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Abstract. We show that for every g ≥ 2 there exists a number c =
c(g) > 0 such that the smallest positive eigenvalue of a random closed
3-manifold M of Heegaard genus g is at most c(g)/vol(M)2.

1. Introduction

By celebrated work of Perelman, any closed orientable aspherical atoroidal
3-manifold admits a hyperbolic metric, and such a metric is unique by
Mostow rigidity. In recent years, there was considerable progress in the
understanding of the relation between geometric and topological invariants
of such a manifold. The program to construct an explicit combinatorial
model which describes the geometry up to uniform quasi-isometry turned
out to be particularly fruitful [48], [15], [16], but it is far from completed.

The main purpose of this article is obtain an understanding of geomet-
ric and topological invariants for random hyperbolic Heegaard splittings of
genus g ≥ 2 in the sense of Dunfield and Thurston [23]. A Heegaard split-
ting of genus g ≥ 2 is a 3-manifold diffeomorphic to one of the following
form: Consider two copies of a handlebody Hg of genus g and glue them
along the boundary Σ := ∂Hg with an orientation reversing diffeomorphism
f : Σ→ Σ. The resulting 3-manifold Mf := Hg ∪f Hg only depends on the
isotopy class of f , thus it is well-defined for the representative of f in the
mapping class group Mod(Σ). Furthermore, if f is sufficiently complicated
in an appropriate topological sense (see Hempel [29]), then Mf satisfies the
assumptions of the Geometrization Theorem and, hence, is hyperbolic.

Notice that, by standard 3-manifold topology, every orientable 3-manifold
M admits a Heegaard splitting description, that is, M is diffeomorphic to a
3-manifold of the form Mf obtained from the previous procedure for some
g ≥ 2 and f ∈ Mod(Σ). Thus, we have a correspondence between orientable
3-manifolds M of Heegaard genus at most g and elements in Mod(Σ) (in
fact, every such 3-manifold M corresponds to a double coset in this group,
see [23]).
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Now let us choose a symmetric probability measure on Mod(Σ) whose
finite support generates the group. This measure generates a random walk
on Mod(Σ) and, hence, it induces a notion of a random Heegaard splitting,
or random 3-manifold, glued from two handlebodies with a random gluing
map. A random 3-manifold is hyperbolic [37] and hence we can study the
behavior of geometric invariants of such random hyperbolic 3-manifolds Mf .

Our main technical result (Theorem 5.12) constructs for a suitable class
of gluings Mf a Riemannian metric of sectional curvature close to −1 every-
where and different from −1 only on two regions whose geometry (injectivity
radius and intrinsic diameter) is uniformly controlled. The constraints that
f has to fulfill for the construction of such a metric are satisfied for random
gluing maps.

We use this construction to obtain information on the spectrum of the
Laplacian of a random hyperbolic 3-manifold.

For every closed hyperbolic 3-manifold M , list the positive eigenvalues as
0 < λ1(M) ≤ λ2(M) ≤ · · · , with each eigenvalue repeated according to its
multiplicity. By [55] and [28], there exists a universal constant χ > 0 such
that

λ1(M) ≥ χ

vol(M)2
and λvol(M)/χ(M) ≥ χ

for every closed hyperbolic 3-manifold M . Manifolds which fiber over the
circle provide examples for which these estimates are essentially sharp. We
refer to the introduction of [2] for a more comprehensive discussion.

On the other hand, it follows from the work of Buser [18] and Lackenby
[35] that there exists a number b(g) > 0 such that for a hyperbolic 3-manifold
M of Heegaard genus g, there is a bound

λ1(M) ≤ b(g)

vol(M)
.

Hyperbolic 3-manifolds constructed from expander graphs have arbitrarily
large volume, yet their smallest positive eigenvalue is bounded from below by
a universal constant. Hence in this estimate, the dependence of the constant
b(g) on the Heegaard genus g can not be avoided.

Under geometric constraints, one obtains better estimates. White [62]
showed that for every ε > 0 there is a number a(g, ε) > 0 such that λ1(M) ≤
a(g, ε)/vol(M)2 if M has Heegaard genus g and the injectivity radius of M
is bounded from below by ε.

A similar behavior holds true for random hyperbolic 3-manifolds fiber-
ing over the circle, with fiber genus g [2]. Notice that for these manifolds
there is no uniform lower bound on the injectivity radius (see for example
[56]). The same is true for random Heegaard splittings as it turns out that
these hyperbolic manifolds largely resemble random mapping tori. Using
the model metric for random Heegaard splittings as our main tool we show:
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Theorem 1. For every g ≥ 2 there exists a number c(g) > 1 such that

λ1(Mf ) ≤ c(g)

vol(Mf )2
and λvol(Mf )/c(g)(Mf ) ≤ c(g)

for a random Heegaard splitting Mf of genus g.

Here the upper bound for λvol(Mf )/c(g)(Mf ) is a straightforward conse-
quence of domain monotonicity with Dirichlet boundary conditions. For the
upper bound for λ1(Mf ), we expect that the dependence of the constant
c(g) on g can not be avoided.

The idea is as follows: First, we prove that Theorem 1 holds true for the
model metric provided by Theorem 5.12. Then, we argue that the invariant
of the model metric and the one of the underlying hyperbolic structure are
comparable. In a similar way, even if we do not prove it here, it is possible
to show that for the model metric the injectivity radius is very small and
that the same behavior persists in the hyperbolic structure.

Strategy of the proof. As mentioned above, our main technical result
is Theorem 5.12 which provides an explicit Riemannian metric of curvature
close to −1 on Mf with some constraints on the gluing map f . Constructions
of geometrically controlled model metrics appear frequently in the literature,
for example as a main tool in [50] and in [49]. For hyperbolic 3-manifolds
diffeomorphic to Σ × R, there is a completely explicit combinatorial model
for the geometry [48], [15]. More recently, these results were used to describe
explicitly the geometry of hyperbolic 3-manifolds with a lower bound on the
injectivity radius and some topological constraints [16].

We can not apply the constructions in [16] as there are no lower bounds
for the injectivity radius of a random hyperbolic 3-manifold Mf . Instead we
use properties of the random walk to locate regions in a random 3-manifold
which are diffeomorphic to a trivial I-bundle over a closed surface and such
that a combinatorial model would predict a uniform lower bound on the
injectivity radius in those regions. This is the constraint on the gluing map
required in Theorem 5.12. The model metric is then constructed by cutting
Mf open at two such regions and by using information on suitable model
metrics for the pieces.

For random hyperbolic 3-manifolds Mf , we find that the spectrum of the
model metric fulfills the properties stated in Theorem 1.

The last step consists in comparing the model metric on M and the hy-
perbolic metric. A result of Tian [59] implies that, in our setting, the model
metric is C2-close to a hyperbolic metric on M . As this work is neither pub-
lished nor available in electronic form, we prove a weak substitute which is
sufficient for the proof of Theorem 1. Our argument is based on the methods
introduced in [6].
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Organization of the article. In Section 2 we review some deformation
theory of convex-cocompact hyperbolic handlebodies and I-bundles. The
building blocks for the model metric will be pieces of these manifolds. We
also collect some properties of the pointed geometric topology for hyperbolic
3-manifolds, this is one of the main tools used in the proof of Theorem 5.12.

In Section 3 we describe a cut and glue construction that we use for
building the model manifold.

In Sections 4 and 5 we discuss the applicability of such construction and
prove Theorem 5.12 on the existence and structure of the model metric.
The conditions that we will have to check reduce to a relative version of
bounded combinatorics for the gluing. Most importantly, such conditions
imply a good control on the collar geometry of convex-cocompact hyperbolic
handlebodies as described in Proposition 4.1.

In Section 6 we show that random hyperbolic 3-manifolds have the prop-
erties required by Theorem 5.12, and in Section 7 we relate the model metric
to the underlying hyperbolic one using tools from [6]. The information on
the hyperbolic metric we obtain then leads to Theorem 1.

Acknowledgement: We thank the referee for careful reading and for many
helpful suggestions for clarification of the arguments and improvement of the
article.

2. Convex-cocompact handlebodies and quasi-fuchsian
manifolds

Similar to [49], [50], [16], we will build a concrete Riemannian metric
on the Heegaard splitting Mf = Hg ∪f Hg by gluing together elementary
building blocks. Such a metric will be almost hyperbolic, in the sense that
it will have constant sectional curvature −1 at every point except on two
regions which have small size. On those regions the curvature is contained
in the interval (−1− ε,−1 + ε) where ε < 1 is a small constant.

The building blocks that we are going to use are pieces of convex-cocompact
handlebodies and quasi-fuchsian manifolds which are classes of hyperbolic
structures on Hg and Σ × [0, 1] respectively. The goal of this section is to
introduce these objects and recall some results from their deformation the-
ory. In the next section we will explain how to cut from them the gluing
blocks that we need, and how we plan to glue them together.

The applicability of the cut and glue construction is then discussed in
Sections 4 and 5. As a preparation, at the end of this section we recall some
basic general compactness properties of the geometric topology which is one
of the main tools that we will use.

2.1. Kleinian groups. We start by recalling some general terminology
about Kleinian groups, that is, discrete subgroups Γ < Isom+(H3). We
always assume that Γ is torsion free. Each such group has an associated
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limit set ΛΓ ⊂ ∂H3, which consists of the points at infinity of a Γ-orbit
closure, and a domain of discontinuity ΩΓ := ∂H3 − ΛΓ. The group Γ acts
freely and properly discontinuously H3∪ΩΓ and the quotient H3∪ΩΓ/Γ is a
3-manifold with boundary ΩΓ/Γ. If Γ is not abelian, then ΩΓ has a natural
complete hyperbolic metric, called the Poincaré metric, which is preserved
by Γ. Thus, the boundary surface ΩΓ/Γ inherits a natural hyperbolic struc-
ture. By Ahlfors’ Finiteness Theorem [1], if Γ is torsion free, non-abelian,
and finitely generated, then ΩΓ/Γ has finite area.

2.2. Teichmüller space and mapping class group. The Kleinian groups
that we are going to consider are naturally parametrized by points in the
Teichmüller space T of marked hyperbolic structures on a closed orientable
surface of genus g ≥ 2.

For sufficiently small δ > 0 we denote by Tδ ⊂ T the subset of Teichmüller
space consisting of those (marked) hyperbolic metrics on Σ with injectivity
radius at least δ. We will extensively use a classical theorem of Mumford
(see Theorem 12.6 of [24]) that the mapping class group Mod(Σ) acts co-
compactly on each Tδ.

2.3. Convex-cocompact handlebodies. We now describe a class of hy-
perbolic 3-manifolds homeomorphic to handlebodies.

Standing assumptions. Fix once and for all a genus g ≥ 2.
Let Hg be a handlebody of genus g with boundary surface
Σ := ∂Hg. We fix on Hg an orientation, and we coherently
orient Σ as the boundary of Hg.

For the material in this section we mainly refer to Chapter 7 of [21].

Definition (Convex-Cocompact Handlebody). A convex-cocompact marked
hyperbolic structure on the handlebody Hg is a quotient N = H3/Γ of the
hyperbolic 3-space by a discrete free subgroup Γ ' Fg together with an orien-

tation preserving homeomorphism φ : Hg → N̂ := H3∪ΩΓ/Γ (the marking).

We say that the marked structures φ : Hg → N̂ and φ′ : Hg → N̂ ′ are equiv-

alent if there exists an orientation preserving homeomorphism f : N̂ → N̂ ′

that restricts to an isometry f : N → N ′ and such that fφ is isotopic to φ′.

Notice that the boundary ∂N̂ := ΩΓ/Γ comes equipped with a marking

φ : Σ = ∂Hg → ∂N̂ and a hyperbolic metric. This determines a point in the
Teichmüller space T of the boundary Σ = ∂Hg which is called the conformal
boundary of N .

By classical results due to Bers [5], Kra [34], Maskit [39], equivalence
classes of convex-cocompact marked handlebodies are parametrized by the
Teichmüller space T via the map that associates to the structure its confor-
mal boundary (see Chapter 7 of [21], in particular, Theorem 7.2.9). Given
X ∈ T we denote by H(X) the convex-cocompact handlebody with confor-
mal boundary X.
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2.4. Quasi-fuchsian manifolds. We consider now a class hyperbolic struc-
tures on the topological model Σ× [0, 1]. Again, we mainly refer to Chapter
7 of [21] for the material presented here.

Definition (Quasi-Fuchsian Manifolds). A convex-cocompact marked hy-
perbolic structure on Σ × [0, 1], also called quasi-fuchsian manifold, is a
quotient Q = H3/Γ of the hyperbolic 3-space H3 by a discrete surface sub-
group Γ ' π1(Σ) together with an orientation preserving homeomorphism

φ : Σ×[0, 1]→ Q̂ := H3∪ΩΓ/Γ (the marking). As before, two quasi-fuchsian
manifolds Q,Q′ are equivalent if they differ by an orientation preserving
homeomorphism f : Q̂ → Q̂′ which restricts to an isometry Q → Q′ and is
isotopic to the identity (with respect to the markings).

The conformal boundary ∂Q̂ = ΩΓ/Γ has now two connected components
both homeomorphic to Σ, but with opposite orientations. The restriction of
the marking φ to Σ × {0} ∪ Σ × {1} together with the intrinsic hyperbolic
structure on ΩΓ/Γ determine a pair of points in Teichmüller space.

By Bers’ Simultaneous Uniformization [4], equivalence classes of quasi-
fuchsian manifolds Q are parametrized by T ×T via the map that associates
to Q the conformal boundary ∂Q̂. Given a pair (Y,X) ∈ T × T , we denote
by Q(Y,X) the unique quasi-fuchsian manifold that realizes those boundary
data Y and X on Σ× {0} and Σ× {1} respectively.

The mapping class group Mod(Σ) acts on the space of quasi-fuchsian
manifolds by precomposition of marking, that is φ ∈ Mod(Σ) acts as φ−1× I
on Σ× [0, 1]. On the the conformal boundary, the action coincides with the
diagonal action Mod(Σ) y T × T .

2.5. Geometry and topology of the convex core. Convex-cocompact
hyperbolic structures N and Q on Hg and Σ × [0, 1] are infinite volume
Riemannian manifolds, but we will only use their convex cores which are
compact submanifolds that are convex in the sense that they contain all
the geodesics joining two of their points. We now describe some of the
topological and geometric features of these cores.

In general, for every non-abelian, torsion free Kleinian group Γ we can
always construct the convex hull of the limit set CH(ΛΓ). This is a convex
subset of H3 invariant under Γ. The quotient CH(ΛΓ)/Γ is called the convex
core of the hyperbolic 3-manifold M := H3/Γ and is denoted by CC(M).

It is a standard fact that, for convex-cocompact hyperbolic structures N
and Q on Hg and Σ× [0, 1], the convex cores CC(N) and CC(Q) are compact
topological codimension 0 (except in the fuchsian case which we ignore)

submanifolds whose boundary is parallel to the boundary of N̂ and Q̂. This
property provides homeomorphisms Hg ' CC(N) and Σ × [0, 1] ' CC(Q)

isotopic to the markings Hg ' N̂ and Σ× [0, 1] ' Q̂.

From a geometric point of view, the boundary of the convex core ∂CC(M)
always has the structure of an embedded convex pleated surface (see Chapter
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I.5 of [20]). In particular, it always has an intrinsic hyperbolic metric. For
convex-cocompact hyperbolic structures on Hg and Σ × [0, 1], the bound-
ary of the convex core comes naturally equipped with a marking, that is,
an identification with Σ. Using it we can describe each component of the
boundary of the convex core as a point in Teichmüller space T .

By work of Sullivan (see Chapter II.2 of [20]) and Bridgeman-Canary [11],
the geometry of the conformal boundary and the geometry of the convex core
are strictly tied: There is a natural nearest point retraction ∂M̂ → ∂CC(M)
which has the following properties:

Theorem 2.1 (Bridgeman-Canary, [11]). There are maps J,G : (0,∞) →
(1,∞) such that the following holds: Let Γ < Isom+(H3) be a finitely gen-
erated, non-abelian, torsion free Kleinian group. Suppose that the length,
measured with respect to the Poincaré metric, of every curve in the confor-
mal boundary ΩΓ/Γ which is compressible in the 3-manifold H3 ∪ ΩΓ/Γ is
bounded from below by δ > 0. Then, the natural nearest point retraction from
the conformal boundary to the boundary of the convex core is J(δ)-Lipschitz
and admits a G(δ)-Lipschitz homotopy inverse.

We notice that, if a component X of ∂M̂ is contained in Tδ, then, by
Theorem 2.1, the corresponding component ∂XCC(M) of ∂CC(M) lies in
T2δ/G(δ).

Theorem 2.1 has the following immediate consequence:

Lemma 2.2. For every δ > 0 and g ≥ 2 there exists η = η(δ, g) > 0 such that
the following holds: Let M be either a marked convex-cocompact hyperbolic
structure on Hg or on Σ×[0, 1]. If each component of the conformal boundary

∂M̂ is contained in Tδ, then infx∈∂CC(M){injx(M)} ≥ η.

Proof. Notice that, by Theorem 2.1, each component C of ∂CC(M) lies in
T2δ/G(δ). Therefore, as Mod(Σ) acts cocompactly on T2δ/G(δ) (see Theorem
12.6 of [24]), there is a uniform upper bound L = L(g, δ) > 0 on the intrinsic
diameter of each component C of ∂CC(M).

Let η0 > 0 be a Margulis constant for hyperbolic 3-manifolds (see Chapter
D of [3]). Pick x ∈ C. If injx(M) < η < η0, then x lies inside a η0-Margulis
tube T at a distance from the boundary ∂T of coarsely log(η0/η) (see [17]).
If η is very small, then C, having uniformly bounded diameter, would be
contained in T, but this is absurd as the inclusion of π1(C, x) in π1(M,x) is
surjective. �

2.6. Convergence of hyperbolic manifolds. We conclude this section
with a discussion of geometric convergence of hyperbolic manifolds. This is
one of the main tools in the proofs of our main results in Sections 4 and 5.

Let (M,ρM ) be a complete hyperbolic surface or 3-manifold where ρM
denotes the Riemannian metric. Define the following:
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Definition (C2-norm). Let U ⊂ M be an open subset. Denote by ∇ the
Levi-Civita connection on (M,ρM ). Denote by | • |x the norm induced by
the inner product ρM (x) of TxU on tensors on TxU . Let τ be a tensor field
on U . The C2-norm of τ at x is the quantity

||τ ||C2,x := |τ(x)|x + |∇τ(x)|x +
∣∣∇2τ(x)

∣∣
x
.

Similarly, the C2-norm of τ on U is given by

||τ ||C2(U) := sup
x∈U
|τ(x)|x + sup

x∈U
|∇τ(x)|x + sup

x∈U

∣∣∇2τ(x)
∣∣
x
.

Using this norm we define the following:

Definition (Geometric Convergence). A sequence {(Mn,mn)}n∈N of hy-
perbolic surfaces or 3-manifolds with basepoints is said to converge in the
pointed geometric topology to a pointed hyperbolic surface or 3-manifold
(M,m) if the following conditions are satisfied: For every R > 0, ξ > 0
there are numbers n(R, ξ) > 0, and for every n ≥ n(R, ξ) there exists a
smooth embedding (the approximating map) kn : Un ⊂ M → Mn such
that kn is defined on the ball BM (m,R) ⊂ Un of radius R centered at
m ∈M , it sends kn(m) = mn, and the restriction of kn to BM (m,R) satis-
fies ||ρM − k∗nρMn ||C2(BM (m,R)) < ξ. In this case we say that the restriction
of kn to B(m,R) is ξ-almost isometric.

For more on geometric convergence we refer to Chapter E of [3]. We will
mainly exploit the following compactness result for the pointed geometric
topology (see Theorem E.1.10 of [3]).

Theorem 2.3. Let {(Mn,mn)}n∈N be either a sequence of pointed hyperbolic
surfaces or 3-manifolds. Suppose that injmn

Mn ≥ η for all n ∈ N for some
positive η > 0. Then there exists a subsequence that converges in the pointed
geometric topology to a pointed hyperbolic surface or 3-manifold (M,m).

Consider the following setup: Let

{fn : (Xn, xn)→ (Mn,mn)}n∈N

be a sequence of basepoint preserving 1-Lipschitz maps fn from δ-thick
hyperbolic surfaces Xn homeomorphic to Σ to hyperbolic 3-manifolds Mn

with injmn
Mn ≥ η. Then, using Theorem 2.3 and Ascoli-Arzelà, up to

subsequences, we can assume that

• (Mn,mn) converges in the pointed geometric topology to a pointed
hyperbolic 3-manifold (M,m).
• (Xn, xn) converges in the pointed geometric topology to a pointed

hyperbolic surface (X,x). Since inj(Xn) ≥ δ we also have that
inj(X) ≥ δ and X is homeomorphic to Σ (see Theorem 12.6 of [24]).
• fn converges to a basepoint preserving 1-Lipschitz map f : (X,x)→

(M,m).
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• The diagram

(Xn, xn)
fn
// (Mn,mn)

(X,x)
f
//

φn

OO

(M,m),

kn

OO

where the vertical arrows are the approximating maps provided by
the geometric convergence, commutes up homotopies that respect
the basepoints and take place in small neighborhoods of the images
of fnφn and knf .

We now return to our specific setting and consider the case where Mn are
either (marked) convex-cocompact structures on Hg or on Σ × [0, 1]. For
each such structure, we choose a basepoint on the boundary of the convex
core mn ∈ ∂CC(Mn) (which is on the component marked by Σ × {1} in
the case of a quasi-fuchsian manifold, below we denote it by ∂1CC(Qn)).

Suppose that each component of the conformal boundary ∂M̂n lies in Tδ.
Then, by Theorem 2.1 and Lemma 2.2, we have that each component of
∂CC(Mn) lies in T2δ/G(δ) and injxM ≥ η for every x ∈ ∂CC(Mn). This
enables us to take geometric limits in the setup described above for sequences
{∂CC(Nn) ⊂ Nn}n∈N or {∂1CC(Qn) ⊂ Qn}n∈N where Nn and Qn are convex-
cocompact handlebodies and quasi-fuchsian manifolds.

3. Cut and Glue construction

We now describe a procedure to construct a Riemannian metric on a
manifold diffeomorphic to the Heegaard splitting Mf by gluing together
the convex cores CC(N1), CC(N2), CC(Q) of two suitable convex-cocompact
handlebodies N1, N2 and a quasi-fuchsian manifold Q along suitable iden-
tifications kj : Vj ⊂ CC(Q) → Uj ⊂ CC(Nj) of collars of their boundary
components:

Xf = CC(N1) ∪k1:V1→U1 CC(Q) ∪k2:V2→U2 CC(N2).

Depending on the amount of control that we want to have on the curvature
of the resulting geometric Heegaard splitting Xf ' Mf , we will not glue
directly the entire convex cores CC(N1), CC(Q), and CC(N2), but rather, we
will cut from them smaller submanifolds N1

0 ⊂ CC(N1), Q0 ⊂ CC(Q), and
N2

0 ⊂ CC(N2) for which we have a better control on the collar geometry.

We begin with the following definition:

Definition (Product Regions). A product region in a quasi-fuchsian man-
ifold Q is a codimension 0 submanifold U ⊂ CC(Q) which is homeomorphic
to Σ× [0, 1] and whose inclusion U ⊂ CC(Q) is a homotopy equivalence.

A product region in a convex-cocompact handlebody N is a codimension 0
submanifold U ⊂ CC(N) contained in a topological collar of the boundary
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of the convex core ∂CC(N) and such that U is homeomorphic to Σ × [0, 1]
and the inclusion of U in the collar of ∂CC(N) is a homotopy equivalence.

We have the following useful topological feature of product regions: By
standard 3-manifold topology [61], an embedded subsurface of Σ × [0, 1]
which is π1-injective is parallel to Σ× {1}. This implies that in both cases
a product region is always parallel to the boundary of the convex core.

In particular, a product region comes naturally with a marking j : Σ →
U obtained by isotopy from the one of the boundary of the convex core.
This allows us to define the homotopy class of any orientation preserving
diffeomorphism k : V → U between product regions: Let jU , jV : Σ→ U, V
be the markings of U, V . We have identifications

π1(Σ) 'jU π1(U) 'k π1(V ) 'jV π1(Σ).

The composition is a well-defined element of Out+(π1(Σ)) which identifies
with Mod(Σ) by the Dehn-Nielsen-Baer Theorem (see Theorem 8.1 in [24]).

Notice also that, as product regions U ⊂ CC(N), CC(Q) are parallel to
the boundary of the convex core, they are separating and it makes sense
to say that a point x ∈ N,Q lies above or below U . Using the product
structure and the orientation, we can define a top boundary ∂+U and a
bottom boundary ∂−U .

Geometrically, we will be interested in essentially two parameters of a
product region U ⊂ CC(M) where M is either a convex-cocompact handle-
body or a quasi-fuchsian manifold:

• The diameter, defined by diam(U) := sup{dU (x, y) |x, y ∈ U }.
• The width width(U) := inf{dM (x, y) |x ∈ ∂+U, y ∈ ∂−U }.

When the width is at least D and the diameter is at most 2D we say that
the product region has size D. Notice that the diameter is computed with
respect to the intrinsic path metric of U , therefore the diameter of U as a
subset of M is bounded from above by diam(U). We observe the following:

Lemma 3.1. There exists ε = ε(D) > 0 such that for each product region
U ⊂ CC(M) of size D we have inj(U) := inf{injxM |x ∈ U } ≥ ε.

Proof. A product region is always π1-surjective. Having diameter bounded
by 2D, a product region cannot enter too deeply inside a Margulis tube
T with large radius. Otherwise the surjective map π1(U) → π1(M) would
factor through π1(U)→ π1(T). �

We think of product regions as the collars of the boundaries of subman-
ifolds N1

0 ⊂ CC(N1), N2
0 ⊂ CC(N2), Q0 ⊂ CC(Q) where we will perform the

gluing. We call the manifolds N1
0 , N

2
0 , Q0 gluing blocks:

Definition (Gluing Blocks). Let U ⊂ CC(N) be a product region in a
convex-cocompact handlebody N . The gluing block associated to U is the
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compact submanifold N0 ⊂ N bounded by ∂+U . Since ∂N0 is parallel to
∂CC(N), we have N0 ' Hg.

Let V1, V2 ⊂ CC(Q) be disjoint product regions in a quasi-fuchsian man-
ifold Q such that V2 lies above V1. The gluing block associated to V1, V2 is
the compact submanifold Q0 ⊂ Q bounded by ∂−V1 and ∂+V2. Since ∂Q0

is parallel to ∂CC(Q), we have that Q0 ' Σ × [0, 1]. Notice that V2 and V1

are collars of the boundary of Q0, we call them the top and bottom collars
of Q0.

After discussing the elementary building blocks involved in the gluing

procedure, we now describe the identifications kj : Vj ⊂ Q0 → Uj ⊂ N j
0 of

their collar product regions.

Definition (Almost Isometric). Let k : V → U be an orientation preserv-
ing diffeomorphism between product regions V ⊂ CC(Q) and U ⊂ CC(N).
For ξ > 0 we say that k is ξ-almost isometric if ||ρV − k∗ρU ||C2(V ) < ξ.

The identifications k1, k2 that we are going to use will be ξ-almost iso-
metric orientation preserving diffeomorphisms between the collar product
regions, and we will require that k1 is in the homotopy class of the identity
and k2 is in the homotopy class of the mapping class f ∈ Mod(Σ). Using
such identifications, we can form the 3-manifold

Xf := N1
0 ∪k1:V1→U1 Q0 ∪k2:V2→U2 N

2
0 .

By the assumptions on the homotopy classes of k1 and k2, Xf is diffeo-
morphic to Mf .

Now that we have a topological model Xf , in order to promote it to a Rie-
mannian model, we only have to discuss how to endow it with a Riemannian
metric. We do so by taking convex combinations θjρQ + (1 − θj)k∗jρNj on
the gluing regions Vj ⊂ Q0 with respect to some smooth bump functions
θj : Vj → [0, 1]. The main observation here is that on a product region with
uniformly bounded size there is always a uniform bump function:

Lemma 3.2. For all D > 0 there exists K > 0 such that the following holds:
Let U ' Σ × [0, 1] be a product region with diam(U) ≤ 2D, width(U) ≥
D. Then there exists a smooth function θ : U → [0, 1] with the following
properties:

• Near the boundaries it is constant: θ|∂−U ≡ 0 and θ|∂+U ≡ 1.

• It has uniformly bounded C2-norm: ||θ||C2(U) ≤ K.

Proof. We argue by contradiction. Let Un ⊂ CC(Mn) be a sequence of
product regions of size D but without a uniform bump function.

Pick a basepoint xn ∈ Un. By Lemma 3.1, we have injxn(Mn) ≥ ε where
ε = ε(D) > 0 is a uniform constant. Thus, by Theorem 2.3, up to passing to
subsequences, we can take a geometric limit (Mn, xn)→ (M,x). Since Un ⊂
B(xn, 2D), for every large enough n we have ξ-almost isometric embeddings
kn : Un → B(x, 3D) by geometric convergence.
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Consider the closed sets An = kn(∂−Un), Bn = kn(∂+Un) ⊂ B(x, 3D).
Since width(Un) ≥ D, they have dM (An, Bn) ≥ D/2. Up to subsequences,
they converge in the Hausdorff topology on closed subsets of B(x, 3D) to
disjoint closed subsets A,B.

Fix r > 0 much smaller than D/2. Then there is a smooth function
θ : B(x, 3D) → [0, 1] which is 0,1 on the r-neighborhoods Nr(A), Nr(B).
Considering θn = θkn gives a smooth bump function on Un which is 0,1 on
neighborhoods of ∂−Un, ∂

+Un respectively and has uniformly bounded C2-
norm as kn is ξ-almost isometric. This contradicts the initial assumptions
and finishes the proof. �

We now summarize the cut and glue construction in the following lemma:

Lemma 3.3. Let ξ ∈ (0, 1) be a small almost isometric parameter and let
K > 0 be a C2-norm parameter for bump functions. Let f be a mapping
class. Let N1, N2 be convex-cocompact handlebodies. Let Q be a quasi-
fuchsian manifold. Suppose that we have:

(1) A pair of handlebody gluing blocks N1
0 ⊂ CC(N1), N2

0 ⊂ CC(N2)
bounded by product regions U1 and U2.

(2) An I-bundle gluing block Q0 ⊂ CC(Q) with bottom and top product
region collars V1 and V2.

(3) Orientation preserving diffeomorphisms kj : Vj → Uj for j = 1, 2
with k1 in the homotopy class of the identity and k2 is in the homo-
topy class of f .

(4) Bump functions θj : Vj → [0, 1] for j = 1, 2 with θj ≡ 0 in a small
neighborhood of ∂−Vj and θj ≡ 1 in a small neighborhood of ∂+Vj.

Then we can form the 3-manifold

Xf = N1
0 ∪k1:V1→U1 Q0 ∪ ∪k2:V2→U2N

2
0

and endow it with the Riemannian metric

ρ :=


ρN1 on N1

0 − U1,
θ1ρQ + (1− θ1)k∗1ρN1 on V1,
ρQ on Q0 − (V1 ∪ V2),
(1− θ2)ρQ + θ2k

∗
2ρN2 on V2,

ρN2 on N2
0 − U2.

Topologically, Xf is diffeomorphic to the Heegaard splitting Mf determined
by f . Geometrically, we have the following: If ||θj ||C2(Vj) < K for j =
1, 2 and kj is ξ-almost isometric with ξ small enough compared to K, then
(Xf , ρ) has sectional curvature∣∣1 + secXf

∣∣ < c3Kξ

where c3 > 0 is a universal constant.

In the next three sections we show how to find convex-cocompact handle-
bodies N1, N2 and quasi-fuchsian manifolds Q that satisfy the assumptions
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of Lemma 3.3. The conditions that we will find are variations of earlier
work of Brock, Minsky, Namazi and Souto [49], [50], and [16]. Our setup,
however, is different from the ones of those papers as we do not assume any
global control of the injectivity radius of N1, N2, Q, that is, very short curves
will appear in our manifolds.

4. Collar geometry of convex-cocompact handlebodies

The goal of this section is to find conditions on Y,X ∈ T such that a
large collar of ∂CC(H(X)) closely resembles a large collar of the component
of ∂CC(Q(Y,X)) facing the conformal boundary X. This will be our main
tool to single out from convex-cocompact handlebodies the gluing blocks
N1

0 , N
2
0 needed for the cut and glue construction Lemma 3.3. The following

is the main result:

Proposition 4.1. Let g ≥ 2 be fixed. For all L, δ, ξ > 0 there exists h =
h(L, δ, ξ) > 0 such that the following holds: If the pair (Y,X) ∈ Tδ × Tδ has
relative δ-bounded combinatorics with respect to Hg and height at least h,
then the boundary of the convex core of N = H(X) has a collar of width at
least L which is ξ-almost isometric to a collar about the boundary component
facing X of the convex core of the quasi-fuchsian manifold Q = Q(Y,X).

The proof of Proposition 4.1 will be only carried out at the end of the
section. We begin, instead, with the definition and discussion of the condi-
tion of relative δ-bounded combinatorics and large height which is a variation
of the ones described in [49], [50], and [16]. The deep connection between
bounded combinatorics and the geometry of quasi-fuchsian manifolds was
discovered originally by Minsky [47], [48]. However, the Teichmüller per-
spective that we adopt here is closer to the work of Rafi [52] (see Theorem
5.1 in the next section).

In order to describe what we mean by relative bounded combinatorics we
briefly recall some facts about the curve graph and the disk set and their
relations with Teichmüller space.

4.1. Curve graph. The curve graph of Σ is the graph C whose vertices are
isotopy classes of essential simple closed curves on Σ and where two such
curves are connected by an edge of length one if and only if they can be
realized disjointly on Σ.

Masur and Minsky proved in [42] that this graph is a Gromov hyperbolic
space of infinite diameter, and Klarreich [33] identified the Gromov boundary
∂C with the space of filling unmeasured laminations (see also [26] for a
different approach).

Convergence to the boundary is governed by the Gromov product (see
Section 3 of Chapter III.H of [12]):
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Definition (Gromov Product and Convergence). Given α, β, γ ∈ C, the
quantity

(α|β)γ :=
1

2
[dC(α, γ) + dC(β, γ)− dC(α, β)]

is the Gromov product of α, β based at γ. A sequence {αn}n∈N ⊂ C converges
at infinity to a point in ∂C if and only if for some base point γ (and hence for
any) we have lim infn,m→∞(αn|αm)γ →∞. If {αn}n∈N converges at infinity
and {βn}n∈N satisfies lim infn,m→∞(αn|βm) = ∞, then {βn}n∈N converges
to the same point in ∂C.

The geometry of the curve graph is coarsely tied to the geometry of Te-
ichmüller space: There is a (coarsely well-defined) Mod(Σ)-equivariant Lips-
chitz map Υ : T → C, called the systole map, that associates to every marked
hyperbolic structure X ∈ T a shortest geodesic Υ(X) on it. It follows from
Masur-Minsky [42] that there exist constants L,C > 0 only depending on
Σ such that for every Teichmüller geodesic l : I → T (here I can be an
interval, a half-line, or the whole real line) the composition Υl : I → C is an
unparametrized (L,C)-quasi-geodesic. Moreover, if we restrict our attention
to the δ-thick part Tδ of Teichmüller space, then the situation improves: In
[27] it is shown that for every δ > 0 there exist Lδ, Cδ > 0 such that if
l is parametrized by arc length on an interval of length at least Lδ and if
l(I) ⊂ Tδ then Υl is a parametrized (Lδ, Cδ)-quasi-geodesic.

4.2. Disk set. Since for us Σ = ∂Hg is the boundary of the handlebody Hg,
we can associate to it also a disk set D which is the subset of C consisting
of disk-bounding curves. Masur and Minsky showed in [43] that the disk
set D is a quasi-convex subset of the curve graph C. Being quasi-convex,
by hyperbolicity of C, there is a coarsely defined nearest point projection
πD : C → D.

4.3. Relative bounded combinatorics. We are ready to define the no-
tion of relative bounded combinatorics and height that we will use: We fix,
once and for all, a sufficiently small threshold δ > 0.

Definition (Relative Bounded Combinatorics). Consider Y,X ∈ T . We
say that (Y,X) has relative δ-bounded combinatorics with respect to the
handlebody Hg if the Teichmüller geodesic [Y,X] is contained in Tδ and

dC(D,Υ(Y )) + dC(Υ(Y ),Υ(X)) ≤ dC(D,Υ(X)) +
1

δ
.

The height of the pair (Y,X) is dT (Y,X).

Notice that, since [Y,X] ⊂ Tδ, by work of Hamenstädt [27], we have
dC(Υ(Y ),Υ(X)) ≥ dT (Y,X)/Lδ−Cδ for some uniform Lδ, Cδ provided that
dT (Y,X) ≥ Lδ. In particular, dC(Υ(X),D) is coarsely uniformly bounded
from below by the height dT (Y,X) provided that this is sufficiently large.

We have the following properties:



SMALL EIGENVALUES OF RANDOM 3-MANIFOLDS 15

Lemma 4.2. Fix g ≥ 2 and δ > 0. Let (Yn, Xn) be a sequence of pairs
that have relative δ-bounded combinatorics with respect to Hg and heights
hn ↑ ∞. Then:

(1) We have

(ζ|Υ(Yn))Υ(Xn) →∞

uniformly in ζ ∈ D.
(2) If φn ∈ Mod(Σ) are mapping classes such that φnXn lies in a fixed

compact set of Tδ, then, up to passing to subsequences, the sequence
of geodesics φn[Xn, Yn] converges to a Teichmüller ray which is en-
tirely contained in Tδ and converges to a uniquely ergodic filling lam-
ination [λ] ∈ PML. Moreover, φnD and Υ(φnYn) both converge in
C ∪ ∂C to the point of ∂C defined by λ.

(3) The length on Xn of the shortest compressible curve in Hg diverges.

In the proof and in the sequel we use the following notations:

Notation. If X is a hyperbolic surface and γ : S1 → X is
a smooth closed curve, then we denote by L(γ) the length of
γ, and by LX(γ) the length of the geodesic representative of
γ on X. For a curve γ in a hyperbolic 3-manifold M we use
the notation l(γ) and lM (γ) for the analogous quantities.

Proof. Property (1). For simplicity, define αn := Υ(Yn) and βn := Υ(Xn).
Notice that dC(αn, βn) ≥ hn/Lδ − Cδ because Υ restricted to [Yn, Xn] is a
parametrized (Lδ, Cδ)-quasi geodesic by [27]. In particular dC(αn, βn)→∞.

We show that (ζ|αn)βn ' dC(αn, βn) for every ζ ∈ D (here the symbol
' means greater up to a uniform additive constant). Consider the nearest
point projection αn := πD(αn). Recall that C is Gromov hyperbolic. By
basic properties of Gromov products in Gromov hyperbolic spaces, we have

(ζ|αn)βn ' min{(αn|αn)βn , (ζ|αn)βn}.

So, it is enough to show that both (αn|αn)βn and (ζ|αn)βn are at least
dC(αn, βn). Consider first (αn|αn)βn . We have:

dC(βn, αn) ≥ dC(βn,D)

≥ dC(αn, βn) + dC(αn,D)− 1/δ

= dC(αn, βn) + dC(αn, αn)− 1/δ.

Thus, we get (αn|αn)βn ≥ dC(αn, βn)− 1/2δ.

Now consider (ζ|αn)βn . Let βn := πD(βn) be the nearest point projection
of βn to D. By quasi-convexity of D, for every γ ∈ D we have dC(βn, γ) ≈
dC(βn, βn) + dC(βn, γ) (here the symbol ≈ means equal up to a uniform
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additive constant). In particular this holds for γ = αn, ζ. Therefore

2(ζ|αn)βn = dC(βn, ζ) + dC(βn, αn)− dC(ζ, αn)

≈ 2dC(βn, βn) + dC(βn, ζ) + dC(βn, αn)− dC(ζ, αn)

≥ 2dC(βn, βn) = 2dC(βn,D) ≥ 2dC(αn, βn)− 2/δ.

Property (2). Since φn[Xn, Yn] ⊂ Tδ, dT (φnXn, φnYn) = hn ↑ ∞, and
φnXn lies in a fixed compact subset of Tδ, up to extracting subsequences, the
sequence of geodesics φn[Xn, Yn] converges uniformly on compact subsets to
a geodesic ray l : [0,∞) → T that stays in Tδ. By work of Masur [40],
[41], the ray l converges to the projective class of a filling uniquely ergodic
measured lamination [λ] ∈ PML. This implies that φnYn converges to [λ]
as well. By a result of Klarreich [33], [λ] defines a point on ∂C and the
sequence of simple closed curves Υ(φnYn) converges to it.

Denote by φnαn = Υ(φnYn), φnβn = Υ(φnXn) a pair of shortest closed
geodesics for the metrics φnYn, φnXn. Since φnXn is converging, we can
assume that φnβn is constant. Consider a sequence of translates of disks
φnζn with ζn ∈ D. In order to prove that φnζn converges to λ, it is enough
to show that (φmζm|φnαn)φnβn →∞ as n,m→∞.

Fix M > 0. By the convergence φnαn → λ, there exists N > 0 such that
for every n,m ≥ N we have (φmαm|φnαn)φnβn ≥ M . By property (1) we
can also assume that for every m ≥ N we have (φmζm|φmαm)φmβm ≥ M .
The claim follows from basic properties of Gromov products: Recall that
φnβn is constant

(φmζm|φnαn)φnβn ' min{(φmζm|φmαm)φmβm , (φmαm|φnαn)φnβn} ≥M

for every n,m ≥ N .

Property (3). Let γn be a shortest geodesic for Xn which is compressible
in Hg. We first show that γn is simple: Notice that γn is primitive. In

fact, if γn = τkn for some k 6= 0, then τkn = 1 in π1(Nn). As π1(Nn) is
torsion free, this implies τn = 1 as well, but then τn would be a geodesic
on Xn shorter than γn and compressible in Hg. We slightly perturb γn
at the self intersections to represent it as a 4-valent graph on Xn. By the
Loop Theorem, there is a simple cycle in this graph that represents a disk-
bounding curve ζn. Such a surgery of γn has smaller length. Since γn is the
shortest curve which is compressible in Hg, we must have that γn is simple.

Consider βn = Υ(Xn). Denote by i(·, ·) the geometric intersection number
between two simple closed curves. Since LXn(βn) is uniformly bounded
away from 0 and∞, a standard consequence of the Collar Lemma gives us a
constant c > 0 such that LXn(γn) ≥ c · i(βn, γn). Thus, it is enough to show
that i(βn, γn)→∞. This comes from the fact that γn ∈ D is compressible,
the distances dC(βn,D) diverge, and the fact that distances in the curve
graph are bounded by intersections dC(βn, γn) ≤ 2i(βn, γn) + 2 (see Lemma
2.1 in [42]). �
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4.4. The proof of Proposition 4.1. We are now ready to prove the main
result of this section.

The strategy is easy to state: We argue by contradiction. Suppose that,
for some fixed δ > 0 and numbers L > 0, ξ > 0, we have a sequence of
counterexamples Nn = H(Xn) and Qn = Q(Yn, Xn) with relative δ-bounded
combinatorics and diverging heights, but not satisfying the conclusion of the
proposition.

Using the results from Section 2, we can pass to geometric limits f : X →
N and f ′ : X ′ → Q of the sequences ∂CC(Nn) ⊂ Nn and ∂XnCC(Qn) ⊂ Qn
(the component of the boundary of the convex core facing the conformal
boundary Xn). The main point of the proof is the following claim:

Claim: The hyperbolic manifolds N and Q are singly degenerate hyper-
bolic structures on Σ× R with the same end invariants.

For a comprehensive discussion of ends and end invariants of hyperbolic
3-manifolds, we refer to Section 2 of [48].

Once we know that the claim holds, the solution of the Ending Lam-
ination Conjecture by Minsky [48] and Brock, Canary, and Minsky [15]
will tell us that Q and N are isometric via an orientation preserving isom-
etry in the correct homotopy class. By the definition and properties of
geometric convergence, this is enough to find ξ-almost isometric embed-
dings in the right homotopy classes of collars of any arbitrary fized size
kn : Vn ⊂ CC(Qn) → Un ⊂ CC(Nn) for all sufficiently large n. Thus we will
obtain a contradiction to the initial assumptions.

For convenience, we divide the proof of the claim into several small steps.

We first consider the limit geometric limit f : X → N . To begin with,
recall that in our setup we have a diagram, commutative up to homotopy,
which is provided by geometric convergence

∂CC(Nn)
fn
// Nn

X
f

//

φn

OO

N.

kn

OO

Here the vertical arrows are the approximating maps, fn : ∂CC(Nn) → Nn

is the inclusion of the boundary of the convex core, and f : X → N is the
limit pleated surface in N .

We give an arbitrary marking to X in order to identify it to a point in
T . For simplicity, with a little abuse of notations, we will also denote by
φn the homotopy class of the map φn : ∂CC(Nn) → X with respect to the
markings on ∂CC(Nn) and X. With this notation we have that φ−1

n ∂CC(Nn)
converges to X as a sequence of points in T .

Lemma 4.3. The map f is incompressible.
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Proof. Suppose that f is compressible. Let γ ⊂ X be an essential closed
curve such that f(γ) is null-homotopic inN . If n is large enough, then we can
transport a null-homotopy of f(γ) to Nn using the approximating map kn.
Since knf is locally homotopic to fnφn, we conclude that φn(γ) ⊂ ∂CC(Nn)
is null-homotopic in Nn for every large n. Notice that the length of φn(γ)
on ∂CC(Nn) is roughly the length of γ on X, in particular it is bounded.
By property (3) of Lemma 4.2 and Theorem 2.1, the lengths of φn(γ) on
∂CC(Nn) and on Xn are comparable. Hence, the length of φn(γ) on Xn is
also bounded. This contradicts property (3) of Lemma 4.2. �

Let us consider now the f∗π1(X)-covering of N which we denote by p :
N → N . By covering theory, the map f : X → N lifts to N , and the lift
f : X → N is a homotopy equivalence. We fix once and for all such a lift f .

By work of Thurston [58] and Bonahon [9], we know that, in this setting,
N is homeomorphic to Σ× R.

The next step of the proof consists in analyzing the ends of N : We show
that N has a visible geometrically finite end and another one which is simply
degenerate, both homeomorphic to Σ× [0,∞).

Lemma 4.4. Up to passing to a subsequence of the sequence Nn, we have

• The sequence φ−1
n Xn converges to X∞ ∈ Tδ.

• There exists a filling lamination λ ∈ ∂C with the following property:
If ζn ∈ D is a simple closed disk-bounding curve for each n, then the
sequence of simple closed curves φ−1

n ζn converges to λ. Furthermore,
λ is also the limit of the sequence φ−1

n Υ(Yn).

Proof. The second point follows from the first one and property (2) of
Lemma 4.2. We only have to show that the maps φ−1

n are such that φ−1
n Xn

lies in a fixed compact subset of Tδ. This is a consequence of the fact that
Xn and φ−1

n ∂CC(Nn) have coarsely the same length spectrum by Theorem
2.1 and the fact that φ−1

n ∂CC(Nn) converges to X in T . �

The hyperbolic structure X∞ will be the conformal boundary of the geo-
metrically finite end of N while λ will be the ending lamination of the simply
degenerate end.

Lemma 4.5. N has a geometrically finite end E homeomorphic to Σ×[0,∞).

Proof. We show that there is a proper closed convex subset C ⊂ N that
contains the convex core CC(N). This immediately implies that, up to re-
moving standard neighborhoods of cusps, ∂C bounds a neighborhood of a
geometrically finite end of N homeomorphic to ∂C × (0,∞). By the basic
structure of the ends of the hyperbolic 3-manifold Q ' Σ × R, if ∂C is a
closed surface, then ∂C ' Σ.

We now produce the convex set C ⊂ N as a limit of the convex cores
CC(Nn). In order to do so, it is convenient to work on the universal coverings:
We identify (Nn, xn), (N, x) with (H3/Γn, o3), (H3/Γ, o3), where o3 ∈ H3 is
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a fixed basepoint. Consider the convex hulls CHn = CH(Λn), CH = CH(Λ)
of the limit sets Λn,Λ of Γn,Γ. We have that, up to subsequences, CHn
converges in the Chabauty topology on closed subsets of H3 (see Chapter
E.1 of [3]) to a closed set K ⊂ H3. It follows from general properties of the
Chabauty topology (see Proposition E.1.2 of [3]) that K is convex and invari-
ant under Γ. Moreover, as o3 ∈ ∂CHn for all n, K is also proper. Invariance
under Γ implies that CH ⊂ K so that the quotient C := K/f∗π1(X) ⊂ N is
a proper convex set containing the convex core of N .

We now show that the boundary ∂C = ∂K/f∗π1(X) is a closed surface
just by observing that it is the image f(X) = ∂C of the closed surface X
under the map f . Again, it is convenient to work on the universal coverings:
We identify (∂CC(Nn), xn) and (X,x) with (H2/Θn, o2), (H2/Θ, o2) where
o2 ∈ H2 is a fixed basepoint, and coherently lift fn, f to equivariant pleated
maps Fn, F : (H2, o2) → (H3, o3) with Fn(H2) = ∂CHn. Notice that the
boundary ∂K is the Chabauty limit of the boundaries ∂CHn. Since Fn → F
uniformly on compact sets, we have F (H2) = ∂K. In particular, f(X) =
∂C. �

It also follows from the proof that the restriction of the covering projec-
tion p to E is a homeomorphism onto a neighborhood of a geometrically
finite end E of N bounded by f(X). Namely: f(X) = ∂K/Γ ⊂ N is an
embedded surface bounding the convex set K/Γ ⊂ N . The covering pro-
jection p restricts to a covering projection p : ∂C → f(X). This covering
is a homeomorphism provided that p∗π1(∂C) = π1(f(X)), and in this case
the restriction of p to E is a homeomorphism onto the image which is a
neighborhood of a geometrically finite end homeomorphic to Σ× [0,∞).

By construction, we have p∗π1(∂C) = f∗π1(X). A priori, f∗π1(X) might
be different from π1(f(X)). But f is locally homotopic an embedding (such
as k−1

n fnφn for n large enough) and can be perturbed to an embedding,
with image contained in a small tubular neighborhood of f(X) of the form
f(X)× [−1, 1]. Since f is also π1-injective, by standard 3-manifold topology
(see Proposition 3.1 of [61]), we conclude that f∗π1(X) = π1(f(X)).

We now prove that N has also a simply degenerate end. Using the fact
that λ is a limit of translates of disk bounding curves, we show the following:

Lemma 4.6. The lamination λ is not realized in N .

Proof. Recall that, by Lemma 4.4, λ is a limit in C∪∂C of the sequence φ−1
n ζ

where ζ ∈ D is a fixed disk-bounding curve. Once we fixed an auxiliary
hyperbolic structure on Σ, this implies that λ is contained in a Hausdorff
limit of the sequence of geodesic realizations of the simple closed curves φ−1

n ζ.
Suppose we can realize λ in the homotopy class of the map f : X → N .
Then, a standard train-track approximation argument (see the discussion
above Theorem I.5.3.10 in [20]), tells us that for sufficiently large n the
curve φ−1

n ζ is also realized as a closed geodesic, in a bounded neighborhood
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of a realization of λ in N . By composition with the covering projection, the
curve φ−1

n ζ can also be realized in N in the homotopy class of f : X → N .
By geometric convergence, this implies that for large n, we can represent the
curve ζ in Nn as a curve with very small geodesic curvature. Such a curve
is not null-homotopic. But this is absurd as ζ is compressible in Nn. �

By Proposition 9.7.1 of [58] or Theorem 1.4 of [51], we deduce:

Corollary 4.7. N has a simply degenerate end homeomorphic to Σ×[0,∞)
with ending lamination λ.

To conclude, we found that N is a hyperbolic structure on Σ×R for which
one of the end invariants is a filling lamination, and another one is a marked
conformal structure on Σ. Since there is no room for other ends, we see that
N is singly degenerate. This immediately implies:

Lemma 4.8. The covering p : N → N is trivial.

Proof. If the covering p : N → N is not trivial, then, as the restriction
of p to the geometrically finite end E of N is a homeomorphism onto a
geometrically finite end E of N , there exists at least one other preimage of E.
This preimage then is a geometrically finite end of N different from E. But
N has a single geometrically finite end and hence we get a contradiction. �

We now identify N = N and compute the conformal boundary of the
geometrically finite end:

Lemma 4.9. The end E is conformally compactified by X∞.

Proof. We isometrically identify (Nn, xn) and (N, x) with (H3/Γn, o3) and
(H3/Γ, o3) where o3 ∈ H3 is a fixed origin. Let π1(Nn, xn) → Γn <
Isom+(H3) and π1(N, x) → Γ < Isom+(H3) be the holonomy identifica-
tions. Let Λn and Λ be the limit sets of Γn and Γ and let Ωn and Ω be the
domains of discontinuity (notice that all of them are connected).

The main observation is that Λn → Λ in the Hausdorff topology of ∂H3:
This follows from Lemma 7.33 of [44] (see also Kerckhoff-Thurston [32])
combined with a result of Bowditch [10] that gives a uniform upper bound
on injx(Nn) for every x ∈ CC(Nn). We now use this fact to compute directly
the uniformization of Ω.

Fix z ∈ Ω a basepoint. Since Λn → Λ, we have that z ∈ Ωn for ev-
ery n large enough. Denote by πn : (H2, o2) → (Ωn/Γn, z) the universal
covering projection where o2 ∈ H2 is a fixed origin. Let π1(Ωn/Γn, z) →
Isom+(H2) be the corresponding holonomy representation. Notice that πn
factors through the covering βn : (H2, o2) → (Ωn, z) corresponding to the

subgroup ker{π1(Ωn/Γn)→ π1(N̂n)}.
Consider the representations

σn : π1(X)
φn−→ π1(∂CC(Nn)) ' π1(Ωn/Γn)→ Isom+(H2).
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Since the conformal boundaries φ−1
n Xn converge to X∞, we have that σn

converges to a representation σ∞ that corresponds to the holonomy of X∞.
Similarly, consider the representations

ρn : π1(X)
φn−→ π1(∂CC(Nn))→ π1(Nn)→ Isom+(H3).

Again, the sequence of representations converges to ρ∞ which is an isomor-
phism between π1(X) and Γ. The covering maps βn are π1(X)-equivariant
with respect to σn and ρn.

We show that βn converges uniformly on compact sets to a biholomor-
phism β : H2 → Ω that is equivariant with respect to σ∞ and ρ∞. Equiv-
ariance will be automatic once we prove that βn converges uniformly on
compact sets.

Since Λn → Λ, up to slightly changing the basepoints xn, we can as-
sume that for n large enough Λn passes through a fixed triple of points
{p1, p2, p3} ⊂ Λ so that Ωn ⊂ ∂H3 − {p1, p2, p3}. Therefore, by Montel’s
and Hurwitz’s Theorems, we have that the sequence of locally univalent
holomorphic maps βn : H2 → Ωn converges uniformly on compact sets to
a locally univalent holomorphic map β : H2 → ∂H3. Furthermore, by one
half of Caratheodory’s Kernel Theorem (see Theorem 7.30 in [44]), we have
β(H2) = Ω.

The equivariant locally univalent holomorphic map β descends to a holo-
morphic covering map H2/σ∞ → Ω/Γ. Such a map must be a biholomor-
phism as the source and the target are homeomorphic. �

By the discussion so far, we have identified N with a singly degenerate
structure on Σ×R, and we computed the end invariants. We now repeat the
same analysis for the limit f ′ : X ′ → Q of the sequence f ′n : ∂XnCC(Qn) →
Qn of quasi-fuchsian manifolds and its f ′∗π1(X ′)-covering Q. The same exact
arguments given above work also in this case except for the proof of non-
realizability of λ:

Proof of Corollary 4.7 for Q. There are several simple ways to proceed here.
For the sake of brevity, and since we will use this result also later on, we
just invoke Theorem 1.1 of [14]: It is enough to observe that the sequence
of quasi-fuchsian manifolds φ−1

n Qn converges algebraically to Q (because the
maps fnφn converge to f) and that Υ(φ−1

n Yn)→ λ by Lemma 4.4. �

In conclusion, Q and N are hyperbolic structures on Σ×R with the same
end invariants. Thus, the solution of the Ending Lamination Conjecture [48],
[15] provides us an orientation preserving isometry Q → N in the correct
homotopy class. Using this isometry and the approximating maps from the
geometric convergences Qn → Q and Nn → N we obtain the desired ξ-
almost isometric embeddings of a large collar of the component of ∂CC(Qn)
facing Xn into a collar of ∂CC(Nn). This contradicts the initial assumptions
and finishes the proof of Proposition 4.1. �
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5. Gluing

In this section we prove the gluing theorem.

We briefly recall our setup: We consider four points Y < X < X ′ <
Y ′ aligned on the Teichmüller segment [Y, Y ′] and associate to them the
hyperbolic structures an N1 = H(X), Q = Q(Y, Y ′), N2 = H(f−1X ′). We
want to cut from their convex cores gluing blocks N1

0 ⊂ CC(N1), Q0 ⊂
CC(Q), N2

0 ⊂ CC(N2), produce identifications kj : Vj ⊂ Q0 → Uj ⊂ N j
0

between their collars, and then apply the cut and glue construction Lemma
3.3.

In Proposition 5.3 and Corollary 5.4, we show that, under suitable as-
sumptions on the pairs (Y,X) and (Y ′, X ′), there are product regions in
CC(Q(Y,X)), CC(Q(Y ′, X ′)) which simultaneously ξ-almost isometrically em-
bed into CC(H(X)), CC(H(f−1X)) and CC(Q(Y, Y ′)). Then we proceed and
show in Lemma 5.8 and Lemma 5.10 that, under suitable assumptions, the
embeddings of such product regions in CC(Q(Y, Y ′)) can be chosen to have
disjoint images so that they cobound a gluing block Q0. This is the last
ingredient needed for applying Lemma 3.3 and prove Theorem 5.12.

5.1. Quasi-fuchsian manifolds with bounded geometry. In the proof
of the main results of the section, we will use the following fundamental
relation between the geometry of Teichmüller space and the geometry of
quasi-fuchsian manifolds:

Theorem 5.1 (Rafi [52], see also Minsky [47]). Fix g ≥ 2. For every δ > 0
there exists ε > 0 such that if [Y,X] ⊂ Tδ, then inj(Q(Y,X)) ≥ ε.

It follows from work of Thurston that the space of pointed hyperbolic
manifolds Q diffeomorphic to Σ × R and with inj(Q) ≥ ε is compact in
the geometric topology (see Theorem 4.3 and Corollary 4.4 in [45]). In
particular, a simple compactness argument implies the following property
which will be useful for us later on:

Lemma 5.2. Fix ε > 0. For every size D > 0 there exists D′ > 0 such that
for every quasi-fuchsian manifold Q = Q(Y,X) with inj(Q) ≥ ε and every
point x ∈ CC(Q(Y,X)) with dQ(x, ∂CC(Q)) ≥ D′, there is a product region
U ⊂ CC(Q) of size D with x ∈ U .

5.2. Embedding product regions in quasi-fuchsian manifolds. Our
next goal is to find simultaneous embeddings of product regions of Q(Y,X)
in CC(H(X)) and CC(Q(Y, Y ′)).

Proposition 5.3. For every δ, ξ,D there exists L > 0 such that the fol-
lowing holds: Suppose that we have a product region U ⊂ CC(Q) in a
quasi fuchsian manifold Q = Q(Y,X). Let Q′ = Q(Z,Z ′) be another
quasi-fuchsian manifold with [Y,X] ⊂ [Z,Z ′]. Suppose that U has size D,
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dQ(U, ∂CC(Q)) ≥ L and [Y,X] ⊂ Tδ. Then, there exists an orientation pre-
serving ξ-almost isometric embedding k : U → CC(Q′) in the homotopy class
of the identity.

Combining Proposition 4.1, Proposition 5.3 (with [Z,Z ′] = [Y, Y ′]), and
Lemma 5.2, we get:

Corollary 5.4. Fix δ, ξ,D > 0. Then there exists h = h(δ, ξ,D) > 0 such
that the following holds: Suppose that (Y,X) has relative δ-bounded combi-
natorics and height at least h. Consider the convex-cocompact handlebody
H(X) and a quasi-fuchsian manifold Q(Y, Y ′) for which [Y,X] ⊂ [Y, Y ′].
Then there exist a product region U ⊂ CC(H(X)) of size D in a collar of the
boundary of the convex core, a product region V ⊂ CC(Q(Y, Y ′)) of size D
and a ξ-almost isometric orientation preserving diffeomorphism k : V → U
in the homotopy class of the identity.

Proof of Corollary 5.4. Let L > 0 be a large arbitrary size. By Proposition
4.1, if h is large enough, we can find a ξ-almost isometric diffeomorphism
between a collar of width 2L + 4D of ∂XCC(Q = Q(Y,X)) and a collar of
∂CC(H(X)). By Lemma 5.2, we can find a product region U of size D in
the Q-collar with dQ(U, ∂CC(Q)) ≥ L. By Proposition 5.3, if L is sufficiently
large, such product ξ-almost isometrically embeds also in CC(Q(Y, Y ′)). All
the embeddings are in the homotopy class of the identity. �

We now prove the proposition.

Proof of Proposition 5.3. We argue by contradiction. Consider a sequence
of counterexamples Un ⊂ Qn = Q(Yn, Xn) and Q′n = Q(Zn, Z

′
n) with

dQn(Un, ∂CC(Qn)) ≥ n and such that there is no ξ-almost isometric em-
bedding of Un in CC(Q′n).

We show that, after suitable choices of basepoints, the sequences Qn and
Q′n converge geometrically to the same doubly degenerate structure on Σ×R
so that we can almost isometrically embed Un in Q′n for large enough n. This
will provide the desired contradiction.

As a first step we consider the sequence Qn.

By the Canary-Thurston Filling Theorem (see Canary [19] and Theorem
9.5.13 of Thurston [58]), in a uniform neighborhood of each point in CC(Qn)
there exists a pleated surface. Thus, we can pick a pleated surface fn : Wn →
Qn that passes through a point xn ∈ Qn uniformly close to Un ⊂ CC(Qn).

Notice that, by Theorem 5.1, the injectivity radius of Qn is uniformly
bounded from below by inj(Qn) ≥ ε where ε only depends on δ and on g. In
particular, as inj(Wn) ≥ inj(Qn), we have that Wn ∈ Tε. Since the mapping
class group acts cocompactly on Tε, up to coherently remarking Qn and Wn,
we can assume that Wn lies in a fixed compact subset of Tε.

We now take a geometric limit of the sequence fn : Wn → Qn. The limit
is a pleated surface f : W → Q∞. As inj(Qn) ≥ ε, we also have inj(Q∞) ≥ ε.
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Lemma 5.5. Q∞ is a doubly degenerate structure on Σ× R.

Proof. In the absence of parabolics in the limit (recall that inj(Q∞) ≥ ε), a
result of Thurston (see Theorem 9.2 in [58] and also Theorem 4.3 in [45]),
implies that the geometric limit Q∞ and its f∗π1(W )-covering coincide. In
particular, Q∞ is a hyperbolic structure on Σ × R. Since we assumed that
dQn(Un, ∂CC(Qn)) diverges, each end of Q∞ must be simply degenerate (for
example because every point in Q∞ lies uniformly close to a closed geodesic).
Thus Q∞ is a doubly degenerate structure on Σ× R. �

Next, we compute the ending laminations of Q∞.

Even if, in this case, the only ingredients required are standard arguments
mainly due to Thurston (as can be found in Chapter 9 of [58] and in [57]),
for the sake of brevity we exploit instead a simple criterion due to Brock-
Bromberg-Canary-Minsky (see Theorem 1.1 of [14]): If the sequences Υ(Xn)
and Υ(Yn) converge to laminations λX and λY in ∂C, then λX and λY are
respectively the ending laminations of the positive and negative ends of Q∞.

We have the following:

Lemma 5.6. Up to subsequences, both Xn and Yn converge in T ∪ PML
to the projective classes [λX ] and [λY ] of measured laminations which are
uniquely ergodic, filling and together bind the surface. Furthermore, Zn →
[λY ] and Z ′n → [λX ].

Proof. We start by analyzing the relative position of Wn and Xn: We know
that

dQn(fn(Wn), ∂XnCC(Qn))→∞.
This implies (see for example Lemma 4.8 of [46]) that dT (Wn, ∂XnCC(Qn))
diverges as well. Since dT (Xn, ∂XnCC(Qn)) is uniformly bounded, we con-
clude that dT (Wn, Xn)→∞. Similarly, dT (Wn, Yn)→∞.

By Theorem A of [45], the hyperbolic structure Wn lies uniformly close
to the segment [Yn, Xn]. Since Wn converges to W , and the endpoints
of the segment are escaping towards PML, we can assume that, up to
subsequences, [Yn, Xn] ⊂ Tδ converges to a bi-infinite Teichmüller line l ⊂ Tδ.
By results of Masur [40], [41], l converges in the forward and backward
directions to the projective classes of filling uniquely ergodic laminations
λX and λY that together bind the surface Σ.

By the properties of the Thurston compactification of Teichmüller space,
this implies that Xn → [λX ] and Yn → [λY ]. But [Yn, Xn] ⊂ [Zn, Z

′
n] and

consequently Zn, Z
′
n also converge to [λY ], [λX ]. �

Using a result of Klarreich [33] we get:

Corollary 5.7. [λX ], [λY ] determine points λX , λY ∈ ∂C, and we have
Υ(Xn),Υ(Z ′n)→ λX and Υ(Yn),Υ(Zn)→ λY .

This finishes the computation of the end invariants of Q∞.
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We now show that, up to subsequences, also Q′n converges to Q∞.

Since Z ′n, Zn → [λX ], [λY ] and λX , λY bind the surface, we can apply
Thurston’s Double Limit Theorem [57] and show that the sequence of quasi-
fuchsian manifolds Q′n has a subsequence that converges algebraically to
a manifold Q′∞. Theorem 1.1 of [14] and Corollary 5.7 imply that Q′∞
is a doubly degenerate hyperbolic structure where the ending laminations
of the positive and negative end are respectively λX and λY . Since the
limit is doubly degenerate, in particular has no accidental parabolics, the
convergenceQ′n → Q′∞ is not only algebraic, but also geometric (by Theorem
9.2 of [58]).

By the solution of the Ending Lamination Conjecture [48], [15], there is
an orientation preserving isometry between Q∞ and Q′∞ in the homotopy
class of the identity as desired. Strong convergence provides us a ξ-almost
isometric embedding Un ⊂ CC(Qn)→ CC(Q′n) in the homotopy class of the
identity for all sufficiently large n. This contradicts our initial assumptions
and concludes the proof of Proposition 5.3. �

5.3. Geometry of the middle gluing block. Let f ∈ Mod(Σ) be our
gluing map. If (Y,X) and (f−1Y ′, f−1X ′) have relative δ-bounded com-
binatorics with respect to Hg and sufficiently large height, then Corollary
5.4 provides us orientation preserving ξ-almost isometric diffeomorphisms
k1 : V1 ⊂ CC(Q(Y, Y ′)) → U1 ⊂ CC(H(X)) and k2 : V2 ⊂ CC(Q(Y, Y ′)) →
U2 ⊂ CC(H(f−1X ′)) of product regions of size D and where k1 is in the
homotopy class of the identity and k2 is in the homotopy class of f .

We now analyze the relative position of V1 and V2 in CC(Q(Y, Y ′)) and
show that, under suitable assumptions, V1, V2 ⊂ CC(Q(Y, Y ′)) also determine
a gluing block Q0 of which they are respectively the bottom and top collars.
Since CC(Q(Y, Y ′)) ' Σ× [0, 1] and both V1, V2 are parallel to the boundary
components, it is enough to prove that V1, V2 are disjoint and V1 is closer to
∂Y CC(Q(Y, Y ′)) than V2.

In order to locate V1, V2 inside CC(Q(Y, Y ′)) we exploit the geometry of
the pleated surfaces with image in V1, V2. This is the content of the next
few lemmas. We begin with the following:

Lemma 5.8. For every δ,D0 > 0 and there exist A(δ) > 0 and D1 =
D1(D0, δ) > 0 such that for every product region U ⊂ CC(Q) of size D ≥ D1

in a quasi-fuchsian manifold Q = Q(Y,X) with [Y,X] ⊂ Tδ, there exists a
hyperbolic surface Z ∈ T contained in the A-neighborhood of [Y,X] and a
1-Lipschitz map f : Z → U with dQ(f(Z), ∂U) ≥ D0.

Proof. Recall that pleated surfaces in Q have uniformly bounded diameter
as their hyperbolic structures all live in Tε where ε = ε(δ) > 0 is the uniform
lower bound on the injectivity radius inj(Q) ≥ ε (Theorem 5.1). Also recall
that for each point in the convex core there is a pleated surface that passes
uniformly nearby. Let D be very large. Pick a point x ∈ U such that
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dQ(x, ∂U) = D/2 and let f : Z → Q be any pleated surface that passes
uniformly close to x. By Theorem A of Minsky [45], we have that Z lies in
the A-neighborhood of [X,Y ] for some uniform A = A(δ) > 0. Since f(Z)
has bounded diameter, its distance from ∂U is roughly D/2. In particular,
if D is large enough, it is larger than D0. �

If we have a ξ-almost isometric diffeomorphism between product regions
k : U → V , where U is as in the previous lemma and V is arbitrary, we can
transport the 1-Lipschitz map f : Z → U to a 2-Lipschitz map kf : Z → V
with roughly the same geometric behavior.

To control better the position of a 2-Lipschitz map kf : Z → V , we anchor
it to a moderate length closed geodesic:

Lemma 5.9. For every ε > 0 there exists D0 > 0 such that the following
holds: Let V ⊂ CC(Q) be a product region with injectivity radius inj(V ) ≥
ε and containing the image of a 2-Lipschitz map f : Z → V satisfying
dQ(f(Z), ∂V ) ≥ D0. Let β be a shortest closed geodesic for Z. Then the
geodesic representative of f(β) in Q lies in V and has length at least 2ε.

Proof. Notice that LZ(β) ≤ B for some uniform B > 0. The curve f(β)
has also uniformly bounded length as l(f(β)) ≤ 2LZ(β) ≤ 2B. Let T be
the ε-Margulis tube of the geodesic representative of f(β) (it reduces to the
core geodesic if lQ(f(β)) ≥ 2ε). By standard hyperbolic geometry we have
dQ(f(β),T) ≤ log(2l(f(β))/ε). Therefore, as f(β) has uniformly bounded
length, it lies at a uniformly bounded distance from T. However f(β) lies in
the middle of the product region U where inj(U) ≥ ε, therefore, ifD0 is larger
than dQ(f(β),T)+B, the only possibility is that the geodesic representative
of f(β) has length at least 2ε and is contained in U . �

Using the above setup we can control the relative position of two different
product regions:

Lemma 5.10. Fix δ > 0. Let ε(δ) > 0 be the constant of Theorem 5.1.
Let D0(ε) > 0 be the constant of Lemma 5.9. Let A(δ), D1(D0, δ) be the
constants of Lemma 5.8. For every h > 0 and D ≥ D1 there exist T > 0
and R > 0 such that the following holds: Let Q = Q(Y, Y ′) be a quasi-
fuchsian manifold. Suppose that we have:

(1) Large distance in the curve graph dC(Υ(Y ),Υ(Y ′)) ≥ T .
(2) A pair of product regions V1, V2 ⊂ CC(Q) that satisfy the follow-

ing properties: They have size D and injectivity radius bounded
from below by inj(V1), inj(V2) ≥ ε. They contain the images of 2-
Lipschitz maps f : Z → V1 and f ′ : Z ′ → V2 with dQ(f(Z), ∂V1),
dQ(f ′(Z ′), ∂V2) ≥ D0 where Z,Z ′ ∈ T lie in the A-neighborhoods of
initial and terminal segments of length h of [Y, Y ′], respectively.
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Then V1 and V2 are disjoint and cobound a gluing block Q0 ⊂ CC(Q) for
which V1 and V2 are respectively the bottom and top collars. Furthermore,
the volume of Q0 is bounded by vol(Q)− vol(Q0) ≤ R.

Proof. We first show that the product regions are disjoint.

Consider shortest geodesics α := Υ(Y ) and α′ := Υ(Y ′). By Corollary
7.18 of Brock-Bromberg [13] we have that

dQ(∂Y CC(Q), ∂Y ′CC(Q)) ≥ 1

C
dC(α, α

′)− C ≥ T/C − C

for some uniform C = C(g) > 0.

We now estimate the distance of V1 from ∂Y CC(Q). Let β be a shortest
geodesic for Z. It has LZ(β) ≤ B for a uniform constant B = B(g) > 0.
Denote by β∗ the geodesic representative of β in Q. By Lemma 5.9, we have
lQ(β) ≥ 2ε and β∗ ⊂ V1 so that dQ(∂Y CC(Q), V1) ≤ dQ(β∗, ∂Y CC(Q)). By
standard hyperbolic geometry

cosh (dQ(β∗, ∂Y CC(Q))) ≤
L∂Y CC(Q)(β)

lQ(β)
.

Using the fact that ∂Y CC(Q) and Y are K-bilipschitz for some universal K >

0, Wolpert’s inequality LY (β) ≤ e2dT (Y,Z)LZ(β), the assumptions LZ(β) ≤
B and dT (Y, Z) ≤ h+A, we get

L∂Y CC(Q)(β)

lQ(β)
≤ KB

2ε
e2(A+h).

Similarly, we obtain an analogue estimate for the distance dQ(V2, ∂Y ′CC(Q)).

Thus, as V1 and V2 have diameter at most 2D and are uniformly close to
∂Y CC(Q) and ∂Y ′CC(Q) respectively, only depending on h, in order to make
sure that they are disjoint, it is enough to require that T is much larger than
the previous constants.

Let Q0 be the gluing block bounded by V1, V2. From the previous dis-
cussion we also know that V1 and V2 are the bottom and top collars of Q0

respectively.

We now estimate the volume of Q0. We show that the region (homologi-
cally) bounded by ∂Y CC(Q) and f(Z) can be covered by a controlled number
of straight hyperbolic simplices (recall that there is a universal upper bound
on the volume of a hyperbolic straight simplex, see Chapter C of [3]). To
this purpose we need the following:

Lemma 5.11. Given two complete clean markings µ, ν of Σ, it is possible to
find a triangulation of Σ× [0, 1] such that:

• The number of simplices is bounded by a uniform multiple of the
distance between µ, ν in the marking graph.
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• The induced triangulations to Σ× {0} and Σ× {1} can be taken to
be any refinements of µ and ν to triangulations with the same vertex
sets.

For the definition of complete clean marking and marking graph we refer
to [42]. We observe that if X ∈ Tδ, then there is a shortest complete clean
marking µX of uniformly bounded length and, furthermore, if [X,Y ] ⊂ Tδ
then the distance in the marking graph between the shortest complete clean
markings of X,Y is coarsely comparable with dT (X,Y ) by a result of Rafi
[53].

Proof. Notice that every complete clean marking µ of Σ decomposes the
surface into a uniformly bounded number of polygonal disks with vertices
in the intersections of the curves in the complete clean marking. We can
refine this polygonal structure on Σ to a triangulation by adding diagonals
and keeping the same vertex set. Note that this procedure is by no means
unique, but the number of combinatorial possibilities is bounded from above
by a constant only depending on the genus of Σ.

Consider a geodesic sequence of elementary moves µ1 → · · · → µn in
the marking graph that connects µ1 = µ with µn = ν. We produce a
triangulation of Σ×[0, n] by inductively stacking triangulations of Σ×[j−1, j]
with a uniformly bounded number of simplices and such that the restriction
of the triangulation to the boundaries Σ × {j − 1} and Σ × {j} consists of
triangulations Tj−1 and Tj of Σ which refine µj−1 and µj .

Let us assume that µj is obtained from µj by a Dehn twist move about the
pants curves of µj−1. Let Tj−1 be a triangulation of Σ defined by µj−1 and
let Tj be its image under the Dehn twist. Then there exists a triangulation
τj of Σ× [j− 1, j] which restricts to Tj−1, Tj on the boundary. As up to the
action of the mapping class group there are only finitely many combinatorial
possibilities for this situation, we can find such a triangulation of Σ×[j−1, j]
with a uniformly bounded number of simplices. The same argument holds
true for the move which replaces a pants curve by a marking curve and clears
intersections. �

We now return to the proof of the volume estimate in Lemma 5.10.

Using Lemma 5.11, we associate to the two surfaces ∂Y CC(Q) and Z a
triangulation of Σ× [0, 1]: Let µY and µZ be short complete clean markings
for ∂Y CC(Q) and Z respectively. Notice that, since both hyperbolic surfaces
lie in a uniformly thick part of Teichmüller space, we can find refinements
of µY and µZ to triangulations with uniformly bounded length. Let H :
Σ× [0, 1]→ Q be an arbitrary homotopy between the inclusion of ∂Y CC(Q)
and f : Z → Q.

We now straighten H relative to the vertices (see Chapter C of [3]). Since
the boundary triangulations have uniformly bounded length on ∂Y CC(Q)
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and Z, after straightening relative to the vertices, the images of their 1-
skeleta are contained in a uniform neighborhood of ∂Y CC(Q) and f(Z).
Since every point in a straight 2-simplex is uniformly close to a side of the
2-simplex, we conclude that the whole straightening of H restricted to the
boundary lies uniformly close to ∂Y CC(Q) and f(Z). In particular, as f(Z)
lies deep inside V1, the same is true for the straightening of H(Σ× {1}).

As a consequence, after straightening, H still covers the region between
V1 and ∂Y CC(Q) perhaps only missing a uniform neighborhood of ∂Y CC(Q)
(which has uniformly bounded volume). The volume of the image of the
straightened H is bounded by a uniform constant (the maximal volume of a
straight 3-simplex) times the number of simplices in the triangulation. By
Lemma 5.11, the number of simplices is bounded by the distance in the mark-
ing graph between µY and µX which is coarsely equal to dT (∂Y CC(Y ), Z)
which in turn is coarsely bounded from above by h. �

Notice that, since Υ[Y, Y ′] is a uniform unparametrized quasi-geodesic
that restricts to a parametrized quasi-geodesic on δ-thick subsegments (see
[27]), there is a T1 = T1(T, δ) > 0 such that if [Y, Y ′] contains a δ-thick
subsegment of length T1, then dC(Υ(Y ),Υ(Y ′)) ≥ T and, hence, condition
(1) is satisfied.

5.4. A gluing theorem. Finally, we are ready to state the gluing theorem
in the form that we will use in the next sections:

Theorem 5.12. Let δ, ξ > 0 be fixed. There exists hgluing(δ, ξ) > 0 such that
for every h ≥ hgluing the following holds: Let f be a gluing map. Consider
a geodesic segment [Y, Y ′] ⊂ T with endpoints Y, Y ′ ∈ Tδ. Suppose that
there exist Y < X < X ′ < Y ′ satisfying the following relative bounded
combinatorics and large heights properties:

• We have [Y,X], [Y ′, X ′] ⊂ Tδ and dT (Y,X), dT (Y ′, X ′) ∈ [h, 2h].
• The pair (Y,X) satisfies

dC(Υ(X),D) ≥ dC(Υ(Y ),D) + dC(Υ(X),Υ(Y ))− 1

δ
.

The same holds true for the pair (f−1Y ′, f−1X ′).
• We have dC(Υ(Y ),Υ(Y ′)) ≥ h.

Consider N1 = H(X), N2 = H(f−1X ′), Q = Q(Y, Y ′). Then there exist:

• Disjoint product regions V1, V2 ⊂ CC(Q) with V1 below V2 and both
of size D1 (as in Lemma 5.10). We denote by Q0 ⊂ CC(Q) the
gluing block bounded by V1, V2 for which V1 and V2 are respectively
the bottom and top boundary.
• Product regions Uj ⊂ CC(Nj) of size D1 for j = 1, 2. We denote by

N j
0 ⊂ CC(Nj) the gluing blocks that they bound.
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• Orientation preserving ξ-almost isometric diffeomorphisms kj : Vj →
Uj for j = 1, 2 where k1 is in the homotopy class of the identity while
k2 is in the homotopy class of f .

In particular, we can form the 3-manifold

Xf = N1
0 ∪k1:V1→U1 Q0 ∪k2:V2→U2 N

2
0

using the cut and glue construction as in Lemma 3.3. For simplicity we
denote by Ω := V1 tV2 the union of the product regions along which we per-
formed the gluing. The manifold Xf is diffeomorphic to Mf = Hg∪fHg and
comes equipped with a Riemannian metric ρ with the following properties:

(1) The sectional curvature of the metric is contained in the interval
(−1− ξ,−1 + ξ) and it is constant −1 on Xf − Ω.

(2) Each connected component of Ω has uniformly bounded diameter and
injectivity radius.

(3) The I-bundle piece Q0 is isometric to the complement in CC(Q) of a
collar neighborhood of the boundary of the convex core whose volume
is uniformly bounded (only depending on h).

(4) The handlebody pieces N1
0 , N

2
0 are isometric to the complement in

CC(N1), CC(N2) of collar neighborhoods of the boundaries of the con-
vex cores of uniformly bounded diameter (not depending on h).

The proof is an application of the cut and glue construction Lemma 3.3

where the input product regions Vj , Uj , handlebody gluing blocks N j
0 and

ξ-almost isometric diffeomorphisms are provided by Corollary 5.4 (applied
to [Y,X] ⊂ [Y, Y ′] and f−1[Y ′, X ′] ⊂ f−1[Y ′, Y ]) and the I-bundle gluing
block Q0 is obtained by Lemma 5.10 (which also gives the volume estimate).

6. Random Heegaard splittings

In this section we establish some geometric control on random 3-manifolds.

We briefly recall the basic setup: Let µ by a symmetric probability mea-
sure on Mod(Σ) whose support S generates the group. Let {sj}j∈N be
a sequence of independent, µ-distributed random variables with values in
Mod(Σ). The n-th step of the random walk driven by µ is the random
variable ωn := s1 · · · sn. We denote by Pn the distribution of ωn (it coin-
cides with the n-th convolution of µ with itself). If Pn is a property of
3-manifolds (possibly depending on the step of the walk) we say that Pn
holds for a random 3-manifold if

Pn [f ∈ Mod(Σ) | Mf has Pn ]
n→∞−→ 1.

With this notations, we can state the main result of the section:

Proposition 6.1. Let g ≥ 2 and ε, b, δ > 0 be fixed. Let µ be a symmet-
ric probability measure on Mod(Σ) whose support is a finite generating set.
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Then

Pn [f ∈ Mod(Σ) | Mf has gluing with (ε, b, δ)-controlled geometry]
n→∞−→ 1.

We now explain what we mean by (ε, b, δ)-controlled geometry. We begin
with the following definition:

Definition. For δ ∈ (0, 1/2), b > 1 and g ≥ 2, a (b, δ)-product region of
genus g in a Riemannian 3-manifold M is a closed subset V of M with the
following properties:

(1) V is diffeomorphic to Σ× [0, 1] where Σ is a closed surface of genus
g, and V separates M , that is, M − int(V ) consists of two connected
components with boundary Σ× {0},Σ× {1}, respectively.

(2) The injectivity radius of M at points in V is at least δ, and the
diameters of the surfaces Σ× {0} and Σ× {1} are at most 1/δ.

(3) The restriction of the metric of M to V is of constant curvature −1.
(4) The distance between the boundary components Σ×{0} and Σ×{1}

equals at least b.

Note that as, b > 1, the volume of a (b, δ)-product region is bounded from
below by a universal constant.

By definition, a (b, δ)-product region V ⊂M separates M . In particular,
if V ′ ⊂M is another such region which is disjoint from V , then it is contained
in one of the two components of M − V . Thus, if V ⊂M is a disjoint union
of k ≥ 1 (b, δ)-product regions, then the dual graph whose vertices are the
components of M −V and where two such components are connected by an
edge if their closures intersect the same component of V is a tree. We say
that the components of V are linearly aligned if this tree is just a segment.

The geometric control that we need is the following property Pn (depend-
ing on the step of the walk):

Definition ((ε, b, δ)-controlled geometry). Let n be the step of the random
walk driven by µ. We say that Mf has a gluing with (ε, b, δ)-controlled
geometry when the following properties are satisfied: There exist constants
C1 = C1(µ) > 0 and C2 = C2(b, δ) > 0 such that the splitting Mf admits
a negatively curved metric as described in Theorem 5.12 with the following
additional features:

(a) The gluing control parameter ξ is smaller than ε.
(b) vol(N0

1 ∪N0
2 ∪ Ω) ≤ εn where n is the step of the walk.

(c) vol(Q0) ≥ C1n where n is the step of the walk.
(d) The set Q0 contains a subset Q′0 which is a disjoint union of (b, δ)-

product regions of genus g and cardinality at least C2n.

Notice that the constants C1, C2 > 0 implicitly contained in the statement
of Proposition 6.1 are independent of ε: The constant C1 only depends on
µ and the constant C2 only depends on b, δ. They will be determined in the
course of the proof.
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6.1. Quasi-fuchsian manifolds with many (b, δ)-product regions. For
us, the main example of a manifold with many linearly aligned (b, δ)-product
regions is the following:

Lemma 6.2. For every σ > 0 there exists a number δ > 0, and for every
b > 0 there exists R(b, σ) > 0 such that the following holds: Consider a
Teichmüller geodesic γ : [0, T ] → T with endpoints Y := γ(0) and Y ′ :=
γ(T ). Consider a sequence of times R < t1 < · · · < tk < T − R. Suppose
that we have the following properties: The intervals [tj − R, tj + R] are
disjoint and their images γ[tj − R, tj + R] are contained in Tσ. Then the
convex core of Q = Q(Y, Y ′) contains a collection of disjoint linearly aligned
(b, δ)-product regions Uj ⊂ CC(Q).

Proof. Let R > 0 be a very large constant. Consider Qj := Q(γ(tj −
R/2), γ(tj + R/2)). By Corollary 7.18 of [13] combined with [27], we have
that the width of CC(Qj) is coarsely bounded from below by R. Moreover,
by Theorem 5.1, the injectivity radius of the same manifold is bounded from
below by δ = δ(σ) > 0.

Thus, we can apply Lemma 5.8 and Lemma 5.2, and find a (b, δ)-product
region Uj ⊂ CC(Qj) of uniformly bounded size that contains the image of a
1-Lipschitz map fj : Zj → Uj , where Zj lies in a uniform neighborhood of
γ[tj − R/2, tj + R/2], and such that dQj (Uj , ∂CC(Qj)) is coarsely bounded
from below by R/2.

By Proposition 5.3, if R is large enough, we have a ξ-almost isometric
embedding kj : Uj → Vj ⊂ CC(Q) in the homotopy class of the identity. By
Lemma 5.9, Vj contains the geodesic representative α∗j of Υ(Zj), a curve

which has length lQj (αj) in the interval [2δ, 2B] for some uniform B > 0.
Thus, dQ(Vi, Vj) is coarsely bounded from below by dQ(α∗i , α

∗
j ).

By Theorem 7.16 of [13], the latter is coarsely bounded from below by
dC(Υ(Zi),Υ(Zj)), which, in turn, by [27], is coarsely bounded from below
by R (recall that [ti − R, ti + R], [tj − R, tj + R] are disjoint subinterval of
the same Teichmüller geodesic [Y, Y ′] entirely contained in Tσ). Therefore,
provided that R is large enough also compared to the uniform size of the
product regions Vj , we have that V1, · · · , Vk are disjoint and, hence, linearly
aligned (because each ∂Vj is parallel to ∂CC(Q)). �

We remark that, with a little more effort, using the distance estimates
provided by Theorem 7.16 of [13] one can also establish that the linear
order of the product regions is V1 < · · · < Vk.

6.2. Random walks on the mapping class group. We now recall some
facts about random walks on Mod(Σ).

Standing assumptions. In the sequel we always consider
symmetric probability measures µ, that is µ(s) = µ(s−1),
whose support S is a finite generating set of the mapping
class group Mod(Σ).
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Associated to the random walk generated by µ is a space of sample paths
Ω := Mod(Σ)N endowed with the σ-algebra of cylinder sets and the proba-
bility measure P := T∗µ

⊗N where T : Ω→ Ω is the measurable map defined
by T (si)i∈N = (ωj := s1 · · · sj)j∈N.

We will use a geometric statement for the action of random mapping
classes on Teichmüller space. The following result is due to Tiozzo.

Theorem 6.3 (Tiozzo, Theorem 1 of [60]). Fix some basepoint o ∈ T in
the Teichmüller space of Σ. Then there exists LT > 0 such that for almost
all sample paths ω there exists a Teichmüller geodesic ray γω : [0,∞) → T
with γ(0) = o and such that

lim
n→∞

dT (ωno, γω(LT n))

n
→ 0.

Positivity of the drift LT is a consequence of work of Kaimanovich and
Masur [30].

There also is a statement concerning the action of the random walk on
the curve graph (C, dC) of Σ which is due to Maher and Tiozzo [38].

Theorem 6.4 (Maher-Tiozzo, Theorem 1.2 and Theorem 1.3 of [38]). Let
α ∈ C be a basepoint. Then there exists LC > 0 such that for almost every
sample path ω = (ωn)n∈N we have

lim
n→∞

dC(α, ωnα)

n
= LC > 0.

Moreover, for almost every sample path ω, there exists a uniformly quasi-
geodesic ray ηω ⊂ C which tracks the sample path sublinearly, that is,

lim
n→∞

dC(ωnα, ηω)

n
= 0.

As a combination of Theorem 6.3, Theorem 6.4 and [30] we have the
following statement. For its formulation, recall that a point in the Gromov
boundary ∂C of C is an unmeasured filling geodesic lamination on Σ.

Theorem 6.5 ([30], [60], [38]). For P-almost every sample path ω ∈ Ω, the
following holds true.

(1) For every base-point α ∈ C, the sequence {ωnα}n∈N ⊂ C converges to
a point λω ∈ ∂C in the Gromov boundary of C which is independent
of α.

(2) The point λω supports a unique transverse invariant measure up to
scale, and the Teichmüller ray τo,λω issuing from a fixed basepoint o ∈
T which is determined by λω, equipped with this transverse invariant
measure, has the sublinear tracking property from Theorem 6.3.

The next statement is Proposition 6.10 of [2].

Proposition 6.6. Let W ⊂ T be a Mod(Σ)-invariant open subset that
contains an axis of a pseudo-Anosov mapping class. Then for all h > 0
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there exists ĉ = ĉ(W,h) > 0 such that for almost every sample path ω, we
have

lim inf
1

T
|{t ∈ [0, T ] | τo,λω [t− h, t+ h] ⊂W}| > ĉ.

The Mod(Σ)-invariants sets W we are going to use in the sequel are the
sets Tσ for some suitably chosen numbers σ > 0.

6.3. Random walks on Teichmüller space. In this subsection we con-
sider the orbit map of a random walk on Mod(Σ) on Teichmüller space T .
We always assume that the random walk is generated by a symmetric prob-
ability measure µ whose finite support generates Mod(Σ). The results in
this section are small variations of statements available in the literature,
adjusted to our need. We provide proofs whenever we did not find a fully
fitting reference.

We begin with some information on the Teichmüller geodesic τo,fo con-
necting a fixed point o ∈ T to fo for a random mapping class f . To this
end we use a statement which is similar to statements from [27] and to
Proposition 4.6 of [22].

Lemma 6.7. Let δ > 0 and m > 0, k > 0. There exists R0(δ,m, k) > 0
with the following property. Let R ≥ R0(δ,m, k) and let η : [−R,R] →
Tδ be a Teichmüller geodesic segment. Let furthermore γ : R → T be a
Teichmüller geodesic whose projection to C contains the projection of η in
its k-neighborhood. Then η(0) is contained in the m-neighborhood of γ.

Proof. Assume that the lemma does not hold. Then there is a number δ > 0,
a number k > 0 and a number m > 0, and there is a sequence Ri →∞ and
a sequence of counter-examples, given by geodesic arcs ηi : [−Ri, Ri] → Tδ
and geodesics γi whose projections to C contain the projections of ηi in their
k-neighborhood, but such that dT (ηi(0), γi) ≥ m.

Since the mapping class group acts properly and cocompactly on Tδ, by
invariance under the action of the mapping class group we may assume that
ηi(0) is contained in a fixed compact subset of Tδ. Thus by passing to a
subsequence, we may assume that ηi → η : R → Tδ (i → ∞). Now the
projections Υ(ηi) of the segments ηi to the curve graph C are parametrized
p-quasi-geodesics for a number p > 0 only depending on δ [27], and the same
holds true for η. By convergence, as i→∞ the segments ηi fellow-travel η
on longer and longer subsegments. Moreover, the projection Υ is coarsely
Lipschitz and hence by hyperbolicity of the curve graph, the projections
of the endpoints of ηi to C converge to the endpoints of the quasi-geodesic
Υ(η) in the Gromov boundary ∂C of C. These endpoints are uniquely ergodic
filling measured geodesic laminations [27].

On the other hand, up to parametrization, the geodesics γi are determined
by a pair of points in the space PML of projective measured laminations.
By slightly changing γi without changing the property that the projection
of ηi is contained in the k-neighborhood of the projection of γi, we may
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assume that these endpoints are filling measured geodesic laminations and
hence they define a pair of points in ∂C. This pair of points can be connected
by a uniform quasi-geodesic in C which contains Υ(ηi) in its k-neighborhood.
As the distance between Υ(ηi(0)) and each of the two endpoints Υ(ηi(±Ri))
of Υ(ηi) tends to infinity with i, hyperbolicity of the curve graph implies
that the endpoints of the quasi-geodesics Υ(γi) converge as i → ∞ to the
endpoints of Υ(η).

Since the endpoints of Υ(η) in ∂C are uniquely ergodic, by the properties
of the topology on ∂C [33, 26], we conclude that the points in PML×PML
which determine γi converge in PML×PML to the point which determines
η. By continuity of the dependence of a Teichmüller geodesic on the pair
of its vertical and horizontal measured geodesic lamination, this implies
that γi → η. Thus by continuity, we have dT (ηi(0), γi) → 0. This is a
contradiction which proves the lemma. �

Lemma 6.7 can be applied to obtain a fellow traveling statement for Te-
ichmüller geodesics.

Definition. For numbers R > 0,m > 0 and a sufficiently small number
δ > 0, a Teichmüller geodesic segment η : [0, T ]→ T weakly (R,m, δ)-fellow
travels a (finite or infinite) Teichmüller geodesic γ if the following holds true.
Assume that [s, t] ⊂ [0, T ] is such that t − s ≥ 2R and η([s, s + 2R] ∪ [t −
2R, t]) ⊂ Tδ, then η[s+R, t−R] is contained in the m-neighborhood of γ.

Note that the definition is not symmetric in γ, η, and this fact will be
convenient for us.

As a consequence of Lemma 6.7, the main result of [27] and results of [54]
we obtain

Lemma 6.8. For every k > 0, δ > 0 there are numbers R = R1(k, δ) >
0,m = m(k, δ) > 0 with the following property. Let γ : (a, b)→ T be a finite
or infinite Teichmüller geodesic and let η : [0, T ] → T be a Teichmüller
geodesic segment such that Υ(η[0, T ]) is contained in the k-neighborhood of
Υ(γ(a, b)) ⊂ C. Then η weakly (R,m, δ)-fellow travels γ.

Proof. By the main result of [27], for a number δ > 0, the image under the
projection Υ of a sufficiently long Teichmüller geodesic segment γ is a uni-
form quasi-geodesic in the curve graph if and only if γ is entirely contained
in the thick part of Teichmüller space, and this statement can be made
quantitative, relating the thickness constant to the quasi-geodesic constant.

Since the image under the projection Υ of any Teichmüller geodesic is a
uniform unparametrized quasi-geodesic in the curve graph, we conclude that
the projection to the curve graph of a sufficiently long Teichmüller geodesic
segment detects when the segment is contained in Tδ for an a priori chosen
number δ > 0.
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Lemma 6.7 then states that up to a constant which depends on δ, the
precise location of such a sufficiently long Teichmüller geodesic segment in
Tδ is determined by its projection into the curve graph.

This completes the proof of the lemma as follows. If Υ(η[0, T ]) is con-
tained in the k-neighborhood of Υ(γ), then the projection to the curve
graph of a sufficiently long subsegment of η contained in Tδ is a uniform
parametrized quasi-geodesic which uniformly fellow travels the projection of
some segment of γ. Using Lemma 6.7, we conclude that under the assump-
tion of the lemma, for given δ > 0, k > 0 there is a number R = R(k, δ) > 0
such that if [s, s + 2R] ⊂ [0, T ] and η[s, s + 2R] ⊂ Tδ, then η(s + R) is
contained in the 1-neighborhood of γ.

Now the main result of [54] implies that two Teichmüller geodesic seg-
ments whose endpoints are of distance at most 1 and contained in Tδ are
uniform fellow travelers, where the uniformity constant m = m(1, δ) depends
on δ. This completes the proof the lemma. �

In the statement of the following proposition, for a subset A of T and a
number m > 0, we denote by Nm(A) the neighborhood of radius m about A
for the Teichmüller metric. The following result is the main technical result
for random walks on Teichmüller space needed towards our goal. In its for-
mulation, LT denotes as before the drift of the random walk on Teichmüller
space.

Proposition 6.9. Let µ be a symmetric probability measure on Mod(S)
whose support is a finite generating set. There exists a number m > 0 such
that for all ε > 0, we have

P[ω ∈ Ω | τo,ωno[0, nLT (1− ε)] ⊂ Nm(τo,λω)]
n→∞−→ 1.

Proof. Let δ > 0 be sufficiently small that T2δ contains the axis of a pseudo-
Anosov element and let o ∈ T2δ by the basepoint for the random walk on
T . Consider the projection of the random walk to the curve graph via the
systole map Υ. Denote as before by LC > 0 the drift of this random walk.

By hyperbolicity of the curve graph, there exists a number k > 0 with the
following property. Let p > 1 be such that the projection of a Teichmüller
geodesic to C is an unparametrized p-quasi-geodesic. Then if α, β : R →
C are two simplicial p-quasi-geodesics and if the diameter of the shortest
distance projection of α into β equals q > 0, then there is a subsegment of
α of length at least q − 2k which is contained in the k-neighborhood of β.

For this number k > 0 and for an arbitrarily chosen number σ > 0, we
obtain from Proposition 2.6 and Proposition 2.9 of [22] that we have

P[ω ∈ Ω | Υ(τo,ωno[0, ρ(ωn)]) ⊂ Nk(Υ(τo,λω [0,∞))]
n→∞−→ 1

where

ρ(ωn) = sup{t | dC(Υ(o),Υ(τo,λω(s)) ≤ (1− σ)nLC ∀s ≤ t}.
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Furthermore, we have

P[ω ∈ Ω | lim
T→∞

1

T
dC(Υ(o),Υ(τo,λω(T ))) = LC/LT ] = 1

(this fact can be found in many references, for example, it is the identity
(13) in [2]). As a consequence, we obtain that

P[ω ∈ Ω
∣∣ρ(ωn) ≥ (1− σ)2nLT ]

n→∞−→ 1.

Let R = R1(k, δ) > 0 be as in Lemma 6.8 and let ε > 0. By Lemma 6.8,
the assumption that o ∈ T2δ and by [54], fellow traveling almost surely of
τo,ωno and τo,λω on a segment of length (1− ε)LT n is guaranteed if for σ > 0
with (1− σ)2 > 1− ε/4 we have

P[ω ∈ Ω | there is t ∈ [(1− ε)nLT , (1− σ)2nLT ]

such that τo,λω [t−R, t+R] ⊂ Tδ]
n→∞−→ 1.

That this holds indeed true is shown in Proposition 6.14 of [2]. �

6.4. Random handlebodies. From now on we fix a handlebody Hg and
a marking of the boundary surface Σ. Let D be corresponding disk set.
Maher, exploiting work of Kerckhoff [31] (see also Gadre [25]), showed the
following:

Theorem 6.10 (Maher, [37]). The Hempel distance increases linearly along
the random walk, that is, there exists a constant K > 1 such that

P [ω ∈ Ω | dC(D, ωnD) ∈ [n/K,Kn]]
n→∞−→ 1.

Furthermore, the convergence in Theorem 6.10 happens exponentially fast
as proved by Lubotzky-Maher-Wu [36].

Maher’s theorem has a few immediate consequences. First of all, for a
random mapping class ωn, the 3-manifold Mωn is hyperbolic (see Hempel
[29] and Dunfield-Thurston [23]). Furthermore, let us choose once and for
all a basepoint o ∈ Tδ contained in the δ-thick part of Teichmüller space
for a suitably chosen number δ > 0. We select o so that it admits a short
complete clean marking whose base is a pants decomposition made of disk-
bounding curves for Hg. By Theorem 6.4, the distance in the curve graph
between Υ(o) and Υ(ωno) makes linear progress in n, and by Theorem 6.10,
it makes linear progress away from the disk-bounding curves. Here as before,
Υ : T → C denotes the systole map.

This property, however, is not sufficient to conclude that for a random
element ωn ∈ Mod(Σ), the manifold Mωn satisfies the assumptions in Propo-
sition 6.1. As additional properties, we have to control the transition of the
Teichmüller geodesic segment τo,ωno connecting o to ωno through the thick
part of Teichmüller space while controlling the rate of divergence of its trace
from the disk set. We next establish this control.

Thus let ωn ∈ Mod(Σ) be a random mapping class.
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The subset Gωn := Υ(τo,ωno) of the curve graph C is a uniform un-
parametrized quasi-geodesic. Denote by πGωn

the nearest point projection
of the curve graph C onto Gωn . Hyperbolicity of C yields that the projec-
tion πGωn

(D) is a quasi-convex subset of Gωn , with control constants not
depending on ωn. Let |πGωn

(D)| be its diameter. Our next goal is to prove
that as the step length tends to infinity, this diameter is arbitrarily small
compared to the diameter |Gωn | of Gωn . This implies that Υ(τo,ωno) can
only be close to D on a small initial segment.

Proposition 6.11. Let g ≥ 2 and ε > 0 be fixed. Let µ be a symmetric
probability measure on Mod(Σ) whose support is a finite generating set. We
have

P[ω ∈ Ω
∣∣We have |πGωn

(D)|/|Gωn | ≤ ε ]
n→∞−→ 1.

Proof. Let K > 0 be the constant from Theorem 6.10 and let LC be the
constant from Theorem 6.4. Let ε > 0 be such that LCε < 1/2K.

Let α := Υ(o) ∈ C. By the choice of o ∈ T , we may assume that α is
disk-bounding in the handlebody Hg.

For n0 > 0 let Ωn0 ⊂ Ω be the set of all sample paths ω = (ωn) such that
for all n ≥ n0 the following properties are fulfilled.

(1) LC(1− ε/2)n ≤ dC(α, ωnα) ≤ LC(1 + ε/2)n.
(2) Let γω be a uniform quasi-geodesic ray in C connecting γω(0) = α

to γω(∞) = λω. Then dC(γω, ωnα) ≤ LCεn/2.
(3) dC(D, ωnD) ≥ n/2K.

Note that we have Ωn1 ⊃ Ωn0 for all n1 ≥ n0. By Theorem 6.4 and Theorem
6.10, for every ρ > 0 there exists a number n0 = n0(ρ) > 0 so that P(Ωn0) ≥
1− ρ for all n ≥ n0.

The disk set D ⊂ C is quasi-convex. Thus, by hyperbolicity of C, there
exists a number A > 0 with the following property. Let ζ : [0,∞) → C
be a uniform quasi-geodesic ray beginning at ζ(0) = α ∈ D. If t > 0 is
such that dC(ζ(t),D) > A and if β ∈ C is such that ζ(t) equals a shortest
distance projection of β into ζ, then a shortest geodesic connecting β to D
passes through a uniformly bounded neighborhood of ζ(t). In particular, up
to increasing A, the point ζ(t) is not contained in the image of the shortest
distance projection of D into the uniform quasi-geodesic ray ζ.

Assume from now on that n0/4K > A. Let (ωn) ∈ Ωn0 and let n ≥ n0.
Denote by γω the quasi-geodesic ray in C as in property (2) above. Then,
on the one hand, we have

LC(1− ε/2)n ≤ dC(α, ωnα) ≤ LC(1 + ε/2)n,

on the other hand, also dC(γω, ωnα) ≤ LCεn/2. In particular, by property
(3) above, the nearest point projection qn of ωnα into γω is of distance at
least n/2K−LCεn/2 ≥ n/4K > A from D. This implies that a geodesic in C
which connects ωnα to a shortest distance projection into D passes through a
uniformly bounded neighborhood of qn. Using again uniform quasi-convexity
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of D and the fact that α ∈ D, we conclude that the diameter of the shortest
distance projection of D into the uniform quasi-geodesic Υ(τo,ωno) does not
exceed the distance between α and qn0 . Hence this diameter is at most
LC(1 + ε)n0, independent of n ≥ n0 and ω ∈ Ωn0 .

Choose n1 > 0 sufficiently large that LC(1 + ε)n0 ≤ εLC(1 − ε)n1. Then
for ω ∈ Ωn0 and for n ≥ n1, the distance between ωnα and α is at least
LC(1− ε/2)n, while the diameter of the projection of D into Υ(τo,ωno) does
not exceed LC(1 + ε)n0. By the choice of n1, this means that for n ≥ n1

and every ω ∈ Ωn0 , the properties required in the proposition are fulfilled
for ωn, that is, we have |πGωn

(D)| ≤ ε|Gωn | as claimed.

As ρ > 0 was arbitrary, the proposition follows. �

Let as before A > 0 be sufficiently large that the following holds true. Let
γ : [0,∞) → C be a uniform quasi-geodesic beginning at the disk-bounding
curve γ(0) = α (this should mean that we choose once and for all a quasi-
geodesic constant so that any two distinct points in C ∪∂C can be connected
by a quasi-geodesic for this constant). We require that whenever β ∈ C is
such that a shortest distance projection γ(t) of β into γ has distance at least
A from the set D of disk-bounding curves in Hg, then a shortest geodesic
connecting β to D passes through a uniformly bounded neighborhood of
γ(t). That such a number A > 0 exists was a main technical ingredient in
the proof of Proposition 6.11.

Consider again a symmetric probability measure µ on Mod(Σ) whose
support is a finite generating set and which induces the probability measure
P on Ω. Let δ,R, ε > 0 be arbitrarily fixed. We require that δ > 0 is small
enough that the conditions in Proposition 6.6 are fulfilled for W = T2δ.

Let f ∈ Mod(Σ) and consider the Teichmüller geodesic τo,fo connecting
o to fo. We say that τo,fo is (R, δ, ε)-admissible if the following holds true.
There exist numbers ρ1, ρ2 ≤ εdT (o, fo) such that:

• The distance between Υ(τo,fo[ρ1 − 2R, ρ1]) and D and the distance
between Υ(τo,fo[dT (o, fo) − ρ2, dT (o, fo) − ρ2 + 2R]) and fD is at
least A.
• τo,fo([ρ1 − 2R, ρ1] ∪ [dT (o, fo)− ρ2, dT (o, fo)− ρ2 + 2R]) ⊂ Tδ.

Thus if the Teichmüller geodesic segment τo,fo is admissible, then it con-
tains a subsegment of length at least 2R which is contained in the δ-thick
part of Teichmüller space, whose projection to the curve graph is separated
from the set of disk-bounding curves in a controlled way, and which is located
uniformly near the starting point of the geodesic. Furthermore, there also
is a segment of length at least 2R with these properties near the endpoint
of the geodesic segment.

Proposition 6.12. We have

P[ω ∈ Ω | The segment τo,ωno is (R, δ, ε)-admissible ]
n→∞−→ 1.
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Proof. Let R > 0, let δ > 0 be sufficiently small but fixed, and let ε > 0.
Let furthermore σ > 0. For n > 0 define

Ωn,0 := {ω ∈ Ω | dT (o, ωno) ∈ [nLT (1− ε/2), nLT (1 + ε/2)] and

τo,ωno[εnLT /2, εnLT ] contains a segment of length 2R in Tδ}.

Proposition 6.9 together with Proposition 6.14 of [2] shows that

P(Ωn,0)
n→∞−→ 1.

On the other hand, if for a fixed number A > 0, chosen as above, we define

Ωn,1 := {ω ∈ Ω | dC(Υ(τo,ωno(εnLT /2)), πGωn
(D)) ≥ A},

then Proposition 6.11 shows that

P(Ωn,1)
n→∞−→ 1.

Now if ω ∈ Ωn,0 ∩ Ωn,1, then there exists an initial segment of length 2R
on the geodesic τo,ωno which is mapped into Tδ as required in the definition
of admissibility, and this segment is separated away from the projection of
the disk sets into the projection of τo,ωno. Thus, such an element fulfills
the requirement in the definition of admissibility near the starting point of
τo,ωno. Reversal of time then implies that with probability tending to 1 as
n→∞, we may assume that the same is true for the inverse τωno,o. Together
this shows the proposition. �

6.5. Good gluing regions. The goal of this subsection is to show Propo-
sition 6.1. The argument is very similar to the argument in the proof of
Proposition 6.11.

We begin with a volume control for convex-cocompact hyperbolic struc-
tures on handlebodies. To this end choose as before a marking η for the
boundary Σ of the handlebody Hg so that the base pants decomposition
consists of disk-bounding curves. The following proposition is well known
in various settings. As we did not find a directly quotable statement in the
literature, we sketch a proof.

Proposition 6.13. Let ε > 0 be a fixed number and let ν be any complete
clean marking on Σ with the property that the distance in the curve graph
of a component of ν to a disk-bounding curve is at least three. Suppose
that Hg is equipped with a convex-cocompact hyperbolic structure H(X) with
conformal boundary X ∈ Tδ such that ν is short for X. Then the volume
of the convex core of H(X) is bounded from above by a fixed multiple of the
distance between η, ν in the marking graph.

Proof. We proceed as in the volume estimate in Lemma 5.10 and show that
we can cover CC(H(X)) with a straight triangulation whose number of sim-
plices is bounded from above by a fixed multiple of the distance between
η, ν in the marking graph.
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Let us consider for the moment an abstract handlebody H of genus g
and a complete clean marking η̂ of ∂H whose pants decomposition consists
of disk-bounding curves. The disks bounded by these curves decompose
H into balls. Thus, up to a diffeomorphism of H, there are only finitely
many combinatorial possibilities for the marking η̂. As a consequence, a
triangulation of ∂H constructed from η̂ by adding diagonals can be extended
to a triangulation of H with uniformly few simplices.

Now, the pants decomposition of the marking η consists of disk-bounding
curves and hence there exists an embedded handlebody H ⊂ CC(H(X))
with the following property.

• CC(H(X))− int(H) is diffeomorphic to Σ× [0, 1].
• H is triangulated into uniformly few simplicies, and the restriction

of this triangulation to ∂H = Σ × {0} ⊂ CC(H(X)) is constructed
from the marking which is the image of η ⊂ Σ× {1} = ∂CC(H(X))
by the diffeomorphism Σ× {1} → Σ× {0} isotopic to the inclusion.

By Lemma 5.11, we can extend this triangulation to CC(H(X))−int(H) in
such a way that restriction to Σ×{1} is a subdivision of ν and the number of
simplices is bounded from above by a fixed multiple of the distance between
η and ν in the marking graph.

By the assumption that ν is short for X, the marking ν is short for the
boundary of the convex core (by Theorem 2.1). Thus straightening this
triangulation yields a triangulation of a subset of CC(H(X)) whose comple-
ment is contained in a uniformly bounded neighborhood of the boundary.
Since the boundary has uniformly bounded diameter, such a neighborhood
has uniformly bounded volume. This yields the proposition. �

We are now ready to complete the proof of Proposition 6.1.

Proof of Proposition 6.1. Let o ∈ Tσ be a point in the thick part of Te-
ichmüller space for which a fixed complete clean marking η on Σ with pants
curves consisting of disk-bounding curves in the handlebody Hg is short.
The strategy is to find a quadruple of points Y < X < X ′ < Y ′ on the Te-
ichmüller geodesic τo,ωno connecting o to its image under a random mapping
class ωn which fulfills the assumptions in Theorem 5.12. Furthermore, the
points Y,X should be contained in the initial subsegment of the geodesic
of length at most ε times the total length, and the points X ′, Y ′ should be
contained in the terminal subsegment of the geodesic of length at most ε
times the total length.

Using Proposition 6.13, we then argue that the sum of the volumes of the
convex-cocompact handlebodies corresponding to this initial and terminal
segments of the Teichmüller geodesic cut at X,X ′ are small compared to
the volume of the center piece. Using Lemma 6.2, we will then show that
the center piece contains linearly aligned product regions as predicted in the
proposition.
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By Proposition 6.12, it suffices to assume that for an a priori given con-
stant R > 0, the Teichmüller geodesic τo,ωno is (R, σ, ε)-admissible. Let us
assume that ρ1 < εdT (o, ωno) and ρ2 > (1−ε)dT (o,ωno) are as in the definition
of (R, σ, ε)-admissibility. Combining Proposition 6.9, Proposition 6.6 and
Proposition 6.12, we conclude that we may assume that the total measure
of the closed set A ⊂ [ρ1, ρ2] of all points t such that τo,ωno[t−R, t+R] ⊂ Tσ
is at least ĉdT (o, ωno)/2.

Let λ be the standard Lebesgue measure on R and form ≥ 1 define t(m) >
0 by t(m) = sup{t ∈ A | λ[ρ1, t] ∩ A < 2mR}. Since A is closed, we have
t(m) ∈ A. Furthermore, as λ is the standard Lebesgue measure, we also have
t(m−1) ≤ t(m)−2R. In particular, the open intervals (t(m)−R, t(m)+R)
are pairwise disjoint, moreover there are at least ĉ/4R such intervals.

Consider the quasi-fuchsian manifold defined by the (R, σ, ε)-good gluing
region and the Teichmüller segment τo,ωno. Lemma 6.2 shows that this quasi-
fuchsian manifold satisfies property (d) in the definition of a gluing with
(ε, b, δ)-controlled geometry where δ > 0 depends on σ and the constant R =
R(b, σ) > 0 as above also depends on the choice of the a priori prescribed
number b > 1. This completes the proof of the proposition. �

7. Geometric control of random hyperbolic 3-manifolds

In Section 6 we established that a random hyperbolic 3-manifold of Hee-
gaard genus g admits a Riemannian metric of sectional curvature close to
−1 with some specific geometric properties. Furthermore, for any given
numbers b > 1, δ > 0, a definitive proportion of the volume for this metric
is contained in a union of pairwise disjoint linearly aligned (b, δ)-product
regions. Here the proportionality constant depends on the numbers b, δ.

The main goal of this section is to show that this property carries over to
the hyperbolic metric on a random 3-manifold. The following proposition
shows that this suffices for the proof of Theorem 1 from the introduction.

Proposition 7.1. For fixed g ≥ 2, δ > 0 and sufficiently large b > 1, there
exists a number C = C(g, b, δ) > 0 with the following property. Let M be a
hyperbolic 3-manifold, and suppose that M contains n ≥ 1 pairwise disjoint
linearly aligned (b, δ)-product regions of genus g. Then λ1(M) ≤ C/n2 and
λn(M) ≤ 1/C.

Proof. The argument follows the proof of Proposition 4.4 of [2]. For com-
pleteness, we give a sketch.

Let M be as in the proposition. Denote by V = ∪ni=1Vi ⊂ M the union
of the n linearly aligned (b, δ)-product regions of genus g whose existence is
assumed in the statement of the proposition. Assume that the components
V1, . . . , Vn of V are ordered in such a way that for all i < n, the components Vi
and Vi+1 are contained in the boundary of the same component of M−V. By
Proposition 2.3 of [2] (which is local and hence whose proof carries over to the
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situation at hand), we may assume that the boundaries of the components
Vi are smooth. Furthermore, we may assume that there exists a number
L > 0 only depending on b, and for each i there exists a diffeomorphism
ψi : Vi → Σ× [0, 1] which is L-Lipschitz. We choose this diffeomorphism in
such a way that it maps the boundary component of Vi which is shared with
the component of M − Vi containing Vi−1 to Σ× {0}.

For each i there exists a smooth function

fi : Vi → [i− 1, i]

of uniformly bounded derivative which maps ψ−1
i (Σ × {0}) to i − 1, and

maps ψ−1
i (Σ× {1}) to i. Define a function f : M → [0, n] by f |Vi = fi and

by the requirement that f is constant on each of the components of M −V.

Define functions α, β on [0, n] by

α(s) =

{
sin(2πs/n), if 0 ≤ s ≤ n/2
0 if n/2 ≤ s ≤ n

and

β(s) =

{
0, if 0 ≤ s ≤ n/2
sin(2π(s− n/2)/n), if n/2 ≤ s ≤ n.

Then α ◦ f, β ◦ f are smooth, with supports intersecting in a zero volume
set, and their Rayleigh quotients are uniformly equivalent to 1/n2. Namely,
the Rayleigh quotients of α, β are π2/n2, and since f has uniformly bounded
derivative, the Rayleigh quotients of α, β are uniformly equivalent to the
Rayleigh quotients of α ◦ f, β ◦ f .

By the Minmax theorem for the spectrum of the Laplacian, we know
that for any set of functions ρ0, . . . , ρk : M → R whose supports pairwise
intersect on zero-volume sets, we have λk ≤ max{R(ρi) | 0 ≤ i ≤ k} and
therefore λ1(M) ≤ max{R(α ◦ f),R(β ◦ f)}. From this we conclude that
λ1(M) ≤ d/n2 where d > 0 is a universal constant.

The same argument can be applied to the functions

ρi(x) =

{
sin(πfi(x)), if x ∈ Vi
0 otherwise

whose Rayleigh quotient is uniformly bounded and whose supports are pair-
wise disjoint. This yields that λn(M) ≤ c where c > 0 is a universal con-
stant. �

Theorem 1 from the introduction now follows from Proposition 6.1, Lemma
7.1 and the following statement which is the main result of this section.
Recall that by hyperbolization, a closed 3-manifold M which admits a Rie-
mannian metric of sectional curvature contained in [−1− ε,−1 + ε] for some
ε < 1/2 admits a hyperbolic metric, unique up to isometry by Mostow rigid-
ity.
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Theorem 7.2. For every g ≥ 2, a ∈ (0, 1), b > 4, δ > 0 there exist numbers
ε = ε(g, a, b, δ) > 0, a′ = a′(g, a, b, δ) ∈ (0, 1) with the following property. Let
M be a closed aspherical atoroidal 3-manifold of Heegaard genus g, and let ρ
be a Riemannian metric on M of curvature contained in (−1−ε,−1+ε). As-
sume that (M,ρ) contains a linearly aligned collection V of pairwise disjoint
(b, δ)-product regions of genus g whose total volume is at least avol(M,ρ).
Let ρ0 be the hyperbolic metric on M . Then (M,ρ0) contains a linearly
aligned collection W of pairwise disjoint (b− 1, δ/2)-product regions of vol-
ume at least a′vol(M,ρ0).

By Proposition 6.1, for a fixed choice of a number b > 4 and sufficiently
small δ > 0, a random 3-manifold M of Heegaard genus g admits a Rie-
mannian metric ρ which fulfills the assumption in Theorem 7.2 for some
number a ∈ (0, 1). Note that b, δ are independent of M , and the number
a ∈ (0, 1) depends on the random walk. Thus Theorem 1 is an immediate
consequence of Theorem 7.2 and Proposition 7.1.

We are left with the proof of Theorem 7.2 which is carried out in the
remainder of this section. We use a construction of [6], [7]. The following is
a special case of the main result of [7].

Theorem 7.3. Let (M,ρ) and (M0, ρ0) be closed oriented Riemannian man-
ifolds of dimension 3 and suppose that for some constant b ≥ 1

Ricρ ≥ −2, and − b2 ≤ Kρ0 ≤ −1.

If there exists a map f : M →M0 of degree one then

vol(M,ρ) ≥ vol(M0, ρ0),

with equality if and only if (M,ρ), (M0, ρ0) are isometric and hyperbolic.

Here Ricρ and Kρ0 are the Ricci curvature and the sectional curvature of
ρ and ρ0.

Corollary 7.4. For ε < 1/2 let ρ be a Riemannian metric on the closed
3-manifold M of curvature contained in (−1 − ε,−1 + ε) and let ρ0 be the
hyperbolic metric on M . Then

vol(M,ρ)/vol(M,ρ0) ∈ [(1− ε)3/2, (1 + ε)3/2].

Proof. Rescaling the metric ρ with the factor (1− ε)−1 yields a new metric

on M whose volume is (1 − ε)−3/2vol(M,ρ) and whose sectional curvature
is bounded from below by −1. In particular, the Ricci curvature of this
metric is at least −2. An application of Theorem 7.3 then implies that
vol(M,ρ) ≥ (1− ε)3/2vol(M,ρ0).

Similarly, rescaling the metric ρ on M with the factor (1 + ε)−1 yields a
metric whose sectional curvature is bounded from above by −1 and whose
volume equals (1 + ε)−3/2vol(M,ρ). Another application of Theorem 7.3,
with the roles of (M,ρ) and (M,ρ0) exchanged, shows that vol(M,ρ0) ≥
(1 + ε)−3/2vol(M,ρ). Together the corollary follows. �
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The volume entropy h(ρ) of a negatively curved metric ρ on M is the
asymptotic growth rate of the volume of balls in its universal covering. The
volume entropy of a hyperbolic metric equals 2, and the volume entropy of
a metric whose sectional curvature is bounded from below by −b2 for some
b > 0 is at most 2b.

For c > h(ρ) there exists a smooth natural map Fc : (M,ρ) → (M,ρ0)
[6]. The following statement summarizes some of the results from Section
7 of [6]. Part of the statement is only implicitly contained in [6], but an
explicit version can be found in Theorem 2.1 of [8]. We always assume that
the constant ε which controls the curvature of M is smaller than 1/2 and
that the number c > h(ρ) is bounded from above by 4 to make all constants
uniform.

Proposition 7.5. Let c > h(ρ) and let Fc : (M,ρ)→ (M,ρ0) be the natural
map.

(1) Fc is of degree one, and its Jacobian satisfies

|Jac(Fc)| ≤
( c

2

)3
pointwise.

(2) There are κ > 0, r ∈ (0, 1) and L > 1 not depending on (M,ρ) with
the following property. If x ∈ (M,ρ) is such that |Jac(Fc)(x)| ≥
(1− κ)( c2)3 then the restriction of the map Fc to the ball B(x, r) of
radius r about x in (M,ρ) is L-Lipschitz.

(3) For all θ > 0 and x ∈M there exists β > 0 such that if |Jac(Fc)(x)| ≥
(1− β)( c2)3 then

(1− θ)( c
2

)3 < |dxFc(v)| < (1 + θ)(
c

2
)3

for all unit tangent vectors v ∈ TxM .

The strategy is now as follows. Given a ∈ (0, 1) and b > 4L where L > 1
is as in Proposition 7.5, for a manifold (M,ρ) which fulfills the assumption
in Theorem 7.2 for sufficiently small ε > 0, we find a union W ⊂ V of
components of the collection V of (b, δ)-product regions in (M,ρ) whose
total measure is large and such that the restriction to this set of the natural
map Fc : (M,ρ)→ (M,ρ0) for a suitably chosen c > h(ρ) has large Jacobian
outside of a subset which does not contain any ball of radius r where r > 0 is
as in the second part of Proposition 7.5. Proposition 7.5 then yields that the
map Fc is uniformly Lipschitz onW. We then argue that the image under Fc
of a (b, δ)-product region in W contains a (b′, δ′)-product region in (M,ρ0)
where b′ is close to b and δ′ is close to δ. The geometric control on the image
of the map Fc is then used to show that suitably chosen sub-regions of these
image product regions of controlled total volume are pairwise disjoint and
linearly aligned.

The following lemma establishes a first volume control. In its formulation,
the numbers r > 0, L > 1 are as in Proposition 7.5.
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Lemma 7.6. Let a ∈ (0, 1), b > max{10r, 4}, δ > 0 and ξ > 0. There exists
a number ε0 = ε0(a, b, δ, β) > 0 with the following property. Let (M,ρ) be
as in Theorem 7.2, with sectional curvature contained in (−1− ε0,−1 + ε0).
Then for c > h(ρ) sufficiently close to h(ρ), there is a subset W ⊂ V with
the following properties.

(1) W is a union of components of V, and its total volume is at least
avol(M,ρ)/2.

(2) The restriction of Fc to each component of W is L-Lipschitz, and
its image is contained in the σ-thick part of (M,ρ0) for a universal
constant σ > 0.

(3) If V is any component of W then vol(Fc(V )) ≥ (1 − ξ)vol(V ),
and there exists a subset A of V with vol(A) ≥ avol(V ) such that
F−1
c (Fc(x)) ⊂ V for all x ∈ A.

Proof. Let r > 0 be as in the second part of Proposition 7.5. Assume
without loss of generality that r < 1. For x ∈ (M,ρ) let B(x, r) be the
open ball of radius r about x. Let V be a union of (b, δ)-product regions as
in the statement of Theorem 7.2. Since the components of V are linearly
aligned and b > 4, any ball B(y, r) in (M,ρ) intersects at most two different
components of V.

Let us consider a point x ∈ V. The injectivity radius of (M,ρ) at x
is at least δ. Therefore by comparison, the volume of the ball B(x, r) is
bounded from below by a universal constant α > 0. On the other hand,
as the diameters of the boundary surfaces of a component V of V are uni-
formly bounded, the volume of the r-neighborhood Nr(V ) of V is bounded
from above by a universal constant β > 0. Thus if x ∈ V then the ratio
vol(B(x, r))/vol(Nr(V )) is bounded from below by a universal constant α/β.

Let ξ > 0. Define

Z = {x ∈M | |Jac(Fc)(x)| ≥ (1− ξ)( c
2

)3}.

By Corollary 7.4 and the first part of Proposition 7.5, for sufficiently small
ε > 0 and for c > h(ρ) sufficiently close to h(ρ), the volume of the union
W of all components V of V with the property that Nr(V ) − Z does not
contain a ball of radius r centered at a point x ∈ V is at least 3avol(M)/4.
Namely, if V1, . . . , Vk are the components of V−W and if xi ∈ Vi is such that
B(xi, r) ⊂ M − Z, then by the above discussion, any of the balls B(xi, r)
intersects at most one other ball B(xj , r) for j 6= i. In particular, at least
k/2 of the balls B(xi, r) are pairwise disjoint and hence

vol(∪iB(xi, r)) ≥ kα/2.

Thus if vol(V −W) ≥ avol(M,ρ)/4 then vol(∪iB(xi, r)) ≥ αavol(M,ρ)/8β.
But the restriction of Fc to ∪iB(xi, r) decreases the volume by a definitive
factor. For ε > 0 sufficiently close to 0 and c − h(ρ) > 0 sufficiently small,
this violates Corollary 7.4.



SMALL EIGENVALUES OF RANDOM 3-MANIFOLDS 47

By the second part of Proposition 7.5, the restriction of Fc to any com-
ponent V of W is L-Lipschitz where L > 1 is a universal constant. In
particular, if γ is a closed loop entirely contained in V , then the length of
its image Fc(γ) is at most L times the length of γ.

By the definition of a (b, δ)-product region, for an arbitrary point x ∈ V
the subgroup of π1(M) generated by the homotopy classes of uniformly short
loops at x which are entirely contained in V is not virtually abelian. But
this implies that for any point y ∈ Fc(V ), there are closed loops of uniformly
bounded length passing though y which generated a non-solvable subgroup
of π1(M). As a consequence, the set Fc(V ) is contained in the σ-thick part
of (M,ρ0) for a universal constant σ > 0. Together this shows the first and
second part of the lemma.

Now if V is a component of W and if B = {x ∈ V | |F−1
c (Fc(x)) 6⊂ V }

then the volume of (M,ρ0) equals the volume of Fc(M −B). Thus as ε→ 0
and c − h(ρ) → 0, by volume comparison the proportion of the volume
of W contained in the union of those components of W which violate the
conditions in the third part of the lemma has to tend to zero. This then
implies the third part of the lemma. �

For a number ξ > 0 we say that a map F between two metric spaces X,Y
is a ξ-coarse isometry if |d(Fx, Fy)− d(x, y)| ≤ ξ for all x, y.

Lemma 7.7. For b′ < b, δ′ < δ and ξ > 0 there exists a number ε0 = ε0(b′, δ′)
with the following property. Let (M,ρ) be as in Lemma 7.6 and let V be a
component of W where W is as in Lemma 7.6, then the restriction of Fc to
V is a ξ-coarse isometry whose image contains a (b′, δ′)-product region of
genus g.

Proof. We argue by contradiction and we assume that a number ε0 > 0 as in
the lemma does not exist. Then there exists a sequence of closed 3-manifolds
(Mi, ρ) which fulfill the assumptions in Theorem 7.2 for a sequence εi → 0
and fixed numbers g ≥ 2, a > 0, b > 4, δ > 0 and such that for each i, there
is a component Vi of the collection Wi as in Lemma 7.6 whose image under
the natural map Fi : (Mi, ρ) → (Mi, ρ0) does not contain a (b′, δ′) product
region where b′ < b and δ′ < δ are fixed constants. Note that in contrast
to similar statements in the literature, we do not assume the existence of a
bound on the diameters of the manifolds (Mi, ρ). Let as before ρ0 be the
hyperbolic metric on the manifold Mi.

Let hi be the volume entropy of Mi. We know that hi → 2 (i → ∞).
Choose a sequence χi → 0 such that hi < 2 + χi. For each i consider
the natural map Fi : (Mi, ρ) → (Mi, ρ0) for the parameter ci = 2 + χi.
By the choice of Wi and the second part of Lemma 7.6, we know that the
restriction of Fi to Vi is L-Lipschitz where L > 1 does not depend on i.
Furthermore, for each β > 0, the measure of the set of all points z ∈ Vi
so that |Jac(Fi)(x)| ≤ (1 − β)( ci2 )3 tends to zero as i → ∞. By the third
part of Proposition 7.5, as i → ∞, on a subset of the component Vi of Wi
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containing a larger and larger proportion of the volume of Vi, the differential
of Fi is close to an isometry.

For each i let xi ∈ Vi. The set Fi(Vi) is contained in the σ-thick part
of (Mi, ρ0) where σ does not depend on i. Thus by passing to a subse-
quence, we may assume that the pointed manifolds (Mi, xi, ρ) converge in
the geometric topology to a pointed hyperbolic manifold (M,x) and that
the pointed hyperbolic manifolds (Mi, Fi(xi), ρ0) converge in the geometric
topology to a pointed hyperbolic manifold (N, y).

Let (V, x) be the geometric limit of the pointed (b, δ)-product regions
(Vi, xi). Then V is a (b, δ)-product region in M containing the basepoint
x. Furthermore, as the restriction of Fi to Vi is L-Lipschitz for a universal
constant L > 1, up to passing to another subsequence we may assume that
Fi|Vi converges to an L-Lipschitz map F : (V, x)→ (N, y).

By the definition of geometric convergence, for large enough i there exists
a (1 + ξi)-bilipschitz homeomorphism φi of a neighborhood U of V in M
onto a neighborhood Ui of Vi in Mi where ξi → 0 (i → ∞). We use φi to
identify U with Ui.

As i→∞ and by the choice of the sets Vi, the Jacobians of the restriction
of Fi to Vi converge to one almost surely. We now follow the reasoning in the
proof of Lemma 7.5 of [6]. Namely, using the map φ−1

i we can think of Ui
as a neighborhood of V in M . Egoroff’s theorem then implies that for each
n there exists a subset Kn ⊂ V with vol(V −Kn) < 1/n and such that on
Kn the differentials dFi converge to an isometry uniformly. By Lemma 7.7
and Lemma 7.8 of [6], the map F |V is one-Lipschitz. Its differential exists
almost everywhere and is an isometry. It then follows from the appendix
that F : V → N is an isometric embedding. In particular, F (V ) is a (h, δ)-
product region in N , and for sufficiently large i the map Fi is a ξ-coarse
isometry.

Geometric convergence now implies that for large enough i, the image of
Vi under Fi is a (b′, δ′)-product region in (Mi, ρ0). This is a contradiction
to the assumption on the sets Vi. �

Proof of Theorem 7.2. We showed so far that for sufficiently small ε0 > 0, if
(M,ρ) is as in Theorem 7.2, of sectional curvature contained in (1−ε0, 1+ε0),
then (M,ρ0) contains a union of (b′, δ′)-product region for some b′ close to b,
δ′ close to δ which cover a fixed proportion of the volume of (M,ρ). These
product regions are the images under a suitably chosen natural map Fc
of a subcollection W ⊂ V of the family V of (b, δ)-product regions whose
existence is assumed for (M,ρ). Furthermore, the volume of W is at least
avol(M,ρ) for some fixed number a > 0 (with a slight abuse of notation).
The restriction of Fc to W is L-Lipschitz and a 1/4-coarse isometry, and
vol(Fc(W))/vol(W) is very close to one.

Let b̂ < b − 2 and δ̂ < δ be such that each component V of W contains
a (b̂, δ̂)-product region V̂ in its interior whose one-neighborhood is entirely



SMALL EIGENVALUES OF RANDOM 3-MANIFOLDS 49

contained in V . The volume of V̂ is at least bvol(V ) for a universal constant
b > 0.

Our goal is to show that there is a subcollection Z of W of volume at
least avol(M,ρ)/2 with the additional property that whenever V 6= W ∈ Z
then Fc(V̂ ) ∩ Fc(Ŵ ) = ∅.

To this end let us assume that for V 6= W ∈ W we have Fc(V̂ )∩Fc(Ŵ ) 6=
∅. As the restriction of the map Fc is L-Lipschitz and a 1/4-coarse isometry,
this implies that there are balls B1 ⊂ V,B2 ⊂ W of radius 1/2L such that

Fc(B1) ⊂ Fc(W ) and Fc(B2) ⊂ Fc(V ). Namely, for all z ∈ V̂ the ball of
radius 1/2 about Fc(z) is contained in Fc(V ), furthermore Fc is L-Lipschitz.

Let 2σ > 0 be a lower bound for the volume of a ball of radius 1/2L
entirely contained in an (b, δ)-product region. Such a number exists since the
injectivity radius in such a region is at least δ. Then the volume of Fc(V ∪W )
is at most ( c2)3(vol(V ) + vol(W ) − 2σ). In particular, the contribution of

Fc(V ) to the volume of W does not exceed ( c2)3(vol(V )− σ).

Since σ > 0 is independent of all choices and for c sufficiently close to 2
the restriction of the map Fc to W is very close to being volume preserving,
we deduce that for c sufficiently close to 2 the union Z of all product regions
V̂ with V ∈ W and such that the sets from Z are mapped disjointly by Fc
covers a fixed proportion of the volume of (M,ρ0). Furthermore, the image
of each of the components in Z contains a (b′, δ′)-product region for some

fixed b′ < b̂ and some δ′ close to δ̂. Thus we found a collection of pairwise
disjoint product regions in (M,ρ0) as claimed in the theorem.

We are left with showing that the regions Fc(V̂ ) for V̂ ∈ Z are linearly

aligned. However, Fc is a homotopy equivalence. If V̂ ∈ Z then as the re-
striction of Fc to V̂ is a homeomorphism, for a fixed choice of an embedded
surface Σ ⊂ V which decomposes M into two handlebodies, the image sur-
face Fc(Σ) separates (M,ρ0) into two components. The restriction of Fc to
the closure of a component of M −Σ is a generator of the relative homology
group H3(M,M − Fc(Σ)). But this homology group also is generated by
the inclusion of a component of M − Fc(Σ) and hence each component A
of M − Σ determines uniquely a component F(A) of M − Fc(Σ) with the
additional property that Fc(A) ⊃ F(A).

Now let V̂ 6= Ŵ ∈ Z. As the components of Z are pairwise disjoint,
the component Ŵ is entirely contained in a component of M − V̂ , say the
component A. Furthermore, as Fc(V̂ ), Fc(Ŵ ) are disjoint, the component

Fc(Ŵ ) is contained in a component Z of M − Fc(V̂ ). We claim that Z =
F(A).

Namely, let B be the component of M − Ŵ entirely contained in A. If
Z 6= F(A) then we have Fc(V̂ ) ⊂ F(B). But the restriction of Fc to B maps

B to a subset that contains F(B). In particular, we have Fc(V̂ ) ⊂ Fc(M−V̂ )
which violates property (3) in Lemma 7.6.
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But this just means that the components of Fc(W) are linearly aligned.
This completes the proof of the theorem. �

Appendix A. Local control of one-Lipschitz maps

The goal of this appendix is to show:

Proposition A.1. Let U be a domain in a hyperbolic 3-manifold and let
F : U → N be a volume preserving 1-Lipschitz map into a hyperbolic 3-
manifold N . Then F is an isometric embedding.

Compare Appendix C of [6] for a different variation

Proof. As F is volume preserving, all we need to show that F is a local
isometry. To this end let x ∈ U and let r0 > 0 be such that the closed balls
B(x, r0), B(F (x), r0) of radius r0 about x and F (x) are isometric to the
closed ball of the same radius in hyperbolic 3-space. Since F is 1-Lipschitz
we know that F (B(x, r0)) ⊂ B(F (x), r0). Furthermore, as F is continuous
and B(x, r0) is compact, F (B(x, r0)) is a closed subset of B(F (x), r0) and
hence coincides with B(F (x), r0) as F is volume preserving.

Since F is one-Lipschitz, it is differentiable almost everywhere, and its
differential is norm non-increasing. Since F is moreover volume preserving,
the differential of F is an isometry almost everywhere. Furthermore, the set
of all points x ∈ U such that F−1(F (x)) = {x} has full measure.

Let x be such a point. We saw above that there is a closed subset A of
the distance sphere of radius r0 about x which is mapped by F onto the
distance sphere of radius r0 about F (x). Note that we do not know at this
point whether A equals the entire distance sphere of radius r about x as we
do not know whether F is injective- there could a priori be points in this
distance sphere which are mapped to the interior of the ball B(F (x), r0). If
y ∈ A then using once more that F is a metric contraction, the geodesic
γy connecting x to y is mapped by F to the geodesic γFy connecting F (x)
to F (y). As F is differentiable at x and dF (x) is an isometry, we have
dF (γ′y(0)) = γ′Fy(0). In particular, if exp denotes the exponential map at x

then F (exp(s exp−1(z))) = exp(sdF (exp−1(z)) for all z ∈ A. On the other
hand, F (A) = ∂B(F (y), r0) and hence A = ∂B(x, r0) and the restriction of
F to B(x, r0) is an isometry.

As x was a point from a subset of U of full measure, F is indeed a local
isometry and hence an isometry. �
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