main result of this section.

Proposition 4.10. The metric measure space (∂M, dx, λx) is Ahlfors regular of
dimension 1/ϵ.

Proof. Since the diameter of dx is finite, the total mass of the measure λx is finite,
and furthermore dx is bi-Lipschitz equivalent to δx = δx,ϵ, it suffices to find numbers
C > 0, r0 > 0 such that

(9) λx(B(ξ, r)) ∈ [Cr,C−1r]

for all ξ ∈ ∂M and all r ≤ r0, where B(ξ, r) = {η | e−(ξ|η)x < r}.

Let exp be the exponential map of the Riemannian manifold M . Using the
uniform curvature bound, the map v → exp (10v) maps the unit sphere T 1

xM onto
the distance sphere S(x, 10) of radius 10 about x, and its Jacobian for the standard
metric on T 1

xM and the metric on S(x, 10) induced from the metric on M is a
smooth function h with values in [κ1, κ2] for constants 0 < κ1 < κ2 not depending
on x. Thus it suffices to show the estimate (9) for the measure hλx.

Let r0 > 0 be sufficiently small that
∫ 10

0
m(γ′(t))dt ≤ − log r0 for every geodesic

γ in M . We next claim that for r ≤ r0 and ξ ∈ ∂M the ball B(ξ, r) can be
understood as follows.

Let γξ : [0,∞) →M be the geodesic ray connecting x = γξ(0) to ξ. Let R > 10
be such that ∫ R

0

m(γ′(t))dt = − log r.

As the function m is positive and bounded from below by a positive number, such
a number R > 10 exists and is unique.

For q > 0 consider the ball

BS(γξ(R), q) ⊂ S(x,R)

of radius q about γξ(R) in the distance sphere S(x,R), equipped with the intrinsic
path metric. Let moreover A(ξ,R, q) ⊂ ∂M be the set of all endpoints of geodesic
rays starting at x which cross through BS(γξ(R), q). We claim that there exist
numbers 0 < q < u not depending on ξ and r such that A(ξ,R, q) ⊂ B(ξ, r) ⊂
A(ξ,R, u).

Before we prove the claim we show that it implies the proposition. Namely,
using the assumption that R ≥ 10, comparison shows that the volumes of the balls
BS(γξ(R), q), B

S(γξ(R), u) for the induced metric on S(x,R) are contained in the
interval [χ, χ−1] for a universal constant χ > 0. Thus to establish the desired lower
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and upper bound for the hλx-volume of B(ξ, r), it suffices to show that there exists
a number C > 0 such that for each y ∈ BS(γξ(R), u) the Jacobian of the radial
projection πR,10 : S(x,R) → S(x, 10) at y is contained in [C−1r, Cr].

The negative of the logarithm of the Jacobian of the map πR,10 at y = γη(R) for
some η ∈ ∂M can be computed as an integral∫ R

10

mS
t (γ

′
η(t))dt

where mS
t (γ

′
η(t)) is the mean curvature of the distance sphere S(x, t) at the point

γη(t).

By Lemma A.3, we have

|mS
t (γ

′
η(t))−m(γ′η(t))| ≤ e−αt

for a universal constant α > 0 and therefore

|
∫ R

10

mS
t (γ

′
η(t))dt−

∫ R

10

m(γ′η(t))dt| ≤ C0

where C0 > 0 is a universal constant. Thus we are left with showing that for each
η ∈ ∂M with γη(R) ∈ BS(γξ(R), u) we have

(10) |
∫ R

10

m(γ′η(t))dt−
∫ R

10

m(γ′ξ(t))dt| ≤ C1

for a universal constant C1 > 0.

However, comparison shows that for such a point η we have

d(γ′η(t), γ
′
ξ(t)) ≤ C2e

a(t−R) for all 10 ≤ t ≤ R

for a universal constant C2 > 0 and consequently the estimate (10) follows once
more from Hölder continuity of m.

It remains to show the inclusion A(ξ,R, q) ⊂ B(ξ, r) ⊂ A(ξ,R, u) for universal
constants 0 < q < u. To this end recall from the proof of Lemma 4.7 that there
exists a number z > 0 with the following property. Let η ∈ ∂M and let γη be the
geodesic ray connecting x to η. Let ρ be the geodesic connecting ξ to η and let y
be the shortest distance projection of x into ρ. Let ζ : [0, T ] → M be the geodesic

connecting x to y and let ℓ =
∫ T
0
f(ζ ′(t))dt. If ℓ > − logR + z then η ∈ B(ξ, r),

and if ℓ < − logR− z then η ̸∈ B(ξ, r).

The containments then follow from Hölder continuity of the function f and
Lemma 4.2. □

Corollary 4.11. For x, y ∈M , the measures λx, λy on ∂M are absolutely contin-
uous, with uniformly bounded Radon Nikodym derivative.

Proof. By construction, for x ̸= y the metrics dx, dy on ∂M are bi-Lipschitz
equivalent. Since by Proposition 4.10 the metric measure spaces (∂M, dx, λx) and
(∂M, dy, λy) are Ahlfors regular, of dimension 1/ϵ, absolute continuity of the mea-
sures λx, λy is immediate. □
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5. Groups of isometries of Hadamard manifolds

The goal of this section is the proof of the theorem from the introduction. We be-
gin with a group Γ which admits a non-elementary isometric action on a Hadamard
manifold M of bounded negative curvature and such that the covariant derivative
of the curvature tensor ofM is uniformly bounded. We then say that the curvature
tensor of M is bounded of first order.

Let ϵ > 0 be sufficiently small that the quasimetric δ = δx,ϵ is bi-Lipschitz
equivalent to a metric d. Such a constant exists by Lemma 4.9. For a fixed point
x ∈M we then obtain a multiplicative cross ratio on ∂M by defining

Cr(ξ1, ξ2, ξ3, ξ4) =
δ(ξ1, ξ3)δ(ξ2, ξ4)

δ(ξ1, ξ4)δ(ξ2, ξ3)
.

By Lemma 4.5, the cross ratio Cr does not depend on x and is invariant under the
action of the isometry group Iso(M) of M . The following is an analog of Lemma 6
of [Ni13].

Lemma 5.1. For every φ ∈ Iso(M) there exists a positive continuous function |φ′|
on ∂M with the property that for all ξ, η ∈ ∂M , we have

δ2(φξ, φη) = |φ′|(ξ)|φ′|(η)δ2(ξ, η).

Proof. We copy the short proof from Lemma 6 of [Ni13] for completeness. Let
x, u, v be a triple of distinct points in ∂M . Since φ preserves Cr, for any fourth
distinct point y we have

δ(φx, φy)

δ(x, y)

δ(φu, φv)

δ(u, v)
=
δ(φx, φv)

δ(x, v)

δ(φy, φu)

δ(y, u)
.

When y → x one obtains

(11) lim
y→x

δ(φx, φy)

δ(x, y)
=
δ(φx, φv)

δ(x, v)

δ(φx, φu)

δ(x, u)

δ(u, v)

δ(φu, φv)
.

Let |φ′|u,v denote the right-hand side of equation (11), viewed as a function of
x. Then |φ′|u,v is a positive continuous function on X −{u, v}. Since the left-hand
side of equation (11) does not depend on u, v, by replacing u, v by a different pair
of points we can extend |φ′|u,v to a positive function |φ′| on all of X. The formula
in the lemma is now immediate from the definition and invariance of Cr (see the
proof of Lemma 6 of [Ni13]). □

Recall that the notion of a Lipschitz map makes sense for the quasimetric δ.
Since there exists a constant c > 0 such that cδ ≤ d ≤ δ, Lipschitz maps for d are
precisely the Lipschitz maps for δ.

The following corollary can readily be checked directly but is an immediate
consequence of Lemma 5.1.

Corollary 5.2. Iso(M) acts on (∂M, d) as a group of bi-Lipschitz transformations.

Lemma 5.3. For each φ ∈ Iso(M) the function |φ′| is Lipschitz continuous for d.



Lp-COHOMOLOGY FOR GROUPS OF ISOMETRIES OF HADAMARD SPACES 17

Proof. We follow p.779 of [Ni13]. Namely, let ξ, η ∈ ∂M and choose a point ζ with
d(ξ, ζ) ≥ diam(∂M)/2. Since d satisfies the triangle inequality, we have

d(φξ, φζ)

d(ξ, ζ)
− d(φη, φζ)

d(η, ζ)
≤ d(φξ, φη)

d(ξ, ζ)
+
d(φη, φζ)

d(ξ, ζ)
− d(φη, φζ)

d(η, ζ)

≤ d(φξ, φη)

d(ξ, ζ)
+
d(φη, φζ)

d(η, ζ)

d(ξ, η)

d(ξ, ζ)
(12)

Now if L > 1 is the Lipschitz constant for φ then d(φξ, φη) ≤ Ld(ξ, η) and

additionally d(φη,φζ)
d(η,ζ) ≤ L. Hence the term (12) in the above expression is bounded

from above by LCd(ξ, η) for a universal constant C > 0.

On the other hand, the formula for |φ′| in Lemma 5.1 shows that√
|φ′|(ξ)−

√
|φ′|(η) = 1√

|φ′|(ζ)
(d(φξ, φζ)
d(ξ, ζ)

− d(φη, φζ)

d(η, ζ)

)
.

Together this yields Lipschitz continuity for
√
|φ′| and hence for |φ′|. □

By construction, we also have

Lemma 5.4. For φ,ψ ∈ Γ and all ξ ∈ ∂M we have

|(φ ◦ ψ)′|(ξ) = |φ′|(ψ(ξ))|ψ′|(ξ).

Proof. The lemma is immediate from Lipschitz continuity of |φ′|, |ψ′| and Lemma
5.1. □

Let as before λ be the Lebesgue Liouville measure on the unit tangent bundle

T 1M of M . It disintegrates to an Iso(M)-invariant Radon measure λ̂ on the space
of geodesics ∂M × ∂M −∆.

For x ∈M consider the Lebesgue measure λx on ∂M defined as the push forward
of the Lebesgue measure on T 1

xM by the natural homeomorphism T 1
xM → ∂M .

Let ϵ > 0 be the constant which enters the definition of the metric d. We have

Proposition 5.5. There exists a uniformly bounded function β such that λ̂ =
βδ−2/ϵλx × λx.

Proof. By Corollary 4.11, the measure class of the measure λx on ∂M does not
depend on x.

Let p(x, y, ξ) be the Radon Nikodym derivative of λy with respect to λx at ξ
(whenever this exists). It follows from Proposition 4.10 and its proof, using Lemma
A.3, Corollary A.2 and the definition of the function δ, that there exists a universal
constant C0 > 0 such that the following holds true. Let ξ ̸= η ∈ ∂M and let y be
the shortest distance projection of x into the geodesic connecting ξ to η; then

δ2/ϵ(ξ, η)p(x, y, ξ)p(x, y, η) ∈ [C−1
0 , C0].
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Thus we are left with showing the following. The measure λ̂ is absolutely contin-
uous with respect to λx × λx, and there exists a number C1 > 0 such that for any
geodesic γ ⊂ M and any x ∈ γ, the Radon Nikodym derivative at (γ(−∞), γ(∞))

of λ̂ with respect to λx × λx, if it is exists, is contained in the interval [C−1
1 , C1].

To this end recall from the proof of Lemma 4.2 the definition of the (2n − 2)-
form ω̃ on T 1M . This form restricts to a volume form on a local smooth transversal
N for the geodesic flow, defining a measure λ̃ on N of the form κλ̂ where κ is a
continuous function with values in a compact subinterval of (0,∞) not depending
on N .

Let x ∈ N ; then by perhaps decreasing the size of N , we may assume that
λx×λx descends to a measure on N by viewing N as an (open) subset of the space
of geodesics. It now suffices to show that λx× λx is contained in the measure class
of λ̃, with density near x bounded from above and below by a universal positive
constant. However this follows from Proposition 4.10 and its proof. As this is
a standard argument in smooth dynamics (which does not rely on an underlying
dynamical system), carefully laid out in Chapter III of [Mn87], we omit a more
detailed discussion.

Together this completes the proof of the proposition. □

Let us summarize now what we achieved so far. For x ∈M consider the measure
λx on ∂M . Its measure class is invariant under the action of Iso(M). By Lemma
5.1 and Lemma 5.3, for each φ ∈ Γ there exists a positive Lipschitz continuous
function |φ′| on ∂M which coincides with RN(φ)1/ϵ up to a universal constant,
where RN(φ) is taken with respect to the measure λx.

More precisely, the function |φ′|(x) measures the infinitesimal dilatation of φ
with respect to the quasimetric δ = δx. Lemma 5.4 shows that its logarithm defines
a cocycle cφ for Γ by

cφ(x, y) = log |φ′(x)| − log |φ′(y)|.

As the measure λx is Ahlfors regular for dx, via comparing the cocycle defined by
the logarithm of Radon Nikodym derivatives to the cycycle cφ, condition (∗) from
Section 2 is fulfilled. In particular, for sufficiently large p, this cocycle has values

in Lp(∂M × ∂M −∆, λ̂).

Furthermore, there is a bounded function β such that βδ
−1/ϵ
x λx×λx is invariant

under the action of Iso(X). Now if φ ∈ Iso(M) is a loxodromic element then
φ acts on ∂M with north-south dynamics and hence the assumptions stated in
Proposition 3.1 are fulfilled for φ. As a consequence, the cocycle is unbounded in

Lp(∂M×∂M−∆, λ̂) for all sufficiently large p and hence it can not be a coboundary.
Together we have shown

Theorem 5.6. Let Γ be a discrete group which admits a non-elementary isometric
action on a Hadamard manifold M of bounded negative curvature, with first order
bounded curvature tensor. Then there exists a number p > 1 and an isometric
action of Γ on an Lp-space V such that H1(Γ, V ) ̸= 0.
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For the proof of the Theorem from the introduction, we are left with removing
the assumption on the first order bound of the covariant derivative of M .

Proof of the main theorem. Let Γ ⊂ Iso(M) acting on a Hadamard manifold (M, g)
of bounded negative curvature. By the main proposition of [K05], there exists a
positive number ϵ > 0 with the following properties.

(1) The Ricci flow gt started at g0 = g exists on the time interval [0, 2ϵ].
(2) The curvature of gϵ is contained in [−b2,−a2] for some numbers 0 < a < b

depending on the curvature of M , the dimension and ϵ.
(3) ∥∇Rϵ∥ ≤ C where C > 0 is a fixed constant and Rϵ is the curvature tensor

of gϵ.

Since the Ricci flow commutes with isometries, the group Γ admits a non-
elementary isometric action on (M, gϵ). Thus we can apply Theorem 5.6 to the
action of Γ on (M, gϵ) and complete the proof. □

Since via a factor projection, a lattice in a semi-simple Lie group G of non-
compact type acts on each rank one factor of G in a non-elementary fashion we
conclude

Corollary 5.7. Let Γ be a lattice in a semisimple Lie group G of noncompact type
containing at least one factor which is of rank one. Then Γ admits an isometric
action on an Lp-space V with H1(Γ, V ) ̸= 0.

Remark 5.8. The lower bound on p we obtain from the proof of Theorem 5.6 is
not sharp. For example, if M is hyperbolic space of dimension n ≥ 2, then the
bound we find equals p = 2n− 2 while it is known that p = 2 is possible.

Appendix A. Mean curvature of horospheres

This appendix is independent of the rest of this article, and we keep the exposi-
tion self-contained.

Throughout, we consider a smooth Hadamard manifold M of bounded negative
curvature, that is, the curvature is contained in an interval [−b2,−a2] for numbers
0 < a ≤ b. Denote by ∂M the ideal boundary of M .

Let Π : T 1M →M be the unit tangent bundle ofM . The Levi Civita connection
on TM determines a splitting

TT 1M = H⊕ V
where the vertical bundle V is the tangent bundle of the fibers, and such that
the restriction of dΠ to the horizontal bundle H is a fiberwise isomorphism. The
decomposition is orthogonal with respect to the Sasaki metric on T 1M . For this
metric, the projection Π is a Riemannian submersion.

For x ∈ M and a unit vector v ∈ T 1M denote by γv the geodesic with initial
velocity γ′v(0) = v. The geodesic spray X is the generator of the geodesic flow
Φt : T 1M → T 1M,v → Φtv = γ′v(t). It is a section of the bundle H. Thus H
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decomposes as an orthogonal direct sum H = E ⊕RX where the fiber of E at v is
mapped by dΠ onto v⊥.

Let A(v) be the shape operator at x of the horosphere through x defined by the
boundary point γv(−∞) ∈ ∂M . Since horospheres are of class C2, this is a well
defined symmetric linear endomorphism of v⊥. Using the identification of the fiber
Ev of E at v with v⊥, we view A(v) as a symmetric linear endomorphism of Ev.
Thus v → A(v) is a symmetric section of the bundle E∗ ⊗ E. The bundle E∗ ⊗ E
in turn is naturally equipped with a smooth Riemannian metric constructed from
the Levi Civita connection of the Sasaki metric.

The following is the main result of this appendix. It was established in [Ho40]
for surfaces, that is, in the case that the dimension n of M equals 2. It is also well
known under the assumption that M admits a cocompact isometry group (where
boundedness of ∇R is automatic), using tools from smooth dynamics. We refer to
[Mn87] for details.

Proposition A.1. If the covariant derivative ∇R of the curvature tensor is uni-
formly bounded in norm then the section v → A(v) of E∗⊗E is Hölder continuous.

For v ∈ T 1M , the mean curvaturem(v) of the horosphere defined by v equals the
trace of the shape operator A(v). Thus as an immediate corollary of Proposition
A.1 we obtain

Corollary A.2. If the covariant derivative ∇R of the curvature tensor is uniformly
bounded in norm then the function m : v → m(v) on T 1M is Hölder continuous.

The strategy of proof consists in comparing the shape operator of horospheres
with the shape operator of hypersurfaces depending smoothly on the defining data.
More precisely, for R > 0 let AR(v) be the shape operator at x = γv(0) of the
hypersurface

NR(v) = {y | d(y, exp(γ′v(−R)⊥)) = R}
where exp denotes the exponential map of M , and define similarly ASR(v) to be the
shape operator at x = γv(0) of the distance sphere of radius R about γv(−R).

In the statement of the following lemma, norms are taken with respect to the
natural Riemannian metric on E∗ ⊗E. Only bounded negative curvature on M is
necessary for Lemma A.3 and Lemma A.4 to hold true, that is, no assumption on
the covariant derivative of the curvature tensor is required.

Lemma A.3. There exist numbers C0 > 0, α > 0 only depending on the curvature
bounds such that

|A(v)−AR(v)| ≤ C0e
−αR and |A(v)−ASR(v)| ≤ C0e

−αR

for all v ∈ T 1M and R ≥ 10.

Proof. Let x ∈ M,v ∈ T 1
xM and let H be the horosphere passing though x which

is determined by the ideal boundary point γv(−∞) ∈ ∂M . The shape operator of
H at x can be computed as follows. Let X ∈ TxH = v⊥ be a tangent vector of
H at x. Then X determines uniquely a Jacobi field JX along γv with JX(0) =
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X and limt→−∞ ∥JX(t)∥ = 0. The shape operator A(v) then equals the linear
endomorphism X → ∇JX(0) of the euclidean vector space TxH = v⊥. Here ∇JX
denotes the covariant derivative of JX along the geodesic γv.

Similarly, for R ≥ 0 the shape operator AR(v) is computed as the linear map
X → ∇JRX(0) where JRX is the Jacobi field along γv with JRX(0) = X ∈ v⊥ and
∇JRX(−R) = 0. It now suffices to show that

(13) ∥∇JX(0)−∇JRX(0)∥ ≤ Ce−αR∥X∥

for constants α > 0, C > 0 only depending on the curvature bounds.

For each X consider the Jacobi field ĴX = JX − JRX along γv. It vanishes at
t = 0. The Rauch comparison theorem shows that

(14) ∥ĴX(−R)∥ ≥ sinh aR ∥∇ĴX(0)∥

(here as before, −a2 is an upper curvature bound forM). Furthermore, there exists
a constant C0 > 0 only depending on the curvature bounds such that

(15) ∥∇ĴX(−R)∥ ≥ C0∥ĴX(−R)∥ for all R.

On the other hand, we have ∇ĴX(−R) = ∇JX(−R). Hence using once more
comparison, we obtain

(16) ∥∇ĴX(−R)∥ ≤ C1e
−aR∥X∥

for a universal constant C1 > 0. For R > 10 the estimates (14), (15) and (16)
together yield that indeed,

∥∇JX(0)−∇JRX(0)∥ ≤ C2e
−aR∥ĴX(−R)∥ ≤ C2C

−1
0 C1e

−2aR∥X∥

for a universal constant C2 > 0.

This shows the first estimate stated in the lemma. The second estimate follows
from exactly the same argument, replacing the condition ∇ĴX(−R) = ∇JX(−R)
by the condition ĴX(−R) = JX(−R). The lemma follows. □

The principal bundle P → M of orthonormal frames in TM is equipped with
the Levi Civita connection which defines a decomposition TP = H⊕ V where V is
the tangent bundle of the fibers (note that this splitting is related to the splitting
of TT 1M , but the fiber spaces are different. We nevertheless use the same notation
here to keep the notations simple). This splitting determines a smooth Riemannian
metric on P with the following properties. The fibers are isometric to the orthogonal
group with the bi-invariant metric defined by the Killing form, the decomposition
TP = H ⊕ V is orthogonal, and P → M is a Riemannian submersion. We denote
by dP the distance for this metric.

Let x ∈ M and let v ̸= w ∈ T 1
xM be two unit tangent vectors based at x.

Denote by ∠(v, w) the euclidean angle between v, w and assume that ∠(v, w) <
π/4. Choose an orthonormal basis P (0, 0) = (e1, . . . , en−1, v) of TM at x with the
property that en−1 is contained in the plane spanned by v, w. Let s→ χ(s) ∈ T 1

xM
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(s ∈ [0,∠(v, w)]) be the shortest geodesic connecting v to w (which is contained in
the plane spanned by v, w) and define

ζ(s, t) = γχ(s)(t).

Thus ζ is a variation of geodesics through the point x.

Let Q(s, t) be the frame over ζ(s, t) obtained from P (0, 0) by parallel transport
along ζs(t) = ζ(s, t). The following lemma is probably well known and included
here for completeness. In its formulation, norms of tangent vectors are taken with
respect to the Riemannian metrics on P and M .

Lemma A.4. There exists a number C1 > 0 such that ∥ ∂
∂sQ(s, t)∥ ≤ C1∥ ∂

∂sζ(s, t)∥
for all s, t.

Proof. The map (s, t) → Q(s, t) is a variation of horizontal geodesics in P with the
same starting point Q(0, 0). For each t, the path Qt : s → Q(s, t) is a lift to P of
the path ζt : s→ ζ(s, t) in M . It is smooth but may not be horizontal. Its tangent
can be decomposed as

Q′
t(s) = Q′

t,H(s) +Q′
t,V(s)

into a horizontal and vertical component. Since ∥Q′
t,H(s)∥ = ∥ζ ′t(s)∥ we have to

show the existence of a number C > 0 such that

(17) ∥Q′
t,V(s)∥ ≤ C∥ζ ′t(s)∥

for all s, t. That this holds indeed true can be seen as follows.

Let ω be the connection 1-form on P. This is a one-form on P with values in the
Lie algebra so(n) of the structure group O(n) of P which vanishes on the horizontal
bundle H. The so(n)-valued curvature form Ω = dω+ 1

2 [ω, ω] is horizontal, that is,
it is annihilated by V. IfW →M denotes the vector bundle of antisymmetric linear
endomorphisms of TM then Ω descends to the W -valued 2-form on M defined by
the Riemannian curvature tensor.

Let s ≥ 0 be fixed. For small h > 0 consider the piecewise smooth loop ζs,h,t in
M based at ζ(s, t) which is the concatentation of the subsegment u → ζ(s + u, t)
of ζt connecting ζt(s) to ζt(s+ h), the geodesic arc u→ ζ(s+ h, t− u+ h) and the
geodesic arc u → ζ(s, u − t − h). Let Qs,h,t be the lift of ζs,h,t to the (bordered)
surface

Q = {Q(s, t) | 0 ≤ s ≤ ∠(v, w), 0 ≤ t}.
This is a piecewise smooth closed curve in P which bounds a subsurface of Q.

Since the connection form ω vanishes onH and the arcs t→ Q(s, t) are horizontal
geodesics, the integral of ω over this piecewise smooth loop equals the element

a(s, h) =
∫ s+h
s

ω(Q′
t,V(u))du ∈ so(n). Since Q is a smooth map, for sufficiently

small h we have

(18) h∥Q′
t,V(s)∥ ≤ 2∥a(s, h)∥

(here the norm is taken in the Lie algebra so(n)).

By comparison, for small enough h the area of the sector (u, z) → ζ(u, z) (s ≤
u ≤ s+ h, 0 ≤ z ≤ t) with respect to the pull-back of the metric on M is bounded
from above by C0h∥ζ ′t(s)∥ where C0 > 0 is a constant only depending on the
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curvature bounds. Since the curvature tensor, viewed as a symmetric bundle map
W → W , is pointwise uniformly bounded in norm, the integral of the norm of
the curvature tensor over this surface is bounded from above by C1h∥ζ ′t(s)∥ for a
universal constant C1 > 0.

On the other hand, ω vanishes onH and the curves t→ Q(s, t) ∈ P are horizontal
geodesics. Thus we have Ω|Q = dω|Q. Using Stokes’s theorem, this implies that
∥a(s, h)∥ ≤ C2h∥ζ ′t(s)∥ where C2 > 0 is a universal constant. Using the inequality
(18) and taking the limit as h ↘ 0 yields the estimate (17). From this the lemma
follows. □

Let P (s, 0) = (e1, . . . , en−2, en−1(s), χ(s)) be the frame obtained by rotating the
plane spanned by v, w keeping the orthogonal complement pointwise fixed. The
frame P (s, 0) extends by parallel transport along the geodesics ζs : t → ζ(s, t) to
a section (s, t) → P (s, t) of P over ζ. The map (s, t) → P (s, t) ∈ P is a smooth
embedding. Each of the curves t → P (s, t) is a horizontal geodesic. Furthermore,
by the definition of the Sasaki metric, we have

dP(Q(s, t), P (s, t)) = s for all s, t

and hence Lemma A.4 shows that

(19) ∥ ∂
∂s
P (s, t)∥ ≤ 1 + C1∥

∂

∂s
ζ(s, t)∥.

We are now ready to complete the proof of Proposition A.1. We now need to
assume that the curvature of M is bounded between two negative constants and
that the covariant derivative ∇R of the curvature tensor is uniformly bounded in
norm.

Proof of Proposition A.1. By the assumption on M , for each ξ ∈ ∂M the gradient
field grad bξ of a Busemann function bξ at ξ is a section of T 1M of class C2, with
uniformly bounded first and second covariant derivatives [Shc83]. For x ∈ M and
v = grad bξ(x), the shape operator A(v) at x of the horosphere b−1

ξ (bξ(x)) equals
the linear map

X ∈ v⊥ → ∇Xgrad bξ

where in all computations, we normalize shape operators to be positive semi-
definite. Thus the restriction of the section A of E∗ ⊗ E to the image of the
section grad bξ is of class C1, with pointwise uniformly bounded differential with
respect to the Sasaki metric, and hence it is Hölder continuous.

For v ∈ grad bξ, the tangent space of T 1M at v is a direct sum of the vertical
tangent space Vv, that is, the tangent space of the fibers of the fibration T 1M →M ,
and the tangent space Tvgrad bξ of the C

2-submanifold grad bξ. Due to the fact that
the eigenvalues of the shape operators of horospheres are bounded from above and
below by universal positive constants, this decomposition is well adapted to the
Sasaki metric. By this we mean that the angle between a vector of Vv and a vector
of Tvgrad bξ is bounded from below by a universal positive constant. Moreover, any
two points v, w ∈ T 1M can be connected by a piecewise smooth path which consists
of finitely many segments alternating between segments in submanifolds grad bξ for
some ξ ∈ ∂M and segments in fibers of the fibration T 1M →M and whose length
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is bounded from above by a universal constant times the distance in T 1M between
v, w. It therefore suffices to show the existence of numbers C > 0, κ ∈ (0, 1) with
the following property. Let x ∈M and let v, w ∈ T 1

xM ; then

|A(v)−A(w)| ≤ C∠(v, w)κ

where as before, ∠(v, w) is the Euclidean angle between the unit vectors v, w and the
norm is taken as the norm of a symmetric linear endomorphism of the Euclidean vec-
tor space TxM . For ease of notations, we shall show |A(−v)−A(−w)| ≤ C∠(v, w)κ.

To see that this indeed holds true let v ̸= w ∈ T 1
xM and assume without loss of

generality that ∠(v, w) < 1/2 and hence log∠(v, w) < 0. We use now the construc-
tions and notations from the beginning of this appendix and consider the minimal
geodesic χ : [0,∠(v, w)] → T 1

xM which connects v to w and the corresponding
variation of geodesics ζ(s, t) = γχ(s)(t) with variation Jacobi fields Js, determined

by the initial condition Js(0) = 0 and ∇Js(0) = d
dsχ(s). Since ∥∇Js(0)∥ = 1 for all

s, standard Jacobi field estimates show that

(20) ∥Js(−R)∥ ∈ [sinh aR, sinh bR].

Let R > 0 be such that
∫ ∠(v,w)

0
∥ζ ′R(s)∥ds = 1. By the estimate (20) we have

∠(v, w) sinh aR ≤ 1 ≤ ∠(v, w) sinh bR

and consequently

(21) R ∈ [− log∠(v, w)/b,− log∠(v, w)/a+ C2].

for a universal constant C2 > 0.

Let r = aR/10b. Using the estimate (20), we have

d(γv(r), γw(r)) ≤ ebr∠(v, w).

But ebr ≤ eaR/10 ≤ eC2/10∠(v, w)−1/10 by the estimate (21) and therefore

(22) ebr∠(v, w) ≤ eC2/10∠(v, w)1−1/10.

By hyperbolicity and the estimate (19), we also have

(23) dP(P (0, t), P (∠(v, w), t)) ≤ C3∠(v, w)
9/10

for all t ∈ [0, r] and a universal constant C3 > 0, where P (s, t) ∈ P is as in the
construction preceding this proof.

Using the trivialization of TM |ζ(s, t) defined by the frames P (s, t), the Jacobi
equation translates into the Riccati equation

(24) A′
s(t) +A2

s(t) +Rs(t) = 0

for the shape operators As(t) of the hypersurfaces of distance t to exp(ζ
′
s(r)

⊥). Here
Rs(t)Y = R(Y, ζ ′s(r − t))ζ ′s(r − t) and the equation is thought of as an ODE for
symmetric (n− 1, n− 1)-matrices written with respect to the parallel orthonormal
trivialization t → P (s, t) of TM |ζs. The solution we are looking for is determined
by the initial condition As(0) = 0. Note that for these expressions, we invert the
time of the geodesics t → ζ(s, t) and use a time shift so that t = 0 corresponds to
ζ(s, r) for all s.
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The symmetric linear operators Rs(t) of the euclidean vector spaces ζ ′s(r−t)⊥ are
uniformly bounded and uniformly negative definite. Since the covariant derivative
∇R is pointwise uniformly bounded, it follows from the estimate (23) that there
exists a number C4 > 0 not depending on (v, w) such that

R0(t)(1 + C4∠(v, w)
9/10) ≤ R∠(v,w)(t)

for all 0 ≤ t ≤ r. This means that R∠(v,w)(t) − R0(t)(1 − C4∠(v, w)9/10) is non-
negative definite.

Namely, by the inequality (23), in the frame bundle P, the length of the lift to P
of the path s→ ζs(t) is bounded from above by C3∠(v, w)9/10. The curvature form
on P is a smooth 2-form on P with values in the Lie algebra so(n) of the fiber group
SO(n). The natural Riemannian metric on P induces a metric on the bundle of
so(n)-valued 2-forms on P. Since the covariant derivative of the curvature tensor of
M is pointwise uniformly bounded, the same holds true for the covariant derivative
of this so(n)-valued 2-form. As a consequence, given the value of the form at the
frame P (0, t), the value at the frame P (s, t) differs in norm from the value at the
frame obtained by parallel transport along the lift of the path s → ζ(s, t) by a
uniform multiple of the length of the path, that is, by at most C∠(v, w)9/10 for
a fixed number C > 0. Viewing the curvature as a symmetric endomorphism of
the bundle of two-forms on M , if the restriction of such an endomorphism Λ to a
codimension one subspace V is negative definite, with largest eigenvalue bounded
from above by a fixed constant −a < 0, then for any symmetric endomorphism
T such that the operator norm of Λ − T is sufficiently small, the restriction of
Λ(1+C∥Λ−T∥)−T to V is nonpositive definite provided that C > 0 is sufficiently
large.

As a consequence, the symmetric matrix

(1 + C4∠(v, w)
9/10)R0(t)−R∠(v,w)(t)

is nonpositive definite for all 0 ≤ t ≤ r, where we use the frames P (s, t) to identify
the vector spaces ζ ′s(t)

⊥ with a single euclidean vector space of dimension n− 1.

Denote by J (t) the matrix in the parallel frame P (0, t) defining the Jacobi fields
JX along the geodesic t→ γv(r − t) with initial condition JX(0) = X,∇JX(0) = 0
whereX ∈ γ′v(r)

⊥. The matrix valued curve t→ J (t) consists of invertible matrices
starting at the identity and hence it can be written as t→ exp(V (t)) where exp is
the exponential map of the Lie group GL(n−1,R) (for right invariant vector fields)
and where V (t) ∈ gl(n− 1,R).

Put q = 1+C4∠(v, w)9/10 and Q(t) = exp(qV (t)). Then Q′(t) = qV ′(t)Q(t) and
consequently

(25) B(t) = Q′(t)Q(t)−1 = qJ ′(t)J (t)−1.

Since J ′(t)J (t)−1 = A0(t), we have

B′(t) = qA′
0(t) = Q′′(t)Q−1(t)− (Q′(t)Q(t)−1)2 = Q′′(t)Q−1(t)− q2A0(t)

2

and hence

(26) B′(t) +B(t)2 = qA′
0(t) + q2A2

0(t) ≥ q(A′
0(t) +A2

0(t)) = −qR0(t).
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Here the inequality in the expression (26) stems from the fact that the matrix A0(t)
is positive semi-definite for all t.

Since qR0(t) ≤ R∠(v,w)(t) for all t, we conclude from comparison of solutions of
the Riccati equation (the main theorem of [EH90]) with the same initial condition
that

B(t) ≥ A∠(v,w)(t) for 0 ≤ t ≤ r.

The equation (25) shows that B(t) = qA0(t) for all t and hence

A∠(v,w)(r) ≤ qA0(r).

As A∠(v,w)(r) = Ar(w) and A0(r) = Ar(v) (via the change of coordinates defined
by the frames P (0, 0) and P (∠(v, w), 0)) and as for r > 10 the eigenvalues of the
shape operators Ar(u) are bounded from above and below by a universal positive
constant, exchanging the roles of v, w yields that

|Ar(v)−Ar(w)| ≤ C5∠(v, w)
9/10

for a universal constant C5 > 0.

On the other hand, Lemma A.3 shows that |A(v)−Ar(v)| ≤ e−αr provided that
r > 10. Since r ≥ −a log∠(v, w)/10b2, together we obtain

|A(v)−A(w)| ≤ |A(v)−Ar(v)|+ |Ar(v)−Ar(w)|+ |Ar(w)−A(w)|
≤ C6∠(v, w)

χ

for universal constants C6 > 0, χ > 0 which is what we wanted to show. □

Remark A.5. By Proposition A.1, for any x ∈M the shape operator of the horo-
sphere defined by v ∈ T 1

xM , viewed as symmetric linear operator on v⊥, depends in
a Hölder continuous fashion on v. This is equivalent to stating that the subbundle
TW su of TT 1M whose fiber at v ∈ T 1M equals the tangent space of the submani-
fold grad bξ (ξ = γv(−∞)) is Hölder continuous. We refer to the explicit description
of TW su in the proof of Lemma 4.2 which immediately yields this equivalence. In
the case that M is a surface, this is the result established in [Ho40].

For Hölder continuity of TW su to hold true, the assumption that∇R is uniformly
bounded can not be omitted. Namely, it was shown in [BBB87] that for every α > 0
and every ϵ > 0 there exists a surface S0 with a smooth metric of finite volume and
curvature in [−1 − ϵ,−1 + ϵ] and with the property that the subbundle TW su of
TT 1S0 is not Hölder continuous with exponent α [BBB87].
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