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Abstract. Let S be an oriented surface of genus g ≥ 0 with m ≥ 0 punctures
and 3g − 3+ m ≥ 2. We classify all Radon measures on the space of measured

geodesic laminations which are invariant under the action of the mapping class
group of S.

1. Introduction

Let S be an oriented surface of finite type, i.e. S is a closed surface of genus
g ≥ 0 from which m ≥ 0 points, so-called punctures, have been deleted. We assume
that 3g− 3+m ≥ 1, i.e. that S is not a sphere with at most 3 punctures or a torus
without puncture. In particular, the Euler characteristic of S is negative. Then the
Teichmüller space T (S) of S is the quotient of the space of all complete hyperbolic
metrics of finite volume on S under the action of the group of diffeomorphisms of S
which are isotopic to the identity. The mapping class group MCG(S) of all isotopy
classes of orientation preserving diffeomorphisms of S acts properly discontinuously
on T (S) with quotient the moduli space Mod(S).

A geodesic lamination for a fixed choice of a complete hyperbolic metric of finite
volume on S is a compact subset of S foliated into simple geodesics. A measured

geodesic lamination is a geodesic lamination together with a transverse translation
invariant measure. The space ML of all measured geodesic laminations on S,
equipped with the weak∗-topology, is homeomorphic to S6g−7+2m × (0,∞) where
S6g−7+2m is the 6g−7+2m-dimensional sphere. The mapping class group MCG(S)
naturally acts on ML as a group of homeomorphisms preserving a Radon measure
in the Lebesgue measure class. Up to scale, this measure is induced by a natural
symplectic structure on ML (see [PH92] for this observation of Thurston), and it
is ergodic under the action of MCG(S). Moreover, the measure is non-wandering.
By this we mean that ML does not admit an MCG(S)-invariant countable Borel
partition into sets of positive measure.

If S is a once punctured torus or a sphere with 4 punctures, then the Teichmüller
space of S has a natural identification with the upper half-plane H2 = {z ∈
C | Im(z) > 0}. Up to passing to the quotient by the hyperelliptic involution
if S is the once punctured torus, the mapping class group MCG(S) is just the
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group PSL(2, Z) acting on H2 by linear fractional transformations. The action
of MCG(S) on measured lamination space can in this case be identified with the
quotient of the standard linear action of SL(2, Z) on R2 under the reflection at the
origin (see the book [BM00] of Bekka and Mayer for more and for references and
compare the survey [H08a]).

Extending earlier work of Furstenberg, Dani completely classified all SL(2, Z)-
invariant Radon measures on R2 [D79]. He showed that if such a measure η is
ergodic under the action of SL(2, Z) then either it is non-wandering and coincides
with the usual Lebesgue measure λ up to scale, or it is rational, which means that
it is supported on a single SL(2, Z)-orbit of points whose coordinates are dependent
over Q.

If the surface S is non-exceptional, i.e. if 3g − 3 + m ≥ 2, then the MCG(S)-
invariant Radon measures on ML which naturally correspond to the rational mea-
sures for exceptional surfaces are defined as follows. A weighted geodesic multi-

curve on S is a measured geodesic lamination whose support is a union of simple
closed geodesics. The orbit of a weighted geodesic multi-curve under the action of
MCG(S) is a discrete subset of ML (see Section 5 for this easy and well known
fact) and hence it supports a ray of invariant purely atomic Radon measures which
we call rational. This definition coincides with the one given above for a once
punctured torus or a forth punctured sphere.

For a non-exceptional surface S, there are additional MCG(S)-invariant Radon
measures on ML. Namely, a proper bordered subsurface S0 of S is a union of
connected components of the space which we obtain from S by cutting S open
along a collection of disjoint simple closed geodesics. Then S0 is a surface with
non-empty geodesic boundary and of negative Euler characteristic. If two boundary
components of S0 correspond to the same closed geodesic γ in S then we require
that S−S0 contains a connected component which is an annulus with core curve γ.
Let ML(S0) ⊂ ML be the space of all measured geodesic laminations on S which
are contained in the interior of S0. The space ML(S0) can naturally be identified

with the space of measured geodesic laminations on the surface Ŝ0 of finite type
which we obtain from S0 by collapsing each boundary circle to a puncture. The
stabilizer in MCG(S) of the subsurface S0 is the direct product of the group of all
elements which can be represented by diffeomorphisms leaving S0 pointwise fixed
and a group which is naturally isomorphic to a subgroup G of finite index of the
mapping class group MCG(Ŝ0) of Ŝ0.

Let c be a weighted geodesic multi-curve on S which is disjoint from the interior
of S0. Then for every ζ ∈ ML(S0) the union c∪ζ is a measured geodesic lamination

on S which we denote by c × ζ. Let µ(S0) be an G < MCG(Ŝ0)-invariant Radon
measure on ML(S0) which is contained in the Lebesgue measure class. The measure
µ(S0) can be viewed as a Radon measure on ML which gives full measure to the
laminations of the form c × ζ (ζ ∈ ML(S0)) and which is invariant and ergodic
under the stabilizer of c ∪ S0 in MCG(S). The translates of this measure under
the action of MCG(S) define an MCG(S)-invariant ergodic wandering measure on
ML which we call a standard subsurface measure. We observe in Section 5 that if
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the weighted geodesic multi-curve c contains the boundary of S0 then the standard
subsurface measure defined by µ(S0) and c is a Radon measure on ML.

The goal of this note is to show that every MCG(S)-invariant ergodic Radon
measure on ML is of the form described above.

Theorem. (1) An invariant ergodic non-wandering Radon measure for the ac-

tion of MCG(S) on ML coincides with the Lebesgue measure up to scale.

(2) An invariant ergodic wandering Radon measure for the action of MCG(S)
on ML is either rational or a standard subsurface measure.

The organization of the paper is as follows. In Section 2 we discuss some prop-
erties of geodesic laminations, quadratic differentials and the curve graph needed
in the sequel. In Section 3 we introduce conformal densities for the mapping class
group. These conformal densities are families of finite Borel measures on the pro-
jectivization PML of ML, parametrized by the points in Teichmüller space. They
are defined in analogy to the conformal densities for discrete subgroups of the isom-
etry group of a hyperbolic space. Up to scale, there is a unique conformal density
in the Lebesgue measure class. We show that this is the only conformal density
which gives full measure to the MCG(S)-invariant subset of PML of all projective
measured geodesic laminations whose support is minimal and fills up S.

Every conformal density gives rise to an MCG(S)-invariant Radon measure on
ML. The investigation of invariant Radon measure which are not of this form relies
on the structural results of Sarig [S04]. To apply his results we use train tracks to
construct partitions of measured lamination space which have properties similar to
Markov partitions. Section 4 summarizes those facts about train tracks which are
needed for this purpose. The proof of the theorem is completed in Section 5. In
the appendix we present a result of Minsky and Weiss [MW02] in the form needed
for the proof of our theorem.

At the time this paper was posted on the arXiv I received the preprint [LM07] of
Lindenstrauss and Mirzakhani which contains another proof of the above theorem.

2. Quadratic differentials and the curve graph

In this introductory section we summarize some properties of (measured) ge-
odesic laminations, quadratic differentials and the curve graph which are needed
later on. We also introduce some notations which will be used throughout the
paper.

In the sequel we always denote by S an oriented surface of genus g ≥ 0 with
m ≥ 0 punctures and where 3g − 3 + m ≥ 1.
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2.1. Geodesic laminations. A geodesic lamination for a complete hyperbolic
structure of finite volume on the surface S is a compact subset of S which is foli-
ated into simple geodesics. A geodesic lamination λ is called minimal if each of its
half-leaves is dense in λ. Thus a simple closed geodesic is a minimal geodesic lam-
ination. A minimal geodesic lamination with more than one leaf has uncountably
many leaves and is called minimal arational. Every geodesic lamination λ consists
of a disjoint union of finitely many minimal components and a finite number of
isolated leaves. Each of the isolated leaves of λ either is an isolated closed geodesic
and hence a minimal component, or it spirals about one or two minimal compo-
nents [CEG87]. A geodesic lamination is maximal if its complementary regions are
all ideal triangles or once punctured monogons. A geodesic lamination fills up S if
its complementary regions are all topological discs or once punctured topological
discs.

A measured geodesic lamination is a geodesic lamination λ together with a trans-
lation invariant transverse measure. Such a measure assigns a positive weight to
each compact arc in S which intersects λ nontrivially and transversely and whose
endpoints are contained in the complementary regions of λ. The geodesic lamina-
tion λ is called the support of the measured geodesic lamination; it consists of a
disjoint union of minimal components [CEG87]. The space ML of all measured
geodesic laminations on S equipped with the weak∗-topology is homeomorphic to
S6g−7+2m × (0,∞) ∼ R6g−6+2m − {0}. Its projectivization is the space PML of
all projective measured geodesic laminations. The measured geodesic lamination
µ ∈ ML fills up S if its support fills up S. The projectivization of a measured
geodesic lamination which fills up S is also said to fill up S. A measured geodesic
lamination is called uniquely ergodic if its support admits a single transverse mea-
sure up to scale. There is a continuous symmetric pairing i : ML×ML → [0,∞),
the so-called intersection form, which extends the geometric intersection number
between two simple closed curves.

2.2. Quadratic differentials. The fibre bundle Q1(S) of all holomorphic qua-

dratic differentials of area one over the Teichmüller space T (S) of the surface S
can naturally be viewed as the unit cotangent bundle of T (S) for the Teichmüller

metric. The Teichmüller geodesic flow Φt on Q1(S) commutes with the action
of the mapping class group MCG(S) of all isotopy classes of orientation pre-
serving diffeomorphisms of S. Thus this flow descends to a flow on the quotient
Q(S) = Q1(S)/MCG(S), again denoted by Φt.

A measured geodesic lamination can be viewed as an equivalence class of mea-

sured foliations on S [L83]. Therefore every holomorphic quadratic differential q on
S defines a pair (µ, ν) ∈ ML×ML where the horizontal measured geodesic lami-

nation µ corresponds to the horizontal measured foliation of q which is expanded
under the Teichmüller flow, and where the vertical measured geodesic lamination ν
corresponds to the vertical measured foliation of q which is contracted under the Te-
ichmüller flow. The area of the quadratic differential is just the intersection number
i(µ, ν). Note that the transverse measure of the vertical measured geodesic lami-
nation is expanded under the Teichmüller geodesic flow, i.e. with the identification
of q with the pair (µ, ν) the Teichmüller flow acts by Φt(µ, ν) = (e−tµ, etν).
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For a quadratic differential q ∈ Q1(S) define the strong unstable manifold W su(q)
to be the set of all quadratic differentials z ∈ Q1(S) whose horizontal measured
geodesic lamination equals the horizontal measured geodesic lamination for q. Sim-
ilarly, define the strong stable manifold W ss(q) to be the set of all quadratic dif-
ferentials z ∈ Q1(S) whose vertical measured geodesic lamination coincides with
the vertical measured geodesic lamination of q. The stable manifold W s(q) =
∪t∈RΦtW ss(q) and the unstable manifold Wu(q) = ∪t∈RΦtW su(q) are submani-
folds of Q1(S). The canonical projection

P : Q1(S) → T (S)

maps each stable and each unstable manifold onto T (S) [HM79].

The sets W s(q) (or W ss(q),W su(q),Wu(q)) (q ∈ Q1(S)) define a foliation of
Q1(S) which is invariant under the mapping class group and hence projects to a
singular foliation on Q(S) which we call the stable foliation (or the strong stable,

strong unstable, unstable foliation). There is a distinguished family of Lebesgue
measures λs on the leaves of the stable foliation which are conditional measures
of a Φt-invariant Borel probability measure λ on Q(S) in the Lebesgue measure
class. The measure λ is ergodic and mixing under the Teichmüller geodesic flow
(see [M82] and also [V82, V86]).

Every area one quadratic differential q ∈ Q1(S) defines a singular euclidean
metric on S of area one together with two orthogonal foliations by straight lines,
with singularities of cone angle kπ for some k ≥ 3. This metric is given by a
distinguished family of isometric charts ϕ : U ⊂ S → ϕ(U) ⊂ C on the complement
of the zeros (or poles at the punctures) of q which map the distinguished foliations
to the foliation of C into the horizontal lines parallel to the real axis and into the
vertical lines parallel to the imaginary axis.

The group SL(2, R) acts on the bundle Q1(S) by replacing for q ∈ Q1(S) and
M ∈ SL(2, R) each isometric chart ϕ for q by M ◦ ϕ where M acts linearly on
R2 = C. This preserves the compatibility condition for charts. The Teichmüller
geodesic flow Φt then is the action of the diagonal group

(
et 0
0 e−t

)
(t ∈ R).

The so-called horocycle flow ht is given by the action of the unipotent subgroup
(
1 0
t 1

)
(t ∈ R).

2.3. The curve graph. The curve graph C(S) of the surface S is a metric graph
whose vertices are the free homotopy classes of essential simple closed curves on
S, i.e. curves which are neither contractible nor freely homotopic into a puncture
of S. In the sequel we often do not distinguish between an essential simple closed
curve and its free homotopy class whenever no confusion is possible. If the surface
S is non-exceptional, i.e. if 3g − 3 + m ≥ 2, then two such curves are connected in
C(S) by an edge of length one if and only if they can be realized disjointly. If S is
a once punctured torus then two simple closed curves on S are connected in C(S)
by an edge of length one if and only if they intersect in precisely one point. If S is
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a forth punctured sphere then two simple closed curves on S are connected in C(S)
by an edge of length one if and only if they intersect in precisely two points. The
curve graph C(S) is connected. Any two elements c, d ∈ C(S) of distance at least 3
jointly fill up S, i.e. they decompose S into topological discs and once punctured
topological discs. The mapping class group naturally acts on C(S) as a group of
simplicial isometries.

By Bers’ theorem, there is a number χ0 > 0 depending on S such that for every
complete hyperbolic metric h on S of finite volume there is a pants decomposition

of S consisting of 3g − 3 + m pairwise disjoint simple closed geodesics of length at
most χ0. On the other hand, the number of essential simple closed curves α on S
whose hyperbolic length ℓh(α) (i.e. the length of a geodesic representative of its
free homotopy class) does not exceed 2χ0 is bounded from above by a constant not
depending on h, and the diameter of the subset of C(S) containing these curves
is uniformly bounded as well (see [MM99, Bw06, H07, H08d] for a more detailed
discussion).

Define a map

ΥT : T (S) → C(S)

by associating to a complete hyperbolic metric h on S of finite volume a curve
ΥT (h) whose h-length is at most χ0. If Υ′ is any other choice of such a map then
d(ΥT (h),Υ′

T (h) ≤ const. By [MM99] there is a constant L > 1 depending on S
such that

(1) d(ΥT (g),ΥT (h)) ≤ Ld(g, h) + L for all g, h ∈ T (S)

where by abuse, we use the same symbol d to denote the distance on T (S) defined
by the Teichmüller metric and the distance on the curve graph C(S) (see also the
discussion in [H06] and Lemma 2.1 of [H08d]).

For a quadratic differential q ∈ Q1(S) define the q-length of an essential closed
curve α on S to be the infimum of the lengths of a representative of the free
homotopy class of α with respect to the singular euclidean metric defined by q. We
have.

Lemma 2.1. For every χ > 0 there is a number a(χ) > 0 with the following

property. For any quadratic differential q ∈ Q1(S) the diameter in C(S) of the set

of all simple closed curves on S of q-length at most χ does not exceed a(χ).

Proof. By Lemma 5.1 of [MM99] (see also Lemma 5.1 of [Bw06] for an alternative
proof) there is a number b > 0 and for every singular euclidean metric on S defined
by a quadratic differential q of area one there is an embedded annulus A ⊂ S
of width at least b. This means that the q-distance between the two boundary
components of A is at least b. If we denote by γ the core curve of A, then the
q-length of every simple closed curve c on S is at least i(c, γ)b. As a consequence,
for every χ > 0 the intersection number with γ of every simple closed curve c on S
whose q-length is at most χ is bounded from above by χ/b. This implies that the
set of such curves is of diameter at most χ/b + 1 in C(S) [MM99, Bw06]. �
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By possibly enlarging the constant χ0 > 0 as above we may assume that for
every q ∈ Q1(S) there is an essential simple closed curve on S of q-length at most
χ0 (see [Bw06, R07] and the proof of Lemma 2.2 for a justification of this well
known fact). Thus we can define a map

ΥQ : Q1(S) → C(S)

by associating to a quadratic differential q a simple closed curve ΥQ(q) whose q-
length is at most χ0. By Lemma 2.1, if Υ′

Q is any other choice of such a map

then we have d(ΥQ(q),Υ′
Q(q)) ≤ a(χ0) for all q ∈ Q1(S) where as before, d is the

distance function on C(S).

The map ΥT : T (S) → C(S) associates to a complete hyperbolic metric h on
S of finite volume a simple closed curve c of h-length at most χ0. Let again
P : Q1(S) → T (S) be the canonical projection. The following simple observation
is related to recent work of Rafi [R05]. We include its short proof for completeness.

Lemma 2.2. There is a number χ1 > 0 such that d(ΥQ(q),ΥT (Pq)) ≤ χ1 for all

q ∈ Q1(S).

Proof. By Lemma 2.1, it is enough to show that for every q ∈ Q1(S) and every
simple closed curve α on S whose length with respect to the hyperbolic metric Pq
is bounded from above by χ0, the q-length of α is uniformly bounded.

For this observe that by the collar lemma of hyperbolic geometry, a simple closed
geodesic α on a hyperbolic surface whose length is bounded from above by χ0 > 0
is the core curve of an embedded annulus A whose modulus is bounded from below
by a universal constant b > 0. Then the extremal length of the core curve of A
is bounded from above by a universal constant c > 0. Now the area of q equals
one and therefore the q-length of the core curve α of A does not exceed

√
c by the

definition of extremal length (see e.g. [Mi96]). This shows the lemma. �

Choose a smooth function σ : [0,∞) → [0, 1] with σ[0, χ0] ≡ 1 and σ[2χ0,∞) ≡ 0
where as before, χ0 > 0 is a Bers constant for S. For every h ∈ T (S) we obtain a
finite Borel measure µh on the curve graph C(S) by defining

µh =
∑

c∈C(S)

σ(ℓh(c))δc

where δc denotes the Dirac mass at c. The total mass of µh is bounded from above
and below by a positive constant only depending on S, and the diameter of the
support of µh in C(S) is uniformly bounded as well. Note that ΥT (h) is contained
in the support of µh, and the weight of ΥT (h) for the measure µh equals one.
The measures µh depend continuously on h ∈ T (S) in the weak∗-topology. This
means that for every bounded function f : C(S) → R the function h →

∫
fdµh is

continuous.

The curve graph C(S) is a hyperbolic geodesic metric space [MM99] and hence it
admits a Gromov boundary ∂C(S). For every c ∈ C(S) there is a complete distance
function δc on ∂C(S) of uniformly bounded diameter and there is a number β > 0
such that

(2) δc ≤ eβd(c,a)δa for all c, a ∈ C(S).
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The distances δc are equivariant with respect to the action of MCG(S) on C(S)
and on ∂C(S).

For h ∈ T (S) define a distance δh on ∂C(S) by

δh(ξ, ζ) =

∫
δc(ξ, ζ)dµh(c).

Clearly the metrics δh are equivariant with respect to the action of MCG(S) on
T (S) and ∂C(S). Moreover, there is a constant κ > 0 such that

(3) δh ≤ eκd(h,z)δz for all h, z ∈ T (S)

(here as before, d denotes the Teichmüller metric). Namely, the function σ is
smooth, with uniformly bounded differential. Moreover, for every simple closed
curve c ∈ C(S), the function h → log ℓh(c) on T (S) is smooth, with uniformly
bounded differential with respect to the norm induced by the Teichmüller metric
(Lemma 3.1 of [W79]). Since σ is supported in [0, 2χ0], this implies that for each
c ∈ C(S) the function h → σ(ℓh(c)) on T (S) is smooth, with uniformly bounded
differential. As a consequence, for all ξ 6= η ∈ ∂C(S) the function h → δh(ξ, η)
is smooth, and the differential of its logarithm is uniformly bounded with respect
to the Teichmüller norm, independent of ξ, η. From this and the definitions, the
estimate (3) above is immediate. By the inequalities (2,3) and the definitions, via
enlarging the constant κ we may also assume that

(4) κ−1δh ≤ δΥT (h) ≤ κδh for every h ∈ T (S).

3. Conformal densities

In this section we study conformal densities on the space PML of projective
measured geodesic laminations on S. Recall that PML equipped with the weak∗

topology is homeomorphic to the sphere S6g−7+2m, and the mapping class group
MCG(S) naturally acts on PML as a group of homeomorphisms. By the Hubbard
Masur theorem [HM79], for every x ∈ T (S) and every λ ∈ PML there is a unique
holomorphic quadratic differential q(x, λ) ∈ Q1(S)x of area one on x whose vertical
measured geodesic lamination qv(x, λ) is contained in the class λ. For all x, y ∈
T (S) there is a number Ψ(x, y, λ) ∈ R such that qv(y, λ) = eΨ(x,y,λ)qv(x, λ). The
function Ψ : T (S) × T (S) × PML → R is continuous, moreover it satisfies the
cocycle identity

(5) Ψ(x, y, λ) + Ψ(y, z, λ) = Ψ(x, z, λ)

for all x, y, z ∈ T (S) and all λ ∈ PML.

Definition. A conformal density of dimension α ≥ 0 on PML is an MCG(S)-
equivariant family {νy} (y ∈ T (S)) of finite Borel measures on PML which are
absolutely continuous and satisfy dνz/dνy = eαΨ(y,z,·) almost everywhere.

The conformal density {νy} is ergodic if the MCG(S)-invariant measure class it
defines on PML is ergodic. There is an ergodic conformal density {λx} of dimension
α = 6g − 6 + 2m in the Lebesgue measure class induced by the symplectic form
on the space ML of all measured geodesic laminations on S, see [M82]. Note that
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since the action of MCG(S) on PML is minimal, the measure class of a conformal
density is always of full support.

In Section 5 we will see that every conformal density gives rise to an MCG(S)-
invariant Radon measure on ML, so the classification of conformal densities is
essential for the classification of invariant Radon measures on ML.

Following [Su79], we construct from a conformal density {νx} of dimension α an
MCG(S)-invariant family {νsu} of locally finite Borel measures on strong unstable
manifolds W su(q) (q ∈ Q1(S)) which transform under the Teichmüller geodesic
flow Φt via νsu ◦ Φt = eαtνsu. For this let

(6) π : Q1(S) → PML
be the natural projection which maps a quadratic differential q ∈ Q1(S) to its
vertical projective measured geodesic lamination. Let P : Q1(S) → T (S) be the
canonical projection. The restriction of the projection π : Q1(S) → PML to the
strong unstable manifold W su(q) is a homeomorphism onto its image and hence the
measure νPq on PML induces a Borel measure ν̃su on W su(q). The measure νsu

on W su(q) defined by dνsu(u) = eαΨ(Pq,Pu,π(u))dν̃su(u) is locally finite and does
not depend on the choice of q. The measures νsu on strong unstable manifolds
transform under the Teichmüller flow as required.

The flip F : q → −q maps strong stable manifolds homeomorphically onto
strong unstable manifolds and therefore we obtain a family νss of locally finite
Borel measures on strong stable manifolds by defining νss = νsu ◦ F . Let dt be
the usual Lebesgue measure on the flow lines of the Teichmüller flow. The locally
finite Borel measure ν̃ on Q1(S) defined by dν̃ = dνss × dνsu × dt is invariant
under the Teichmüller geodesic flow Φt and the action of the mapping class group.
If we denote by ∆ the diagonal in PML × PML then the desintegration ν̂ of ν̃
along the flow lines of the Teichmüller flow is an MCG(S)-invariant locally finite
Borel measure on PML × PML − ∆. Let ν be the Φt-invariant locally finite
Borel measure on Q(S) which is the projection of the restriction of ν̃ to a Borel
fundamental domain for the action of MCG(S). For the conformal density {λx} in
the Lebesgue measure class the resulting Φt-invariant measure λ on Q(S) is finite.

Call a quadratic differential q ∈ Q(S) forward returning if there is a compact
subset K of Q(S) and for every k > 0 there is some t > k with Φtq ∈ K. The set of
all forward returning points q ∈ Q(S) is a Gδ-subset of Q(S). To see that this is the
case, choose a countable family {Ui} of open subsets of Q(S) with compact closure
and such that Ui ⊂ Ui+1, ∪iUi = Q(S). If q ∈ Q(S) is not forward returning, then
for each i > 0 there is an integer m(i) > 0 such that q ∈ Ai,m(i) = {z | Φtz 6∈ Ui

for all t ≥ m(i)}. Now the sets Ai,m(i) ⊂ Q(S) are clearly closed and hence the set
of all points q ∈ Q(S) such that {t > 0 | Φtq ∈ Ui} is unbounded is a Gδ-set. Then
the set of all forward returing point is a Gδ-subset of Q(S) as well.

Call a projective measured geodesic lamination ξ ∈ PML returning if there is
a quadratic differential q ∈ Q1(S) whose vertical measured geodesic lamination is
contained in the class ξ and whose projection to Q(S) is forward returning. The set
of returning projective measured geodesic laminations is a Borel subset of PML
which is invariant under the action of the mapping class group and is contained in
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the set of all uniquely ergodic projective measured geodesic laminations which fill
up S [M82]. Note however that Cheung and Masur [CM06] constructed an example
of a uniquely ergodic projective measured geodesic lamination which fills up S and
is not returning.

Call a quadratic differential q ∈ Q(S) forward recurrent if q is contained in the
ω-limit set of its own orbit under Φt. Since Q(S) is second countable, an argument
along the line of the above discussion shows that the set of all forward recurrent
points is a Borel subset of Q(S). Call a projective measured geodesic lamination
ξ ∈ PML recurrent if there is a quadratic differential q ∈ Q1(S) whose vertical
measured geodesic lamination is contained in the class ξ and whose projection to
Q(S) is forward returning and contains a forward recurrent point q0 ∈ Q(S) in its
ω-limit set. The set RML of all recurrent projective measured geodesic laminations
is an MCG(S)-invariant Borel subset of PML which has full Lebesgue measure.
We have.

Lemma 3.1. For an ergodic conformal density {νx} of dimension α the following

are equivalent.

(1) {νx} gives full mass to the returning projective measured geodesic lamina-

tions.

(2) {νx} gives full mass to the set RML of recurrent projective measured geo-

desic laminations.

(3) The measure ν̂ on PML×PML−∆ is ergodic under the diagonal action

of MCG(S).
(4) The Teichmüller geodesic flow Φt is conservative for the measure ν on Q(S).
(5) The Teichmüller geodesic flow Φt is ergodic for ν.

Proof. We follow Sullivan [Su79] closely. Namely, for ǫ > 0 let intT (S)ǫ ⊂ T (S)
be the open MCG(S)-invariant subset of all complete hyperbolic structures on S
of finite volume whose systole (i.e. the length of a shortest closed geodesic) is
bigger than ǫ and define Q1(ǫ) = {q ∈ Q1(S) | Pq ∈ intT (S)ǫ}. Then the closure

Q1
(ǫ) of Q1(ǫ) projects to a compact subset Q(ǫ) of Q(S). For δ < ǫ we have

Q(δ) ⊃ Q(ǫ) and ∪ǫ>0Q(ǫ) = Q(S). For ǫ > 0 define Bǫ ⊂ PML to be the set
of all projective measured geodesic laminations ξ such that there is a quadratic
differential q ∈ Q1(S) with π(q) = ξ and a sequence {ti} → ∞ with Φtiq ∈ Q1(ǫ)
for all i > 0. The set Bǫ is invariant under the action of MCG(S), and B = ∪ǫ>0Bǫ

is the set of all returning projective measured geodesic laminations.

Let {νx} be an ergodic conformal density of dimension α which gives full mass
to the set B of returning projective measured geodesic laminations. By invariance
and ergodicity, there is a number ǫ > 0 such that νx gives full mass to Bǫ. Let
ν be the Φt-invariant Radon measure on Q(S) defined by {νx}. By the results of
[M80, M82], for every forward returning quadratic differential q ∈ Q(S) and every
z ∈ W ss(q) we have d(Φtq,Φtz) → 0 (t → ∞) where here d is any distance on Q(S)
defining the usual topology. Thus for ν-almost every q ∈ Q(S) the Φt-orbit of q
enters the compact set Q(ǫ/2) for arbitrarily large times.

By Lemma 3.1 of [W79], for δ > 0 such that log δ = log(ǫ/2)−1 and for ν-almost
every q ∈ Q(δ) there are infinitely many integers m > 0 with Φmq ∈ Q(δ). As a
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consequence, the first return map to Q(δ) of the homeomorphism Φ1 of Q(S) defines
a measurable map G : Q(δ) → Q(δ) which preserves the restriction ν0 = ν|Q(δ)
of ν. Since ν is a Radon measure, ν0 is finite and hence the system (Q(δ), ν0, G)
is conservative. But then the measure ν is conservative for the time-one map Φ1

of the Teichmüller flow. Moreover, by the Poincaré recurrence theorem, applied
to the measure preserving map G : Q(δ) → Q(δ), we obtain that ν-almost every
q ∈ Q(S) is forward recurrent. Thus 1) above implies 2) and 4).

Using the usual Hopf argument [Su79] we conclude that the measure ν is ergodic.
Namely, choose a continuous positive function ρ : Q(S) → (0,∞) such that

∫
ρdν =

1; such a function ρ exists since the measure ν is locally finite by assumption. By
the above, if q, q′ ∈ Q(S) are typical for ν and contained in the same strong stable
manifold then the orbits of Φt through q, q′ are forward asymptotic [M80, M82]. By
the Birkhoff ergodic theorem, for every continuous function f with compact support

the limit limt→∞

∫ T

0
f(Φtq)dt/

∫ T

0
ρ(Φtq)dt = fρ(q) exists almost everywhere, and

the Hopf argument shows that the function fρ is constant along ν-almost all strong
stable and strong unstable manifold. From this ergodicity follows as in [Su79]. In
particular, 1) above implies 5).

The remaining implications in the statement of the lemma are either trivial or
standard. Since they will not be used in the sequel, we omit the proof. �

Every ergodic conformal density either gives full measure or zero measure to
the ML-invariant Borel subset RML of recurrent projective measured geodesic
laminations. The main goal of this section is to show that a conformal density {νx}
which gives full measure to RML is contained Lebesgue measure class. For this
we adapt ideas of Sullivan [Su79] to our situation. Namely, the set RML can be
viewed as the radial limit set for the action of MCG(S) on T (S), where PML is
identified with the Thurston boundary of T (S). This means that every point in
RML is contained in a nested sequence of neighborhoods which are images of a
fixed set under elements of the mapping class group. The mass of these sets with
respect to the measures νx, λx (where as before, {λx} is a conformal density in the
Lebesgue measure class) are controlled, and this allows a comparison of measures.

To carry out this approach, we have to construct such nested sequences of neigh-
borhoods of points in RML explicitly. We use the Gromov distances on the bound-
ary ∂C(S) of the curve graph C(S) for this purpose. This boundary consists of all
unmeasured minimal geodesic laminations which fill up S, equipped with a coarse
Hausdorff topology.

Denote by FML ⊂ PML the set of all projective measured geodesic laminations
whose support is a geodesic lamination which is minimal and fills up S. Then FML
is a Gδ-subset of PML. Namely, identify PML with a section Σ of the projection
ML → PML. A measured geodesic lamination µ ∈ Σ is not contained in FML
if and only if there is a simple closed curve c on S with i(µ, c) = 0. Since the
intersection form i is continuous, the set {µ ∈ Σ | i(µ, c) 6= 0} is closed. But there
are only countably many free homotopy classes of simple closed curves on S and
hence FML is indeed a Gδ-set.
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The natural forgetful map

F : FML → ∂C(S)

which assigns to a projective measured geodesic lamination in FML its support
is a continuous MCG(S)-equivariant surjection [Kl99, H06]. The restriction of the
projection map F to the Borel set RML ⊂ FML is injective [M82].

Let again P : Q1(S) → T (S) be the canonical projection. For q ∈ Q1(S) and
r > 0 define

(7) B(q, r) = {u ∈ W su(q) | d(Pq, Pu) ≤ r}.
Then B(q, r) is a compact neighborhood of q in W su(q) with dense interior which
depends continuously on q in the following sense. If qi → q in Q1(S) then B(qi, r) →
B(q, r) in the Hausdorff topology for compact subsets of Q1(S). We have.

Lemma 3.2. (1) The map F : FML → ∂C(S) is continuous and closed.

(2) If the vertical measured geodesic lamination of the quadratic differential

q ∈ Q1(S) is uniquely ergodic then the sets F (π(B(q, r)) ∩ FML) (r > 0)
form a neighborhood basis for F (π(q)) in ∂C(S).

Proof. The first part of the lemma is immediate from the description of the Gromov
boundary of C(S) in [Kl99, H06].

To show the second part, note first that for every q ∈ Q1(S) the restriction
of the projection π : W su(q) → PML is a homeomorphism of W su(q) onto an
open subset of PML. To see this, identify PML with a section Σ of the fibration
ML → PML. Then ξ ∈ Σ is contained in πW su(q) if and only if the function
ζ → i(ξ, ζ) + i(π(−q), ζ) on Σ is positive. Since the intersection form i on ML is
continuous and since Σ is compact, this is an open condition for points ξ ∈ Σ.

Now if the vertical measured geodesic lamination of q ∈ Q1(S) is uniquely ergodic
then by [Kl99] we have F−1(F (π(q))) = {π(q)} and hence if r > 0 is arbitrary then
F (FML−π(intB(q, r))) is a closed subset of ∂C(S) which does not contain F (π(q)).
In particular,

F (π(B(q, r)) ∩ FML)

is a neighborhood of F (π(q)) in ∂C(S). From this and continuity of F the second
part of the lemma follows. �

Define

A = π−1(FML) ⊂ Q1(S).

Then A is a Gδ-subset of Q1(S). The map F ◦ π : A → ∂C(S) is continuous.

Recall that there is a number κ > 0 and there is an MCG(S)-equivariant family
of distance functions δh (h ∈ T (S)) on ∂C(S) such that δh ≤ eκd(h,z)δz for all h, z ∈
T (S) (inequality (3) in Section 2). For q ∈ A and χ > 0 define D(q, χ) ⊂ ∂C(S)
to be the closed δPq-ball of radius χ about Fπ(q) ∈ ∂C(S). Note that we have
gD(q, χ) = D(gq, χ) for all q ∈ Q1(S) and all g ∈ MCG(S). The following lemma
is a translation of hyperbolicity of the curve graph into properties of the distance
functions δh.
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Lemma 3.3. (1) For every β > 0 there is a number ρ = ρ(β) > 0 such that

D(Φtq, ρ) ⊂ D(q, β)

for every q ∈ A and every t ≥ 0.
(2) There is a number β0 > 0 with the following property. For every q ∈ A and

every ǫ > 0 there is a number T (q, ǫ) > 0 such that D(Φtq, β0) ⊂ D(q, ǫ)
for every t ≥ T (q, ǫ).

Proof. By the results of [MM99] (see Theorem 4.1 of [H07] for an explicit state-
ment), there is a number L > 0 such that the image under ΥT of every Teichmüller
geodesic is an unparametrized L-quasi-geodesic in C(S). This means that for every
q ∈ Q1(S) there is an increasing homeomorphism σq : R → σq(R) ⊂ R such that

the curve t → ΥT (PΦσq(t)q) is an L-quasi-geodesic in C(S).

If q ∈ A then we have σq(t) → ∞ (t → ∞) and the unparametrized L-quasi-
geodesic t → ΥT (PΦtq) converges as t → ∞ in C(S)∪∂C(S) to the point F (π(q)) ∈
∂C(S) (see [Kl99, H06, H08d]). In particular, for q ∈ A and every T > 0 there is a
number τ = τ(q, T ) > 0 such that d(ΥT (PΦtq),ΥT (Pq)) ≥ T for all t ≥ τ .

Since C(S) is a hyperbolic geodesic metric space, any finite subarc of an L-
quasi-geodesic is contained in a tubular neighborhood of a geodesic in C(S) of
uniformly bounded radius. This implies that there is no backtracking along an
unparametrized L-quasi-geodesic: There is a constant b > 0 only depending on L
and the hyperbolicity constant of C(S) such that d(γ(t), γ(0)) ≥ d(γ(s), γ(0)) − b
for all t ≥ s ≥ 0 and every L-quasi-geodesic γ : [0,∞) → C(S) (see also Lemma
2.4 of [H08d]). From the definition of the Gromov distances δc (c ∈ C(S)) (and
property (2) in Section 2) we obtain the existence of a number α > 0 such that
for every L-quasi-geodesic ray γ : [0,∞) → C(S) with endpoint γ(∞) ∈ ∂C(S) and
every t > 0 the Gromov distances δγ(t) on ∂C(S) satisfy

δγ(t) ≥ αeαd(γ(t),γ(0))δγ(0)

on the δγ(t)-ball of radius α about γ(∞). Let κ > 0 be as in inequality (4) from

Section 2 and define β0 = α/κ2.

By inequality (4) from Section 2, for q ∈ A and t ≥ 0 we have

(8) δPΦtq ≥ κ−2αeαd(ΥT (PΦtq),ΥT (Pq))δPq

on the δPΦtq-ball D(Φtq, β0). Thus if for ǫ > 0 we choose T1 > 0 sufficiently large
that ǫαeαT1 ≥ κ2β0 then for q ∈ A, for T = τ(q, T1) > 0 and for t > T we have
D(Φtq, β0) ⊂ D(q, ǫ) which shows the second part of the lemma.

To show the first part of the lemma, for β < β0 define ρ(β) = αβ/κ2. Then the
estimate (8) above shows that D(Φtq, ρ) ⊂ D(q, β) for every q ∈ A and every t ≥ 0.
This completes the proof of the lemma. �

For a forward recurrent point q0 ∈ Q(S) let RML(q0) ⊂ RML be the Borel
subset of all recurrent projective measured geodesic laminations ξ ∈ RML such
that there is some q ∈ π−1(ξ) with the following property. The projection to Q(S)
of the orbit of q under the Teichmüller geodesic flow contains q0 in its ω-limit set. By
definition, the set RML(q0) is invariant under the action of MCG(S). Moreover,
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every recurrent point ξ ∈ RML is contained in one of the sets RML(q0) for some
forward recurrent point q0 ∈ Q(S). Note moreover that an orbit of Φt in Q(S)
which is typical for the Φt-invariant Lebesgue measure on Q(S) is dense and hence
for every forward recurrent point q0 ∈ Q(S) the set RML(q0) has full Lebesgue
measure. Write

C(q0) = F (RML(q0)) ⊂ ∂C(S) and A(q0) = π−1RML(q0) ⊂ Q1(S).

Following p. 151 of [F69], a Borel covering relation for a Borel subset C of a
metric space (X, d) is a family V of pairs (x, V ) where V ⊂ X is a Borel set, where
x ∈ V and such that

C ⊂
⋃

{V | (z, V ) ∈ V for some z ∈ C}.
The covering relation V is called fine at every point of C if for every x ∈ C and
every α > 0 there is some (y, V ) ∈ V with x ∈ V ⊂ U(x, α) where U(x, α) denotes
the open ball of radius α about x.

For χ > 0 and the forward recurrent point q0 ∈ Q(S) with lift q1 ∈ Q1(S) there
is by continuity of F ◦ π : A → ∂C(S) a compact neighborhood K of q1 in Q1(S)
such that F ◦ π(K ∩A) ⊂ D(q1, χ). We call K a χ-admissible neighborhood of q1.
For a number χ > 0 and such a χ-admissible neighborhood K of q1 define

Vq0,χ,K ={(Fπ(q), gD(q1, χ)) |
q ∈ W su(q1) ∩ A(q0), g ∈ MCG(S), gK ∩ ∪t>0Φ

tq 6= ∅.}
We sometimes identify a pair (ξ, gD(q1, χ)) ∈ Vq0,χ,K with the set gD(q1, χ) when-
ever the point ξ has no importance. Let β0 > 0 be as in Lemma 3.3. We have.

Lemma 3.4. Let q0 ∈ Q(S) be a forward recurrent point and let q1 ∈ Q1(S) be a

lift of q0. Then for every χ < β0/4 and every χ-admissible compact neighborhood

K of q1 the family Vq0,χ,K is a Borel covering relation for C(q0) ⊂ (∂C(S), δPq1
)

which is fine at every point of C(q0).

Proof. Using the above notations, let q0 ∈ Q(S) be a forward recurrent point and
let q1 be a lift of q0 to Q1(S). Let χ < β0/4 where β0 > 0 is as in Lemma 3.3. It
clearly suffices to show the lemma for the covering relations Vq0,χ,K where K is a
sufficiently small χ-admissible neighborhood of q1.

From relation (3) in Section 2 we infer that for every sufficiently small χ-
admissible neighborhood K of q1 we have

δPq1
/2 ≤ δPq ≤ 2δPq1

for every q ∈ K.

In particular, for q ∈ K ∩ A the set D(q1, χ) contains Fπ(q) and is contained in
D(q, 4χ).

By the construction of the distances δh (h ∈ T (S)) on ∂C(S) it suffices to show
that for every q ∈ A(q0) and every ǫ > 0 there is some g ∈ MCG(S) such that
the set gD(q1, χ) contains F (π(q)) and is contained in the open δPq-ball of radius
ǫ about F (π(q)).

For q ∈ A(q0) and ǫ > 0 let T (q, ǫ) > 0 be as in the second part of Lemma

3.3. Choose some t > T (q, ǫ) such that Φtq ∈ K̃ = ∪g∈MCG(S)K; such a number
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exists by the definition of the set A(q0) and by [M80]. By Lemma 3.3 we have
D(Φtq, 4χ) ⊂ D(q, ǫ). Now if g ∈ MCG(S) is such that Φtq ∈ gK then we obtain
from χ-admissibility of the set K and equivariance under the action of the mapping
class group that

Fπ(q) = Fπ(Φtq) ∈ gD(q1, χ) ⊂ D(Φtq, 4χ) ⊂ D(q, ǫ).

Since ǫ > 0 was arbitrary, this shows the lemma. �

The next proposition is the main technical result of this section. For its formu-
lation, we refer to p. 151 of [F69] for the definition of a Vitali relation for a finite
Borel measure on the Borel subset C(q0) of C(S). We show.

Proposition 3.5. Let q0 ∈ Q(S) be a forward recurrent point for the Teichmüller

geodesic flow. Then for every sufficiently small χ > 0, every sufficiently small χ-

admissible compact neighborhood K of q1 and for every conformal density {νx} on

PML which gives full measure to the set RML(q0), the covering relation Vq0,χ,K

for C(q0) is a Vitali relation for the measure F∗ν
x on ∂C(S).

Proof. The strategy of proof is to use the properties of the balls D(q, ǫ) established
in Lemma 3.3 to gain enough control on νx-volumes for a conformal density {νx}
on PML that Theorem 2.8.17 of [F69] can be applied.

Let q0 ∈ Q(S) be a forward recurrent point for Φt and let q1 ∈ Q1(S) be a
lift of q0. Since no torsion element of MCG(S) fixes pointwise the Teichmüller
geodesic defined by q1 we may assume that the point Pq1 ∈ T (S) is not fixed by
any nontrivial element of the mapping class group.

By Lemma 3.4 and using the notations from this lemma, for every χ < β0/4 and
every sufficiently small χ-admissible compact neighborhood K of q1 the covering
relation Vq0,χ,K for C = F (RML(q0)−π(−q1)) ⊂ ∂C(S) is fine for the metric δPq1

at every point of C.

We first establish some geometric control on the covering relation Vq0,χ,K for
some particularly chosen small χ < β0/4 and a suitably chosen χ-admissible neigh-
borhood K of q1. For this let again d be the distance on T (S) defined by the
Teichmüller metric. Choose a number r > 0 which is sufficiently small that the
images under the action of the mapping class group of the closed d-ball B(Pq1, 5r)
of radius 5r about Pq1 are pairwise disjoint. By the estimate (3) for the family of
distance functions δz (z ∈ T (S)), via decreasing the size of the radius r we may
assume that

(9) δx/2 ≤ δu ≤ 2δx for all x, u ∈ B(Pq1, 5r).

Recall from (7) above the definition of the closed balls B(q, r) ⊂ W su(q) (q ∈
Q1(S)). By continuity of the projection π there is an open neighborhood U1 of q1

in Q1(S) such that

πB(z, r) ⊂ πB(q, 2r) for all z, q ∈ U1

and that moreover the projection PU1 of U1 to T (S) is contained in the open ball
of radius r about Pq1. This implies in particular that gU1 ∩ U1 = ∅ for every
nontrivial element g ∈ MCG(S).
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Since the vertical measured geodesic lamination of q1 is uniquely ergodic, Lemma
3.2 shows that there is a number β > 0 such that

F (πB(q1, r) ∩ FML) ⊃ D(q1, 8β).

Since the map F ◦ π : A → ∂C(S) is continuous, there is an open neighborhood
U2 ⊂ U1 of q1 such that U2 ∩ A ⊂ (F ◦ π)−1D(q1, β). By the choice of U1 we have
D(z, β) ⊂ D(q, 8β) for all q, z ∈ U2 ∩ A. For all q, z ∈ U2 ∩ A we also have

(10) D(z, β) ⊂ D(q1, 4β) ⊂ F (πB(q1, r) ∩ FML) ⊂ F (πB(q, 2r) ∩ FML).

By Lemma 3.3, there is a number σ ≤ β such that for every t ≥ 0 we have

D(Φtq, σ) ⊂ D(q, β).

Now U2 is an open neighborhood of q1 in Q1(S) and therefore U2∩W su(q1) is an
open neighborhood of q1 in W su(q1). In particular, there is a number r1 < r such
that B(q1, r1) ⊂ W su(q1) ∩ U2. Thus by Lemma 3.2 there is a number χ ≤ σ/16
such that

(11) F (π(W su(q1) ∩ U2) ∩ FML) ⊃ D(q1, 16χ).

Note that we have

(12) D(Φtq, 16χ) ⊂ D(q, β) for all q ∈ U2 ∩ A and all t > 0.

Using once more continuity of the map F ◦ π : A → ∂C(S), there is a compact
neighborhood K ⊂ U2 of q1 such that

K ∩ A ⊂ (F ◦ π)−1D(q1, χ).

In particular, K is χ-admissible. By inequality (9) for the dependence of the metrics
δPq on the points q ∈ K ⊂ U1 we then have

(13) Fπ(z) ∈ D(q1, χ) ⊂ D(z, 4χ) ⊂ D(q1, 16χ) for all z ∈ K ∩ A.

By (11) above and continuity of the strong unstable foliation and of the map π we
may moreover assume that

(14) F (π(W su(q) ∩ U2) ∩ FML) ⊃ D(q1, 16χ) for every q ∈ K.

Note that if z ∈ K∩A then D(z, 4χ) ⊂ D(q1, 16χ) and hence if u ∈ W su(q1)∩A(q0)
is such that Fπ(u) ∈ D(z, 4χ) then u ∈ U2. Namely, the projective measured
geodesic lamination π(u) of every u ∈ A(q0) is uniquely ergodic and therefore
(F ◦ π)−1(F (π(u)) ∩ W su(q1) consists of a unique point. However, by (11) above,
the set U2 ∩ W su(q1) contains such a point. Consequently, inequality (9) above
shows that D(z, 4χ) ⊂ D(u, 16χ).

Define

V0 = Vq0,χ,K .

By Lemma 3.4, V0 is a covering relation for the set C ⊂ C(q0) ⊂ ∂C(S) which is
fine at every point of C.
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By the choice of the set K ⊂ U1, if q ∈ W su(q1) ∩ A(q0), if g ∈ MCG(S) and if
t > 0 are such that Φtq ∈ gK then g ∈ MCG(S) is uniquely determined by Φtq.
For (ξ, V ) ∈ V0 define

ρ(ξ, V ) = max{e−t | q ∈ W su(q1) ∩ A(q0), t ≥ 0,

V = gD(q1, χ),Φtq ∈ gK, π(q) = ξ}.

Following p. 144 of [F69], for (ξ, V ) ∈ V0 define the ρ-enlargement of V by

(15) V̂ =
⋃

{W | (ζ,W ) ∈ V0,W ∩ V ∩ C(q0) 6= ∅, ρ(ζ,W ) ≤ erρ(ξ, V )}

where in this definition, the constant r > 0 is chosen as in the beginning of this
proof.

Let {νx} be a conformal density of dimension α ≥ 0 which gives full measure
to the set RML(q0). We may assume that the density is ergodic, i.e. that the
MCG(S)-invariant measure class it defines on PML is ergodic. The measure νx

induces a Borel measure F∗ν
x on the set C = F (RML(q0) − π(−q1)) ⊂ C(q0) ⊂

∂C(S).

Recall from the beginning of this section that the measures νy (y ∈ T (S)) define
a family of MCG(S)-invariant Radon measures νsu on strong unstable manifolds in
Q1(S). These measures are invariant under holonomy along strong stable manifolds
and they are quasi-invariant under the Teichmüller geodesic flow, with transforma-
tion dνsu ◦ Φt = eαtdνsu. For q ∈ Q1(S) the measure νsu on W su(q) projects to a
Borel measure νq on C. For q, z ∈ Q1(S) the measures νq, νz are absolutely contin-
uous, with continuous Radon Nikodym derivative depending continuously on q, z.
By invariance of the measures νsu under holonomy along strong stable manifolds
and by the choice of the point q1 and the number χ > 0 there is a number a > 0
such that 1/a ≥ νqD(q1, χ) ≥ a for all q ∈ K.

Write ν1 = νq1
; we claim that there is a number c > 0 such that ν1(V̂ ) ≤ cν1(V )

for all (ξ, V ) ∈ V0 where V̂ is the ρ-enlargement of V as defined in (15). For this let
(ξ, V ) ∈ V0 be arbitrary; then there is some q ∈ W su(q1) ∩ A(q0) with Fπ(q) = ξ
and there is a number t ≥ 0 and some g ∈ MCG(S) such that Φtq ∈ gK and that
V = gD(q1, χ) and ρ(ξ, V ) = e−t. By equivariance under the action of the mapping
class group and by the inclusion (10) above, we have

V = gD(q1, χ) ⊂ F (πB(Φtq, 2r) ∩ FML).

Let (ζ,W ) ∈ V0 be such that

ρ(ξ, V ) ≤ ρ(ζ,W ) ≤ erρ(ξ, V )

and that W ∩ V ∩ C 6= ∅. Then there is a number ǫ ∈ [0, r], a point z ∈ W su(q1)
such that Fπ(z) = ζ and some h ∈ MCG(S) such that Φt−ǫz ∈ hK and that
W = hD(q1, χ), ρ(ζ,W ) = eǫ−t. By equivariance under the action of MCG(S) and
the inclusion (10) above, we have

W = hD(q1, χ) ⊂ F (πB(Φt−ǫz, 2r) ∩ FML)
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and hence from the definition of the sets B(q,R) and the definition of the strong
unstable manifolds we conclude that

W ⊂ F (πB(Φtz, 4r) ∩ FML).

Since the restriction of the map F to RML is injective and the restriction of
the map π to W su(Φtq) is injective and since V ∩ W ∩ C 6= ∅ by assumption we
obtain that B(Φtz, 4r) ∩ B(Φtq, 2r) 6= ∅. As a consequence, the distance in T (S)
between the points P (Φtz) and P (Φtq) is at most 6r and hence the distance between
P (Φt−ǫz) ∈ PhK = hPK and P (Φtq) ∈ PgK = gPK is at most 7r. On the other
hand, since K ⊂ U1, for u 6= v ∈ MCG(S) the distance in T (S) between uPK and
vPK is not smaller than 8r. Therefore we have g = h and V = W . This shows
that

ν1(
⋃

{W | (ζ,W ) ∈ V0, ρ(ξ, V ) ≤ρ(ζ,W )

≤ erρ(ξ, V ),W ∩ V ∩ C 6= ∅}) =ν1(V ).

On the other hand, if z ∈ W su(q1) ∩ A(q0), if s ≥ 0 and h ∈ MCG(S) are such
that Φsz ∈ hK and hD(q1, χ) = W and if (Fπ(z),W ) ∈ V0 is such that

e−s = ρ(Fπ(z),W ) ≤ ρ(ξ, V )

and V ∩ W ∩ C 6= ∅ then s ≥ t. By the choice of the set K, equivariance under
the action of the mapping class group and the inclusion (13) above, we have W ⊂
D(Φsz, 4χ) and V ⊂ D(Φtq, 4χ) and hence D(Φtq, 4χ) ∩ D(Φsz, 4χ) ∩ C 6= ∅. In
other words, there is some u ∈ A(q0) ∩ W su(Φtq) with F (π(u)) ∈ D(Φtq, 4χ) ∩
D(Φsz, 4χ).

By the inclusions (13) and (14) and the following remark, since u ∈ W su(Φtq)∩
A(q0),Φ

tq ∈ gK and Fπ(u) ∈ D(Φtq, 4χ) ⊂ gD(q1, σ) we have u ∈ gU2 ∩ A(q0)
and moreover

Φs−tu ∈ W su(Φsz) ∩ A(q0) and W ⊂ D(Φsz, 4χ) ⊂ D(Φs−tu, 16χ).

From (12) above and invariance under the action of the mapping class group we
obtain D(Φs−tu, 16χ) ⊂ D(u, β). The inclusion (10) then yields that

W ⊂ D(Φs−tu, 16χ) ⊂ D(u, β) ⊂ F (πB(Φtq, 2r) ∩ FML).

This shows that the ρ-enlargement V̂ of V is contained in F (πB(Φtq, 2r)∩FML).

Since Φtq ∈ ∪g∈MCG(S)gK by assumption, by invariance under the action of the
mapping class group the νΦtq-mass of F (πB(Φtq, 2r)∩FML) is uniformly bounded.
Therefore by the transformation rule for the measures νz under the action of the
Teichmüller geodesic flow, the ν1-mass of V̂ is bounded from above by a fixed
multiple of the ν1-mass of V . Thus by Theorem 2.8.17 of [F69] and by Lemma 3.4,
the covering relation Vq0,χ,K is indeed a Vitali relation for the measure F∗ν1 and
hence it is a Vitali relation for the measure F∗ν

x as well. Note that the same is
true for the covering relation Vq0,ǫ,K′ for every ǫ < χ and every sufficiently small
ǫ-admissible neighborhood K ′ of q1. �

Using Lemma 3.1, Lemma 3.4 and Proposition 3.5 we can now show.



INVARIANT RADON MEASURES ON MEASURED LAMINATION SPACE 19

Lemma 3.6. (1) A conformal density on PML which gives full measure to

FML is of dimension at least 6g − 6 + 2m, with equality if and only if it

coincides with the Lebesgue measure up to scale.

(2) A conformal density which gives full measure to the set of returning pro-

jective measured geodesic laminations is of dimension 6g − 6 + 2m and

coincides with the Lebesgue measure up to scale.

Proof. Let {νx} be a conformal density of dimension α ≥ 0 which gives full measure
to the set FML. We may assume that the density is ergodic, i.e. that the MCG(S)-
invariant measure class it defines on PML is ergodic. Let moreover {λx} be the
conformal density of dimension h = 6g − 6 + 2m which defines the Φt-invariant
probability measure on Q(S) in the Lebesgue measure class. We have to show that
α ≥ h, with equality if and only if νx = λx up to scale. For this assume that α ≤ h.

The Lebesgue measure λ on Q(S) is of full support and ergodic under the Te-
ichmüller flow and therefore the Φt-orbit of λ-almost every q ∈ Q(S) is dense. This
implies that there is a recurrent point q0 ∈ Q(S) with the property that the measure
λx gives full mass to RML(q0).

Recall that the conformal densities {νx}, {λx} define families νsu, λsu of Radon
measures on the strong unstable manifolds. For q ∈ Q1(S) denote by νq, λq the
image under the map F ◦ π of the restriction of these measures to W su(q) ∩ A.
Since the conformal densities {νx}, {λx} give full measure to the set FML, for
every q ∈ Q1(S) the measures λq, νq on ∂C(S) are of full support.

Let q1 ∈ Q1(S) be a lift of q0 to Q1(S). By Proposition 3.5, for sufficiently
small χ > 0 and for a sufficiently small compact neighborhood K of q1 the covering
relation Vq0,χ,K is a Vitali relation for the measure λq1

on ∂C(S). Using equivariance
under the action of MCG(S) and the fact that νq1

is of full support, if the measures
νq1

, λq1
are singular then for λsu-almost every q ∈ W su(q1) there is a sequence

ti → ∞ such that for every i > 0 the following holds.

(1) Φtiq ∈ giK for some gi ∈ MCG(S).
(2) The νΦtiq-mass and the λΦtiq-mass of D(giq1, χ) is bounded from above

and below by a universal constant.
(3) The limit limi→∞ νq1

(D(giq1, χ))/λq1
(D(giq1, χ)) exists and equals zero.

In particular, for every k > 0 and for all sufficiently large i, say for all i ≥ i(k), we
have λq1

D(giq1, χ) ≥ kνq1
D(giq1, χ). On the other hand, we also have

(16) λq1
D(giq1, χ) = e−htiλΦtiqD(giq1, χ) ≤ ce−hti

for a universal constant c > 0 and νq1
D(giq1, χ) ≥ de−αti for a universal constant

d > 0. If k > 0 is sufficiently large that kd ≥ 2c then for i ≥ i(k) we obtain a
contradiction.

In other words, if α ≤ h then the measures {νx} and {λx} are absolutely contin-
uous. Moreover, they give full mass to the recurrent projective measured geodesic
laminations. Then they define absolutely continuous Φt-invariant Radon measures
ν, λ on Q(S) which are ergodic by Lemma 3.1. As a consequence, the measures ν, λ
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coincide up to scale and hence the measures {νx}, {λx} coincide up to scale as well.
This shows the first part of the lemma.

To show the second part of the lemma, assume that α ≥ h and that the conformal
density {νx} gives full measure to the subset of PML of returning points. By
Lemma 3.1, {νx} gives full measure to the set RML of recurrent points. Since {νx}
is ergodic, there is a forward recurrent quadratic differential q0 ∈ Q(S) such that
{νx} gives full measure to the set RML(q0). This implies that we can exchange the
roles of {λx} and {νx} in the above argument and obtain that {νx}, {λx} coincide
up to scale. �

The following proposition uses the results of Minsky and Weiss [MW02] to show
that up to scale, the Lebesgue measure is the unique conformal density on PML
which gives full measure to the set FML of filling projective measured geodesic
laminations.

Proposition 3.7. Let {νx} be a conformal density which gives full measure to

FML. Then {νx} is the Lebesgue measure up to scale.

Proof. We argue by contradiction and we assume that there is a conformal density
{νx} which gives full measure to the set FML of all projective measured geodesic
laminations whose support is minimal and fills up S and which is singular to the
Lebesgue measure. Without loss of generality we can assume that {νx} is ergodic.
By Lemma 3.6, the dimension α of {νx} is strictly bigger than h = 6h − 6 + 2m
and the νx-measure of the set of returning points vanishes. The conformal density
induces a family {νsu} of locally finite Borel measures on the leaves of the strong
unstable foliation as before.

Let ν be the locally finite Borel measure on Q(S) which can be written in the form
dν = dνsu × dλs where λs is the family of Lebesgue measures on stable manifolds
which transforms under the Teichmüller flow Φt via dλs ◦ Φt = e−htdλs. The
measure ν is quasi-invariant under the Teichmüller geodesic flow and transforms
via

ν ◦ Φt = e(α−h)tν.

Since α > h this implies that the measure ν is infinite. Moreover, it gives full mass
to quadratic differentials whose vertical measured geodesic lamination is minimal
and fills up S.

The family λs of Lebesgue measures on stable manifolds is invariant under the
horocycle flow ht as defined in Section 2. By the explicit construction of the mea-
sures νsu, this implies that the measure ν is invariant under ht.

However, following the reasoning of Dani [D79] (see the proof of Corollary 2.6
of [MW02] for a discussion in our context), this implies that the measure ν is
necessarily finite. Namely, by the Birkhoff ergodic theorem, applied to the horocycle
flow ht and the locally finite ht-invariant measure ν (see Theorem 2.3 of [K85] for
the version of the Birkhoff ergodic theorem for locally finite infinite measures needed
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here), for ν-almost every q ∈ Q(S) and for every continuous positive function f on
Q(S) with

∫
fdν < ∞ the limit

lim
T→∞

1

T

∫ T

0

f(htq)dt = F (q)

exists, and the resulting function F is ht-invariant and ν-integrable. On the other
hand, consider the family of Borel probability measures

µ(q, T ) =
1

T

∫ T

0

δ(htq)dt

on Q(S) where δ(x) denotes the Dirac mass at x. By Theorem H2 of [MW02] (more
precisely, by the theorem in the appendix which is a slightly extended version of
this result), for every ǫ > 0 there is a compact set Kǫ ⊂ Q(S) such that for
ν-almost every q ∈ Q(S), every weak limit µ(q,∞) of the measures µ(q, T ) as
T → ∞ satisfies µ(q,∞)(Kǫ) ≥ 1 − ǫ. Since the function f is positive, we have
inf{f(z) | z ∈ K1/2} = 2c > 0 and therefore F (q) =

∫
fdµ(q,∞) ≥ c for ν-almost

every q ∈ Q(S). But this contradicts the fact that the measure ν is infinite and
that F is ν-integrable and shows the proposition. �

4. Train tracks

In Section 3 we showed that conformal densities for the mapping class group
which give full measure to the set of filling measured geodesic laminations coincide
with the Lebesgue measure up to scale. Conformal densities induce MCG(S)-
invariant Radon measures on measured lamination space (see the discussion in
Section 5). There may be other invariant Radon measures on ML which give
full measure to the filling measured geodesic laminations. Namely, there may be
such measures which give full measure to a measurable section of the fibration
ML → PML. It follows from the work of Sarig [S04] (see the discussion in Section
5) that this is the only case we have to rule out.

For this we follow the guidelines of Ledrappier and Sarig [LS06]. The main idea is
to obtain good control of the action of MCG(S) on PML with the help of Markov
partitions. However, for the action of the mapping class group on PML, such
Markov partitions have no obvious reason to exist (due to the lack of hyperbolicity).
Instead, we use partitions defined by train tracks which can be controlled sufficiently
well for our purpose. Such control is achieved by relating data associated to train
tracks to Teichmüller distances in Teichmüller space. We begin with summarizing
those properties of train tracks which are needed to carry out this idea.

A maximal generic train track on the surface S is an embedded 1-complex τ ⊂ S
whose edges (called branches) are smooth arcs with well-defined tangent vectors at
the endpoints. At any vertex (called a switch) the incident edges are mutually
tangent. Every switch is trivalent. Through each switch pass two germs of open
C1-arcs of S1 contained in τ . In particular, the half-branches which are incident
on a fixed switch are divided into two classes which are “incoming” or “outgoing”
according to a given orientation of the line tangent to τ at the switch. The comple-
mentary regions of a maximal generic train track are trigons, i.e. discs with three
cusps at the boundary, or once punctured monogons, i.e. once punctured discs with
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one cusp at the boundary. We always identify train tracks which are isotopic. We
refer to [PH92] for a comprehensive account on train tracks.

A maximal generic train track or a geodesic lamination σ is carried by a maximal
generic train track τ if there is a map F : S → S of class C1 which is homotopic to
the identity and maps σ into τ in such a way that the restriction of the differential
of F to the tangent space of σ vanishes nowhere; note that this makes sense since
a train track has a tangent line everywhere. We call the restriction of F to σ a
carrying map for σ. Write σ ≺ τ if the maximal generic train track or the geodesic
lamination σ is carried by the maximal generic train track τ . If σ is carried by τ
with carrying map F and if τ is carried by η with carrying map G, then σ is carried
by η with carrying map G ◦ F .

A half-branch b̂ in a maximal generic train track τ incident on a switch v of τ
is called large if every embedded arc of class C1 containing v in its interior passes

through b̂. A half-branch which is not large is called small. A branch b in a maximal
generic train track τ is called large if each of its two half-branches is large; in this
case b is necessarily incident on two distinct switches, and it is large at both of
them. A branch is called small if each of its two half-branches is small. A branch
is called mixed if one of its half-branches is large and the other half-branch is small
(for all this, see [PH92] p.118).

A transverse measure on a maximal generic train track τ is a nonnegative weight
function µ on the branches of τ satisfying the switch condition: for every switch
s of τ , the sum of the weights over all incoming half-branches at s is required to
coincide with the sum of the weights over all outgoing half-branches at s. Thus
if a, b, c are the half-branches of τ which are incident on s and if a is large, then
we require that µ(a) = µ(b) + µ(c). The maximal generic train track is called
recurrent if it admits a transverse measure which is positive on every branch. We
call such a transverse measure µ positive, and we write µ > 0. The space V(τ) of all
transverse measures on τ has the structure of a convex cone in a finite dimensional
real vector space. Via a carrying map, a measured geodesic lamination carried by τ
defines a transverse measure on τ , and every transverse measure arises in this way
(via Construction 1.7.7 of [PH92]). Thus V(τ) can naturally be identified with a
subset of ML which is invariant under scaling. A maximal generic train track τ is
recurrent if and only if the subset V(τ) of ML has nonempty interior.

A tangential measure β for a maximal generic train track τ associates to every
branch b of τ a nonnegative weight β(b) such that for every complementary trigon
with sides c1, c2, c3 we have β(ci) ≤ β(ci+1) + β(ci+2). Here β(ci) is the sum
over all branches b ⊂ ci of β(b), counted with multiplicities, and indices are taken
modulo three. (The complementary once-punctured monogons define no constraint
on tangential measures.) The space V∗(τ) of all tangential measures on τ has the
structure of a convex cone in a finite dimensional real vector space. The maximal
generic train track τ is called transversely recurrent if it admits a tangential measure
β which is positive on every branch [PH92].

For a maximal generic train track τ , every tangential measure on τ defines
uniquely a measured geodesic lamination which hits τ efficiently (we refer to [PH92]
for an explanation of this terminology), and every measured geodesic lamination
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which hits τ efficiently can be obtained in this way. However, in general there are
many tangential measures which correspond to a fixed measured geodesic lamina-
tion λ which hits τ efficiently. Namely, let s be a switch of τ and let a, b, c be the
half-branches of τ incident on s and such that the half-branch a is large. If β is
a tangential measure on τ which determines the measured geodesic lamination λ
then it may be possible to drag the switch s across some of the leaves of λ and
modify the tangential measure β on τ to a tangential measure ν 6= β. Then β − ν
is a multiple of a vector of the form δa − δb − δc where δw denotes the characteristic
function of the branch w.

In this way the space of all measured geodesic laminations which hit τ efficiently
can be identified with the quotient of the convex linear cone V∗(τ) by the subspace
H spanned by all vectors of the form δa − δb − δc arising from the different switches
of τ as described above. In other words, there is a bijection between the set of all
measured geodesic laminations µ which hit τ efficiently and classes of tangential
measures for τ in the quotient cone V∗(τ)/H. With this identification, the pairing
V(τ) × V∗(τ) → [0,∞) defined by

(17) (µ, β) →
∑

b

µ(b)β(b)

descends to the intersection form on ML [PH92].

A maximal generic train track τ is called complete if it is recurrent and trans-
versely recurrent. Note that in a slight deviation from the terminology introduced
in [PH92], a complete train track is always assumed to be generic. In the sequel we
denote by T T the set of isotopy classes of all complete train tracks on S.

Intersection numbers between measured geodesic laminations which are carried
by a complete train track τ can also be controlled. The following observation is
a slight extension of Corollary 2.3 of [H06]. For its formulation, define the total

weight of a transverse measure on a complete train track τ to be the sum of the
weights over all branches of τ .

Lemma 4.1. Let µ, ν be measured geodesic laminations which are carried by a

complete train track τ . Then i(µ, ν) ≤ µ(τ)ν(τ) where µ(τ), ν(τ) is the total weight

of the transverse measure on τ defined by µ, ν.

Proof. If the measured geodesic laminations µ, ν define transverse measures on τ
with rational weights then µ, ν are weighted geodesic multi-curves [PH92].

On the other hand, transverse measures with rational weights are dense in the
space of all transverse measures. Moreover, the assignment which associates to a
transverse measure on τ the corresponding measured geodesic lamination which is
carried by τ is continuous. Since the intersection form on ML is continuous as well,
it suffices to show the lemma for weighted geodesic multi-curves which are carried
by τ .

The transverse measure on τ defined by two disjoint simple closed geodesics c1, c2

carried by τ is the sum of the transverse measures defined by c1 and c2. Moreover,
we have i(ac1 + bc2, ξ) = ai(c1, ξ) + bi(c2, ξ) for all a, b > 0, ξ ∈ ML. Consequently
it is enough to show the lemma for two simple closed geodesics carried by τ .
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However, this follows as in the proof of Corollary 2.3 of [H06]. Namely, let µ
be a simple closed curve which is carried by τ and let m = µ(τ). Then there is a
trainpath of length m, i.e. a C1-immersion ρ[0,m] → τ which maps each interval
[i, i+1] onto a branch of τ and which parametrizes the image of µ under a carrying
map µ → τ . Deform µ with a homotopy to a closed curve ρ′ : [0,m] → S which is
mapped to ρ by a carrying map and is such that for i ≤ n, ρ′[i, i + 1] intersects τ
in at most one point, contained in the interior of the branch ρ[i, i + 1].

Now if ν is the transverse measure on τ defined by a second simple closed geodesic
carried by τ , then the number of intersection points between ρ′[i, i + 1] and a
trainpath on τ defined by this geodesic is not bigger than ν(ρ[i, i + 1]) ≤ ν(τ).
Together we obtain that i(µ, ν) ≤ µ(τ)ν(τ) as claimed. �

There is a simple way to modify a complete train track τ to another complete
train track. Namely, if e is a large branch of τ then we can perform a right or left
split of τ at e as shown in the figure below. Note that a right split at e is uniquely
determined by the orientation of S and does not depend on an orientation of e.
Using the labels in the figure, in the case of a right split we call the branches a and
c winners of the split, and the branches b, d are losers of the split. If we perform a
left split, then the branches b, d are winners of the split, and the branches a, c are
losers of the split.

left split

right split

a

b

e d

c

A (right or left) split τ ′ of a maximal generic train track τ is carried by τ , and
up to isotopy, there is a natural choice of a carrying map which maps the switches
of τ ′ to the switches of τ . Since carrying is a transitive relation between maximal
generic train tracks, a train track which can be obtained from τ by a splitting

sequence, i.e. by successive modifications by splits beginning with the train track
τ , is carried by τ . There is a natural bijection of the set of branches of τ onto the
set of branches of τ ′ which maps the branch e to the diagonal e′ of the split. The
split of a complete train track is maximal, transversely recurrent and generic, but
it may not be recurrent (Lemma 1.3.3.b and Lemma 2.1.3 of [PH92]).

If τ ′ is a complete train track which can be obtained from τ by a single split then
a carrying map τ ′ → τ induces a linear push-forward map L : V(τ ′) → V(τ) which
maps the transverse measure µ on τ ′ defined by a measured geodesic lamination λ
carried by τ ′ to the transverse measure on τ defined by the same measured geodesic
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lamination λ. There is a dual map L∗ : V∗(τ) → V∗(τ ′) which is determined by the
equation

(Lµ, β) = (µ,L∗(β))

where (Lµ, β) is defined as in (17). The image of a tangential measure on τ which
defines a measured geodesic lamination ζ which hits τ efficiently is a tangential
measure on τ ′ which defines the same measured geodesic lamination ζ (Proposition
3.4.2 and Lemma 3.4.3 of [PH92]). In particular, a measured geodesic lamination
which hits τ efficiently also hits τ ′ efficiently.

For a complete train track τ ∈ T T denote by V0(τ) ⊂ V(τ) the convex set of all
transverse measures on τ whose total weight equals one. Let moreover

Q(τ) ⊂ Q1(S)

be the set of all area one quadratic differentials whose vertical measured geodesic
lamination is carried by τ and determines a transverse measure in V0(τ), and whose
horizontal measured geodesic lamination hits τ efficiently. Then Q(τ) is a closed
subset of Q1(S) which however may not be compact in general.

As in [MM99], define a vertex cycle for τ to be a transverse measure on τ which
spans an extreme ray in the convex cone V(τ). Up to rescaling, such a vertex cycle
is the counting measure of a simple closed curve which is carried by τ (see p. 115 of
[MM99] for this fact). In the sequel we identify a vertex cycle for τ with this simple
closed curve on S. With this convention, the transverse measure on τ defined by a
vertex cycle is integral.

Define a map
Ψ : T T → C(S)

by associating to a complete train track τ one of its vertex cycles. Recall from
Section 2 the definition of the map ΥQ : Q1(S) → C(S). We have:

Lemma 4.2. There is a number χ2 = χ2(S) > 0 such that d(ΥQ(q),Ψ(τ)) ≤ χ2

for every complete train track τ ∈ T T and every quadratic differential q ∈ Q(τ).

Proof. Let τ ∈ T T and let q ∈ Q(τ). Then the transverse measure λ ∈ V0(τ) of the
vertical measured geodesic lamination of q can be written in the form λ =

∑
i aiαi

where αi is the transverse measure on τ defined by a vertex cycle and where ai ≥ 0.
Now the number of vertex cycles for τ is bounded from above by a universal constant
only depending on the topological type of the surface S. The weight disposed on a
branch of τ by the counting measure of a vertex cycle does not exceed two (Lemma
2.2 of [H06]). This means that there is a number a > 0 only depending on the
topological type of S and there is some i > 0 such that ai ≥ a.

The horizontal measured geodesic lamination µ of q defines a class of tangential
measures on τ . If β ∈ V∗(τ) is any representative of this class, then we have∑

b λ(b)β(b) = i(λ, µ) = 1. This implies that the vertex cycle α = αi satisfies
i(α, µ) =

∑
b α(b)β(b) ≤ i(λ, µ)/a = 1/a. On the other hand, by Lemma 4.1 and

by Lemma 2.2 of [H06] (as mentioned in the previous paragraph), the intersection
number i(α, λ) does not exceed 2p where p > 0 is the number of branches of a
complete train track on S. Moreover, the q-length of the simple closed curve α is
bounded from above by i(α, λ)+i(α, µ). (This fact is well known to the experts but
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a bit difficult to find explicitly in the literature. In Section 5 of [Bw06], Bowditch
discusses in detail the case when the supports of the vertical and the horizontal
measured geodesic laminations of q are simple closed multi-curves, i.e. disjoint
unions of simple closed geodesics. The general case follows from continuity of the
intersection form and the fact that quadratic differentials whose horizontal and
vertical measured geodesic laminations are supported in simple closed multi-curves
are dense in the space of all quadratic differentials [St84]). Hence the q-length of α
is uniformly bounded and therefore Lemma 2.1 implies that the distance between
ΥQ(q) and α is bounded from above by a constant only depending on S.

On the other hand, the number of vertex cycles on a complete train track is
uniformly bounded, and up to the action of MCG(S), there are only finitely many
isotopy classes of complete train tracks on S. Therefore the distance in C(S) be-
tween any two vertex cycles of a complete train track on S is uniformly bounded.
The lemma follows. �

A framing [H08b] (or a complete clean marking in the terminology of [MM00])
for the surface S consists of a pants decomposition P for S and a collection of
3g − 3 + m essential simple closed spanning curves. For each pants curve c ∈ P
there is a unique such spanning curve which is disjoint from P − c, which is not
freely homotopic to any pants curve of P and which has the minimal number (one
or two) of intersection points with c among all simple closed curves with these
properties. Any two such curves differ by a multiple Dehn twist about c.

There is a number χ̂0 > 0 such that for every framing F there exists a hyperbolic
metric h ∈ T (S) with the property that the h-length of each curve from F is at
most χ̂0. We call such a hyperbolic metric short for F . Such a metric can be
constructed as follows. Equip each pair of pants defined by P with a hyperbolic
metric such that the length of each boundary geodesic equals, say, one; then glue
these pairs of pants in such a way that the spanning curves have the smallest possible
length. By standard hyperbolic trigonometry, there is a number δ > 0 such that
every hyperbolic metric which is short for some framing F of S is contained in
the set T (S)δ of all metrics whose systole, i.e. the shortest length of a closed
geodesic, is at least δ. Moreover, using Fenchel-Nielsen coordinates based on the
pants decomposition P for a fixed framing F , it is straightforward that the set of
all hyperbolic metrics which are short for F is compact.

The mapping class group MCG(S) naturally acts on the collection of all framings
of S. There are only finitely many orbits for this action. Thus by invariance under
the action of the mapping class group, the diameter in T (S) of all hyperbolic
metrics which are short for a fixed framing is bounded from above by a constant
only depending on S.

Also, there is a number k > 0 and for every complete train track τ ∈ T T there is
a framing F of S which consists of simple closed curves carried by τ and such that
the total weight of the counting measures on τ defined by these curves does not
exceed k. We call such a framing short for τ . Namely, let c be a simple closed curve
which is carried by τ and such that the minimum weight c puts on any branch of
τ is not smaller than three. Such a simple closed curve exists since τ is recurrent.
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By Lemma 4.5 of [MM99] and completeness, τ carries every simple closed curve α
with i(c, α) ≤ 2. However, a framing of S with a pants decomposition containing
c as a component consists of simple closed curves α with i(c, α) ≤ 2. This implies
that τ carries a framing for S. Since up to the action of MCG(S) there are only
finitely many isotopy classes of complete train tracks on S, we can find a number
k > 0 as required.

By Lemma 4.1, the intersection number i(c, c′) between any two simple closed
curves c, c′ which are carried by some τ ∈ T T and which define counting measures
on τ of total weight at most k is bounded from above by k2. In particular, for any
two short framings F, F ′ for τ the distance in T (S) between any two hyperbolic
metrics which are short for F, F ′ is uniformly bounded (see Lemma 4.7 of [Mi93]
and [MM99, Bw06]).

Define a map Λ : T T → T (S) by associating to a complete train track τ a
hyperbolic metric Λ(τ) ∈ T (S) which is short for a short framing for τ . By our
above discussion, there is a number χ3 > 0 only depending on the topological type
of S such that if Λ′ is another choice of such a map then we have d(Λ(τ),Λ′(τ)) ≤ χ3

for every τ ∈ T T . In particular, the map Λ is coarsely MCG(S)-equivariant : For
every τ ∈ T T and every g ∈ MCG(S) we have d(Λ(gτ), gΛ(τ)) ≤ χ3.

In Section 5, the sets of all projective measured geodesic laminations which are
carried by a complete train track τ are used as substitutes for a Markov partition for
the action of the mapping class group on PML. These sets are invariant under the
action of the mapping class group, and there is some control on their intersections.
For example, if τ ∈ T T , if e is a large branch of τ and if τℓ, τr ∈ T T are obtained
from τ by a left and right split at e, respectively, then V(τ) = V(τr) ∪ V(τℓ), and
V(τr) ∩ V(τℓ) is the intersection of V(τ) with a hyperplane in PML (see [MM99]
for a discussion). However, for arbitrary train tracks τ, σ ∈ T T the intersection
V(τ)∩V(σ) is difficult to control. Lemma 4.3 and Lemma 4.4 give some quantitative
information on nesting of these sets which is sufficient for our purpose.

We begin with a technical result which relates nesting of such sets to geometric
properties of Teichmüller geodesics which are easier to control. For its formulation,
let again P : Q1(S) → T (S) be the canonical projection.

Lemma 4.3. There is a number ℓ > 0 and for every ǫ > 0 there is a number

m(ǫ) > 0 with the following property. Let σ, τ ∈ T T and assume that σ is carried

by τ and that the distance in C(S) between any vertex cycle of σ and any vertex cycle

of τ is at least ℓ. Let q ∈ Q(τ) be a quadratic differential whose vertical measured

geodesic lamination qv is carried by σ. If the total weight of the transverse measure

on σ defined by qv is not smaller than ǫ, then d(Λ(τ), P q) ≤ m(ǫ).

Proof. Let χ0 > 0 be as in the definition of the map ΥT : T (S) → C(S) in Section
2. Let χ1 > 0 be as in Lemma 2.2 and let κ1 > 0 be such that for every x ∈ T (S)
the diameter in C(S) of the set of simple closed curves whose x-length is at most
χ0 is bounded from above by κ1. Let χ2 > 0 be as in Lemma 4.2 and let ℓ >
2κ1 + 2χ1 + 2χ2 + 3.
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Let σ ≺ τ ∈ T T be such that the distance in C(S) between any vertex cycle of
τ and any vertex cycle of σ is at least ℓ. Let ǫ > 0 and let q ∈ Q(τ) be such that
the vertical measured geodesic lamination qv of q is carried by σ and defines on σ a
transverse measure of total weight at least ǫ. We call such a quadratic differential
ǫ-big for (σ, τ). In particular, if t > 0 is such that Φtq ∈ Q(σ) then t ≤ − log ǫ.
Note that such a number t ∈ R exists since by the discussion preceding Lemma 4.2
and its obvious extensions to train track which are related by carrying (as discussed
in Proposition 3.4.2 and Lemma 3.4.3 of [PH92]), the horizontal measured geodesic
lamination of q hits σ efficiently.

We claim that the Pq-length of any essential simple closed curve on S is at least
ǫχ0. Namely, if there is a simple closed curve c on S whose Pq-length is smaller than
ǫχ0 then the PΦtq-length of c is at most χ0 (Lemma 3.1 of [W79]). By the choice of
the constant κ1, this means that d(ΥT (Pq),ΥT (PΦtq)) ≤ 2κ1 and hence Lemma
2.2 shows that d(ΥQ(q),ΥQ(Φtq)) ≤ 2κ1 +2χ1. From Lemma 4.2 we conclude that
d(Ψ(σ),Ψ(τ)) ≤ 2κ1 +2χ1 +2χ2 < ℓ which contradicts our choice of σ and τ . Thus
we have Pq ∈ T (S)ǫχ0

.

Now by Lemma 3.3 of [Mi94] (which is an immediate consequence of invariance
under the action of the mapping class group and cocompactness), there is a constant
L > 0 depending on ǫ such that for every q ∈ Q1(S) with Pq ∈ T (S)ǫχ0

the singular
euclidean metric defined by q is L-bilipschitz equivalent to the hyperbolic metric
Pq. Moreover, if a given framing is short for two hyperbolic metrics (here Λ(τ) and
Pq), then these are close in T (S). Thus for the proof of the lemma it suffices to
show that for a quadratic differential q ∈ Q(τ) which is ǫ-big for (σ, τ) the q-length
of some short framing for τ is uniformly bounded.

Let qh be the horizontal measured geodesic lamination of q. Then qh defines
a class of tangential measures on τ . Let β ∈ V∗(τ) be a representative of this
class. We claim that the weights β(b) where b varies through the branches of τ
are bounded from above by a constant only depending on ǫ (and the topological
type of S), but not on the quadratic differential q which is ǫ-big for (σ, τ) or on the
choice of β. For this note that the transverse measure on the train track σ defined
by the vertical measured geodesic lamination qv of q can be represented in the form
qv =

∑
i aiαi where the αi are the vertex cycles for σ. By the discussion in the first

paragraph of the proof of Lemma 4.2, there is a number a > 0 only depending on
S such that ai ≥ ǫa for at least one index i.

By the choice of σ and τ , the distance in C(S) between any vertex cycle of σ and
any vertex cycle for τ is at least ℓ > 3. Thus by Lemma 4.9 of [MM99], the image
of αi under a carrying map αi → τ is a large subtrack ω of τ . This means that
this image is a train track on S which is a subset of τ and whose complementary
components are topological discs or once punctured topological discs. Each such
complementary component is a polygon or a once punctured polygon which is a
union of complementary components of τ .

By definition of the linear push-forward map V(σ) → V(τ) induced by the car-
rying map σ → τ , since qv =

∑
i aiαi, the qv-weight of every branch of ω is at least

ǫa. Thus we obtain from the identity i(qh, qv) = 1 that the weight of every branch
of ω with respect to the tangential measure β is bounded from above by 1/ǫa. From
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the definition of a tangential measure for τ and the fact that ω is large we deduce
that the total weight that β puts on the branches of τ is bounded from above by
a constant only depending on ǫ and the topological type of S. Namely, let D be a
complementary polygon of ω with more than 3 sides. Then the branches of τ which
are contained in D decompose D into trigons. There is at least one such trigon T
with two sides contained in the boundary of D, i.e. with two sides contained in ω.
By the definition of a tangential measure, the total weight put by β on the third side
of T which crosses the interior of D is bounded from above by the sum of the total
weights on the sides of T contained in ω. Thus by the above consideration, the total
weight put by β on the boundary of T is uniformly bounded. Since the number of
complementary components of τ only depends on the topological type of S, with a
uniformly bounded number of such steps we obtain inductively a universal bound
on the total β-weight of D∩ τ . A similar argument is also valid for once punctured
complementary polygons of ω. Namely, a once punctured complementary polygon
D in ω which is not a complementary component of τ has at least two sides, and
the branches of τ which are contained in D decompose D into trigons and one once
punctured monogon. Then we can fill in successively the sides of the complemen-
tary trigons of τ which are contained in D as before and obtain a control on the
total weight of β.

Since the total weight of the tangential measure β on τ representing qh is uni-
formly bounded, the intersection number i(c, qh) for every curve from a short fram-
ing for τ is uniformly bounded as well. Moreover, by Lemma 4.1, for τ ∈ T T , for
a simple closed curve c contained in a short framing for τ and for every ν ∈ V0(τ)
we have i(ν, c) ≤ k where k > 0 is as in the definition of a short framing for τ .
Apply this estimate with ν = qv. Now for every quadratic differential z ∈ Q1(S)
with horizontal and vertical measured geodesic lamination zh, zv the z-length of
a simple closed curve c is bounded from above by i(zh, c) + i(zv, c) (compare the
remark in the proof of Lemma 4.2). This shows that the q-length of every simple
closed curve from a short framing of τ is uniformly bounded and completes the
proof of the lemma. �

Every projective measured geodesic lamination ξ ∈ PML determines an unsta-
ble manifold Wu(ξ) ⊂ Q1(S) consisting of all area one quadratic differentials whose
horizontal measured geodesic lamination is contained in the class ξ. This unstable
manifold can naturally be identified with the set of all measured geodesic lamina-
tions ζ such that ζ and ξ jointly fill up S. This means that for any representative
ν ∈ ML of the class β and any measured geodesic lamination α ∈ ML we have
i(ζ, α) + i(ν, α) > 0. Note that this does not depend on the choice of the repre-
sentative ν. By the Hubbard-Masur theorem, for every ξ ∈ PML the restriction
of the canonical projection P : Q1(S) → T (S) to the unstable manifold Wu(ξ) is
a homeomorphism. Hence the Teichmüller metric defines a distance function d on
Wu(ξ).

For a train track τ ∈ T T let PE(τ) be the projectivization of the set of all
measured geodesic laminations which hit τ efficiently (as defined implicitly via
tangential measures for τ). Recall from the above discussion that if σ ≺ τ then
PE(τ) ⊂ PE(σ). For ξ ∈ PE(τ) and a number R > 0 the train track τ is called
R−ξ-tight if the diameter of Q(τ)∩Wu(ξ) with respect to the lift of the Teichmüller
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metric is at most R. We use Lemma 4.3 to derive the following result which is the
main technical ingredient for the proof in Section 5 that invariant Radon measures
which give full mass to the filling measured geodesic laminations are defined by
conformal densities.

Lemma 4.4. Let ℓ > 0 be as in Lemma 4.3. Then for every ǫ > 0 there is a

number R = R(ǫ) > 0 with the following property. Let η ≺ σ ≺ τ and assume that

the distance in C(S) between any vertex cycle of σ and any vertex cycle of η as well

as any vertex cycle of τ is at least ℓ. Suppose there exists a quadratic differential

q ∈ Q(τ) whose vertical measured geodesic lamination is carried by η and defines a

transverse measure on η of total weight at least ǫ. Let ξ ∈ PE(τ) be the projective

class of the horizontal measured geodesic lamination of q. Then σ is R − ξ-tight.

Proof. Let δ > 0 be such that Λ(τ) ∈ T (S)δ for every τ ∈ T T . By possibly
decreasing δ we may assume that T (S)δ is connected. If we equip T (S)δ with
the length metric induced by the Finsler structure defining the Teichmüller metric
then T (S)δ is a proper geodesic metric space on which the mapping class group
MCG(S) acts properly discontinuously and cocompactly as a group of isometries.
The set T T is the set of vertices of the train track complex which is a connected
metric graph on which the mapping class group acts properly and cocompactly
as a group of isometries (Lemma 3.2 and Lemma 3.3 of [H08b]). Edges in the
train track complex are of length one and connect two train train tracks τ, τ ′ if τ ′

can be obtained from τ by a single split. Since the map Λ is coarsely MCG(S)-
equivariant this means that there is some L > 1 such that Λ : T T → T (S)δ is an
L-quasi-isometry.

Let η ≺ σ ≺ τ be as in the statement of the lemma, let 0 < ǫ < 1 and assume that
there is some q ∈ Q(τ) such that the vertical measured geodesic lamination qv of q
is carried by η and that the total weight of η defined by qv is bounded from below
by ǫ. Then the total weight c on σ defined by qv is contained in the interval [ǫ, 1].
By Lemma 4.3, applied both to the train tracks σ ≺ τ and to the train tracks η ≺ σ
(with the quadratic differential Φsq for s = − log c), the distance between Λ(σ) and
Λ(τ) is bounded from above by a number κ0 > 0 only depending on ǫ. Namely, we
have d(Λ(τ), P q) ≤ m(ǫ), d(Λ(σ), PΦsq) ≤ m(ǫ) and d(Pq, PΦsq) = s ≤ − log ǫ.

We claim that the distance between Λ(σ) and Λ(τ) in T (S)δ is bounded from
above by a constant κ1 > 0 only depending on ǫ. For this note that by Lemma 3.1 of
[W79], a Teichmüller geodesic of length at most κ0 connecting two points Λ(τ),Λ(σ)
in T (S)δ entirely remains in T (S)ν where log δ− log ν = κ0. As a consequence, the
distance between Λ(σ) and Λ(τ) in T (S)ν equipped with the length metric induced
by the Finsler structure defining the Teichmüller metric is at most κ0. However,
since the mapping class group MCG(S) acts properly and cocompactly on both
length spaces T (S)δ and T (S)ν , the (MCG(S)-equivariant) inclusion T (S)δ →
T (S)ν is an L1-quasi-isometry for a number L1 > 1 only depending on δ, ν. This
shows the claim.

As a consequence of this discussion, the distance between σ, τ in the train track
complex is bounded from above by a constant κ2 > 0 only depending on ǫ. However,
there are only finitely many orbits under the action of the mapping class group
of pairs σ ≺ τ whose distance in the train track complex is at most κ2. Thus by
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invariance under the mapping class group, there is a number κ3 > 0 only depending
on ǫ (and the topological type of S) with the following property: if α is any vertex
cycle of σ, then the total weight defined by α on τ is at most κ3. Then the carrying
map σ → τ maps V0(σ) to a subset of V(τ) consisting of transverse measures whose
total weight is bounded from above by a constant n(ǫ) > 0 depending only on ǫ
and S.

Recall the definition of ξ, the horizontal projective measured geodesic lamina-
tion of q. Since q ∈ Q(τ), (a representative of) the projective measured geodesic
lamination ξ hits τ efficiently. Let us now show that σ is R − ξ-tight.

If z ∈ Q(σ) ∩ Wu(ξ), let c ∈ [1, n(ǫ)] be the total weight of τ defined by the
vertical measured geodesic lamination zv of z (which is carried by σ and hence by τ),
and define z′ = Φ− log cz. Then we have z′ ∈ Q(τ). Indeed, the total weight defined
by the vertical measured geodesic lamination z′v of z′ on τ is 1 (i.e. z′v ∈ V0(τ)) by
the choice of c, and the horizontal projective measured geodesic lamination of z′ is
ξ which hits τ efficiently.

But the total weight of σ defined by z′v is 1/c ≥ 1/n(ǫ). By Lemma 4.3, there
exists a constant m = m(1/n(ǫ)) > 0 such that d(Pz′,Λ(τ)) ≤ m. But d(Pz, Pz′) =
log c ≤ log n(ǫ). Therefore Pz is within a bounded distance R (depending only on
ǫ and S) of Λ(τ). This proves the lemma. �

5. Invariant Radon measures on ML

In this section we complete the proof of the theorem from the introduction. We
continue to use the assumptions and notations from Section 3. Recall first that for
every point x ∈ T (S) and every ξ ∈ PML there is a unique quadratic differential
q(x, ξ) ∈ Q1(S)x of area one on the Riemann surface x whose vertical measured
geodesic lamination qv(x, ξ) is contained in the class ξ (this is the Hubbard-Masur
theorem). The assignment ξ → qv(x, ξ) determines a homeomorphism PML×R →
ML by assigning to (ξ, t) ∈ PML×R the measured geodesic lamination etqv(x, ξ).

A conformal density {νy} on PML of dimension α defines a Radon measure Θν

on ML via dΘν(ξ, t) = dνx(ξ) × eαtdt where ξ ∈ PML, t ∈ R. By construction,
this measure is quasi-invariant under the one-parameter group of translations T s on
ML = PML×R given by T s(ξ, t) = (ξ, s+t). More precisely, we have dν◦T s

dν = eαs.

The measure Θν is moreover invariant under the action of the mapping class
group MCG(S). Namely, for ξ ∈ PML and g ∈ MCG(S) the measured geodesic
lamination g(qv(x, ξ)) = qv(g(x), g(ξ)) equals eΨ(x,g(x),g(ξ))qv(x, g(ξ)) where Ψ is
the cocycle defined in the beginning of Section 3. On the other hand, we have

d(Θν ◦ g)(ξ, t) = dνg(x)(g(ξ)) × eαtdt.

By the definition of a conformal density, for νx-almost every ξ ∈ PML the Radon
Nikodym derivative of the measure νg(x) with respect to νx at the point g(ξ) equals
eαΨ(x,g(x),g(ξ)) and therefore the measure Θν is indeed invariant under the action of
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MCG(S). As a consequence, every conformal density on PML induces a MCG(S)-
invariant Radon measure on ML = PML× R which is quasi-invariant under the
one-parameter group of translations T s.

Now let η be any ergodic MCG(S)-invariant Radon measure on ML. Then

Hη = {a ∈ R | η ◦ T a ∼ η}
is a closed subgroup of R [ANSS02]. The next lemma is an easy consequence
of Proposition 3.7 and Sarig’s cocycle reduction theorem (Theorem 2 of [S04]).
For its formulation, recall from Section 3 the definition of the space FML of all
projective measured geodesic laminations which fill up S. We call a measured
geodesic lamination λ ∈ ML filling if its projectivization is contained in FML.
The set of all filling measured geodesic laminations is invariant under the action of
the mapping class group.

Lemma 5.1. Let η be an ergodic MCG(S)-invariant Radon measure on ML which

gives full mass to the filling measured geodesic laminations. If Hη 6= {0} then η
coincides with the Lebesgue measure up to scale.

Proof. Define a measurable countable equivalence relation R on PML by χRξ if
and only if χ and ξ are contained in the same orbit for the action of the mapping
class group. Recall the definition of the cocycle Ψ : T (S)×T (S)×PML → R. For
a fixed point x ∈ T (S) we obtain a real-valued cocycle for the action of MCG(S)
on PML, again denoted by Ψ, via Ψ(λ, g) = Ψ(x, g−1x, λ) (λ ∈ PML and g ∈
MCG(S)). By the cocycle identity (5) for Ψ we have Ψ(λ, hg) = Ψ(λ, g)+Ψ(gλ, h),
i.e. Ψ is indeed a cocycle which can be viewed as a cocycle on R. We also write
Ψ(λ, ξ) instead of Ψ(λ, g) whenever ξ = gλ; note that this is only well defined if
λ is not fixed by any element of MCG(S), however this ambiguity will be of no
importance in the sequel.

Recall that the choice of a point x ∈ T (S) determines a homeomorphism ML →
PML × R. The cocycle Ψ then defines an equivalence relation RΨ on ML =
PML× R by

RΨ = {((λ, t), (ξ, s)) ∈ (PML× R)2 | (λ, ξ) ∈ R and s − t = Ψ(λ, ξ)}.

Let η be an ergodic MCG(S)-invariant Radon measure on ML which gives full
mass to the filling measured geodesic laminations. By the results in [ANSS02]
(compare also the clear discussion on p.521 of [S04]), if Hη = R then η is induced
by a conformal density as described in the beginning of this section. In particular,
by Proposition 3.7, in this case the measure η equals the Lebesgue measure up to
scale. Thus for the proof of our lemma we are left with the case that Hη = cZ for
a number c > 0.

By the cocycle reduction theorem of Sarig (Theorem 2 of [S04]), in this case there
is a Borel function u : PML → R such that Ψu(x, y) = Ψ(x, y) + u(y) − u(x) ∈
Hη holds η-almost everywhere in RΨ. Since c > 0 we may assume without loss
of generality that the function u is bounded. Following [S04], for a ∈ R define
θa(x, t) = (x, t−u(x)−a). By Lemma 2 of [S04], for a suitable choice of the number
a the measure η ◦ θ−1

a is an RΨu
-invariant ergodic Radon measure supported on

PML× cZ.
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We now follow Ledrappier and Sarig [LS06] (see also [Ld06]). Namely, since
η is invariant and ergodic under the action of MCG(S) and since the R-action
on ML commutes with the MCG(S)-action, for every t ∈ R the measure η ◦ T t

is also MCG(S)-invariant and ergodic. Thus either η ◦ T t and η are singular or
they coincide up to scale. As a consequence, there is some number α ∈ R such that
η◦T c = eαcη. Since θ = θa and T t commute, we also have η◦(θ−1◦T c) = eαcη◦θ−1.
Consequently the measure e−αtη ◦ θ−1 is invariant under the translation T c. Since
moreover e−αtη◦θ−1 is supported in PML×cZ, it follows that e−αtη◦θ−1 = ν×mHη

with some measure ν on PML.

The measure ν is finite since η ◦ θ−1 is Radon and the function u is bounded.
The measure η is MCG(S)-invariant and therefore η ◦ θ−1 is invariant under θ ◦
MCG(S) ◦ θ−1. In particular, the measure class of ν is invariant under the action
of MCG(S). More precisely, we have

dν ◦ g

dν
(ξ) = eαΨ(ξ,g) e−αu(ξ)

e−αu(g(ξ))

for all g ∈ MCG(S) and ν-almost every ξ ∈ PML (see [LS06]). As a consequence,
if we define dνx(ξ) = eαu(ξ)dν(ξ) and dνy(ξ) = eαΨ(x,y,ξ)dνx(ξ) for y ∈ T (S) then
{νy} defines a conformal density of dimension α on PML. Note that the measure
νx = eαuν is finite since the function u is bounded. By our assumption on the
measure η, the conformal density {νx} gives full measure to the MCG(S)-invariant
set FML of projective measured geodesic laminations which fill up S. Hence we
conclude from Proposition 3.7 that η equals the Lebesgue measure λ up to scale.
However, the Lebesgue measure is quasi-invariant under the translations {T t} which
is a contradiction to the assumption that Hη = cZ for some c > 0. This shows the
lemma. �

The investigation of MCG(S)-invariant ergodic measures η on ML which give
full measure to the filling measured geodesic laminations and satisfy Hη = {0} is
more difficult. We begin with an observation which is similar to Proposition 3.7.
For this call a measured geodesic lamination weakly recurrent if its projectivization
is contained in the set RML of recurrent projective measured geodesic laminations
as defined in Section 3.

Lemma 5.2. An MCG(S)-invariant Radon measure η on ML which gives full

measure to the filling measured geodesic laminations gives full measure to the weakly

recurrent measured geodesic laminations.

Proof. Let η be an MCG(S)-invariant ergodic Radon measure on ML which gives
full measure to the filling measured geodesic laminations. We use the measure η to
construct a locally finite Borel measure ν on the moduli space Q(S) of quadratic
differential of area one which is invariant under the horocycle flow. Namely, for
every quadratic differential q ∈ Q1(S) the assignment which associates to a qua-
dratic differential z contained in the unstable manifold Wu(q) its vertical measured
geodesic lamination is a homeomorphism of Wu(q) onto an open subset of ML.
Thus by equivariance under the action of the mapping class group, the measure
η lifts to an MCG(S)-invariant family {ηu} of locally finite measures on unstable
manifolds Wu(q) (q ∈ Q1(S)). This family of measures then projects to a family
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{νu} of locally finite Borel measures on the leaves of the unstable foliation on Q(S).
The family {νu} is invariant under holonomy along strong stable manifolds.

Define dν = dνu × dλss where λss is a standard family of Lebesgue measures
on strong stable manifolds which is invariant under the horocycle flow ht. Then
ν is a locally finite ht-invariant Borel measure on Q(S). For ν-almost every point
q ∈ Q(S) the horizontal and the vertical measured geodesic laminations of q fill up
S. As in the proof of Proposition 3.7, Dani’s argument together with the theorem
from the appendix implies that ν is finite. Moreover, for every ǫ > 0 there is a
compact subset Kǫ of Q(S) not depending on ν such that ν(Kǫ)/ν(Q(S)) ≥ 1 − ǫ.

Via replacing ν by ν/ν(Q(S)) we may assume that ν is a probability measure.
For s > 0 define

ν(s) =
1

s

∫ s

0

Φtνdt.

Since ht ◦ Φs = Φs ◦ hest for all s, t ∈ R, the Borel probability measure ν(s) is ht-
invariant and gives full measure to the points with filling vertical measured geodesic
laminations. Therefore we have ν(s)(Kǫ) ≥ 1−ǫ for all s > 0, all ǫ > 0. This implies
that there is a sequence si → ∞ such that the measures ν(si) converge as i → ∞
weakly to a Borel probability measure ν(∞) on Q(S) which is invariant under both
the horocycle flow and the Teichmüller geodesic flow. By the Poincaré recurrence
theorem for the Teichmüller flow, ν(∞) gives full measure to the forward recurrent

quadratic differentials.

As a consequence, ν-almost every q ∈ Q(S) contains a forward recurrent point in
its ω-limit set for the action of the Teichmüller geodesic flow. Namely, since ν(∞)
is Borel regular, for ǫ > 0 there is a compact subset Bǫ of Q(S) which consists of
forward recurrent points and such that ν(∞)(Bǫ) > 1 − ǫ. Let {Uℓ} be a family of
open neighborhoods of Bǫ such that Uℓ ⊃ Uℓ+1 for all ℓ and ∩ℓUℓ = Bǫ. Then for
every ℓ > 0 there is some i(ℓ) > 0 such that ν(si)(Uℓ) ≥ 1 − 2ǫ for all i ≥ i(ℓ).

For ℓ > 0 define Cℓ = {q | Φtq ∈ Uℓ for infinitely many t > 0}; then Cℓ ⊃ Cℓ+1

for all ℓ. We claim that ν(Cℓ) ≥ 1 − 5ǫ for every ℓ. Namely, otherwise there is a
number T > 0 and there is a Borel subset A of Q(S) with ν(A) ≥ 4ǫ and such that
Φtz 6∈ Uℓ for every z ∈ A and every t ≥ T . Then necessarily ν(si)(Uℓ) ≤ 1 − 3ǫ
for all sufficiently large i which is impossible. Since the neighborhood Uℓ of Bǫ was
arbitrary and since ν is Borel regular we conclude that ν(∩ℓCℓ) ≥ 1− 5ǫ. Thus the
ν-mass of all points q ∈ Q(S) which contain a point z ∈ Bǫ in its ω-limit set is at
least 1− 5ǫ. Since Bǫ consists of recurrent points and since ǫ > 0 was arbitrary we
conclude that ν-almost every q ∈ Q(S) contains a forward recurrent point for the
Teichmüller geodesic flow in its ω-limit set. This shows the lemma. �

For the investigation of MCG(S)-invariant Radon measures η on ML with Hη =
{0} we use a construction reminiscent of symbolic dynamics where the Markov
shift is replaced by complete train tracks and their splits. We next establish some
technical preparations to achieve this goal.

Define a geodesic lamination ξ on S to be complete if ξ is maximal and can
be approximated in the Hausdorff topology by simple closed geodesics. The space
CL of all complete geodesic laminations equipped with the Hausdorff topology is a
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compact totally disconnected metrizable MCG(S)-space. Every minimal geodesic
lamination λ is a sublamination of a complete geodesic lamination. If λ fills up S
then the number of complete geodesic laminations which contain λ as a sublami-
nation is bounded from above by a universal constant (Section 2.1 of [H08b]).

The set of all complete geodesic laminations which are carried by a complete
train track τ is non-empty, open and closed in CL (Lemma 2.3 of [H08b]). This
enables us to use complete train tracks for the construction of partitions of CL with
properties similar to Markov partitions. To pass from complete geodesic laminations
to projective measured geodesic laminations, let H ⊂ CL be the set of all complete
geodesic laminations λ ∈ CL which contain a uniquely ergodic minimal component
which fills up S. It is not difficult to see that H is a Borel subset of CL, however we
do not need this fact in the sequel. We equip H with the subspace topology. The
mapping class group MCG(S) naturally acts on H as a group of transformations.
There is a finite-to-one MCG(S)-equivariant map

(18) E : H → FML
which associates to every λ ∈ H the unique projective measured geodesic lamination
which is supported in λ. The number of preimages in H of a point in FML is
bounded from above by a universal constant.

Lemma 5.3. The map E is continuous.

Proof. Since the topology on H is metrizable, for the proof of the lemma it is enough
to show the following. If {λi} ⊂ H is a sequence converging to some λ ∈ H then
E(λi) → E(λ).

However, the space PML is compact and hence up to passing to a subsequence,
we may assume that E(λi) → µ ∈ PML. Then after passing to another subse-
quence, the supports of the projective measured geodesic lamination E(λi) converge
in the Hausdorff topology to a geodesic lamination containing the support of µ as a
sublamination. But λi contains the support of E(λi) as a closed subset and λi → λ
in the Hausdorff topology and hence λ contains the support of µ as a sublamination.
On the other hand, by definition of the set H, the complete geodesic lamination
λ contains a unique minimal component. This component fills up and is uniquely
ergodic and hence µ = E(λ) is the unique projective measured geodesic lamination
supported in λ. The lemma follows. �

As in Section 4, let T T be the set of isotopy classes of complete train tracks on
S. A full split of a complete train track τ is a complete train track σ which can be
obtained from τ by splitting τ at each large branch precisely once. A full splitting

sequence is a sequence {τi} ⊂ T T such that for each i, the train track τi+1 can
be obtained from τi by a full split. For a complete train track τ denote by CL(τ)
the set of all complete geodesic laminations which are carried by τ . Then CL(τ)
is a subset of CL which is both open and closed. If {τi} is an infinite full splitting
sequence then ∩iCL(τi) consists of a unique point. For every complete train track
τ and every complete geodesic lamination λ ∈ CL(τ) there is a unique full splitting
sequence {τi(λ)} issuing from τ0(λ) = τ such that ∩iCL(τi(λ)) = {λ}. For every
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complete geodesic lamination λ ∈ CL there is a complete train track τ which carries
λ (for all this, see [H08b]).

For τ ∈ T T let as before V0(τ) ⊂ ML be the set of all measured geodesic
laminations ν whose support is carried by τ and such that the total weight of the
transverse measure on τ defined by ν equals one. If the complete geodesic lami-
nation λ ∈ H is carried by τ then there is a unique measured geodesic lamination
ν(λ, τ) ∈ V0(τ) whose support is contained in λ. There is a number a > 1 only
depending on the topological type of S such that for all λ ∈ H ∩ CL(τ) and all
i ≥ 0 we have ν(λ, τi+1(λ)) = esν(λ, τi(λ)) for some s ∈ [0, a]. Namely, τi+1(λ) is
obtained from τi(λ) by a uniformly bounded number of splits. Moreover, if η ∈ T T
is obtained from τ by a split at a large branch e, with losing branches b, d, and if ν
is any transverse measure on η, then ν projects to a transverse measure ν̂ on τ with
the following properties. Using the natural identification of the branches of τ with
the branches of η, for every branch h 6= e of τ , the ν̂-weight of h coincides with the
ν-weight of the branch h in η. Moreover, we have ν̂(e) = ν(e) + ν(b) + ν(d).

As in Section 4, let Q(τ) ⊂ Q1(S) be the set of all area one quadratic differen-
tials whose vertical measured geodesic lamination is contained in V0(τ) and whose
horizontal measured geodesic lamination hits τ efficiently. Let also PE(τ) be the
set of all projective measured geodesic laminations which hit τ efficiently. For a
number R > 0 and some ξ ∈ PE(τ), τ ∈ T T is called R − ξ-tight if the diameter
of Q(τ) ∩ Wu(ξ) with respect to the lift d of the Teichmüller metric is at most R.

Let m > 0 be the number of orbits of the action of MCG(S) on T T . The
next technical observation is the main ingredient for the completion of the proof
of the theorem from the introduction. It roughly says that controlled recurrence
implies tightness. For its formulation, recall from Section 3 the definition of the set
RML(q0) for a forward recurrent q0 ∈ Q(S).

Lemma 5.4. Let τ ∈ T T and let q1 ∈ Q(τ) be the lift of a forward recurrent point

q0 ∈ Q(S). Let ξ be the horizontal projective measured geodesic lamination of q1.

There are numbers R > 2, k > 4R + 2ma depending on q1 and for every complete

geodesic lamination λ ∈ CL(τ) ∩ H with E(λ) ∈ RML(q0) there is a sequence

ti → ∞ with the following properties.

(1) For each i there are numbers j(i) > 0, ℓ(i) > j(i) and there are numbers

s ∈ [ti, ti + ma], t ∈ [ti + k, ti + k + ma] such that esν(λ, τ) ∈ V0(τj(i)(λ)),
etν(λ, τ) ∈ V0(τℓ(i)(λ)) and such that the train tracks τj(i)(λ), τℓ(i)(λ) are

R − ξ-tight.
(2) For every i there is some gi ∈ MCG(S) such that giτj(i)(λ) = τℓ(i)(λ).

Proof. By Lemma 2.2 and inequality (1) in Section 2, for all q, z ∈ Q1(S) with
d(Pq, Pz) ≤ a (where a > 1 is as above), the distance in C(S) between ΥQ(q) and
ΥQ(z) is bounded from above by a universal constant b > 0. Let moreover p > 0
be the maximal distance in C(S) between any two vertex cycles of any complete
train tracks η1, η2 on S so that either η1 = η2 or that η2 can be obtained from η1

by a full split. Let χ2 > 0 be as in Lemma 4.2 and let ℓ > 0 be as in Lemma 4.3.
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By assumption, the ω-limit set of the Φt-orbit of q0 contains q0. By Lemma 2.2
and the results of [Kl99, H06] we have d(ΥQ(Φtq1),ΥQ(q1)) → ∞ (t → ∞). Thus
we can find small open relative compact neighborhoods V ⊂ U of q1 in Q1(S),
numbers T2 > T1 > T0 = 0 and mapping classes gi ∈ MCG(S) such that for all
q ∈ V we have ΦTiq ∈ giU and

(19) d(ΥQ(ΦTiq),ΥQ(ΦTi−1q)) ≥ 2mp + ℓ + 2χ2 + 2b (i = 1, 2).

Let for the moment q ∈ V be an arbitrary quadratic differential with vertical
projective measured geodesic lamination contained in E(H). Denote by qh, qv the
horizontal measured geodesic lamination and the vertical measured geodesic lami-
nation of q, respectively. Assume that there is a complete train track σ ∈ T T and
a number s0 ∈ [0, a] with Φs0q ∈ Q(σ). Assume moreover that there is a complete
geodesic lamination λ ∈ CL(σ) such that E(λ) is the projective class of qv. Then λ
determines a full splitting sequence {σi(λ)} issuing from σ0(λ) = σ.

For i = 1, 2 and for Ti > 0 as above we can find some j2 > j1 > j0 = 0, si ∈ [0, a]
such that eTi+siqv ∈ V0(σji

(λ)), which is equivalent to saying that ΦTi+siq ∈
Q(σji

(λ)). By the choice of b > 0 we have

d(ΥQ(ΦTiq),ΥQ(ΦTi+siq)) ≤ b

and therefore

d(ΥQ(ΦTi+siq),ΥQ(ΦTi−1+si−1q)) ≥ 2mp + ℓ + 2χ2 (i = 1, 2)

by inequality (19).

Lemma 4.2 shows that d(ΥQ(ΦTi+siq),Ψ(σji
(λ))) ≤ χ2 and hence by the choice

of p, for any αi ∈ [ji, ji + m] the distance in C(S) between any vertex cycle of
σαi

(λ) and any vertex cycle of σαi−1
(λ) is at least ℓ. Moreover, there is some

τi ∈ [Ti, Ti + ma] such that eτiqv ∈ V0(σαi
(λ)) and hence the total weight of the

complete train track σα2
(λ) defined by the measured geodesic lamination es0qv

which is carried by σα2
(λ) is bounded from below by e−T2−ma.

Therefore Lemma 4.4, applied to the train tracks σα2
(λ) ≺ σα1

(λ) ≺ σ, shows
the existence of a number R > 0 such that the train track σα1

(λ) is R − [qh]-tight
where [qh] is the projective class of the horizontal measured geodesic lamination of
q. Note that the number R > 0 only depends on the point q1 but not on q ∈ V or
the train track σ ∈ T T with Φs0q ∈ Q(σ) for some s0 ∈ [0, a].

For this number R > 0, choose a number T3 > T2 + 4R + 2ma such that

d(ΥQ(ΦT3q1),ΥQ(ΦT2q1)) ≥ 2mp + ℓ + 2χ2 + b

and that ΦT3q1 ∈ g3V for some g3 ∈ MCG(S); such a number exists since the
projection q0 of q1 to Q(S) is forward recurrent. Choose an open neighborhood
W ⊂ V of q1 such that ΦTiq ∈ giV for all q ∈ W and i = 1, 2, 3. Write T4 = T3 +T1

and T5 = T3 + T2; then we have ΦTj q ∈ ∪h∈MCG(S)hU for all q ∈ W and every
j ∈ {0, . . . , 5}. Define k = T4 − T1 ≥ 4R + 2ma and note that k only depends on
q1.

As above, let τ ∈ T T be a train track which carries the vertical projective mea-
sured geodesic lamination of q1 and such that the horizontal projective measured
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geodesic lamination ξ of q1 hits τ efficiently. Let λ ∈ CL(τ) ∩ H be such that
E(λ) ∈ RML(q0). Let q ∈ Q(τ)∩Wu(ξ) be such that the vertical projective mea-
sured geodesic lamination of q equals E(λ). For the neighborhood W ⊂ Q1(S) of q1

as above, the set {t > 0 | Φtq ∈ ∪h∈MCG(S)hW} is unbounded. Let {rn} ⊂ [0,∞)
be a sequence tending to infinity such that Φrnq ∈ hnW for some hn ∈ MCG(S)
and every n > 0.

Let {τi(λ)} be the full splitting sequence determined by τ = τ0(λ) and λ. For
n > 0 we have Φrnq ∈ hnW . There is a number s0 = s0(n) ∈ [0, a] and a number
j0(n) > 0 such that Φrn+s0q ∈ Q(τj0(n)(λ)). Using the above constants Ti > 0,
there are numbers j5(n) > j4(n) > j3(n) > j2(n) > j1(n) > j0(n) and numbers si ∈
[0, a] such that ΦTi+si+rnq ∈ Q(τji(n)(λ)) (i = 1, 2, 3, 4, 5). Since there are only m
distinct orbits of complete train tracks under the action of the mapping class group,
there are moreover numbers j(n) ∈ [j1(n), j1(n) + m] and ℓ(n) ∈ [j4(n), j4(n) + m]
and there is some g ∈ MCG(S) such that gτj(n)(λ) = τℓ(n)(λ). By the above
consideration, the train tracks τj(n)(λ), τℓ(n)(λ) are R− ξ-tight. Then the sequence
tn = rn + T1 and the numbers j(n) > 0, ℓ(n) > j(n) have the required properties
stated in the lemma with k = T4 − T1 > 4R + 2ma. �

Now we are ready to complete the main step in the proof of the theorem from
the introduction.

Proposition 5.5. An MCG(S)-invariant Radon measure on ML which gives full

mass to the filling measured geodesic laminations coincides with the Lebesgue mea-

sure up to scale.

Proof. By Lemma 5.1 and Lemma 5.2, we only have to show that there is no
MCG(S)-invariant ergodic Radon measure on ML with Hη = {0} which gives full
mass to the recurrent measured geodesic laminations.

For this we argue by contradiction and we assume that such a Radon measure
η exists. Using once more the cocycle reduction theorem of Sarig (Theorem 2 of
[S04]), there is a Borel function u : PML → R such that the measure η gives
full mass to the graph {(x, u(x)) | x ∈ PML} of the function u. In particular, η
projects to an MCG(S)-invariant ergodic measure class η̂ on PML which gives full
mass to the set RML of recurrent points. Using the notations from Proposition
3.5 and its proof, this means that there is a forward recurrent point q0 ∈ Q(S) such
that the measure class η̂ on PML gives full measure to the set RML(q0).

To derive a contradiction we adapt the arguments of Ledrappier and Sarig [LS06]
to our situation. Denote again by H ⊂ CL the set of all complete geodesic lami-
nations containing a uniquely ergodic minimal component which fill up S and let
E : H → FML be as in (18). Every finite Borel measure µ on PML which gives
full mass to the returning projective measured geodesic laminations induces a finite
Borel measure µ̃ on H. Namely, returning projective measured geodesic laminations
are uniquely ergodic and hence for a Borel subset C of H we can define

(20) µ̃(C) =

∫

E(C)

♯(E−1(z) ∩ C)dµ(z).



INVARIANT RADON MEASURES ON MEASURED LAMINATION SPACE 39

Let again q0 ∈ Q(S) be a forward recurrent quadratic differential such that the
measure class η̂ gives full mass to RML(q0). Let q1 ∈ Q1(S) be a lift of q0. We
may assume that the horizontal projective measured geodesic lamination ξ of q1 is
uniquely ergodic and fills up S. Since there is some complete train track σ which
carries the vertical measured geodesic lamination of q1 and such that the horizontal
measured geodesic lamination of q1 hits τ efficiently, Lemma 5.4 shows that by
possibly replacing q1 by Φtq1 for some (large) number t > 0 we may assume that
there is a number R0 > 0 and there is an R0 − ξ-tight train track τ ∈ T T with
q1 ∈ Q(τ).

As before, the measure η on ML induces a locally finite Borel measure ηu on
Wu(q1) = W (ξ). Let ρ ∈ R be such that ∪ρ≤s≤ρ+1Φ

sW su(q1) contains some
density point of the locally finite measure ηu on Wu(q1) whose horizontal measured
geodesic lamination is carried by the train track τ . Such a number exists since by
invariance under the mapping class group, the measure class η̂ on PML is of full
support and since moreover the set of all measured geodesic laminations carried by
τ has non-empty interior.

Let µ̂0 be the restriction of the measure ηu to the set ∪ρ≤s≤ρ+1Φ
sW su(q1) ⊂

Wu(q1). Since τ is R0 − ξ-tight for some R0 > 0, the set Q(τ)∩Wu(q1) is relative
compact and therefore the intersection of the support of µ̂0 with ∪tΦ

tQ(τ) is relative
compact as well.

Denote by µ0 the projection of µ̂0 to PML via the map π : Q1(S) → PML
introduced in Section 3. Since η is a Radon measure on ML by assumption, the
measure µ0 is a locally finite Borel measure on πWu(q1) ⊂ PML− ξ which gives
full mass to RML(q0). Since η and hence µ̂0 is a Radon measure, the total µ0-mass
of the set of all projective measured geodesic laminations which are carried by the
train track τ is finite. By the definition in (20) above, µ0 induces a finite nontrivial
Borel measure µ̃0 on CL(τ) which gives full mass to the set of complete geodesic
laminations ζ ∈ H ∩ CL(τ) with E(ζ) ∈ RML(q0).

Similarly, for the constants R > 2,m > 0, k > 4R + 2ma ≥ 4R + ma + 1 as in
Lemma 5.4, let µ̃1 be the finite Borel measure on CL(τ) which is induced in the
above way from the restriction of ηu to ∪ρ+k−2R−2ma≤s≤ρ+k+2R+2maΦsW su(q1).
Since Hη = {0} by assumption, the measures µ̃0, µ̃1 are singular.

Define a cylinder in CL(τ) to be a set of the form CL(σ) where σ ∈ T T is a
complete train track which can be obtained from τ by a full splitting sequence. A
cylinder is a subset of CL which is both open and closed [H08b]. The intersection
of two cylinders is again a cylinder. Since every point in CL(τ) is an intersection
of countably many cylinders, the σ-algebra on CL(τ) generated by cylinders is the
usual Borel σ-algebra. Now µ̃0, µ̃1 are mutually singular Borel measures on CL(τ)
and hence there is a cylinder CL(σ) ⊂ CL(τ) such that µ̃0(CL(σ)) > 2µ̃1(CL(σ)).

By Lemma 5.4, for µ̃0-almost every λ ∈ CL(σ) there is a sequence j(i) → ∞ and
there is some g(i, λ) ∈ MCG(S) with the following properties.

(1) The train tracks τj(i)(λ), g(i, λ)τj(i)(λ) are R − ξ-tight.
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(2) g(i, λ)τj(i)(λ) is carried by τj(i)(λ), in particular we have
g(i, λ)CL(τj(i)(λ)) ⊂ CL(τj(i)(λ)).

(3) For q ∈ Q(g(i, λ)τj(i)(λ)) ∩ Wu(q1) there is some t ∈ [k − ma − 2R, k +

ma + 2R] such that e−tq ∈ Q(τj(i)(λ)) ∩ Wu(q1).

To see the third property, note that by the construction of the sequence j(i) in
Lemma 5.4, for each i there is a point q ∈ Q(τ) ∩ Wu(q1) and there are numbers
s > 0, t ∈ [s+k−ma, s+k+ma] such that Φsq ∈ Q(τj(i)(λ)),Φt ∈ Q(g(i, j)τj(i)(λ)).
Together with properties 1) and 2), this yields property 3).

The above three properties imply the following. Let q ∈ ∪ρ≤t≤ρ+1Φ
tW su(q1) be

such that the vertical measured geodesic lamination qv of q is carried by τj(i)(λ).
Let s ∈ R be such that Φsq ∈ Q(τj(i)(λ)) and let z = W ss(g(i, λ)Φsq) ∩ Wu(q1);
then the vertical measured geodesic lamination of z is carried by τj(i)(λ), and we

have z ∈ Φt+sW su(q1) for some t ∈ [k − 2R − ma, k + 2R + ma]. Since k >
4R+ma+1 it is now immediate from invariance of the measure η under the action
of MCG(S), from the definitions of the measures µ̃0, µ̃1 and the fact that the action
of MCG(S) on ML commutes with the action of the group of translations that
µ̃0(CL(τj(i)λ)) ≤ µ̃1(CL(τj(i)λ)).

On the other hand, there is a countable partition of a subset of CL(σ) of full
µ̃0-mass into cylinders CL(σi) with train tracks σi ∈ T T (i > 0) which can be
obtained from σ by a full splitting sequence and which satisfy 1),2),3) above. This
partition can inductively be constructed as follows. Beginning with the train track
σ, there is a full splitting sequence of minimal length n ≥ 0 issuing from σ which
connects σ to some train track σ1 ∈ T T with the above properties. Let η1, . . . , ηk

be the collection of all train tracks which can be obtained from σ by a full splitting
sequence of length n and assume after reordering that we have σ1 = η1. Repeat
this construction simultaneously with the train tracks η2, . . . , ηk. After countably
many steps we obtain a partition of µ̃0-almost all of CL(σ) as required.

Together we conclude that necessarily µ̃1(CL(σ)) ≥ µ̃0(CL(σ)) which contradicts
our choice of σ. In other words, the case Hη = {0} is impossible which completes
the proof of the proposition. �

Remark: Let q0 ∈ Q(S) be a forward recurrent point. The arguments in the
proof of Proposition 5.5 can be used to construct a Vitali relation for the lift to CL
of any Borel measure on RML(q0). In other words, with some extra arguments,
Proposition 3.5 can be deduced from Proposition 5.5 and its proof. However, we
included Proposition 3.5 in the present form since its basic idea is simpler and more
geometric, moreover it is used in [H08c].

Choose a complete hyperbolic metric on S of finite volume. Let S0 be a proper
bordered connected subsurface of S with geodesic boundary. Then S0 has negative
Euler characteristic. We do not require that S0 is connected, and we allow that
distinct boundary components of S0 are defined by the same simple closed geodesic
in S. Denote by MCG(S0) (or MCG(S−S0)) the subgroup of MCG(S) of all ele-
ments which can be represented by a diffeomorphism fixing S−S0 (or S0) pointwise
(by convention, a Dehn twist about a boundary component of S0 is not contained in
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MCG(S0)). The stabilizer Stab(S0) of S0 in MCG(S) contains a subgroup of finite
index of the form MCG(S0) × MCG(S − S0) × D(∂S0) where D(∂S0) is the free
abelian group of Dehn twists about the geodesics in S which define the boundary
of S0.

Let Ŝ0 (or Ŝ − S0) be the surface of finite type which we obtain from S0 (or
S − S0) by collapsing each boundary circle to a puncture. The space ML(S0) of

all measured geodesic laminations on Ŝ0 can be identified with the space of all
measured geodesic laminations on S whose support is contained in the interior of
S0. We say that a measured geodesic lamination ν ∈ ML(S0) fills S0 if its support
intersects every simple closed geodesic contained in the interior of S0 transversely.
There is a family of Lebesgue measures on ML(S0) which are invariant under
Stab(S0). These measures are products of Lebesgue measures on the spaces of
measured geodesic laminations which are supported on a connected component
of S0. Note that Stab(S0) may contain elements which permutes some of the
components of S0, so perhaps not every product measure is Stab(S0)-invariant.
For every ϕ ∈ MCG(S)− Stab(S0), the image ϕ(S0) of S0 under ϕ is a subsurface
of S which is distinct from S0. The image ϕ(ζ) under ϕ of a measured geodesic
lamination ζ on S0 which fills S0 is a measured geodesic lamination which fills ϕ(S0)
and hence this image is not contained in ML(S0). Note that we have Stab(ϕ(S0)) =
ϕ ◦ Stab(S0) ◦ ϕ−1.

Now let c be any (possibly trivial) simple weighted geodesic multicurve on S
which is disjoint from the interior of S0. Then for every ζ ∈ ML(S0) the union
c ∪ ζ is a measured geodesic lamination on S in a natural way which we denote by
c × ζ. Thus c ×ML(S0) is naturally a closed subspace of ML. This subspace can
be equipped with a Stab(c∪S0) < Stab(S0)-invariant ergodic Radon measure µc,S0

induced by a measure µ0 from the cone of Stab(S0)-invariant Lebesgue measures
on ML(S0). By invariance, we obtain an MCG(S)-invariant ergodic wandering
measure on ML by defining

λc×S0
=

∑

ϕ∈MCG(S)

ϕ∗µc,S0
.

We call λc×S0
a standard subsurface measure of S0. If the support of the weighted

multi-curve c contains every boundary component of S0 then we call the resulting
MCG(S)-invariant measure λc×S0

on ML a special standard subsurface measure

on ML.

Recall from the introduction that a rational MCG(S)-invariant measure on ML
is a sum of weigthed Dirac masses supported on the orbit of a simple weighted multi-
curve. Such a rational measure is a special standard subsurface measure on ML
(for the empty subsurface). Then rational measures are included in the following
statement.

Lemma 5.6. A special standard subsurface measure on ML is locally finite.

Proof. Let g be any complete hyperbolic metric on S of finite volume. Then for
every measured geodesic lamination µ on S the g-length ℓg(µ) of µ is defined. By
definition, this length is the total mass of the measure on S which is the product
of the transverse measure for µ and the hyperbolic length element on the geodesics
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contained in the support of µ. For every compact subset K of ML there is a number
m > 0 such that K ⊂ K(m) = {µ ∈ ML | ℓg(µ) ≤ m}.

To show the lemma, observe first that for every weighted geodesic multi-curve c
on S and every m > 0 the set K(m) contains only finitely many images of c under
the action of the mapping class group. Namely, let a > 0 be the minimal weight
of a component of the support of c. Then for every ϕ ∈ MCG(S) the g-length of
the multi-curve ϕ(c) is not smaller than a times the maximal length of any closed
geodesic on the hyperbolic surface (S, g) which is contained in the free homotopy
class defined by a component of ϕ(c). However, there are only finitely many simple
closed geodesics on S whose g-length is at most m/a and hence the intersection
of K(m) with the MCG(S)-orbit of c is indeed finite. In particular, a rational
MCG(S)-invariant measure on ML is Radon.

Now let S0 be a bordered subsurface of S of negative Euler characteristic and
geodesic boundary. Let c be a simple weighted geodesic multi-curve which contains
every boundary component of S0. Then the stabilizer Stab(c) of c in MCG(S) con-
tains the stabilizer Stab(c∪S0) of c∪S0 as a subgroup of finite index. In particular,
a Stab(S0)-invariant measure on ML(S0) in the Lebesgue measure class induces
an ergodic Stab(c)-invariant Radon measure on the space of measured geodesic
laminations on S containing c as a measured sublamination.

On the other hand, if ϕ ∈ MCG(S) does not stabilize c then ϕ moves at least one
component of c away from c. Therefore by the above consideration, there are only
finitely many cosets in MCG(S)/Stab(c) containing some representative ϕ such
that ϕ(c×ML(S0))∩K(m) 6= ∅. This shows that a special subsurface measure on
ML is Radon. �

Finally we are able to complete the proof of the theorem from the introduction
(note that in the spirit of Lemma 5.6, there is a slight redundancy in its statement).

Theorem 5.7. Let η be an MCG(S)-invariant ergodic Radon measure on the space

ML of all measured geodesic laminations on S.

(1) If η is non-wandering then η is the Lebesgue measure up to scale.

(2) If η is wandering then either η is rational or η is a standard subsurface

measure.

Proof. Let η be an ergodic MCG(S)-invariant Radon measure on ML. By Propo-
sition 5.5, if η gives full mass to the measured geodesic laminations which fill up
S then η coincides with the Lebesgue measure up to scale. Thus by ergodicity
and invariance we may assume that η gives full mass to the measured geodesic
laminations which do not fill up S.

Let λ be a density point for η. The support of λ is a union of components
λ1 ∪ · · · ∪ λk for some k ≥ 1. We assume that these components are ordered
in such a way that there is some ℓ ≤ k such that the components λ1, . . . , λℓ are
minimal arational and that the components λℓ+1, . . . , λk are simple closed curves.
By ergodicity, for η-almost every µ ∈ ML there is a decomposition of the support
of µ of the same form.
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If ℓ = 0 then by ergodicity, η is rational and there is nothing to show. Thus
assume that ℓ > 0. Then µ = λ1 ∪ · · · ∪ λℓ fills a subsurface S0 of S with ℓ
connected components, each of which is of negative Euler characteristic.

Write c = λℓ+1∪· · ·∪λk. Since the MCG(S)-orbit of c is countable and discrete
and since λ is a density point for η, the restriction of η to c × ML(S0) does not
vanish. However, this restriction is a Stab(c ∪ S0)-invariant Radon measure on
MCG(S0) which gives full mass to the measured geodesic laminations filling up S0.
Therefore this restriction is an interior point of the cone of Stab(c ∪ S0)-invariant
Lebesgue measure on c × ML(S0). In other words, η is a standard subsurface
measure. This completes the proof of the theorem. �

Remark: In [LM07], Lindenstrauss and Mirzakhani obtain a stronger result.
They show that a locally finite standard subsurface measure on ML is special.

Appendix

The purpose of this appendix is to present some results from the paper [MW02]
of Minsky and Weiss in the form needed in Section 3.

As in Section 2, denote by Q(S) the moduli space of area one holomorphic
quadratic differentials on S. Every q ∈ Q(S) defines an isometry class of a singular
euclidean metric on S. The set Σ of singular points for this metric coincides precisely
with the set of zeros for q. We also assume that the differential has a simple pole at
each of the punctures of S and hence it can be viewed as a meromorphic quadratic
differential on the compactified surface Ŝ which we obtain by filling in the punctures
in the standard way.

A saddle connection for q is a path δ : (0, 1) → S which does not contain any
singular point, whose image under a distinguished isometric chart is an euclidean
straight line and which extends continuously to a path δ̄ : [0, 1] → Ŝ mapping the
endpoints to singular points or punctures. A saddle connection is horizontal if it is
mapped by a distinguished chart to a horizontal line segment.

A saddle connection does not have self-intersections. Two saddle connections
δ1, δ2 are disjoint if δ1(0, 1) ∩ δ2(0, 1) = ∅. The closure of any finite collection of
pairwise disjoing saddle connections on S is an embedded graph in S. By Propo-
sition 4.7 of [MW02] (see also [KMS86]), the number of pairwise disjoint saddle
connections for a quadratic differential q ∈ Q(S) is bounded from above by a uni-
versal constant M > 0 only depending on the topology of S.

Recall that a tree is a graph without circuits. For ǫ > 0 let K(ǫ) ⊂ Q(S) be the
set of all quadratic differentials q such that the collection of all saddle connections
of q of length at most ǫ is a tree. We have.

Lemma. For every ǫ > 0 the set K(ǫ) ⊂ Q(S) is compact.



44 URSULA HAMENSTÄDT

Proof. It is enough to show that for every q ∈ K(ǫ) the q-length of any simple
closed curve on S is bounded from below by ǫ (see [R05, R07]).

Thus let c be any simple closed geodesic on S for the q-metric. Then up to
replacing c by a freely homotopic simple closed curve of the same length we may
assume that c consists of a sequence of saddle connections for q. Since the set
of saddle connections of length at most ǫ does not contain a circuit, the curve c
contains at least one saddle connection of length at least ǫ. But this just means
that the q-length of c is at least ǫ as claimed. �

The following proposition is a modified version of Theorem 6.3 of [MW02]. We
use the notations from [MW02]. Let Lq be the set of all saddle connections of the
quadratic differential q. For k ≥ 1 define

Ek = {E ⊂ Lq | E consists of k disjoint segments}.
Denote again by ht the horocycle flow on Q(S). For E ∈ Ek and t ∈ R define
ℓq,E(t) = maxδ∈E ℓq,δ(t) where ℓq,δ(t) is the length of δ with respect to the singular
euclidean metric defined by htq. For k ≥ 0 let

αk(t) = min
E∈Ek

ℓq,E(t).

Proposition. There are positive constants C,α, ρ0 depending only on S with the

following property. Let q ∈ Q(S), let I ⊂ R be an interval and let 0 < ρ′ ≤ ρ0.

Define

A = {δ ∈ Lq | ℓq,δ(t) ≤ ρ′} for all t ∈ I.

If ∪{δ | δ ∈ A} ⊂ S is an embedded tree with r ≥ 0 edges then for any 0 < ǫ < ρ′

we have:

|{t ∈ I | αr+1(t) < ǫ}| ≤ C
( ǫ

ρ′
)α|I|.

Proof. Let M > 0 be such that for every q ∈ Q(S) the number of pairwise disjoint
saddle connections of q is bounded from above by M − 1. By Proposition 6.1 of
[MW02] there is a number ρ0 > 0 with the following property. If E ∈ Ek is such
that the closure S(E) of the union of all simply connected components of S−∪δ∈E δ̄
is all of S then ℓq,E(0) ≥ ρ0.

Let q ∈ Q(S) and let A ⊂ Lq be a union of pairwise disjoint saddle connections
whose closure is an embedded graph in S without circuits. Assume that A consists
of r ≥ 0 segments. We necessarily have r < M . For a number C > 0 to be
determined later let 0 < ǫ < Cρ′ and let

Vǫ = {t ∈ I | αr+1(t) < ǫ}.
For k = 1, . . . ,M − r − 1 define

Lk = ǫ
(ρ′

ǫ

) k−1

M−r−1 .

We choose C > 0 in such a way that Lk/Lk+1 ≤ C
1

M−r−1 . For t ∈ Vǫ let

κ(t) = max{k | αk(t) < Lk}
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and let Vk = {t ∈ Vǫ | κ(t) = k}. Then κ(t) ≤ M − 1 for all t and hence Vǫ

is the disjoint union of the measurable sets Vk+1, . . . , VM−1 . Thus there is some
k ∈ {r + 1, . . . ,M − 1} for which

|Vk| ≥
|Vǫ|

M − r − 1
.

For this choice of k define L = Lk and U = Lk+1. Note that we have

ακ(t)(t) < Lκ(t), ακ(t)+1 ≥ Lκ(t)+1.

Following [MW02], for δ ∈ Lδ − A let H(δ) be the set of t ∈ I for which
ℓq,δ(t) < L, and whenever δ ∩ δ′ 6= ∅ for δ 6= δ′ ∈ Lq we have

ℓq,δ′(t) ≥ U
√

2

3
.

Following the argument in Section 6 of [MW02] we only have to verify that Vk ⊂
∪δ∈Lq−AH(δ). Namely, let t ∈ Vk and let E ∈ Ek be such that ℓq,E(t) = αk(t) < L.
Denote by S(E) the closure of the union of the simply connected components of
S − ∪δ∈E δ̄. By Proposition 6.1 of [MW02] we have S(E) 6= E and hence since
k > r and the graph defined by the saddle connections contained in A does not
have circuits, the boundary of S(E) contains at least one saddle connection δ which
is not contained in A. But this just means that t ∈ H(δ) (see Claim 6.7 in [MW02]).
This complete the proof of the proposition. �

As in [MW02] we use the lemma and the proposition to derive a recurrency
property for the horocycle flow. For its formulation, denote by χC the characteristic
function of the set C ⊂ Q(S).

Theorem. For any ǫ > 0 there is a compact set K ⊂ Q(S) such that for any

q ∈ Q(S) with minimal vertical measured geodesic lamination which fills S we have

Avgt,q(K) = lim inf
t→∞

1

t

∫ t

0

χK(htq)dt ≥ 1 − ǫ.

Proof. Let q be a quadratic differential with vertical measured geodesic lamination
which fills up S. Then the vertical saddle connections of q form an embedded graph
without circuits. Morever, the number of these saddle connections is bounded from
above by a universal constant. Now if δ is any saddle connection whose length is
constant along the horocycle flow then δ is vertical. But this just means that we
can apply the above proposition as in the proof of Theorem H2 of [MW02] to obtain
the theorem. �
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