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URSULA HAMENSTÄDT AND SEBASTIAN HENSEL

Abstract. The outer automorphism group Out(F2g) of a free group on 2g generators nat-
urally contains the mapping class group of a punctured genus g surface Sg,1 as a subgroup.
We define a “subsurface projection” of the sphere complex of the connected sum of n copies
of S1 × S2 into the arc complex of Sg,1. Using this, we show that Map(Sg,1) is a Lipschitz
retract of Out(F2g). We use another “subsurface projection” to give a simple proof of a result
of Handel and Mosher [HM13a] stating that stabilizers of conjugacy classes of free splittings
and corank 1 free factors in a free group Fn are Lipschitz retracts of Out(Fn).

1. Introduction

The mapping class group Map(Sg,m) of a closed surface Sg,m of genus g with m ≥ 0 punc-
tures is the quotient of the group of homeomorphisms of Sg,m by the connected component of
the identity. The classical Dehn-Nielsen-Baer theorem identifies Map(Sg,m) with a subgroup
of the outer automorphism group Out(π1(Sg,m, p)) of the fundamental group of Sg,m (compare
e.g. [FM11, Theorem 8.8]). This subgroup consists of all elements which preserve the set of
conjugacy classes of the puncture parallel curves.

The mapping class group acts properly and cocompactly on the so-called marking complex
of Sg,m [MM00] whose vertices are certain finite collections of simple closed curves. In partic-
ular, Map(Sg,m) is finitely generated, and it admits a family of left invariant metrics so that
the orbit map for the action on the marking complex is a quasi-isometry.

Given an essential subsurface F of Sg,m, there is a simple way to project a simple closed
curve or a marking of Sg,m to a simple closed curve or a marking of F . This construction
determines a natural coarse Lipschitz retraction of the marking complex of Sg,m onto the
marking complex of F which is equivariant with respect to the action of Map(Sg,m) and
the stabilizer of F in Map(Sg,m). A coarse Lipschitz retraction of a metric space X onto a
subspace Y is a self-map p : X → Y which is coarsely Lipschitz and which restricts to the
identity map of Y .

Viewing marking complexes as geometric models for the mapping class groups yields among
others a simple construction of a Lipschitz retraction of the mapping class group Map(Sg) onto
the mapping class group Map(S1

g−1) of a surface with a boundary component (namely, the
subgroup consisting of all elements which fix a subtorus with connected boundary pointwise
up to isotopy [MM00]). Algebraically, this means that one has a Lipschitz retraction of the
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outer automorphism group of the fundamental group of a surface of genus g ≥ 2 onto the
automorphism group of the fundamental group of a surface of genus g − 1. Here, and in the
sequel, we interpret finitely generated groups as metric spaces by choosing generating sets
and equipping them with word norms.

The outer automorphism group Out(Fn) of the free group with n ≥ 2 generators also
admits a simple topological model. Namely, let Wn be the connected sum of n copies of
S1 × S2. By a theorem of Laudenbach [L74], Out(Fn) is a cofinite quotient of the group of
all isotopy classes of orientation preserving homeomorphisms of Wn.

Define a simple sphere system in Wn to consist of a collection of essential embedded spheres
which decompose Wn into a union of balls. The sphere system graph is the locally finite graph
whose vertices are simple sphere systems up to isotopy and where two such sphere systems
are connected by an edge if they can be realized disjointly [HV96, AS11]. One analog of a
”subsurface” is a subset of Wn which is a component H of the complement of a collection of
disjointly embedded essential spheres. We now can attempt to define a subsurface projection
by a surgery procedure paralleling the construction for surfaces.

However, unlike in the case of simple closed curves on a surface, there does not seem to
be a canonical way to define such a projection for sphere systems, and the best we can do is
defining a projection into the manifold H0 obtained from H by filling the boundary spheres
with balls. This construction results among others in a coarsely equivariant projection of
Out(Fn) into the outer automorphism group of the fundamental group of H0, however we do
not obtain a projection into the automorphism group (see [BF12, SS12] for a recent account
on such a construction).

If we work with the automorphism group Aut(Fn) of Fn instead then this problem does
not arise (compare [HM13a]). This observation can be used to give a topological proof of a
result of Handel and Mosher [HM13a]. For its formulation, note that for every n ≥ 2 the
subgroup of Aut(Fn) of all elements which preserve a free splitting Fn = Z∗Fn−1 is naturally
isomorphic to Aut(Fn−1).

Theorem 1. There is a coarsely equivariant Lipschitz retraction

Aut(Fn)→ Aut(Fn−1).

If we give up on the idea of an equivariant retraction of Out(Fn) onto the stabilizer of the
conjugacy class of a free splitting of Fn then we can make consistent choices of basepoints
and use this to give a simple topological proof of the following result of Handel and Mosher
[HM13a].

Theorem 2. i) The stabilizer of the conjugacy class of a free splitting Fn = G ∗ H is a
coarse Lipschitz retract of Out(Fn).

ii) Let G < Fn be a free factor of corank 1. Then the stabilizer of the conjugacy class of G
is a coarse Lipschitz retract of Out(Fn).

There also are stabilizers of “subsurfaces” for which we can construct equivariant Lipschitz
retractions in complete analogy to the case of surfaces. Namely, for g ≥ 1 the fundamental
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group of a surface Sg,1 of genus g ≥ 1 with one puncture is the free group F2g. In particular,
the mapping class group Map(Sg,1) is a subgroup of Out(F2g). We define a natural subsurface
projection of spheres in W2g onto arcs in Sg,1 and use this fact to construct an equivariant
Lipschitz retraction of the sphere system graph of W2g to the marking graph of S2g,1. This
leads to the following

Theorem 3. Map(Sg,1) is a coarse Lipschitz retract of Out(F2g).

There is an analog of Theorem 3 for graphs which admit cofinite actions of Mod(Sg,1)
and Out(F2g), respectively. Namely, let AG(Sg,1) be the arc graph of Sg,1. The vertex set
of AG(Sg,1) is the set of isotopy classes of essential embedded arcs connecting the puncture
of Sg,1 to itself. Two such vertices are connected by an edge if the corresponding arcs are
disjoint up to homotopy. The mapping class group Map(Sg,1) of a once-punctured surface
acts on AG(Sg,1).

Define the sphere graph SG(W2g) of W2g as the graph whose vertex set is the set of isotopy
classes of embedded essential spheres in W2g. Two such vertices are connected by an edge if
the corresponding spheres are disjoint up to homotopy. As for the curve graph of a surface
[MM99] or the disc graph of a handlebody [MS13], the sphere graph is hyperbolic of infinite
diameter [HM13b, HiHo12]. The tools developed for the proof of Theorem 3 yield the following
analog of a property of the disc graph [MS13, H14].

Proposition 4. There is a Map(Sg,1)–equivariant embedding of the arc graph AG(Sg,1) into
the sphere graph SG(W2g) whose image is an equivariant 1-Lipschitz retract of SG(W2g).

The article is organized as follows. In Section 2 we recall the preliminaries on the topological
models for Out(Fn) which we use in the sequel. In Section 3 we prove Theorem 1 and
Theorem 2. Finally, Section 4 contains the proof of the main Theorem 3 and Proposition 4.

Acknowledgments: The authors would like to thank the anonymous referee for numerous
suggestions on how to improve the article.

2. Preliminaries

In this section we set up the basic notation for the rest of the article and recall some
important facts and theorems about Out(Fn) and its topological models.

Let Fn be the free group of rank n. By Out(Fn) we denote the outer automorphism group of
Fn. Explicitly, Out(Fn) is the quotient of the automorphism group Aut(Fn) by the subgroup
of conjugations.

A free splitting of Fn consists of two subgroups G,H < Fn such that Fn = G ∗H. By this
we mean the following: the inclusions of G and H into Fn induce a natural homomorphism
G ∗ H → Fn, where ∗ denotes the free product of groups. By stating that Fn = G ∗ H we
require that this homomorphism is an isomorphism. It is possible also to define free splittings
using actions of Fn on trees (see [HM13a, Section 1.4]) but for our purposes the former point
of view is more convenient. We say that an automorphism f of Fn preserves the free splitting
Fn = G ∗H, if f preserves the groups G and H setwise.
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A corank 1 free factor is a subgroup G of Fn of rank n− 1 such that there exists a cyclic
subgroup H of Fn with Fn = G ∗ H. We say that an automorphism f of Fn preserves this
corank 1 free factor, if f preserves the group G. We emphasize that f is not required to
preserve the cyclic group H, and that the group H is not uniquely determined by G.

An element ϕ ∈ Out(Fn) is said to preserve the conjugacy class of the free splitting G ∗H
(or corank 1 free factor G), if there is a representative f of ϕ which preserves the free splitting
G ∗H (or the corank 1 free factor G).

We will prove our results on the geometry of Out(Fn) using the topology of the connected
sum Wn of n copies of S2 × S1 (where Sk denotes the k–sphere). Alternatively, Wn can
be obtained by doubling a handlebody Un of genus n along its boundary. Since π1(Wn) =
Fn, there is a natural homomorphism from the group Diff+(Wn) of orientation preserving
diffeomorphisms of Wn to Out(Fn). This homomorphism factors through the mapping class
group Map(Wn) = Diff+(Wn)/Diff0(Wn) of Wn, where Diff0(Wn) is the connected component
of the identity in Diff+(Wn). In fact, Laudenbach [L74, Théorème 4.3, Remarque 1)] showed
that the following stronger statement is true.

Theorem 2.1. There is a short exact sequence

1→ K → Diffeo+(Wn)/Diffeo0(Wn)→ Out(Fn)→ 1

where K is a finite group, and the map Diffeo+(Wn)/Diffeo0(Wn) → Out(Fn) is induced by
the action on the fundamental group.

By [L74, Théorème 4.3, part 2)], we can replace diffeomorphisms by homeomorphisms in
the definition of the mapping class group of Wn.

An embedded 2-sphere in Wn is called essential, if it defines a nontrivial element in π2(Wn).
Equivalently, an embedded 2-sphere is essential if it does not bound a ball in Wn. Throughout
the article we assume that 2-spheres are smoothly embedded and essential, unless explicitly
stated otherwise.

A sphere system is a set {σ1, . . . , σm} of essential spheres in Wn no two of which are
homotopic. A sphere system is called simple if its complementary components in Wn are
simply connected.

There are several ways of organizing spheres and sphere systems into graphs. The sphere
graph SG(Wn) is the graph whose vertex set is the set of isotopy classes of essential spheres
in Wn. Two distinct vertices are joined by an edge if the corresponding isotopy classes of
spheres have representatives which are disjoint. This graph is naturally isomorphic to the
free splitting graph of the free group Fn (compare [AS11]).

The simple sphere system graph S(Wn) is the graph whose vertex set is the set of homotopy
classes of simple sphere systems. Two distinct such vertices are joined by an edge of length
1 if the corresponding sphere systems are disjoint up to homotopy (compare [Ha95] and
[HV96]). We will usually not distinguish between the homotopy class of a sphere system and
the vertex in S(Wn) it defines. We note that if Σ ⊂ Σ′ are two sphere systems which are
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contained in each other, then the corresponding vertices in S(Wn) are joined by an edge (one
can homotope Σ slightly off itself to make it disjoint). In fact, there is a coarse converse:

Lemma 2.2. There is a number K > 0 with the following property. If Σ,Σ′ are disjoint
sphere systems, then Σ′ can be obtained from Σ by at most K moves, each of which removes
a sphere or adds a disjoint one.

Proof. If Σ and Σ′ are disjoint, then they are contained in a common maximal sphere system.
Every maximal sphere system in Wn has exactly 3n− 3 spheres (compare [Ha95]), and thus
K = 3n− 3 satisfies the requirement in the lemma. �

As a consequence of Lemma 2.2, the graph in which edges correspond to inclusions (see
e.g. [HiHo12]) is quasi-isometric to S(Wn), and therefore the arguments of this article would
also apply to that graph.

The surgery procedure described in Section 3 of [HV96] shows that S(Wn) is connected.
Furthermore, the mapping class group of Wn acts on S(Wn) properly discontinuously and
cocompactly (see e.g. the proof of Corollary 4.4 of [HV96] for details on this). The finite
subgroup K of Map(Wn) occurring in the statement of Theorem 2.1 acts trivially on isotopy
classes of spheres and hence Out(Fn) acts on S(Wn) simplicially as well. The Švarc-Milnor
lemma then applies and yields the following

Lemma 2.3. The sphere system graph S(Wn) is quasi-isometric to Out(Fn).

In particular, we warn the reader that S(Wn) is not quasi-isometric to the sphere graph
SG(Wn).

We also need a variant Wn,1 of the manifold Wn with a fixed basepoint. All isotopies and
homeomorphisms of Wn,1 are required to fix the basepoint. In particular, isotopies of spheres
in Wn,1 are not allowed to move the sphere across the basepoint.

Most of the discussion above is equally valid for Wn,1. Since Wn,1 has a designated base-
point, every homeomorphism of Wn,1 induces an actual automorphism of π1(Wn,1). In fact,
we have

Theorem 2.4. There is a short exact sequence

1→ K → Diffeo+(Wn,1)/Diffeo0(Wn,1)→ Aut(Fn)→ 1

where K is a finite group, and the map Diffeo+(Wn,1)/Diffeo0(Wn,1) → Aut(Fn) is induced
by the action on the fundamental group.

We call a sphere in Wn,1 essential, if it does not bound a ball (which may contain the
basepoint). In this way, every essential sphere in Wn,1 defines an essential sphere in Wn by
“forgetting the basepoint”. We define S(Wn,1) to be the graph of simple sphere systems in
Wn,1. Edges in S(Wn,1) again correspond to disjointness up to homotopy. In this setting, the
Švarc-Milnor lemma implies

Lemma 2.5. The sphere system graph S(Wn,1) is quasi-isometric to Aut(Fn).
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There is a natural forgetful map S(Wn,1)→ S(Wn) which forgets the basepoint and iden-
tifies parallel spheres. This map is equivariant with respect to the actions of Aut(Fn) and
Out(Fn) on spheres.

3. Stabilizers of spheres

The purpose of this section is to give a topological proof of the following theorem of Handel
and Mosher [HM13a].

Theorem 3.1. i) The stabilizer of the conjugacy class of a free splitting Fn = G ∗H is a
Lipschitz retract of Out(Fn).

ii) Let G < Fn be a free factor of corank 1. Then the stabilizer of the conjugacy class of G
is a Lipschitz retract of Out(Fn).

The following lemma describes the stabilizers occurring in Theorem 3.1 in the topological
terms discussed in Section 2. The statement is an immediate consequence of Corollary 21 of
[HM13a] and a standard topological argument which is for example presented in [AS11].

Lemma 3.2. i) Let σ be an essential separating sphere in Wn. Then the stabilizer of σ in
Map(Wn) projects onto the stabilizer of the conjugacy class of a free splitting in Out(Fn).
Furthermore, every stabilizer of a conjugacy class of a free splitting arises in this way.

ii) Let σ be a nonseparating sphere in Wn. Then the stabilizer of σ in Map(Wn) projects onto
the stabilizer of the conjugacy class of a corank 1 free factor in Out(Fn). Furthermore,
every stabilizer of a conjugacy class of a corank 1 free factor arises in this way.

To study stabilizers of essential spheres in Wn we use the following geometric model for
stabilizers of spheres.

For an essential sphere σ, let S(Wn, σ) be the complete subgraph of S(Wn) whose vertex set
is the set of homotopy classes of simple sphere systems which are disjoint from σ (but which
may contain σ). The surgery procedure described in [HV96] shows that the graph S(Wn, σ)
is connected. The mapping class group of Wn−σ acts with finitely many orbits on spheres in
Wn−σ (since there are only finitely many homeomorphism types of complements). Thus, by
Laudenbach’s theorem, the stabilizer of σ in Out(Fn) acts cocompactly on S(Wn, σ). Thus
the Švarc-Milnor lemma immediately implies the following.

Lemma 3.3. The graph S(Wn, σ) is equivariantly quasi-isometric to the stabilizer of σ in
Out(Fn).

Combining Lemma 3.2 and Lemma 3.3, Theorem 3.1 thus reduces to the following.

Theorem 3.4. The subgraph S(Wn, σ) is a Lipschitz retract of S(Wn).

The construction of this Lipschitz retract has two main steps. First, we will show a version
of Theorem 3.4 for the manifold Wn,1 with a basepoint. Then, in a second step, we will reduce
Theorem 3.4 to the basepointed case.
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3.1. Stabilizers with basepoint. In this section we are concerned with the basepointed
manifold Wn,1. We fix throughout two essential spheres σ− and σ+ which bound a region
homeomorphic to S2 × [0, 1] containing the basepoint of Wn,1. We call the sphere system
σ± = {σ+, σ−} a basepoint sphere pair. In particular, when ignoring the basepoint, σ− and
σ+ are isotopic in Wn.

We let S(Wn,1, σ
±) be the complete subgraph of S(Wn,1) whose vertex set is the set of

homotopy classes of simple sphere systems which do not intersect σ+ and σ− (i.e. they
contain σ± or are disjoint from σ+ and σ−). We call such systems compatible with σ±. In
this section we prove the following.

Theorem 3.5. Let σ± be a basepoint sphere pair. Then the subgraph S(Wn,1, σ
±) is a Lips-

chitz retract of S(Wn,1).

As an immediate corollary one then obtains Theorem 1 from the Introduction, by choosing
a basepoint sphere pair σ± one of whose complementary components is homeomorphic to
S1 × S2 minus a ball.

The main tool used in the proof of Theorem 3.5 is a surgery procedure that makes a given
simple sphere system in Wn,1 disjoint from σ±. On the one hand, this surgery procedure
is inspired by the construction used in [HV96] to show that the sphere system complex is
contractible. On the other hand, it is motivated by the subsurface projection methods of
[MM00].

By definition of a basepoint sphere pair, the connected component U o of Wn,1 − σ± which
contains the basepoint is homeomorphic to S2 × (0, 1). We call U o the open product region
associated to σ±. We further define N = Wn,1 − U o and call it the complement of σ±. If σ+

(or, equivalently, σ−) is nonseparating, N has one connected component, and two otherwise.
In any case, the boundary of N consists of σ+ ∪ σ−. We let U = U o ∪ σ± be the (closed)
product region defined by σ±.

Consider now a simple sphere system Σ in Wn,1. By applying a homotopy, we may assume
that all intersections between Σ and σ± (viewed as a sphere system) are transverse. We
say that Σ and σ± intersect minimally if the number of connected components of Σ ∩ σ± is
minimal among all sphere systems homotopic to Σ which intersect σ± transversely.

Every simple sphere system Σ can be changed by a homotopy to intersect σ± minimally
(for details, compare the discussion of normal position in [Ha95]). Unless stated otherwise,
we will assume from now on that all spheres and sphere systems intersect minimally. Let
Σ′ ⊃ Σ be a simple sphere system and suppose that Σ intersects σ± minimally. Then Σ′ can
be homotoped relative to Σ to intersect σ± minimally. In addition, the isotopy class of Σ
determines the isotopy class of the intersection Σ ∩ σ± and the isotopy classes of the sphere
pieces of Σ defined below (this uniqueness is also proved in [Ha95]).

The intersection of the spheres in Σ with N is a disjoint union of properly embedded
surfaces C1, . . . , Cm, possibly with boundary. Each Ci is a subsurface of a sphere in Σ, and
thus it is a bordered sphere. If Σ contains spheres disjoint from σ± then some of the Ci may
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be spheres without boundary components. We call the Ci the sphere pieces in N defined by
Σ.

Similarly, the intersection of Σ with U is also a disjoint union of properly embedded surfaces
which we call the sphere pieces in U (Figure 1). By minimal intersection, each such surface
is either an annulus A joining the two boundary spheres of U , or a disk D which separates
the basepoint in U from the boundary component that does not intersect D (see Figure 1).
In particular, every connected component of Σ ∩ U separates U , and exactly one of the

σ−

σ+
D

A

Figure 1. A basepoint pair and two sphere pieces in U . The basepoint is
depicted as the thick black dot. A is contained in the inner side of D.

complementary components contains the basepoint. We call this component the outer side
(motivated by the intuition that the basepoint is a “boundary at infinity”). An intersection
circle α ⊂ Σ ∩ σ± is the boundary circle of a sphere piece in U , and therefore inherits an
outer and inner side on the sphere of σ± containing it.

In particular, we will speak about the inner disk that a boundary circle of Ci bounds and
mean the disk on σ± which is disjoint from the outer side of the corresponding sphere piece
in U .

Lemma 3.6. Let D1, D2 be two inner disks for boundary components α1, α2 of possibly dif-
ferent sphere pieces C1, C2 in N .

Then either D1 and D2 are disjoint, or one is properly contained in the other.

Proof. Since Σ is embedded, the two circles α1, α2 are disjoint. We may assume that α1 and
α2 lie on the same boundary component, say σ+, as otherwise the claim of the lemma is
obvious (the inner disks are contained in disjoint spheres).

Let C ′1, C
′
2 be the surface pieces in U which have α1, α2 as one of their boundary circles.

Suppose by contradiction that D1, D2 are neither disjoint nor nested. Then D1 ∪D2 = σ+,
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and therefore the union of the inner sides of C ′1 and C ′2 is all of U . This is impossible, since
the basepoint in U is contained in neither of the two inner sides. �

We abbreviate the conclusion of this lemma by saying that all inner disks are properly
nested if they intersect.

Let C be one of the sphere pieces of Σ in N , and let α1, . . . , αk be its boundary components
on ∂N . Note that k may be arbitrary large, as opposed to the case of surfaces: the intersection
of a simple closed curve with an essential subsurface Y is a union of arcs each of which
intersects the boundary of Y in exactly two points.

Let Ĉ be the surface obtained from C by gluing the inner disk Di along ∂Di to αi for each
boundary component αi of C. Since C is a bordered sphere, the surface Ĉ is an immersed
sphere in N (which may be inessential). We say that Ĉ is obtained from C by capping off
the boundary components.

Lemma 3.7. Every sphere obtained by capping off the boundary components of a sphere piece
is embedded up to homotopy. Furthermore, the spheres obtained by capping off the boundary
components of all sphere pieces can be embedded disjointly.

Proof. Let C be the collection of sphere pieces in N and let D be the set of all inner disks for
boundary components of Ci ∈ C. By Lemma 3.6, D is a collection of properly nested disks.
If D is empty, there is nothing to show.

Otherwise, say that a disk D ∈ D is innermost if D ⊂ D′ for every D′ ∈ D with D∩D′ 6= ∅.
Since intersecting disks in D are properly nested, there is at least one innermost disk D1

bounded by a curve α1 which is the boundary of a sphere piece C1.
We glue D1 to the corresponding sphere piece C1 and then slightly push D1 inside N with

a homotopy to obtain a properly embedded bordered sphere C ′1 in N . Since D1 is innermost,
this sphere is disjoint from all sphere pieces Ck 6= C1, and has one less boundary component
than C1.

Now let C ′ be the collection of bordered spheres obtained from C by replacing C1 with C ′1.
This is still a collection of disjointly embedded bordered spheres. Furthermore, the collection
D′ = D − {D1} is a collection of properly nested disks, one for each boundary circle of a
sphere in C ′. Thus, we can inductively repeat the construction with C ′ and D′, and the
lemma follows. �

We let P(Σ) be the collection of disjointly embedded spheres obtained by capping off
the boundary components of each sphere piece of Σ. The set P(Σ) may contain inessential
spheres and parallel spheres in the same homotopy class. We denote by πσ±(Σ) the sphere
system obtained as the union of σ± with one representative for each essential homotopy class
of spheres occurring in P(Σ). To show that the sphere system obtained in this way from a
simple sphere system Σ is again simple, we require the following topological lemma.

Lemma 3.8. Let C be a sphere piece in N intersecting the boundary of N in at least one
curve α. Let D ⊂ ∂N be an innermost disk with ∂D = α. Let C ′ be the sphere piece obtained



10 URSULA HAMENSTÄDT AND SEBASTIAN HENSEL

by gluing D to C and slightly pushing D into N (which might be a sphere without boundary
components).

Then every closed curve in N which can be homotoped to be disjoint from C ′ can also be
homotoped to be disjoint from C.

Proof. Pushing the disk D slightly inside of N with a homotopy traces out a three-dimensional
cylinder Q in N . The boundary of Q consists of two disks (the disk D, and the image of D
under the homotopy) and an annulus A which can be chosen to lie in C (see Figure 2 for an
example).

σ

D

C
β

Figure 2. Reducing the number of boundary components of a sphere piece.

Suppose that β is a closed curve in N which is disjoint from C ′ but not from C. Then
any intersection point between β and C is contained in the annulus A. Up to homotopy, the
intersection between β and Q is a disjoint union of arcs connecting A to itself. Since Q is
simply connected, each of these arcs can be moved by a homotopy relative to its endpoints to
be contained entirely in A. Slightly pushing each of these arcs off A then yields the desired
homotopy that makes β disjoint from C. �

Lemma 3.9. Let Σ be a simple sphere system. Then πσ±(Σ) is a simple sphere system.

Proof. Let Σ be a simple sphere system. As πσ±(Σ) contains σ± by construction, it suffices
to show that the spheres S ∈ πσ±(Σ) which are distinct from σ± decompose N into simply
connected regions.

Since the fundamental group of N injects into the fundamental group of Wn,1 and Σ is a
simple sphere system, no essential simple closed curve in N is disjoint from Σ ∩N . In other
words, no essential simple closed curve in N is disjoint from all sphere pieces defined by Σ.

By Lemma 3.8, this property is preserved under capping off one boundary component on a
sphere piece. By induction, no essential simple closed curve in N is disjoint from all spheres
S ∈ S(Σ). Removing inessential spheres and parallel copies of the same sphere from S(Σ)
does not affect this property.

This implies that πσ±(Σ) is a simple sphere system as claimed. �

Proof of Theorem 3.5. The image πσ±(S(Wn,1)) of the map πσ± is contained in the subgraph
S(Wn,1, σ

±), and πσ± restricts to the identity on the vertex set of S(Wn,1, σ
±). It remains to

show that it is Lipschitz.
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By using Lemma 2.2, it suffices to consider the case of two sphere systems Σ ⊂ Σ′. Let
C be a sphere piece of Σ and let σ be the sphere in Σ containing C. Note that the inner
disks of the boundary circles of C depend only on σ, not on Σ. This observation implies that
πσ±(Σ) ⊂ πσ±(Σ′) and in particular πσ±(Σ), πσ±(Σ′) are disjoint. Thus, πσ± is K-Lipschitz,
where K ≥ 1 is as in Lemma 2.2. �

3.2. Acquiring a base point. In this section we extend the result from Section 3.1 to the
case of the manifold Wn without a base point. To begin, recall the short exact sequence

(1) 1→ Fn → Aut(Fn)→ Out(Fn)→ 1

since Fn is center-free. Similarly, there is a natural map

S(Wn,1)→ S(Wn)

obtained by “forgetting the base point”. This map between graphs is compatible in with
the projection Aut(Fn) → Out(Fn) in the following sense: by Laudenbach’s Theorems 2.1
and 2.4, Aut(Fn) and Out(Fn) act on S(Wn,1),S(Wn) and these actions are equivariant with
respect to the forgetful map.

By a result of Mosher [Mo96], since Fn is a nonelementary word-hyperbolic group, there is
a quasi-isometric section

Out(Fn)→ Aut(Fn).

Such a section is however by no means unique or canonical. The graphs S(Wn,1) and S(Wn)
are quasi-isometric to Aut(Fn) and Out(Fn) using the orbit map, and therefore Mosher’s
theorem yields a quasi-isometric section s : S(Wn)→ S(Wn,1) to the natural forgetful map.

Let σ be a sphere in Wn, and let σ± be a basepoint sphere pair in Wn,1 both of whose
spheres are homotopic to σ as spheres in Wn.

We now describe a procedure which, intuitively speaking, removes all intersections of
spheres in Wn,1 with σ± which could be removed in Wn.

Let Σ represent a vertex in S(Wn,1). We say that an intersection circle α of Σ with σ± is
superfluous, if it bounds a disk D′ ⊂ σ± and a disk D ⊂ Σ such that D ∪D′ is inessential in
Wn (see Figure 3). If furthermore D intersects σ± in the single circle ∂D, then we say that
D′ is a superfluous surgery disk with corresponding disk D. The terminology is well-defined
by the lemma below.

Lemma 3.10. Suppose Σ and σ± are in minimal position as sphere systems in Wn,1.

i) A superfluous intersection circle α of Σ with σ± bounds at most one superfluous surgery
disk D′ ⊂ σ±. Furthermore, the corresponding disk D ⊂ Σ is also well-defined.

ii) Any two superfluous surgery disks are properly contained in each other.
iii) Any intersection circle of Σ with σ± which is contained in a superfluous surgery disk also

bounds a superfluous surgery disk.
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D′

A

A

σ+

σ−

D

Figure 3. Superfluous circles and disks. The disk D′ is a superfluous surgery
disk. The other intersection circle is also superfluous (the union D ∪ A of
the disk D and the annulus A yields the desired disk), but does not bound a
superfluous surgery disk.

iv) Given a superfluous intersection circle α, both the superfluous surgery disk and the cor-
responding disk in Σ bounded by α only depend on the isotopy class of the sphere in Σ
containing α (not the one of Σ).

Proof. Let α be an intersection circle of Σ with σ±. Suppose that D′ ⊂ σ± and D ⊂ Σ are
disks such that D ∪D′ is an inessential sphere in Wn.

Then D ∪ D′ bounds a ball in B in Wn. Since we assume that Σ and σ± are in minimal
position as sphere systems in Wn,1, they do not bound a ball in Wn,1 (otherwise, one could
homotope one of the spheres through this ball to reduce intersection). Thus, the ball B, seen
as a subset of Wn,1, contains the base point and therefore intersects U .

We first show that D ⊂ U by contradiction. If D is not in U , then it is contained in N . By
minimal position of Σ and σ±, the disk D cannot be homotoped relative to its boundary into
∂N . Thus, either N −D is connected or both components of N −D admit curves which are
essential in N . Hence, for any disk S ′ ⊂ ∂N , the sphere D ∪ S ′ is also either nonseparating
in N , or admits essential curves in both components of N − (D ∪ S ′). Hence, it is essential,
contradicting the fact that D corresponds to a superfluous surgery disk.

Now, for a disk D in U it is easy to see that gluing the disk in σ± to D which is contained
in the outer complementary component yields a sphere which is inessential in Wn. Gluing
on the disk in the inner component yields a sphere homotopic to one of the spheres in σ±

(compare Figure 1) which is therefore essential in Wn. This shows the desired uniqueness
statements in i).
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The same observation also proves statement ii): the outer components are nested for disjoint
disks in U .

To see iii), suppose that α̂ is an intersection circle contained in D′ as above. Consider the

sphere piece D̂ in U which contains α̂ in its boundary. D separates U , and D̂ is contained
in the component containing the basepoint by definition of superfluous surgery disks. Thus,
D̂ is itself a disk (by minimal position), and the disk bounded by α̂ in D′ is a superfluous

surgery disk D̂′.
The final claim iv) of the lemma follows, since to detect if a circle or disk is superfluous,

only information about the sphere containing it is needed. �

Next, we describe a canonical way to remove a superfluous surgery disk. Combining parts
ii) and iii) of Lemma 3.10, there is an innermost one, say D′.

By Lemma 3.10 i) above, there is then also a unique subdisk D ⊂ Σ such that D ∪ D′
is inessential in Wn. The surgery at D is the sphere system obtained by replacing D by D′

(thereby pushing the sphere system across the basepoint). Note that while this changes the
isotopy type of the sphere system in Wn,1, the result still defines the same sphere system in
Wn.

We now define a “cleanup” map C : S(Wn,1) → S(Wn,1) in the following way. Let
Σ ∈ S(Wn,1) be given. Define C(Σ) to be the result of performing surgery at an inner-
most superfluous surgery disk, then isotoping the system to be in minimal position again,
and repeating this process until there are no superfluous surgery disks left. Since surgering
a superfluous disk does not change the homotopy type in Wn, the result is again a simple
sphere system.

Lemma 3.11. C(Σ) is Lipschitz.

Proof. By Lemma 2.2, it suffices to show that if we add or remove a sphere from Σ, the result
of the surgery procedure is disjoint from C(Σ).

Hence, let Σ ⊂ Σ′ be given. We claim that the spheres in C(Σ′) obtained by the procedure
applied to spheres in Σ are exactly the spheres in C(Σ). This claim obviously implies the
lemma.

The claim now follows since both the normal position and the choice of superfluous surgery
disks do not depend on the isotopy classes of the full sphere system Σ or Σ′, but rather
individually on the spheres contained in the systems. �

Lemma 3.12. If Σ can be homotoped to be disjoint from σ as a sphere system in Wn, then
C(Σ) is disjoint from σ±.

Proof. Put Σ and σ± in minimal intersection in Wn,1. If these representatives are not in
minimal position as sphere systems in Wn, there is a superfluous intersection circle. Therefore,
there is also a superfluous surgery disk (by considering the innermost superfluous intersection
circle). Since the procedure defining C successively removes all superfluous surgery disks and
does not change the isotopy class as a sphere system in Wn, the result of applying C is disjoint
from σ±. �
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Proof of Theorem 3.4. The desired coarse Lipschitz retraction is constructed by composing
several maps. Recall that s : S(Wn) → S(Wn,1) is the quasi-isometric section given by
Mosher’s theorem. In particular since s is a section of the basepoint-forgetting-map it follows
that for every sphere system Σ representing a vertex of S(Wn), the sphere system s(Σ) is
homotopic to Σ in Wn.

Let now σ be an essential sphere in Wn, and let as above σ± be a basepoint sphere pair in
Wn,1 which is homotopic to σ in Wn, and let C : S(Wn,1) → S(Wn,1) be the corresponding
cleanup map defined above. Next, we need the Lipschitz retraction πσ± defined in Theo-
rem 3.5, and finally the forgetful map f : S(Wn,1)→ S(Wn).

The desired retraction is now defined as r = f ◦πσ± ◦ C ◦ s. This map is coarsely Lipschitz,
since it is the composition of several coarse Lipschitz maps. We claim that its image lies in
S(Wn, σ) and that it restricts to the identity on that set.

By construction, πσ± has image in S(Wn,1, σ
±). In particular, the image of πσ± consists of

sphere systems (in Wn,1) which are disjoint from σ±. Thus, the image of r consists of sphere
systems which are disjoint from σ. Thus shows the first claim.

Now let Σ′ be any sphere system in Wn which is disjoint from σ. The sphere system s(Σ′)
is homotopic to Σ′ in Wn and thus by Lemma 3.12 the image C (s(Σ′)) under the clainup
map is disjoint from σ±, and still homotopic to Σ′ in Wn. Thus, πσ± fixes this sphere system.
Consequently, r(Σ′) = Σ′, showing the second claim. �

4. Mapping class groups in Out(Fn)

In this section we study the geometry of surface mapping class groups inside Out(Fn). Let
S1
g be a surface of genus g with one boundary component, and let Sg,1 be the surface obtained

by collapsing the boundary component of S1
g to a marked point. We view the marked point

as a puncture of the surface, so that the fundamental group of Sg,1 is the free group F2g on
2g generators.

Remark 4.1. We believe that our methods can also be used with minor modifications to treat
the case of more than one boundary component, however we did not verify the details.

A simple closed curve on Sg,1 which bounds a disk containing the marked point defines a
distinguished conjugacy class in π1(Sg,1) called the cusp class.

The following analog of the Dehn-Nielsen-Baer theorem for punctured surfaces is well-
known (see e.g. Theorem 8.8 of [FM11]).

Theorem 4.2. The homomorphism

ι : Map(Sg,1)→ Out(F2g)

induced by the action on the fundamental group of Sg,1 is injective. Its image consists of those
outer automorphisms which preserve the cusp class.

In the sequel we identify Map(Sg,1) with its image under ι. The goal of this section is to
prove
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Theorem 4.3. Map(Sg,1) is a Lipschitz retract of Out(F2g). In particular, it is undistorted
(i.e. the inclusion map is a quasi-isometric embedding).

To prove this theorem, we explicitly define a Lipschitz projection map from Out(F2g) onto
the image of ι. This will be done by a topological procedure in the 3–manifold W2g. Intuitively
speaking, given a simply sphere system Σ, we will intersect Σ with a nicely embedded copy
C of S1

g . The result C ∩ S1
g is a system of arcs which (coarsely) determines an element of the

surface mapping class group.
There are two main difficulties in this approach. First, we need to ensure that C ∩ S1

g is
(coarsely) uniquely defined by the isotopy class of Σ. This will be done by defining a normal
form for the surface S1

g with respect to a sphere system. Second, we have to show that for a
sphere system corresponding to an element f of the subgroup Map(Sg,1), this intersection is
uniformly close to an arc system determined by f .

We now begin with the details of the proof.

4.1. Geometric models. Here, we describe the geometric model for the surface mapping
class group Map(Sg,1) as a subgroup of Out(F2g) that we will use to prove Theorem 4.3.

We begin with the mapping class group of Sg,1. A binding loop system for Sg,1 is a collection
of pairwise non-homotopic, essential embedded loops {a1, . . . , am} based at the marked point
of Sg,1 which intersect only at the marked point and which decompose Sg,1 into a disjoint
union of disks.

Let BL(Sg,1) be the graph whose vertex set is the set of isotopy classes of binding loop
systems. Here, isotopies are required to fix the marked point. Two such systems are connected
by an edge if they intersect in at most K points different from the base point. As the mapping
class group of Sg,1 acts with finite quotient on the set of isotopy classes of binding loop systems
(this follows easily from the change of coordinates principle described in [FM11, Chapter 1.3]),
we can choose the number K > 0 such that the following lemma is true.

Lemma 4.4. The graph BL(Sg,1) is connected. The mapping class group of Sg,1 acts on
BL(Sg,1) with finite quotient and finite point stabilizers.

Instead of working with binding loop systems of Sg,1 directly, we will frequently use binding
arc systems of S1

g . By this we mean a collection A of disjointly embedded arcs {a1, . . . , am}
connecting the boundary component of S1

g to itself which decompose S1
g into simply connected

regions. We will consider such binding arc systems up to isotopy of properly embedded arcs.
A binding arc system for S1

g defines a binding loop system for Sg,1 by collapsing the boundary

component of S1
g to the marked point. Note that if A1, A2 are two disjoint binding arc systems

for S1
g then the corresponding binding loop systems for Sg,1 intersect only at the base point.

Therefore, these binding loop systems are adjacent in BL(Sg,1). The Dehn twist about the
boundary component of S1

g acts trivially on the isotopy class of any arc system. Thus the

action of the mapping class group of S1
g on binding arc systems factors through an action of

Map(Sg,1). By the Švarc-Milnor lemma, Map(Sg,1) is quasi-isometric to the graph of binding
arc systems via the orbit map.
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For the rest of this section, we put n = 2g. As before, we use the graph of simple sphere
system S(Wn) as a geometric model for Out(F2g).

The inclusion map ι : Map(Sg,1)→ Out(F2g) has a simple topological description in terms
of these models. Let U2g = S1

g × [0, 1] be the trivial oriented interval bundle over S1
g . U2g is a

handlebody of genus 2g, and we identify W2g with the three-manifold obtained by doubling
U2g along its boundary.

Let a be an essential arc on S1
g . Then a × [0, 1] is an essential disk in U2g which doubles

to an essential sphere in Wn. A binding arc system for S1
g defines a simple sphere system in

this way. Similarly, any diffeomorphism f of S1
g extends to a diffeomorphism I(f) of Wn by

first extending f to U2g (by taking the product with the identity on [0, 1]) and then doubling
to a diffeomorphism of Wn. If f and f ′ are homotopic as diffeomorphisms of S1

g , then the

same is true for I(f) and I(f ′). Indeed, the map I : Diffeo(S1
g ) → Diffeo(Wn) induces the

map ι : Map(Sg,1)→ Out(Fn).

4.2. Minimal position for arcs and curves. Let α be a closed curve in Wn and let Σ be
a simple sphere system. Without loss of generality we always assume that all such closed
curves are embedded, and all intersections with spheres are transverse.

We define a minimal position of α with respect to Σ as follows. Let WΣ be the comple-
ment of Σ in the sense described for a single sphere in Section 3 – that is, WΣ is a com-
pact (possibly disconnected) three-manifold whose boundary consists of 2k boundary spheres
σ+

1 , σ
−
1 , . . . , σ

+
k , σ

−
k . The boundary spheres σ+

i and σ−i correspond to the two sides of a sphere
σi ∈ Σ. The construction of WΣ is analogous to the complements of single spheres we denoted
by N in Section 3.

If α is not disjoint from Σ then the intersection of α with WΣ is a disjoint union of
arcs connecting the boundary components of WΣ. We call these arcs the Σ–arcs of α. An
orientation of α induces a cyclic order on the Σ–arcs of α.

We say that α intersects Σ minimally if no Σ-arc of α connects a boundary component
of WΣ to itself. Note that this is equivalent to the following statement: a lift of α into the
universal cover of Wn intersects each lift of each sphere in Σ in at most one point.

Remark 4.5. As the name suggests, α intersects Σ minimally if and only if the number of
intersection points between α and Σ is minimized among all homotopic representatives of α
and Σ. This point of view is not used later in this article, and thus we do not give a proof.

To study minimal position of curves (and later arcs) it is convenient to work in the universal

cover W̃n of Wn. Let Σ̃ be the full preimage of Σ. The dual graph TΣ to Σ̃ is by definition

the graph which has a vertex for each complementary component of Σ̃, and an edge for each

connected component of Σ̃. It is easy to see that TΣ is in fact a tree. Furthermore, we choose

an equivariant retraction r of the manifold W̃n onto TΣ. To see that this exists, consider

embedded product neighborhoods N(σ) = σ × (0, 1) in W̃n of each sphere σ ∈ Σ̃. Define a
retraction r by mapping each complementary region of ∪N(σ) to the vertex defined by the
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corresponding complementary region of Σ̃, and mapping each region N(σ) to the edge in TΣ

defined by σ (linearly parametrized by the product coordinate).
If α is any curve or arc, then one can ensure by applying a homotopy that every lift α̃ has

the following property: each connected component of α̃ ∩N(σ) has the form {p} × (0, 1) for
some p ∈ σ. If α was in minimal position, then this homotopy furthermore does not change

which complementary components of Σ̃ the lift α̃ intersects.

We adopt the convention that when working with the tree TΣ we will always assume that
curves have this form. This assumption ensures that r(α̃) is a simplicial path in TΣ.

Lemma 4.6. i) Every closed curve α in Wn can be modified by a homotopy to intersect Σ
minimally.

ii) Let α and α′ be two closed curves which are freely homotopic and which intersect Σ
minimally. Then there is a bijection f between the Σ–arcs of α and the Σ–arcs of α′ such
that for each Σ–arc a of α the arc f(a) is homotopic to a through Σ-arcs.

If orientations of α and α′ are chosen appropriately, f may be chosen to respect the
cyclic orders on the Σ–arcs.

Proof. Since WΣ is simply connected, an arc in WΣ connecting a boundary component to itself
can be homotoped through that boundary component, reducing the number of intersection
points. This shows the statement i).

To see ii), we use the tree TΣ. Every lift α̃ of α defines a bi-infinite path r(α̃) in the tree
TΣ. If α intersects Σ minimally, then r(α̃) is a geodesic in this tree, since it is a path without
backtracking. If one modifies α by a homotopy, the chosen lift α̃ changes by a homotopy
as well, and the endpoints at infinity of r(α̃) do not change. Since geodesics with given
endpoints at infinity in a tree are unique, the geodesic r(α̃) therefore also does not change.
Since this geodesic in turn completely determines the intersection pattern and the Σ-arcs of
α, the desired uniqueness and part ii) follows. �

We also need a similar minimal position for arcs with endpoints sliding on a curve δ. To
fix notation, let δ be an embedded closed curve in Wn. An arc relative to δ is an embedded
arc a in Wn both of whose endpoints lie on δ. A homotopy of such an arc will always mean
a homotopy though arcs relative to δ. The arc a is called essential, if it is not homotopic to
a subset of δ.

Definition 4.7. We say that the arc a is in minimal position (relative to δ) with respect to
a sphere system Σ if for one (and hence, any) lift ã of a into the universal cover of Wn the
following hold.

i) ã intersects each lift σ̃ of a sphere in Σ in at most one point.

ii) If δ̃ is a lift of δ containing an endpoint of ã, then it intersects no sphere that ã intersects.

If the curve δ is understood, we will simply speak of minimal position of a.

Note that part ii) in particular implies that an endpoint of a is not contained in any of the
spheres in Σ.
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ϕ(β)

ϕ(a)

Σ

Pi

ϕ(β)
ϕ(a)

Σ

Pi

Figure 4. Ways in which arcs can fail to be in minimal position.

Figure 4 shows the two ways in which an arc can fail to be in minimal position. It is true
that a is in minimal position relative to δ with respect to Σ if and only if the number of
intersections between a and Σ is minimized among all arcs homotopic to a. This statement
can be shown similarly to Lemma 4.8, but we do not provide details since we do not use this
characterization of minimal position.

To study minimal position of arcs, we again use the tree TΣ defined above. As for curves,
we assume that all arcs intersect the product regions N(σ) in straight segments {p} × (0, 1).

Lemma 4.8. Let Σ be a simple sphere system and δ be a closed curve in minimal position
with respect to Σ. Let a be an essential arc relative to δ. Then a can be changed by a homotopy
to be in minimal position with respect to Σ.

On the other hand, suppose that a is in minimal position with respect to Σ and suppose
that it does intersect Σ.

Let ã be a lift of a to W̃n, and let Ũ be the complementary component of the full preimage

Σ̃ of Σ which contains the initial point of ã.

Then the complementary components of Σ̃ which ã crosses are determined by the homotopy

classes of a and Σ and the component Ũ .

Proof. To see that a can be put in minimal position, we argue in the universal cover W̃n.
The proof is by induction on the intersection number between a and Σ. Suppose that a is
not in minimal position. Then a lift ã violates either condition i) or ii) of Definition 4.7.
Suppose that the first condition is violated and ã intersects a lift σ̃ of a sphere in Σ in at
least two points. Then there is a subarc of ã which returns to the same side of σ̃ (since this

sphere is separating in W̃n). Since each complementary component of σ̃ is simply-connected,
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there is a homotopy of ã which pushes this subarc through σ̃, thereby reducing the number
of intersection points.

Similarly, if condition ii) is violated, then an initial segment of ã together with a segment
in a lift of δ defines an arc that returns to the same side of σ̃. Then one slides the initial
segment of ã to the other side of σ̃, reducing the number of intersections.

To show the uniqueness statement, let δ1 be the lift of δ to W̃n which contains the initial
point of ã. Similarly, let δ2 be the lift of δ intersecting ã in its endpoint.

We use the same tree TΣ and retraction r : W̃n → TΣ as in the proof of Lemma 4.6. Since
δ is in minimal position with respect to Σ, r(δ1) and r(δ2) are bi-infinite geodesics in TΣ.

First note that the geodesics r(δ1) and r(δ2) cannot intersect in the tree TΣ. Namely, if

they would intersect, then δ1 and δ2 intersect the same complementary component of Σ̃ in

W̃n. Then ã could also be homotoped into this complementary component, violating the
assumption that a intersects Σ essentially.

Since a is in minimal position with respect to Σ, the retraction r(ã) is a finite geodesic in
TΣ (as it is a path without backtracking) or a single point. Furthermore, r(ã) connects r(δ1)
to r(δ2).

Therefore r(δ1) and r(δ2) are disjoint bi-infinite geodesics and r(ã) is a geodesic connecting
the r(δ1) and r(δ2) in TΣ. Since geodesics in a tree are unique, the desired statement follows.

�

4.3. Ribbon and minimal position. Let ϕ0 : S1
g → Wn be the embedding of S1

g into Wn

defined by the doubling procedure. Let β be the boundary curve of S1
g . The image ϕ0(β) is

an embedded closed curve in Wn which maps to the cusp class in π1(Sg,1) = π1(Wn).
Next we describe a good position of the surface ϕ0(S1

g ) with respect to a sphere system.

In fact, we consider the more general case of a surface ϕ(S1
g ), where ϕ : S1

g → Wn is any

embedding of S1
g into Wn which is homotopic to ϕ0 (note that such an embedding need not

be isotopic to ϕ0). Up to modifying ϕ with a small isotopy, we may assume that Σ intersects
the surface ϕ(S1

g ) transversely and we will always do so. Then the preimage ϕ−1(Σ) is a

one-dimensional submanifold of S1
g , and hence it is a disjoint union of simple closed curves

and properly embedded arcs.

Definition 4.9. We say that ϕ is in ribbon position with respect to Σ if each component of
ϕ−1(Σ) is a properly embedded arc. It is said to be in minimal position if in addition ϕ(β)
is in minimal position with respect to Σ. In either case, we call the preimage ϕ−1(Σ) the arc
system induced by Σ and ϕ.

Note that a priori the homotopy class of the arc system induced by Σ and ϕ need not be
determined by the isotopy class of Σ even if ϕ is in minimal position with respect to Σ. We
will address this problem below.

First, we show that ϕ may always be put in minimal position. For this we use an inductive
method which is described in the next lemma. In the proof, we need the following observation
which also motivates the terminology “ribbon position”.
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Fix a simple sphere system Σ and suppose that ϕ is in ribbon position with respect to the
sphere system Σ. We will develop a convenient combinatorial way to describe the components
of WΣ ∩ ϕ(S1

g ).

The intersection of ϕ(S1
g ) with WΣ is a union of surfaces P1, . . . , Pk. We call the Pi the

polygonal disks defined by ϕ relative to Σ. As Σ is a simple sphere system, the arc system
ϕ−1(Σ) on S1

g is binding and hence each of the surfaces Pi is a disk whose boundary is not
completely contained in a boundary component of WΣ (for the definition of WΣ compare the
first paragraph of Section 4.2).

The disk Pi is already determined by a spine embedded in it, as we will explain below.
This point of view will allow us to modify the Pi (and therefore the map ϕ) as if they were
one-dimensional objects. Since WΣ is three-dimensional, this will give us the desired freedom
to put ϕ in a particularly convenient position.

Pick one polygonal disk, say Pi, and consider its boundary curve δi. We can write this
curve in the form

δi = a1 ∗ b1 ∗ · · · ∗ ar ∗ br
where each ai is an arc contained in one of the boundary spheres of WΣ, and each bi ⊂ ϕ(β)
is a properly embedded arc in WΣ (compare Figure 5).

1

2 3

4Γib1

a1

b2

a3

b4

b3

a4a2

Figure 5. On the left: A polygonal disk Pi (light gray on top, dark gray on
the bottom) with its embedded copy of Γi. On the right: the corresponding
graph Γi with the cyclic order (ribbon structure) at the central vertex

We fix the set of arcs {ai, 1 ≤ i ≤ r} for the moment and equip each ai with an orientation.
We call this set of oriented arcs the boundary arcs of the disk Pi. We want to describe the
way that Pi joins the boundary arcs in WΣ in a combinatorial way.

To this end, let Γi ⊂ Pi be an embedded graph in Pi defined in the following way. The
graph Γi has one distinguished vertex v0 (called the interior vertex ) contained in the interior
of Pi and one vertex vr contained in each boundary arc ar (called boundary vertices). Each
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vertex vr (r ≥ 1) is connected by an edge to the vertex v0. The oriented surface Pi determines
a ribbon structure on Γi. Recall that a ribbon structure on a graph is a cyclic order of the
half-edges at each vertex.

A ribbon graph defines a surface by replacing each vertex by a small disk, each edge by
a small rectangle, and gluing these rectangles to the disks given by the cyclic order on the
vertices. However, in our case we cannot yet reconstruct Pi (even up to homotopy) from the
ribbon graph Γi for the following reason: there are up to homotopy two possibilities how to
glue in a band between, say, a boundary arc and a disk (compare Figure 6).

1

2 3

4
+

-

+

+

Γ P

Figure 6. On the left: The two ways of gluing a band between two intervals.
On the right: An example of a decorated ribbon graph and the corresponding
surface

To avoid this issue, we use the following graphs to model the polygonal disks Pi.

Definition 4.10. A decorated ribbon graph (for the sphere system Σ and the boundary arcs
{ai}) is an embedded graph Γ in WΣ satisfying

i) Γ is a tree which has a valence-1 boundary vertex contained in each of the ai.
ii) At every interior vertex of Γ, the adjacent half-edges are cyclically ordered (ribbon struc-

ture)
iii) Every edge of Γ is labeled by a sign + or − (twist datum).

The surface associated to a decorated ribbon graph Γ is defined in the following way. Put
small embedded oriented disks Dv at the interior vertices v of Γ which contain the star of v
in Γ and such that the cyclic order of edges at v agrees with the positive orientation given
by Dv.

Suppose an edge e connects an interior vertex v to a boundary vertex corresponding to
a boundary arc ar. We then connect ar to the disk Dv with a band Br, i.e. an embedded
product of two intervals [0, 1] × [0, 1] in Wn, as follows. One of the sides of Br is the arc
ar, and the opposite side a′r is contained in ∂Dv. We call these sides the horizontal sides.
Correspondingly, the vertical sides are properly embedded arcs in Wn. The orientation of
∂Dv determines a left and right endpoint of each of the a′r.

If the edge e is decorated with a +, we match the left endpoint of ar with the left endpoint
of the interval on ∂D, otherwise we pair the left with the right endpoint (compare Figure 6).
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Similarly, we glue bands between disks corresponding to two different interior vertices
according to the sign on the connecting edge.

We will also need to modify decorated ribbon graphs. On the one hand, we will consider
homotopies of decorated ribbon graphs which do not change the combinatorics of the graph.

The other modifications are split and collapse moves. Namely, let Γ be a decorated ribbon
graph. A collapse move requires two interior vertices v1, v2 which are joined by an edge e.
The decorated ribbon graph Γ′ obtained by collapsing e is the following:

i) The underlying graph of Γ′ is obtained from Γ by collapsing e to a vertex v̂. In particular,
every vertex of Γ which is not equal to v1 or v2 is also a vertex of Γ′. Every edge of Γ
except for e corresponds to a single edge in Γ′.

ii) The ribbon structure at each vertex different from v̂ is the same as in Γ.
iii) The ribbon structure at v̂ is obtained in the following way. The edges at v̂ are all the

edges in Γ connected to either v1 or v2 (except for e). Let e1, . . . , er, e be the cyclic order
of edges at v1, and e, e′1, . . . , e

′
s the cyclic order of edges at v2. If the edge e was labeled

by a +, then the cyclic order at v̂ is

e1, . . . , er, e
′
1, . . . , e

′
s

and otherwise it is

e1, . . . , er, e
′
s, . . . , e

′
1

iv) The twist data at all edges are as in Γ.

A split move is an inverse to a collapse move. A split move is defined by splitting the link of
an interior vertex into two groups, each of which is connected in the cyclic order. Then an
additional edge with sign + is generated, such that the two groups are contained in the links
of two different vertices.

Lemma 4.11. Fix a simple sphere system Σ and boundary arcs ai in ∂WΣ.

i) Let Pi be any polygonal disk, and Γi the corresponding embedded ribbon graph. Then Γi
admits a twisting datum such that Pi is homotopic, relative to its boundary, to the surface
defined by Γi.

ii) Let Γ and Γ′ be two decorated ribbon graphs which are homotopic (as decorated ribbon
graphs). Then the surfaces defined by Γ and Γ′ are homotopic relative to the boundary
arcs ai.

iii) Let Γ′ be obtained from Γ by a collapse or split move. Then the surfaces defined by Γ and
Γ′ are homotopic relative to their horizontal sides in Σ.

Proof. The ribbon graph Γi contained in Pi has a single interior vertex. Therefore, part i)
simply follows from the fact that there are up to homotopy only two ways to join the central
disk to each of the boundary arcs.

Part ii) simply follows by extending a homotopy of a decorated ribbon graph Γ to a ho-
motopy of a small regular neighborhood. Since the surface defined by Γ may be assumed to
lie in such a neighborhood, and is uniquely determined (up to homotopy) by the decorated
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ribbon structure, the claim follows. Part iii) follows directly from the definitions of collapse
and split moves. �

Lemma 4.12. Let Σ be a simple sphere system. Suppose that ϕ is in minimal position with
respect to Σ. Let σ′ be an embedded sphere disjoint from Σ and let Σ′ be a simple sphere
system obtained from Σ by either adding σ′, or by removing one sphere σ ∈ Σ.

Then there is an embedding ϕ′ : S1
g → Wn with the following properties.

i) ϕ′ is homotopic to ϕ.
ii) ϕ′ is in minimal position with respect to Σ′.

Proof. Note first that removing a sphere σ from Σ preserves minimal position. Hence, we
only need to consider the case that Σ′ = Σ ∪ {σ′}.

By assumption, ϕ is in minimal position with respect to Σ. We will therefore only work in
WΣ and consider σ′ as a fixed embedded sphere in WΣ. To put ϕ in minimal position with
respect to Σ′, we need to control how the polygonal disks of ϕ in WΣ intersect σ′.

To get started, we modify ϕ so that the polygonal disks of ϕ in WΣ have a particularly
convenient form. Namely, let P1, . . . , Pk be these polygonal disks (i.e. the components of
ϕ(S1

g ) ∩WΣ) and let Γi ⊂ Pi be the embedded decorated ribbon graphs described above.
By Lemma 4.11 i), we may modify ϕ by a homotopy, such that each Pi is the surface

associated to the decorated ribbon graph Γi without changing ϕ−1(Σ).
We may also assume that after this homotopy Pi is contained in a small regular neighbor-

hood of Γi. Intuitively, each Pi now looks as depicted in Figure 5.

As the next step, we apply an isotopy supported in WΣ to ϕ which puts Pi and Γi in general
position with respect to σ′. More specifically, we can ensure:

(1) In a neighborhood of the boundary of WΣ, ϕ is unchanged.
(2) σ′ intersects each Γi transversely in finitely many points.
(3) No intersection point of σ′ with Γi is a vertex of Γi.
(4) The intersection between Pi and σ′ consists of a disjoint union of arcs. Each of these

arcs corresponds to an intersection point of Γi with σ′.

As a result of this isotopy, each component of ϕ(S1
g )∩WΣ′ is a disk whose boundary contains

a subarc of ϕ(β) and hence ϕ is in ribbon position with respect to Σ ∪ {σ′}.
To complete the proof, it remains to show that ϕ can be changed by a homotopy to put it

in minimal position with respect to Σ′. This will be done inductively, reducing the number
of intersections of ϕ(β) with σ′.

To construct this homotopy of ϕ we will use Lemma 4.11 to homotope the polygonal disks
Pi in WΣ relative to their boundary arcs. Informally speaking, we will make the graphs Γi
(which are one-dimensional objects, and therefore completely flexible) intersect σ′ minimally,
and then make the Pi follow along. We now give the formal details of this argument.

Let b be a Σ′–arc of ϕ(β). Assume first that b also is a Σ–arc. Then b has both endpoints
on a sphere distinct from σ′. By assumption on Σ, the arc b does not connect the same
boundary component of WΣ to itself. This then also holds true for b viewed as a Σ′-arc.
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If b is not of this form, at least one of its endpoints is contained in the sphere σ′. Sup-
pose that both endpoints of b are contained on the same side of σ′ (alternatively, on the
same boundary component of WΣ′). We call such subarcs of ϕ(β) problematic. Note that a
problematic subarc is disjoint from Σ.

The condition that ϕ(β) is in minimal position with respect to Σ′ exactly means that
there are no problematic arcs. We therefore aim to modify ϕ by a homotopy that eliminates
all problematic arcs. We will do so inductively, reducing the number of problematic arcs.
During this induction, we will assume that the disks Pi are surfaces defined by decorated
ribbon graphs Γi. Initially, this is the case, as explained above.

Let Pi be the component of ϕ(S1
g ) ∩WΣ containing b in its boundary. Since Pi is assumed

to be the surface associated to the decorated ribbon graph Γi, the arc b also defines a path
γb in the graph Γi. We distinguish two cases.

First, assume that γb does not intersect any vertices of Γi. Then there is an edge e of Γi
which itself joins the same side of σ′ to itself. Since WΣ − σ′ is simply connected, there is
a homotopy of Γi which moves e to the other side of σ′. By Lemma 4.11 one can then also
homotope Pi (and therefore ϕ) such that the number of problematic arcs decreases.

The other case is that γb intersects at least one vertex of Γi. Note that then these vertices
are interior vertices of Γi. This case is depicted in Figure 7.

Applying collapse moves to Γi if necessary, we may assume that the arc γb intersects a
single interior vertex v of Γi. Furthermore, applying a split move if necessary, we may assume
that this vertex is trivalent. Namely, there are two edges e1, e2 meeting at v, such that γb is a
subarc of e1 ∪ e2. If v is more than trivalent, we apply a split move to generate a new vertex
v′ which is adjacent to e1, e2 and a new edge e. Now, γb only passes through the trivalent
vertex v′.

Since each complementary component of σ′ in WΣ is simply connected, we can homotope
the trivalent vertex and e1, e2 to the other side of σ′. This procedure reduces the number of
intersections of Γi with σ′. Again using Lemma 4.11, there is then a homotopy of Pi which
reduces the number of problematic arcs.

At the end of the induction, there are no problematic arcs, and therefore ϕ is in minimal
position. �

Corollary 4.13. For every sphere system Σ, the map ϕ0 may be homotoped so that it is in
minimal position with respect to Σ.

Proof. We begin by constructing a sphere system Σ0 in the following way. Let A0 be a
binding arc system of the surface S1

g with a single complementary component. As described
in Section 4, the product A0 × [0, 1] in the handlebody U2g doubles to a sphere system in
Wn which we denote by Σ0. By construction, ϕ0 is in minimal position with respect to Σ0.
Indeed, there is a single polygonal disk corresponding to the complementary component of
A0.

Now the corollary follows by induction on the distance of Σ to Σ0, using Lemma 4.12 and
Lemma 2.2. �
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Γi

σ′

Γ′i

σ′

Figure 7. Reducing the number of problematic arcs. On the left: the sit-
uation before homotopy. The bold part of the graph corresponds to γb for a
problematic arc b connecting the (left) side of the sphere σ′ to itself. On the
right: the modified graph removing this problematic arc.

Next, we strengthen the notion of minimal position further in order to make the induced
arc system unique. In order to do so, we fix a number of base data once and for all:

(1) An orientation of the boundary curve β ⊂ S1
g .

(2) A maximal binding arc system A0 of S1
g .

(3) An orientation for each a ∈ A0.

The additional requirement that will make the position of ϕ unique concerns the position of
the arcs ϕ(a) for a ∈ A0. Recall from Lemma 4.8 that an arc whose endpoints are allowed to
slide on a curve has a well-defined unique minimal position with respect to a sphere system
Σ if it intersects Σ. If the arc can be made disjoint from Σ by a homotopy of arcs relative
to the curve, then the complementary component it is contained in is not well-defined (see
Figure 8). To give these arcs a unique position, we use the orientations of the arcs: we will
consider the arc a1 in Figure 8 preferable to a2, since its initial point is further along ϕ(β)
(with its orientation).

Definition 4.14. We say that ϕ is in (A0-)tight minimal position if it is in minimal position
with respect to Σ, and if additionally the following hold.

i) Each ϕ(a), a ∈ A0, is in minimal position with respect to Σ as an arc relative to ϕ(β).
ii) If ϕ(a) is disjoint from Σ, then the initial point of ϕ(a) is at the furthest position along

ϕ(β) among all arcs still satisfying i).

Note that condition ii) makes sense since S1
g is not an annulus, and therefore one cannot

push the arc along the boundary indefinitely. We also remark that condition ii) is not really
necessary to make the arguments work, but just helps to avoid some case distinctions.

We will now show that (A0-)tight minimal position exists and is well-defined.

Lemma 4.15. For each sphere system Σ, ϕ may be homotoped to be in (A0-)tight minimal
position with respect to Σ.
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Σ

ΣΣ

ϕ(β)

ϕ(β)

a1 a2

Figure 8. Disjoint arcs do not have a unique minimal position. The arcs a1

and a2 are homotopic as arcs relative to ϕ(β), but are contained in different
complementary components of Σ.

Proof. By Corollary 4.13, we may assume that ϕ is in minimal position with respect to Σ.
To clear up notation, we will refer to (A0-)tight minimal position simply as tight minimal
position in this proof and consider A0 as fixed.

We will now improve ϕ to be in tight minimal position. We first focus on property i)
of tight minimal position, and inductively show that it can be ensured. The idea is that
the homotopies needed to put ϕ(A0) in minimal position with respect to Σ can be done
by homotopies of ϕ. The main issue is to guarantee that ϕ stays an embedding. This
requires again the notions of polygonal disks and decorated ribbon graphs as in the proof of
Lemma 4.12.

Formally, we will induct on the number of intersection points between Σ and ϕ(A0).

Suppose that ϕ(A0) is not in minimal position. Then there is an arc a ∈ A0 such that ϕ(a)
violates one of the two conditions of minimal position of arcs (Definition 4.7).

Assume that ϕ(a) violates condition i) of Definition 4.7. Then there is a lift ã of ϕ(a) to

the universal cover W̃n with the following property: there is a lift σ̃ of a sphere in Σ and a

subarc b̃ ⊂ ã which begins and ends on the same side of σ̃ and does not intersect any other

sphere in Σ̃.

We now consider the image b of b̃ in WΣ. This is an arc connecting one of the boundary
components of WΣ to itself. Let P be the polygonal disk containing b, and let Γ be the
decorated ribbon graph defining P .

We distinguish two cases. First suppose that b connects the same boundary arc of P to
itself. In that case, there is an interval I in that boundary arc, such that I ∪ b bounds a
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ϕ(a) ϕ(a)

ϕ(a)
Σ Σ Σ

Figure 9. Moving saddles. All three surfaces are in minimal position, but the
intersection pattern changes.

disk D in P . In this situation, there is an isotopy of ϕ which does not change the image
ϕ(S1

g ), and such that after this isotopy ϕ−1(b) is mapped to I. Then one can apply a further
isotopy moving I to the side of σ not containing b (in total, one pushes the disk D to the
other side of the boundary component; compare the left side of Figure 4 for this situation).
These isotopies reduce the number of intersections of ϕ(A0) with Σ. We may thus assume by
induction that we have removed each subarc b of this form.

The second case is that b connects two different boundary arcs of P to each other. As in
the proof of Lemma 4.12, such an arc then defines a path γb in Γ which contains the central
vertex. More precisely, γb consists of two edges e1, e2 of Γ. Note that since ϕ is in minimal
position, the edges e1, e2 are not adjacent in the cyclic order given by the ribbon structure,
since both of them have an endpoint on the same boundary component of WΣ. Thus, the
graph Γ has edges both to the right and to the left of γb.

As a first step to modify ϕ, we will perform at most two split moves to ensure that γb
intersects exactly one vertex v which then has valence 4. Namely, if there is more than one
edge to the right of γb, perform a split separating these off to a new vertex. We do the same
for the left side (this procedure is depicted in the left and middle of Figure 9).

Furthermore, the following is true: let b′ be any component of ϕ(A0)∩P and let γb′ be the
arc in Γ it defines. Then γb′ shares an endpoint with γb if it intersects v. This is due to the
fact that A0 is embedded in S1

g and therefore γb′ does not intersect both an edge to the left
and to the right of γb.

Now we can modify ϕ by pushing the vertex v to the other side of σ (as before, homotoping
the graph first, and then using Lemma 4.11 to extend that homotopy to one of ϕ). As a result
of this procedure, the image of the arc b does not intersect σ anymore (compare the middle
and right of Figure 9).

To finish the inductive step, we have to show that no new intersections of ϕ(A0) with Σ
have been generated during this homotopy. The only possibility for new intersection points
is on the image of P , and then they would need to be due to arcs b′ whose corresponding γb′
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intersects v. But, as remarked above, any such γb′ shares an endpoint with γb. Thus, either
b′ does not intersect σ after the homotopy (if it was equal to γb), or b′ intersects σ in a single
point both before and after the homotopy.

The case of a subarc b which violates condition ii) of Definition 4.7 can be handled in the
same way: either it and a segment in ϕ(β) bound a disk in some polygonal disk, or it defines
a path γb in some Γ which connects a boundary vertex to the central vertex. As above, one
can then apply split moves and push the resulting vertex to the other side of σ. By induction,
we may therefore assume that ϕ(A0) is in minimal position with respect to Σ.

Condition ii) of tight minimal position can then simply be guaranteed by moving those
arcs in ϕ(A0) which are disjoint from Σ0 along ϕ(S1

g ) to be in the correct position. �

4.4. Uniqueness of position. We now show the uniqueness statement for tight minimal
position which is the central tool in the proof of Theorem 4.3.

Lemma 4.16. Suppose that ϕ is in (A0-)tight minimal position with respect to Σ. Then the
homotopy class of the binding arc system ϕ−1(Σ) is determined by the homotopy classes of Σ
and ϕ.

In the situation described in the lemma we call ϕ−1(Σ) the induced arc system.

Proof. To clear up notation, we will refer to (A0)-tight minimal position simply as tight
minimal position in this proof, considering A0 as fixed. By Lemma 4.6, the homotopy classes
of Σ and ϕ determine a unique minimal position of ϕ(β). By Lemma 4.8, all ϕ(a) (a ∈ A0)
which intersect Σ also have a unique minimal position (in the sense of which complementary

components of W̃n they cross). By condition ii) of tight minimal position the same is true for
those ϕ(a) which are disjoint from Σ.

These uniqueness statements do not yet suffice to immediately show that ϕ−1(Σ) is also
determined. The missing piece of data is which intersection points of ϕ(β) with Σ are joined
by arcs in ϕ(S1

g ).
The strategy of the proof is therefore first to show that (assuming tight minimal position)

this matching of intersection points is determined by the homotopy class of Σ. This involves
the study of how images of the complementary pieces of A0 can lift to the universal cover of
Wn. Then, one can use the uniqueness of the minimal position of ϕ(β) to reconstruct the arc
system ϕ−1(Σ) out of the isotopy class of Σ. We now give the formal details.

A hexagon disk H is the image under ϕ of a disk bounded by three segments of β and three
arcs in A0. Since ϕ is an embedding, ϕ(S1

g ) is a union of hexagon disks which only intersect

in their boundaries. In other words, ϕ(S1
g ) \ (ϕ(A0)∪ϕ(β)) is a disjoint union of the interiors

of the hexagon disks. We first show that every lift H̃ of a hexagon disk to the universal cover

W̃n intersects each lift σ̃ of a sphere in Σ in at most one interval.

Namely, suppose not. Let p1, p2, p3, p4 be four intersection points of the boundary of H̃
with σ̃. For each i = 1, . . . , 4 let ci be a lift of the corresponding arc in ϕ(A0) or curve ϕ(β)
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through pi. Note that since both the arc system ϕ(A0) and the curve ϕ(β) are in minimal
position, all four of these lifts are distinct (each lift may intersect the sphere σ̃ at most once).

Actually, no two of the ci may intersect in the universal cover W̃n. Namely, suppose that
c1 and c2 intersect. Since both ϕ(β) and ϕ(A0) are embedded, this means (up to relabeling)
that c1 is a lift of ϕ(β) and c2 is a lift of a component a of ϕ(A0). Let q be the intersection
point of c1 and c2.

Then there is a subarc of c1 ∪ c2 which connects σ̃ to itself. This contradicts minimal
position of a with respect to Σ.

Thus, the four ci are disjoint. The hexagon disk H lifts homeomorphically to a disk H̃ in

W̃n whose boundary is the union of six intervals, four of which would be disjoint (as they are
contained in the different ci). This is clearly impossible.

Thus, the lift H̃ of a hexagon disk H intersects the lift σ̃ (in a single arc) if and only if one
(hence two) of its sides do.

Note that this condition depends only on the homotopy classes of Σ and ϕ due to the
uniqueness of minimal position for curves and arcs.

Hence, the homotopy classes of ϕ and Σ determine which intersection points of ϕ(β) with
Σ are joined by an interval in ϕ(S1

g ) – namely exactly those for which there is a sequence of
hexagon disks connecting them. This is the desired uniqueness of how the intersection points
of Σ with ϕ(β) are matched.

Let now x and y be two such points which are connected on the sphere σ by an arc in
ϕ(S1

g ). Denote by β1 and β2 the two subarcs of ϕ(β) defined by these intersection points.
The homotopy classes of these subarcs (with endpoints sliding on the corresponding sphere of
Σ) are completely determined by the sequence of spheres in Σ they intersect, and thus they
are determined by the isotopy class of Σ and the homotopy class of ϕ.

Let a ⊂ S1
g be the preimage of the arc on σ connecting x and y. The boundary of a regular

neighborhood of β ∪ a in S1
g is the union of two simple closed curves d1, d2 and the boundary

curve β.
Up to exchanging d1 and d2, the curve ϕ(dk) ⊂ Wn is freely homotopic to a curve δk = βk∗α

obtained by concatenating βk and an embedded arc α on σ.
Since σ is simply connected, the free homotopy classes of the curves δk are thus also

determined by the isotopy class of Σ and the homotopy class of ϕ.
Since ϕ induces an isomorphism on the level of fundamental groups, this implies that also

the simple closed curves dk are determined by this data.
The curves β, d1 and d2 bound a pair of pants P on S1

g . The arc a is up to isotopy the
unique essential embedded arc in P connecting β to itself. Thus the isotopy class of the arc
a is determined by the isotopy class of Σ and the homotopy class of ϕ.

Since this argument applies to all arcs a ⊂ ϕ−1(Σ), this proves the desired uniqueness. �

We now have collected all the necessary tools to prove the main theorem of this section.
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Proof of Theorem 4.3. To prove the theorem, we fix a maximal binding arc system A0, and
orientations of the boundary β as well as each arc a ∈ A0 as before. Let Σ0 be the sphere
system obtained by doubling the arc system A0 (as described in the last paragraph of Sec-
tion 4)

We define a 1–Lipschitz projection P of the graph of simple sphere systems to the graph
of binding arc systems as follows.

For a simple sphere system Σ, modify ϕ0 by a homotopy to a map ϕ in (A0)-tight minimal
position, and let P (Σ) = ϕ−1(Σ) be the induced binding arc system. By Lemma 4.16 the
result is determined by the homotopy class of Σ.

This map is 1-Lipschitz since disjoint sphere systems are mapped to disjoint binding arc
systems. Namely, apply Lemma 4.15 to the union of two disjoint sphere systems to see that
there is a simultaneous tight position for both of them.

Let now f ∈ Map(Sg,1) be given and let Σ = ι(f)(Σ0). By doubling a representative
I(f) we find that f(A0) is the intersection of I(f)(Σ) and ϕ. In particular, it is in tight
position. Thus, P restricts to the identity on the graph of binding arc systems. This shows
the theorem. �

4.5. Arc graphs. The method employed in the proof of Theorem 4.3 can also be used to
relate the arc graph of a punctured surface to the sphere graph of Wn.

To be precise, recall that the arc graph AG(S1
g ) of S1

g is the graph whose vertex set is

the set of isotopy classes of embedded essential arcs connecting the boundary of S1
g to itself.

Again, isotopies are only required to fix the boundary component setwise. Two such vertices
are joined by an edge if the corresponding arcs can be embedded disjointly. Similarly, define
the sphere graph SG(Wn) of Wn to be the graph whose vertex set is the set of isotopy classes
of essential 2-spheres in Wn. Two such vertices are connected by an edge if the corresponding
spheres can be realized disjointly.

Let a be an arc representing a vertex of the arc graph of S1
g . The interval bundle over a is

a disk D(a) in the handlebody U2g = S1
g × [0, 1]. The isotopy class of this disk only depends

on the isotopy class of a, since the Dehn twist around the boundary of S1
g is contained in the

kernel of the map Map(S1
g )→ Map(U2g). We let σ(a) be the essential sphere in Wn which is

obtained by doubling D(a) along ∂U2g.
The following lemma is folklore, but since we were not able to find a proof in the literature,

we include a proof.

Lemma 4.17. The construction above identifies the arc graph of S1
g with a subgraph of the

sphere graph of Wn.

Proof. The only thing that requires an argument is the injectivity of the map. First note that
σ(a) is nonseparating if and only if a is nonseparating.

Let a, a′ be two non-isotopic, nonseparating arcs on S1
g . Let G (resp. G′) be the corank–1

subgroup of π1(Sg,1, p) of those loops which are disjoint from a (resp. a′). Since a and a′

are non-isotopic, we claim that these groups are not equal. Namely, if a loop can be made
disjoint from a and a′ individually, then it can also be made disjoint from a ∪ a′. Since the
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rank of the fundamental group of the complement decreases strictly when adding more arcs,
the claim follows.

Since the map ϕ0 induces an isomorphism on π1, the image groups (ϕ0)∗(G), (ϕ0)∗(G
′)

are therefore also different corank–1 subgroups. The subgroup of loops in Wn which can be
made disjoint from σ(a) (resp. σ(a′)) is a corank–1 subgroup which contains (ϕ0)∗(G), and
is therefore equal to (ϕ0)∗(G) (resp. (ϕ0)∗(G

′)).
Hence, σ(a) and σ(a′) are not isotopic, since that would imply G = G′.
The case of non-isotopic separating arcs a, a′ can be proved similarly by considering both

complementary components simultaneously (instead of a corank–1 subgroup one then con-
siders a free splitting of the fundamental group). �

Proposition 4.18. The arc graph of S1
g is a 1-Lipschitz retract of the sphere graph of Wn.

In particular, it is undistorted.

Proof of Proposition 4.18. We define the Lipschitz retraction in a similar way as in the proof
of Theorem 4.3.

Let σ be an essential sphere in Wn. Extend σ to a simple sphere system Σ. Put Σ in tight
minimal position with respect to ϕ. Let a(σ) ⊂ P (Σ) be the part of the induced arc system
which is the preimage of σ. Note that this is a nonempty set of essential arcs. Namely, if a(Σ)
were empty, then the full fundamental group of S1

g would inject in the fundamental group of
the complement of σ, which is impossible since σ is essential.

We claim that a(σ) does not depend on the choice of Σ. Any two possible choices Σ,Σ′

of extensions differ by a sequence of moves, each of which adds or removes a sphere different
from σ. This is an immediate consequence of the fact that the graph S(Wn, σ) defined in
Section 3 is connected.

Now, arguing as in the proof of Theorem 4.3, each such move does not change the preimage
of σ in P (Σ). Thus, a(Σ) is a well-defined arc in S1

g , and a defines a map from the sphere

graph of Wn to the arc graph of S1
g . It is clear that this map restricts to the identity on the

arc graph.
If σ1 and σ2 are two disjoint essential spheres, then one can find a simple sphere system Σ

containing both σ1 and σ2. Thus, a(σ1) and a(σ2) are both contained in P (Σ) and thus in
particular disjoint. This shows that a is 1-Lipschitz. �
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