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Abstract. Let Q(S) be the moduli space of area one holomorphic quadratic
differentials for an oriented surface S of genus g ≥ 0 with m ≥ 0 punctures and

3g − 3 + m ≥ 2. For a compact subset K of Q(S) let δ(K) be the asymptotic
growth rate of the number of periodic orbits for the Teichmüller flow Φt which
are contained in K. We relate δ(K) to the topological entropy of the restriction

of Φt to K. Moreover, we show that supK δ(K) = 6g − 6 + 2m.

1. Introduction

An oriented surface S is called of finite type if S is a closed surface of genus
g ≥ 0 from which m ≥ 0 points, so-called punctures, have been deleted. We assume
that 3g − 3 + m ≥ 2, i.e. that S is not a sphere with at most four punctures or a
torus with at most one puncture. We then call the surface S nonexceptional. Since
the Euler characteristic of S is negative, the Teichmüller space T (S) of S is the
quotient of the space of all complete hyperbolic metrics on S of finite volume under
the action of the group of diffeomorphisms of S which are isotopic to the identity.

The fibre bundle Q1(S) over T (S) of all holomorphic quadratic differentials of
area one can naturally be viewed as the unit cotangent bundle of T (S) for the
Teichmüller metric. The Teichmüller geodesic flow Φt on Q1(S) commutes with
the action of the mapping class group Mod(S) of all isotopy classes of orientation
preserving self-homeomorphisms of S. Thus this flow descends to a flow on the
quotient Q1(S)/Mod(S), again denoted by Φt. This quotient is a non-compact
orbifold.

In his seminal paper [V86], Veech showed that the asymptotic growth rate of the
number of periodic orbits of the Teichmüller flow Φt on Q1(S)/Mod(S) is at least
h = 6g−6+2m (we use here a normalization for the Teichmüller flow which differs
from the one used by Veech). Recently Eskin and Mirzakhani [EM08] obtained a
sharp counting result: They show that as r → ∞, the number of periodic orbits
for Φt of period at most r is asymptotic to ehr/hr. An earlier partial result for the
Teichmüller flow on the space of abelian differentials is due to Bufetov [Bu09].

In this note we are interested in the dynamics of the restriction of the Teichmüller
flow to a compact invariant set. For the formulation of our first result, a continuous
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flow Φt on a compact metric space (X, d) is called expansive if there is a constant
δ > 0 with the following property. Let x ∈ X and let s : R → R be any continuous
function with s(0) = 0 and d(Φt(x),Φs(t)(x)) < δ for all t. If y ∈ X is such that
d(Φt(x),Φs(t)(y)) < δ for all t then y = Φτ (x) for some τ ∈ R [HK95]. Note
that this definition of expansiveness does not depend on the choice of the metric d
defining the topology on X so it makes sense to talk about an expansive flow on a
compact metrizable space.

Let Γ < Mod(S) be a torsion free normal subgroup of Mod(S) of finite index.
For example, the subgroup of all elements which act trivially on H1(S, Z/3Z) has

this property. Define Q̂(S) = Q1(S)/Γ. We show

Theorem 1. The restriction of the Teichmüller flow to every compact invariant
subset K of Q̂(S) is expansive.

Periodic orbits of expansive flows on compact spaces are separated, and their
asymptotic growth rate can be related to the topological entropy of the flow.

For a compact Φt-invariant subset K of Q̂(S) let htop(K) be the topological

entropy of the restriction of the Teichmüller flow to K. For any subset U of Q̂(S)
(or of Q1(S)/Mod(S)) and for a number r > 0 define nU (r) (or n∩

U (r)) to be the
cardinality of the set of all periodic orbits for Φt of period at most r which are
entirely contained in U (or which intersect U). Clearly n∩

U (r) ≥ nU (r) for all r. We
show

Theorem 2. Let K ⊂ Q̂(S) be a compact Φt-invariant topologically transitive set.
Then for every open neighborhood U of K we have

lim sup
r→∞

1

r
log nK(r) ≤ htop(K) ≤ lim inf

r→∞

1

r
log nU (r).

It is not hard to see that Theorem 1 and Theorem 2 are equally valid for compact
invariant sets on Q1(S)/Mod(S). However we did not find an argument which
avoids using some differential geometric properties for the action of the mapping
class group on Teichmüller space which is not in the spirit of this paper, so we omit
a proof.

By the variational principle, the topological entropy of a flow Φt on a compact
space K equals the supremum of the metric entropies of all Φt-invariant Borel prob-
ability measures on K. Bufetov and Gurevich [BG07] showed that the supremum
of the topological entropies of the restriction of the Teichmüller flow to the moduli
space of abelian differentials is just the metric entropy of the invariant probabil-
ity measure in the Lebesgue measure class, moreover this Lebesgue measure is the
unique measure of maximal entropy.

The following counting result shows that the entropy h of the Φt-invariant
Lebesgue measure on Q1(S)/Mod(S) equals the supremum of the topological en-
tropies of the restrictions of the Teichmüller flow to compact invariant sets.

Theorem 3. (1) limr→∞
1
r log n∩

K(r) ≤ h for every compact subset K of

Q1(S)/Mod(S).
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(2) For every ǫ > 0 there is a compact subset K ⊂ Q1(S)/Mod(S) (or K ⊂

Q̂(S)) such that

lim inf
r→∞

1

r
log nK(r) ≥ h − ǫ.

The first part of Theorem 3 is immediate from the results of Eskin and Mirza-
khani, however the proof given here is very short and easy. The lower bound for
the growth of periodic orbits which remain in a fixed compact set is the technically
most involved part of this work.

The main tool we use for the proofs of the above resuls is the curve graph C(S) of
S and the relation between its geometry and the geometry of Teichmüller space. In
Section 2 we introduce the curve graph, and we summarize some results from [H10]
in the form used in the later sections. In Section 3 we investigate the Teichmüller
flow Φt on Q̂(S) and we show Theorem 1. In Section 4 we use the results from
Section 3 to establish a version of the Anosov closing lemma for the restriction of
the Teichmüller flow to compact invariant subsets of Q̂(S) and show Theorem 2.
The proof of Theorem 3 is contained in Section 5.

2. The curve graph and its boundary

Let S be an oriented surface of genus g ≥ 0 with m ≥ 0 punctures and 3g−3+m ≥
2. The curve graph C(S) of S is the graph whose vertices are the free homotopy
classes of essential simple closed curves on S, i.e. simple closed curves which are
neither contractible nor freely homotopic into a puncture. Two such curves are
joined by an edge if and only if they can be realized disjointly. Since 3g−3+m ≥ 2
by assumption, C(S) is connected (see [MM99]). However, the curve graph is locally
infinite. In the sequel we often do not distinguish between a simple closed curve
on S and its free homotopy class. Also, if we write α ∈ C(S) then we always mean
that α is an essential simple closed curve, i.e. α is a vertex in the curve graph C(S).

Providing each edge in C(S) with the standard euclidean metric of diameter
1 equips the curve graph with the structure of a geodesic metric space. Since
C(S) is not locally finite, this metric space (C(S), d) is not locally compact. Masur
and Minsky [MM99] showed that nevertheless its geometry can be understood quite
explicitly. Namely, C(S) is hyperbolic of infinite diameter. The mapping class group
Mod(S) naturally acts on C(S) as a group of simplicial isometries. A mapping class
ϕ ∈ Mod(S) is pseudo-Anosov if the cyclic subgroup of Mod(S) generated by ϕ
acts on the curve graph C(S) with unbounded orbits.

A geodesic lamination for a complete hyperbolic structure on S of finite volume is
a compact subset of S which is foliated into simple geodesics. A geodesic lamination
λ on S is called minimal if each of its half-leaves is dense in λ. Thus a simple closed
geodesic is a minimal geodesic lamination. A minimal geodesic lamination with
more than one leaf has uncountably many leaves and is called minimal arational.
A geodesic lamination λ is said to fill up S if every simple closed geodesic on S
intersects λ transversely. This is equivalent to stating that the complementary
components of λ are all topological discs or once punctured topological discs.
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A measured geodesic lamination is a geodesic lamination λ together with a trans-
lation invariant transverse measure. Such a measure assigns a positive weight to
each compact arc in S which intersects λ nontrivially and transversely and whose
endpoints are contained in complementary regions of λ. The geodesic lamination λ
is called the support of the measured geodesic lamination; it consists of a disjoint
union of minimal components. Vice versa, every minimal geodesic lamination is
the support of a measured geodesic lamination.

The space ML of measured geodesic laminations on S can be equipped with the
weak∗-topology. Its projectivization PML is called the space of projective measured
geodesic laminations and is homeomorphic to the sphere S6g−7+2m. There is a
continuous symmetric pairing ι : ML × ML → (0,∞), the so-called intersection
form, which satisfies ι(aξ, bη) = abι(ξ, η) for all a, b ≥ 0 and all ξ, η ∈ ML. By
the Hubbard Masur theorem (see [Hu06]), for every x ∈ T (S) the space PML
of projective measured geodesic laminations can naturally be identified with the
projectivized cotangent space of T (S) at x. Moreover, a quadratic differential
q ∈ Q1(S) can be viewed as a pair (λ, ν) ∈ ML × ML with i(λ, ν) = 1 and the
additional property that i(λ, ζ) + i(ν, ζ) > 0 for all ζ ∈ ML.

Since C(S) is a hyperbolic geodesic metric space, it admits a Gromov boundary
∂C(S) which is a (non-compact) metrizable topological space equipped with an
action of Mod(S) by homeomorphisms (see [BH99] for the definition of the Gromov
boundary of a hyperbolic geodesic metric space and for references). Following
Klarreich [Kl99] (see also [H06]), this boundary can naturally be identified with the
space of all (unmeasured) minimal geodesic laminations which fill up S, equipped
with the topology which is induced from the weak∗-topology on PML via the
measure forgetting map.

Now let FML ⊂ PML be the Mod(S)-invariant Borel subset of all projective
measured geodesic laminations whose support is minimal and fills up S. The discus-
sion in the previous paragraph shows that there is a continuous Mod(S)-invariant
surjection

(1) F : FML → ∂C(S)

which associates to a projective measured geodesic lamination in FML its support.

Since the curve graph is a hyperbolic geodesic metric space, for every c ∈ C(S)
there is a visual metric δc of uniformly bounded diameter on the Gromov boundary
∂C(S) of C(S) (we refer to Chapter III.H of [BH99] for details of this construction
and for references). These distances are related to the intrinsic geometry of C(S)
as follows.

For a point c ∈ C(S), the Gromov product at c associates to points x, y ∈ C(S)
the value

(x|y)c =
1

2
(d(x, c) + d(y, c) − d(x, y)).

The Gromov product can be extended to a Gromov product ( | )c for pairs of distinct
points in ∂C(S) by defining

(2) (ξ|ζ)c = sup lim inf
i,j→∞

(xi|yj)c
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where the supremum is taken over all sequences (xi) and (yj) in C(S) such that
ξ = lim xi and ζ = lim yj . There are numbers β > 0, ν ∈ (0, 1) such that

νe−β(ξ|ζ)c ≤ δc(ξ, ζ) ≤ e−β(ξ|ζ)c for all ξ, ζ ∈ ∂C(S) and(3)

δc ≤ eβd(c,a)δa for all c, a ∈ C(S).

The distances δc are equivariant with respect to the action of Mod(S) on C(S) and
on ∂C(S). For c ∈ C(S), ξ ∈ ∂C(S) and r > 0 denote by Dc(ξ, r) ⊂ ∂C(S) the ball
of radius r about ξ with respect to the distance function δc.

We will need a more precise quantitative relation between the distance functions
δc (c ∈ C(S)). Even though this property is well known, we did not find an explicit
reference in the literature and we include a sketch of a proof.

For a formulation, for a number m > 1, an m-quasi-geodesic in a metric space
(X, d) is a map γ : J → X such that

(4) |s − t|/m − m ≤ d(γ(s), γ(t)) ≤ m|s − t| + m for all s, t ∈ J

where J ⊂ R is a closed connected set. Since C(S) is hyperbolic, every quasi-
geodesic ray γ : [0,∞) → C(S) converges as t → ∞ in C(S)∪ ∂C(S) to an endpoint
γ(∞) ∈ ∂C(S).

Lemma 2.1. For every m > 1 there are constants a(m) > 1, b(m) > 0, α0(m) > 0
with the following property. Let γ : [0,∞) → C(S) be an m-quasi-geodesic ray with
endpoint γ(∞) ∈ ∂C(S). Then for all t ≥ 0 we have

δγ(0) ≤ a(m)e−b(m)tδγ(t) on Dγ(t)(γ(∞), α0(m)).

Proof. Since C(S) is a hyperbolic geodesic metric space, there is a constant p > 1
depending on the hyperbolicity constant such that every point c ∈ C(S) can be
connected to every point ξ ∈ ∂C(S) by a p-quasi-geodesic (for the particular case
of the curve graph see [Kl99, H06, H10]). Similarly, any two points ξ 6= ζ ∈ ∂C(S)
can be joined by a p-quasi-geodesic.

Let m ≥ p. By hyperbolicity, there is a number r(m) > 0 and for every m-quasi-
geodesic triangle T in C(S) with vertices c ∈ C(S), ξ 6= ζ ∈ ∂C(S) there is a point
u ∈ C(S) whose distance to each of the sides of T is at most r(m). The (non-unique)
point u is called a center of T . We claim that there is a number χ(m) > 0 only
depending on m and the hyperbolicity constant such that

(5) δc(ξ, ζ) ∈ [χ(m)e−βd(c,u), e−βd(c,u)/χ(m)].

Namely, let γ1, γ2 : [0,∞) → C(S) be m-quasi-geodesic rays which connect c
to ξ, ζ. There is a universal constant b > 0 only depending on the hyperbolicity
constant for C(S) such that

(6) (γ1(∞)|γ2(∞))c − b ≤ lim inf
s,t→∞

(γ1(s)|γ2(t))c ≤ (γ1(∞)|γ2(∞))c

(Remark 3.17.5 in Chapter III.H of [BH99]).

By hyperbolicity, for sufficiently large s, t we have

|d(c, γ1(s)) + d(c, γ2(t)) − d(γ1(s), γ2(t)) − 2d(u, c)| ≤ a
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where a > 0 is a constant only depending on the hyperbolicity constant for C(S)
and on m. Together with (2,3,6) this shows the estimate (5).

Now let γ : [0,∞) → C(S) be any m-quasi-geodesic ray with endpoint γ(∞) =
ξ ∈ ∂C(S), let ζ 6= ξ ∈ ∂C(S) and let T be an m-quasi-geodesic triangle with side
γ and vertices γ(0), ξ, ζ. If u ∈ C(S) is a center for T and if σ ≥ 0 is such that
d(u, γ(σ)) ≤ r(m), then for every s ∈ [0, σ] the distance between u and a center
for any m-quasi-geodesic triangle with vertices γ(s), ξ, ζ is bounded from above
by a constant only depending on m and the hyperbolicity constant for C(S). In
particular, by the above discussion and the properties of an m-quasi-geodesic, there
are constants a(m) > 0, b(m) > 0 such that

(7) δγ(0)(ξ, ζ) ≤ a(m)e−b(m)sδγ(s)(ξ, ζ) for every s ∈ [0, σ].

From this the lemma follows. �

By a result of Bers, there is a constant χ0 = χ0(S) > 0 such that for every
complete hyperbolic metric x on S of finite volume there is a pants decomposition
for S consisting of simple closed geodesics of x-length at most χ0. Define a map

(8) ΥT : T (S) → C(S)

by associating to a marked hyperbolic metric x ∈ T (S) a simple closed curve ΥT (x)
whose x-length ℓx(ΥT (x)) does not exceed χ0. There are choices involved in the
definition of ΥT (x), but for any two such choices and any x the distance between
the images of x is uniformly bounded.

Denote by dT the distance on T (S) defined by the Teichmüller metric. Lemma
2.2 of [H10] shows that there is a number L > 1 such that

(9) d(ΥT (x),ΥT (y)) ≤ LdT (x, y) + L for all x, y ∈ T (S).

Choose a smooth function σ : [0,∞) → [0, 1] with σ[0, χ0] ≡ 1 and σ[2χ0,∞) ≡ 0.
For every x ∈ T (S) we obtain a finite Borel measure µx on C(S) by defining

(10) µx =
∑

β

σ(ℓx(β))δβ

where δβ denotes the Dirac mass at β. The total mass of µx is bounded from
above and below by a universal positive constant, and the diameter of the support
of µx in C(S) is uniformly bounded as well. The measures µx are equivariant
with respect to the action of the mapping class group on T (S) and C(S), and they
depend continuously on x ∈ T (S) in the weak∗-topology. This means that for every
bounded function f : C(S) → R the function h →

∫
fdµx is continuous.

For x ∈ T (S) define a distance δx on ∂C(S) by

(11) δx(ξ, ζ) =

∫
δc(ξ, ζ)dµx(c).

Clearly the metrics δx are equivariant with respect to the action of Mod(S) on T (S)
and ∂C(S). Moreover, there is a constant κ > 0 such that

(12) δx ≤ eκdT (x,y)δy and κ−1δx ≤ δΥT (x) ≤ κδx

for all x, y ∈ T (S) (see p.230 and p.231 of [H09]).
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The main theorem of [H10] relates the geometry of Teichmüller space to the
geometry of the curve graph via the map ΥT . For its formulation, denote for ǫ > 0
by T (S)ǫ the set of all hyperbolic metrics whose systole (i.e. the shortest length of
a closed geodesic) is at least ǫ. For sufficiently small ǫ the set T (S)ǫ is connected,
and the mapping class group acts properly and cocompactly on T (S)ǫ.

Theorem 2.2. (1) For every L > 1 there is a number ǫ = ǫ(L) > 0 with the
following property. Let J ⊂ R be a closed connected set of length at least
1/ǫ and let γ : J → T (S) be an L-quasi-geodesic. If ΥT ◦ γ is an L-quasi-
geodesic in C(S) then there is a Teichmüller geodesic ξ : J ′ → T (S)ǫ such
that the Hausdorff distance between γ(J) and ξ(J ′) is at most 1/ǫ.

(2) For every ǫ > 0 there is a number L(ǫ) > 1 with the following property.
Let J ⊂ R be a closed connected set and let γ : J → T (S) be a 1/ǫ-quasi-
geodesic. If there is a Teichmüller geodesic arc ξ : J ′ → T (S)ǫ such that
the Hausdorff distance between γ(J) and ξ(J ′) is at most 1/ǫ then ΥT ◦ γ
is an L(ǫ)-quasi-geodesic in C(S).

Let Q1(S) be the bundle of area one quadratic differentials over Teichmüller
space T (S) for S. The mapping class group Mod(S) acts properly discontinuously
on Q1(S) as a group of bundle automorphisms. This action commutes with the
action of the Teichmüller geodesic flow Φt.

An area one quadratic differential q ∈ Q1(S) is determined by a pair (qv, qh) of
measured geodesic laminations, the vertical and the horizontal measured geodesic
lamination of q, respectively. For every t ∈ R the pair (etqv, e−tqh) corresponds to
the quadratic differential Φtq. The strong stable manifold

W ss(q) ⊂ Q1(S)

of q is defined as the set of all quadratic differentials of area one whose vertical mea-
sured geodesic lamination coincides precisely with the vertical measured geodesic
lamination of q. The strong unstable manifold

W su(q) ⊂ Q1(S)

is the set of all quadratic differentials of area one whose horizontal measured ge-
odesic lamination coincides precisely with the horizontal measured geodesic lam-
ination of q. Define moreover the stable manifold W s(q) of q and the unstable
manifold Wu(q) of q by W s(q) = ∪t∈RΦtW ss(q) and Wu(q) = ∪t∈RΦtW su(q). As
q varies through Q1(S), the manifolds W ss(q),W su(q),W s(q),Wu(q) define con-
tinuous foliations of Q1(S) which are called the strong stable, the strong unstable,
the stable and the unstable foliation. These foliations are invariant under the action
of Mod(S) and under the action of the Teichmüller geodesic flow Φt.

For every q ∈ Q1(S) the map which associates to a quadratic differential its
vertical measured geodesic lamination restricts to a homeomorphism of the unstable
manifold Wu(q) containing q onto an open dense subset of ML. The space ML
admits a natural Mod(S)-invariant measure in the Lebesgue measure class which
lifts to a locally finite measure on Wu(q) in the Lebesgue measure class. The

induced family of conditional measures λ̃u on strong unstable manifolds transform
under the Teichmüller flow by dλ̃Φtq ◦ Φt = ehtdλ̃q where as before, h = 6g −

6 + 2m. The measures λ̃q are equivariant under the action of the mapping class
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group. Moreover, they are conditional measures for a Mod(S)-invariant locally

finite measure λ̃ on Q1(S) in the Lebesgue measure class. The measure λ̃ is the
lift of a finite measure λ on Q1(S)/Mod(S) which is Φt-invariant and mixing. The
measure λ gives full measure to the set of all quadratic differentials whose horizontal
and vertical measured geodesic laminations are uniquely ergodic and fill up S (see
[M82, V86] for details). Moreover, by the Poincaré recurrence theorem, λ-almost
every q ∈ Q1(S)/Mod(S) is recurrent, i.e. it is contained in the ω-limit set of its
own orbit under the Teichmüller flow.

Let

(13) π : Q1(S) → PML

be the map which associates to a quadratic differential its vertical projective mea-
sured geodesic lamination. For every q ∈ Q1(S) the restriction of the projection
π to W su(q) is a homeomorphism of W su(q) onto the open subset of PML of all
projective measured geodesic laminations µ which together with π(−q) jointly fill
up S, i.e. are such that for every measured geodesic lamination η ∈ ML we have
i(µ, η) + i(π(−q), η) 6= 0 (note that this makes sense even though the intersection
form i is defined on ML rather than on PML). The measure class of the push-

forward under π of the measure λ̃q on W su(q) does not depend on q and defines a
Mod(S)-invariant ergodic measure class on PML.

3. Compact invariant sets are expansive

Let again Q1(S) be the bundle of area one quadratic differentials over Te-
ichmüller space T (S) of an oriented surface of genus g ≥ 0 with m ≥ 0 punctures
and where 3g − 3 + m ≥ 2. The mapping class group Mod(S) acts on Q1(S),
but this action is not free and the quotient space Q1(S)/Mod(S) is a non-compact
orbifold rather than a manifold.

To overcome this (mainly technical) difficulty we choose a torsion free normal
subgroup Γ of Mod(S) of finite index. For example, the group of all elements which

act trivially on H1(S, Z/3Z) has this property. Define Q̂(S) = Q1(S)/Γ and let

(14) Π : Q1(S) → Q̂(S)

be the canonical projection. Since the action of Γ on Q1(S) is free, the map Π is a

covering. The Teichmüller flow Φt acts on Q̂(S).

The goal of this section is to show

Theorem 3.1. The restriction of the Teichmüller flow to every compact invariant
subset K of Q̂(S) is expansive.

We begin with the construction of a convenient metric on Q1(S) and Q̂(S)
inducing the usual topology. To this end, call a distance d on a space X a length
metric if the distance between any two points is the infimum of the lengths of all
paths connecting these points. In the sequel denote by

(15) P : Q1(S) → T (S)

the canonical projection.
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Lemma 3.2. There is a complete Mod(S)-invariant length metric d on Q1(S) with
the following properties.

(1) The metric d induces the usual topology.
(2) The canonical projection P : (Q1(S), d) → T (S) is distance non-decreasing

where T (S) is equipped with the Teichmüller metric.
(3) Every orbit of the Teichmüller flow with its natural parametrization is a

minimal geodesic for d parametrized by arc length.

Proof. By the Hubbard Masur theorem (see [Hu06] for a presentation of this cel-
ebrated and by now classical result), the restriction of the canonical projection
P : Q1(S) → T (S) to every unstable (or stable) manifold in Q1(S) is a homeomor-
phism onto T (S). Thus the Teichmüller metric on T (S) lifts to a length metric on
the leaves of the stable and of the unstable foliation.

Call a path ρ : [0, 1] → Q1(S) admissible if there is a finite partition 0 = t0 <
· · · < tk = 1 such that the restriction of ρ to each interval [ti−1, ti] is entirely
contained in a stable or in an unstable manifold. For each such admissible path
ρ we can define its length to be the sum of the lengths with respect to the lifts
of the Teichmüller metric of the subsegments of ρ entirely contained in a stable
or an unstable manifold. For q0, q1 ∈ Q1(S) define d(q0, q1) to be the infimum
of the lengths of all admissible paths connecting q0 to q1. Then d is a (a priori
non-finite) distance function on Q1(S) which satisfies the second requirement in
the lemma. The third property holds true since the projection to T (S) of an orbit
of the Teichmüller flow is a Teichmüller geodesic of the same length and hence
realizes the distance between its endpoints. By the second property for d and the
definition, the d-length of every path in Q1(S) which is entirely contained in a
stable or an unstable manifold coincides with the length of its projection to T (S).
As a consequence, the metric d is a length metric.

We are left with showing that d induces the usual topology on Q1(S). For this
let q ∈ Q1(S) and let ǫ > 0. We have to show that the ǫ-ball about q for the
distance d contains a neighborhood of q in Q1(S). For this denote for z ∈ Q1(S)
and r > 0 by Bi(q, r) the open r-ball about q in W i(q) with respect to the lift of the
Teichmüller metric (i = s, u). For each z ∈ Bs(q, ǫ/2), the open ball Bu(z, ǫ/2) of
radius ǫ/2 about z in Wu(z) is an open neighborhood of z in Wu(z) whose closure
is compact and depends continuously on z in the Hausdorff topology for compact
subsets of Q1(S) by the Hubbard Masur theorem. Then U = ∪z∈Bs(q,ǫ/2)B

u(z, ǫ/2)

is an open neighborhood of q in Q1(S). Moreover by construction, U is contained
in the ǫ-ball about q with respect to the distance function d. This completes the
proof of the lemma. �

The distance d on Q1(S) constructed in Lemma 3.2 induces a metric on Q̂(S),
again denote by d, via

(16) d(x, y) = inf{d(x̃, ỹ) | Π(x̃) = Π(ỹ)}

where as before, Π : Q1(S) → Q̂(S) is the canonical projection. In the sequel we

always use these distance functions on Q1(S) and Q̂(S) without further mentioning.
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With these preparations, we can prove Theorem 3.1.

Proof of Theorem 3.1. Let K ⊂ Q̂(S) be a compact Φt-invariant subset and let

K̃ ⊂ Q1(S) be the preimage of K under the canonical projection Π : Q1(S) →

Q̂(S). Let as before P : Q1(S) → T (S) be the canonical projection. By the second
part of Theorem 2.2, there is a constant p > 0 only depending on K such that for
every q ∈ K̃ the curve t → ΥT (PΦtq) is a p-quasi-geodesic in C(S), i.e. we have

(17) |t − s|/p − p ≤ d(ΥT (PΦtq),ΥT (PΦsq)) ≤ p|t − s| + p for all s, t ∈ R.

Since by inequality (9) the map ΥT is coarsely Lipschitz, this shows that lifts of
orbits of Φt|K which are contained in the same unstable manifold diverge linearly
in forward direction. We therefore just have to relate distances in the curve graph
to distances in Q1(S) for the metric d in a quantitative way. The remainder of the
argument establishes such a control.

Let F : Q1(S) → Q1(S) be the flip q → F(q) = −q. This flip is equivariant
with respect to the action of the mapping class group and hence it descends to a
continuous involution of Q̂(S) which we denote again by F . Recall that the Gromov
boundary ∂C(S) of C(S) can be identified with the set of all (unmeasured) minimal
geodesic laminations on S which fill up S. Let again π : Q1(S) → PML be the

canonical projection. If q ∈ K̃ ∪ F(K̃) then the support F (πq) of the vertical
measured geodesic lamination of q is uniquely ergodic, which means that F (πq)
admits a unique transverse measure up to scale, and F (πq) is minimal and fills up
S [M82]. Moreover, the p-quasi-geodesic t → ΥT (PΦtq) converges in C(S)∪ ∂C(S)
to F (πq) (the latter statement follows from the explicit identification of ∂C(S) with
the set of minimal geodesic laminations which fill up S established in [Kl99, H06],
see also [H10]).

Write A = π(K̃ ∪ F(K̃)). Then A is a Γ-invariant Borel subset of PML.
By the consideration in the previous paragraph, the restriction to A of the map
F : FML → ∂C(S) introduced in (1) of Section 2 is a Γ-equivariant continuous
injection

FA : A → ∂C(S)

which associates to a projective measured geodesic lamination contained in A its
support. In other words, we can identify the set A with a subset of ∂C(S).

Recall from equation (11) the definition of the distances δx (x ∈ T (S)) on the
Gromov boundary ∂C(S) of C(S). Since the map FA : A → ∂C(S) is injective, for
every q ∈ Q1(S) the function (ξ, ζ) ∈ A × A → δPq(FAξ, FAζ) is a distance on A.
For simplicity of notation, we denote this distance again by δPq. The topology on
A defined by this distance is just the subspace topology of A as a subset of PML
(this is the result of [Kl99]).

For q ∈ K̃ ∪ F(K̃) denote by Dq(π(q), r) ⊂ A the ball of radius r in A about
π(q) with respect to this distance. By continuity of the projection π and the map
FA and by the relation (12) between the distances δx and δy for x, y ∈ T (S),
the ball Dq(π(q), r) depends continuously on q in the following sense. For every
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q ∈ K̃ ∪ F(K̃), every r > 0 and every ǫ ∈ (0, r) there is a neighborhood U of q in

K̃ ∪ F(K̃) such that for every u ∈ U we have

(18) Du(π(u), r − ǫ) ⊂ Dq(π(q), r) ⊂ Du(π(u), r + ǫ).

By inequalities (12) and (17) and by Lemma 2.1, there are numbers α > 0, a >

1, b > 0 such that for every q ∈ K̃ and for all t > 0 we have

δPΦ−tq ≤ ae−btδPq on Dq(π(q), 2α) and(19)

δPΦtq ≤ ae−btδPq on DF(q)(π(Fq), 2α).

For q ∈ Q1(S) and β > 0 denote by B(q, β) the ball of radius β about q in Q1(S)
with respect to the length metric d defined in Lemma 3.2. Since the projection π
is continuous, for every q ∈ K̃ ∪ F(K̃) there is a number ǫ(q) > 0 such that

π(B(q, ǫ(q)) ∩ (K̃ ∪ FK̃)) ⊂ Dq(π(q), α) where α > 0 is as in the inequalities (19).

By the continuity properties (18) of the balls Du(π(u), r) for u ∈ K̃ ∪ F(K̃) and
r > 0, by invariance under the action of the group Γ < Mod(S) and cocompactness
we can find a universal number β0 > 0 such that

(20) π(B(q, β0) ∩ (K̃ ∪ FK̃)) ⊂ Dq(π(q), α) for all q ∈ K̃ ∪ F(K̃).

Denote again by d the distance on Q̂(S) induced in equation (16) from the

distance on Q1(S). Since K ∪ F(K) is compact and Π : Q1(S) → Q̂(S) is a
covering, there is a number β < β0 such that for every q ∈ K ∪F(K) and every lift

q̃ of q to Q1(S) the ball B(q, β) in Q̂(S) of radius β about q is the homeomorphic
image under Π of the ball B(q̃, β). Now the orbits of Φt are geodesics for the
distance d. Hence if x ∈ K, if s : R → R is a continuous function such that s(0) = 0
and d(Φtq,Φs(t)q) < β/2 for all t then by the choice of β we have |t − s(t)| < β/2
for all t.

This implies that for this function s, if u ∈ K is such that d(Φtq,Φs(t)u) < β/2 for
all t then d(Φtu,Φs(t)u) < β/2 (since |t− s(t)| < β/2 and orbits of the Teichmüller
flow are geodesics) and hence d(Φtu,Φtq) < β for all t by the triangle inequality.
In particular, for a lift q̃ ∈ Q1(S) of q and a lift ũ of u with d(q̃, ũ) < β we have
d(Φtq̃,Φtũ) < β for all t ∈ R.

Let W s
loc(q) be the connected component containing q of the intersection of

B(q, β) with the stable manifold W s(q) of q. We claim that u ∈ W s
loc(q). For

this assume otherwise. Let again q̃ be a preimage of q in Q1(S) and let ũ ∈ Q1(S)
be the preimage of u with d(q̃, ũ) < β. If π(q̃) 6= π(ũ) then δP q̃(π(q̃), π(ũ)) > 0 and
by continuity, our choice of α and the estimates (19), there is a number t > 0 such
that δPΦtq̃(π(q̃), π(ũ)) = α. On the other hand, for every s ∈ [0, t] the distance in
Q1(S) between Φsq̃,Φsũ is smaller than β which is a contradiction to the choice of
β < β0 and the relation (20).

In the same way we conclude that u is contained in the intersection of B(q, β)
with the local unstable manifold of q. Now the intersection of the local stable
manifold W s

loc(q) with the local unstable manifold Wu
loc(q) is contained in the orbit

of q under the Teichmüller flow Φt which completes the proof of Theorem 3.1. �
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For a compact Φt-invariant subset K of Q̂(S) let htop(K) be the topological
entropy of the restriction of Φt to K. For r > 0 let moreover nK(r) be the number
of periodic orbits of Φt of period at most r which are contained in K. Since by
Theorem 3.1 the restriction of the flow Φt to K is expansive, by Proposition 3.2.14
of [HK95] we have

Corollary 3.3. Let K ⊂ Q̂(S) be a compact Φt-invariant set; then

lim sup
r→∞

1

r
log nK(r) ≤ htop(K).

4. An Anosov closing lemma

The goal of this section is to establish a version of the Anosov closing lemma
for the restriction of the Teichmüller flow to a compact invariant set K ⊂ Q̂(S).
The classical Anosov closing lemma roughly states that for a hyperbolic flow on
a closed Riemannian manifold, a closed curve consisting of sufficiently long orbit
segments which are connected at the endpoints by sufficiently short arcs is closely
fellow-traveled by a periodic orbit.

We continue to use the assumptions and notations from Section 2 and Section 3.
In particular, we always use the distances on Q1(S) and Q̂(S) defined in Lemma
3.2 and in equation (16). For a precise formulation of our version of an Anosov
closing lemma for the Teichmüller flow, using the assumptions and notations from
Section 2 and Section 3 we define.

Definition 4.1. For n > 0, ǫ > 0, an (n, ǫ)-pseudo-orbit for the Teichmüller flow

Φt on Q̂(S) consists of a sequence of points q0, q1, . . . , qk ∈ Q̂(S) and a sequence of
numbers t0, . . . , tk−1 ∈ [n,∞) with the following properties.

(1) For every j ≤ k the 2ǫ-neighborhood of qj is contained in a contractible

subset of Q̂(S).
(2) For every j < k we have d(Φtj qj , qj+1) ≤ ǫ.

The pseudo-orbit is contained in a compact set K if for all i and all t ∈ [0, ti] we
have Φtqi ∈ K. The pseudo-orbit is called closed if q0 = qk.

An (n, ǫ)-pseudo-orbit q0, . . . , qk determines an essentially unique arc connecting
q0 to qk which we call a characteristic arc. Namely, by assumption, for each j < k
the 2ǫ-neighborhood of qj+1 is contained in a contractible subset of Q̂(S). Hence

the homotopy class with fixed endpoints in Q̂(S) of an arc of length smaller than
2ǫ connecting Φtj qj to qj+1 is unique. We define a characteristic arc of the (n, ǫ)-
pseudo-orbit to be an arc connecting q0 to qk which is obtained by successively
joining the endpoint of the orbit segment {Φtqj | 0 ≤ t ≤ tj} to qj+1 with an arc of
length smaller than 2ǫ which is parametrized on the unit interval (j = 0, . . . , k−1).
The points qi (1 ≤ i ≤ k) are called the breakpoints of the characteristic arc
of the pseudo-orbit. The characteristic homotopy class of the pseudo-orbit is the
homotopy class with fixed endpoints of a characteristic arc connecting q0 to qk. Note
that this is independent of the choice of a characteristic arc. If the pseudo-orbit is
closed then it determines a closed characteristic curve and hence a free homotopy



DYNAMICS OF THE TEICHMÜLLER FLOW ON COMPACT INVARIANT SETS 13

class of closed curves in Q̂(S) which we call the characteristic free homotopy class
of the closed pseudo-orbit.

By abuse of notation, denote again by P : Q̂(S) → T (S)/Γ the canonical pro-
jection.

Definition 4.2. An (n, ǫ)-pseudo-orbit q0, . . . , qk as in Definition 4.1 is δ-shadowed

by an orbit segment ζ = {Φtq | t ∈ [0, τ ]} for some q ∈ Q̂(S) and some τ > 0 if the
following holds.

(1) There is a number α ≤ δ such that the α-neighborhoods of Pq0, P qk in
T (S)/Γ with respect to the projection of the Teichmüller metric are con-
tractible and contain Pq, PΦτq.

(2) There is a lift ζ̃ to Q1(S) of the orbit segment ζ and a lift γ̃ to Q1(S) of a
characteristic arc γ for the pseudo-orbit with the following properties. The
distance between the endpoints of P γ̃, P ζ̃ is at most α, and the Hausdorff
distance between γ̃ and ζ̃ is at most δ.

A closed pseudo-orbit in Q̂(S) is δ-shadowed by a periodic orbit if in addition to
the above requirements the orbit {Φtq | t ∈ [0, τ ]} is closed.

Note that every point in the orbifold Q1(S)/Mod(S) admits a contractible neigh-
borhood, so we can use the above definition is the same way for the Teichmüller
flow on the orbifold Q1(S)/Mod(S).

Using Definition 4.1 and Definition 4.2 we can now formulate a version of the
Anosov closing lemma for the Teichmüller flow which is the main result of this
section.

Theorem 4.3. For every compact Φt-invariant set K ⊂ Q̂(S) there are numbers
ǫ1 = ǫ1(K) > 0, n = n(K) > 0, b = b(K) > 0 such that every (n, ǫ1)-pseudo-
orbit contained in K is b-shadowed by an orbit. Moreover, for every δ > 0 there
is a number ǫ2 = ǫ2(K, δ) < ǫ1 such that a closed (n, ǫ2)-pseudo-orbit contained
in K is δ-shadowed by a periodic orbit which is contained in the characteristic free
homotopy class of the closed pseudo-orbit.

For the proof of Theorem 4.3 we need the following technical preparation which
is also used in Section 5. To this end, recall that a point q ∈ Q1(S)/Mod(S) is
recurrent if q is contained in the ω-limit set of its own orbit under the Teichmüller
flow. For some m > 1, an unparametrized m-quasi-geodesic in C(S) is an arc γ :
J → C(S) with the property that there is an orientation preserving homeomorphism
ϕ : I → J such that γ ◦ ϕ : I → C(S) is an m-quasi-geodesic. We show

Lemma 4.4. (1) For every compact Φt-invariant set K ⊂ Q̂(S) there are
numbers ǫ0 = ǫ0(K) > 0, n0 = n0(K) > 0, ℓ0 = ℓ0(K) > 1 depending on

K with the following property. Let q0, . . . , qk ∈ Q̂(S) be an (n0, ǫ0)-pseudo-
orbit contained in K and let γ̃ be a lift to Q1(S) of a characteristic arc
connecting q0 to qk. Then the arc t → ΥT (P γ̃(t)) is an ℓ0-quasi-geodesic
in C(S).
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(2) There is a number m > 1 and for every recurrent point q ∈ Q1(S)/Mod(S)
there are numbers ǫ0(q) > 0, n0(q) > 0 with the following properties. Let
q0, . . . , qk be an (n0(q), ǫ0(q))-pseudo-orbit with d(qi, q) ≤ ǫ0(q) for all i and
let γ̃ be a lift to Q1(S) of a characteristic arc γ connecting q0 to qk. Then
the arc t → ΥT (P γ̃(t)) is an unparametrized m-quasi-geodesic in C(S).

Proof. Recall from (3) and (11) of Section 2 the definition of the distance functions
δc (c ∈ C(S)) and δx (x ∈ T (S)) on the Gromov boundary ∂C(S) of C(S). By
hyperbolicity, every quasi-geodesic ray ζ : [0,∞) → C(S) converges as t → ∞ to a
point R(ζ) ∈ ∂C(S). Moreover, for every p > 1 there are numbers m(p) > 0, α(p) >
0, β(p) > 1 with the following property.

Let k > 0 and let ζ0, . . . , ζk−1 : R → C(S) be infinite p-quasi-geodesics. Let L > 1
be as in inequality (9). Suppose that for every j ≤ k−2 there is a number Tj > m(p)
such that d(ζj(Tj), ζj+1(0)) ≤ 2L. For each j ≤ k − 1 let ρj : [0, 1] → C(S) be any

map whose image is contained in the 2L-neighborhood of ζj(Tj) and let ζ̃j be the
composition of ζj [0, Tj ] with ρj parametrized in the natural way on [0, Tj + 1]. If
δζj+1(0)(R(ζj), R(ζj+1)) < α(p) for all j then the curve ζ : [0,

∑
i Ti + k] → C(S)

defined by

(21) ζ(t) = ζ̃j(t −

j−1∑
i=0

Ti − j) for t ∈ [

j−1∑
i=0

Ti + j,

j∑
i=0

Ti + j + 1]

is a β(p)-quasi-geodesic.

Let K ⊂ Q̂(S) be a compact Φt-invariant set and let K̃ ⊂ Q1(S) be the preimage
of K under the natural projection. By the second part of Theorem 2.2 there is a
number p > 1 such that for every q ∈ K̃ the assignment t → ΥT (PΦtq) (t ∈ R) is
a p-quasi-geodesic.

For q ∈ K̃ we have F (π(q)) = R(t → ΥT (PΦtq)) ∈ ∂C(S). Let κ > 0 be as in

(12) of Section 2. By continuity, for every q ∈ K̃ there is a number ǫ(q) > 0 such

that for every point q̃ ∈ K̃ which is contained in the 2ǫ(q)-neighborhood of q the
δPq-distance between F (π(q)) and F (π(q̃)) is smaller than α(p)/κ where α(p) > 0
is as in the first paragraph of this proof. By continuity, invariance under the action
of the mapping class group on Q1(S) and ∂C(S) and cocompactness of the action

of Γ on K̃, there is a number ǫ0 ∈ (0, 1/2) which has this property for all q ∈ K̃
(compare the proof of Theorem 3.1 for a similar statement).

Let m(p) > 0 be as in the first paragraph of this proof. Let γ̃ be the lift to
Q1(S) of a characteristic arc of an (m(p), ǫ0)-pseudo-orbit q0, q1, . . . , qk contained

in K ⊂ Q̂(S). Then γ̃ is a composition of curves γ̃i (i = 1, . . . , k) where the curve
γ̃i is a lift to Q1(S) of an orbit segment for the Teichmüller flow of length at least
m(p) beginning at xi−1 and an arc of length at most 2ǫ0 < 1 parametrized on [0, 1],
with endpoint xi. By the choice of m(p), of ǫ0 > 0 and by the construction of the
curves γ̃i, the curve ΥT (P γ̃) is of the form described in the second paragraph of
this proof and hence it is a β(p)-quasi-geodesic in C(S). This shows the first part
of the lemma.
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The second part of the lemma follows in the same way. By [MM99] there is
a number ℓ > 0 such that for every q̃ ∈ Q1(S) the map t → ΥT (PΦtq̃) is an
unparametrized ℓ-quasi-geodesic (this number ℓ > 0 does not coincide with the
number p > 1 above, see also [H10]). Let m(ℓ) > 0, α(ℓ) > 0, p(ℓ) > 1 be as in
the first paragraph of this proof. Let q ∈ Q1(S)/Mod(S) be a recurrent point and
let q̃ ∈ Q1(S) be a lift of q. Then the vertical measured geodesic lamination of q̃
is uniquely ergodic and fills up S [M82], and the unparametrized ℓ-quasi-geodesic
t → ΥT (PΦtq̃) is of infinite diameter. By continuity and by Lemma 2.4 of [H10]
there is a neighborhood V of q̃ in Q1(S) and a number T (q) > 0 such that

(22) d(ΥT (PΦtu),ΥT (Pu)) ≥ ℓm(ℓ) + ℓ for all u ∈ V and all t ≥ T (q).

In particular, if u ∈ V and if ρu : [0, a) → [0,∞) (a ∈ (0,∞]) is a homeomor-
phism with the property that the map t → ΥT (PΦρu(t)u) is a parametrized ℓ-
quasi-geodesic in C(S) then ρu(m(ℓ)) ≤ T (q).

The subset U of Q1(S) of all points with uniquely ergodic vertical measured
geodesic lamination which fills up S is dense [M82]. Each u ∈ U defines a point
Fπ(u) ∈ ∂C(S) which is just the endpoint of the infinite unparametrized ℓ-quasi-
geodesic t → ΥT (PΦtu). The map u ∈ U → Fπ(u) ∈ ∂C(S) is continuous.
Thus we can find a number ǫ0(q) ∈ (0, 1/2) which is small enough that the 2ǫ0(q)-
neighborhood W of q̃ in Q1(S) is contained in V and that for every point u ∈ W ∩U
the δP q̃-distance between F (π(q̃)) and F (π(u)) is smaller than α(ℓ)/κ where as
before, κ > 0 is as in (12) in Section 2. The second part of the lemma holds true
for the numbers ǫ0(q) > 0, T (q) > 0. �

Proof of Theorem 4.3. Let K ⊂ Q̂(S) be any compact Φt-invariant set and let

K̃ be the preimage of K in Q1(S) under the natural projection. Let ǫ0 = ǫ0(K) ∈
(0, 1/2), n0 = n0(K) > 0 be as in the first part of Lemma 4.4. Let q0, . . . , qk be an
(n0, ǫ0)-pseudo-orbit for Φt which is contained in K and let t0, . . . , tk−1 ∈ [n0,∞)
be as in the definition of a pseudo-orbit such that d(Φtiqi, qi+1) ≤ ǫ0 for i < k. Let γ

be a characteristic arc of this pseudo-orbit which is parametrized on [0,
∑k−1

i=0 ti +k]
in such a way that for each j the restriction of γ to [

∑
i<j ti + j,

∑
i<j+1 ti + j] is

a reparametrization of the orbit segment {Φtqj | t ∈ [0, tj ]} by a translation. The
points q1, . . . , qk−1 are the breakpoints of the characteristic arc.

Let γ̃ be a lift of γ to Q1(S). By Lemma 4.4, the assignment t → ΥT (P γ̃(t)) is
an ℓ0-quasi-geodesic in C(S) for a number ℓ0 > 1 only depending on K. The map
t → P γ̃(t) ∈ (T (S), dT ) is one-Lipschitz. Since by inequality (9) there is a number
L > 0 such that dT (Pq, Pz) ≥ d(ΥT (Pq),ΥT (Pz))/L − L for all q, z ∈ Q1(S),
we conclude that the curve t → P γ̃(t) is a uniform quasi-geodesic in T (S). By
the first part of Theorem 2.2, this implies that there is a Teichmüller geodesic
whose Hausdorff distance to P γ̃ is bounded from above by a universal constant.
As a consequence, the Hausdorff distance between γ̃ and the tangent line of this
geodesic is bounded from above by a universal constant b > 0.

A mapping class g ∈ Mod(S) is pseudo-Anosov if the cyclic subgroup of Mod(S)
generated by g acts on the curve graph C(S) with unbounded orbits. In this case the
conjugacy class of g can be represented by a closed orbit for the Teichmüller flow Φt

on Q1(S)/Mod(S), and it can be represented by a closed orbit for the Teichmüller
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flow on Q̂(S) if the conjugacy class of g is contained in the normal subgroup Γ of
Mod(S). Assume now that the (n0, ǫ0)-pseudo-orbit q0, . . . , qk contained in K is
closed. Let γ̃ be a lift to Q1(S) of a closed characteristic arc γ for the pseudo-
orbit. By the first part of Lemma 4.4, the curve t → ΥT (P γ̃(t)) is an infinite
ℓ0-quasi-geodesic in C(S) which is invariant under an element g ∈ Γ < Mod(S)
of the mapping class group. The mapping class g acts on this quasi-geodesic as
a translation and hence it is pseudo-Anosov. As a consequence, there is a unique
g-invariant Teichmüller geodesic in T (S) whose cotangent line in Q1(S) projects to

a periodic orbit of Φt in Q̂(S) which defines the free homotopy class of γ. In other

words, there is a closed orbit for Φt in Q̂(S) which is freely homotopic to γ.

By the first part of Theorem 2.2, applied to the biinfinite quasi-geodesic P γ̃ in
T (S), this orbit is contained in a compact subset C0 ⊃ K of Q̂(S) not depending
on the pseudo-orbit. Moreover, it b-shadows the pseudo-orbit for a number b > 0
only depending on K,n0, ǫ0. This shows the first part of Theorem 4.3.

Let C ⊂ C0 be the Φt-invariant subset of C0 of all points whose Φt-orbit is
entirely contained in C0. The periodic orbit defined by the conjugacy class of the
pseudo-Anosov element g is contained in C. Let C̃ be the preimage of C in Q1(S).

Then every lift to Q1(S) of a periodic orbit in Q̂(S) determined as above by a

closed (n0, ǫ0)-pseudo-orbit contained in K is contained in C̃.

Let again π : Q1(S) → PML be the canonical projection. Write A = π(C̃ ∪
F(C̃)) where F : Q1(S) → Q1(S) is the flip q → F(q) = −q. As in Section
3, let FA = F |A : A → ∂C(S) be the measure forgetting injection. For q ∈
C̃ ∪ F(C̃) let δPq be the distance on ∂C(S) defined in equation (11) and denote
by Dq(π(q), r) the ball of radius r about π(q) in A with respect to the distance
(x, y) ∈ A × A → δPq(FAx, FAy) ∈ [0,∞) which we denote again by δPq (compare
the proof of Theorem 3.1).

By the second part of Theorem 2.2, applied to the projection into T (S) of the

preimage C̃ of the compact Φt-invariant set C ⊂ Q̂(S), by Lemma 2.1 and by
inequality (12) of Section 2, there are numbers α0 < 1/2, a > 1, b > 0 such that for

every q ∈ C̃ and for all t > 0 we have

(23) δPΦ−tq ≤ ae−btδPq on Dq(π(q), 4α0).

Moreover, for every α < α0 there is a number β = β(α) < 1 such that for every

q ∈ C̃ we have A ∩ πB(q, β) ⊂ Dq(π(q), α) where B(q, β) is the ball of radius β
about q in Q1(S) (compare the proof of Theorem 3.1).

Let n = max{n0, log(4a)/b}, let α < α0 and let σ = min{ǫ0, β(α), κ−1 log 2}
where κ > 0 is as in inequality (12). We claim that for a lift γ̃ : [0, T ] → Q1(S) of
a characteristic arc γ of any (n, σ)-pseudo-orbit contained in K we have

δP γ̃(0)(πγ̃(0), πγ̃(T )) ≤ α.

To see this we proceed by induction on the number of breakpoints of the pseudo-
orbit. The case that there is a no breakpoint is trivial, so assume that the claim is
known whenever the number of breakpoints of the pseudo-orbit is at most k−1 ≥ 0.
Let γ̃ be a lift to Q1(S) of a characteristic arc γ of an (n, σ)-pseudo-orbit contained
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in K with k breakpoints. Let t0 ≥ n + 1 be such that γ(t0) is the first breakpoint
of γ. By assumption and the choice of the parametrization of a characteristic arc
we have d(γ̃(t0), γ̃(t0 − 1)) ≤ σ. Since γ̃(t0) ⊂ K̃ ⊂ C̃, γ̃(t0 − 1) ∈ C̃, by the choice
of σ we have

(24) δP γ̃(t0)(πγ̃(t0), πγ̃(t0 − 1)) ≤ α,

moreover the distances δP γ̃(t0), δP γ̃(t0−1) are 2-bilipschitz equivalent (recall that the

projection P : Q1(S) → T (S) is distance non-increasing).

Now πγ̃(T ) ∈ Dγ̃(t0)(πγ̃(t0), α) by the induction hypothesis and therefore

(25) δP γ̃(t0−1)(πγ̃(t0 − 1), πγ̃(T )) ≤ 4α.

On the other hand, since α ≤ α0, since n ≥ log(4a)/b and since πγ̃(t0 − 1) = πγ̃(0)
we infer from the estimate (23) that

(26) δP γ̃(t0−1)(πγ̃(t0 − 1), πγ̃(T )) ≥ 4δP γ̃(0)(πγ̃(0), γ̃(T )).

Together this implies the claim.

Note that the argument in the previous paragraph together with the estimate
(23) also shows that

(27) δγ̃(t)(πγ̃(t), πγ̃(T )) ≤ 4aα

for all t ∈ [0, T ] with the additional property that γ̃(t) ∈ C̃ (namely this holds true
for every t such that γ̃(t) projects to an orbit segment defining the pseudo-orbit).

Let again γ̃ be a biinfinite lift to Q̃1(S) of a closed characteristic curve γ for an
(n, σ)-pseudo-orbit contained in K. The curve ΥT (P γ̃) is a uniform quasi-geodesic
in C(S) which is invariant under a pseudo-Anosov element g ∈ Γ < Mod(S) on
∂C(S). The conjugacy class of γ defines the free homotopy class of γ. The oriented

cotangent line of the axis of g is contained in C̃. If z ∈ C̃ is a point in this
cotangent line then π(z) ∈ A is a fixed point for the action of g on PML. An
inductive application to longer and longer subsegments of γ̃ of the argument which
lead to the estimate (27) shows that for every t ∈ R such that γ̃(t) ⊂ K̃ ⊂ C̃ the
fixed point π(z) ∈ A of g is contained in the ball Dγ̃(t)(π(γ̃(t)), 4aα). The same
argument also shows that the fixed point π(−z) for the action of g is contained in

D−γ̃(t)(π(−γ̃(t)), 4aα). The periodic orbit on Q̂(S) defined by g is contained in the

compact Φt-invariant subset C ⊃ K of Q̂(S) determined above.

By the considerations in Theorem 3.1 and its proof, applied to the compact Φt-
invariant subset C of Q̂(S), this means that for every δ > 0 there is a constant
β > 0 only depending on K with the following property. Let q0, . . . , qk be a closed
(n, β)-pseudo-orbit contained in K. Then there is a closed orbit for Φt contained in
C whose Hausdorff distance to a closed characteristic curve defined by the pseudo-
orbit is at most δ. From this Theorem 4.3 follows. �

The Anosov closing lemma implies the existence of many periodic orbits near
any non-wandering point of a compact Φt-invariant subset K of Q̂(S). However,
as for compact invariant hyperbolic sets in the usual sense of smooth dynamical
systems (see [HK95]), these periodic orbits are in general not contained in K.
The next corollary is an immediate adaptation of Corollary 6.4.19 of [HK95] and
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shows that the periodic orbits can be chosen to be contained in an arbitrarily small
neighborhood of K.

Corollary 4.5. Let K be a compact Φt-invariant subset of Q̂(S) and let U be an
open neighborhood of K. Then every non-wandering point q ∈ K is an accumulation
point of periodic points of Φt whose orbits are entirely contained in U .

In the case of a topologically transitive compact invariant set K ⊂ Q̂(S) we can
say more.

Lemma 4.6. Let K be a compact Φt-invariant topologically transitive subset of
Q̂(S). Then for every σ > 0 there is a periodic orbit for Φt whose Hausdorff-

distance to K (as subsets of Q̂(S)) is at most σ.

Proof. Let K ⊂ Q̂(S) be a compact Φt-invariant topologically transitive set and
let σ > 0. Let n = n(K) > 0, ǫ2 = ǫ2(K,σ/2) < σ/2 be as in Theorem 4.3. Since
K is topologically transitive by assumption, there is some q ∈ K and there is some
T > n such that d(q,ΦT q) < ǫ2 and that moreover the Hausdorff distance between
the set K and its subset B = {Φtq | 0 ≤ t ≤ T} is at most σ/2.

By Theorem 4.3, applied to the closed (n, ǫ2)-pseudo-orbit defined by the orbit
segment {Φtq | 0 ≤ t ≤ T}, there is a periodic orbit for Φt whose Hausdorff distance
to B is at most σ/2. This means that the Hausdorff distance between this orbit
and the set K is at most σ and shows the lemma. �

For a compact Φt-invariant subset K ⊂ Q̂(S) denote by htop(K) the topological

entropy of the restriction of Φt to K. For an arbitrary subset U ⊂ Q̂(S) and a
number r > 0 let nU (r) be the number of all periodic orbits of Φt of period at most
r which are contained in U . The following corollary is another fairly immediate
consequence of Theorem 4.3. Together with Corollary 3.3 it shows Theorem 2 from
the introduction.

Corollary 4.7. Let K ⊂ Q̂(S) be a compact Φt-invariant topologically transitive
set. Then for every open neighborhood U of K we have

htop(K) ≤ lim inf
r→∞

1

r
log nU (r).

Proof. Let K ⊂ Q̂(S) be a topologically transitive compact Φt-invariant set and
let U be an open neighborhood of K. Then there is a number β > 0 such that U
contains the β-neighborhood of K.

Let δ < β be sufficiently small that the δ-neighborhood of every point in K is
contained in a contractible subset of Q̂(S). Let n = n(K) > 0, ǫ2 = ǫ2(K, δ/8) < 1
be as in Theorem 4.3. Since the Teichmüller flow on K is topologically transitive by
assumption, by compactness of K ×K there is a number N > n with the following
property. Let q, q′ ∈ K; then there is some u ∈ K and some T ∈ [n,N ] with
d(u, q′) < ǫ2 and d(ΦT u, q) < ǫ2.
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A subset E of K is called (m, δ)-separated for some m ≥ 0 if for any two points
q 6= u ∈ E we have

(28) d(Φtq,Φtu) ≥ δ for some t ∈ [0,m].

Let m > n and let Em ⊂ K be any (m, δ)-separated set. Let q ∈ Em. By the
choice of N > n there is some u ∈ K and some T ∈ [n,N ] such that d(u,Φmq) < ǫ2
and d(ΦT u, q) < ǫ2. By Theorem 4.3, the closed (n, ǫ2)-pseudo-orbit q, u, q is δ/8-
shadowed by a periodic orbit which defines the characteristic free homotopy class of
the pseudo-orbit. Since periodic orbits for Φt in Q̂(S) minimize the length in their
free homotopy class, the length of the periodic orbit does not exceed m + N + 2ǫ2.
Moreover, by the choice of δ this periodic orbit is contained in U . There is a point
ζ(q) on the orbit with d(q, ζ(q)) ≤ δ/8. In other words, there is a map ζ which
associates to every point q ∈ Em a point ζ(q) ∈ U whose orbit under Φt is entirely
contained in U and is periodic of period at most m + N + 2ǫ2.

Since the points in the set Em are (m, δ)-separated by assumption and the or-
bits of Φt are geodesics parametrized by arc length, the orbit segments c(q) =
∪t∈(−δ/8,δ/8)Φ

tζ(q) (q ∈ Em) are pairwise disjoint. Thus for a fixed periodic orbit
γ for Φt of length at most m+N+2ǫ2 there are at most 4(m+N+2)/δ distinct points
q ∈ Em with ζ(q) ∈ γ. As a consequence, there are at least δ card(Em)/4(m+N+2)
distinct periodic orbits of period at most m+N+2 in U . This shows that the asymp-
totic growth as m → ∞ of the maximal cardinality of an (m, δ)-separated subset
of K does not exceed the asymptotic growth of the numbers nU (r) as r → ∞. The
corollary is now an immediate consequence from the definition of the topological
entropy of a continuous flow on a compact space (recall also from Theorem 3.1 that
the Teichmüller flow on K is expansive and hence for all sufficiently small δ > 0 its
topological entropy is just the asymptotic growth rate of maximal (m, δ)-separated
sets as m → ∞). �

5. Lower bounds for the number of periodic orbits

In this section we complete the proof of Theorem 3 from the introduction. For
this we continue to use the assumptions and notations from Sections 2 and 3. In
particular, we always denote by dT the Teichmüller metric on Teichmüller space
T (S) for S.

We begin with establishing the first part of Theorem 3 which is immediate from
the work of Eskin and Mirzakhani [EM08]. Since the proof is short and easy, we
include it for completeness.

The Poincaré series with exponent α > 0 at a point x ∈ T (S) is defined to be
the series

(29)
∑

g∈Mod(S)

e−αd(x,gx).

The critical exponent of Mod(S) is the infimum of all numbers α > 0 such that the
Poincaré series with exponent α converges. Note that this critical exponent does
not depend on the choice of x. Athreya, Bufetov, Eskin and Mirzakhani [ABEM06]
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showed that the critical exponent of the Poincaré series equals h = 6g−6+2m and
that the Poincaré series diverges at the critical exponent.

For r > 0 and for a compact set K ⊂ Q1(S)/Mod(S) let n∩
K(r) be the number

of all periodic orbits for the Teichmüller flow of period at most r which intersect
K. The next lemma is the first part of Theorem 1.

Lemma 5.1. For every compact subset K of Q1(S)/Mod(S) we have

lim sup
r→∞

1

r
log n∩

K(r) ≤ 6g − 6 + 2m.

Proof. Let K̂ be any compact subset of the moduli space M(S) = T (S)/Mod(S)
which is the closure of an open set. Let K1 ⊂ T (S) be a relative compact funda-

mental domain for the action of Mod(S) on the preimage K̃ of K̂ in T (S). Let D
be the diameter of K1 and let x ∈ K1 be any point. Let g ∈ Mod(S) be a pseudo-
Anosov element whose axis (i.e. the unique g-invariant Teichmüller geodesic on
which g acts as a translation) projects to a closed geodesic γ in moduli space which

intersects K̂. Then there is a point x̃ ∈ K1 which lies on the axis of a conjugate
of g which we denote again by g for simplicity. By the properties of an axis, the
length ℓ(γ) of the closed geodesic γ equals dT (x̃, gx̃). On the other hand, we have

(30) dT (x, gx) ≤ dT (x̃, gx̃) + 2dT (x, x̃) ≤ ℓ(γ) + 2D

by the definition of D, the choice of x̃ and invariance of the Teichmüller metric
under the action of Mod(S). Therefore, if we denote by K ⊂ Q1(S)/Mod(S) the

preimage of K̂ ⊂ M(S) under the natural projection and if we define N(r) for
r > 0 to be the number of all g ∈ Mod(S) with d(x, gx) ≤ r, then we have

(31) lim sup
r→∞

1

r
log n∩

K(r) ≤ lim sup
r→∞

1

r
log N(r).

Since the critical exponent of the Poincaré series equals 6g − 6 + 2m, for every
ǫ > 0 the Poincaré series converges at the exponent α = 6g − 6 + 2m + ǫ. Let
c(α) > 0 be its value. Then for every r > 0, the cardinality of the set {g ∈
Mod(S) | d(x, gx) ≤ r} does not exceed c(α)eαr (note that the term in the Poincaré
series corresponding to such an element of Mod(S) is not smaller than e−αr). This
shows that lim sup 1

r log N(r) ≤ 6g − 6 + 2m + ǫ. Since ǫ > 0 and the compact set

K̂ ⊂ M(S) were arbitrarily chosen, the lemma follows. �

As an immediate consequence we obtain

Corollary 5.2. Let K ⊂ Q1(S)/Mod(S) be a compact Φt-invariant topologically
transitive set. Then htop(K) ≤ 6g − 6 + 2m.

Proof. Let K ⊂ Q1(S)/Mod(S) be a compact Φt-invariant topologically transitive

set, let q ∈ K be a point whose orbit under Φt is dense in K and let q̂ ∈ Q̂(S)

be a preimage of q under the natural projection Θ : Q̂(S) → Q1(S)/Mod(S). Let

K̂ be the closure of the orbit of q̂; then K̂ is a compact Φt-invariant topologically
transitive set. By equivariance of the Teichmüller flow under the projection Θ, this



DYNAMICS OF THE TEICHMÜLLER FLOW ON COMPACT INVARIANT SETS 21

set is mapped by Θ onto K. Moreover, by Corollary 4.7, for every open relative
compact neighborhood U of K̂ we have

(32) htop(K) ≤ htop(K̂) ≤ lim inf
r→∞

1

r
log nU (r).

Now the projection Θ maps periodic orbits for Φt in U of period at most r to
periodic orbits for Φt of period at most r which are contained in the relative compact
set Θ(U) ⊂ Q1(S)/Mod(S). If the periodic orbits γ1 6= γ2 in U are mapped to the
same periodic orbit in Θ(U) then there is some element g from the factor group
G = Mod(S)/Γ which maps γ1 to γ2. Since G is finite, the number of distinct
periodic orbits in U which are mapped to the single orbit in Θ(U) is uniformly
bounded. Therefore by Lemma 5.1 we have

(33) lim inf
r→∞

1

r
log nU (r) ≤ lim inf

r→∞

1

r
log nΘ(U)(r) ≤ 6g − 6 + 2m.

This shows the corollary. �

Now we are ready for the proof of the second part of Theorem 2 from the intro-
duction.

Proposition 5.3. For every ǫ > 0 there is a compact Φt-invariant subset K of
Q1(S)/Mod(S) with

lim inf
r→∞

1

r
log nK(r) ≥ 6g − 6 + 2m − ǫ.

Proof. As in Section 2, let FML ⊂ PML be the Mod(S)-invariant Borel subset
of all projective measured geodesic laminations whose support is minimal and fills
up S and let F : FML → ∂C(S) be the continuous Mod(S)-equivariant surjection
which associates to a projective measured geodesic lamination in FML its support.
Let π : Q1(S) → PML be the natural projection as defined in (13) and define

(34) A = π−1FML ⊂ Q1(S).

Let λ be the Φt-invariant probability measure on Q1(S)/Mod(S) in the Lebesgue
measure class constructed in [M82, V86]. This measure is ergodic and mixing under
the Teichmüller flow, with full support. In particular, the Φt-orbit of λ-almost every
point q ∈ Q1(S)/Mod(S) returns to every neighborhood of q for arbitrarily large

times. The measure λ lifts to a Mod(S)-invariant Φt-invariant Radon measure λ̃
on Q1(S) of full support which gives full measure to the Mod(S)-invariant Borel
set A [M82].

The Lebesgue measure λ̃ on Q1(S) is absolutely continuous with respect to the
strong unstable foliation. More precisely, for every q ∈ Q1(S) there is a natural

conditional measure λ̃q for λ̃ on the strong unstable manifold W su(q), and these

conditional measures transform under the Teichmüller flow via dλ̃Φtq ◦Φt = ehtdλ̃q

where h = 6g−6+2m as before. The image under the projection π of the measure λ̃q

on W su(q) is a locally finite Borel measure λq on the open dense subset of PML of
all projective measured geodesic laminations which together with π(−q) jointly fill
up S. The measures λq are all absolutely continuous, and they depend continuously
on q ∈ Q1(S) in the weak∗-topology. Moreover, for each q the measure λq gives
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full measure to the set FML and hence it can be mapped via the surjection F to
a measure on ∂C(S) which we denote again by λq.

Recall from (11) and (12) the definition of the distances δx (x ∈ T (S)) on ∂C(S)
and their properties. For q ∈ A and χ > 0 define

D(q, χ) ⊂ ∂C(S)

to be the closed δPq-ball of radius χ about Fπ(q) ∈ ∂C(S). Note that D(q, χ)
contains the image under the map F of the ball BδP q

(π(q), χ) used in Section 4.
Note moreover that D(q, χ) depends on q and not only on its center Fπ(q) and the
radius χ since for t 6= 0 the distances δPq and δPΦtq do not coinicide,

Let q0 ∈ Q1(S)/Mod(S) be a typical point for the Lebesgue measure λ (so that
the Birkhoff ergodic theorem holds true for q0) and let q1 be a lift of q0 to Q1(S).
Assume without loss of generality that Pq1 is not fixed by any element of Mod(S).
This is possible since the set of points in T (S) which are stabilized by a non-trivial
element of Mod(S) is closed and nowhere dense and since the Lebesgue measure is
of full support.

Let m > 1 be as in the second part of Lemma 4.4. We may assume that the image
under the map ΥT of every Teichmüller geodesic in T (S) is an unparametrized m-
quasi-geodesic in C(S). Since q0 is a typical point for the Lebesgue measure, the
unparametrized quasi-geodesic t → ΥT (PΦtq1) is of infinite diameter.

Let κ > 0 be as in inequality (12). By Lemma 2.1 and the inequality (12), there
is a number α > 0 depending on m and there is a neighborhood V of q1 in Q1(S)
of diameter at most log 2/κ and a number T0 > 0 such that

(35) δPΦtu ≥ 16δPu on D(Φtu, α) for t ≥ T0, u ∈ V ∩ A.

Since q0 is recurrent and hence the vertical measured geodesic lamination of q1

is uniquely ergodic and fills up S, by the second part of Lemma 3.2 of [H09] there
is a number χ ≤ α/4 such that

(36) Fπ(V ∩ A ∩ W su(q1)) ⊃ D(q1, χ).

Let ǫ0 = ǫ0(q0) > 0 be as in the second part of Lemma 4.4. We may assume that
the ǫ0-neighborhood of q0 is contained in a contractible subset of Q1(S)/Mod(S).
By continuity, there is a compact neighborhood K ⊂ V of q1 with the following
properties.

(1) The diameter of K does not exceed max{ǫ0, (log 2)/κ}.
(2) F ◦ π(K ∩ A) ⊂ D(q1, χ/4).

By the second requirement for K, if q, u ∈ K ∩ A then δPq1
(Fπ(u), Fπ(q)) ≤ χ/2.

The first property of K together with the relation (12) for the distances δx (x ∈
T (S)) then implies that δPu(Fπ(q), Fπ(u)) ≤ χ and D(q, χ) ⊂ D(u, 4χ).
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Following [F69], a Borel covering relation for a Borel subset C of a topological
space X is a family V of pairs (x, V ) where V ⊂ X is a Borel set, where x ∈ V and
such that

(37) C ⊂
⋃

{V | (z, V ) ∈ V for some z ∈ C}.

For χ > 0 and the neighborhood K ⊂ Q1(S) of q1 as above define

Vq0,χ,K ={(Fπ(q), gD(q1, χ)) |(38)

q ∈ W su(q1) ∩ A, g ∈ Mod(S), gK ∩ ∪t>0Φ
tq 6= ∅}.

By Proposition 3.5 of [H09], via possibly decreasing the size of χ and K we may
assume that the covering relation Vq0,χ,K is a Vitali relation for the measure λq1

on ∂C(S). In our context, this means that for every T > 0 there is a covering of
λq1

-almost all of D(q1, χ/4) by pairwise disjoint sets from the relation of the form

V (g, t) = (Fπ(z), gD(q1, χ))

where z ∈ W su(q1) ∩ A, Fπ(z) ∈ D(q1, χ/4), g ∈ Mod(S) and where t ≥ T is such
that Φtz ∈ gK (we refer to Section 3 of [H09] for a detailed discussion).

Since the measures λq and the distances δPq on ∂C(S) depend continuously on
u ∈ Q1(S), there is a number a ≤ λq1

D(q1, χ/4) such that λqD(u, χ) ∈ [a, a−1]
for all q ∈ K,u ∈ K ∩ A. By the transition properties for the measures λu and
invariance under the action of the mapping class group, if g ∈ Mod(S), if u ∈
W su(q1) and if t > 0 are such that Φtu ∈ gK for some t > 0 then λq1

(gD(q1, χ)) ∈
[ae−ht, e−ht/a] (compare the discussion in [H09]).

Let n0 = n0(q0) > 0 be as in the second part of Lemma 4.4. Let ǫ > 0 and let
T (ǫ) > max{T0, n0} + 2 be sufficiently large that∫ ∞

T (ǫ)

e−ǫsds ≤ e−2ha2.

Since Vq0,χ,K is a Vitali relation for λq1
, there is a covering of λq1

-almost all of
D(q1, χ/4) by pairwise disjoint sets from the relation of the form

V (g, t) = (Fπ(u), gD(q1, χ))

where u ∈ W su(q1) ∩ A, Fπ(u) ∈ D(q1, χ/4), g ∈ Mod(S) and where t ≥ T (ǫ) is
such that Φtu ∈ gK. By the inclusion (36), we have u ∈ V and therefore from
the assumption T (ǫ) ≥ T0 and the estimate (35) we deduce that D(Φtu, 4χ) ⊂
D(u, χ/4) ⊂ D(q1, χ). On the other hand, we have Φtu ∈ gK and hence

(39) gD(q1, χ) ⊂ D(Φtu, 4χ) ⊂ D(q1, χ).

The total λq1
-mass of the balls from the covering is at least λq1

D(q1, χ/4) ≥ a.
Therefore there is a number T > T (ǫ) + 2 such that the total volume of those balls
V (g, t) from the covering which correspond to a parameter t ∈ [T − 2, T − 1] is at
least e−ǫT e2h/a. Now the λq1

-volume of each such ball is at most e−h(T−2)/a and

hence the number of these balls is at least e(h−ǫ)T .
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Let {g1, . . . , gk} ⊂ Mod(S) be the subset of Mod(S) defining these balls. By
(39) above, for any i, j we have

gjgiD(q1, χ) ⊂ gjD(q1, χ).

Thus the sets gigiD(q1, χ) (i, j = 1, . . . , k) are pairwise disjoint. Namely, the sets
gjD(q1, χ) (j = 1, . . . , k) are pairwise disjoint, and for each j the sets gjgiD(q1, χ) ⊂
gjD(q1, χ) (i = 1, . . . , k) are pairwise disjoint as well. By induction, we conclude
that for any two distinct words w1 = gi1 · · · giℓ

and w2 = gj1 · · · gjm
in the letters

g1, . . . , gk, viewed as elements of Mod(S), the images of D(q1, χ) under w1, w2 are
either disjoint or properly contained in each other. This shows that the elements
g1, . . . , gk generate a free semi-subgroup Λ of Mod(S).

Since T (ǫ) ≥ n0, each word w of length ℓ ≥ 1 in the letters g1, . . . , gk defines a
closed (n0, ǫ0)-pseudo-orbit u0, . . . , uℓ in Q1(S)/Mod(S) with d(ui, q0) < ǫ0. This
pseudo-orbit consists of the successive projections to Q1(S)/Mod(S) of flow lines
{Φtu | t ∈ [0, τ ]} where u ∈ V ∩ W su(q1) ∩ A and τ ∈ [T − 2, T − 1] are such that
Fπ(u) ∈ gjD(q1, χ/4) for some j ≤ k and Φτu ∈ gjK. Thus by the second part of
Lemma 4.4, if γ̃ is a lift to Q1(S) of a characteristic arc of such a pseudo-orbit then
ΥT (γ̃) is a biinfinite unparametrized m-quasi-geodesic in C(S) which is invariant
under the element of Λ ⊂ Mod(S) defined by w. In particular, this element is
pseudo-Anosov, and its conjugacy class defines the characteristic free homotopy
class of the closed pseudo-orbit.

The length of the periodic orbit of Φt determined by w does not exceed the
length of a characteristic closed curve for the pseudo-orbit and hence its is not
bigger than Tℓ. Moreover, since by the choice of n0 for any s < t with the
property that γ̃(s), γ̃(t) project to distinct breakpoints of γ the distance between
ΥT (γ̃(s)),ΥT (γ̃(t)) is at least 2c(m), it follows from Lemma 2.4 of [H10] that the
unparametrized m-quasi-geodesic ΥT (γ̃) is in fact a parametrized p-quasi-geodesic
for some p > m. Using once more the first part of Theorem 2.2, this implies that
the axis of the element of Λ ⊂ Mod(S) defined by w passes through a fixed com-
pact neighborhood B of Pq1 in T (S), and the projection of its unit tangent line to
Q1(S)/Mod(S) is a periodic orbit for Φt which is contained in a compact subset
C0 of Q1(S)/Mod(S) not depending on w. If we denote by C the closed subset of
C0 of all points z ∈ C0 whose orbit under Φt is entirely contained in C0 then each
of these orbits is contained in C.

The above argument does not immediately imply that the asymptotic growth
rate of the number of periodic orbits in C is at least h − ǫ. Namely, periodic
orbits of the Teichmüller flow on Q1(S)/Mod(S) correspond to conjugacy classes
of pseudo-Anosov elements in Mod(S). Thus if we want to count periodic orbits
for Φt in Q1(S)/Mod(S) using the semi-subgroup Λ of Mod(S) constructed above,
then we have to identify those elements of Λ which are conjugate in Mod(S).

For this recall that the axis of each element of the semi-subgroup Λ of Mod(S)
passes through the fixed compact neighborhood B of Pq1. Thus if γ, ζ is the axis
of v, w ∈ Λ and if v, w are conjugate in Mod(S) then there is some b ∈ Mod(S)
with w = b−1vb and the following additional property. Let γ[0, τ ] be a fundamental
domain for the action of v on γ and such that γ(0) ∈ B. Such a fundamental



DYNAMICS OF THE TEICHMÜLLER FLOW ON COMPACT INVARIANT SETS 25

domain always exists, perhaps after a reparametrization of γ. Then there is some
t ∈ [0, τ ] such that b−1γ(t) ∈ B.

As a consequence, the number of all elements w ∈ Λ which are conjugate to a
fixed element v ∈ Λ is bounded from above by the number of elements b ∈ Mod(S)
with bB ∩ γ[0, τ ] 6= ∅. In particular, if D is the diameter of B then this number
does not exceed the cardinality of the set

(40) {b ∈ Mod(S) | dT (bPq1, γ[0, τ ]) ≤ D}.

However, this cardinality is bounded from above by a universal multiple of τ . There-
fore there is a constant c > 0 such that for all sufficiently large r > 0 the number
of periodic orbits of Φt contained in C of length at most r is not smaller than
e(h−ǫ)r/cr. This completes the proof of the proposition. �

Remarks:

1. Proposition 5.3 is equally valid, with identical proof, for the Teichmüller flow
Φt on Q̂(S). Together with Theorem 2 it implies that the metric entropy h of

the unique Φt-invariant Lebesgue measure on Q̂(S) in the Lebesgue measure class
equals the supremum of the topological entropies of the restriction of Φt to compact
invariant subsets of Q̂(S). In [BG07], this fact was established for the Teichmüller
flow on the moduli space of abelian differentials using symbolic dynamics.

2. The abundance of orbits of the Teichmüller flow which entirely remain in
some compact set (depending on the orbit) was earlier established by Kleinbock
and Weiss [KW04]. They show that this set is of full Hausdorff dimension.
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