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Abstract. Let S be an oriented surface of genus g ≥ 0 with m ≥ 0 punctures

and 3g − 3 + m ≥ 2. We show that for every finitely generated group Γ which

is quasi-isometric to the mapping class group M(S) of S there is a finite index

subgroup Γ′ of Γ and a homomorphism ρ : Γ′ → M(S) with finite kernel and

finite index image. We also give a new proof of the following result of Behrstock

and Minsky: The geometric rank of M(S) as well as the homological dimension

of the asymptotic cone of M(S) equal 3g − 3 + m.
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1. Introduction

Let S be an oriented surface of finite type, i.e. S is a closed surface of genus g ≥ 0
from which m ≥ 0 points, so-called punctures, have been deleted. We assume that
3g−3+m ≥ 2, i.e. that S is not a sphere with at most 4 punctures or a torus with
at most 1 puncture. We then call the surface S non-exceptional. The mapping class

group M(S) of all isotopy classes of orientation preserving self-homeomorphisms
of S is finitely presented [I02], indeed it acts as a group of automorphisms on
a contractible cell complex with finite cell stabilizers and compact quotient. In
particular, it is finitely generated. We refer to the survey of Ivanov [I02] for more
about the mapping class group and for references.

For a number L ≥ 1, an L-quasi-isometric embedding of a metric space (X, d)
into a metric space (Y, d) is a map F : X → Y which satisfies

d(x, y)/L− L ≤ d(Fx, Fy) ≤ Ld(x, y) + L for all x, y ∈ X.

The map F is called an L-quasi-isometry if moreover for every y ∈ Y there is some
x ∈ X with d(Fx, y) ≤ L. The spaces (X, d), (Y, d) are then called quasi-isometric.

Every finitely generated group G admits a natural family of metrics which are
pairwise quasi-isometric. Namely, choose a finite symmetric set G of generators for
G. Then every element g ∈ G can be represented as a word in the alphabet G. The
minimal length |g| of such a word defines the word norm of g. This word norm
induces a metric on G which is invariant under left translation by defining d(g, h) =
|g−1h|. The word norm | |′ defined by a different set of generators is equivalent to
| | and hence the induced metrics d, d′ are quasi-isometric. In particular, we can
talk about quasi-isometric finitely generated groups. Note that a finitely generated
group is quasi-isometric to each of its finite index subgroups and quasi-isometric to
its image under a homomorphism with finite kernel. The main purpose of this note
is to show.

Theorem A: Let Γ be a finitely generated group which is quasi-isometric to M(S).
Then there is a finite index subgroup Γ′ of Γ and a homomorphism ρ : Γ′ → M(S)
with finite kernel and finite index image.

For surfaces with precisely one puncture (i.e. in the case m = 1), our theorem
was earlier shown by Mosher and Whyte (see [M03b] for more details). Kida [K06]
recently showed an analogous rigidity result in the context of measure equivalence.
Namely, call two countable groups Γ,Λ measure equivalent if Γ,Λ admit commuting
measure preserving actions on a standard Borel space X equipped with a Radon
measure µ and with finite measure fundamental domains. Motivated by deep results
of Zimmer and Furman, Kida showed that for a countable group Γ which is measure
equivalent to the mapping class group the conclusion of our theorem holds true.
Note however that measure equivalence for finitely generated groups is neither
implied by nor implies quasi-isometry.

A choice of a word norm for the mapping class group and of a non-principal
ultrafilter on N determines an asymptotic cone of M(S). The homological dimen-
sion of this cone, i.e. the maximal number n ≥ 0 such that there are two open
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subsets V ⊂ U with Hn(U,U −V ) 6= 0, is independent of the choices. We show the
following version of a result of Behrstock and Minsky [BM05].

Theorem B [BM05]: The homological dimension of an asymptotic cone of M(S)
equals 3g − 3 +m.

The geometric rank of a metric space X is defined to be the maximal number
k ≥ 0 such that there is a quasi-isometric embedding R

k → X; it is not bigger than
the homological dimension of an asymptotic cone for M(S). Farb, Lubotzky and
Minsky [FLM01] showed that the geometric rank of M(S) is at least 3g − 3 +m;
thus as an immediate corollary of our theorem we obtain [BM05].

Corollary [BM05]: The geometric rank of M(S) equals 3g − 3 +m.

The organization of this paper is as follows. In Section 2 we summarize those of
the properties of the train track complex T T introduced in [H06a] which are needed
for our purpose. Section 3 discusses train tracks which hit efficiently. Building on
results from [H06b], we analyze in Section 4 in more detail the distance in the
train track complex. This is used in Section 5 to single out a collection of infinite
subsets of M(S) whose asymptotic cones are homeomorphic to euclidean cones of
dimension at most 3g− 3+m. In Section 6 we establish a fairly precise description
of the asymptotic cone of M(S) which leads to the proof of Theorem B. Section 7
then contains the proof of Theorem A.

2. The complex of train tracks

In this section we summarize some results and constructions from [PH92, H06a,
H06b] which will be used throughout the paper (compare also [M03a]).

Let S be an oriented surface of genus g ≥ 0 with m ≥ 0 punctures and where
3g − 3 + m ≥ 2. A train track on S is an embedded 1-complex τ ⊂ S whose
edges (called branches) are smooth arcs with well-defined tangent vectors at the
endpoints. At any vertex (called a switch) the incident edges are mutually tangent.
Through each switch there is a path of class C1 which is embedded in τ and contains
the switch in its interior. In particular, the branches which are incident on a
fixed switch are divided into “incoming” and “outgoing” branches according to
their inward pointing tangent at the switch. Each closed curve component of τ
has a unique bivalent switch, and all other switches are at least trivalent. The
complementary regions of the train track have negative Euler characteristic, which
means that they are different from discs with 0, 1 or 2 cusps at the boundary and
different from annuli and once-punctured discs with no cusps at the boundary. We
always identify train tracks which are isotopic. A train track is called maximal if its
complementary components are all trigons or once punctured monogons. A train
track τ is called large if its complementary components are all topological discs and
once punctured topological discs.
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A trainpath on a train track τ is a C1-immersion ρ : [m,n] → τ ⊂ S which maps
each interval [k, k + 1] (m ≤ k ≤ n − 1) onto a branch of τ . The integer n −m is
then called the length of ρ. We sometimes identify a trainpath on S with its image
in τ . Each complementary region of τ is bounded by a finite number of trainpaths
which either are simple closed curves or terminate at the cusps of the region. A
subtrack of a train track τ is a subset σ of τ which itself is a train track. Thus every
switch of σ is also a switch of τ , and every branch of σ is an embedded trainpath
of τ . We write σ < τ if σ is a subtrack of τ .

A train track is called generic if all switches are at most trivalent. The train
track τ is called transversely recurrent if every branch b of τ is intersected by an
embedded simple closed curve c = c(b) ⊂ S which intersects τ transversely and is
such that S−τ−c does not contain an embedded bigon, i.e. a disc with two corners
at the boundary.

A transverse measure on a train track τ is a nonnegative weight function µ on
the branches of τ satisfying the switch condition: For every switch s of τ , the sum
of the weights over all incoming branches at s is required to coincide with the sum
of the weights over all outgoing branches at s. The train track is called recurrent

if it admits a transverse measure which is positive on every branch. We call such a
transverse measure µ positive, and we write µ > 0. If µ is any transverse measure on
a train track τ then the subset of τ consisting of all branches with positive µ-mass
is a recurrent subtrack of τ . A train track τ is called birecurrent if τ is recurrent
and transversely recurrent.

A geodesic lamination for a complete hyperbolic structure on S of finite volume is
a compact subset of S which is foliated into simple geodesics. A geodesic lamination
λ is called minimal if each of its half-leaves is dense in λ. Thus a simple closed
geodesic is a minimal geodesic lamination. A minimal geodesic lamination with
more than one leaf has uncountably many leaves and is called minimal arational.
Every geodesic lamination λ consists of a disjoint union of finitely many minimal
components and a finite number of isolated leaves. Each of the isolated leaves of λ
either is an isolated closed geodesic and hence a minimal component, or it spirals

about one or two minimal components [CEG87, O96].

A geodesic lamination is finite if it contains only finitely many leaves, and this
is the case if and only if each minimal component is a closed geodesic. A geodesic
lamination is maximal if its complementary regions are all ideal triangles or once
punctured discs with one cusp at the boundary. The space of all geodesic lamina-
tions on S equipped with the Hausdorff topology is a compact metrizable space. A
geodesic lamination λ is called complete if λ is maximal and can be approximated
in the Hausdorff topology by simple closed geodesics. The space CL of all complete
geodesic laminations equipped with the Hausdorff topology is compact. Every geo-
desic lamination λ which is a disjoint union of finitely many minimal components is
a sublamination of a complete geodesic lamination, i.e. there is a complete geodesic
lamination which contains λ as a closed subset [H06a].

A train track or a geodesic lamination σ is carried by a transversely recurrent
train track τ if there is a map F : S → S of class C1 which is isotopic to the identity
and maps σ into τ in such a way that the restriction of the differential of F to the
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tangent space of σ vanishes nowhere; note that this makes sense since a train track
has a tangent line everywhere. We call the restriction of F to σ a carrying map

for σ. Write σ ≺ τ if the train track or the geodesic lamination σ is carried by the
train track τ . If σ is a train track which is carried by a train track τ then every
geodesic lamination λ which is carried by σ is also carried by τ .

A train track τ is called complete if it is generic and transversely recurrent and
if it carries a complete geodesic lamination. A complete train track is maximal and
birecurrent. The space of all complete geodesic laminations which are carried by a
fixed complete train track τ is open and closed in CL. In particular, the space CL
is totally disconnected [H06a].

A half-branch b̂ in a generic train track τ incident on a switch v of τ is called

large if every trainpath containing v in its interior passes through b̂. A half-branch
which is not large is called small. A branch b in a generic train track τ is called large

if each of its two half-branches is large; in this case b is necessarily incident on two
distinct switches, and it is large at both of them. A branch is called small if each of
its two half-branches is small. A branch is called mixed if one of its half-branches
is large and the other half-branch is small (for all this, see [PH92] p.118).

There are two simple ways to modify a train track τ to another train track.
First, we can shift τ along a mixed branch to a train track τ ′ as shown in Figure
A below. If τ is complete then the same is true for τ ′. Moreover, a train track or
a lamination is carried by τ if and only if it is carried by τ ′ (see [PH92] p.119). In
particular, the shift τ ′ of τ is carried by τ . Note that there is a natural bijection of
the set of branches of τ onto the set of branches of τ ′.

Figure A

Second, if e is a large branch of τ then we can perform a right or left split of τ at
e as shown in Figure B. A right split at e is uniquely determined by the orientation
of S and does not depend on the orientation of e. Using the labels in the figure, in
the case of a right split we call the branches a and c winners of the split, and the
branches b, d are losers of the split. If we perform a left split, then the branches
b, d are winners of the split, and the branches a, c are losers of the split. The split
τ ′ of a train track τ is carried by τ , and there is a natural choice of a carrying map
which maps the switches of τ ′ to the switches of τ . The image of a branch of τ ′

is then a trainpath on τ whose length either equals one or two. There is a natural
bijection of the set of branches of τ onto the set of branches of τ ′ which maps
the branch e to the diagonal e′ of the split. The split of a maximal transversely
recurrent generic train track is maximal, transversely recurrent and generic. If τ is
complete and if λ ∈ CL is carried by τ , then there is a unique choice of a right or
left split of τ at e with the property that the split track τ ′ carries λ. We call such
a split a λ-split. The train track τ ′ is recurrent and hence complete. In particular,
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a complete train track τ can always be split at any large branch e to a complete
train track τ ′; however there may be a choice of a right or left split at e such that
the resulting train track is not recurrent any more (compare p.120 in [PH92]). The
reverse of a split is called a collapse. Define moreover a collision of a train track
τ at a large branch e to be a (right or left) split of τ at e followed by the removal
of the diagonal of the split. The train track obtained from τ by a collision at e is
carried by both train tracks obtained from τ by a split at e. The number of its
branches equals the number of branches of τ minus one. If τ is complete then the
collision of τ at e is recurrent if and only if both train tracks obtained from τ by a
split at e are complete (Lemma 2.1.3 of [PH92]).

left split

right split

a

b

e d

c

Figure B

Denote by T T the directed graph whose vertices are the isotopy classes of com-
plete train tracks on S and whose edges are determined as follows. The train track
τ ∈ T T is connected to the train track τ ′ by a directed edge if and only τ ′ can be
obtained from τ by a single split. The graph T T is connected [H06a]. As a conse-
quence, if we identify each edge in T T with the unit interval [0, 1] then this provides
T T with the structure of a connected locally finite metric graph. Thus T T is a
locally compact complete geodesic metric space. In the sequel we always assume
that T T is equipped with this metric without further comment. The mapping class
group M(S) of S acts properly and cocompactly on T T as a group of isometries.
In particular, T T is M(S)-equivariantly quasi-isometric to M(S) equipped with
any word metric [H06a].

In the sequel we write τ ∈ V(T T ) if τ is a vertex of the graph T T , i.e. if τ is
a complete train track on S. Define a splitting sequence in T T to be a sequence
{α(i)}0≤i≤m ⊂ V(T T ) with the property that for every i ≥ 0 the train track α(i+1)
can be obtained from α(i) by a single split. We view such a splitting sequence as a
simplicial path in the graph T T which maps the interval [i, i+ 1] onto the edge in
T T connecting α(i) to α(i+ 1).

Recall from the introduction the definition of an L-quasi-isometric embedding
of a metric space (X, d) into a metric space (Y, d). A c-quasi-geodesic in a metric
space (X, d) is a c-quasi-isometric embedding of a closed connected subset of R into
X. The following two results from [H06b] will be important in the sequel.

Proposition 2.1. There is a number c > 0 such that every splitting sequence in

T T is a c-quasi-geodesic.

Proposition 2.2. There is a number d > 0 with the following property. For

arbitrary train tracks τ, σ ∈ V(T T ) there is a train track τ ′ contained in the
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d-neighborhood of τ which is splittable to a train track σ′ contained in the d-
neighborhood of σ.

3. Train tracks hitting efficiently

In this section we construct complete train tracks with some specific properties
which are used to obtain a geometric control on the train track complex T T . First,
define a bigon track on S to be an embedded 1-complex on S which satisfies all the
requirements of a train track except that we allow the existence of complementary
bigons. Such a bigon track is called maximal if all complementary components
are either bigons or trigons or once punctured monogons. Recurrence, transverse
recurrence, birecurrence and carrying for bigon tracks are defined in the same way
as they are defined for train tracks. Any complete train track is a maximal birecur-
rent bigon track in this sense. A tangential measure for a maximal bigon track ζ
assigns to each branch b of ζ a nonnegative weight ν(b) ∈ [0,∞) with the following
properties. Each side of a complementary component of ζ can be parametrized as a
trainpath ρ on ζ. Denote by ν(ρ) the sum of the weights of the branches contained in
ρ counted with multiplicities. If ρ1, ρ2 are the two distinct sides of a complementary
bigon then we require that ν(ρ1) = ν(ρ2), and if ρ1, ρ2, ρ3 are the three distinct
sides of a complementary trigon then we require that ν(ρi) ≤ ν(ρi+1) + ν(ρi+2)
where indices are taken modulo 3. A bigon track is transversely recurrent if and
only if it admits a tangential measure which is positive on every branch [PH92].

A bigon track is called generic if all switches are at most trivalent. A bigon track
τ which is not generic can be combed to a generic bigon track by successively mod-
ifying τ as shown in Figure C. By Proposition 1.4.1 of [PH92] (whose proof is also
valid for bigon tracks), the combing of a recurrent bigon track is recurrent. How-
ever, the combing of a transversely recurrent bigon track need not be transversely
recurrent (see the discussion on p.41 of [PH92]).

bm

c1 c2

a1a1

Figure C

The next Lemma gives a criterion for a non-generic maximal transversely re-
current bigon track to be combable to a generic maximal transversely recurrent
bigon track. For its formulation, we say that a positive tangential measure ν
on a maximal bigon track σ satisfies the strict triangle inequality for complemen-

tary trigons if for every complementary trigon of σ with sides e1, e2, e3 we have
ν(ei) < ν(ei+1) + ν(ei+2). By Theorem 1.4.3 of [PH92], a generic maximal train
track is transversely recurrent if and only if it admits a positive tangential measure
satisfying the strict triangle inequality for complementary trigons. We have.
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Lemma 3.1. Let ζ be a maximal bigon track which admits a positive tangential

measure satisfying the strict triangle inequality for complementary trigons. Then ζ
can be combed to a generic transversely recurrent bigon track.

Proof. Let σ be an arbitrary maximal bigon track. Then σ does not have any
bivalent switches. For a switch s of σ denote the valence of s by V (s) and define the
excessive total valence V(σ) of σ to be

∑

s(V (s)−3) where the sum is taken over all
switches s of σ; then V(σ) = 0 if and only if σ is generic. By induction it is enough to
show that a maximal non-generic bigon track σ which admits a positive tangential
measure ν satisfying the strict triangle inequality for complementary trigons can be
combed to a bigon track σ′ which admits a positive tangential measure ν ′ satisfying
the strict triangle inequality for complementary trigons and such that V(σ′) < V(σ).

For this let σ be such a non-generic maximal bigon track with tangential measure
ν satisfying the strict triangle inequality for complementary trigons and let s be a
switch of σ of valence at least 4. Assume that s has ` incoming and m outgoing
branches where 1 ≤ ` ≤ m and ` +m ≥ 4. We number the incoming branches in
counter-clockwise order a1, . . . , a` (for the given orientation of S) and do the same
for the outgoing branches b1, . . . , bm. Then the branches bm and a1 are contained
in the same side of a complementary component of σ, and the branches bm−1, bm
are contained in adjacent (not necessarily distinct) sides e1, e2 of a complementary
component T of σ. Assume first that T is a complementary trigon. Denote by e3
the third side of T ; by assumption, the total weight ν(e3) is strictly smaller than
ν(e1) + ν(e2) and therefore there is a number q ∈ (0,min{ν(bi) | 1 ≤ i ≤ m})
such that ν(e3) < ν(e1) + ν(e2) − 2q. Move the endpoint of the branch bm to a
point in the interior of bm−1 as shown in Figure C; we obtain a bigon track σ′ with
V(σ′) < V(σ).

The branch bm−1 decomposes in σ′ into the union of two branches c1, c2 where
c1 is incident on s and on an endpoint of the image b′m of bm under our move.
Assign the weight q to the branch c1, the weight ν(bm) − q to the branch b′m and
the weight ν(bm−1)−q to the branch c2. The remaining branches of σ′ inherit their
weight from the tangential measure ν on σ. This defines a positive weight function
on the branches of σ′ which by the choice of q is tangential measure satisfies the
strict triangle inequality for complementary trigons.

Similarly, if the complementary component T containing bm and bm−1 in its
boundary is a bigon or a once punctured monogon, then we can shift bm along
bm−1 as before and modify our tangential measure to a positive tangential measure
on the combed track with the desired properties. ¤

Following [PH92] we say that a train track τ on our surface S hits efficiently

a train track or a geodesic lamination σ if τ can be isotoped to a train track τ ′

which intersects σ transversely in such a way that S − τ ′ − σ does not contain any
embedded bigon. As in [H06a] we define a splitting and shifting sequence to be a
sequence {τi} ⊂ V(T T ) such that for every i the train track τi+1 can be obtained
from τi by a sequence of shifts and a single split. Denote by d the distance on T T .
We have.
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Proposition 3.2. There is a number q > 0 and for every τ ∈ V(T T ) and every

complete geodesic lamination λ which hits τ efficiently there is a complete train

track τ∗ ∈ V(T T ) with the following properties.

(1) d(τ, τ∗) ≤ q.
(2) τ∗ carries λ.
(3) Let σ ∈ V(T T ) be a train track which hits τ efficiently and carries λ; then

τ∗ carries a train track σ′ which carries λ and can be obtained from σ by a

splitting and shifting sequence of length at most q.

Proof. By Lemma 3.4.4 and Proposition 3.4.5 of [PH92], for every complete train
track τ there is a maximal birecurrent dual bigon track τ ∗b with the following prop-
erty. A geodesic lamination or a train track σ hits τ efficiently if and only if σ is
carried by τ∗b . We construct the train track τ ∗ with the properties stated in the
lemma from this dual bigon track and a complete geodesic lamination λ ∈ CL which
hits τ efficiently and hence is carried by τ ∗b .

For this we recall from p.194 of [PH92] the precise construction of the dual bigon
track τ∗b of a complete train track τ . Namely, for each branch b of τ choose a short
arc b∗ meeting τ transversely in a single point in the interior of b and such that
all these arcs are pairwise disjoint. Let T ⊂ S − τ be a complementary trigon of
τ and let E be a side of T which is composed of the branches b1, . . . , b`. Choose
a point p ∈ T and extend all the arcs b∗1, . . . , b

∗
` within T in such a way that they

end at p, with the same inward pointing tangents at p. In the case ` ≥ 2 we then
add an arc which connects p within T to a point p′ ∈ T and whose inward pointing
tangent at p equals the outward pointing tangent at p of the arcs b∗1, . . . , b

∗
` . We

do this in such a way that the different configurations from the different sides of
T are disjoint. If q′ ∈ T is the point in T arising in this way from a second side,
then we connect p′ (or p if ` = 1) and q′ by a smooth arc whose outward pointing
tangent at p′, q′ coincides with the inward pointing tangents of the arcs constructed
before which end at p′, q′. In a similar way we construct the intersection of τ ∗b with
a complementary once punctured monogon of τ . Note that the resulting graph τ ∗b
is in general not generic, but its only vertices which are not trivalent arise from the
sides of the complementary components of τ . Figure D shows the intersection of
the dual bigon track τ∗b with a neighborhood in S of a complementary trigon of τ
and with a neighborhood in S of a complementary once punctured monogon.

Figure D

Following [PH92], τ∗b is a maximal birecurrent bigon track, and the number of its
branches is bounded from above by a constant only depending on the topological
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type of S. Each complementary trigon of τ contains exactly one complementary
trigon of τ∗b in its interior, and these are the only complementary trigons. Each
complementary once punctured monogon of τ contains exactly one complementary
once punctured monogon of τ ∗b in its interior. All other complementary components
of τ∗b are bigons. The number of these bigons is uniformly bounded.

Now let µ be a positive integral transverse measure on τ with the additional
property that the µ-weight of every branch of τ is at least 4. This weight then
defines a simple multicurve c carried by τ in such a way that µ is just the counting
measure for c (see [PH92]). Here a simple multicurve consists of a disjoint union of
essential simple closed curves which can be realized disjointly; we allow that some
of the curves are freely homotopic. For every side ρ of a complementary component
of τ there are at least 4 connected subarcs of c which are mapped by the natural
carrying map c→ τ onto ρ. Namely, the number of such arcs is just the minimum
of the µ-weights of a branch contained in ρ.

Assign to a branch b∗ of τ∗b which is dual to the branch b of τ the weight ν(b∗) =
µ(b), and to a branch of τ∗b which is contained in the interior of a complementary
region of τ assign the weight 0. The resulting weight function ν is a tangential
measure for τ∗b , but it is not positive (this relation between transverse measures on
τ and tangential measures on τ ∗b is discussed in detail in Section 3.4 of [PH92]).
However by construction, every branch of vanishing ν-mass is contained in the
interior of a complementary trigon or once punctured monogon of τ , and positive
mass can be pushed onto these branches by “sneaking up” as described on p.39 and
p.200 of [PH92]. Namely, the closed multicurve c defined by the positive integral
transverse measure µ on τ hits the bigon track τ ∗b efficiently. For every branch b of
τ the weight ν∗(b) equals the number of intersections between b∗ and c. For each
side of a complementary component T of τ there are at least 4 arcs from c which
are mapped by the carrying map onto this side. If the side consists of more than
one branch then we pull two of these arcs into T as shown in Figure E. If the side
consists of a single branch then we pull a single arc into T in the same way.

Figure E

For a branch e of τ∗b define µ∗(e) to be the number of intersections between e and
the deformed multicurve. The resulting weight function µ∗ is a positive integral
tangential measure for τ∗b . Note that the weight of each side of a complementary
trigon in τ∗b is exactly 2 by construction, and the weight of a side of a once punctured
monogon is 2 as well. In particular, the tangential measure µ∗ satisfies the strict
triangle inequality for complementary trigons: If T is any complementary trigon
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with sides e1, e2, e3 then µ∗(ei) < µ∗(ei+1)+µ
∗(ei+2) (compare the proof of Lemma

3.1).

We now modify our dual bigon track τ ∗b in a uniformly bounded number of steps
to a complete train track τ ∗ as required in the lemma with a (non-deterministic)
algorithm as follows.

The set of input data for our algorithm is the set B of quadruples (η, λ, ν,B)
which consist of a maximal birecurrent bigon track η, a complete geodesic lamina-
tion λ carried by η, a positive tangential measure ν on η which satisfies the strict
triangle inequality for complementary trigons and a complementary bigon B of η.
If η does not have any complementary bigons, i.e. if η is a train track, then we
put B = ∅. The algorithm modifies the quadruple (η, λ, ν,B) ∈ B to a quadruple
(η′, λ, ν′, B′) ∈ B with B′ = ∅ as follows.

Step 1:

Let (η, λ, ν,B) ∈ B be an input quadruple. If η does not contain a bigon, i.e. if
B = ∅, then the algorithm stops. Otherwise proceed to Step 2.

Step 2:

Let (η, λ, ν,B) ∈ B be an input quadruple with B 6= ∅. Let E,F be the sides
of the complementary bigon B in the maximal birecurrent bigon track η. Check
whether the boundary ∂B of B is embedded in η. If this is not the case then go to
Step 3. Otherwise we construct from η and ν a maximal birecurrent bigon track
η̃ which carries η and hence λ as follows. Assume that the side E of the bigon
B consists of the ordered sequence of branches e1, . . . , e` and that the second side
F of B consists of the branches f1, . . . , fk. Assume also that the branches e1, f1
begin at a common cusp of the bigon B. We collapse the bigon B to a single
arc in S with a map Ψ which identifies E and F as follows. If for some p ≥ 1,
q ≥ 1 we have

∑q−1
j=1 ν(fj) <

∑p
i=1 ν(ei) <

∑q
j=1 ν(fj) then Ψ maps the subarc

e1 ∪ · · · ∪ ep of E homeomorphically onto a subarc of F which contains f1, . . . , fq−1

and has its endpoint in the interior of the edge fq. If
∑p

i=1 ν(ei) =
∑q

j=1 ν(fj)
then we map e1 ∪ · · · ∪ ep onto f1 ∪ · · · ∪ fq, i.e. an endpoint of ep is mapped
to an endpoint of fq. The resulting bigon track η̃ carries η and it is maximal.
The natural carrying map Φ : η → η̃ maps each complementary trigon of η to a
complementary trigon of η̃. By construction, the positive tangential measure ν on
η induces a positive weight function ν̃ on the branches of η̃. Note that the total
weight of ν̃ is strictly smaller than the total weight of ν and that the ν-weight of
a side ρ of a complementary component T 6= B in η coincides with the ν̃-weight
of the side Φ(ρ) of the complementary component Φ(T ) in η̃. In particular, the
weight function ν̃ is a tangential measure ν̃ on η̃ which satisfies the strict triangle
inequality for complementary trigons. The number of complementary bigons in η̃
is strictly smaller than the number of complementary bigons in η. Namely, there
is a one-to-one correspondence between the complementary bigons of η̃ and the
complementary bigons of η distinct from B. The image of the bigon B under the
map Φ is an embedded arc in η̃. The number of branches of η̃ does not exceed the
number of branches of η. Every complete geodesic lamination which is carried by
η is also carried by η̃. Choose an input quadruple of the form (η̃, λ, ν̃, B̃) ∈ B for
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a complementary bigon B̃ of η̃ (or B̃ = ∅ if η̃ is a train track) and continue with
Step 1 above for this input quadruple.

Step 3:

Let (η, λ, ν,B) ∈ B be an input quadruple such that B 6= ∅ and that the boundary
∂B of B is not embedded. Then the sides E,F of B are immersed arcs of class
C1 on S which intersect or have self-intersections. Check whether the cusps of B
coincide. If this is not the case, continue with Step 4.

Otherwise the two cusps of B are a common switch s of η which is necessarily
at least 4-valent. By Lemma 3.1 and its proof, we can modify η with a sequence of
combings near s to a maximal birecurrent bigon track η̃ in such a way that the two
cusps of the complementary bigon B̃ in η̃ corresponding to B under the combing are
distinct and such that the tangential measure ν on η induces a tangential measure
ν̃ on η̃ which satisfies the strict triangle inequality for complementary trigons. Note
that η̃ carries the complete geodesic lamination λ. Now continue with Step 2 above
with the input quadruple (η̃, λ, ν̃, B̃) ∈ B.

Step 4:

Let (η, λ, ν,B) ∈ B be our input quadruple where B is a bigon in η with sides
E,F and distinct cusps. Check whether the boundary ∂B of B contains any isolated
self-intersection points. Such a point is a switch s contained in the interior of at
least two distinct embedded subarcs ρ1, ρ2 of ∂B of class C1 with the additional
property that ρ1 − {s} ∩ ρ2 − {s} = ∅. If ∂B does not contain such an isolated
self-intersection point then continue with Step 5 below with the input quadruple
(η, λ, ν,B) ∈ B.

Otherwise any such isolated self-intersection point s is a switch of η which is
at least 4-valent. Thus we can modify η with a sequence combing to a complete
birecurrent bigon track η̃ with the property that all self-intersection points of the
boundary of the bigon B̃ in η̃ corresponding to B are non-isolated, i.e. they are con-
tained in a self-intersection branch, and that the tangential measure ν on η induces
a tangential measure µ̃ on η̃ satisfying the strict triangle inequality for complemen-
tary trigons. Continue with Step 5 with the input quadruple (η̃, λ, ν̃, B̃) ∈ B.

Step 5:

Let (η, λ, ν,B) ∈ B be an input quadruple where B is a complementary bigon for
η whose boundary ∂B does not contain any isolated self-intersection points, whose
cusps are distinct and such that the self-intersection of ∂B is not empty.

Check whether there is a branch e of η contained in the self-intersection of ∂B
and which is not incident on any one of the two cusps s1, s2 of B. Since the interior
of the bigon B is an embedded topological disc in S, such a branch e is necessarily
a large branch. Now η carries λ and therefore there is a bigon track η̃ which is the
image of η under a split at e and which carries λ. To each complementary region
of η̃ naturally corresponds a complementary region of η of the same topological
type (compare the discussion in Section 3 of [H06b] and in Section 4 of this paper).
In particular, the number of complementary bigons in η̃ and η coincide, and the
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bigon B in η corresponds to a bigon B̃ in η̃. The bigon track η̃ is recurrent, and
it admits a positive tangential measure ν̃ induced from the measure ν on η which
satisfies the strict triangle inequality for complementary trigons. The number of
branches contained in the self-intersection locus of the boundary ∂B̃ of the bigon
B̃ is strictly smaller than the number of branches in the self-intersection locus of
∂B.

After a number of splits of this kind which is bounded from above by the number
of branches of the bigon track η we obtain from η a bigon track η1 which is maximal
and birecurrent. There is a natural bijection from the collection of complementary
bigons of η onto the collection of complementary bigons of η1. If B1 is the bigon of
η1 corresponding to B then the self-intersection locus of the boundary ∂B1 of B1

is a union of branches which are incident on one of the two cusps s1 6= s2 of B1. As
before, η1 admits a positive tangential measure ν1 which satisfies the strict triangle
inequality for complementary trigons and is induced from ν. Moreover, η1 carries
λ.

If the boundary ∂B1 of B1 is embedded then we proceed with Step 2 above for
the input quadruple (η1, λ, ν1, B1). Otherwise there is a self-intersection branch b
of ∂B1 which is incident on a cusp s1 of B1. Note that the branch b can not be
large, so it is either small or mixed.

For a small branch b, there are again two possibilities which are shown in Figure
F. A small branch b as shown on the left hand side of Figure F can be collapsed
to a large branch. Using the fact that the boundary of an embedded bigon on a

Figure F

a) b)

bigon track admits a natural orientation induced from the orientation of S, the
small branch b is contained in the intersection of the two distinct sides of B1. Since
the tangential measure ν1 on η1 is positive by assumption, the construction in Step
2 above can be used to collapse the bigon B1 in η1 to a single simple closed curve.
As in Step 2 above, we obtain a maximal birecurrent bigon track η̃ which carries λ
and admits a positive tangential measure ν̃ satisfying the strict triangle inequality
for complementary trigons. The number of bigons of η̃ is strictly smaller than the
number of bigons of η. Choose an arbitrary complementary bigon B̃ in η̃ or put
B̃ = ∅ if there is no such bigon and continue with Step 1 above and the input
quadruple (η̃, λ, ν̃, B̃) ∈ B.

A small branch b as shown on the right hand side of Figure F can not be collapsed.
In this case the branch b coincides with a side E1 of the bigon B1, and the second
side F1 of B1 contains b as a proper subarc. Since the tangential measure ν1 on η1
is positive by assumption, this is impossible.

If the branch b is mixed then b and the cusp s1 of B1 are contained in the interior
of a side E1 of B1. The bigon track η1 can be modified with a single shift to a
maximal birecurrent bigon track η2 such that the switch s1 is not contained any
more in the interior of a side of the bigon B2 corresponding to B1 in η1. The
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tangential measure ν1 on η1 naturally induces a positive tangential measure ν2 on
η2 which satisfies the strict triangle inequality for complementary trigons. We now
proceed with Step 2 for the input quadruple (η2, λ, ν2, B2). This completes the
description of our algorithm.

We now apply our algorithm to the bigon track τ ∗b , the tangential measure µ∗ for
τ∗b constructed from a suitably chosen transverse measure µ on τ and a complete
geodesic lamination λ which hits τ efficiently and hence is carried by τ ∗b . Since the
number of branches of τ∗b is bounded from above by a constant only depending on
the topological type of S, there is a universal upper bound p > 0 for the number of
modifications of τ∗b needed in our above algorithm to construct from these data a
(possibly non-generic) birecurrent train track χ which carries λ and admits a posi-
tive tangential measure satisfying the strict triangle inequality for complementary
trigons. By Lemma 3.1, this train track can be combed to a maximal birecurrent
generic train track τ∗ which satisfies property 2) stated in the proposition. The
train track τ∗ is not unique, and it depends on λ and µ. However, since our al-
gorithm stops after a uniformly bounded number of steps and each step involves
only a uniformly bounded number of choices, the number of such train tracks which
can be obtained from τ∗b by this procedure is uniformly bounded. Moroever, our
algorithm is equivariant with respect to the action of the mapping class group
M(S) and therefore by invariance under the action of M(S), the distance between
τ and τ∗ is uniformly bounded. In other words, τ ∗ has property 1) stated in the
proposition as well.

To show property 3), let σ be a complete train track on S which hits τ efficiently
and carries a complete geodesic lamination λ ∈ CL. Then σ is carried by τ ∗b
and hence it is carried by every bigon track which can be obtained from τ ∗b by a
sequence of combings, shifts and collapses. On the other hand, if ηi (0 ≤ i ≤ k)
are the successive bigon tracks obtained from an application of our algorithm to
η0 = τ∗b and if ηi is obtained from ηi−1 by a split at a large branch e, then this
split is a λ-split. By Lemma 4.5 of [H06a] and its proof (which is also valid for
bigon tracks) there is a universal number p > 0 such that if σ is carried by ηi−1

and carries λ then there is a train track σ̃ which carries λ, which is carried by ηi

and which can be obtained from σ by a splitting and shifting sequence of length at
most p. Since the number of splits occuring during our modification of τ ∗b to τ∗ is
uniformly bounded, this means that τ ∗ also satisfied the third requirement in our
proposition. This completes the proof of our proposition. ¤

Remark: We call the train track τ ∗ constructed in the proof of Proposition
3.2 from a complete train track τ and a complete geodesic lamination λ which hits
τ efficiently a λ-collapse of τ ∗b . Note that a λ-collapse is not unique, and that in
general it is neither carried by the dual bigon track of τ nor carries this bigon track.
Thus in general a λ-collapse of τ does not hit τ efficiently. However, the number of
different train tracks which can be obtained from our construction is bounded by
a constant only depending on the topological type of S.
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4. Flat strip projection

In this section we use the results from Sections 3 and from [H06b] to obtain a
control on distances in the train track complex T T .

Note first that a complementary component C of a train track σ on S is bounded
by a finite number of arcs of class C1, called sides. Each side either is a closed
curve of class C1 (i.e. the side does not contain any cusp) or an arc of class C1 with
endpoints at two not necessarily distinct cusps of the component. We call a side
of C which does not contain cusps a smooth side of C. If C is a complementary
component of σ whose boundary contains precisely k ≥ 0 cusps, then the Euler

characteristic χ(C) is defined by χ(C) = χ0(C) − k/2 where χ0(C) is the usual
Euler characteristic of C viewed as a topological surface with boundary. Note that
the sum of the Euler characteristics of the complementary components of σ is just
the Euler characteristic of S. If T is a smooth side of a complementary component
C of σ then we mark a point on T which is contained in the interior of a branch of
σ. If T is a common smooth side of two distinct complementary components C1, C2

of σ then we assume that the marked points on T defined by C1, C2 coincide.

A complete extension of a train track σ is a complete train track τ containing
σ as a subtrack and whose switches are distinct from the marked points in σ.
Such a complete extension τ intersects each complementary component C of σ in
an embedded graph. The closure τC of τ ∩ C in S is a graph whose univalent
vertices are contained in the complement of the cusps and the marked points of the
boundary ∂C of C. We call two such graphs τC , τ

′
C equivalent if there is an isotopy

of C of class C1 which fixes a neighborhood of the cusps and the marked points
in ∂C and which maps τC onto τ ′C . The complete extensions τ, τ ′ of σ are called
σ-equivalent if for each complementary component C of σ the graphs τC and τ ′C
are equivalent in this sense.

For two complete extensions τ, τ ′ of σ and a complementary component C of
σ define the C-intersection number iC(τ, τ ′) between τ and τ ′ to be the minimal
number of intersection points contained in C between any two complete extensions
η, η′ of σ which are σ-equivalent to τ, τ ′ and with the following additional properties.

a) A switch v of η is also a switch of η′ if and only if v is a switch of σ.
b) For every intersection point x ∈ η∩η′∩C there is a branch b of η containing

x in its interior and a branch b′ of η′ containing x in its interior. Moreover,
the branches b, b′ intersect transversely at x.

We define iσ(τ, τ ′) =
∑

C iC(τ, τ ′) to be the sum of the C-intersection numbers
between τ and τ ′ where C runs through the complementary components of σ. For
every number m > 0 there is a constant q(m) > 0 not depending on σ so that for
every complete extension τ of σ the number of σ-equivalence classes of complete
extensions τ ′ of σ with iσ(τ, τ ′) ≤ m is bounded from above by q(m) (see [H06b]).

Let again τ be a complete extension of a train track σ. To simplify our notation
we do not distinguish between σ as a subset of τ (and hence containing switches
of τ which are bivalent in σ) and σ viewed as a subtrack of τ , i.e. the graph from
which the bivalent switches not contained in simple closed curve components have
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been removed. Define the σ-complexity χ(τ, σ) of τ to be the number of branches
of τ contained in σ. Note that this complexity is not smaller than the number of
branches of σ, and it coincides with this number if and only if σ is itself a complete
train track. Similarly, if b is a branch in σ then we define the b-complexity χ(τ, b)
of τ to be the number of branches of τ contained in b. Note that χ(τ, b) = 1 if and
only if b is a branch of τ .

Let b be any branch of σ which is not a branch of τ . Then b defines a trainpath
ρ : [0,m] → τ of length m ≥ 2. For each i < m the branch ρ[i, i+1] of τ is a proper
subset of b and will be called a proper subbranch of b in τ . A proper subbranch h
of b in τ is incident on at least one switch v in τ which is bivalent in σ, and there is
a unique branch a ∈ τ − σ which is incident on v. We call a a neighbor of b at v or
simply a neighbor of σ at v. A neighbor of σ at an interior point v of a branch of σ
is small at v. A proper subbranch of σ is a proper subbranch of some branch of σ.
If e is a large proper subbranch of σ then τ can be split at e to a train track which
contains σ as a subtrack. We call such a (not necessarily unique) split a σ-split of
τ at e.

If σ < τ is a recurrent subtrack of a complete train track τ then there is a
simple geodesic multi-curve ν on S, i.e. a collection of pairwise disjoint simple
closed geodesics on S, which is carried by σ and such that a carrying map ν → σ
is surjective [PH92]. We call such a multi-curve filling for σ. More generally, we
call a geodesic lamination ν carried by σ filling if the restriction to the minimal
components of ν of a carrying map ν → σ is surjective. It follows from the results
of Section 2 in [H06a] that for every σ-filling lamination ν which is a disjoint union
of minimal components there is a complete geodesic lamination λ which is carried
by τ and contains ν as a sublamination. We call λ a complete τ -extension of
ν. Whenever the existence of such a lamination λ is needed in the sequel, this
lamination is given explicitly so we refrain from a more detailed discussion. We call
the train track τ tight at a large branch e of σ if e is a large branch in τ , i.e. if
χ(τ, e) = 1. In Lemma 4.3 of [H06b] we showed.

Lemma 4.1. There is a number p > 0 with the following properties. Let σ be a

recurrent train track, let e be a large branch of σ and let ν be a σ-filling geodesic

lamination. Then there is an algorithm which associates to every complete extension

τ of σ and every complete τ -extension λ of ν a complete train track τ ′ with the

following properties.

(1) τ ′ can be obtained from τ by a sequence of λ-splits of length at most p at

proper subbranches of e, and it contains σ as a subtrack.

(2) τ ′ is tight at e.
(3) If no marked point of σ is contained in the branch e then we have iσ(τ ′, η) ≤

iσ(τ, η) + p(χ(τ, σ) − χ(τ ′, σ)) for every complete extension η of σ.
(4) If there is a marked point of σ contained in e then we have iσ(τ ′, η) ≤

iσ(τ, η) + p for every complete extension η of σ.

For train tracks σ < τ as in Lemma 4.1 we call τ ′ the σ-modification of τ at the
large branch e with respect to the complete τ -extension λ of ν.
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Let σ be a recurrent train track on S without closed curve components. Let
τ ∈ V(T T ) be a complete extension of σ and let {σ(i)}0≤i≤` be a splitting sequence
issuing from σ(0) = σ. We call this splitting sequence recurrent if each of the train
tracks in the sequence is recurrent. Call a splitting sequence {η(j)}0≤j≤m ⊂ V(T T )
beginning at η(0) = τ induced by the sequence {σ(i)}0≤i≤` if there is an injective
strictly increasing map q : {0, . . . , `} → {0, . . . ,m} with the following properties.

a) q(0) = 0, q(`) ≤ m and for q(i) ≤ j < q(i+ 1) the train track η(j) contains
a subtrack isotopic to σ(i).

b) Let i < ` and assume that the split σ(i) → σ(i+ 1) is a right (or left) split
at a large branch ei. Then there is a complete geodesic lamination λ ∈ CL
which is a complete η(q(i+1)− 1)-extension of a filling lamination for σ(i)
and such that η(q(i + 1) − 1) is the σ(i)-modification of η(q(i)) at ei with
respect to λ. The train track η(q(i + 1) − 1) is tight at ei and the split
η(q(i+ 1) − 1) → η(q(i+ 1)) is a right (or left) split at ei.

c) For q(`) ≤ j < m the train track η(j + 1) is obtained from η(j) by a split
at a large proper subbranch of σ(`).

In the next lemma we compare distances between complete train tracks which
are obtained from splitting sequences induced by a splitting sequence of a common
subtrack.

Lemma 4.2. There is a number R0 > 0 with the following property. Let σ(0)
be a train track on S without closed curve components and let {σ(i)}0≤i≤` be a

finite recurrent splitting sequence issuing from σ(0). Let τ(0), η(0) ∈ V(T T ) be two

complete extensions of σ(0) and let {τ(j)}0≤j≤m ⊂ V(T T ), {η(p)}0≤p≤n ⊂ V(T T )
be splitting sequences beginning at τ(0), η(0) which are induced by {σ(i)}0≤i≤`; then

d(τ(m), η(n)) ≤ d(τ(0), η(0)) +R0.

Proof. Let σ by a recurrent train track on S without closed curve components. Then
σ decomposes S into a finite number of complementary components C1, . . . , Cu.
Among these complementary components there are components C1, . . . , Cs which
contain essential simple closed curves not homotopic into a puncture, and there are
components Cs+1, . . . , Cu which are topological discs or once punctured topological
discs. As in the beginning of this section, we mark a point on each smooth boundary
component of the sets Ci.

For k ≤ u the boundary ∂Ck of Ck consists of a finite number of connected
components. Each of these components consists of finitely many sides. Such a side
either is a simple closed curve or an arc terminating at two not necessarily distinct
cusps of the component, and it can be represented as a not necessarily embedded
trainpaths on σ. The union of these trainpaths determine a closed curve on S which
is freely homotopic to a simple closed curve, and this simple closed curve is essential
if and only if k ≤ s, i.e. if the component Ck is different from a disc or a once
punctured disc. In particular, for every k ≤ s there is a bordered oriented surface
Sk ⊂ Ck with smooth boundary ∂Sk consisting of a finite number of embedded
circles and such that Ck −Sk is a finite union of essential open annuli, one annulus
for each boundary component of Sk. The Euler characteristic of Sk is negative.
Define S0 = ∪s

k=1S
k; then S0 is an embedded bordered subsurface of S.
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Let M0(S0) be the subgroup of finite index of the mapping class group of the
bordered surface S0 consisting of all mapping classes which can be represented
by diffeomorphisms preserving each component of S0 and each of the boundary
components of S0. By convention, the group M0(S0) contains in its center the free
abelian group generated by the Dehn twists about the boundary components of S0.
Then M0(S0) can naturally be viewed as a subgroup of M(S) consisting of mapping
classes which can be represented by diffeomorphisms fixing the complement of a
small neighborhood of S0 pointwise. Since σ is contained in S − S0, the group
M0(S0) acts on the set E(σ) ⊂ V(T T ) of complete extensions of σ. Since each
of the complementary components Ck (s + 1 ≤ k ≤ u) of σ which is contained in
S − S0 is a topological disc or a once punctured topological disc, for s+ 1 ≤ k ≤ u
the boundary ∂Ck of Ck is connected and contains at least one cusp. Namely,
otherwise this boundary defines a closed trainpath on σ which necessarily is an
essential curve on S. There are only finitely many equivalence classes of graphs
τCk in the sense defined in the beginning of this section which occur as the closures
of the intersection of a complete train track τ with Ck. As a consequence, there
is a number r > 0 only depending on the topological type of S such that there
are at most r orbits in E(σ) under the action of M0(S0). Moreover, there is a
number q > 0 with the following property. For any τ, η ∈ E(σ) there is an element
Θ(τ, η) ∈ M0(S0) (see [H06a]) such that iσ(τ,Θ(τ, η)η) ≤ q.

Let {σ(i)}0≤i≤` be a recurrent sequence of splits of σ = σ(0). Since we only allow
right or left splits, for each i there is a natural diffeomorphism ϕi of S − σ onto
S − σ(i) which can be chosen to be the identity on S0. The restriction ϕk

i of this
diffeomorphism to a complementary component Ck of σ maps Ck diffeomorphically
onto a complementary component Ck

i of σ(i) and extends continuously to a bijection
of the cusps of ∂Ck onto the cusps of ∂Ck

i . Namely, if we split σ(0) at a large branch
e to the train track σ(1), then for each complementary component Ck of σ(0) there
is a unique complementary component Ck

1 of σ(1) which is diffeomorphic to Ck with
a diffeomorphism ϕk

1 which fixes pointwise the complement of a neighborhood of e.
For k ≤ s the diffeomorphism ϕk

1 can be chosen to be the identity on the subsurface
Sk ⊂ Ck and to induce a natural (oriented) bijection between the sides of Ck and
the sides of Ck

1 which is the identity outside a neighborhood of e. For every smooth
boundary component T of Ck there is a marked point x contained in the interior
of a branch b ⊂ T . If b 6= e then we require that the image of b under the natural
bijection of the branches of σ onto the branches of σ(1) contains a marked point in
its interior, and if b = e then we place a marked point in the interior of the unique
losing branch of the split which is contained in the smooth boundary component
of Ck

1 corresponding to T . For i ≥ 2 the maps ϕk
i are constructed inductively from

the maps ϕk
i−1 in this way.

Let τ, η be any complete extensions of σ and let Θ = Θ(τ, η) ∈ M0(S0) be such
that iσ(τ,Θ(η)) ≤ q. Since for every i ≤ ` the map ϕi restricts to the identity on S0,
for every splitting sequence {η(j)}0≤j≤n induced by a splitting sequence {σ(i)}0≤i≤`

of σ = σ(0) and issuing from η = η(0), the sequence {Θη(j)}0≤j≤n is a splitting
sequence issuing from Θ(η) and induced by the sequence {σ(i)}0≤i≤`. For every
complete extension ξ of σ(`) we have d(ξ, η(n)) ≤ d(ξ,Θη(n)) + d(Θη(n), η(n)).
Moreover, since the action of M0(S0) commutes with the action of the subgroup of
the mapping class group of S −S0 consisting of all mapping classes which preserve
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every boundary component of S − S0, by invariance we have d(Θη(n), η(n)) ≤
d(Θη(0), η(0)) + c where c > 0 is a universal constant. Thus for the proof of the
lemma, it is enough to show the existence of a number b > 0 only depending on
the topological type of S with the following properties. Let τ, η be any complete
extensions of σ with iσ(τ, η) ≤ q and let {τ(j)}0≤j≤m ⊂ V(T T ), {η(k)}0≤k≤n ⊂
V(T T ) be any two splitting sequences issuing from the train tracks τ(0) = τ, η(0) =
η which are induced by the splitting sequence {σ(i)}0≤i≤`; then iσ(`)(τ(m), η(n)) ≤
b.

To show that this is indeed the case we use Lemma 4.1 inductively. Namely, let
ν be a geodesic lamination which is carried by σ(`) and fills σ(`). Such a lamination
exists since the splitting sequence {σ(i)}0≤i≤` is recurrent by assumption, and it is
carried by σ = σ(0) and fills σ. Let λ be a complete τ(m)-extension of ν and let µ be
a complete η(n)-extension of ν. Then λ, µ are complete τ, η-extensions of ν. Assume
that σ(1) is obtained from σ by a split at a large branch e. Let τ ′, η′ ∈ V(T T ) be
the σ-modification of τ, η at e determined by λ, µ. By the definition of an induced
splitting sequence, there are numbers m(1) ≥ 1, n(1) ≥ 1 such that τ(m(1)), η(n(1))
can be obtained from τ ′, η′ by a single split at e, and τ(m(1)), η(n(1)) contain σ(1)
as a subtrack. We call the modification which transforms σ to σ(1) and τ, η to
τ(m(1)), η(n(1)) a move and we distinguish two types of move.

Type 1: σ does not contain a marked point in the interior of e.

By Lemma 4.1 and the above discussion, with p > 0 as in Lemma 4.1 we have

iσ(1)(τ(m(1)), η(n(1))) = iσ(τ ′, η′) ≤ iσ(τ ′, η) + p(χ(η, σ) − χ(η′, σ))

≤ iσ(τ, η) + p
[

χ(τ, σ) − χ(τ(m(1)), σ(1)) + χ(η, σ) − χ(η(n(1)), σ(1))
]

and therefore iσ(1)(τ(m(1)), η(n(1))) ≤ iσ(τ, η) + 2r for a universal constant r > 0.
Moreover, we have equality iσ(1)(τ(m(1)), η(n(1))) = iσ(τ, η) if χ(τ(m(1)), σ(1)) =
χ(τ, σ) and χ(η(n(1)), σ(1)) = χ(η, σ).

Type 2: There is a marked point of σ contained in the interior of the branch e.

Using again Lemma 4.1 and the above discussion, we conclude as before that
iσ(1)(τ(m(1)), η(n(1))) ≤ iσ(τ, η) + 2p.

Let m(`) > 0, n(`) > 0 be the smallest numbers such that the train tracks
τ(m(`)), η(n(`)) contain σ(`) as a subtrack. By the definition of a splitting sequence
induced from the sequence {σ(i)}0≤i≤`, the train tracks τ(m(`)), η(n(`)) can be
obtained from τ, η by ` moves. The train tracks τ(m), η(n) contain σ(`) as a
subtrack and are obtained from τ(m(`)) by a sequence of splits at large proper
subbranches of σ(`). Since σ(`) does not have any closed curve components, the
length of a splitting sequence connecting τ(m(`)), η(n(`)) to τ(m), η(n) is bounded
from above by a universal constant (compare the detailed discussion in Section 4
of [H06b]). In particular, the distance between τ(m) and η(n) is bounded from
above by d(τ(m(`)), η(n(`))+ c̃ where c̃ > 0 is a universal constant. Since moreover
χ(τ, σ)+χ(η, σ) is bounded from above by a universal constant, the lemma follows
if we can show that the number of times a move of type 2 occurs in our splitting
sequences is bounded from above by a universal constant.
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However, if for some i < ` the split σ(i) → σ(i + 1) is a split at a large branch
ei containing a marked point of σ in its interior then ei is contained in a smooth
component A of the boundary of a complementary component Ck

i of σ(i). In
particular, A defines a closed trainpath ρ on σ(i) which is freely homotopic to a
simple closed curve defining a boundary component of Ck

i . Thus the trainpath ρ
passes through any branch of σ(i) at most twice and hence its length is uniformly
bounded. The train track σ(i+1) obtained from σ(i) by a single split at ei contains
A as an embedded trainpath ρ′ whose length is strictly smaller than the length of
ρ. As a consequence, the number of moves of type 2 is bounded from above by a
universal constant. This completes the proof of the lemma. ¤

Next we estimate distances in T T between train tracks which do not carry a
common geodesic lamination. We show.

Lemma 4.3. For every R > 0 there is a number β0 = β0(R) > 0 with the following

property. Let τ, η ∈ V(T T ) with d(τ, η) ≤ R and let τ ′, η′ be complete train tracks

which can be obtained from τ, η by any splitting sequence. If τ, η do not carry

any common geodesic lamination then there is a point τ ′′ ∈ V(T T ) in the β0(R)-
neighborhood of τ ′ which can be connected to a point η′′ ∈ V(T T ) contained in the

β0(R)-neighborhood of η′ by a splitting sequence which passes through the β0(R)-
neighborhood of τ . Moreover, for any complete geodesic lamination ν which is

carried by η′, we can assume that η′′ carries ν.

Proof. For a fixed number R > 0 there are only finitely many orbits under the action
of the mapping class group of pairs (τ, η) ∈ V(T T )×V(T T ) where d(τ, η) ≤ R and
such that τ, η do not carry any common geodesic lamination. Thus by invariance
under the mapping class group it is enough to show the lemma for two fixed train
tracks τ, η ∈ V(T T ) which do not carry any common geodesic lamination and with
a constant β0 > 0 depending on τ, η.

For a complete train track ξ denote by CL(ξ) the set of all complete geodesic
laminations which are carried by ξ. By Lemma 2.4 of [H06a], the set CL(ξ) is open
and closed in CL. We first show that there are finitely many complete train tracks
τ1, . . . , τ` and η1, . . . , ηm with the following properties.

(1) For each i ≤ ` the train track τi is carried by τ and ∪iCL(τi) = CL(τ).
(2) For each j ≤ m the train track ηj is carried by η and ∪jCL(η) = CL(η).
(3) For all i ≤ `, j ≤ m the train tracks τi, ηj hit efficiently.

For this observe that since τ, η do not carry any common geodesic lamination,
every lamination λ ∈ CL(τ) intersects every lamination µ ∈ CL(η) transversely.
Namely, a complete geodesic lamination decomposes the surface S into ideal trian-
gles and once punctured monogons. Thus if ` is any simple geodesic on S whose
closure in S is compact and if ` does not intersect the complete geodesic lamination
µ transversely then ` is contained in µ and hence the closure of ` is a sublamination
of µ. Now if ` is a leaf of the complete geodesic lamination λ then the closure of `
is a sublamination of λ as well. Since λ is carried by τ and µ is carried by σ, this
violates our assumption that τ, σ do not carry a common geodesic lamination.
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As a consequence, for every lamination λ ∈ CL(τ), every train track ξ which is
sufficiently close to λ in the Hausdorff topology hits every lamination ν ∈ CL(η)
efficiently. Thus by Lemma 2.2 and Lemma 2.3 of [H06a], for every complete
geodesic lamination λ ∈ CL(τ) there is a train track τ(λ) ∈ V(T T ) which carries λ,
which is carried by τ and which hits every lamination ν ∈ CL(η) efficiently. The set
CL(τ(λ)) is an open subset of CL(τ) and therefore by compactness of CL(τ) there
are finitely many laminations λ1, . . . , λ` ∈ CL(τ) such that CL(τ) = ∪iCL(τ(λi)).
Write τi = τ(λi).

Every lamination ν ∈ CL(η) hits each of the train tracks τi efficiently. As a
consequence, if ξ is a train track which is sufficiently close to ν in the Hausdorff
topology then ξ hits each of the train tracks τi (i ≤ `) efficiently. As before, this
implies that we can find a finite family η1, . . . , ηm ∈ V(T T ) of train tracks which
are carried by η, which hit each of the train tracks τi (i ≤ `) efficiently and such
that ∪jCL(ηj) = CL(η). This shows our above claim.

Let k = max{d(τ, τi), d(η, ηj) | i ≤ `, j ≤ m}. Let τ ′, η′ be obtained from τ, η by
a splitting sequence and let λ ∈ CL(τ ′) be a complete geodesic lamination carried
by τ ′. Then λ ∈ CL(τ) and hence by our above construction, there is some i ≤ `
such that τi carries λ. By Corollary 4.6 of [H06a] there is a complete train track ξ
which carries λ, is carried by both τ ′ and τi and whose distance to τ ′ is bounded
from above by a universal constant q > 0 only depending on k. Similarly, for a
complete train track η′ which can be obtained from η by a splitting sequence and
for some ν ∈ CL(η′) there is some j ≤ m and a train track ζ which is carried by
both η′ and ηj , which carries ν and whose distance to η′ does not exceed q.

Since τi, ηj hit efficiently and τi carries ξ, the train tracks ξ, ηj hit efficiently. In
particular, the geodesic lamination ν hits ξ efficiently. Therefore by Proposition 3.2,
a ν-collapse ξ∗ of the dual bigon track ξ∗b of ξ carries a train track β which carries ν
and can be obtained from ηj by a splitting and shifting sequence of length at most
q. In particular, the distance between ηj and β and hence the distance between
τ and β is uniformly bounded. Since ηj carries ζ and ζ carries ν, we conclude
from Corollary 4.6 of [H06a] that β carries a train track σ contained in a uniformly
bounded neighborhood of ζ and hence in a uniformly bounded neighborhood of η′.

The distance between τ ′ and ξ is uniformly bounded and therefore the distance
between ξ∗ and τ ′ is uniformly bounded as well (compare Proposition 3.2 and the
following remark). On the other hand, since β is carried by ξ∗ the train track ξ∗ can
be connected to β by a splitting and shifting sequence (Theorem 2.4.1 of [PH92]).
We deduce from Lemma 5.4 of [H06a] that ξ∗ is splittable to train tracks β′, σ′

which carry ν and are contained in a uniformly bounded neighborhood of β, σ. It
then follows from Lemma 5.1 of [H06a] that β ′ is splittable to a train track σ′′

which carries ν and is contained in a uniformly bounded neighborhood of σ′. Since
the distance between σ′ and η′ is uniformly bounded, this implies the lemma. ¤

Our next goal is to obtain a suitable extension of Lemma 4.3 to train tracks
τ, η ∈ V(T T ) containing a common subtrack which is a union of simple closed
curves. We first have to overcome a technical difficulty arising from the fact that
the split of a complete train track need not be recurrent. For this call a large branch
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e of a complete train track η rigid if only one of the two train tracks obtained from
η by a split at e is complete. Note that e is a rigid large branch of η if and only
if the (unique) complete train track obtained from η by a split at e carries every

complete geodesic lamination which is carried by η. It follows from the results of
[PH92] that a branch e in η is rigid if and only if the train track ζ obtained from
η by a collision, i.e. a split followed by the removal of the diagonal of the split, is
not recurrent. We have.

Lemma 4.4. There is a number a1 > 0 with the following property. For every

η ∈ V(T T ) there is a splitting sequence {η(i)}0≤i≤s issuing from η = η(0) of length

s ≤ a1 such that for every i, η(i+1) is obtained from η(i) by a split at a rigid large

branch and such that η(s) does not contain any rigid large branches.

Proof. We show the existence of a constant a1 > 0 as in the lemma with an ar-
gument by contradiction. Assume that our claim does not hold. Then there is
a sequence of pairs (βi, ξi) ∈ V(T T ) such that ξi can be obtained from βi by a
splitting sequence of length at least i consisting of splits at rigid large branches.
Every complete geodesic lamination which is carried by βi is also carried by ξi. By
invariance under the action of the mapping class group M(S) and the fact that
there are only finitely many M(S)-orbits on V(T T ), by passing to a subsequence
we may assume that there is some η ∈ V(T T ) such that βi = η for all i. Since η has
only finitely many large branches, by a standard diagonal procedure we construct
an infinite splitting sequence {η(i)}i≥0 issuing from η = η(0) such that for every i
the train track η(i+1) is obtained from η(i) by a split at a rigid large branch. Then
for every i, every complete geodesic lamination which is carried by η is also carried
by η(i). Now for every projective measured geodesic lamination whose support ν
is carried by η there is a complete geodesic lamination λ carried by η which con-
tains ν as a sublamination [H06a]. Thus for each i, the space PM(i) of projective
measured geodesic laminations carried by η(i) coincides with the space PM(0) of
projective measured geodesic laminations carried by η. On the other hand, the
set PM(0) contains an open subset of the space of all projective measured geo-
desic laminations since η is complete (see [PH92]). Therefore ∩iPM(i) = PM(0)
contains an open subset of projective measured geodesic lamination space which
contradicts Theorem 8.5.1 in [M03a]. This shows our lemma. ¤

To each complete geodesic lamination λ on S and every simple closed curve
component c of λ we associate a sign sgn(λ, c) ∈ {+,−} as follows. Let S1 be the
surface obtained from S by cutting S open along c. We view S1 as a bordered
surface with two boundary components c1, c2 corresponding to c. The orientation
of S then induces a boundary orientation for c1, c2. For our complete geodesic
lamination λ containing c as a minimal component and for i = 1, 2 there is at
least one leaf of λ which is contained in S1 and spirals about ci. We associate to
λ and c the sign sgn(λ, c) = + if the spiraling direction of such a leaf coincides
with the boundary orientation of ci for i = 1, 2, and we associate to λ and c the
sign sgn(λ, c) = − otherwise. Since λ is complete by assumption, if sgn(λ, c) = −
then the spiraling direction of a leaf of λ spiraling about ci (i = 1, 2) is opposite to
the orientation of ci as a component of the boundary of S1 (compare Section 2 of
[H06a]).
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Next we look at a complete train track τ containing a subtrack β which is a union
of k ≥ 1 simple closed curves embedded in τ . In other words, β is a subtrack of τ
without large branches. Such a train track τ carries a complete geodesic lamination
λ which contains the k simple closed curve components c1, . . . , ck of β as minimal
components. By the above, λ determines for each of the curves ci a sign. Recall the
definition of a Dehn twist about an essential simple closed curve c in S. We define
the twist to be positive if the direction of the twist coincides with the direction
given by the boundary orientation of c in the surface S1 obtained by cutting S
open along c. We use these signs to estimate distances in T T obtained by splitting
complete train tracks along simple closed curve subtracks. We show.

Lemma 4.5. There is a constant a2 > 0 with the following property. Let τ ∈
V(T T ), let c < τ be an embedded simple closed curve and let ϕc be the positive

Dehn twist about c. Let {τi}0≤i≤m be a splitting sequence issuing from τ0 = τ
which consists of c-splits at large proper subbranches of c. Let λ ∈ CL be a complete

geodesic lamination which is carried by τ and contains c as a minimal component.

Then there is some i ≥ 0 such that the distance between τm and the train track

ϕ
sgn(λ,c)i
c τ is at most a2.

Proof. A standard twist connector in a complete train track ξ is an embedded closed
curve α in ξ which consists of a large branch and a small branch, connected at two
switches. If ξ′ is obtained from ξ by an α-split at the large branch in α, then ξ ′

is obtained from ξ by a half-Dehn twist about α whose sign is determined by the
neighbors of the subtrack α < ξ (compare the discussion in Section 2 of [H06a]).
In particular, for every complete geodesic lamination λ which is carried by ξ and
contains α as a minimal component, the sign sgn(λ, α) is determined by the twist
connector and hence does not depend on λ.

By the considerations in Section 4 of [H06b], there is a number a0 > 0 only
depending on the topological type of S such that for every complete train track τ
containing an embedded simple closed curve c the image η of τ under a sequence
of c-splits of length at most a0 contains c as a simple vertex cycle, i.e. η can be
shifted to a train track η′ which contains c as a standard twist connector. Thus any
sequence of c-splits modifies η to a train track η1 which is contained in uniformly
bounded neighborhood of the image of η under a multiple of the Dehn twist along
c whose direction is determined by sgn(λ, c) where λ is a complete extension of c
carried by η. From this the lemma is immediate. ¤

A simple multicurve c on S consists of a finite collection c1, . . . , ck of essential
simple closed curves which are not mutually freely homotopic and which can be
realized disjointly. A simple multicurve c can be viewed as a train track without
large branches by adding a single switch to each component of c. A Dehn multitwist

of a multicurve c = ∪ici is an element ϕ ∈ M(S) which can be represented in the
form ϕ = ϕm1

c1
◦ · · · ◦ ϕmk

ck
for some mi ∈ Z and where as before, ϕci

is the positive
Dehn twist about ci. The next lemma is an extension of Lemma 4.3. For its
formulation (and later use), for a train track τ ∈ V(T T ) which is splittable to a
train track τ ′ ∈ V(T T ) define the flat strip E(τ, τ ′) to be the maximal subgraph of
T T whose vertices consist of the collection of all train tracks which can be obtained
from τ by a splitting sequence and are splittable to τ ′. We have.
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Lemma 4.6. For every R > 0 there is a number β1(R) > 0 with the following

property. Let τ, η ∈ V(T T ) with d(τ, η) ≤ R. Assume that τ, η contain a common

subtrack σ which is a multicurve and that the components of this multicurve are

precisely the minimal geodesic laminations which are carried by both τ and η. Let

τ ′, η′ be complete train tracks which can be obtained from τ, η by a splitting sequence.

Then there is a Dehn multitwist ϕ about c and a point τ ′′ in the β1(R)-neighborhood

of τ ′ which can be connected to a point η′′ in the β1(R)-neighborhood of η′ by a

splitting sequence passing through the β1(R)-neighborhood of ϕτ . Moreover, the

distance between ϕ(τ) and E(τ, τ ′), E(η, η′) is at most β1(R).

Proof. As in the proof of Lemma 4.3, by invariance under the mapping class group
it suffices to show the lemma for some fixed train tracks τ, η ∈ V(T T ) which satisfy
the assumptions in the lemma. In particular, τ, η contain a common subtrack
c which is a simple multicurve and such that every minimal geodesic lamination
which is carried by both τ and η is a component of c. By Lemma 4.3, we may
assume that c is not empty.

Let c1, . . . , ck be the components of c. Then for i 6= j, a c-split of τ at a large
proper subbranch of ci commutes with a c-split of τ at a large proper subbranch of
cj . Assume that τ is splittable to a train track τ ′. By Lemma 4.4, via replacing τ ′

by its image under a splitting sequence of uniformly bounded length we may assume
that τ ′ does not contain any rigid large branches. Define inductively a sequence
{τ(i)}0≤i≤k ⊂ E(τ, τ ′) consisting of train tracks τ(i) which contain c as a subtrack
as follows. Put τ(0) = τ and assume that τ(i − 1) has been defined for some
i ∈ {1, . . . , k}. Let τ(i) ∈ E(τ, τ ′) be the train track which can be obtained from
τ(i − 1) by a sequence of ci-splits of maximal length at proper large subbranches
of ci. Since splits at large subbranches of ci, cj for i 6= j commute, the train track
τ(k) only depends on τ, τ ′, c but not on the ordering of the components ci of c. By
Lemma 4.5, there are numbers bi ∈ Z such that for ϕτ = ϕb1

c1
◦ · · · ◦ ϕbk

ck
∈ M(S)

the distance between τ(k) and the train track ϕτ (τ) is bounded from above by a2.

Similarly, if η is splittable to a train track η′ ∈ V(T T ) without rigid large
branches, then there are numbers pi ∈ Z such that for ϕη = ϕp1

c1
◦ · · · ◦ϕpk

ck
∈ M(S)

the distance between the train track η(k) obtained from η and η′ by the above
procedure and ϕη(η) is bounded from above by a2.

For i ≤ k define m(i) = 0 if the signs of bi, pi are distinct, and if the signs of bi, pi

coincide then define m(i) = sgn(ai)min{|ai|, |bi|}. Write ϕ = ϕ
m(1)
c1

◦ · · · ◦ ϕm(k)
ck .

By the choice of the multi-twist ϕ and by invariance of the distance function on
T T under the action of the mapping class group, there is a number χ > 0 only
depending on d(τ, η) and there are train tracks τ1 ∈ E(τ, τ ′), η1 ∈ E(η, η′) contained
in the χ-neighborhood of ϕ(τ), ϕ(η). Moreover, by the choice of ϕ, we may assume
that τ1, η1 contain the simple multicurve c as a subtrack and that for each i one of
the following two possibilities is satisfied.

(1) m(i) = 0 and a splitting sequence connecting τ, η to τ1, η1 does not contain
any split at a large proper subbranch of ci.
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(2) If |bi| ≤ |pi| then the flat strip E(τ, τ ′) does not contain any train track
which can be obtained from τ1 by a ci-split at a large proper subbranch of
τ1 and similarly for η1 in the case that |pi| ≤ |bi|.

After reordering we may assume that there is some s ≤ k such that m(i) = 0
for i ≤ s and that m(i) 6= 0 for i ≥ s + 1. Let i ≥ s + 1 and assume without loss
of generality that |bi| ≤ |pi|. Since the train tracks τ1, η1 are complete and contain
the curve ci as a subtrack, both τ1 and η1 contain a large proper subbranch of ci.
By the choice of τ1, for each such large subbranch e of ci, the train track obtained
from τ1 by a ci-split at e is not contained in the flat strip E(τ, τ ′). Let τ̂1 be the
train track obtained from τ1 by the split at e which is not a ci-split. Then either
we have τ̂1 ∈ E(τ, τ ′), in particular τ̂1 is complete, or no train track which can be
obtained from τ1 by a split at e is splittable to τ ′. In the second case, e is a large
branch of τ ′ by uniqueness of splitting sequences (Lemma 5.1 of [H06a]). Since τ ′

does not contain any rigid large branch by assumption, both train tracks which
can be obtained from τ ′ by a single split at e are complete. As a consequence, the
train track τ̂1 is complete and is splittable to a complete train track which can be
obtained from τ ′ by a single split at e. The train track τ̂1 does not carry the simple
closed curve ci.

Since splits at large proper subbranches of the distinct components of c commute,
we construct in this way successively in k − s steps from the train tracks τ1, η1
complete train tracks τ2, η2 which can be obtained from τ1, η1 by a splitting sequence
of length at most k − s. The train tracks τ2, η2 are splittable to train tracks τ ′2, η

′
2

which can be obtained from τ ′, η′ by splitting sequences of length at most k − s.
A minimal component of a geodesic lamination which is carried by both τ2, η2
coincides with one of the curves ci for i ≤ s. Moreover, the train tracks τ2, η2 contain
the simple closed curves c1, . . . , cs as embedded subtracks, and their distance in T T
is bounded from above by a universal constant only depending on d(τ, η) and the
topological type of S.

By the considerations in Section 4 of [H06b], after reordering of the components
ci and after possibly replacing τ2, η2 by their images under a splitting sequence of
uniformly bounded length and which are splittable to τ ′2, η

′
2 we may assume that

there is a number u ≤ s with the following property. For each i > u, either the
train track τ2 or the train track η2 contains a large proper subbranch e of ci with
the property that a ci-split of τ2 (or η2) is not splittable to τ ′2 (or η′2). For every
i ≤ u, the curve ci is a simple vertex cycle in both τ2, η2, i.e. τ2 and η2 can
be shifted to train tracks which contain ci as a twist connector. Apply the above
construction to the train tracks τ2, η2 and the simple closed curves ci (u+1 ≤ i ≤ s).
We obtain train tracks τ3, η3 of uniformly bounded distance which are splittable to
train tracks τ ′3, η

′
3 obtained from τ ′2, η

′
2 by a splitting sequence of uniformly bounded

length and such that a minimal component of a geodesic lamination carried by both
τ3, η3 coincides with one of the curves c1, . . . , cu, and these curves are simple vertex
cycles of τ3, η3.

Let τ4 be the train track which can be obtained from τ3 by a sequence of ∪u
i=1ci-

splits of maximal length and which is splittable to τ ′3. For ψ = ϕb1
c1

◦ · · · ◦ ϕbu
cu

, the
distance between τ4 and ψ(τ3) is uniformly bounded. Moreover, since the curves
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ci are simple vertex cycles in η3 and since for each i ≤ u the signs of bi, pi do not

coincide, the train track ψη3 = η4 is splittable to η3. Replace τ4 by its image τ5
under a splitting sequence of uniformly bounded length which is splittable to the
image of τ ′3 under a splitting sequence of uniformly bounded length and which does
not carry any of the curves ci. Then the distance between τ5 and η4 is bounded
from above by a constant only depending on d(τ, η), and η4 and τ5 do not carry
any common geodesic lamination. Moreover, η4 is splittable to η′3 with a splitting
sequence which passes through η3.

Let ν be a complete geodesic lamination which is carried by η′3. By Lemma 4.3,
applied to the train tracks τ5, η4 which are splittable to the train tracks τ ′3, η

′
3 in

uniformly bounded neighborhoods of τ ′, η′, there is a splitting sequence {α(i)}0≤i≤n

which connects a train track α(0) in a uniformly bounded neighborhood of τ ′ to a
train track α(n) in a uniformly bounded neighborhood of η′ which carries ν, and
such that this splitting sequence passes through a uniformly bounded neighborhood
of η4. Now by the considerations in Section 5 of [H06a], this splitting sequence can
be chosen to pass through a uniformly bounded neighborhood of η3 as well. Thus
our lemma follows with the Dehn-multisplit ϕ as above which maps τ, η into a
uniformly bounded neighborhood of τ1, η1. ¤

For a train track τ ∈ V(T T ) containing a subtrack σ, recall from the beginning
of this section the definition of a splitting sequence of τ induced by a splitting
sequence of σ. We have.

Lemma 4.7. For every train track τ ∈ V(T T ) which is splittable to a train track

η and every recurrent subtrack σ of τ without closed curve components there is a

unique train track τ ′ ∈ E(τ, η) with the following properties.

(1) There is a recurrent splitting sequence {σ(i)}0≤i≤p issuing from σ(0) = σ
such that τ ′ can be obtained from τ by a splitting sequence induced by {σ(i)}.

(2) If τ̃ ∈ E(τ, η) can be obtained from τ by a recurrent splitting sequence

induced by a sequence of splits of σ then τ̃ is splittable to τ ′.

Proof. Let τ ∈ V(T T ) be a complete train track which is splittable to a train track
η ∈ V(T T ) and let σ be a subtrack of τ . Recall that a σ-split of τ is a split of τ
at a large proper subbranch of σ with the property that the split track contains σ
as a subtrack. Similar to the procedure in the proof of Lemma 4.3 of [H06b] we
define a (non-deterministic) finite algorithm which takes τ as input and yields a
finite sequence {ζ(i)}i ⊂ E(τ, η) of train tracks with τ = ζ(0) and such that for
each i, either ζ(i + 1) is obtained from ζ(i) by a single σ-split at a large proper
subbranch of σ or ζ(i+1) is obtained from ζ(i) by putting a mark on a large proper
subbranch of σ. The initial train track τ = ζ(0) does not have marked branches.

In the i-th step (i ≥ 1) the algorithm begins with checking for the existence of
an unmarked large proper subbranch e of σ in the train track ζ(i − 1). If there is
no such branch then the algorithm stops. Otherwise the algorithm chooses such a
large proper subbranch e of σ and proceeds as follows.

If there is a train track ζ̃(i) ∈ E(τ, η) which can be obtained from ζ(i − 1) by
a single split at e and which contains σ as a subtrack, then define ζ(i) to be the
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train track ζ̃(i) equipped with the markings obtained from the markings of the
branches of ζ(i − 1) via the natural identification of the branches of ζ(i − 1) with

the branches of ζ̃(i). Otherwise define ζ(i) to be the train track ζ(i− 1) equipped
with an additional mark on the branch e (see the proof of Lemma 4.3 of [H06b]).

It follows from the discussion in Section 4 of [H06b] that there is a universal
constant q > 0 only depending on the topological type of S such that our algorithm
stops after at most q steps (see the proof of Lemma 4.3 in [H06b]). It produces a
train track τ̃(1) ∈ E(τ, η) which contains σ as a subtrack. For each large branch
e of τ̃(1) contained in σ, either e is a large branch in σ, i.e. τ̃(1) is tight at e, or
e is marked. Since splits at distinct large branches of a train track τ commute,
the marked train track τ̃(1) only depends on τ, η, σ but not on any choices made.
Moreover, if e1, . . . , es are the large branches of σ which correspond to the unmarked
large branches of τ̃(1) then there is a complete geodesic lamination carried by τ̃(1)
such that the train track obtained from τ by a successive σ-modification at the
branches e1, . . . , es with respect to λ is splittable to τ̃(1) with a splitting sequence
of uniformly bounded length.

After reordering, there is a number k̂ ∈ {0, . . . , s} such that for every i ≤ k̂ the
flat strip E(τ, η) contains a train track ξi which can be obtained from τ̃(1) by a
single right or left split at ei. For each i, there is a unique choice of a right or
left split of σ at ei such that the resulting train track σ̃i is a subtrack of ξi. After

reordering, we may assume that there is some k ≤ k̂ such that for every i ≤ k
the train track σ̃i is recurrent but that this is not the case for the train tracks σj

for k < j ≤ k̂. Define τ(1) to be the train track obtained from τ̃(1) by splitting
τ̃(1) with a single split at each of the branches ei for i ≤ k in such a way that
the resulting train track is splittable to η and by putting a mark on each of the
branches ek+1, . . . , es. The marked train track τ(1) contains a subtrack σ(1) which
can be obtained from σ by a single split at each of the branches e1, . . . , ek. By our
construction, the subtrack σ(1) of τ(1) is recurrent (compare [PH92]). Moreover,
since splits of a complete train track at distinct large branches commute, the train
track τ(1) can be obtained from τ by a splitting sequence which is induced from a
splitting sequence connecting σ to σ(1) as defined in the beginning of this section.
Note that τ(1), σ(1) only depend on τ, η, σ but not on any choices made.

Repeat the above procedure with the train track τ(1) and the subtrack σ(1) of
τ(1). After finitely many steps we obtain a train track τ ′ ∈ E(τ, η) which clearly
satisfies the requirements in the lemma. ¤

For a complete train track τ and a complete geodesic lamination λ carried by
τ define the flat strip E(τ, λ) to be the maximal subgraph of T T whose vertices
consist of the set of all complete train tracks which can be obtained from τ by a
splitting sequence and which carry λ. For a convenient formulation of the following
lemma, we say that a train track η is splittable to a complete geodesic lamination
λ if η carries λ. We have.

Lemma 4.8. Let τ ∈ V(T T ) and let S(τ) ⊂ V(T T ) be the set of all complete

train tracks which can be obtained from τ by a splitting sequence. Let E(τ, η) be

a flat strip where either η ∈ S(τ) or η is a complete geodesic lamination carried
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by τ . Then there is a projection Π1
E(τ,η) : S(τ) → E(τ, η) such that for every

ζ ∈ S(τ) the train track Π1
E(τ,η)(ζ) is splittable to both ζ, η and such that there is

no χ ∈ E(Π1
E(τ,η)(ζ), η) − Π1

E(τ,η)(ζ) with this property.

Proof. Let τ ∈ V(T T ) be a train track which is splittable to a train track η. Define
S(τ) ⊂ V(T T ) to be the set of all train tracks ζ which can be obtained from τ
by a splitting sequence. For the proof of our lemma, we construct by induction on
the length m of a splitting sequence connecting τ to η a projection Π1

E(τ,η) = Π1
η :

S(τ) → E(τ, η). If m = 0, i.e. if τ = η, then we define Π1
η(ζ) = τ for every ζ ∈ S(τ).

By induction, assume that for some m ≥ 1 we determined such a projection of S(τ)
into E(τ, η) for each pair (τ, η) with the property that τ is splittable to η with
a splitting sequence of length at most m − 1. Let {α(i)}0≤i≤m ⊂ V(T T ) be a
splitting sequence of length m connecting the train track τ = α(0) to η = α(m)
and let {e1, . . . , e`} be the collection of all large branches of τ with the property
that the splitting sequence {α(i)}0≤i≤m contains a split at ei. Note that ` ≥ 1
since m ≥ 1. For each i, the choice of a right or left split at ei is determined by the
requirement that the split track carries η.

Let ζ ∈ S(τ) and assume that there is a large branch e ∈ {e1, . . . , e`} with
the property that the train track α̃(1) obtained from τ by a split at e and which is
splittable to η is also splittable to ζ. There is then a splitting sequence {α̃(i)}1≤i≤m

of length m − 1 connecting α̃(1) to α̃(m) = α(m) = η (compare Lemma 5.1 of
[H06a]). The flat strip E(α̃(1), η) is contained in the flat strip E(τ, η), and we
have ζ ∈ S(α̃(1)). By induction hypothesis, there is a unique projection point
Π1

α̃(1)(ζ) ∈ E(α̃(1), η) ⊂ E(τ, η) with the property that Π1
α̃(1)(ζ) is splittable to

ζ but that this is not the case for any point ρ ∈ E(Π1
α̃(1)(ζ), η) − Π1

α̃(1)(ζ). We

define Π1
η(ζ) = Π1

α̃(1)(ζ). Then Π1
η(ζ) is splittable to ζ and this is not the case for

any train track in E(Π1
η(ζ), η) − Π1

η(ζ). On the other hand, a splitting sequence
connecting τ to ζ is unique up to order (see Lemma 5.1 of [H06a] for a detailed
discussion of this fact) and therefore if ξ ∈ E(τ, η) is such that ξ is splittable to
ζ and such that a splitting sequence connecting τ to ξ does not contain a split at
e, then ξ contains e as a large branch, and there is a train track ξ ′ which can be
obtained from ξ by a split at e and which is splittable to ζ. This just means that
the point Π1

η(ζ) does not depend on the above choice of the large branch e.

If none of the train tracks ξ ∈ E(τ, η) obtained from τ by a split at one of the
branches e1, . . . , e` is splittable to ζ, then no train track β ∈ E(τ, η)−τ is splittable
to ζ and we define Π1

η(ζ) = τ . This completes our inductive construction of the

map Π1
η : S(τ) → E(τ, η). Note that we have Π1

η(ζ) = Π1
ζ(η) for all ζ, η ∈ S(τ).

Namely, Π1
η(ζ) is splittable to both ζ, η, but this is not the case for any train track

which can be obtained from Π1
η(ζ) by a split. This shows the lemma. ¤

Let F be a framing for S (or marking in the terminology of [MM99]), i.e. F
consists of a pants decomposition P for S and a system of 3g − 3 + m spanning

curves. The framing determines a family P(F ) of train tracks in standard form for

F ([PH92] and [H06a]). Let X ⊂ V(T T ) be the set of all train tracks which can
be obtained from a train track in standard form for F by a splitting sequence. By
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Proposition 2.2 (in the slightly more precise version which is immediate from the
proof given in [H06b]), there is a number q > 0 such that the q-neighborhood of X
in T T is all of T T . Thus if we equip X with the restriction of the metric on T T
then the inclusion X → T T is a quasi-isometry.

For η ∈ X there is a unique train track τ in standard form for F which is
splittable to η. Define the flat strip E(F, η) = E(τ, η) to be the maximal subgraph
of T T whose vertices are the train tracks which can be obtained from τ by a splitting
sequence and which are splittable to η. If λ is any complete geodesic lamination
then λ is carried by a unique train track τ in standard form for F , and we write
E(F, λ) = E(τ, λ).

For a complete train track τ and a complete geodesic lamination λ carried by τ
define a subset A of E(τ, λ) to be combinatorially convex if A can be written in the
form A = ∪iE(τ, σi) where for each i we have σi ∈ E(τ, σi+1). The next result is the
key to a geometric understanding of the train track complex. For its formulation,
if λ ∈ CL is a complete geodesic lamination and if {η(i)}0≤i is an infinite splitting
sequence then we say that the sequence connects η(0) to λ (or to a point in the
δ-neighborhood of λ for some δ > 0) if ∩CL(η(i)) = {λ} where as before, we denote
for η ∈ V(T T ) by CL(η) the set of all complete geodesic laminations on S which
are carried by η (we refer to [M03a] for a discussion of a related construction). We
have.

Proposition 4.9. There is a number κ > 0 with the following property. Let F be a

framing for S and let X ⊂ V(T T ) be the set of all train complete train tracks which

can be obtained from a train track in standard form for F by a splitting sequence.

Then for every η ∈ X ∪ CL there is a map ΠE(F,η) : X → E(F, η) such that for

every ζ ∈ X the following is satisfied.

(1) There is a splitting sequence connecting a train track τ ′ in standard form

for F to ζ which passes through the κ-neighborhood of ΠE(F,η)(ζ).
(2) There is a splitting sequence connecting a point in the κ-neighborhood of ζ to

a point in the κ-neighborhood of η which passes through the κ-neighborhood

of ΠE(F,η)(ζ).
(3) d(ΠE(F,η)(ζ),ΠE(F,ζ)(η)) ≤ κ for all η, ζ ∈ X.

(4) For all λ, ν ∈ CL the set ΠE(F,λ)E(F, ν) ⊂ E(F, λ) is combinatorially con-

vex.

(5) d(ΠE(F,η)(ζ),ΠE(F,η)(ξ)) ≤ κd(ζ, ξ) + κ for all ξ, ζ ∈ X, all η ∈ X ∪ CL.

(6) If η, ζ ∈ E(τ, λ) for a train track τ in standard form for F which carries

the complete geodesic lamination λ ∈ CL then ΠE(F,η)(ζ) = Π1
E(τ,η)(ζ) =

Π1
E(τ,ζ)(η).

Proof. Let τ ∈ V(T T ) be a complete train track and let S(τ) be the set of all
complete train tracks which can be obtained from τ by a splitting sequence. Let
η ∈ S(τ) and let ζ ∈ S(τ). By Lemma 4.4, via replacing ζ, η by their images
under a splitting sequence of uniformly bounded length we may assume that ζ, η
do not contain any rigid large branch. Recall from Lemma 4.8 the definition of
the “minimal distance” projection Π1

E(τ,η) = Π1
η : S(τ) → E(τ, η). The projection

point Π1
η(ζ) = ζ1 is uniquely determined by the requirement that Π1

η(ζ) is splittable
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to ζ but that no χ ∈ E(Π1
η(ζ), η)−Π1

η(ζ) has this property. The train track Π1
η(ζ)

determines flat strips E(Π1
η(ζ), η), E(Π1

η(ζ), ζ) which intersect in the unique point

Π1
η(ζ). Let E(ζ), E(η) be the set of large branches e of the train track Π1

η(ζ) with the

property that a splitting sequence connecting Π1
η(ζ) to ζ, η contains a split at e. If

E(ζ) = ∅ then ζ = Π1
η(ζ) ∈ E(τ, η) and we define Πη(ζ) = ζ. Similarly, if E(η) = ∅

then Π1
η(ζ) = η, the train track η is splittable to ζ and we define Πη(ζ) = η.

Now assume that the sets E(ζ), E(η) are both non-empty. If E(ζ) ∩ E(η) = ∅
then define Πη(ζ) = Π1

η(ζ); note that this is in particular the case if there is some
λ ∈ CL such that ζ, η ∈ E(τ, λ). Otherwise let {e1, . . . , es} = E(ζ) ∩ E(η); then
by the definition of the map Π1

η, for each i ≤ s a splitting sequence connecting

Π1
η(ζ) to ζ contains a right (or left) split at the branch ei and a splitting sequence

connecting Π1
η(ζ) to η contains a left (or right) split at ei. Let ζ2 ∈ E(Π1

η(ζ), ζ), η2 ∈
E(Π1

η(ζ), η) be the train track obtained from Π1
η(ζ) = ζ1 = η1 by a split at each

of the large branches e1, . . . , es. Then ζ2, η2 contain a common subtrack χ̂ which
is obtained from Π1

η(ζ) by a collision at each of the large branches e1, . . . , es, i.e. a
split followed by the removal of the diagonal of the split. Note that every geodesic
lamination which is carried by both ζ, η is carried by χ̂ and that the number of
branches of χ̂ is strictly smaller than the number of branches of ζ, η. Moreover, by
a successive application of Lemma 2.3.1 of [PH92], the train track χ̂ is recurrent
since the train tracks ζ2, η2 are both complete and hence recurrent. Denote by χ the
subtrack of ζ2, η2 obtained from χ̂ by removing all simple closed curve components
of χ̃.

By Lemma 4.7, there is a recurrent splitting sequence {χ(i)}0≤i≤p ⊂ E(τ, η)
issuing from χ = χ(0) which induces a splitting sequence {α(i)}0≤i≤k ⊂ E(η2, η) ⊂
E(τ, η) of maximal length issuing from η2 = α(0). The train track χ(p) is a recurrent
subtrack of α(k), and χ(p) and α(k) only depend on η2, η, χ but not on any choices
made for the construction of the splitting sequences. Similarly there is a recurrent
splitting sequence {χ̃(i)}0≤i≤q issuing from χ = χ̃(0) which induces a splitting
sequence {β(j)}0≤j≤` ⊂ E(ζ2, ζ) ⊂ E(τ, ζ) of maximal length issuing from ζ2. The
pairs of train tracks (χ, χ(p)) and (χ̃, χ̃(q)) define flat strips E(χ, χ(p)), E(χ, χ̃(q)).
These flat strips contain all train tracks which can be obtained from χ by a splitting
sequence and which are splittable to χ(p), χ̃(q). Apply Lemma 4.8 to these flat
strips E(χ, χ(p)) and E(χ, χ̃(q)); this is possible since the construction in the proof
of Lemma 4.8 does not use the assumption of completeness for our train tracks.
We find a train track σ = Π1

χ(p)χ̃(q) = Π1
χ̃(q)χ(p) ∈ E(χ, χ(p)) ∩ E(χ, χ̃(q)) with

the property that σ is splittable to both χ(p), χ̃(q) but that this is not the case
for any train track which can be obtained from σ by a split. By Lemma 4.7, a
splitting sequence in E(χ, σ) connecting χ to σ induces splitting sequences {ζ̃(i)} ⊂
E(τ, ζ), {η̃(j)} ⊂ E(τ, η) of maximal length issuing from ζ̃(0) = ζ2, η̃(0) = η2 and
connecting ζ2, η2 to train tracks ζ3, η3 which contain σ as a subtrack and which are
splittable to ζ, η. By Lemma 4.2, the distance between ζ3, η3 in T T is uniformly
bounded. Moreover, a geodesic lamination which is carried by both ζ3, η3 is carried
by the union σ̂ of σ with the simple closed curve components of χ̂.

Repeat this construction with the train track σ instead of Π1
η(ζ) and the flat

strips E(σ, χ(p)) and E(σ, χ̃(q)). By Lemma 4.7 we obtain a recurrent splitting
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sequences contained in E(σ, χ(p)), E(σ, χ̃(q)) which then induce splitting sequences
in E(τ, η), E(τ, ζ).

After a uniformly bounded number of steps we obtain a pair of train tracks
η′, ζ ′ ∈ V(T T ) with the following properties.

(1) The distance between η′, ζ ′ is bounded from above by a universal constant.
(2) ζ ′, η′ contain a common recurrent subtrack β (which possibly is a union

of simple closed curves) which carries every geodesic lamination carried by
both ζ ′, η′.

(3) For every large branch e of β, one of the following (not mutually exclusive)
possibilities holds.

a) One of the two train tracks ζ ′ or η′ is not tight at e and for every large
proper subbranch e′ of e in ζ ′ (or η′) the β-split of ζ ′ (or η′) at e′ is
not splittable to ζ (or η).

b) One of the train tracks ζ ′ (or η′) is tight at e and no train track which
can be obtained from ζ ′ (or η′) by a single split at e is splittable to ζ
(or η).

Let β0 ⊂ β be the union of the simple closed curve components of β. We claim
that there is a universal number r > 0 with the following properties.

a) The train tracks ζ ′, η′ can be split with a splitting sequence of length at

most r to train tracks ζ̂, η̂ which contain a simple multicurve c ⊃ β0 as a
subtrack and such that every minimal geodesic lamination carried by both

ζ̂, η̂ is one of the simple closed curve components of c.

b) ζ̂, η̂ are splittable to train tracks which can be obtained from ζ, η by a
splitting sequence of length at most r.

If β0 = β then there is nothing to show, so assume that β − β0 = β′ 6= ∅. Define
a β′-fake collision branch of the train track ζ ′ to be a large branch e in ζ ′ which
is a proper subbranch of β′ and such that every train track obtained from ζ ′ by a
split at e contains β as a subtrack. If ζ̃ is obtained from ζ ′ by any split at e then
the number of branches of ζ̃ contained in β′ is strictly smaller than the number
of branches of ζ ′ contained in β′. By the definition of ζ ′, if e is a β-fake collision
branch of ζ ′ then e is a branch of ζ, i.e. no train track obtained from ζ ′ by a
split at e is splittable to ζ. Namely, otherwise a splitting sequence connecting ζ ′

to ζ contains a split at e which is necessarily a β ′-split. However, this violates our
choice of ζ ′. Thus via replacing ζ, η by their images under a splitting sequence
whose length does not exceed the number q of branches of a complete train track
on S, we may assume that the train tracks ζ ′, η′ do not have any β′-fake collision
branches.

Let b be a large branch of β′ and let e be any large branch of ζ ′ which is a
proper subbranch of b. Note that if ζ ′ is not tight at b, such a branch always
exists. By assumption, e is not a β-fake collision branch. Since β is recurrent by
assumption, there is a simple closed multicurve ν which is carried by β and which
fills β. The train track ζ ′ carries a complete extension λ of ν, and the β-split of
ζ ′ at e is necessarily a λ-split. This means that the train track ξ obtained from ζ ′
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by a β′-split at e is necessarily complete. However, by the construction of ζ ′, the
train track ξ is not splittable to ζ. Thus if ξ is obtained from ζ ′ by say a right split
(for convenience of notation), then either the train track ζ ′(1) obtained from ζ ′ by
a left split at e is splittable to ζ or no train track which can be obtained from ζ ′

by a split at e is splittable to ζ. In the first case we define ζ(1) = ζ. In the second
case the branch e can naturally be viewed as a large branch in ζ. By assumption
on ζ, this branch is not rigid and the train track ζ(1) obtained from ζ by a left split
at e is complete. Now the train track ζ ′(1) obtained from ζ ′ by a left split at e is
splittable to ζ(1) and therefore the train track ζ ′(1) is complete as well.

By construction, a geodesic lamination which is carried by both ζ ′(1), η′ is carried
by the largest recurrent subtrack β(1) of β which does not contain the branch b. In
other words, the number of branches of β(1) is strictly smaller than the number of
branches of β. Every large proper subbranch a of a large branch of β(1) contained in
ζ ′(1) is a large branch in ζ ′ and therefore if a is contained in ζ(1) then a is not rigid.
Thus we can repeat the above construction with the train tracks β(1) and ζ(1). In
a number s ≥ 0 of steps which is bounded from above by the number q of branches
of a complete train track we obtain in this way a train track ζ ′(s) containing a
recurrent subtrack β(s) of β as a subtrack with the additional property that ζ ′(s)
does not contain any proper subbranches of large branches of β(s). Moreover, a
geodesic lamination which is carried by both ζ ′(s) and η is carried by β(s), and
β(s) contains β0 as a subtrack. The train track ζ ′(s) is splittable to a complete
train track ζ(s) which can be obtained from ζ by a splitting sequence of uniformly
bounded length.

If β(s) contains components which are not simple closed curves then β(s) contains
large branches e1, . . . , e`, and each such branch is tight in ζ ′(s). There is a number
k ≤ ` such that for each i ≤ k a splitting sequence connecting ζ ′(s) to ζ(s) contains
a split at ei. Let ζ ′(s+1) be the train track which is splittable to ζ(s) and which can
be obtained from ζ ′(s) by a single split at each of the large branches ei (1 ≤ i ≤ k).
Then ζ ′(s + 1) contains a subtrack β(s + 1) which can be obtained from β(s) by
a collision at each of the branches e1, . . . , e`. Every geodesic lamination which is
carried by ζ ′(s+ 1) and η′ is carried by β(s+ 1).

Repeat the above construction with the train track η′ and its subtrack β(s). We
obtain a subtrack β(s+ 1) of β(s) containing β0 and a train track η′(s+ 1) which
can be obtained from η′ by a splitting sequence of uniformly bounded length. Every
large branch e of β(s+ 1) is tight in both ζ ′(s) and η′(s+ 1). After finitely many

steps we obtain train tracks ζ̂, η̂ which satisfy the requirements a),b).

Now the distance between ζ̂, η̂ is uniformly bounded, and every minimal geodesic

lamination which is carried by both ζ̂, η̂ is one of the simple closed curves which

form the components of c. Lemma 4.6 applied to ζ̂, η̂ then yields a train track
ζ̃ = ΠE(F,η)(ζ) which satisfy the properties 1),2),3) stated in the proposition, and
property 4) follows immediately from our construction. If η is a complete geodesic
lamination carried by τ then choose an infinite splitting sequence {τ(i)} issuing
from τ(0) = τ with ∩CL(τ(i)) = {η}. By construction, for every i the train track
ΠE(F,τ(i))ζ is splittable to ΠE(F,τ(i+1))ζ and there is a number i0 > 0 such that
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ΠE(F,τ(i))ζ = ΠE(F,τ(j))ζ = ΠE(F,η)ζ for all i, j ≥ i0. The train track ΠE(F,η)ζ
satisfies properties 1)-4) in the proposition.

Now let ζ, η ∈ X be arbitrary; then there are unique train tracks τ, τ ′ in standard
form for F so that τ is splittable to ζ and τ ′ is splittable to η. Let M(τ),M(τ ′) be
the set of all measured geodesic laminations carried by τ, τ ′. If M(τ) ∩ M(τ ′) =
{0} then we define ΠE(F,ζ)(η) = τ and ΠE(F,η)(ζ) = τ ′. On the other hand, if
M(τ) ∩M(τ ′) 6= {0} then τ, τ ′ contain a common maximal recurrent subtrack χ
which carries the support of every lamination in M(τ) ∩ M(τ ′) (see Lemma 4.4
of [H06b]). We apply our above construction to the train tracks τ, τ ′, which are
splittable to ζ, η and the common subtrack χ of ζ, η and extend in this way the
maps ΠE(F,ζ),ΠE(F,η) to all of X in such a way that properties 1)-4) stated in the
lemma are satisfied.

To show property 5) in the proposition, let σ, ζ1, ζ2 ∈ X and let τ be a train track
in standard form for F which is splittable to σ. Write χi = ΠE(F,σ)(ζi) (i = 1, 2)
and let χ = ΠE(F,χ1)(χ2). Since χ1, χ2 are both contained in the same flat strip
E(τ, σ), by our above construction the train track χ is splittable to both χ1, χ2 and
there are disjoint sets E1, E2 of large branches of χ such that a splitting sequence
connecting χ to χi contains a split at a large branch e if and only if e ∈ Ei (i = 1, 2).
Let `i ≥ 0 be the length of a splitting sequence connecting χ to χ1, χ2 (i = 1, 2)
and let ` = max{`1, `2}. Then the distance between χ1, χ2 is not bigger than 2`.

Let τ1, τ2 be train tracks in standard form for F such that τi is splittable to ζi
(i = 1, 2). It follows from our above construction that there is a universal constant
κ > 0 and there is a splitting sequence connecting τi to ζi which passes through
the κ-neighborhood of χi (i = 1, 2). Since by Proposition 2.1 splitting sequences
are uniform quasi-geodesics, we conclude that the distance between ζ1 and ζ2 is
bounded from below by c` for a universal constant c > 0. This finishes the proof
of the lemma. ¤

For every τ ∈ V(T T ) and every complete geodesic lamination λ carried by τ , the
flat strip E(τ, λ) ⊂ T T is connected and hence can be equipped with the intrinsic
metric dλ. The following observation is a consequence of Lemma 4.9.

Corollary 4.10. There is a number c > 0 with the following property. For every

τ ∈ V(T T ) and every complete geodesic lamination λ carried by τ , the natural

inclusion (E(τ, λ), dλ) → T T is a c-quasi-isometric embedding.

Proof. Since splitting sequences are uniform quasi-geodesics in T T which define
geodesics in E(τ, λ) (see Lemma 5.1 of [H06a]), we only have to show the existence
of a number c > 0 with the following property. Let τ ∈ V(T T ), let λ ∈ CL and
let σ1, σ2 ∈ E(τ, λ). Using the notations from Lemma 4.8, let ν = Π1

E(τ,σ1)
(σ2) =

Π1
E(τ,σ2)

(σ1) ∈ E(τ, λ) be the unique train track which is splittable to σ1, σ2 and

such that no train track which can be obtained from ν by a single split has this
property. Let `1, `2 ≥ 0 be the length of a splitting sequence connecting ν to σ1, σ2;
then d(σ1, σ2) ≥ (`1 + `2)/c− c where d is the distance of T T .
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By Proposition 4.9, there is a splitting sequence connecting a point in the κ-
neighborhood of σ1 to a point contained in the κ-neighborhood of σ2 which passes
through the κ-neighborhood of ν. Now by Proposition 2.1, splitting sequences are
L-quasi-geodesics in T T for a universal number L > 1 and therefore the distance
between σ1, σ2 is not smaller than d(σ1, ν)/L − L − 2κ + d(σ2, ν)/L − L − 2κ.
On the other hand, the distance in E(τ, λ) between σ1 and σ2 is not bigger than
Ld(σ1, ν) + Ld(σ2, ν) + 2L from which the corollary follows. ¤

5. The large-scale geometry of flat strips

In this section we have a closer look at the geometry of flat strips in T T . In
particular, we compute the asymptotic cone of such a flat strip. Here a flat strip
E(τ, λ) is determined by a complete train track τ ∈ V(T T ) and a complete geodesic
lamination λ carried by τ , and it is the maximal subgraph of T T whose set of
vertices consists of all train tracks σ ∈ V(T T ) which carry λ and can be obtained
from τ by a splitting sequence. The flat strip E(τ, λ) is connected and can be
equipped with the intrinsic path-metric dλ. By Corollary 4.10, there is a number
c > 1 not depending on τ, λ such that the natural inclusion (E(τ, λ), dλ) → T T is
a c-quasi-isometric embedding.

By Lemma 5.1 of [H06a], there is an isometry of (E(τ, λ), dλ) onto a connected
cubical graph in R

q where q > 0 is the number of branches of the complete train
track τ . Such an isometry Φ is determined by the choice of a point Φ(τ) ∈ Z

q and
the choice of a numbering of the branches of τ and has the following property. Let
x1, . . . , xq be the standard basis of R

q. If σ ∈ E(τ, λ) is a complete train track then
the numbering of the branches of τ induces a numbering of the branches of σ. If
the branch i in σ is large, then the train track σ′ ∈ E(τ, λ) obtained from σ by a
single split at i is mapped by Φ to Φ(σ)+xi. We call such an isometry Φ of E(τ, λ)
onto the cubical graph Φ(E(τ, λ)) ⊂ R

q standard.

To obtain an understanding of the intrinsic geometry of the graph Φ(E(τ, λ)),
consider for the moment an arbitrary connected cubical complex K as defined on
p.111-112 in [BH99] which is isometrically embedded in the euclidean space R

q.
Such a complexK is a closed subset of R

q which is the union of an at most countable
number of standard cubes, i.e. subsets of R

q which are isometric to a cube [0, 1]`

for some ` ≤ q. The intersection of any two such cubes is either empty or is again
a standard cube. If the vertices of K are points in the standard integer lattice Z

q

then we call the cubical complex standard.

Following Definition II.5.15 of [BH99], call an abstract simplicial complex L with
vertex set V a flag complex if every finite subset A of V with the property that any
two distinct points in A are connected by an edge spans a simplex. By Theorem
II.5.4 and Theorem II.5.18 of [BH99], a standard cubical complex K in R

q has
non-positive curvature if and only if for every vertex v of K the link complex L(v)
of v is a flag complex. Moreover, L(v) is a flag complex if and only if L(v) equipped
with the path metric induced from the round metric on the (q−1)-dimensional unit
sphere in R

q is a Cat(1)-space.
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Let again τ ∈ V(T T ) and let λ ∈ CL be a complete geodesic lamination carried
by τ . Let Φ be a standard isometry of the flat strip E(τ, λ) ⊂ T T equipped with
its intrinsic metric dλ onto an embedded standard cubical graph in R

q. Define
the maximal extension of the graph E(τ, λ) to be the maximal cubical subcom-
plex C(τ, λ) of R

q whose one-skeleton equals Φ(E(τ, λ)). This complex is uniquely
determined by E(τ, λ) up to permutations of vectors from the standard basis of
R

q and translation by a vector in Z
q. In particular, it is uniquely determined by

E(τ, λ) up to cubical isometry. The two-skeleton C2(τ, λ) of the complex C(τ, λ)
is determined as follows. Let x1, . . . , xq be the standard basis of R

q; then for some
v ∈ Z

q the two-dimensional cube in R
q with vertices v, v + xi, v + xj , v + xi + xj

is a cube in C2(τ, λ) if and only if each of its four sides is contained in Φ(E(τ, λ)).
For k ≥ 3 the k-skeleton Ck(τ, λ) of C(τ, λ) is constructed in the same way by
induction: If Q is any k-cube in R

q all of whose sides are contained in Ck−1(τ, λ)
then we require that Q is contained in Ck(τ, λ). We have.

Lemma 5.1. The maximal extension C(τ, λ) of a flat strip E(τ, λ) ⊂ T T is a

complete Cat(0)-space.

Proof. We show first that the maximal extension C(τ, λ) of the graph E(τ, λ) is
of non-positive curvature. For this we have to show that the link complex L(v) of
every vertex v of C(τ, λ) is a flag complex.

Let x1, . . . , xq be the standard basis of R
q. By construction of the map Φ (see

above and compare Lemma 5.1 of [H06a]), if v ∈ Φ(E(τ, λ)) ∩ Z
q and if 1 ≤ i ≤ q

is such that v+ xi ∈ Φ(E(τ, λ)) then the line segment in R
q connecting v to v+ xi

is contained in Φ(E(τ, λ)) as well.

Now assume that v ∈ Φ(E(τ, λ)) ∩ Z
q and that 1 ≤ i < j ≤ q are such that

v, v + xi, v + xj ∈ Φ(E(τ, λ)). Let σ ∈ E(τ, λ) be such that Φ(σ) = v. By
construction of the map Φ, σ is a complete train track equipped with a numbering
of its branches such that the branches with numbers i, j are large. The train track
σ′ obtained from σ by the λ-split at the branch i is mapped by Φ to v+xi, and the
train track σ′′ obtained from σ by the λ-split at the branch j is mapped by Φ to
v+xj . By definition, the line segments connecting v to v+xi, v+xj are contained
in Φ(E(τ, λ)). Since λ-splits at distinct large branches in σ commute, the branch j
in the train track σ′ (with respect to the numbering inherited from the numbering
of the branches of σ) is large and the train track σ̃ obtained from σ′ by the λ-split
at j is mapped by Φ to v + xi + xj . The same consideration also shows that σ̃ can
be obtained from σ′′ by the λ-split at the branch i. This implies that the boundary
of the two-dimensional cube Q in R

q with vertices v, v + xi, v + xj , v + xi + xj is
contained in C(τ, λ) and hence the cube Q is contained in C(τ, λ) as well. In other
words, if v is a vertex in Φ(E(τ, λ)) and if the points xi, xj (viewed as directions in
the unit sphere at v) are contained in the link complex L(v) of v then the spherical
edge connecting xi to xj is contained in L(v) as well. The obvious extension of
this discussion to more than two of the standard basis vectors x1, . . . , xq shows the
following. If v is a vertex in E(τ, λ), if k ≥ 1 and if 1 ≤ i1 < · · · < ik ≤ q are
such that v + xij

∈ Φ(E(τ, λ)) for every j ≤ k then the k-dimensional standard
cube Q ⊂ R

q which is determined by the vertices v, v + xij
(j ≤ k) is contained in

C(τ, λ). Thus the vertices in the link complex L(v) of v defined by the directions
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xij
are pairwise joined by edges, and their closed convex hull is a spherical simplex

contained in L(v).

Let i, j ≤ q be such that v, v + xi, v − xj are vertices in Φ(E(τ, λ)) and let
σ ∈ E(τ, λ) be such that Φ(σ) = v. Then the branch i in σ is large and the branch
j is small, in particular we have i 6= j. The small branch j can be collapsed in
σ, and the branch with number j in the train track σ′ obtained from σ by this
collapse is large. There are now two possibilities. The first possibility is that the
branch i in σ′ is a large branch which is equivalent to saying that the branches i
and j in σ are not incident on a common switch. Then the train track σ′′ obtained
from σ′ by a λ-split at i is mapped by Φ to v + xi − xj and hence as above, the
vertices v − xj , v, v + xi − xj , v + xi are contained in Φ(E(τ, λ)) and span a two-
dimensional cube in C(τ, λ). However, if the branch i in σ′ is not large then the
two-dimensional cube with vertices v − xj , v, v − xj + xi, v + xi is not contained in
C(τ, λ) and the vertices xi,−xj in the link complex L(v) are not connected by an
edge. As a consequence, if the points v, v − xj , v + xi1 , . . . , v + xik

are vertices in
Φ(E(τ, λ)) and if σ′ ∈ E(τ, λ) is mapped by Φ to v − xj then the spherical edge in
the space of directions at v connecting the vertices −xj , xi`

(` ≤ k) is contained in
L(v) if and only if the branch i` in σ′ is large. This shows the following. Assume
that the edges in Φ(E(τ, η)) which connect v to v − xj , v + xi`

(` ≤ k), viewed
as vertices in the link complex L(v) of v, are pairwise connected in L(v) by an
edge. Then the branches j, i1, . . . , ik in σ′ are all large and the k + 1-dimensional
standard cube in R

q determined by these vertices is contained in C(τ, λ). As a
consequence, the k-dimensional spherical simplex in L(v) spanned by the vertices
−xj , xi1 , . . . , xik

is contained in L(v) if and only if any two of these vertices are
connected by an edge.

Now consider a triple of vertices in Φ(E(τ, λ)) of the form v, v − xi, v − xj for
some v ∈ Z

q. If σ, σi, σj are the preimages of v, v−xi, v−xj under the map Φ then
σi, σj is obtained from σ by a collapse of the small branch i, j. However, both train
tracks σi, σj can be obtained from the same train track τ by a splitting sequence.
Since a splitting sequence connecting τ to σ is unique up to the order of the splits
(see the discussion in the proof of Lemma 5.1 of [H06a]), the branch i in σj is a
small branch and the train track η which can be obtained from σj by a collapse of
the branch i is splittable to both σi, σj . In particular, as before the two-dimensional
cube in R

q with vertices v, v − xi, v − xj , v − xi − xj is contained in C(τ, λ). The
obvious extension of this consideration to more than two of the standard basis
vectors x1, . . . , xq shows that if xi1 , . . . , xik

are such that v, v − xi1 , . . . , v − xik
are

contained in C(τ, λ) then the same is true for the k-dimensional cube determined
by these points. Together with our above discussion we conclude the following. Let
v = Φ(σ) be a vertex of C(τ, λ) and let xi1 , . . . , xik

, xj1 , . . . , xj`
be such that for

each p ≤ k, q ≤ ` the points v − xip
, v + xjq

are vertices of C(τ, λ). If any two of
the directions xip

, xjq
defined by these vertices are connected in L(v) by an edge

then for every p ≤ k, q ≤ ` the branch jq is large in σ as well as in the train track
obtained from σ by a single collapse at ip. Equivalently, the small branch ip in σ
does not have a switch in common with the large branch jq. However, we observed
above that in this case the train track ν obtained from σ by a collapse of each of the
branches i1, . . . , ip contains the large branches j1, . . . , jq and the cube of dimension
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p+ q determined by the vertices v, v − xip
, v + xiq

for p ≤ k, q ≤ ` is contained in
C(τ, λ). This shows that the link complex L(v) of v is a flag complex as claimed.

Since the map Φ : E(τ, λ) → R
q is proper by construction, the cubical complex

C(τ, λ) is a complete geodesic metric space. Therefore to show that C(τ, λ) is
indeed a complete CAT(0)-space it is now enough to establish that C(τ, λ) is simply
connected. This in turn follows if we can show that every closed edge-path in C(τ, λ)
which begins and ends at Φ(τ) is contractible. Note that via the isometry Φ such
an edge-path can be identified with a path in the graph E(τ, λ).

To show that this is indeed the case we proceed by induction on the combinatorial
length of the path. If this length vanishes then the claim is trivial, so assume that
the claim holds for all flat strips E(σ, ζ) where σ ∈ V(T T ) and where ζ ∈ CL is
carried by σ and all closed edge-paths of combinatorial length at most m − 1 for
some m ≥ 0 which begin and end at σ. Let γ : [0,m] → E(τ, λ) be a closed edge-
path of combinatorial length m beginning and ending at τ . Then γ(1) is a train
track which can be obtained from γ(0) = τ by a single split at a large branch e. The
branch e0 in γ(1) corresponding to e is small. Assume without loss of generality
that the standard isometric embedding Φ : E(τ, λ) → R

q satisfies Φ(τ) = 0 and
Φ(γ(1)) = x1 where x1, . . . , xq is the standard basis of R

q. Let α1, . . . , αq be the
basis of (Rq)∗ which is dual to x1, . . . , xq. Then α1(γ(1)) = 1 and if α1(γ(i)) > 0
for some i ∈ {1, . . . ,m − 1} then γ(i) ∈ E(γ(1), λ). In particular, if α1(γ(i)) > 0
for every i ∈ {1, . . . ,m− 1} then γ[1,m− 1] is a loop in E(γ(1), λ) beginning and
ending at γ(1) of combinatorial length m−2. By our induction hypothesis, this loop
is contractible in C(γ(1), λ) ⊂ C(τ, λ) and therefore γ is contractible in C(τ, λ).

Otherwise there is a first number i0 ∈ {2, . . . ,m − 1} such that α1(γ(i0)) = 0.
Then γ(i0) can be obtained from τ by some splitting sequence not containing a split
at e. In particular, γ(i0) contains the large branch e and γ(i0 − 1) is obtained from
γ(i0) by a single λ-split at e. Let i1 be the minimum of all numbers i > i0 such that
α1(γ(i)) > 0; if there is not such i then define i1 = m. Note that γ(i1) = γ(i0 − 1)
if i1 = i0 + 1.

If i1 < m then γ(i1) can be obtained from γ(i1 − 1) by a single λ-split at e. Put
γ̃(j) = γ(j) for j ≤ i0 − 1, γ̃(j) = γ(j + 2) for j ≥ i1 − 1 and for i0 ≤ j ≤ i1 − 2
define γ̃(j) to be the train track which can be obtained from γ(j + 1) by a single
λ-split at e. Then the assignment j → γ̃(j) (i0−1 ≤ j ≤ i1−2) determines an edge
path contained in C(γ(1), λ) connecting γ̃(i0 − 1) = γ(i0 − 1) to γ̃(i1 − 2) = γ(i1).
For every j ∈ {i0, . . . , i1 − 2} the vertices γ(j), γ(j + 1), γ̃(j − 1), γ̃(j) are the
vertices of a 2-dimensional cube embedded in C(τ, λ). Thus by the definition of
the maximal extension C(τ, λ) of the flat strip E(τ, λ), this edge path is homotopic
with fixed endpoints to the edge path γ[i0 − 1, i1]. Then γ̃ is homotopic to γ with
fixed endpoints. Since the combinatorial length of γ̃ equals m − 2, by induction
hypothesis the edge-path γ̃ is contractible in C(τ, λ) and hence the same holds true
for the edge-path γ.

If i1 = m then we let γ̃(j) = γ(j) for j ≤ i0 − 1 and for i0 ≤ j ≤ m − 1
define γ̃(j) to be the unique train track which can be obtained from γ(j + 1) by
a single split at e. Also put γ̃(m) = τ . By the above consideration, the loop γ̃ is
homotopic to γ. On the other hand, the curve γ̃[1,m − 1] is a loop contained in
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E(γ(1), λ) of combinatorial length m−2 < m and hence this loop is contractible in
C(γ(1), λ) ⊂ C(τ, λ) by induction hypothesis. But then γ̃ is contractible in C(τ, λ)
and hence the same holds true for γ. This completes the proof of our lemma. ¤

Let τ ∈ V(T T ) be a complete train track which is splittable to a train track
η ∈ V(T T ). Then the flat strip E(τ, η) is defined. The proof of Lemma 5.1 can be
applied without modification to E(τ, η) and shows that E(τ, η) admits a natural
CAT(0)-cubical extension C(τ, η). For every complete geodesic lamination λ which
is carried by η, this extension is naturally a subspace of the extension C(τ, λ) of the
flat strip E(τ, λ). Moreover, the maximal extension C(η, λ) of the flat strip E(η, λ)
is a subspace of C(τ, λ) as well. We have.

Lemma 5.2. Let τ ∈ V(T T ) and let λ be a complete geodesic lamination which is

carried by τ . Let Φ : E(τ, λ) → R
q be a standard isometric embedding and let d be

the intrinsic metric on the cubical complex C(τ, λ).

(1) For every vertex η ∈ E(τ, λ) the maximal extensions C(τ, η), C(η, λ) are

convex subspaces of C(τ, λ), and d(C(η, λ),Φ(τ)) = d(Φ(η),Φ(τ)).
(2) The restriction of every coordinate function αi of R

q to a geodesic ray

γ : [0,∞) → C(τ, λ) issuing from γ(0) = Φ(τ) is non-increasing.

Proof. Let τ ∈ V(T T ), let λ be a complete geodesic lamination carried by τ and
let Φ : E(τ, λ) → R

q be a standard isometric embedding with Φ(τ) = 0.

Let η ∈ V(T T ) be a vertex in E(τ, λ). We show first that C(η, λ) ⊂ C(τ, λ) is
convex. For this note that if X is a any complete Cat(0)-space and if A ⊂ X is a
closed convex subset, then A is a complete Cat(0)-space. Moreover, every closed
convex subset B ⊂ A is convex in X. Using this fact inductively, we conclude that
it is enough to show that C(η, λ) is convex subspace of C(τ, λ) for every complete
train track η ∈ E(τ, λ) which can be obtained from τ by a single split.

Let as before α1, . . . , αq be the basis of (Rq)∗ which is dual to the standard basis
x1, . . . , xq of R

q. Assume without loss of generality that Φ(η) = x1; then a point
z ∈ C(τ, λ) is contained in C(η, λ) if and only if α1(z) ≥ 1. By the construction
of the map Φ, for every point (z1, z2, . . . , zq) ∈ C(τ, λ) with z1 < 1 the point
(1, z2, . . . , zq) is contained in C(τ, λ) as well. Thus the cubical complex C(τ, λ) ⊂ R

q

is invariant under the natural distance-non-increasing shortest distance projection
ρ of R

q onto the closed half-space {α1 ≥ 1} which maps a point z = (z1, . . . , zq)
with z1 < 1 to ρ(z) = (1, z2, . . . , zq). Since C(τ, λ) is equipped with the complete
path metric induced from the euclidean metric, the restriction to C(τ, λ) of the
retraction ρ is distance non-increasing as well. Since the image of C(τ, λ) under ρ
is just the cubical complex C(η, λ), the subcomplex C(η, λ) ⊂ C(τ, λ) is convex.
The same argument also shows that d(C(η, λ),Φ(τ)) = d(Φ(η),Φ(τ)).

To show that C(τ, η) ⊂ C(τ, λ) is convex for every complete train track η ∈
E(τ, λ) we argue in the same way. Namely, by Lemma 5.1 and its proof, for each
η ∈ E(τ, λ) the space C(τ, η) is a complete Cat(0)-space. Now if X1 ⊂ X2 ⊂ . . . is
a nested sequence of complete locally compact Cat(0)-spaces with complete locally
compact Cat(0)-union ∪iXi = X and if for each i the space Xi is a convex subspace
of Xi+1 then for each i, the space Xi is convex in X as well. Thus as above, it is
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enough to show that C(τ, η) ⊂ C(τ, ζ) is convex whenever ζ can be obtained from
η by a single split at a large branch e.

Assume without loss of generality that the number of e in η with respect to the
numbering of the branches of τ defining our standard isometry Φ equals one. Then
using our above notation we have α1(ζ) = α1(η) + 1, αi(ζ) = αi(η) for i ≥ 2 and
therefore the distance between C(τ, η) and Φ(ζ) with respect to the restriction of
the euclidean metric on R

q equals one. Moreover, by construction of the map Φ, for
every point (z1, z2, . . . , zq) ∈ C(τ, ζ) with z1 > α1(η) the point (α1(η), z2, . . . , zq)
is contained in C(τ, η). As above, this implies that C(τ, η) ⊂ C(τ, ζ) is convex and
completes the proof of the first part of the lemma.

For the second part of the lemma it is enough to show that for every geodesic c :
[0, b] → C(τ, λ) issuing from c(0) = Φ(τ) and every i ≥ 0 the function t→ αi(c(t))
is non-decreasing. Namely, in this case there is an edge-path ρ : [0, r] → C(τ, λ) in
the cubical complex C(τ, λ) whose Hausdorff distance to c[0, b] is uniformly bounded
and which has the same property. However by construction, the successive vertices
met by such an edge-path are the image under Φ of a splitting sequence in E(τ, λ).
However, by our above consideration, for every i ≥ 1 and every s ∈ R the set
{αi ≥ s} ∩ C(τ, λ) is convex in C(τ, λ) and hence the function t → αi(c(t)) is
necessarily non-decreasing. The lemma follows. ¤

Next we justify the notion “flat strip” for the sets E(τ, λ). Namely, recall that
the natural inclusion (E(τ, λ), dλ) → T T is a quasi-isometric embedding and that
C(τ, λ) is quasi-isometric to its one-skeleton E(τ, λ). The next lemma shows that
the path-metric on C(τ, λ) is quasi-isometric to the restriction of the euclidean
metric.

Lemma 5.3. (1) There is a number c > 0 such that for every flat strip E(τ, λ)
the inclusion C(τ, λ) → R

q is a c-quasi-isometric embedding.

(2) If λ ∈ CL is carried by τ and if ζ, η ∈ E(τ, λ) then there is a unique train

track Θ(ζ, η) ∈ E(τ, λ) such that ζ, η ∈ E(τ,Θ(ζ, η)) and that Θ(ζ, η) ∈
E(τ, ξ) for every train track ξ ∈ V(T T ) which can be obtained from both

ζ, η by a splitting sequence.

Proof. Let E(τ, λ) be a flat strip and let Φ : E(τ, λ) → R
q be a standard isometric

embedding. Since the inclusion ι : Φ(E(τ, λ)) → R
q is a one-Lipschitz map, for the

first part of the lemma it is enough to show the existence of a universal constant
c > 0 such that for all σ, η ∈ E(τ, λ) we have dλ(σ, η) ≤ c‖Φ(σ) − Φ(η)‖ where ‖ ‖
is the euclidean norm on R

q and dλ is the intrinsic path metric on E(τ, λ).

For this let σ, η ∈ E(τ, λ). Using the notations from Lemma 4.8, write ζ =
Π1

E(τ,σ)(η) = Π1
E(τ,η)(σ). By construction, ζ is splittable to both σ, η and this is

not the case for any train track which can be obtained from ζ by a single split. Via
replacing Φ by the composition of Φ with a translation by a vector in Z

q we may
assume that Φ(ζ) = 0.

We claim that up to a permutation of the standard basis of R
q, there is a number

` ≥ 1 such that for the standard direct orthogonal decomposition R
q = R

` ⊕ R
q−`

we have Φ(σ) ∈ R
` and Φ(η) ∈ R

q−`. Namely, by the choice of the train track ζ
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and the fact that σ, η both carry the complete geodesic lamination λ, the set of
large branches E(ζ) of ζ can be partitioned into disjoint subsets E+, E− such that
a splitting sequence connecting ζ to σ does not contain any split at a large branch
branch e ∈ E+ and a splitting sequence connecting ζ to η does not contain any split
at a large branch e ∈ E−.

Following [PH92], we call a trainpath ρ : [0,m] → ζ one-sided large if for every
i < m the half-branch ρ[i, i + 1/2] is large and if ρ[m − 1,m] is a large branch.
A one-sided large trainpath ρ : [0,m] → ζ is embedded [PH92], and for every
i ∈ {1, . . . ,m − 1} the branch ρ[i − 1, i] ⊂ ζ is mixed. For every large half-branch

b̂ of ζ there is a unique one-sided large trainpath issuing from b̂. Define A+
0 ,A−

0 to
be the set of all branches of ζ contained in a one-sided large trainpath ending at
a branch in E+, E−. Then the sets A+

0 ,A−
0 are disjoint, and a branch of ζ is not

contained in A+
0 ∪A−

0 if and only if it is small. Each endpoint of a small branch is a
starting point of a one-sided large trainpath. Define A± to be the union of A±

0 with
all small branches b of ζ with the property that both large half-branches incident
on the endpoints of b are contained in A±

0 . If b 6∈ A+ ∪A− then b is a small branch
incident on two distinct switches, and one of these switches is the starting point
of a one-sided large trainpath in A+

0 ,the other is the starting point of a one-sided
large trainpath in A−

0 .

The map Φ is determined by a numbering of the branches of ζ (compare Lemma
5.1 of [H06a]). We may assume that this numbering is such that for the cardinality
` of A−, the set A− consists of the branches with numbers 1, . . . , `. A splitting
sequence connecting ζ to σ does not contain any split at a large branch e ∈ E+

by assumption. Therefore, such a splitting sequence only contains splits at the
branches in A−. By the choice of our numbering, the image of any such splitting
sequence under the map Φ is contained in the linear subspace spanned by the first
` vectors of the standard basis of R

q. Similarly, the image under Φ of a splitting
sequence connecting ζ to η is contained in the subspace R

q−` ⊂ R
q spanned by the

last q − ` vectors of the standard basis. This shows our claim.

The image under Φ of any edge-path in E(τ, λ) defined by a splitting sequence is
an edge-path in the standard cubical subgraph G of R

q whose vertices are the points
Z

q in R
q with integral coordinates and whose edges are the integral translates of the

line segments connecting 0 to the standard basis vectors. Such a path is without
backtracking, i.e. if α1, . . . , αq is the basis of (Rq)∗ dual to the standard basis of R

q

then for each i the restriction of the function αi to such a path is non-decreasing.
As a consequence, such a path is a geodesic in the graph G equipped with the
intrinsic path metric and hence a uniform quasi-geodesic in R

q. If γσ, γη are such
edge-paths connecting 0 = Φ(ζ) to Φ(σ),Φ(η) induced by a splitting sequence then
γσ ⊂ R

`, γη ⊂ R
q−` and hence γη ◦γ−1

σ is a uniform quasi-geodesic in R
q connecting

Φ(σ) to Φ(η). But this just means that the distance in R
q between Φ(σ),Φ(η) is

bounded from below by a universal multiple of the distance of σ, η in E(τ, λ) and
shows the first part of our lemma.

To show the second part, let again σ, η ∈ E(τ, λ) and let ζ = Π1
E(τ,η)(σ). Then

ζ is splittable to both σ, η. By our above consideration, a splitting sequence con-
necting ζ to σ commutes with a splitting sequence connecting ζ to η. Using our
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above notation, if Φ(ζ) = 0 then there is a train track Θ(η, σ) ∈ E(τ, λ) with
Φ(Θ(η, σ)) = Φ(σ) + Φ(η). This train track has the property stated in the second
part of the lemma. ¤

A nonprincipal ultrafilter is a finitely additive probability measure ω on the
natural numbers N such that ω(S) = 0 or 1 for every S ⊂ N and ω(S) = 0 for every
finite subset S ⊂ N. Given a compact metric space X and a sequence (ai) ⊂ X
(i ∈ N), there is a unique element ω− lim ai ∈ X such that for every neighborhood
U of ω − lim ai we have ω{i | ai ∈ U} = 1. In particular, given any bounded
sequence (ai) ⊂ R, ω − lim ai is a point selected by ω.

Let (X, d) be any metric space and let (zi) ⊂ X. Write X∞ = {(xi) ∈
∏

i∈N
X |

d(xi, zi)/i is bounded}. For x = (xi), y = (yi) ∈ X∞ the sequence d(xi, yi)/i

is bounded and hence we can define d̃ω(x, y) = ω − lim d(xi, yi)/i. Then d̃ω is
a pseudodistance on X∞, and the quotient metric space Xω equipped with the
projection dω of the pseudodistance d̃ω is called the asymptotic cone of X with
respect to the non-principal ultrafilter ω and with basepoint defined by the sequence
(zi). If zi = x0 for all i and some fixed x0 ∈ X then we denote this basepoint by ∗.
Note that neither the asymptotic cone defined by X and the constant sequence (x0)
nor the basepoint ∗ depend on the choice of x0 ∈ X. In the sequel we always assume
that the basepoint in the construction of an asymptotic cone of a metric space X is
defined by a constant sequence unless explicitly stated otherwise. The cone (Xω, ∗)
with basepoint ∗ may depend on the choice of ω. If the isometry group of X acts
cocompactly then an asymptotic cone with respect to the ultrafilter ω admits a
transitive group of isometries whose elements can be represented by sequences in
Iso(X). The asymptotic cone of a CAT(0)-space is a CAT(0)-space. We refer to
[K99] for a careful discussion of asymptotic cones of CAT(0)-spaces.

Our next goal is to determine the asymptotic cone C(τ, λ)ω with basepoint the
constant sequence (τ) of the maximal extension C(τ, λ) of a flat strip E(τ, λ) ⊂ T T
where λ is a complete geodesic lamination carried by a train track τ ∈ V(T T ). For
this define a metric cone over a metric space (∂Y,∠) to be a metric space (Y, d)
of the form Y = [0,∞) × ∂Y/ ∼ where the equivalence relation ∼ identifies the
set {0} × ∂Y with a single point. The metric d on Y is given by d((a, ξ), (b, η)) =
√

a2 + b2 − 2ab cos∠(ξ, η). The space (Y, d) is a Cat(0)-space if and only if (∂Y,∠)
is Cat(1) [BH99]. The metric cone is a proper Cat(0)-space if (∂Y,∠) is a compact
Cat(1)-space. We have.

Lemma 5.4. The asymptotic cone C(τ, λ)ω with respect to a non-principal ultra-

filter ω of the maximal extension C(τ, λ) of a flat strip E(τ, λ) ⊂ T T is a proper

Cat(0)-metric cone and does not depend on ω.

Proof. Let for the moment Y be an arbitrary proper complete Cat(0)-space with
basepoint y0 and distance function d. Then the ideal boundary ∂Y of Y is defined;
equipped with the cone topology, ∂Y is compact. The boundary ∂Y can also be
equipped with the angular metric ∠; however, the topology defined by this metric
need not coincide with the cone topology. The metric space (∂Y,∠) is a complete
CAT(1)-space (Theorem II.9.13 of [BH99]) which may consist of uncountably many
distinct connected components; we call it the angular boundary of Y . If ξ0 6= ξ1 ∈
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∂Y are such that ∠(ξ0, ξ1) < π then there is a geodesic in ∂Y connecting ξ0 to ξ1
(Proposition II.9.21 of [BH99]).

Assume that for some sequence {i(j)} going to infinity the pointed Cat(0)-
spaces (Y, y0, d/i(j)) converge as j → ∞ in the pointed Gromov Hausdorff topol-

ogy to a locally compact pointed metric space (Y∞, y0, d∞). Then (Y∞, d∞) is
a complete Cat(0)-space. By the discussion on p.38 of [B95], (Y∞, d∞) is the
quotient [0,∞) × (∂Y,∠)/ ∼ where {0} × ∂Y is identified with a single point
(the basepoint y0) and where the metric d∞ is defined by d∞((a, ξ), (b, η)) =
√

a2 + b2 − 2ab cos∠(ξ, η). In other words, (Y∞, d∞) equals the metric cone de-
fined by the Cat(1)-space (∂Y,∠). Since (Y∞, d∞) is locally compact, its ideal
boundary equipped with the cone topology is compact and hence the metric space
(∂Y,∠) is compact. In particular, it consists of only finitely many connected com-
ponents. The limit space (Y∞, d∞) is independent of the sequence {i(j)} used to
define it, and it is uniquely determined up to isometry by a closed metric ball of
positive radius about the basepoint y0 in Y∞.

Now let λ ∈ CL be a complete geodesic lamination and let τ be a train track
which carries λ. Let ω be a non-principal ultrafilter. Let Φ : E(τ, λ) → R

q be
a standard isometric embedding which maps τ to Φ(τ) = 0 and determines the
maximal extension C(τ, λ) of E(τ, λ). Let (Xω, ∗) be the asymptotic cone of C(τ, λ)
defined by the non-principal ultrafilter ω whose basepoint ∗ is given by the constant
sequence (Φ(τ)). By Lemma 5.1, C(τ, λ) is a complete Cat(0)-space and hence the
same is true for Xω. By Lemma 5.3 the inclusion C(τ, λ) → R

q is a quasi-isometric
embedding and therefore there is a natural bilipschitz embedding of Xω into R

q,
the asymptotic cone of R

q (see e.g. [KL97]). Since Xω is complete, the image of
this embedding is a closed subset of R

q and hence Xω is proper. In particular,
Xω is the limit of a sequence of scaled pointed metric spaces (C(τ, λ),Φ(τ), 1

i(j) )

in the pointed Gromov-Hausdorff topology where {i(j)} ⊂ N is a sequence with
ω{i(j) | j} = 1 (see [K99]). Thus by our above observation, the asymptotic cone
Xω is just the euclidean cone over the ideal boundary ∂C(τ, λ) of C(τ, λ) equipped
with the angular metric ∠, and it does not depend on the sequence {i(j)}. This
shows the lemma. ¤

Let again λ be a complete geodesic lamination. Then λ consists of a finite number
λ1, . . . , λk (1 ≤ k ≤ 3g − 3 + m) of minimal components which are connected by
a finite number of isolated leaves. The components λi are either simple closed
curves or minimal arational laminations. If λi is a minimal arational component
then λi fills a unique bordered connected subsurface Si ⊂ S of S. This means
that λi is contained in Si, and every essential simple closed curve c on S which
has an essential intersection with Si, i.e. which is not freely homotopic to a curve
contained in S − Si, has an essential intersection with λi as well. Up to homotopy,
the subsurfaces Si of S are pairwise disjoint. We call Si the characteristic subsurface

of S for λi.

If we replace each boundary component of Si by a puncture then we obtain a
surface of finite type, again denoted by Si, and of negative Euler characteristic
which we call the characteristic surface of λi (recall that we assumed that λi is
minimal arational). Sometimes we do not distinguish between the characteristic
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surface of λi and the characteristic subsurface of S for λi. The surface Si may be
a four times punctured sphere or a once punctured torus. The lamination λi can
be viewed as a geodesic lamination on the surface Si which is minimal and fills Si,
i.e. every complementary component of λi ⊂ Si either is a topological disc or a
once punctured topological disc. Hence every train track ζ on Si which carries λi

defines a flat strip E(ζ, λi) with maximal extension C(ζ, λi); note that this also
makes sense if Si is a forth times punctured sphere or a once punctured torus, see
[PH92]. For simplicity we denote the asymptotic cone of C(ζ, λi) with respect to
the non-principal ultrafilter ω and basepoint the constant sequence (ζ) by A(λi).
Note however that A(λi) may depend on ζ. If λi is a simple closed curve then we
define A(λi) to be a single ray [0,∞).

Call a complete geodesic lamination spread-out if it contains precisely 3g−3+m
minimal components. Examples of spread out geodesic laminations are complete
geodesic laminations whose minimal components form a pants decomposition of
S. There are also other types of spread out geodesic laminations. For example, let
g ≥ 1 and let P be a pants decomposition of S containing a separating pants curve c
such that the surface obtained from S by cutting along c is the union of a bordered
torus S0 and a surface S1 of genus g − 1 with one boundary component and m
punctures. The surface S0 contains a pants curve c0 from the decomposition P in
its interior. There is a spread-out geodesic lamination λ on S which contains the
components of the simple geodesic multi-curve P − c0 as minimal components and
whose intersection with S0 is the union of a minimal arational geodesic lamination
λ0 and two isolated leaves which connect λ0 to the boundary circle of S0.

Given two euclidean cones Y1, Y2 with basepoints y1, y2, the product Y1 ×Y2 can
be equipped with a product metric in such a way that the resulting metric space
is an euclidean cone with basepoint (y1, y2). With respect to this metric, the cones
Y1 × {y2} and {y1} × Y2 are convex subspaces of Y1 × Y2. Any two non-constant
geodesic rays γ1 : [0,∞) → Y1 × {y2} and γ2 : [0,∞) → {y1} × Y2 issuing from the
basepoint γ1(0) = γ2(0) = (y1, y2) bound a flat convex subspace in Y1 ×Y2 which is
isometric to the closed quadrant {(x1, x2) ∈ R

2 | xi ≥ 0}. We call Y1×Y2 equipped
with this metric the conical product of Y1 and Y2. The angular boundary of Y1×Y2

equals the spherical join Y1 ∗ Y2 of Y1 and Y2 (see [BH99] Chapter I.5).

Call the cone Z = {(x1, . . . , x3g−3+m) ∈ R
3g−3+m | xi ≥ 0} the standard parti-

tion cone of dimension 3g−3+m; it equals the iterated conical product of 3g−3+m
single rays, viewed as euclidean cones over single points. We have.

Lemma 5.5. For a complete geodesic lamination λ on S with minimal compo-

nents λ1, . . . , λk and a complete train track τ which carries λ, the asymptotic cone

C(τ, λ)ω with basepoint (τ) equals the conical product of k metric cones which are

bilipschitz equivalent to the cones A(λi). If λ is spread out then C(τ, λ)ω is isomet-

ric to a standard partition cone of dimension 3g − 3 +m.

Proof. Let λ be a complete geodesic lamination and let λ1, . . . , λk be the mini-
mal components of λ. Let s ≤ k be such that (after reordering) the components
λ1, . . . , λs of λ are minimal arational and that the components λs+1, . . . , λk are
simple closed curves. We say that a train track η which carries λ separates λ if η
contains disjoint subtracks ζ1, . . . , ζk with the following property. For each i, the
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train track ζi carries λi. If i ≤ s then ζi is contained in the characteristic subsur-
face Si of S for λi, and complementary components of ζi on Si are in one-to-one
correspondence with the complementary components of λi. If i ≥ s+ 1 then ζi is a
simple closed curve. Moreover, every large branch of η is a subbranch of ∪iζi. We
claim that for every train track τ ∈ V(T T ) which carries λ there is a finite splitting
sequence {τ(i)}0≤i≤m ⊂ E(τ, λ) issuing from τ(0) = τ such that τ(m) separates λ.

For this we use the results of [PH92]. Recall that a collision of a train track η
at a large branch e is a split of η at e followed by the removal of the diagonal of
the split. A collision strictly decreases the number of branches of our train track
η. Moreover, the train track obtained from η by a collision at e is a subtrack of
a train track obtained from η by a split at e. A degenerate splitting sequence is a
sequence {η(i)} of train tracks such that for every i the train track η(i+ 1) can be
obtained from η(i) by a split or a collision.

For i ≤ s let Si be the characteristic surface of λi. As in Section 2, call a train
track ξ on a surface S̃ large if the complementary components of ξ are all topological
discs and once punctured topological discs. For each i ≤ s choose a large train track
σi on Si which carries λi and such that there is a one-to-one correspondence between
the complementary components of σi and the complementary components of λi on
Si. For i > s let σi be the train track which is just the simple closed curve λi

together with the choice of one switch. We may assume that the train tracks σi

are in fact train tracks on S which are pairwise disjoint. Then σ = ∪iσi is a train
track on S which carries ∪iλi. Moreover, if ν is a train track obtained from σ by a
splitting sequence, if ν carries ∪iλi and if ν is a subtrack of a complete train track
η which carries λ then η separates λ provided that η does not contain any large
branch in η − ν.

Choose a transverse measure µ on ∪iλi with full support. By Theorem 2.3.1
of [PH92] there is a degenerate splitting sequence {τ̃(i)}0≤i≤` issuing from τ̃(0) =
τ with the following properties. The train track τ̃(`) carries ∪iλi and can be
obtained from σ by a splitting sequence. Moreover, for each i, the measure µ
induces a positive transverse measure on τ̃(i). In particular, the train tracks τ̃(i) are
recurrent. The sequence {τ̃(i)} contains a uniformly bounded number of collisions.
Say that there is a sequence 0 ≤ i1 < · · · < ip < ` (where p is bounded from above
by the number of branches of a complete train track on S) such that for each j ≤ p
the train track τ̃(ij + 1) is obtained from τ̃(ij) by a collision at a large branch ej

and that for j 6∈ {i1, . . . , ip} the train track τ̃(j + 1) is obtained from τ̃(j) by a
split.

Since τ carries the complete geodesic lamination λ ⊃ ∪iλi by assumption and
since µ define a positive transverse measure on τ̃(i) for each i, we may assume that
τ̃(j) carries λ for every j ≤ i1 (compare the discussion in the proof of Lemma 4.3 of
[H06b]). The train track τ̃(i1 + 1) is obtained from τ̃(i1) by a collision at the large
branch e1. Let τ(i1 +1) be the unique train track which carries λ and which can be
obtained from τ̃(i1) by a split at e1. Then τ(i1 +1) carries λ and contains τ̃(i1 +1)
as a subtrack. As a consequence, the splitting sequence connecting τ̃(i1 + 1) to
τ̃(i2) induces as in Section 4 a splitting sequence connecting τ(i1 + 1) to a train
track τ(q) which carries λ and contains τ̃(i2) as a subtrack. Inductively in finitely
many steps we obtain in this way a splitting sequence {τ(i)}0≤i≤m ⊂ E(τ, λ) with
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the property that τ(m) contains τ̃(`) as a subtrack. In particular, τ(m) separates
λ provided that τ(m) − τ̃(`) does not contain any large branch.

Now if e is a large branch of τ(m) which is not contained in τ̃(`) then e is not
incident on a switch contained in τ̃(`) and the preimage of e under a carrying map
λ → τ(m) does not intersect a minimal component of λ. Therefore this preimage
consists of finitely many arcs. Let τ̂ be the train track obtained from τ(m) by a
single λ-split at e. The branch ê of τ̂ corresponding to the branch e in τ is small.
Since λ is complete by assumption, a carrying map λ → τ̂ is surjective and hence
the number of components of the preimage in λ of the branch ê of τ̂ under such a
carrying map is strictly smaller than the number of components of the preimage in
λ of the branch e of τ(m). As a consequence, after possibly replacing τ(m) by a
train track which can be obtained from τ(m) by a finite splitting sequence we may
assume that τ(m) separates λ.

By Lemma 5.2, C(τ(m), λ) is a convex subspace of the CAT(0)-space C(τ, λ)
whose m-neighborhood in C(τ, λ) is all of C(τ, λ) (compare the discussion in the
proof of Lemma 5.2). Therefore the asymptotic cone C(τ(m), λ)ω with basepoint
(τ(m)) is isometric to the asymptotic cone C(τ, λ)ω with basepoint (τ). Thus for
the purpose of our lemma we may assume without loss of generality that τ separates
λ. In particular, for a transverse measure µ on ∪iλi with full support, the subtrack
σ of τ of all branches of τ with positive µ-weight decomposes into k connected
components σ1, . . . , σk where σi carries λi for each i. If i ≤ k is such that the
component λi is a simple closed curve then σi is an embedded simple closed curve
in τ , and if i is such that λi is minimal arational then σi is a large train track on
the characteristic subsurface Si of S for λi.

Let again s ≤ k be the such that for i ≤ s the component λi is minimal arational
and that for i > s the component λi is a simple closed curve. By the discussion
in Section 4, for every i ≤ s, every splitting sequence issuing from σi ⊂ Si which
consists of train tracks carrying λi induces a splitting sequence issuing from τ
which is contained in the flat strip E(τ, λ). Moreover, for i 6= j a splitting sequence
in E(τ, λ) induced by a sequence of λi-splits issuing from σi commutes with a
splitting sequence in E(τ, λ) induced by a sequence of λj-splits issuing from σj .
Since τ separates λ by assumption, up to reordering and composing the isometric
embedding Φ : E(τ, λ) → R

q with a translation by an element in Z
q, the maximal

extension C(τ, λ) of the flat strip E(τ, λ) is of the form C(σ1, λ1)×· · ·×C(σk, λk) ⊂
R

n1 ×· · ·×R
nk ×R

u = R
q where for each i ≤ k, C(σi, λi) is the convex intersection

of C(τ, λ) with the euclidean subspace R
ni of R

q spanned by all standard basis
vectors which correspond to subbranches of σi in τ and where R

u is spanned by all
standard basis vectors which correspond to branches of τ not contained in any of
the subtracks σi. The convex subspace C(σi, λ) of C(τ, λ) just equals the maximal
extension of the subgraph of E(τ, λ) of all train tracks which carry λ and can be
obtained from τ by a splitting sequence induced by a sequence of λi-splits of σi. In
particular, the space C(σi, λi) is bilipschitz equivalent to the maximal extension of
the flat strip E(σi, λi) (in general, however, it is not isometric to this extension). As
a consequence, the asymptotic cone C(τ, λ)ω is a product cone of the form stated
in the lemma.
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We are left with showing that for a spread out complete geodesic lamination
λ the asymptotic cone C(τ, λ)ω is a standard partition cone of dimension 3g −
3 + m. Thus let λ ∈ CL be a complete geodesic lamination which contains 3g −
3 + m minimal components. We claim that λ contains a sublamination Q which
is a union of simple closed curves dividing S into pairs of pants, borderd tori
with one boundary circle and X-pieces, i.e. bordered punctured spheres of Euler
characteristic −2. Namely, if λ does not contain any minimal arational component
then the minimal components of λ consist of a collection of 3g − 3 + m simple
closed curves. In other words, these components form a pants decomposition for S
and our claim is immediate. Otherwise let λ0 be a minimal arational component
of λ with characteristic subsurface S0 of S. Then every essential simple closed
curve on S which has an essential intersection with S0 (i.e. which can not be freely
homotoped to a curve contained in S − S0) intersects λ0 transversely. A boundary
component of S0 has vanishing intersection number with λ and hence since the
number of minimal components contained in λ equals 3g − 3 + m, the boundary
circles of S0 are necessarily minimal components of λ. Moreover, since λ0 is the
only minimal component of λ which intersects S0, either S0 is a bordered torus
with one boundary component or an X-piece as claimed above.

Let τ ∈ V(T T ) be a complete train track which carries λ. By our above con-
sideration, for the identification of the asymptotic cone of C(τ, λ) we may assume
without loss of generality that τ separates λ. In particular, the images of the min-
imal components λ1, . . . , λ3g−3+m of λ under a carrying map λ → τ are disjoint
subtracks σi of τ . If λi is a minimal arational component then σi is a train track
contained in the interior of a bordered subsurface Si of S which either is a one-holed
torus of Euler characteristic −1 or a four holed sphere of Euler characteristic −2
(where some of the holes may be punctures) and whose boundary consists of simple
closed embedded curves in τ . As a consequence, σi consists of at most six branches
and four switches (Corollary 1.1.3 of [PH92]), and it contains a single large branch
since otherwise Si contains two disjoint simple closed not mutually freely homo-
topic essential curves. The mapping class group of the surface Si contains the free
group with two generators as a subgroup of finite index, and an infinite splitting
sequence of a complete train track on Si corresponds to choosing an infinite word in
these generators. As a consequence, for every i ∈ {1, . . . , 3g− 3+m} a sequence of
λi-splits issuing from σi is unique, and the asymptotic cone of C(σi, λi) is just the
single ray [0,∞). A sequence of λ-splits issuing from τ then consists in choosing
in each step one of the subtracks σ̃i which are filled by the laminations λi and
performing either a σ̃i-split at a proper large subbranch of σ̃i or a split which is
induced by a λi-split of σ̃i. Together with the above, this shows that the asymptotic
cone C(τ, λ)ω is isometric to the standard 3g − 3 +m-dimensional partition cone.
This completes the proof of the lemma. ¤

Call a proper complete CAT(0)-metric cone Y standard if its defining Cat(1)-
space ∂Y is of diameter strictly smaller than π. Since Y is a Cat(0)-space, this
then implies that the angular boundary (∂Y,∠) of Y is arcwise connected [BH99].
The following lemma gives additional information on the asymptotic cones of all
maximal extensions of flat strips in T T . We always equip the boundary ∂C(τ, λ)
of C(τ, λ) with the angular metric.
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Lemma 5.6. Let τ ∈ V(T T ), let λ be a complete geodesic lamination which

is carried by τ and let ω be non-principal ultrafilter. Then the asymptotic cone

C(τ, λ)ω of the Cat(0)-space C(τ, λ) is a standard proper CAT(0) cone with bound-

ary ∂C(τ, λ) of diameter not bigger than π/2. There is a number b ∈ (0, 1) and an

embedding of ∂C(τ, λ) onto a compact arcwise connected subset of a spherical shell

{x = (x1, . . . , xq) ∈ R
q | 0 ≤ xi ≤ 1, b ≤ ‖x‖ ≤ 1}.

Proof. Let τ ∈ V(T T ) and let λ be a complete geodesic lamination carried by τ .
We show that the diameter of the angular boundary (∂C(τ, λ),∠) of C(τ, λ) is at
most π/2.

If ∂C(τ, λ) consists of a single point then there is nothing to show, so assume
that ∂C(τ, λ) contains at least two points. Let ξ 6= ξ′ ∈ ∂C(τ, λ) be points such
that the angle ∠(ξ, ξ′) between ξ, ξ′ is maximal. Such points exist since by Lemma
5.4, the space (∂C(τ, λ),∠) is compact. Let γ 6= γ ′ : [0,∞) → C(τ, λ) be geodesic
rays issuing from γ(0) = γ′(0) = τ which define the points ξ, ξ′ in ∂C(τ, λ).

Assume that C(τ, λ) is defind by a standard isometric embedding Φ : E(τ, λ) →
R

q. Let α1, . . . , αq ⊂ (Rq)∗ be the dual basis of the standard basis of R
q, i.e.

the functions αi are the standard coordinate functions on R
q. By Lemma 5.2, the

restriction of each of the euclidean coordinate functions αi to any geodesic arc in
C(τ, λ) issuing from Φ(τ) is non-decreasing. More precisely, there is a number
p > 0 and there is a splitting sequence {τ(i)} in E(τ, λ) issuing from τ such that
the Hausdorff distance between {Φ(τ(i)} and γ does not exceed p. Similarly, there
is a splitting sequence {η(i)} ⊂ E(τ, λ) such that the Hausdorff distance between
γ′[0,∞) and Φ({η(i)}) does not exceed p.

For k > 0 let `(k) ≥ k, `′(k) ≥ k be such that the distance between γ(k)
and Φ(τ(`(k))) and the distance between γ ′(k) and Φ(η(`′(k))) is bounded from
above by p. Using the notations from Lemma 4.8, for k ≥ 0 define ζ(k) =
Π1

E(τ,τ(`(k)))(η(`
′(k))). Then the train track ζ(k) is splittable to both τ(`(k)) and

η(`′(k)) but this is not true for any train track in E(ζ(k), λ) − ζ(k).

Denote by d the Cat(0)-metric on C(τ, λ). We claim that there is a number
α ∈ (0,∠(ξ, ξ′)) such that min{d(Φ(ζ(k)),Φ(τ(`(k)))), d(Φ(ζ(k)),Φ(η(`′(k))))} ≥
αk for every sufficiently large k > 0. To show this claim, consider the triangle ∆
in C(τ, λ) with vertices Φ(τ),Φ(ζ(k)),Φ(τ(`(k))) and the triangle ∆′ with vertices
Φ(τ),Φ(ζ(k)), η(`′((k))). The triangles ∆,∆′ have a common side which consists of
the geodesic arc connecting Φ(τ) to Φ(ζ(k)). Let ∆0,∆

′
0 be comparison triangles in

the Euclidean plane; we may assume that ∆0,∆
′
0 have a common side with vertices

A,C correponding to the points Φ(τ),Φ(ζ(k)). Let c : [0, b] → C(τ, λ) be the
geodesic arc connecting c(0) = Φ(ζ(k)) to c(b) = Φ(τ(`(k))). By Lemma 5.2, the
geodesic arc c is contained in the convex subset C(ζ(k), λ) of C(τ, λ) whose distance
to Φ(τ) equals d(Φ(τ),Φ(ζ(k))). Thus by convexity of the distance function on a
CAT(0)-space, the distance between Φ(τ) and c(s) is non-decreasing with s. By
comparison, this implies that the angles of the triangles ∆0,∆

′
0 at the vertex C are

not smaller than π/2.

Since C(τ, λ) is a Cat(0)-space, there is a number a ∈ (0,∠(ξ, ξ ′)) and there is a
number t(a) > 0 such that d(γ(t), γ ′(t)) ≥ at+2p for all t ≥ t(a) (compare [BH99]).
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Thus if for some ε > 0 and large enough k the distance between Φ(ζ(k)) and
Φ(τ(`(k))) is smaller than εak then the distance between Φ(ζ(k)) and Φ(τ) is not
smaller than (1−aε)k, and the distance between Φ(ζ(k)) and Φ(η(`′(k))) is at least
(1−ε)ak. Since the angle at C of the triangle ∆′

0 is not smaller than π/2, comparison
shows that the distance between Φ(η(`′(k))) and Φ(τ) is not smaller than the length
of the side opposite to the right angle of an euclidean right-angled triangle whose
sides adjacent to the right angle have length not smaller than (1 − aε)k, (a− aε)k.

Therefore this distance is not smaller than k
√

1 + a2 − 2aε− 2a2ε+ 2a2ε2 which is
strictly bigger than k + 2p provided that k > 0 is sufficiently large and ε > 0 is
sufficiently small compared to a. But the distance between Φ(τ) and Φ(η(`′(k)))
is at most k + p by the choice of η(`′(k)) which is a contradiction. This shows the
existence of a number α > 0 as claimed above.

As in the proof of Lemma 5.3, observe that the set E of large branches of ζ(k) can
be partitioned into two disjoint subsets E = E+ ∪ E− so that a splitting sequence
connecting ζ(k) to τ(`(k)), η(`′(k)) does not contain any split at a branch e ∈
E+, e′ ∈ E−. Using the notations from the proof of Lemma 5.3, let A+

0 ,A−
0 be the set

of all branches of ζ(k) contained in a one-sided large trainpath on ζ(k) terminating
at a large branch in E+, E− and let A± be the union of A±

0 with those small branches
whose endpoints are both starting points of a one-sided large trainpath in A±

0 . If
we denote by A0 the collection of all small branches not contained in A+ ∪ A−

then we obtain a partition of the set A of all branches of ζ(k) into the disjoint
sets A+,A−,A0 (compare the proof of Lemma 5.3). Normalize the map Φ by a
composition with a translation in such a way that Φ(ζ(k)) = 0. After possibly a
permutation of the standard basis of R

q, the partition of the branches of ζ(k) into
the disjoint sets A+,A−,A0 determines a direct decomposition R

q = R
q1×R

q2×R
q3

with q1 > 0, q2 > 0 and q3 ≥ 0 such that the image under Φ of a splitting sequence
{β(i)} connecting ζ(k) to τ(`(k)) is contained in R

q1 , and the image under Φ of a
splitting sequence {ξ(i)} connecting ζ(k) to η(`′(k)) is contained in R

q2 (with the
obvious interpretation as linear subspaces of R

q). Since splits at large branches in
A+,A− commute and since both train tracks τ(`(k)), η(`′(k)) are contained in the
flat strip E(τ, λ), if we denote by C+ and C− the maximal extensions of the flat
strips E(ζ(k), τ(`(k))), E(ζ(k), η(`′(k))), viewed as convex subsets of C(τ, λ) ⊂ R

q

(see Lemma 5.2), then for every x ∈ C+ and y ∈ C− we have x+ y ∈ C(τ, λ).

Let again c : [0, b] → C(τ, λ) be the geodesic connecting c(0) = Φ(ζ(k)) to c(b) =
Φ(τ(`(k)))) and let c′ : [0, b′] → C(τ, λ) be the geodesic connecting c′(0) = Φ(ζ(k))
to c′(b′) = Φ(η(`′(k)))). Then c, c′ are curves in R

q which are parametrized by arc
length. Let a1 : [0,∞) → R

2 be two rays in the euclidean plane parametrized by
arc length and issuing from a1(0) = a2(0) = 0 which enclose a right angle at 0.
We may assume that the tangent vectors of ai at 0 are the standard basis vectors
e1, e2. Then for s ∈ [0, b] and t ∈ [0, b′] the line segment `(s, t) in R

2 connecting
a1(s) to a2(t) and parametrized proportional to arc length on [0, 1] can uniquely
be represented in the form `(s, t)(u) = a1(ρ1(s, t)(u))+a2(ρ2(s, t)(u)) for functions
ρ1(s, t), ρ2(s, t) on [0, 1] with values in [0, s], [0, t] and depending continuously on
s, t. By our above consideration, for all s ∈ [0, b], t ∈ [0, b′] and all u ∈ [0, 1]
the point c(ρ1(s, t)(u)) + c′(ρ2(s, t)(u)) is contained in C(τ, λ). The curve u →
c(ρ1(s, t)(u))+c

′(ρ2(s, t)(u)) connects c(s) to c′(t), and its length coincides with the
length of the curve `(s, t). By comparison, this implies that the triangle in C(τ, λ)
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with vertices Φ(ζ(k)),Φ(τ(`(k))),Φ(η(`′(k)))) is flat, and its angles at the vertices
Φ(τ(`(k))),Φ(η(`′(k))) sum up to π/2. By comparison and our above discussion, the
distance between Φ(τ) and Φ(τ(`(k))),Φ(η(`′(k))) is not smaller than the distance

between Φ(ζ(k)) and Φ(τ(`(k))),Φ(η(`′(k))). Therefore if we denote by ∆̃(k) a
comparison triangle in the euclidean plane for the triangle ∆(k) in C(τ, λ) with
vertices Φ(τ),Φ(τ(`(k))),Φ(η(`′(k))), then by comparison, the angle at the point

corresponding to τ in ∆̃(k) is not bigger than π/2. Since k > 0 was arbitrary and
the distance between γ(k), γ′(k) and Φ(τ(`(k))),Φ(η(`′(k))) is uniformly bounded,
by the definition of the angle between ξ, ξ′ and the results in Chapter II.9 of [BH99],
this means that ∠(ξ, ξ′) ≤ π/2. However, we chose ξ, ξ′ in such a way that their
angular distance is maximal among all distances in the angular boundary of C(τ, λ)
and therefore the diameter of ∂C(τ, λ) with respect to the angular metric is at most
π/2. This completes the proof of the first part of our lemma.

To show the second part, let again α1, . . . , αq be the basis of R
q which is dual

to the standard basis of R
q. For every z ∈ ∂C(τ, λ) there is a unique geodesic ray

γz : [0,∞) → C(τ, λ) issuing from γz(0) = Φ(τ) which is asymptotic to z. For
j ≤ q let αj

ω(z) = ω − limk→∞ αj(γz(k))/k. Since αj(γz(k)) ≤ k for all k, this
limit exists. By our explicit construction, the point ρ(z) = (α1

ω(z), . . . , αq
ω(z)) has

non-negative entries, has norm bounded in [b, 1] for universal constant b > 0 and
depends continuously on z. Moreover the map z → ρ(z) is injective and hence the
assignment ρ : z → ρ(z) defines an embedding of the boundary of C(τ, λ) onto a
compact path-connected subset of the spherical shell {x = (x1, . . . , xq) ∈ R

q | xi ∈
[0, 1], b ≤ ‖x‖ ≤ 1}. ¤

Finally we are able to estimate from above the topological dimensions of the
asymptotic cones C(τ, λ)ω.

Lemma 5.7. The topological dimension of the cones C(τ, λ)ω is bounded from

above by 3g − 3 +m.

Proof. Let τ ∈ V(T T ) and let λ be a complete geodesic lamination carried by
τ . Choose a non-principal ultrafilter ω. We have to show that the topological
dimension of C(τ, λ)ω does not exceed 3g−3+m. For this note first that by Lemma
5.5, this holds true for spread-out complete geodesic laminations. In particular, it
holds true for an exceptional surface S, i.e. a one-punctured torus or a forth
punctured sphere with the obvious interpretation of flat strips for these exceptional
surfaces (see the proof of Lemma 5.5). By induction, we therefore may assume that
our dimension estimate is valid for all proper subsurfaces of S. By Lemma 5.5,
it then also holds for every geodesic lamination which does not contain a minimal
component which fills up S.

Thus let λ be a complete geodesic lamination which contains a minimal com-
ponent λ0 which fills up S. Let τ ∈ V(T T ) by a train track which carries λ. Let
Φ : E(τ, λ) → R

q be a standard isometric embedding with Φ(τ) = 0 which defines
the maximal extension C(τ, λ). By Lemma 5.5, the asmyptotic cone C(τ, λ)ω is
the metric cone over the angular boundary (∂C(τ, λ),∠), and by Lemma 5.6, this
boundary is a compact CAT(1) geodesic metric space of diameter at most π/2. By
Lemma 5.6, there is a number b > 0 such that the ultrafilter ω defines an embedding
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ρ of the boundary ∂C(τ, λ) onto a compact connected subset C of a spherical shell
{z = (z1, . . . , zq) ∈ R

q | zi ≥ 0, b ≤ ‖z‖ ≤ 1} for some b > 0.

We have to show that the topological dimension of the set C is at most 3g−4+m.
For this let again α1, . . . , αq be the basis of (Rq)∗ which is dual to the standard basis.
Let γ1, . . . , γn be geodesic rays in C(τ, λ) issuing from Φ(τ) with corresponding
points z1, . . . , zn in the compact set C. We choose the rays γi in such a way that
for each of the points zj ∈ C there is a linear function αij which assumes a maximum
at zj . We may also assume that there is some ε > 0 with the property that for
j 6= k the value of αij on zk is smaller than αij (zj)/(1 + 2ε). After reordering of
the standard basis vectors, we may assume that ij = j for all j ≤ n.

By Lemma 5.2 and its proof, for each i there is a splitting sequence {τi(j)} whose
image under the map Φ is of Hausdorff distance to γi[0,∞) bounded from above
by a universal constant p > 0. For k > 0 let `i(k) be the such that the distance
between Φ(τi(`i(k))) and γi(k) is at most p. We may assume that for ω-all k we
have α1(Φ(τ1(`1(k)))/α

1(Φ(τi(`i(k))) ≥ 1 + ε for all i ≥ 2.

Using the notation from Lemma 4.8, for i ≥ 2 let η(i) = Π1
E(τ,τ1(`1(k)))τi(`i(k)) ∈

E(τ, τ1(`1(k))). As in Lemma 4.8, there is a train track η ∈ E(τ, τ1(`1(k))) such that
for each i, η(i) is splittable to η and that moreover if ζ ∈ E(τ, τ1(`1(k))) is such that
η(i) is splittable to ζ for each i then η is splittable to ζ. The coordinate functions
of Φ(η) satisfy αj(Φ(η)) = max{αj(Φ(η(i))) | i ≥ 1}. Since α1(τ1(`1(k)) > (1 +
ε)maxi≥2 α

1(τi(`i(k))) for i ≥ 2 there is a partition of the set E of large branches
of η into disjoint sets E = E1 ∪ E2 with the property that a splitting sequence
connecting η to τ1(`1(k)) does not contain any split at a large branch e ∈ E2 and
that moreover the following holds. For i ≥ 2 and using the notation from Lemma
5.2, let ζi = Θ(η, τi(`i(k))) ∈ E(τ, λ). Then both η and τi(`i(k))) are splittable to
ζi, and a splitting sequence connecting η to ζi does not contain any split at a large
branch in E1. Define moreover inductively ν2 = ζ2 and νi = Θ(ζi, νi−1) for i ≥ 3
and write ζ = νk. Then each of the train tracks ζi is splittable to ζ, and every train
track with this property can be obtained from ζ by a splitting sequence.

By construction, we have α1(τ1(`1(k)))/α
1(τi(`i(k))) ≥ 1 + ε for all i. Now by

monotonicity of the coordinate functions on geodesic rays issuing from Φ(τ) we
necessarily have α1(τ1(`(k)) → ∞ (k → ∞) and therefore for sufficiently large
k the union A(η) of the set A0(η) of all branches which are contained in a one-
sided large trainpath on η terminating at a branch in E1 with the set of all small
branches whose endpoints are both contained in A0(η) is a subgraph of η which
contains a simple closed curve. The train tracks τi(`i(k)) (i ≥ 2) are contained in
a flat strip E(τ, ζ) where ζ can be obtained from η by a splitting sequence which
does not contain a split at any of the branches in A(η). Hence a splitting sequence
connecting τ to ζ is induced from a splitting sequence of a subtrack of η contained
in a proper subsurface of S of strictly bigger Euler characteristic. Thus by induction
hypothesis, the images under the map ρ of the rays γ2, . . . , γn are contained in a
compact subset of C of dimension at most 3g − 5 +m. Then the dimension of the
convex hull in ∂C(τ, λ) with respect to the angular distance of the points z1, . . . , zn

is at most 3g− 4+m. Since the points of C were arbitrarily chosen with the above
properties this shows the lemma. ¤
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6. A quasi-convex bicombing of the train track complex

A bicombing of a metric space (X, d) assigns to every pair of points x, y ∈ X
a curve cx,y : [0, 1] → X connecting x = cx,y(0) to y = cx,y(1). The curve cx,y

is called the combing line connecting x to y. We call the bicombing symmetric if
cx,y(t) = cy,x(1 − t) for all x, y and all t ∈ [0, 1], reflexive if cx,x(t) = x for all
x ∈ X and all t ∈ [0, 1] and L-Lipschitz for some L ≥ 1 if for all x, y ∈ X the curve
t → cx,y(t/d(x, y)) (t ∈ [0, d(x, y)]) is L-Lipschitz. Call moreover the bicombing
L-quasi-convex for some L > 0 if for all x, y, x′, y′ ∈ X and all t > 0 we have
d(cx,y(t), cx′,y′(t)) ≤ L(d(x, x′) + d(y, y′)) + L. As an example, if X is a Cat(0)-
space then any two points can be connected by a unique geodesic parametrized
proportional to arc length, and these geodesics define a reflexive symmetric 1-
Lipschitz 1-quasi-convex bicombing of X which we call the geodesic bicombing.

The purpose of this section is to construct a reflexive symmetric L-Lipschitz L-
quasi-convex bicombing for the train track complex T T . For this fix a framing F
of S and let X be the set of all complete train tracks which can be obtained from
a train track in standard form for F by a splitting sequence. Then X is r-dense in
T T for some r > 0. As a consequence, it is sufficient to construct such a reflexive
symmetric L-Lipschitz L-quasi-convex bicombing for the set X equipped with the
restriction of the metric on T T .

We begin with constructing for a train track τ in standard form for F and for a
complete geodesic lamination λ carried by τ a bicombing for the flat strip E(τ, λ).
The combing path connecting τ to a train track η ∈ E(τ, λ) is obtained from a
particular splitting sequence connecting τ to η. First we establish some suitable
notations. Namely, let ρ : [0,m] → τ be any trainpath on τ . Then for every
i ∈ {1, . . . ,m − 1} there is a single branch of τ which is incident on ρ(i) and not
contained in ρ. We call such a branch a neighbor of ρ at ρ(i). The switch is called
a left switch (or a right switch) if the neighbor of ρ at ρ(i) is to the left (or to the
right) of ρ with respect to the orientation of ρ and the orientation of S. Define a
special trainpath on a train track σ to be a trainpath ρ : [0, 2k − 1] → σ of length
2k − 1 for some k ≥ 1 with the following properties.

(1) ρ[0, 2k − 1] is embedded in σ.
(2) For each j ≤ k − 1 the branch ρ[2j, 2j + 1] is large and the branch ρ[2j +

1, 2j + 2] is small.
(3) With respect to the orientation of S and the orientation of ρ, right and left

switches in ρ[1, 2k − 2] alternate.

The left part of Figure G shows a special trainpath of length 5.

split shift

Figure G
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A special circle in a train track σ is a trainpath ρ : [0, 2k− 1] → σ with ρ[0, 1] =
ρ[2k−2, 2k−1] (as oriented arcs) for some k ≥ 2 such that ρ[0, 2k−2) is embedded in
σ and which satisfies the requirements 2), 3) in the definition of a special trainpath.

If τ ′ is any train track containing a special trainpath or a special circle ρ′ of
length 2k − 1 and if τ is shift equivalent to τ ′, then there is a natural bijection
of the branches of τ ′ onto the branches of τ , and this bijection preserves the type
of branches. In particular, there is a trainpath ρ on τ of length at least 2k − 1
which contains the same large and small branches as ρ′ under our identification of
branches. We say that ρ corresponds to ρ′. We call a trainpath ρ : [0,m] → τ on
a train track τ symmetric large if ρ corresponds to a special trainpath in this way,
and we call ρ a symmetric circle if it corresponds to a special circle. Finally, a
symmetric trainpath is a trainpath which either is a symmetric large trainpath or
a symmetric circle.

If ρ : [0,m] → τ is a special trainpath on τ of length m ≥ 2 and if i ≥ 0 is
such that ρ[i− 1, i] is a large branch then there is a unique choice of a right or left
split of τ at ρ for which the branches ρ[i− 2, i− 1] and ρ[i, i+ 1] are winners. We
call such a split the ρ-split of τ at ρ[i − 1, i] (note that one of the two branches
ρ[i − 2, i − 1] or ρ[i, i + 1] may be empty). If the length m of ρ equals one, then
every split of τ at ρ[0, 1] is a ρ-split by definition. If τ ′ is obtained from τ by a
ρ-split at a large branch ρ[i − 1, i] then there is a natural bijection ϕ(τ, τ ′) from
the branches of τ onto the branches of τ ′ (compare the discussion in [H06a]). The
image of ρ under the map ϕ(τ, τ ′) is a trainpath ρ′ on τ ′ of the same length as ρ.
Thus for every symmetric trainpath ρ on τ it makes sense to talk about a splitting
sequence consisting of a single ρ-split at every branch of ρ. We first observe.

Lemma 6.1. (1) Let τ ∈ V(T T ) and let ρ : [0,m] → τ be a symmetric large

trainpath. Then there is a unique train track τ ′ which can be obtained from

τ by a splitting sequence of length m consisting of a single ρ-split at each

branch ρ[i − 1, i] (i ≤ m). The train track τ ′ contains a symmetric large

trainpath ρ′ of maximal length n ∈ {0, . . . ,m− 2} which is contained in the

image of ρ under ϕ(τ, τ ′). If ρ corresponds to a special trainpath of length

one then ρ′ is trivial.

(2) Let ρ : [0,m] → τ be a symmetric circle. Then there is a unique train track

τ ′ which can be obtained from τ by a splitting sequence of length m − 1
consisting of a single ρ-split at each branch ρ[i − 1, i] (i ≤ m − 1). The

image of ρ in τ ′ under the map ϕ(τ, τ ′) is a symmetric circle of the same

length. Moreover, there is a number k < m/2 such that the train track

obtained from τ by k such modifications is the image of τ under a simple

Dehn twist along the circle ρ[0,m− 1].

Proof. We show the first part of the lemma by induction of the length m of a
symmetric large trainpath ρ on a complete train track τ . The case that this length
equals one is trivial, so assume that we showed the claim for all symmetric large
trainpaths of length at most m− 1 for some m ≥ 2.

Let ρ : [0,m] → τ be a symmetric large trainpath of length m on a complete train
track τ . If ρ[0, 1] is a large branch then by assumption, there is a unique choice of
a right or left split of τ at ρ[0, 1] so that the branch ρ[1, 2] is a winner of the split.



GEOMETRY OF THE MAPPING CLASS GROUPS III: QUASI-ISOMETRIC RIGIDITY 53

Let τ̃ be the train track obtained from τ by this choice of a split. Then the image
of ρ under the map ϕ(τ, τ̃) is a trainpath in τ̃ which begins with a small branch,
and its subpath ϕ(τ, τ̃)ρ[1,m] is a symmetric large trainpath ρ̃ of length m − 1.
Clearly ρ̃ is the maximal symmetric large trainpath on τ ′ which is contained in the
image of ρ under the map ϕ(τ, τ̃). We then can apply our induction hypothesis to
ρ′ and deduce in this way the statement of the lemma.

If the branch ρ[0, 1] is not large then it is mixed and the half-branch ρ[0, 1/2]
is large. Thus ρ(0) is the starting point of a unique one-sided large trainpath
ζ : [0, k] → τ which terminates at a large branch ζ[k − 1, k]. Note that we have
2 ≤ k ≤ m, moreover necessarily ζ[0, k] = ρ[0, k]. There is a unique choice of a split
of τ at ρ[k − 1, k] with the branch ρ[k − 2, k − 1] as a winner. Let τ1 be the split
track. The image of ρ in τ1 under the map ϕ(τ, τ1) is a symmetric large trainpath
ρ1 : [0,m] → τ1 with the additional property that the subpaths ρ1[0, k − 1] and
ρ1[k,m] are both symmetric large, however the trainpath ρ1[k,m] may be trivial.
Since the lengths of these trainpaths are strictly smaller than m, we can apply our
induction hypothesis and obtain the statement of the lemma for symmetric large
trainpaths.

If ρ : [0,m] → τ is a symmetric circle then we may assume that ρ[0, 1] is a large
branch. Let τ̂ be the train track obtained from τ by a single ρ-split at ρ[0, 1].
The image of ρ under the map ϕ(τ, τ̂) is a special circle ρ̂ : [0,m] → τ̂ of the
same length as ρ. Moreover, ρ̂[1,m − 1] is a symmetric large trainpath. By our
above consideration, there is a splitting sequence consisting of a single split at each
branch of ρ̂. The image of ρ̂ under this sequence is a trainpath ρ′ on a train track τ ′

beginning and ending with a small half-branch which combines with ϕ(τ, τ ′)ρ̂[0, 1]
to a symmetric circle. Moreover, the map ϕ(τ, τ ′) of ρ onto ρ′ preserves the type
of the branches. By our explicit construction, if 2k + 1 is the length of the special
circle which is shift equivalent to ρ then after k such steps we obtain a train track
τ̃ which is the image of τ under a single Dehn twist along the circle ρ[0,m − 1],
with the twist direction determined by ρ. This shows the lemma. ¤

We say that the train track τ ′ as in Lemma 6.1 is obtained from the symmetric
large trainpath ρ : [0,m] → τ on τ by a level-one ρ-multi-split.

Now let τ ∈ V(T T ) be a complete train track which is splittable to a complete
train track σ. Define a level-one splittable σ-configuration to be a symmetric large
trainpath ρ : [0,m] → τ of maximal length with the property that a level-one ρ-
multi-split of τ is splittable to σ. A level-one non-splittable σ-configuration consists
of a single large branch e of τ so that no train track obtained from τ by a split at
e is splittable to σ. We have.

Lemma 6.2. Let τ be a train track which is splittable to σ. Then every large branch

e of τ is contained in a unique level-one σ-configuration, and two such level-one

σ-configurations either coincide or are disjoint.

Proof. By definition of a level-one σ-configuration and by uniqueness of splitting
sequences, a large branch e of τ such that no split of τ at e is splittable to σ
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is contained in a unique level-one σ-configuration, and this configuration is non-
splittable.

Now assume that there is a train track τ̃ obtained from τ by a split at e which is
splittable to σ. Let v be a switch of τ on which e is incident and let a be the branch
which is incident and small at v and which is a winner of the split connecting τ to
τ̃ . Let v′ be the second vertex on which a is incident. Assume first that a is a small
branch. Then there is a unique trainpath ρ : [0,m] → τ with ρ[0, 1] = e, ρ[1, 2] = a
and such that ρ[2,m] is the one-sided large trainpath on τ starting at v′ = ρ(2).
Write a′ = ρ[m− 1,m].

If a′ = a and if ρ(1) = ρ(m − 1) then ρ[0,m] is a loop which has a cusp at
ρ(1) and therefore the branch a is not contained in the level-one σ-configuration
containing e. In other words, in this case the switch v is contained in the boundary
of any level-one σ-configuration containing e. If a′ = a and if ρ(1) = ρ(m) then
ρ[0,m − 1] is a C1-embedded circle in τ . By construction, this circle c is clearly
symmetric. Thus c equals the level-one σ-configuration containing e if and only if
the train track obtained from τ by a c-multi-split is splittable to σ. If this is not the
case then the switch v is contained in the boundary of any level-one σ-configuration
containing e.

If a′ 6= a then the trainpath ρ[0,m] on τ is symmetric large, and the branch a
is contained in a level-one σ-configuration containing e if and only if the level-one
ρ-multi-split of τ is splittable to σ.

Now if the branch a is mixed then the branch ã corresponding to a in the train
track τ̃ obtained from τ by a single σ-split at e is large. The branch a belongs to a
level-one σ-configuration if and only if the train track obtained from τ̃ by a σ-split
at ã with the small branch corresponding to e in τ̃ as a winner is splittable to σ.
Moreover, this condition chooses uniquely one of the two neighbors of a which can
possibly be contained in a level-one σ-configuration containing e.

In finitely many steps of this form determined by σ we extend in this way our
trainpath starting at e beyond the switch v and passing through a until no further
such extension is possible. If the resulting trainpath is not closed then we repeat
this construction with the second switch w on which e is incident. By uniqueness of
our procedure, in finitely many steps we construct in this way a maximal symmetric
trainpath ρ so that the train track obtained from τ by a level-one ρ-multi-split is
splittable to σ. ¤

Now let τ ∈ V(T T ) and let ρ : [0,m] → τ be a symmetric large trainpath. Let
τ1 be the train track obtained from τ by the level-one multi-split along ρ. Then τ1
contains a symmetric large trainpath ρ1 : [0, n] → τ1 of length n ≤ m− 2 which is
contained in the image of ρ under the map ϕ(τ, τ1). Define the level-two ρ-multi-

split to be the train track τ2 obtained from τ1 by a level-one ρ1-multi-split. Then τ2
contains a symmetric large trainpath ρ2 of length at most m−4 which is contained
in the image of ρ1 under the natural bijection ϕ(τ1, τ2). Inductively in at most
m/2 steps we repeat this construction until the length of our trainpath vanishes.
The train track obtained from τ by a ρ-multi-split is by definition the train track
defined inductively in this way.
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Similarly, if ρ : [0,m] → τ is a symmetric circle then we define the ρ-multi-split

to be the train track obtained from τ by a sequence of ρ-splits and which is the
image of τ under a simple Dehn twist along the circle ρ[0,m − 1] as described in
Lemma 6.1.

Now assume that τ is splittable to σ and let ρ be a level-one σ-configuration as
defined in Lemma 6.2. We define the train track obtained from τ by a σ-move at ρ
to be the unique train track τ ′ with the following two properties.

(1) τ ′ is splittable to a train track obtained from τ by a ρ-multi-split.
(2) If η is splittabe to both σ and the train track obtained from τ by a ρ-multi-

split then η is splittable to τ ′.

For a train track τ which is splittable to a train track σ we define a σ-move

to be the following modification of τ . Let ρ1, . . . , ρk be the splittable level-one
σ-configurations of τ . By Lemma 6.2, these are uniquely defined pairwise disjoint
symmetric trainpaths on τ . We define the train track τ ′ obtained from τ by a
σ-move to be the train track resulting from σ-moves at each of the symmetric
trainpaths ρi.

For each complete train track τ which is splittable to a complete train track σ
define now inductively a sequence {τ(i)}0≤i≤m ⊂ E(τ, σ) beginning at τ and ending
at σ by requiring that for each i the train track τ(i + 1) is obtained from τ(i) by
a σ-move. We call the sequence the tight multi-sequence connecting τ to σ, and
we denote it by γ(τ, σ). Note that a tight multi-sequence is uniquely determined
by τ and σ. Moreover, since τ(i + 1) can be obtained from τ(i) by a non-trivial
splitting sequence of uniformly bounded length, there is a universal constant κ > 0
such that every tight multi-sequence defines a κ-quasi-geodesic in T T .

We call two curves c1 : [0, a1] → T T , c2 : [0, a2] → T T for some 0 ≤ a1 ≤ a2 <∞
weight-L fellow travellers if the following holds.

(1) d(c1(t), c2(t)) ≤ L(d(c1(0), c2(0)) + d(c1(a1), c2(a2))) for every t ∈ [0, a1].
(2) d(c1(a1), c2(t)) ≤ Ld(c1(a1), c2(a2)) for all t ∈ [a1, a2].

If c1, c2 are weight-L fellow travellers then the Hausdorff distance in T T between
the images c1[0, a1] and c2[0, a2] is bounded from above by L(d(c1(0), c2(0)) +
d(c1(a1), c2(a2))).

Lemma 6.3. There is a number L > 0 with the following property. Let λ be a

complete geodesic lamination carried by a complete train track τ and let σ, η ∈
E(τ, λ). Then the tight multi-sequences γ(τ, σ) and γ(τ, η) are weight-L fellow

travellers.

Proof. By Corollary 4.10, it suffices to show the existence of a number a > 0 with
the following property. Let dλ be the intrinsic path-metric on E(τ, λ). Then for
σ, η ∈ E(τ, λ) the curves γ(τ, σ) and γ(τ, η) are weight-L fellow travellers. Moreover,
by the explicit description of the intrinsic distance function on E(τ, λ), for our
purpose it is in fact enough to show this property for train tracks η, σ ∈ E(τ, λ)
such that σ can be obtained from η by a single split at a large branch e.
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Thus let {τ(i)}0≤i≤k be the tight multi-sequence connecting τ to σ and let
{ζ(i)}0≤i≤` be the tight multi-sequence connecting τ to η; then there is a largest
number i ≤ k such that ζ(i−1) = τ(i−1). If i−1 = ` then we have τ(`) = η. Since σ
can be obtained from η by a single split at a large branch e we obtain k = `+1, and
the distance between corresponding points on the tight multi-sequences connecting
τ to σ, η is at most one which shows our claim.

Now consider the case that i − 1 < `. Since ζ(i) 6= τ(i) the train track τ(i − 1)
contains a level-one σ-configuration ρ : [0,m] → τ(i− 1) so that the train track τ1
obtained from the σ-move at ρ is not splittable to η.

Assume first that the level-one ρ-multi-split is not splittable to η. Then there is
some j ≤ m such that a splitting sequence connecting τ(i−1) to η does not contain
a split at the branch ρ[j − 1, j]. We distinguish three cases.

Case 1: ρ[j − 1, j] is a large branch.

By the fact that σ can be obtained from η by a single split at a large branch
e and uniqueness of splitting sequences, the branch ρ[j − 1, j] coincides with e via
the map ϕ(τ(i − 1), η). Now the branch ρ[j, j + 1] is incident and small at ρ(j)
and hence no splitting sequence issuing from τ(i−1) which does not contain a split
at ρ[j − 1, j] contains a split at ρ[j, j + 1]. This implies that a splitting sequence
connecting τ(i − 1) to η does not contain a split at ρ[j, j + 1], and the same is
true for a splitting sequence connecting τ(i − 1) to σ. By our assumption on η, σ
and by the definition of a level-one σ-configuration, we conclude that ρ is not a
symmetric circle and that m = j. The same argument also shows that j = 1 and
hence ρ consists of a single large branch e. As a consequence, the train track τ(i)
can be obtained from η(i) by a single split at e. Inductively we conclude that for
every u ∈ {i, . . . , k} the train track τ(u) can be obtained from ζ(u) by a single
split at e. In other words, the distance between cooresponding points on the tight
multi-sequences γ(τ, σ) and γ(τ, η) is at most one.

Case 2: ρ[j − 1, j] is a mixed branch.

Assume without loss of generality that ρ[j − 1, j] is large at ρ(j − 1), i.e. that
the one-sided large trainpath issuing from ρ[j − 1, j] is the path ρ[j − 1, q] for some
q ≤ m. If j 6= 1 then the branch ρ[j − 2, j − 1] is small at ϕ(j − 1) and a splitting
sequence which does not contain a split at ρ[j − 1, j] can not contain a split at
ρ[j − 2, j − 1]. It now follows as in Case 1 above from the definition of a level-
one σ-configuration that we necessarily have j = 1. Then the trainpath ρ[1,m]
is symmetric large and defines a level-one η-configuration. By construction, this
implies that for every u ∈ {i, . . . , k} the train track τ(u) can be obtained from ζ(u)
by a single split at the branch e and hence the distance between corresponding
points on the tight multi-sequences γ(τ, σ) and γ(τ, η) is at most one.

Case 3: ρ[j − 1, j] is a small branch.

Assume first that ρ is a symmetric large trainpath. Then by definition, we
necessarily have 2 ≤ j ≤ m − 1 and the trainpaths ρ[0, j − 1] and ρ[j,m] are
level-one η-configurations. It follows from our explicit construction that for every
u ∈ {i, . . . , k} the train track τ(u) can be obtained from η(u) by a single split at e.
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If ρ is a symmetric circle then the trainpath ζ : [0,m − 2] → τ(i − 1) defined
by ζ[k, k + 1] = ρ[k + j − 1, k + j] (indices are taken modulo m − 1) is symmetric
large and an η configuration. By our definition, the ζ-multi-split is splittable to the
ρ-multi-split and therefore as before, for every u ∈ {i, . . . , k} the the train track
τ(u) can be obtained from η(u) by a single split at e.

In the case that the level-one σ-configuration ρ is also a level-one η-configuration
we can apply the above consideration to the train tracks obtained from τ(i − 1)
and σ(i − 1) by the level-one ρ-multi-split. Our control on the distance between
corresponding points on γ(τ, η) and γ(τ, σ) follows. This shows the lemma. ¤

In the following proposition, we denote by E(F, λ) the flat strip defined by a
train track in standard form for F which carries the complete geodesic lamination
λ.

Proposition 6.4. There is a number L > 0 with the following property. Let F
be any framing of S and let X ⊂ V(T T ) to be the set of all train tracks which

can be obtained from a train track in standard form for F by a splitting sequence.

Then there is a reflexive symmetric L-Lipschitz L-quasi-convex bicombing of X
equipped with the restriction of the metric on T T . If x ∈ E(F, λ), y ∈ E(F, ν)
for some λ, ν ∈ CL then the combing line connecting x to y is contained in the

L-neighborhood of E(F, λ) ∪ E(F, ν).

Proof. Let F be a framing for S and let τ be a complete train track in standard
form for F . Let λ be a complete geodesic lamination carried by τ . We construct
first a reflexive symmetric L-Lipschitz and L-quasi-convex bicombing of the flat
strip E(τ, λ) as follows.

Let η, σ ∈ E(τ, λ). Using the notations from Section 4, let ζ = Π1
E(τ,η)(σ). Define

γ to be the composition of the inverse of the tight multi-sequence connecting ζ to
η with the tight multi-sequence connecting ζ to σ. Define cη,σ to be the constant
speed reparametrization of γ on [0, 1]. Note that cσ,η is just the inverse of cη,σ and
hence this defines a symmetric reflexive L-Lipschitz bicombing of E(τ, λ). By the
results of Section 4 and Lemma 6.3, this bicombing is moreover L-quasi-convex for
a universal constant L > 1. If τ is a train track in standard form for the framing
F then we also write cF,σ instead of cτ,σ.

Now let η ∈ E(F, λ), β ∈ E(F, µ) and write ζ = ΠE(F,η)(β), ζ̃ = ΠE(F,β)(η). We
claim that the distance between corresponding points on the curves cF,ζ and cF,ζ̃

is uniformly bounded.

For this let σ be a subtrack of a train track τ and let σ′ be a train track obtained
from σ by a single split at a large branch e. Using the terminology from Section
4, let τ ′ be the train track which contains σ′ as a subtrack and is obtained from τ
as follows. Modify τ to a train track τ̃ obtained from τ by a σ-move at e and let
τ ′ be the train track obtained from τ̃ by a single split at the tight branch e and
which contains σ′ as a subtrack. If the σ-complexity χ(τ, σ) of τ coincides with
the σ′-complexity χ(τ ′, σ′) of τ ′ then the large branch e of σ defines an embedded
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trainpath in τ which is just the τ ′-configuration of τ as defined above. Moreover,
τ ′ is obtained from τ by a τ ′-move.

Together this shows the following. Let σ be any birecurrent generic train track
on S. Assume that σ is splittable to a train track σ′. Then we can define as
above a tight multi-sequence {σ(i)}0≤i≤p connecting σ = σ(0) to a train track
σ′ = σ(p). Let τ be a complete train track which contains σ as a subtrack and
let τ ′ be obtained from τ by a splitting sequence induced from a splitting sequence
connecting σ to σ′. Assume that χ(τ, σ) = χ(τ ′, σ′) and let {τ(j)} be the tight
multi-sequence connecting τ to τ ′. Then for every i ≤ p, the train track τ(i)
contains σ(i) as a subtrack. In particular, if η is another complete train track
containing σ as a subtrack, if η′ is obtained from η by a splitting sequence induced
from a splitting sequence connecting σ to σ′ and if {η(j)} is the tight multi-sequence
connecting η = η(0) to η′ = η(p) then the distance between corresponding points
on {τ(i)}, {η(j)} is bounded from above by Ld(τ, η) + L for a universal constant
L > 0.

Now for every splitting sequence {τ(i)} ⊂ V(T T ) induced by a splitting sequence
σ(j(i)) of subtracks σ(j(i)) < τ(i) the number of splits τ(i) → τ(i+1) which reduce
the complexity, i.e. such that χ(τ(i), σ(j(i))) > χ(τ(i+1), σ(j(i+1))), is uniformly
bounded. Together with Lemma 6.3 and using the explicit construction of the maps
ΠE(τ,η) and ΠE(τ,β) we deduce that the distance between corresponding points on
the tight splitting sequences connecting τ to β, η is uniformly bounded.

Now define γ to be the composition of the inverse of the tight multi-sequence in
E(τ, β) connecting ζ̃ to β with the tight multi-sequence connecting ζ to η. The curve
γ is not continuous but can be made continuous by inserting an arc of uniformly
bounded length parametrized on [0, 1] which connects ζ̃ to ζ. Let cσ,η be the
constant speed reparametrization of γ on [0, 1]. By the considerations in Section 4,
this defines indeed a reflexive symmetric L-Lipschitz L-quasi-convex bicombing of
X. ¤

7. The geometric rank

This section is devoted to the proof of Theorem B from the introduction. We
use an argument which is motivated by the work of Kleiner and Leeb [KL97].

Choose again a non-principal ultrafilter ω and consider the asymptotic cone T T ω

of T T with respect to ω and basepoint the constant sequence (τ0) where τ0 is a
train track in standard form for a framing F of S. Then T T ω is a complete geodesic
metric space (Lemma 2.5.2 of [KL97]). Since the mapping class group M(S) acts
properly and cocompactly as a group of isometries on T T , the asymptotic cone
T T ω is independent of the point τ0 and admits a transitive group of isometries
(Proposition 2.5.6 of [KL97]). If we denote by X ⊂ V(T T ) the set of all complete
train tracks which can be obtained from a train track in standard form for F by a
splitting sequence, equipped with the restriction of the metric on T T , then the cone
T T ω is bilipschitz equivalent to the asymptotic cone Xω of X with respect to ω and
the basepoint (τ0). By Corollary 4.10, for every complete geodesic lamination λ
carried by a train track τ ∈ V(T T ) in standard form for F the inclusion E(τ, λ) →
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T T is a quasi-isometric embedding and hence the cone T T ω contains a uniform
bilipschitz image C(λ) of the asymptotic cone of the flat strip E(τ, λ) with basepoint
the constant sequence (τ). Since E(τ, λ) is uniformly quasi-isometric to its maximal
extension C(τ, λ), the set C(λ) is uniformly bilipschitz equivalent to the asymptotic
cone C(τ, λ)ω of C(τ, λ). Therefore by Lemma 5.7, C(λ) is locally compact and its
topological dimension is bounded from above by 3g − 3 +m. We call the image of
a cone C(λ) of this form under an isometry of T T ω a cone. Note that each cone
in T T ω is an ultralimit of a sequence of flat strips in T T .

For k ≥ 0 let ∆k = {(x1, . . . , xk+1) ∈ R
k+1 | xi ≥ 0,

∑

i xi = 1} be the standard
k-simplex in R

k+1. For i ≥ 0 let ∆i be the subsimplex of ∆k which is the standard
face of dimension i obtained by intersecting ∆k with R

i+1 ⊂ R
k+1; we have ∆0 ⊂

∆1 ⊂ · · · ⊂ ∆k. A singular k-simplex in a topological space Y is a continuous map
σ : ∆k → Y . Denote by C∗(Y ) the chain complex of singular chains in Y . For a
subset V of Y and a number k > 0 let Ck(Y, V ) be the set of all singular k-chains
whose boundaries are contained in V . We use the results from Section 6 to show.

Lemma 7.1. Let ∅ 6= V ⊂ U ⊂ T T ω be open sets, let k ≥ 1 and let σ ∈ Ck(U, V )
be a singular k-chain with boundary in V . Then there is a singular k-chain Str(σ) ∈
Ck(U, V ) with the following properties.

(1) Str(σ) and σ define the same class in Hk(U, V ).
(2) Str(σ) is contained in a finite union of cones.

Proof. As before, denote by X ⊂ T T the set of all train tracks which can be
obtained from a train track in standard form for some fixed framing F of S by a
splitting sequence. We equipX with the restriction of the metric on T T . Let τ0 be a
train track in standard form for F . Since X is r-dense in T T for some r > 0, for ev-
ery non-principal ultrafilter ω the ω-asymptotic cone (Xω, dω) of X with basepoint
the constant sequence (τ0) is bilipschitz equivalent and hence homeomorphic to the
ω-asymptotic cone of T T with basepoint (τ0). In Proposition 6.4 we constructed
for some L > 1 a reflexive symmetric L-Lipschitz L-quasi-convex bicombing of X.
Taking the ω-limits of the combing lines defines a reflexive symmetric L-Lipschitz
bicombing of Xω and hence T T ω for a possibly different constant L > 0. If we
denote for x, y ∈ Xω by cx,y the combing line connecting x to y, then this bicomb-
ing is moreover L-convex in the following sense. For every quadruple x, y, x′, y′ of
points in Xω and all t > 0, we have dω(cx,y(t), cx′,y′(t)) ≤ L(dω(x, x′) + dω(y, y′)).
In particular, the combing lines depend continuously on their endpoints.

To every singular simplex σ : ∆k → Xω we associate a straightened simplex

Str(σ) inductively as follows. First let S0(∆k) be the 0-skeleton of ∆k consisting
of k + 1 vertices and define Str(σ)(S0(∆k)) = σ(S0(∆k)). Assume by induction
that the restriction of Str(σ) to the subsimplex ∆j has been defined for some
j ∈ {0, . . . , k − 1}. Let x be the vertex of ∆j+1 which is not contained in ∆j and
extend Str(σ) to ∆j+1 by connecting Str(σ)(x) to each point in Str(σ)(∆j) by
the combing line with the same endpoints. By the above observation, this defines
a continuous map Str(σ) : ∆k → Xω which coincides with σ on the vertices of
∆k. Since our bicombing is symmetric, straightening commutes with the boundary
maps. In particular, the boundary of the straightening of σ is the straightening of
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the boundary of σ. This means that Str defines a chain map of the chain complex
C∗(Y ). Moreover, there is a number L(k) > L such that if the diameter of the
vertex set of a singular simplex σ is smaller than some r > 0 then the diameter of
Str(σ) is smaller than L(k)r.

Now let ∅ 6= V ⊂ U be open sets in Xω and let σ ∈ Ck(U, V ) be a singular
chain. Since the image of σ is compact, there is a positive lower bound δ > 0 for
the distance betwen the image of σ and Xω − U and for the distance between the
boundary of σ and Xω − V . After a sufficiently fine barycentric subdivision we
may assume that the diameter of each simplex in our chain is at most δ/4L2(k).
Then the diameter of each singular simplex in the straightened chain Str(σ) is at
most δ/4L(k). Since the 0-skeleton of σ and Str(σ) coincide, the distance between
a point z ∈ σ and the corresponding point in the straightening Str(σ) is bounded
from above by the sum of the diameter of σ and Str(σ) and hence this distance is
at most δ/2L(k). In particular, the singular chain Str(σ) is contained in Ck(U, V ).

We claim that Str(σ) and σ define the same class in Hk(U, V ). Namely, connect
each point in σ to the corresponding point in its straightening by the combing
line connecting these two points. Since the length of a combing line is bounded
from above by L times the distance between its endpoints, these combing lines are
entirely contained in U , and the combing lines which connect a boundary point of
σ to a boundary point of Str(σ) are entirely contained in V . Thus the collection of
these combing lines define a k + 1-chain in Ck+1(U, V ) with boundary σ − Str(σ).
In other words, the relative cocycles σ, Str(σ) are homologous.

Now by construction, each straightened simplex of the chain Str(σ) is contained
in finitely many cones. More precisely, a vertex v of a singular simplex σ can be
represented by a sequence (xi) ⊂ X. If w is another vertex which is represented
by the sequence (yi) then for each i there is a combing line ci connecting xi to yi,
and the combing line cv,w is the ω-limit of the sequence (ci). In particular, this line
is contained in the union of the two cones containing (xi), (yi). As a consequence,
the straightened chain Str(σ) is contained in finitely many cones as well. This
completes the proof of the lemma. ¤

The following proposition completes the proof of Theorem B and of the corollary
from the introduction.

Proposition 7.2. If k > 3g − 3 +m then Hk(U, V ) = 0 for all pairs of open sets

V ⊂ U in T T ω.

Proof. Let ∅ 6= V ⊂ U ⊂ T T ω and assume that Hk(U, V ) 6= 0 for some k ≥ 1.
Then there is a singular k-chain c =

∑

i aici for some ai ∈ Z and for continuous
maps ci : ∆k → T T ω whose boundary is contained in V and such that this chain
is not homologous to a chain in V . By Lemma 7.1 we may assume without loss
of generality that the chain c is straightened. This means in particular that c is
contained in a finite union of cones. These cones are embedded in T T ω and are
glued along closed subsets. By Lemma 5.7 the topological dimension of a cone inXω

is not bigger than 3g−3+m. In other words, σ defines a nontrivial relative homology
class in Hk(U ′, V ′) where U ′ is an open subset in a topological space obtained from
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glueing a finite disjoint collection of standard proper cones of dimension at most
3g − 3 +m along a finite collection of closed subsets. But this just means that the
topological dimension of the set U ′ is at most 3g− 3 +m and hence we necessarily
have k ≤ 3g − 3 +m. This completes the proof of the proposition. ¤

Now let k ≥ 1, let c > 1 and let η : R
k → T T be a c-quasi-isometric embedding

with η(0) = τ0 for our basepoint τ0. Then the ω-asymptotic cone of R
k admits

a bi-Lipschitz embedding into the asymptotic cone T T ω of T T . Thus there is a
bilipschitz embedding of R

k into T T ω. Since R
k is an absolute retract, there are

open subsets U ⊃ V in T T ω such that the relative homology group Hk(U, V ) is
non-trivial. By Proposition 7.2 this means that k ≤ 3g − 3 + m which shows the
corollary from the introduction.

Corollary 7.3. The geometric rank of M(S) equals 3g − 3 +m.

8. Quasi-isometric rigidity

This section is devoted to the proof of Theorem A from the introduction. We
call a finitely generated group Γ quasi-isometrically rigid [M03b] if for every finitely
generated group H which is quasi-isometric to Γ there is a finite index subgroup H ′

of H and a homomorphism of H ′ with finite kernel onto a subgroup of Γ of finite
index. Our goal is to show that M(S) is quasi-isometrically rigid; in the case of
once-punctured surfaces (i.e. if m = 1) this result is due to Mosher and Whyte (see
[M03b]).

The curve graph C(S) of S is the locally infinite metric graph whose vertices are
the free homotopy classes of essential simple closed curves on S, i.e. simple closed
curves which are neither contractible nor freely homotopic into a puncture, and
where two such vertices c1, c2 are connected by an edge if and only if the curves
c1, c2 can be realized disjointly. There is a natural homomorphism ρ from the
extended mapping class group of all isotopy classes of homeomorphisms of S into
the group Aut(C(S)) of simplicial automorphisms of C(S). By a result of Ivanov
(see [I02]) and Luo [L00], if S is different from the closed surface of genus 2 and the
twice punctured torus, then ρ is an isomorphism. If S is a closed surface of genus
2 then ρ is surjective, with kernel the group Z/2Z generated by the hyperelliptic
involution. If S is the twice punctured torus, then the kernel of ρ is again the
subgroup Z/2Z generated by the hyperelliptic involution, and the image of ρ is a
subgroup of index 5 in Aut(C(S)). As a consequence, for the purpose of our theorem
it suffices to construct for every finitely generated group Γ which is quasi-isometric
to M(S) a homomorphism ρ : Γ → Aut(C(S)) with finite kernel and finite index
image.

We begin with constructing a Tits boundary T B for M(S). For this let λ be
a complete geodesic lamination with k ≥ 1 minimal components λ1, . . . , λk. After
reordering we may assume that for some s ≤ k the laminations λ1, . . . , λs are
minimal arational and the laminations λs+1, . . . , λk are simple closed geodesics.
For i ≤ k the complete lamination λ determines a sign sgnλ(λi) ∈ {+,−} for λi

as follows. If λi is minimal arational then we define the sign to be positive. If
λi is a simple closed curve then for a given orientation of λi, the orientation of
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S determines the right and the left side of λi in a tubular annulus about λi. The
complete lamination λ contains at least one leaf which spirals about λi from the left
side. If this spiraling leaf approaches λi in the direction given by the orientation
of λi then we choose the sign to be positive, otherwise the sign is chosen to be
negative. Since λ is complete by assumption, this choice of sign does not depend
on the orientation of λi used to define it (see the discussion in [H06a]). We simply
write sgnλ for this collection of signs or also sgn if no confusion is possible.

Using the notations from Section 5, for i ≤ s denote by A(λi) the asymptotic
cone of a flat strip C(ζ, λi) where ζ is a complete train track on the characteristic
surface Si for λi which carries λi. Recall that A(λi) is a proper CAT(0) cone
defined by a compact CAT(1)-space ∂A(λi), and it does not depend on ζ up to
uniform bilipschitz identification. Let again ∆k−1 = {(x1, . . . , xk) ∈ R

k | xi ≥
0,

∑

i xi = 1} be the standard k − 1-dimensional simplex in R
k and write ∆(λ) =

{∑i sgnλ(λi)xiµi | µi ∈ ∂A(λi), (x1, . . . , xk) ∈ ∆k−1}. The space ∆(λ) is uniquely
determined by λ up to permutations of the minimal components of λ and therefore
the topology on ∆(λ) induced from the topology on ∆k−1 and the compact Cat(1)-
spaces ∂A(λi) is independent of any choices. More precisely, with this topology
the space ∆(λ) is homeomorphic to the spherical join ∂A(λ1) ∗ · · · ∗ ∂A(λk) of the
spaces ∂A(λi) (i ≤ k) and hence ∆(λ) is homeomorphic to the boundary ∂C(τ, λ)ω

of the asymptotic cone of C(τ, λ). We equip the collection ˜T B = {∆(λ) | λ ∈ CL}
with the topology as a disjoint union of the spaces ∆(λ), i.e. ˜T B is naturally a
disjoint union of compact Cat(1)-spaces of dimension at most 3g− 4+m (compare
Section 5).

Define an equivalence relation ∼ on ˜T B as follows. Let again λ1, . . . , λk be the
minimal components of the complete geodesic lamination λ and let µ1, . . . , µm be
the minimal components of the complete geodesic lamination µ. After reordering
there is some ` ≤ min{m, k} such that the following holds.

(1) µi = λi for all i ≤ `.
(2) If λi is a simple closed curve for some i ≤ ` then sgnλ(λi) = sgnµ(λi).
(3) If there is some i > ` and a component λi of λ which coincides with a

component µj of µ for j > ` then sgnλ(λi) 6= sgnµ(µj).

Then both ∆(λ) and ∆(µ) contain the (signed) spherical join ∂A(λ1) ∗ · · · ∗ ∂A(λ`)
as a closed subspace, and we define x ∈ ∆(λ) to be equivalent to y ∈ ∆(µ) if and
only if x, y are both contained in this signed spherical join and define the same
point there.

By the definition of our topology on ˜T B, the equivalence relation ∼ is closed.
It identifies the spaces ∆(λ),∆(µ) for all complete geodesic laminations λ, µ which
contain the same unique minimal component λ0 which fills up S, i.e. which is
such that every simple closed curve on S intersects λ0 transversely. Note that the
number of such spaces which are identified in this way with a fixed space ∆(λ) is

bounded from above by a universal constant. The quotient space T B = ˜T B/ ∼ has
naturally the structure of a (locally infinite) complex of dimension 3g − 4 +m; it
is closely related to the curve graph on S (compare [MM99] for a discussion of the
curve complex). Note that we do not claim that T B is a cell complex in the usual



GEOMETRY OF THE MAPPING CLASS GROUPS III: QUASI-ISOMETRIC RIGIDITY 63

sense. Moreover, T B has infinitely many connected components. Namely, every
minimal geodesic lamination ν which fills up S defines a connected component of
T B which is homeomorphic to a single compact Cat(1)-space. However, since the

curve graph is connected, the components of ˜T B defined by geodesic laminations
with a minimal component which does not fill up S all map to the same connected
component T B0 of T B.

We call the image in T B of a set ∆(λ) ⊂ ˜T B a cell. Every spread out geodesic
lamination on S defines a cell which is naturally homeomorphic to a standard
3g − 4 +m-dimensional simplex, and we call these cells chambers. The vertices of
a chamber in T B either correspond to signed simple closed geodesics or to minimal
arational geodesic laminations which fill a bordered subtorus or an X-piece of S,
i.e. a bordered punctured sphere of Euler characteristic −2. Denote by T B1 the
subcomplex of T B which is the closure of the chambers. The complex T B1 is a
connected simplicial complex in the usual sense.

If S is not a closed surface of genus 2 or a twice punctured torus then we de-
fine M0(S) to be the extended mapping class group of all isotopy classes of any

homeomorphism of S including the orientation reversing ones. For a closed surface
S of genus 2 or a twice punctured torus we define M0(S) to be the quotient of
the extended mapping class group under the hyperelliptic involution. Then M0(S)
naturally acts on T B as a group homeomorphisms preserving the cell structure and
the subcomplex T B1.

As before, denote by Aut(C(S)) the group of simplicial automorphisms of the
curve graph C(S) of S. The automorphism group Aut(C(S)) naturally contains the
group M0(S) as a subgroup. In fact, equality holds if S is not a twice punctured
torus. Using this fact, the next lemma gives a description of the group of isotopy
classes of homeomorphisms of T B.

Lemma 8.1. (1) Every homeomorphism of T B preserves the subcomplex T B1.

(2) There is an injective homomorphism of the group of isotopy classes of home-

omorphisms of T B1 into Aut(C(S)) whose restriction to M0(S) is the iden-

tity.

Proof. Let ϕ by an arbitrary homeomorphism of T B. Since T B is the disjoint
union of the locally infinite connected subcomplex T B0 and infinitely many compact
components, ϕ preserves T B0. We claim that ϕ also preserves T B1.

For this let λ be a complete geodesic lamination with minimal components
λ1, . . . , λk which defines a cell ∆(λ) in T B of dimension 3g − 4 + m (by abuse

of notation we use now the same symbol for a the space ∆(λ) ⊂ ˜T B and its image
cell in T B). After reordering, there is a number s ≥ 0 such that the components
λ1, . . . , λs are precisely those simple closed curve components of λ which are con-
tained in the boundary of a characteristic subsurface Sj of a minimal arational
component λj of λ. Then for every i ≤ s, every complete geodesic lamination µ
which defines a cell ∆(µ) of dimension 3g − 4 +m and which contains each of the
minimal components λj for j 6= i also contains λi.
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Recall that a point in ∆(λ) defines a tuple (s1, . . . , sk) ∈ ∆k−1 and a tuple
(x1, . . . , xk) ∈ ∂A(λ1) × · · · × ∂A(λk). By the above consideration, for each i ≤ s
the set of all points in ∆(λ) corresponding to a tuple (s1, . . . , sk) ∈ ∆k−1 with
si = 0 and sj > 0 for j 6= i is contained in the boundary of precisely two cells
of maximal dimension, namely one cell for each choice of a sign for λi. If x has a
neighborhood in ∆(λ) which is homeomorphic to a closed half-space in R

3g−4+m

containing x in its boundary (which is always the case if ∆(λ) is a chamber), then x
has a neighborhood in T B0 which is homeomorphic to R

3g−4+m. Call the union of
all cells in T B0 of maximal dimension whose intersection with ∆(λ) is of this form
the star of ∆(λ). Define moreover inductively the multi-cell R(λ) containing ∆(λ)
to be the smallest subcomplex of T B0 which contains ∆(λ) and which contains with
each cell its star. Note that a multi-cell consists of a uniformly bounded number
of cells. Namely, if µ ∈ CL defines a cell contained in the multi-cell R(λ) then the
minimal components of µ coincide with the minimal components of λ. If the star
of a cell coincides with the cell itself then we also call this single cell a multi-cell.

We claim that a point x ∈ T B0 which is not contained in the interior of a
multi-cell does not have a neighborhood in T B0 which is homeomorphic to an open
subset of R

3g−4+m. Namely, let x ∈ T B0 be any point admitting a neighborhood
in T B0 which is homeomorphic to an open subset of R

3g−4+m. If x is not an
interior point of a multi-cell in T B0, i.e. if no neighborhood of x in T L0 is entirely
contained in a multi-cell, then x is necessarily contained in the boundary of a
cell of maximal dimension. Thus assume that x is contained in the boundary of
the cell ∆(λ) for some λ ∈ CL. Let λ1, . . . , λk be the minimal components of λ.
Then up to reordering, the point x defines a tuple (s1, . . . , sk) ∈ ∆k−1 and a tuple
(x1, . . . , xk) ∈ ∂A(λ1) × · · · × ∂A(λk) where s1 = 0.

Next assume that λ1 is a minimal arational geodesic lamination with character-
istic surface S1. Since the dimension of ∆(λ) equals 3g − 4 + m by assumption,
there are infinitely many pants decompositions of S1 whose union with ∪j≥2λj de-
termine a cell in T B0 of maximal dimension. Then x is contained in the boundary
of infinitely many such cells and hence a neighborhood of x in T B0 is not locally
compact. As a consequence, necessarily λ1 is a simple closed geodesic.

If λ1 is a simple closed geodesic which is not contained in the boundary of the
characteristic surface of a minimal arational component λi 6= λ1 of λ then there is
a bordered subsurface S1 of S of negative Euler characteristic containing λ1 which
does not have an essential intersection with ∪i≥2λi. Thus there are infinitely many
pairwise distinct simple closed geodesics which do not intersect ∪i≥2λi and which
define together with λ2, . . . , λk a cell of maximal dimension. As a consequence, x
is contained in infinitely many distinct such cells which contradicts our assumption
that there is a neighborhood of x in T B0 which is homeomorphic to a ball in
R

3g−4+m. This shows that indeed a point x ∈ T B0 has a neighborhood in T B0

which is homeomorphic to R
3g−4+m only if x is an interior point of a multi-cell. In

particular, every homeomorphism of T B0 preserves the union of all interior points
of all such multi-cells in T B0.

Our next goal is to give a topological characterization of multi-cells defined by
spread out geodesic laminations. Thus let λ be a spread out geodesic lamination
with minimal components λ1, . . . , λ3g−3+m which defines the multi-cell R(λ). Then
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R(λ) has a canonical structure of a finite simplicial complex. The boundary of R(λ)
is partitioned into finitely many sides, i.e. simplices of codimension one. Such a
side either is defined by a minimal arational component of λ or by a simple closed
geodesic which is not a boundary component of the characteristic surface of a
minimal arational minimal component of λ. Thus a neighborhood in T B of an
interior point x of such a side contains a set which is homeomorphic to a countable
collection of closed half-spaces in R

3g−4+m glued along their boundary, and x is
contained in the interior of the boundary of these half-spaces. In particular, such
a neighborhood is not homeomorphic to the neighborhood of a point in a side
of a chamber of codimension at least 2. In other words, there is an open dense
subset V of the boundary of the multi-cell R(λ) which consists of p > 0 open
disjoint sides, whose closure is the whole boundary of R(λ) and which admits a
purely topological characterization. On the other hand, if R(λ) is a multi-cell
and if λ is not spread out, then R(λ) contains points which admit a compact
neighborhood in R(λ) not containing any neighborhood which is homeomorphic
to an open subset of R

3g−3+m. But this just means that multi-cells defined by
chambers in T B admit a topological characterization and hence the image of a
multi-cell defined by a chamber under a homeomorphism ϕ of T B is again a multi-
cell defined by a chamber. As a consequence, every homeomorphism ϕ of T B
restricts to a homeomorphism of the simplicial complex T B1 which is homotopic
to a simplicial map.

Call a vertex v of T B simple if v is defined by a signed simple closed curve. For
a vertex a of T B1 let F(a) be the collection of all multi-cells containing a; we claim
that a is simple if and only if for every k ≥ 2 there are multi-cells F1, . . . , Fk ∈ F(a)
with Fi ∩ Fj = {a} for all i 6= j. Namely, if a is simple then for every k ≥ 1 we
can find k pants decompositions P1, . . . , Pk of S containing a as one of their pants
curves and such that every pants curve c ∈ Pi − {a} intersects at least one of the
curves in the collection Pj − {a} transversely. As a consequence, if Ci, Cj are two
chambers in T B1 defined by the pants decompositions Pi, Pj and a system of signs
which coincide for the vertex a then we have Ci ∩Cj = {a} by the definition of our
complex T B.

On the other hand, if a is a vertex of the simplicial complex T B1 which is not
simple then a is defined by a minimal arational geodesic lamination which fills a
non-trivial subsurface S0 of S. More precisely, there is a unique bordered subsurface
S0 of S with boundary ∂S0 6= ∅ and with the additional property that every simple
closed curve on S which has an essential intersection with ∂S0 also has an essential
intersection with a. Since a is a vertex of a chamber, the surface S0 either is a
once punctured torus or a forth punctured sphere. Therefore every multi-cell of
T B1 which contains a as a vertex also contains each component of the boundary
of S0 equipped with a choice of a sign. Since the boundary of S0 consists of at
most 4 components, if F1, . . . , F24+1 are 24 + 1 multi-cells containing the vertex a
then at least two of them, say the multi-cells C1, C2, contain the boundary ∂S0 of
S0 equipped with the same collection of signs and hence the intersection C1 ∩ C2

contains an edge. As a consequence, simple vertices can be distinguished from
non-simple ones by the multi-cells they are contained in and therefore a simplicial
automorphism of T B1 has to preserve the set of simple vertices.
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Recall that every simple vertex of T B1 consists of a simple closed curve on S
together with a sign. In other words, a simple closed curve a gives rise to two distinct
vertices (a,+), (a,−) which differ by their sign. We claim that a homeomorphism of
T B1 preserves the set of pairs ((a,+), (a,−)) of such vertices. For this we argue as
before. Namely, let a be a simple closed geodesic and let (a,+) be any simple vertex
of T B defined by a (here we mean that + is the sign of our vertex). Let C ⊂ T B1

be any chamber containing (a,+). Then the vertices of the side F of C opposite to
a correspond to a geodesic lamination with 3g − 4 +m minimal components. The
side F is also a side of a chamber which contains the simple vertex (a,−). In other
words, for every chamber C+ containing (a,+) as a vertex, the point (a,−) is a
vertex of a chamber C− with the same opposite side.

Now let C be a chamber which contains a vertex x defined by a minimal ara-
tional component filling up a subsurface which contains the simple closed curve a
in its boundary; note that such a chamber always exists. Then a is contained in
the boundary of a multi-cell which is not a chamber, and this multi-cell contains
both vertices (a,+), (a,−). The multi-cell is distinguished from a chamber by the
number of its sides, and the intersection of all these multi-cells consists precisely
of the two points (a,+), (a,−). This shows that the pair of vertices (a,+), (a,−)
is characterized by its intersection pattern with the chambers of T B1. Therefore
every simplicial automorphism of T B1 preserves the pairs of simple vertices deter-
mined by a simple closed geodesic on S. Thus such an automorphism ϕ induces a
bijection of the 0-skeleton of the curve graph C(S) of S.

This bijection preserves disjointness for simple closed curves. Namely, two simple
closed curves on S can be realized disjointly if and only if they define two distinct
vertices of a common chamber. In other words, a homeomorphism ϕ of T B1 defines
a simplicial automorphism of C(S). This completes the proof of our lemma. ¤

Let T C be the (simplicial) cone over the Tits boundary T B (compare [KL97]).
Define a chamber in T C to be the cone over a chamber in T B. Note that a chamber
is a 3g − 3 +m-dimensional standard proper cone. Define moreover an apartment

in T C to be a union of chambers which is homeomorphic to R
3g−3+m. Every

pants decomposition P of S defines 23g−3+m chambers, one for each choice of sign
combination for our pants curves, and the union of all these chambers defines an
apartment. The cone over a cell in T B is contained in an apartment if and only if
it is a chamber. Namely, we saw in the proof of Lemma 8.1 that a cell in T B of
maximal dimension which is not a chamber contains points which are not contained
in subsets of T B homeomorphic to R

3g−4+m and hence such a cell can not be con-
tained in an apartment. On the other hand, if λ is a spread out complete geodesic
lamination with minimal components λ1, . . . , λ3g−3+m and minimal arational com-
ponents λ1, . . . , λs then for each i ≤ s we can find a simple closed curve ci which
does not intersect λj for j 6= i and such that the curves c1, . . . , cs are disjoint. In
particular, for every subset {λi1 , . . . , λi`

} of the set {λ1, . . . , λs} for some ` ≤ s we
obtain a new chamber by replacing each of the components λij

of λ by the signed
simple closed curve (cij

,+) (j ≤ `). A signed simple closed curve component λi of
λ (i ≥ s+ 1) can be replaced by the same curve with the opposite sign. The union
of the chambers defined by λ with all those chambers obtained from all possible
combinations of such replacements defines an apartment by construction.
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Choose again a non-principal ultrafilter ω. Fix a framing F for S and letX be the
set of all train tracks which can be obtained from a train track in standard form for
F by a splitting sequence. Choose a train track τ0 in standard form for F and use the
constant sequence (τ0) as a basepoint for the asymptotic cone T T ω. Recall that for
every complete geodesic lamination λ ∈ CL the flat strip E(F, λ) is quasi-isometric
to its maximal extension C(F, λ) which is a Cat(0)-space, moreover E(F, λ) is
quasi-isometrically embedded in T T . As a consequence, the ω-asymptotic cone
C(F, λ)ω of C(F, λ) with basepoint a constant sequence is topologically embedded
in the ω-asymptotic cone T T ω of T T . The cone C(F, λ)ω is homeomorphic to the
euclidean cone over the cell ∆(λ). If λ1, . . . , λk are the minimal components of
λ then C(F, λ)ω = ∂A(λ1) ∗ · · · ∗ ∂A(λk) where for each i, ∂A(λi) is a compact
connected Cat(1)-space.

If ΠE(F,λ) : X → E(F, λ) is the projection as in Proposition 4.9 then for every
complete geodesic lamination ν the projection ΠE(F,λ)E(F, ν) of E(F, ν) is a com-
binatorially convex subset of E(F, λ) and hence its maximal extension is a complete
Cat(0)-space. The Hausdorff distance in T T between the graph ΠE(F,ν)E(F, λ) and
the graph ΠE(F,λ)E(F, ν) is uniformly bounded. The asymptotic cone E(F, λ)ω

of E(F, λ) contains the asymptotic cone of the projection ΠE(F,λ)E(F, ν). Let
λ1, . . . , λs be those minimal components of λ which are minimal components of
ν as well and with the additional property that for every minimal component λi

which is a simple closed curve, the sign sgnλ(λi) defined as above by λ for λi co-
incides with the sign sgnν(λi) defined by ν for λi. By Lemma 5.7, the asymptotic
cone of the projection ΠE(F,λ)E(F, ν) is the subset of E(F, λ)ω which is the cone
over ∂A(λ1) ∗ · · · ∗ ∂A(λs). As a consequence, our Tits cone T C is topologically
embedded in the asymptotic cone T T ω of T T .

As in Section 6.3 of [KL97], for a point z ∈ Z we say that two subsets S1, S2 of
Z have the same germ at z if S1 ∩U = S2 ∩U for some neighborhood U of z. The
equivalence classes of subsets with the same germ at z will be denoted GermzZ.
Write k = 3g − 3 +m for short. For x ∈ T T ω consider the collection S1(x) of all
germs of topological embeddings of R

k into T T ω passing through x. Note that each
such germ determines a local homology class of degree k whose support contains x.
Let S2(x) be the lattice of germs generated by S1(x) under finite intersection and
union. The following lemma is the analog of Lemma 6.3.1 of [KL97].

Lemma 8.2. The lattice S2(x) admits a natural embedding into the lattice KT C
of the Tits cone T C for T T ω generated by the cells of maximal dimension under

finite union. The image of this embedding contains the sublattice of the Tits cone

T C generated by the chambers under finite intersection and union.

Proof. Following Kleiner and Leeb (Section 6 of [KL97]), for a subset Y of a topo-
logical space Z and for [c] ∈ Hk(Z, Y ) define Supp(Z, Y, [c]) ⊂ Z − Y to be the
set of points z ∈ Z − Y such that the image of [c] in the local homology group
Hk(Z,Z − {z}) is nonzero. Then Supp(Z, Y, [c]) is a closed subset of Z − Y con-
tained in the image of any chain c representing the relative class [c].

Since the isometry group of T T ω acts transitively, it is sufficient to show the
claim of the lemma for the lattice S2(∗) defined by the basepoint ∗ of T T ω.
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By Lemma 6.2.1 of [KL97], every germ of a topological embedding of R
k through

∗ defines a nontrivial class in Hk(T T ω, T T ω)− {∗}, i.e. there is an open subset U
of T T ω − {∗} and a singular chain c ∈ Ck(T T ω, U) whose support contains ∗.

Recall from Section 7 the construction of straightening which associates to a
singular chain c representing [c] the straightened chain Str(c). Via passing to a
sufficiently small barycentric subdivision we may assume that the boundary of the
straightening Str(c) of c is contained in U . By Lemma 7.1, the chain Str(c) is
contained in a finite union P = ∪`

i=1Pi of cones Pi which intersect along their
boundaries. Now the support of the class [c] ∈ Hk(T T ω, U) is contained in the
image of Str(c), on the other hand it is defined by the germ of our embedding of
R

k into T T ω. Since the dimension of each cone is at most k, elements of S1(∗)
define finite unions of cells of maximal dimension in T C.

On the other hand, by the discussion in the beginning of this section, each cham-
ber is a finite intersection of apartments and hence of elements of S1(x). Intersec-
tions of chambers yield sides of the Tits cone, so we have a well defined inclusion
of lattices Θ : S2(x) → KT C containing the sublattice generated by the apartments
under finite union and intersection. ¤

If ϕ : T T ω → T T ω is any homeomorphism which fixes the basepoint ∗ = (τ0)
then ϕ induces a homeomorphism of lattices S2(∗) → S2(∗) and therefore by Lemma
8.1 and Lemma 8.2, this homeomorphism defines an element of Aut(C(S)). We state
this fact as a corollary.

Corollary 8.3. There is a homomorphism from the group of homeomorphisms of

T T ω which fix the basepoint ∗ into the group Aut(C(S)).

Proof. If ϕ is a homeomorphism of T T ω fixing ∗ then by our above discussion,
ϕ determines a homeomorphism ϕ̃ of subcone of the Tits cone T C containing the
simplicial cone over the complex T B1. We then associate to ϕ the element ρ(ϕ) ∈
Aut(C(S)) whose restriction to the cone over T B1 coincides with the restriction of
ϕ̃ up to an isotopy preserving the simplicial structure of T B1. ¤

Now we are ready to complete the proof of Theorem A from the introduction.
Namely, let Γ be a finitely generated group with a word norm | | defined by a finite
symmetric set of generators. The norm | | defines a distance function d on Γ via
d(g, h) = |g−1h| which is invariant under left translation. With respect to this
distance, the group Γ acts on itself as a group of isometries by left translation.
Assume that Γ is quasi-isometric to M(S), i.e. that there is a quasi-isometry
Θ0 : Γ → M(S). Since M(S) is equivariantly quasi-isometric to T T [H06a] and
hence it is quasi-isometric to X, there is a quasi-isometry Θ : Γ → X ⊂ V(T T )
with Θ(e) = τ0 (here e denotes the unit) and inverse Λ : X → Γ where τ0 is a
train track in standard form for the framing F defining X. Via this quasi-isometry,
the group Γ induces a quasi-action as a group of uniform quasi-isometries on X
as follows. The quasi-isometry determined by g ∈ Γ is the map ϕ(g) defined by
ϕ(g)(η) = Θ ◦ g ◦ Λ(η) where g acts on Γ by left translation. By construction,
there is a universal constant L > 0 such that d(ϕ(g)ϕ(h)(η), ϕ(gh)(x)) ≤ L for all
g, h ∈ Γ and all x ∈ X (compare the discussion in [M03b]). The quasi-action of Γ on
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X then induces an action of Γ as a group of uniformly bilipschitz homeomorphisms
on the asymptotic cone T T ω = Xω. Since the basepoint ∗ = (τ0) is the ultralimit
of both the constant sequence (τ0) and the constant sequence (Θ ◦ g ◦ Λ(τ0)), this
action preserves the basepoint ∗ = (τ0). By Corollary 8.3 there is a homomorphism
of the group of homeomorphisms of T T ω preserving ∗ into the group Aut(C(S))
and therefore we obtain a homomorphism Γ → Aut(C(S)). We summarize our
discussion as follows.

Lemma 8.4. Let Γ be quasi-isometric to M(S); then there is a homomorphism

ρ : Γ → Aut(C(S)).

For the proof of the theorem in the introduction we are left with showing that
the kernel of our homomorphism is finite and that its image is of finite index.

We follow again [KL97]. Namely, the following result is the analog of Proposition
7.1.1 of [KL97]. For its formulation, for a constant D > 0 define a D-Hausdorff

envelope of a set A ⊂ X to be a set B containing A in its D-neighborhood. Define
a maximal quasi-flat in T T to be the image under an element of M(S) of a finite
union of flat strips which is uniformly quasi-isometric to R

3g−3+m. Then the as-
ymptotic cone of such a maximal quasi-flat with respect to a basepoint defined by
a constant sequence is an apartment in the Tits cone T C. Define more generally
an apartment (or a chamber) in the asymptotic cone T T ω to be the image of an
apartment (or a chamber) in the Tits cone T C under an isometry of T T ω. Then an
apartment consists of finitely many chambers. A chamber is bilipschitz equivalent
to a standard partition cone of dimension 3g − 3 +m. This cone is determined by
its boundary which admits a natural identification with a compact convex subset in
the standard unit sphere S3g−4+m with dense interior. For a number δ > 0 define a
δ-truncated chamber to be the closed subcone of a chamber A defined by the com-
pact convex subset of the boundary ∂A of A consisting of all points whose spherical
distance to the boundary of ∂A in S3g−4+m is at least δ. A δ-truncated apartment

is obtained from an apartment by replacing a chamber by the δ-truncated cham-
ber contained in its interior. We define moreover a δ-truncated maximal quasi-flat

in T T to be a subset of a maximal quasi-flat Y whose asymptotic cone is the δ-
truncated apartment contained in the asymptotic cone of Y . We have (compare
[KL97]).

Proposition 8.5. Let Q be a family of subsets of T T which are uniformly quasi-

isometric to R
3g−3+m. Then for every δ > 0 there is a constant D = D(δ) > 0 so

that any set Q ∈ Q is a D-Hausdorff envelope of a δ-truncated maximal quasi-flat.

Before we show the proposition we use it to derive the theorem from the intro-
duction.

Corollary 8.6. If Γ is quasi-isometric to M(S) then there is a homomorphism

Γ → Aut(C(S)) with finite kernel and finite index image.

Proof. We observed above that a quasi-isometry Θ0 : Γ → M(S) of a finitely
generated group Γ into M(S) induces a quasi-isometry Θ : Γ → X with inverse
Λ : X → Γ. We may assume that Θ maps the identity e in Γ to a train track τ0
in standard form for the framing F as above. We showed above that there is a
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homomorphism ρ : Γ → Aut(C(S)) obtained from the fact that Γ acts as a group
of homeomorphisms on the asymptotic cone T T ω preserving the basepoint (τ0).
The homeomorphism induced by an element h ∈ Γ is the ultralimit of the map
ϕ(h) = Θ ◦ h ◦ Λ.

We have to show that the kernel of this homomorphism is finite. For this assume
to the contrary that the kernel is an infinite subgroup H of Γ. Let d be the distance
in Γ induced by a word norm; then there is a sequence of elements hi ∈ H (i ≥ 0)
with d(e, hi) → ∞ (i→ ∞). Let Q0 ⊂ T T be a finite collection of maximal quasi-
flats in T T defined by a finite collection P = {P1, . . . , Ps} of pants decompositions
of S. By this we mean that for each Q ∈ Q0 there is some j ≤ s such that Q is a
union of flat strips E(τ `

j , λ
`
j) where ` ≤ 23g−3+m, where τ `

j is a complete train track

in standard form for Pj , where the complete geodesic laminations λ`
j have Pj as

the union of their minimal components and where the signs defined by λ`
j for the

pants curves of Pj run through all possible sign combinations. We require that for
every i and every pants curve γ ∈ Pi there is some j 6= i and some γ̃ ∈ Pj which
intersects γ transversely. We may assume that for every D > 0 the intersection of
the D-neighborhoods of these quasi-flats is a compact neighborhood of τ0 in T T .

Let Q = ∪ϕ(hi)Q0; since the maps ϕ(hi) = Θ ◦ hi ◦ Λ are uniform quasi-
isometries of T T , the family Q satisfies the assumptions in Proposition 8.5. Thus
by Proposition 8.5, for a small number δ > 0 there is a constant D > 0 such that
each of the sets ϕ(hi)Q (Q ∈ Q0, i > 0) is a D-Hausdorff envelope of a δ-truncated
maximal quasi-flat F (hi, Q) in T T .

Let A(hi, Q) be the asymptotic cone of ϕ(hi)Q with basepoint the constant
sequence ϕ(hi)τ0 = ∗. Then A(hi, Q) is a bilipschitz-embedded euclidean space of
dimension 3g − 3 + m passing through ∗ which contains the asymptotic cone of
the δ-truncated maximal quasi-flat F (hi, Q) with basepoint (ϕ(hi)τ0) = ∗. As a
consequence, A(hi, Q) equals the unique apartment which contains the δ-truncated
quasi-flat F (hi, Q). In particular, this apartment contains the basepoint ∗ and hence
it is an apartment in the Tits cone T C. However, by assumption the elements hi are
contained in the kernel of the homomorphism ρ and therefore A(hi, Q) = Qω for all
i where Qω is the asymptotic cone of Q with basepoint a constant sequence. As a
consequence, ϕ(hi) maps each of the maximal quasi-flats Q ∈ Q0 to a set containing
the δ-truncated maximal quasi-flat F (hi, Q == Qδ ⊂ Q in its D-neighborhood for
a universal constant D > 0.

After possibly increasing D, the D-neighborhoods of the maximal truncated
quasi-flats Qδ ⊂ Q ∈ Q0 intersect, and this intersection is contained in a uniformly
bounded neighborhood of e. Therefore for each i the 2D-neighborhoods of the
sets ϕ(hi)(Q) (Q ∈ Q0) contain intersection points in a uniformly bounded neigh-
borhood of e which is independent of i. On the other hand, the maps ϕ(hi) are
L-quasi-isometries for a universal constant L > 0 and hence the intersection of the
2D-neighborhoods of the images ϕ(hi)(Q) (Q ∈ Q0) is contained in a uniformly
bounded neighborhood of the image under ϕ(hi) of the intersections of the 2LD-
neighborhoods of the sets Q ∈ Q0. By the choice of our family Q0, this implies
that the distance between ϕ(hi)(τ0) and τ0 is bounded from above by a universal
constant not depending on i. Now the map Θ : Γ → X is a quasi-isometry with
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inverse Λ and therefore we conclude that the distance between hi = hi(Λτ0) and
e = Λ(τ0) in Γ is uniformly bounded from above as well. This is a contradiction
and shows that the kernel H of our homomorphism ρ is a finite subgroup of Γ.

Our above argument shows that for every h ∈ Γ, the distance between ϕ(h)(τ0)
and Θ(h) is uniformly bounded. From this we deduce that the image of the homo-
morphism ρ is of finite index in M(S). Namely, if this is not the case then there is
a sequence {gi} ⊂ M(S) with d(gi, ρ(Γ)) → ∞. Since the quasi-isometry Θ0 : Γ →
M(S) is coarsely surjective there is a sequence {hi} ⊂ Γ with d(Θ0(hi), gi) ≤ c
for a fixed constant c > 0. This means that d(Θ0(hi), ϕ(hi)(τ0)) → ∞ which is
impossible by our above argument. This completes the proof of our corollary and
hence the proof of the theorem from the introduction. ¤

We are left with the proof of Proposition 8.5. For this we follow Section 7
of [KL97]. Namely, let Q be a family of uniformly quasi-isometrically embedded
euclidean spaces R

3g−3+m in X as in Proposition 8.5. Consider first a single set Q
from the family Q and choose a basepoint q ∈ Q. By assumption, the ultralimit
ω− lim( 1

n
Q, q) is an apartment A(Q) in the asymptotic cone ω− lim( 1

n
X, q) which

contains the basepoint ∗ = (q). Such an apartment consists of a finite union of
chambers which meet at the chamber walls.

Let ∗xω be a line segment contained in the δ-truncated apartment Aδ ⊂ A(Q)
and issuing from the basepoint ∗. Note that a chamber has naturally the structure
of a standard cone, so this is well defined. Note also that by the definition of a
chamber, the line segment ∗xω coincides with the combing line connecting ∗ to xω.
There is a sequence (xn) ⊂ Q of points such that ω − lim(xn) = xω. Since xn ∈ X
for all n, for every n there is a train track in standard form for F which is splittable
to xn. For ω-almost all n this train track coincides with a fixed track τ0, so we may
assume that τ0 is splittable to xn for all n. Then for each n the flat strip E(τ0, xn)
is defined. We view E(τ0, xn) as a subset of its Cat(0)-extension C(τ0, xn).

Let dn ≤ cn for all n and a fixed number c > 0 and assume that dn → ∞
(n → ∞). Then the ultralimit ω − lim( 1

dn
Q, q) is an apartment in T T ω which

necessarily coincides with A(Q). If ω − lim dn/n → 0 then the ultralimit of the
geodesic arcs in C(τ0, xn) connecting τ0 to xn is a geodesic ray in the asymptotic
cone C = ω− limn→∞

1
dn
C(τ0, xn) which defines a point ζ in the Tits boundary of

T T ω. This point coincides with the point in the boundary of the apartment A(Q)
defined by the unique geodesic extension of the line segment ∗xω.

Sublemma: There is a number r > 0 so that for ω-all n the sets E(τ0, xn) are
contained in the tubular r-neighborhood of Q.

Choose a point zn ∈ E(τ0, xn) at maximal distance dn from Q. Note that there
is a universal constant c > 0 such that dn ≤ cn. We argue by contradiction and we
assume that ω − lim dn = ∞. Since E(τ0, xn) is connected, via possibly changing
zn we may assume that ω− lim dn/n = 0. The asymptotic cone ω− lim( 1

dn
T T , τ0)

contains the cell E = ω − limn
1

dn
E(τ0, xn) and the apartment ω − limn

1
dn
Q =

A(Q). The point zω = (zn) is contained in E but not in A(Q) and therefore E
is not contained in A(Q). We may assume that there is a point x′ω ∈ ∂∞A(Q)
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in the asymptotic boundary of A(Q) obtained from an ω-limit of combing lines
in Q connecting ∗ to xn. However, this limit of lines is a combing segment in
T T ω connecting ∗ to xω and hence is necessarily contained in E as well. As a
consequence, the flat strips E,A(Q) intersect in the ray. Since the ray is regular,
it is contained in the interior of a unique regular chamber and hence the chamber
E is contained in A(Q), a contradiction which shows the sublemma.

Now since the point xω in the δ-truncated apartment Aδ was arbitrary we con-
clude as in [KL97] that there is a number R > 0 such that each Q ∈ Q contains
the truncated maximal quasi-flat defining the truncated apartment Aδ in its R-
neighborhood. This completes the proof of the proposition. ¤
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[O96] J. P. Otal, Le Théorème d’hyperbolisation pour les variétés fibrées de dimension 3,
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