
STABILITY OF QUASI-GEODESICS IN TEICHMÜLLER SPACE

URSULA HAMENSTÄDT

Abstract. Let S be a surface S of genus g ≥ 0 with m ≥ 0 punctures and
3g−3+m ≥ 2. We show that a Teichmüller quasi-geodesic in the thick part of
Teichmüller space for S is contained in a bounded neighborhood of a geodesic
if and only if it induces a quasi-geodesic in the curve graph.

1. Introduction

Let S be an oriented surface of finite type, i.e. S is a closed surface of genus
g ≥ 0 from which m ≥ 0 points, so-called punctures, have been deleted. We assume
that 3g − 3 + m ≥ 2, i.e. that S is not a sphere with at most four punctures or a
torus with at most one puncture. We then call the surface S nonexceptional.

Since the Euler characteristic of S is negative, the Teichmüller space T (S) of
S is the quotient of the space of all complete hyperbolic metrics on S of finite
volume under the action of the group of diffeomorphisms of S which are isotopic to
the identity. The mapping class group Mod(S) of all isotopy classes of orientation
preserving diffeomorphisms of S acts properly discontinuously on T (S). For every
ǫ > 0, this action preserves the subset T (S)ǫ of T (S) of all hyperbolic metrics
whose systole, i.e. the shortest length of a closed geodesic, is at least ǫ. Moreover,
the action of Mod(S) on T (S)ǫ is cocompact.

The Teichmüller metric dT is a complete length metric on T (S) with the prop-
erty that any two points in T (S) can be connected by a unique geodesic. For a
number L > 1, an L-quasi-geodesic in T (S) is a map γ : J → T (S) such that

|s − t|/L − L ≤ dT (γ(s), γ(t)) ≤ L|s − t| + L for all s, t ∈ J

where J ⊂ R is a closed connected set. The goal of this note is to shed some light
on large scale properties of quasi-geodesics in T (S).

A geodesic metric space (X, d) is called hyperbolic in the sense of Gromov if
there is a number δ > 0 with the following property. For any geodesic triangle with
sides a, b, c, the side a is contained in the δ-neighborhood of b ∪ c. In a hyperbolic
geodesic metric space, quasi-geodesics are stable: Any quasi-geodesic is contained in
a uniformly bounded neighborhood of a geodesic. The Teichmüller metric, however,
is not hyperbolic. Minsky [Mi96] gave a precise description of the Teichmüller metric
in the thin part of Teichmüller space and obtained as a consequence that on the
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large scale, it is far from being similar to hyperbolic geodesic metric. In particular,
quasi-geodesics are in general not stable. Masur and Minsky [MM00b] pointed out
that quasi-geodesics in the thick part of Teichmüller space are in general not stable
either: There is a number L > 1, a number ǫ > 0 and a biinfinite L-quasi-geodesic
in T (S)ǫ which is not contained in any bounded neighborhood of any geodesic.

It turns out that stability of quasi-geodesics in the thick part of Teichmüller
space can be described using the relation between the geometry of Teichmüller
space and the geometry of the curve graph of S. The curve graph is a geodesic
metric graph (CG(S), dC) whose vertex set is the set C(S) of all free homotopy
classes of essential simple closed (non-oriented) curves on S (i.e. simple closed
curves which are neither contractible nor homotopic into a puncture) and where
two such curves are connected by an edge of length one if and only if they can be
realized disjointly.

By a result of Bers, there is a constant χ0 = χ0(S) > 0 such that for every
complete hyperbolic metric h on S of finite volume there is a pants decomposition
for S consisting of simple closed geodesics of h-length at most χ0. We define a map
ΥT : T (S) → C(S) by associating to a marked hyperbolic metric h ∈ T (S) a simple
closed curve ΥT (h) whose h-length does not exceed χ0. Note that such a map is by
no means unique, but we observe in Section 2 that it is coarsely equivariant with
respect to the action of the mapping class group. The purpose of this note is to
characterize stable quasi-geodesics in the thick part of Teichmüller space as those
quasi-geodesics which are mapped by ΥT to quasi-geodesics in CG(S). For the
formulation of this result, define the Hausdorff distance dH(A,B) ∈ [0,∞] between
two subsets A,B of T (S) as the infimum of all numbers r > 0 such that A is
contained in the r-neighborhood of B and B is contained in the r-neighborhood of
A.

Theorem. (1) For every L > 1 there is a constant ǫ = ǫ(L) > 0 with the
following property. Let J ⊂ R be a closed connected set of length at least
1/ǫ and let γ : J → T (S) be an L-quasi-geodesic. If ΥT ◦ γ is an L-quasi-
geodesic in CG(S) then there is a Teichmüller geodesic ξ : J ′ → T (S)ǫ such
that dH(γ(J), ξ(J ′)) ≤ 1/ǫ.

(2) For every ǫ > 0 there is a constant L(ǫ) > 1 with the following property.
Let J ⊂ R be a closed connected set and let γ : J → T (S) be a 1/ǫ-
quasi-geodesic. If there is a Teichmüller geodesic arc ξ : J ′ → T (S)ǫ with
dH(γ(J), ξ(J ′)) ≤ 1/ǫ then ΥT ◦ γ is an L(ǫ)-quasi-geodesic in CG(S).

The second part of Theorem 1 is implicitly contained in the work of Masur and
Minsky [MM99]. For completeness we nevertheless include a proof in Section 2.

A subset B of a geodesic metric space (X, d) is called c-quasi-convex for a con-
stant c > 0 if any geodesic arc with both endpoints in B is contained in the
c-neighborhood of B. We say that B is quasi-convex if it is c-quasi-convex for some
number c > 0. A quasi-convex subset B of (X, d) is hyperbolic if there is a number
δ > 0 such that for every geodesic triangle in X with vertices in B and sides a, b, c,
the side a is contained in the δ-neighborhood of b∪ c. As an immediate corollary of
the above discussion we obtain the following statement (which is probably known
to the experts but not explicitly available in the literature).
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Corollary. For ǫ > 0, a set B ⊂ T (S)ǫ which is quasi-convex for the Teichmüller
metric is hyperbolic.

Further applications of the above theorem include a more elementary approach to
Minsky’s proof of the ending lamination conjecture for hyperbolic three-manifolds
with a positive lower bound for the injectivity radius [HLO09] as well as an Anosov
closing lemma for Teichmüller geodesics in the thick part of Teichmüller space
[H07b].

The proof of the first part of Theorem 1 relies on an idea of Mosher [Mo03]. The
task is to set up a framework to which this idea can be applied. The main difficulty is
the non-local-compactness of the curve graph. We overcome this difficulty in Section
3 by working directly in Teichmüller space and controlling distances in the curve
graph via a continuous distance-like symmetric model function on T (S) × T (S).

2. Cobounded Teichmüller geodesics

Let S be an oriented surface of genus g ≥ 0 with m ≥ 0 punctures and 3g−3+m ≥
2. Let C(S) be the set of all free homotopy classes of unoriented essential simple
closed curves on S, i.e. simple closed curves which are neither contractible nor freely
homotopic into a puncture. The curve graph CG(S) of S is the graph with vertex set
C(S) and where two vertices are joined by an edge if and only if the corresponding
free homotopy classes can be realized disjointly. Since 3g−3+m ≥ 2 by assumption,
CG(S) is connected (see [MM99] and the references given there). In the sequel we
often do not distinguish between an essential simple closed curve α on S and the
vertex of the curve graph defined by α.

Providing each edge in CG(S) with the standard euclidean metric of diameter 1
equips the curve graph with a geodesic metric dC . However, CG(S) is not locally
finite and therefore the metric space (CG(S), dC) is not locally compact. Masur and
Minsky [MM99] showed that nevertheless its geometry can be understood quite
explicitly. Namely, CG(S) is hyperbolic of infinite diameter (see also [Bw06, H07a]
for alternative shorter proofs). The mapping class group naturally acts on CG(S)
as a group of simplicial isometries.

The goal of this section is to relate the geometry of the thick part of Teichmüller
space to the geometry of the curve graph in a quantitative way. To achieve this
goal, we use a map from the Teichmüller space into the curve graph as defined
in the introduction. Namely, for every marked hyperbolic metric h ∈ T (S), every
essential free homotopy class α on S can be represented by a closed h-geodesic which
is unique up to parametrization. This geodesic is simple if the free homotopy class
admits a simple representative. The h-length ℓh(α) of the class α is defined to be
the length of its geodesic representative. Equivalently, ℓh(α) equals the minimum
of the h-lengths of all closed curves representing the class α.

A pants decomposition for S is a collection of 3g−3+m pairwise disjoint simple
closed essential curves on S which decompose S into 2g − 2 + m pairs of pants.
Here by a pair of pants we mean a surface which is homeomorphic to a three-holed
sphere. By a classical result of Bers (see [B92]), there is a number χ0 > 0 only
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depending on the topological type of S such that for every complete hyperbolic
metric h on S of finite volume there is a pants decomposition for S consisting of
simple closed curves of h-length at most χ0. A number χ0 > 0 with this property
is called a Bers constant for S.

Define a map
ΥT : T (S) → C(S)

by associating to a complete hyperbolic metric h on S of finite volume an essential
simple closed curve ΥT (h) ∈ C(S) whose h-length is at most χ0. Note that such
a map is not unique. However, the following lemma due to Masur and Minsky
[MM99] shows that the ambiguity in its definition is uniformly controlled. For its
proof and for later use, define the intersection number i(α, β) between two simple
closed curves α, β on S to be the minimum of the number of intersection points of
any two simple closed curves which are freely homotopic to α, β.

Lemma 2.1. For every number χ > 0 there is a number a(χ) > 0 with the following
property. Let h ∈ T (S) and let α, β be two simple closed curves of h-length at most
χ. Then dC(α, β) ≤ a(χ).

Proof. By the collar lemma for hyperbolic surfaces (see [B92]), for any metric h ∈
T (S) and any number χ > 0 there is a number p(χ) > 0 only depending on χ such
that every simple closed h-geodesic α of length at most χ is the core curve of an
embedded annulus in S whose width, i.e. the distance between its two boundary
circles, is at least p(χ). As a consequence, every essential intersection between α
and a simple closed curve β on S contributes at least p(χ) to the length of β. Thus
if the length of β is at most χ, then i(α, β) ≤ χ/p(χ).

On the other hand, the distance in CG(S) between two curves α, β ∈ C(S) is
bounded from above by i(α, β) + 1 [MM99, Bw06]. Therefore the diameter in
CG(S) of the set of all simple closed curves of h-length at most χ is bounded from
above by a universal constant a(χ) = χ/p(χ) + 1 not depending on h. �

The next lemma due to Masur and Minsky [MM99] shows that the map ΥT is
coarsely Lipschitz with respect to the Teichmüller distance dT on T (S) and the
distance dC on the curve graph. We include its easy proof for completeness of
exposition.

Lemma 2.2. There is a number L > 1 such that

(1) dC(ΥT (g),ΥT (h)) ≤ LdT (g, h) + L for all g, h ∈ T (S).
(2) dC(ΥT (ϕg), ϕΥT (g)) ≤ L for all g ∈ T (S), ϕ ∈ Mod(S).

Proof. By a result of Wolpert [W79], for every essential simple closed curve α on S
we have

(1) dT (g, h) ≥ | log ℓg(α) − log ℓh(α)| for all g, h ∈ T (S).

This implies that there is a constant b > 1 (in fact we can take b = e) such that
for all g, h ∈ T (S) with dT (g, h) ≤ 1 and every α ∈ C(S) with ℓg(α) ≤ χ0 we have
ℓh(α) ≤ bχ0. Lemma 2.1 then shows that dC(ΥT (g),ΥT (h)) ≤ a(bχ0) whenever
dT (g, h) ≤ 1.
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Now the Teichmüller metric is a geodesic metric, i.e. any two points in T (S) can
be connected by a minimal geodesic. Thus if dT (g, h) ∈ (m−1,m] for some integer
m ≥ 1 then there are points u0 = g, u1, . . . , um = h with dT (ui−1, ui) ≤ 1 for all
i. The estimate in the previous paragraph together with the triangle inequality for
dC then yields that

dC(ΥT (g),ΥT (h)) ≤ a(bχ0)m ≤ a(bχ0)dT (g, h) + a(bχ0).

The first part of the lemma follows.

The second part of the lemma is derived in the same way. Namely, by the
properties of the action of Mod(S) on T (S) and by the definition of the map ΥT ,
for every g ∈ T (S) and every ϕ ∈ Mod(S) the ϕg-lengths of the curves ΥT (ϕg)
and ϕΥT (g) are at most χ0. Thus by Lemma 2.1, the distance in CG(S) between
these curves does not exceed a(χ0). �

Using these basic properties of the map ΥT , we can begin to relate the geometry
of Teichmüller space equipped with the Teichmüller metric to the geometry of the
curve graph. For this let J ⊂ R be a closed connected subset, i.e. either J is a closed
interval or a closed ray or the whole line. For some p > 1, a map γ : J → CG(S) is
called a p-quasi-geodesic if for all s, t ∈ J we have

dC(γ(s), γ(t))/p − p ≤ |s − t| ≤ pdC(γ(s), γ(t)) + p.

A map γ : J → CG(S) is called an unparametrized p-quasi-geodesic if there is a
closed connected set I ⊂ R and a homeomorphism ζ : I → J such that γ ◦ ζ : I →
CG(S) is a p-quasi-geodesic.

The following result of Masur and Minsky (Theorem 2.6 and Theorem 2.3 of
[MM99]; the precise quantitative version which we will use is Theorem 4.1 of [H07a])
is crucial for the proof of the Theorem from the introduction. For its formulation,
we call a geodesic in T (S) for the Teichmüller metric a Teichmüller geodesic. A
Teichmüller geodesic is always parametrized by arc length on a closed connected
subset of the real line.

Theorem 2.3. There is a number p > 1 only depending on the topological type
of S such that the image under ΥT of every Teichmüller geodesic in T (S) is an
unparametrized p-quasi-geodesic in CG(S).

In general, the image under ΥT of a Teichmüller geodesic is not a quasi-geodesic
with its proper parametrization. More concretely, an unparametrized quasi-geodesic
in CG(S) which is the image under the map ΥT of an infinite Teichmüller geodesic
can be bounded or unbounded. We are interested in the case when the diameter of
the image is infinite, and for this we recall some standard facts about Teichmüller
geodesics as well as a result of Klarreich [Kl99].

A geodesic lamination for a complete hyperbolic structure on S of finite volume is
a compact subset of S which is foliated into simple geodesics. A geodesic lamination
λ on S is called minimal if each of its half-leaves is dense in λ. Thus a simple closed
geodesic is a minimal geodesic lamination. A minimal geodesic lamination with
more than one leaf has uncountably many leaves and is called minimal arational.
A geodesic lamination λ is said to fill up S if every simple closed geodesic on S
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intersects λ transversely. This is equivalent to stating that the complementary
components of λ are all topological discs or once punctured topological discs.

A measured geodesic lamination is a geodesic lamination λ together with a trans-
lation invariant transverse measure. Such a measure assigns a positive weight to
each compact arc in S which intersects λ nontrivially and transversely and whose
endpoints are contained in complementary regions of λ. The geodesic lamination λ
is called the support of the measured geodesic lamination; it consists of a disjoint
union of minimal components. Vice versa, every minimal geodesic lamination is
the support of a measured geodesic lamination.

The space ML of measured geodesic laminations on S can be equipped with the
weak∗-topology. Its projectivization PML is called the space of projective measured
geodesic laminations and is homeomorphic to the sphere S6g−7+2m. There is a
continuous length function on T (S)×ML → (0,∞) which assigns to a hyperbolic
metric h ∈ T (S) and a measured geodesic lamination µ the h-length ℓh(µ) of µ.
This length function satisfies ℓh(aµ) = aℓh(µ) for all h ∈ T (S), µ ∈ ML and every
a > 0. For every fixed h ∈ T (S) the set of all measured geodesic laminations of
h-length one is a section of the projection ML → PML.

There is also a continuous symmetric pairing ι : ML × ML → (0,∞), the so-
called intersection form, which satisfies ι(aξ, bη) = abι(ξ, η) for all a, b ≥ 0 and
all ξ, η ∈ ML. If α, β are simple closed geodesics, viewed as measured geodesic
laminations (i.e. equipped with the transverse counting measure), then i(α, β) is
just the number of intersection points between α and β. The measured geodesic
lamination ν ∈ ML is said to fill up S if its support fills up S. This is equivalent
to stating that i(ν, c) > 0 for every simple closed curve c.

Since CG(S) is a hyperbolic geodesic metric space, it admits a Gromov boundary
∂CG(S) which is a (non-compact) metrizable topological space equipped with an
action of Mod(S) by homeomorphisms (see [BH99] for the definition of the Gromov
boundary of a hyperbolic geodesic metric space and for references). Following
Klarreich [Kl99] (see also [H06]), this boundary can naturally be identified with the
space of all (unmeasured) minimal geodesic laminations which fill up S equipped
with the topology which is induced from the weak∗-topology on PML via the
measure forgetting map.

Let Q1(S) be the bundle of holomorphic quadratic differentials of area one over
Teichmüller space. The cotangent vector at γ(0) of a Teichmüller geodesic γ :
R → T (S) (which we always assume to be parametrized by arc length without
further mentioning) is a holomorphic quadratic differential q ∈ Q1(S) of area one
on the Riemann surface γ(0). The quadratic differential q corresponds to a pair
(qh, qv) ∈ ML×ML of measured geodesic laminations which satisfy i(qh, qv) = 1
and jointly fill up S. This means that i(µ, qh) + i(µ, qv) > 0 for every measured
geodesic lamination µ ∈ ML. The measured geodesic lamination qv is called the
vertical measured geodesic lamination of q, and qh is called horizontal. For every
t ∈ R the unit cotangent vector of γ at γ(t) is the quadratic differential Φtq defined
by the pair (etqv, e−tqh).
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If the vertical measured geodesic lamination qv of q fills up S then the un-
parametrized p-quasi-geodesic t → ΥT (γ(t)) in CG(S) is of infinite diameter and
converges to the support of qv, viewed as a point in ∂CG(S) [Kl99, H06]. Namely,
the length of ΥT (γ(t)) with respect to the singular euclidean metric defined by
Φtq (i.e. the minimal Φtq-length of a simple closed curve representing the class
ΥT (γ(t))) is uniformly bounded (see [MM99, Bw06], and see [R07a] for a more
precise statement). Since for every simple closed curve α ∈ C(S) the Φtq-length of
α is bounded from below by max{eti(α, qv), e−ti(α, qh)} (see e.g. [R05]), the inter-
section numbers eti(ΥT (γ(t)), qv) are bounded from above by a universal constant.
Let νt be the measured geodesic lamination of γ(0)-length one which is in the class
of ΥT (γ(t)). Since the shortest length of a simple closed curve for γ(0) is bounded
from below by a positive constant, we have νt = atΥT (γ(t)) for a number at > 0
which is uniformly bounded. Up to passing to a subsequence the measured geodesic
laminations νt converge as t → ∞ to a measured geodesic lamination ν. By conti-
nuity of the intersection form, we have i(ν, qv) = 0. Since qv fills up S, this implies
that the support of ν equals the support of qv. On the other hand, Theorem 1.1 of
[H06] shows that a sequence (ci) ⊂ C(S) converges in the space CG(S)∪ ∂CG(S) to
a point ξ ∈ ∂CG(S) if the curves ci viewed as projective measured geodesic lamina-
tions converge in PML to a projective measured geodesic lamination with support
ξ.

We begin the proof of the second part of Theorem from the introduction with
an easy no-retraction lemma for quasi-geodesics in the hyperbolic geodesic metric
space CG(S) which is well known but not so easy to track in the literature. For its
formulation, define the Hausdorff distance between two subsets A,B of a metric
space X to be the infimum of all numbers r > 0 such that A is contained in
the r-neighborhood of B and B is contained in the r-neighborhood of A. It will be
convenient to allow that the sets A,B are not necessarily closed and that the metric
space is unbounded (i.e. the “Hausdorff distance” is by no means a distance).

Lemma 2.4. For p > 1 there is a constant c = c(p) > 0 with the following property.
Let γ : J → CG(S) be any unparametrized p-quasi-geodesic; if t1 < t2 < t3 ∈ J then
dC(γ(t1), γ(t3)) ≥ dC(γ(t1), γ(t2)) + dC(γ(t2), γ(t3)) − c.

Proof. Let p > 1; by the definition of an unparametrized p-quasi-geodesic, it is
enough to show the existence of a number c > 0 such that for every (parametrized)
p-quasi-geodesic γ : [0, n] → CG(S) and all 0 < t < n we have dC(γ(0), γ(n)) ≥
dC(γ(0), γ(t)) + dC(γ(t), γ(n)) − c.

Since CG(S) is a hyperbolic geodesic metric space, there is a constant c > 0
only depending on p with the following property (see [BH99]). Let n > 0, let
γ : [0, n] → CG(S) be any p-quasi-geodesic and let ζ : [0,m] → CG(S) be a geodesic
connecting ζ(0) = γ(0) to ζ(m) = γ(n). Then the Hausdorff distance between
γ[0, n] and ζ[0,m] is smaller than c/2.

In particular, for every t ∈ [0, n] there is a point s ∈ [0,m] such that

dC(γ(t), ζ(s)) ≤ c/2.

Thus we have dC(γ(0), γ(t))+dC(γ(t), γ(n)) ≤ dC(ζ(0), ζ(s))+dC(ζ(s), ζ(m))+ c =
dC(γ(0), γ(n)) + c which shows the lemma. �
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For ǫ > 0 let T (S)ǫ be the closed subset of T (S) of all hyperbolic metrics h
for which the length of the shortest closed h-geodesic is at least ǫ. Informally we
think of T (S)ǫ as the ǫ-thick part of Teichmüller space. The mapping class group
preserves the set T (S)ǫ and acts on it cocompactly. Moreover, every Mod(S)-
invariant subset of T (S) on which Mod(S) acts cocompactly is contained in T (S)ǫ

for some ǫ > 0.

As mentioned above, the following lemma is implicitly contained in the work of
Masur and Minsky [MM00a] (see also the more recent work of Rafi [R07b]).

Lemma 2.5. For every ǫ > 0 there is a number ν0 = ν0(ǫ) > 0 with the following
property. Let γ : J → T (S)ǫ be a Teichmüller geodesic; then the curve ΥT ◦ γ :
J → CG(S) is a ν0-quasi-geodesic.

Proof. As in Theorem 2.3, let p > 1 be such that the image under ΥT of every
Teichmüller geodesic is an unparametrized p-quasi-geodesic in CG(S). Let c =
c(p) > 0 be as in Lemma 2.4.

We claim that for every ǫ > 0 there is a constant k0 = k0(ǫ) > 0 with the
following property. Let k ≥ k0 and let γ : [0, k] → T (S)ǫ be a Teichmüller geodesic
arc of length at least k0; then dC(ΥT γ(0),ΥT γ(k)) ≥ 2c.

To see that this is the case, we argue by contradiction and we assume otherwise.
Then there is a number ǫ > 0 and there is a sequence ki → ∞ and for every i > 0
there is a Teichmüller geodesic arc γi : [0, ki] → T (S)ǫ such that

dC(ΥT γi(0),ΥT γi(ki)) ≤ 2c.

Lemma 2.4 implies that in fact

dC(ΥT γi(0),ΥT γi(t)) ≤ 3c

for every t ∈ [0, ki].

Let L > 0 be as in Lemma 2.2. The action of Mod(S) on T (S)ǫ is isometric and
cocompact. Let K0 be a compact fundamental domain for the action of Mod(S) on
T (S)ǫ. By the second part of Lemma 2.2, up to replacing γi by its image under a
suitably chosen element of Mod(S) and up to replacing the constant 3c by 3c+2L,
we may assume that γi(0) ∈ K0 for every i > 0. Then the unit cotangent vectors
qi ∈ Q1(S) of the geodesics γi at γi(0) are contained in the compact subset K of
Q1(S) of all area one quadratic differentials with foot-point in K0.

Consequently, by passing to a subsequence we may assume that the quadratic
differentials qi converge as i → ∞ to a quadratic differential q ∈ K. Then the
Teichmüller geodesic arcs γi converge locally uniformly as i → ∞ to the Teichmüller
geodesic ray γ : [0,∞) → T (S) with unit cotangent vector q at γ(0). Since T (S)ǫ ⊂
T (S) is closed and γi[0, ki] ⊂ T (S)ǫ for all i, we have γ[0,∞) ⊂ T (S)ǫ. Moreover,
since

dC(ΥT γi(0),ΥT γi(s)) ≤ 3c + 2L

for all s > 0 such that ki > s, the first part of Lemma 2.2 shows that

dC(ΥT γ(s),ΥT (γ(0)) ≤ 3c + 4L for all s ≥ 0.
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Let qv ∈ ML be the vertical measured geodesic lamination of the quadratic
differential q which defines the Teichmüller geodesic ray γ. Since

γ[0,∞) ⊂ T (S)ǫ,

the Teichmüller geodesic γ projects into a compact subset of the moduli space
T (S)/Mod(S). Thus by a result of Masur [M82], the measured geodesic lamination
qv fills up S. This implies that the curve ΥT ◦ γ is an unparametrized quasi-
geodesic in CG(S) of infinite diameter (see [Kl99, H06] and the comments before
the statement of the lemma). This is a contradiction and shows for every ǫ > 0 the
existence of a constant k0 = k0(ǫ) > 0 as claimed.

Let ǫ > 0, let k0 = k0(ǫ), let n > 0 and let γ : [0, k0n] → T (S)ǫ be any
Teichmüller geodesic. The image under ΥT of every Teichmüller geodesic in T (S) is
an unparametrized p-quasi-geodesic. By the choice of c, for all 0 ≤ s ≤ t ≤ u ≤ k0n
we have

(2) dC(ΥT γ(s),ΥT γ(u)) ≥ dC(ΥT γ(s),ΥT γ(t)) + dC(ΥT γ(t),ΥT γ(u)) − c.

On the other hand, for every integer ℓ < n we have dC(ΥT γ(ℓk0),ΥT γ((ℓ+1)k0)) ≥
2c by the choice of k0, and therefore Lemma 2.4 and the estimate (2) imply that

dC(ΥT γ((ℓ + 1)k0),ΥT γ(s)) ≥ dC(ΥT γ(ℓk0),ΥT γ(s)) + c for all s ≤ ℓk0.

Inductively we deduce that dC(ΥT γ(ℓk0),ΥT γ(mk0)) ≥ c|ℓ − m| for all integers
ℓ,m ≤ n.

By the first part of Lemma 2.2, the map ΥT : T (S) → CG(S) is coarsely Lip-
schitz. It follows that ΥT ◦ γ is a ν0-quasi-geodesic for a constant ν0 > 0 only
depending on ǫ. More precisely, if L > 1 is as in Lemma 2.2 then we have

c|s − t|/k0 − k0L − L ≤ dC(ΥT γ(s),ΥT γ(t)) ≤ L|s − t| + L for all s, t ∈ [0, k0n].

This shows the lemma. �

As in the introduction, denote by dH the Hausdorff distance with respect to the
Teichmüller metric for (not necessarily closed or bounded) subsets of T (S).

The following corollary shows the second part of the theorem from the introduc-
tion.

Corollary 2.6. For every ǫ > 0 there is a number ν = ν(ǫ) > 1 with the following
property. Let γ : J → (T (S)ǫ, dT ) be a 1/ǫ-quasi-geodesic. Assume that there
is a Teichmüller geodesic ζ : I → T (S) such that dH(γ(J), ζ(I)) < 1/ǫ. Then
ΥT ◦ γ : J → CG(S) is a ν-quasi-geodesic.

Proof. Let ǫ > 0 and let γ : J → T (S)ǫ be a 1/ǫ-quasi-geodesic for the Teichmüller
metric. Assume that there is a Teichmüller geodesic ζ : I → T (S) such that
dH(γ(J), ζ(I)) < 1/ǫ. This means that there is a map ρ : J → I such that

(3) dT (γ(t), ζ(ρ(t))) ≤ 1/ǫ for all t.

Moreover, we have ζ(I) ⊂ T (S)δ for a number δ > 0 only depending on ǫ by
Wolpert’s estimate (1) above.
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By assumption, the map γ is a 1/ǫ-quasi-geodesic in T (S)ǫ, moreover ζ realizes
the distance between any of its points. Thus by the triangle inequality,

ǫ|s − t| − 3/ǫ ≤ dT (ζ(ρ(s)), ζ(ρ(t))) = |ρ(s) − ρ(t)| ≤ |s − t|/ǫ + 3/ǫ

which just means that the map ρ is a b-quasi-isometry for b = 3/ǫ > 1.

By Lemma 2.5, the curve ΥT ◦ζ : I → CG(S) is a ν0-quasi-geodesic for a constant
ν0 > 0 only depending on ǫ. Then the map t ∈ J → ΥT ζ(ρ(t)) ∈ CG(S) is the
composition of a b-quasi-isometry with a ν0-quasi-isometric embedding and hence
it is a b̃-quasi-geodesic for a constant b̃ > 1 only depending on ǫ.

On the other hand, the first part of Lemma 2.2 together with inequality (3)
shows that

dC(ΥT (γ(t)),ΥT (ζ ◦ ρ(t))) ≤ L/ǫ + L for all t.

Since t → ΥT ζ(ρ(t)) is a b̃-quasi-geodesic, this shows that ΥT ◦ γ is a ν-quasi-
geodesic for a constant ν > 0 only depending on ǫ. �

Corollary 2.6 easily implies the Corollary from the introduction. For its formu-
lation, call a subset B of (T (S), dT ) p-quasi-convex for a number p > 0 if any Te-
ichmüller geodesic arc with both endpoints in B is contained in the p-neighborhood
of B. A subset B of T (S) is called quasi-convex if B is p-quasi-convex for some
p > 0.

Call B hyperbolic if there is a number δ > 0 such that for every geodesic triangle
in (T (S), dT ) with vertices in B and sides a, b, c, the side a is contained in the
δ-neighborhood of b ∪ c.

Corollary 2.7. For every ǫ > 0, a quasi-convex subset B of (T (S)ǫ, dT ) is hyper-
bolic.

Proof. Let B ⊂ T (S)ǫ be a p-quasi-convex set. Let δ > 0 be sufficiently small
that the p-neighborhood of T (S)ǫ is contained in T (S)δ. Such a number exists
by invariance under the action of the mapping class group and the fact that the
Teichmüller metric is complete. Then for x, y ∈ B, the Teichmüller geodesic ζ
connecting x to y is contained in T (S)δ. Corollary 2.6 shows that there is a number
L > 1 only depending on δ such that

dC(ΥT (x),ΥT (y))/L − L ≤ dT (x, y) ≤ LdC(ΥT (x),ΥT (x)) + L.

Thus the restriction of ΥT to (B, dT ) is a quasi-isometric embedding of B into
CG(S).

Now let a, b, c be the sides of a geodesic triangle in T (S) with vertices in B.

Then there are uniform quasi-geodesics ã, b̃, c̃ ⊂ B with the same endpoints whose
Hausdorff distance to a, b, c is at most p. These quasi-geodesics are obtained by
associating to a point x on a, b, c a point x̃ ∈ B whose distance to x is minimal and
hence at most p. By the above, the quasi-geodesics ã, b̃, c̃ are mapped by ΥT to
L̃-quasi-geodesics in CG(S) for a universal number L̃ > 0.

By hyperbolicity of CG(S), there is a constant r > 0 such that if â, b̂, ĉ is a triangle

in CG(S) with L̃-quasi-geodesic sides then â is contained in the r-neighborhood of
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b̂∪ ĉ. Since the restriction of ΥT to B is a quasi-isometric embedding, we conclude
that there is a universal constant R > 0 such that the quasi-geodesic ã in (B, dT )

is contained in the R-neighborhood of b̃ ∪ c̃. Together with the choice of ã, b̃, c̃ this
implies that a is contained in the R + 2p-neighborhood of b ∪ c. Thus B is indeed
hyperbolic. �

3. Quasi-convex curves for the Teichmüller metric

Using the assumptions and notations from Section 2, the goal of this section is
to show the first part of the Theorem from the introduction.

We begin again with a simple observation which shows that a quasi-geodesic in
T (S) with respect to the Teichmüller metric dT whose image under the map ΥT

is a uniform quasi-geodesic in CG(S) is contained in the thick part of Teichmüller
space.

Lemma 3.1. For every ν > 1 there is a number ǫ0 = ǫ0(ν) > 0 with the following
properties. Let γ : [0, n] → T (S) be a ν-quasi-geodesic whose image ΥT ◦γ in CG(S)
is a ν-quasi-geodesic. If n ≥ 1/ǫ0 then γ[0, n] ⊂ T (S)ǫ0 .

Proof. The simple idea for the proof is as follows. If a quasi-geodesic in T (S) for
the Teichmüller metric enters deeply into the thin part of Teichmüller space then
it needs a long time to exit the set of metrics for which a fixed simple closed curve
is short. Hence its image under the map ΥT remains for a long time in a set of
uniformly bounded diameter.

For a quantitative statement, let n > 0, ν > 1 and let γ : [0, n] → (T (S), dT ) be
a ν-quasi-geodesic such that ΥT ◦ γ is a ν-quasi-geodesic in CG(S). Then we have

(4) dC(ΥT γ(t),ΥT γ(s)) ≥ |s − t|/ν − ν for all s, t ∈ [0, n].

Let as before χ0 > 0 be a Bers constant for S and as in Lemma 2.1, let a(χ0) > 0
be an upper bound for the diameter in CG(S) of the collection of all simple closed
curves on S whose h-length is at most χ0 for an arbitrary but fixed h ∈ T (S). Let
[a, b] ⊂ [0, n] be an interval for which there is a simple closed curve α ∈ C(S) so
that ℓγ(t)(α) ≤ χ0 for all t ∈ [a, b] (here as before, ℓγ(t)(α) is the γ(t)-length of
α). Then we have dC(ΥT (γ(a)), α) ≤ a(χ0), dC(ΥT (γ(b)), α) ≤ a(χ0) and therefore
inequality (4) shows that

(5) |b − a| ≤ 2νa(χ0) + ν2.

Now by Wolpert’s result (1), for all α ∈ C(S) and all h, h′ ∈ T (S) the Teichmüller
distance between h and h′ is at least | log ℓh(α) − log ℓh′(α)|. Thus if the ν-quasi-
geodesic γ : [0, n] → (T (S), dT ) is such that there is a point t ∈ [0, n] and some
α ∈ C(S) with

log(ℓγ(t)(α)) ≤ log(χ0) − 2νa(χ0) − 2ν2

then ℓγ(s)(α) ≤ χ0 for every s ∈ [0, n] with dT (γ(s), γ(t)) ≤ 2νa(χ0)+2ν2 and hence

for every s ∈ [0, n] with |s− t| ≤ 2ν2a(χ0) + 2ν3 + ν2. Consequently inequality (5)
shows that ΥT ◦ γ is not a ν-quasi-geodesic provided that n ≥ 4ν2a(χ0) + 4ν3 +
2ν2. �
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The strategy for the proof of the first part of the Theorem from the introduction
is to lift the metric dC on the curve graph with the map ΥT to a symmetric func-
tion on T (S) × T (S). By Lemma 2.1, this function is locally uniformly bounded.
This enables us to modify the function with an averaging procedure to a continuous
symmetric Mod(S)-invariant function ρ on T (S) × T (S) whose large-scale proper-
ties coincide with the large-scale properties of dC ◦ (ΥT × ΥT ). We then can use
continuity, local compactness and equivariance under the action of the mapping
class group to derive the theorem using an idea from Section 3.9 of [Mo03].

We begin with constructing the function ρ. For this let again χ0 > 0 be a Bers
constant for S and choose a smooth function σ : [0,∞) → [0, 1] with σ[0, χ0] ≡ 1
and σ[2χ0,∞) ≡ 0. For every h ∈ T (S) we obtain a finite Borel measure µh on
C(S) by defining

µh =
∑

β

σ(ℓh(β))δβ

where δβ denotes the Dirac mass at β. By the collar lemma, the number of simple
closed geodesics on (S, h) of length at most 2χ0 is bounded from above independent
of h (see also the proof of Lemma 2.1 where this fact is discussed). Thus the total
mass of µh is bounded from above and below by a universal positive constant, and
by Lemma 2.1 the diameter of the support of µh in CG(S) is uniformly bounded as
well.

Since C(S) is countable, a finite measure on C(S) is just a summable nonnegative
function on C(S). Thus the space of finite measures on C(S) can be equipped with
the norm topology as a convex subset of the Banach space ℓ1(C(S)) of summable
functions on C(S).

The mapping class group acts on C(S) and hence it acts on the Banach space
ℓ1(C(S)). We have.

Lemma 3.2. The assignment h → µh is equivariant with respect to the action of
the mapping class group on T (S) and ℓ1(C(S)) and continuous.

Proof. Equivariance of the map h → µh under the action of the mapping class
group is immediate from the definition.

To show continuity, let h ∈ T (S) and let U be a small neighborhood of h in T (S)
contained in the ball of radius one with respect to the Teichmüller metric. By the
collar lemma and by Wolpert’s estimate (1), the number of simple closed curves
α1, . . . , αs ∈ C(S) whose geodesic representative with respect to one of the metrics
u ∈ U has length at most 2χ0 is bounded from above by a universal constant not
depending on h and U . Thus each of the measures µu (u ∈ U) is supported in ∪iαi.

On the other hand, using again Wolpert’s result, for each i the function u ∈
T (S) → ℓu(αi) ∈ (0,∞) is continuous and hence the same is true for the function
u → σ(ℓu(αi)). Thus the weight of αi for the measure µu depends continuously on
u. From this continuity of the map h → µh is immediate. �



STABILITY OF QUASI-GEODESICS IN TEICHMÜLLER SPACE 13

Lemma 3.2 implies in particular that the function h → µh(C(S)) is continuous.

Define a symmetric non-negative function ρ on T (S) × T (S) by

ρ(h, h′) =

∫

C(S)×C(S)

dC(·, ·)dµh × dµ′

h/µh(C(S))µh′(C(S)).

Lemma 3.3. The function ρ is continuous and invariant under the diagonal action
of Mod(S). Moreover, there is a universal constant a > 0 such that

ρ(h, h′) − a ≤ dC(ΥT (h),ΥT (h′)) ≤ ρ(h, h′) + a for all h, h′ ∈ T (S).

Proof. We saw in the proof of Lemma 3.2 that for all h, h′ ∈ T (S) there are neigh-
borhoods U,U ′ of h, h′ and there is a finite collections α1, . . . , αs of points in C(S)
such that for every u ∈ U ∪ U ′, the measure µu is supported in A = {α1, . . . , αs}.
Since the diameter of A in CG(S) is finite, continuity of the function ρ follows from
continuity of the map h → µh with respect to the norm topology.

Invariance of ρ under the diagonal action of Mod(S) is immediate. To show the
estimate in the lemma, simply observe that the total mass of µh and the diameter
in CG(S) of the support of µh are uniformly bounded independent of h and that
moreover σ(ΥT (h)) = 1 for all h. �

Now we are ready to show the first part of the theorem from the introduction.

Proposition 3.4. For every ν > 1 there is a constant ǫ = ǫ(ν) > 0 with the
following property. Let J ⊂ R be a closed connected set of diameter at least 1/ǫ
and let γ : J → (T (S), dT ) be a ν-quasi-geodesic (here as before, J denotes a closed
connected subset of R). If ΥT ◦ γ is a ν-quasi-geodesic in CG(S) then there is a
Teichmüller geodesic ξ : J ′ → T (S)ǫ such that dH(γ(J), ξ(J ′)) ≤ 1/ǫ.

Proof. For κ > 1 define a κ-Lipschitz curve in T (S) to be a κ-Lipschitz map
γ : J → T (S) with respect to the standard metric on R and the distance dT on
T (S) induced by the Teichmüller metric. Since T (S) is a smooth manifold and the
distance dT is geodesic, every ν-quasi-geodesic γ : J → (T (S), dT ) can be replaced
by a piecewise geodesic ζ : J → T (S) which is a 2ν-Lipschitz curve and which
satisfies d(γ(t), ζ(t)) ≤ 4ν for all t ∈ J . For this simply replace for every integer m
the restriction of γ to [m − 1,m] ⊂ J by a Teichmüller geodesic segment with the
same endpoints parametrized proportional to arc length on [m−1,m]. Let ζ be the
resulting curve. Since dT (γ(m−1), γ(m)) ≤ 2ν by the definition of a quasi-geodesic,
ζ is a 2ν-Lipschitz curve (this is valid for J = R, and we leave it to the reader
to make the necessary adjustment of this construction in the case that J 6= R).
Moreover, for every t ∈ [m−1,m] we have dT (γ(t), γ(m)) ≤ 2ν, dT (ζ(t), ζ(m)) ≤ 2ν
and hence dT (ζ(t), ξ(t)) ≤ 4ν. Thus by the first part of Lemma 2.2 (and a change
of notation for the constants used), it is enough to show the statement of the
proposition for ν-Lipschitz curves γ : J → T (S) which are ν-quasi-geodesics for dT

and such that ΥT ◦ γ is a ν-quasi-geodesic in CG(S).

Let ǫ0 = ǫ0(ν) be as in Lemma 3.1 and let a(χ0) > 0 be as in Lemma 2.1.
In the sequel we always assume that the diameter |J | of the set J is bigger than
max{1/ǫ0, ν(ν + 2a(χ0) + 3)}; then γ(J) ⊂ T (S)ǫ0 , and the distance in CG(S)
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between any two curves α, β ∈ C(S) whose length at the two endpoints of γ is at
most χ0 is not smaller than 3.

The curve graph CG(S) is hyperbolic, and ΥT ◦ γ : J → CG(S) is a ν-quasi-
geodesic by assumption. Thus if J is not bounded from above (or below) then the
points ΥT (γ(t)) converge as t → ∞ (or as t → −∞) to a point in the Gromov
boundary ∂CG(S) of CG(S). We call this point the right endpoint (or the left
endpoint) of ΥT ◦ γ (see [BH99]). Recall that ∂CG(S) consists of minimal geodesic
laminations which fill up S.

A simple closed curve α ∈ C(S) supports a unique projective measured geodesic
lamination which we denote by [α]. Similarly, for a measured geodesic lamination
λ ∈ ML we denote by [λ] the projective class of λ. Following Mosher [Mo03], we
say that the projective measured geodesic lamination [α] defined by a simple closed
curve α ∈ C(S) is realized at some t ∈ J if the length of α with respect to the
metric γ(t) ∈ T (S) is at most χ0. The number of projective measured geodesic
laminations which are realized at a given point t ∈ J is uniformly bounded, and
[ΥT (γ(t))] is realized at γ(t).

Similarly, we say that the projectivization [λ] of a measured geodesic lamination
λ is realized at an infinite right or left “endpoint” of J if the support of λ equals the
corresponding right or left endpoint of the quasi-geodesic ΥT ◦ γ : J → CG(S) in
the Gromov boundary ∂CG(S) of CG(S), viewed as a minimal geodesic lamination.
The set of projective measured geodesic laminations which are realized at a fixed
infinite endpoint of J is a nonempty closed subset of PML [Kl99, H06]. We call
a projective measured geodesic lamination which is realized at a (finite or infinite)
endpoint of J an endpoint lamination.

The assignment t → ΥT (γ(t)) is a ν-quasi-geodesic in CG(S) by assumption, and
the diameter in CG(S) of the set of all curves of length at most χ0 with respect
to some fixed hyperbolic metric h ∈ T (S) is at most a(χ0) where a(χ0) > 0 is
as in Lemma 2.1. The projective measured geodesic laminations [α], [β] defined
by two curves α, β ∈ C(S) with dC(α, β) ≥ 3 jointly fill up S, i.e. are such that
i([α], ζ) + i([β], ζ) > 0 for every measured geodesic lamination ζ ∈ ML [MM99,
Bw06] (this makes sense for projective measured geodesic laminations). Hence by
the assumption on the lower bound for the diameter of the parameter interval J ,
any two projective measured geodesic laminations [α], [β] which are realized at the
two distinct endpoints of J jointly fill up S. This is also valid if J is unbounded
since in this case an endpoint lamination [λ] at an infinite endpoint of J jointly fills
up S with every projective measured geodesic lamination whose support does not
coincide with the support of [λ]. Thus for every α ∈ C(S) it jointly fills up S with
[α], and it jointly fills up S with every projective measured geodesic lamination
whose support is a point in ∂CG(S) distinct from the support of [λ].

Any pair of distinct points [λ] 6= [µ] ∈ PML which jointly fill up the surface S
define up to parametrization a unique Teichmüller geodesic whose cotangent line
consists of area one quadratic differentials with vertical measured geodesic lamina-
tion contained in the class [λ] and with horizontal measured geodesic lamination
contained in the class [µ]. Therefore, for every ν-quasi-geodesic ζ : J → (T (S), dT )
with |J | ≥ max{1/ǫ0, ν(ν + 2a(χ0) + 3)} such that ΥT ◦ ζ is a ν-quasi-geodesic
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in CG(S), any pair of projective measured geodesic laminations [λ], [µ] realized at
the two (possibly infinite) endpoints of J defines up to parametrization a unique
Teichmüller geodesic η([λ], [µ]).

Let ρ : T (S) × T (S) → [0,∞) be as in Lemma 3.3. By Lemma 3.3, for every
ν > 1 there is a constant p = p(ν) > 1 with the following property. If γ : J → T (S)
is such that ΥT ◦γ is a ν-quasi-geodesic in CG(S), then γ is a p-quasi-geodesic with
respect to the function ρ. By this we mean that

(6) ρ(γ(s), γ(t))/p − p ≤ |s − t| ≤ pρ(γ(s), γ(t)) + p for all s, t ∈ J.

Vice versa, for every p > 1 there is a constant ν = ν(p) > 1 such that if γ : J →
T (S) is a p-quasi-geodesic with respect to ρ, then ΥT ◦ γ is a ν-quasi-geodesic in
CG(S).

As in Section 2, for h ∈ T (S) and µ ∈ ML denote by ℓh(µ) the h-length of µ;
The function (h, µ) ∈ T (S) ×ML → (0,∞) is continuous.

Using an idea of Mosher [Mo03], for p > 1 define Γp to be the set of all triples
(γ : J → T (S), λ+, λ−) with the following properties.

(1) J ⊂ R is a closed connected set of diameter at least max{1/ǫ0, ν(p)(ν(p) +
2a(χ0) + 3)} where ǫ0 = ǫ0(ν(p)) is as in Lemma 3.1, and 0 ∈ J .

(2) γ : J → T (S) is a p-Lipschitz curve which is a p-quasi-geodesic with respect
to the function ρ.

(3) λ+, λ− ∈ ML are measured geodesic laminations of γ(0)-length 1, and
the projective measured geodesic lamination [λ+] is realized at the right
endpoint of J , the projective measured geodesic lamination [λ−] is realized
at the left endpoint of J .

We equip Γp with the product topology, using the weak∗-topology on ML for
the second and the third component of the triple and the compact-open topology
for the arc γ : J → T (S). Note that this topology is metrizable.

We follow Mosher (Proposition 3.17 of [Mo03]) and show that the action of
Mod(S) on Γp is cocompact. For this note first that by Lemma 3.1, for every
(γ : J → T (S), λ+, λ−) ∈ Γp the image γ(J) is contained in T (S)ǫ0 where ǫ0 =
ǫ0(ν(p)) > 0 is as in the first part of the definition of Γp. Since Mod(S) acts
isometrically and cocompactly on T (S)ǫ0 and since the function ρ is invariant under
the diagonal action of Mod(S), it is enough to show that the subset of Γp consisting
of triples with the additional property that γ(0) is contained in a fixed compact
subset A of T (S)ǫ0 is compact. Now the topology on Γp is metrizable and hence this
follows if every sequence in Γp contained in the subset {(γ : J → T (S), λ+, λ−) ∈
Γp | γ(0) ∈ A} has a convergent subsequence.

By the Arzela-Ascoli theorem, the set of p-Lipschitz maps γ : J → T (S)ǫ0

where J ⊂ R is a closed connected subset containing 0 and such that γ(0) ∈ A
is compact with respect to the compact open topology. Moreover, the function
ρ on T (S) × T (S) is continuous and hence if γi : Ji → T (S) converges locally
uniformly to γ : J → T (S) and if γi is a p-quasi-geodesic with respect to ρ for all
i then the same is true for γ. Since the function on T (S) ×ML which assigns to
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a metric h ∈ T (S) and a measured geodesic lamination µ ∈ ML the h-length of
µ is continuous and since for every fixed h ∈ T (S) the set of measured geodesic
laminations of h-length 1 is compact and a section for the map ML → PML,
the action of Mod(S) on Γp is indeed cocompact provided that the following holds:
If γi : Ji → T (S)ǫ0 (i > 0) is a sequence of p-Lipschitz curves which converge
locally uniformly to γ : J → T (S)ǫ0 , if for each i the projective measured geodesic
lamination [λi] is realized at the right endpoint of Ji and if [λi] → [λ] in PML
(i → ∞) then [λ] is realized at the right endpoint of J .

To see that this is indeed the case, assume first that J ∩ [0,∞) = [0, b] for some
b ∈ (0,∞). Then for sufficiently large i we have Ji∩ [0,∞) = [0, bi] with bi ∈ (0,∞)
and bi → b. Thus γi(bi) → γ(b) (i → ∞) and therefore for sufficiently large i there
is only a finite number of curves α ∈ C(S) whose length with respect to one of the
metrics γj(bj), γ(b) (j ≥ i) is at most χ0. By passing to a subsequence we may
assume that there is a simple closed curve α ∈ C(S) with [λj ] = [α] for all large j.
Then [α] = [λ] is the limit of the sequence ([λj ]). The γj(bj)-length of α is at most
χ0 for all sufficiently large j and hence the same is true for the γ(b)-length of α by
continuity of the length function. As a consequence, the limit [λ] of the sequence
([λj ]) is realized at the right endpoint γ(b) of γ.

In the case that [0,∞) ⊂ J we argue as before. Assume first that bi < ∞ for
infinitely many i and that bi → ∞. Then for each i, there is a simple closed curve
αi ∈ C(S) so that [λi] = [αi], and by Lemma 2.1, αi is contained in a ball about
ΥT (γi(bi)) of radius a(χ0) > 0 independent of i. Since the curves γi : Ji → T (S)ǫ0

converge uniformly on compact sets to the curve γ : J → T (S =ǫ0 , as i → ∞
longer and longer subsegments of γ are uniformly fellow-traveled by the curves
γi. Since the map ΥT is coarsely Lipschitz and since the maps t → ΥT (γi(t))
are ν(p)-quasi-geodesics in CG(S), this implies that as i → ∞, longer and longer
subsegments of the quasi-geodesic ΥT ◦γ in CG(S) are uniformly fellow-traveled by
the quasi-geodesics ΥT ◦ γi.

By hyperbolicity and the definition of the topology on the union of a hyperbolic
geodesic metric space with its Gromov boundary, we conclude that as i → ∞,
the simple closed curves αi ∈ C(S) converge in CG(S) ∪ ∂CG(S) to the endpoint
µ ∈ ∂CG(S) of the ν(p)-quasi-geodesic ray ΥT ◦ γ[0,∞). Namely, a neighborhood
basis in CG(S)∪ ∂CG(S) of a point µ ∈ ∂CG(S) can be obtained as follows. Choose
a fixed point x ∈ CG(S), any sufficiently large number L > 1 (depending on the
hyperbolicity constant) and a ν(p)-quasi-geodesic ξ : [0,∞) → CG(S) connecting x
to µ. For every m > 0 let Vm be the set of all endpoints in CG(S)∪∂CG(S) of finite
or infinite ν(p)-quasi-geodesics in CG(S) containing ξ[0,m] in their L-neighborhood.
Then the sets Vm (m > 0) are a neighborhood basis of µ (see [BH99] for details).

Now by a result of Klarreich (Theorem 1.4 of [Kl99], see also [H06]), if (αi) ⊂
C(S) is any sequence which converges in CG(S) ∪ ∂CG(S) to a point µ ∈ ∂CG(S),
then up to passing to a subsequence, the projective measured geodesic laminations
[αi] ⊂ PML converge to a projective measured geodesic lamination supported in
µ. But [αi] = [λi] → [λ] in PML by assumption and hence the lamination [λ] is
supported in µ. In other words, [λ] is realized at the right (infinite) endpoint of J .
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In the case that bi = ∞ for all but finitely many i, the same argument can also be
applied. Namely, in this case the uniform quasi-geodesics ΥT ◦ γi : [0,∞) → CG(S)
have right endpoints βi ∈ ∂CG(S). Since γi → γ uniformly on compact sets, we
conclude as before that the points βi converge as i → ∞ in ∂CG(S) to the endpoint
β of ΥT ◦ γ. Now the projective measured geodesic lamination [λi] is supported in
βi, and the sequence [λi] converges in PML to [λ]. Since the topology of ∂CG(S),
viewed as a space of geodesic laminations, is just the measure forgetting topology
induced from the space PML, we conclude that [λ] is supported in β. But this
just means that [λ] is realized at the right (infinite) endpoint of J (see [H06]). As a
consequence, the sufficient condition stated above for cocompactness of the action
of Mod(S) on Γp is satisfied.

Now we follow Section 3.10 of [Mo03]. As discussed above, the requirement (1) in
the definition of Γp implies that each point (γ : J → T (S), λ+, λ−) ∈ Γp determines
the geodesic η([λ+], [λ−]). The unit cotangent line of this geodesic is the set qt of
quadratic differentials with vertical and horizontal measured geodesic laminations

(etλ+, e−tλ−/i(λ+, λ−)) (t ∈ R).

For (γ : J → T (S), λ+, λ−) ∈ Γp let σ(γ, λ+, λ−) ∈ T (S) be the point on the
geodesic η([λ+], [λ−]) which is the foot-point of the quadratic differential defined by

the pair (λ+/
√

i(λ+, λ−), λ−/
√

i(λ+, λ−)). Since the length function on T (S) ×
ML is continuous and the intersection form on ML×ML is continuous, the map
taking (γ : J → T (S), λ+, λ−) to (γ(0), σ(γ, λ+, λ−)) ∈ T (S)×T (S) is continuous.
Moreover by construction, this map is equivariant with respect to the natural action
of Mod(S) on Γp and on T (S) × T (S). Since the action of Mod(S) on Γp is
cocompact, the same is true for the action of Mod(S) on the image of this map (see
[Mo03] for a similar reasoning). Thus the distance between γ(0) and σ(γ, λ+, λ−)
is bounded from above by a universal constant b > 0.

Let again (γ : J → T (S), λ+, λ−) ∈ Γp. For each s ∈ J define

a−(s) =
1

ℓγ(s)(λ−)
, a+(s) =

1

ℓγ(s)(λ+)

where as before, ℓγ(s)(λ±) is the γ(s)-length of λ±. These are continuous functions
of s ∈ J . For s ∈ J define the shift γs(t) = γ(t + s); then the ordered triple
(γs, a+(s)λ+, a−(s)λ−) lies in the Mod(S)-cocompact set Γp and hence the distance
between γ(s) and a suitably chosen point on the geodesic η([λ+], [λ−]) is at most
b. As a consequence, the arc γ is contained in the b-neighborhood of the geodesic
η([λ+], [λ−]). Since the curve γ is p-Lipschitz, this implies that the Hausdorff
distance between γ(J) and a suitably chosen subarc of η([λ+], [λ−]) is uniformly
bounded. The proposition is proven. �
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