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Introduction

The goal of these notes is to give an introduction to geometric aspects of Teichmüller
theory for a closed surface S of genus g ≥ 2. There are very good recent books
devoted to this and related subjects, for example [B92, D11, FM11, FlM07,

HM98, H06, IT89, Mi95, M07], and we refer to these books throughout. There
are moreover many survey articles on various aspects of the theory, notably the
articles in the recent “Handbook of Teichmüller theory”, Vol.I,II, edited by A. Pa-
padopoulos. We do not aim at duplicating what can be found in these books and
survey articles beyond what is needed to make these notes fairly self-contained.
Rather, we give a subjective and selective summary of some of the recent de-
velopments which introduce new tools and explore connections to some areas of
mathematics which had not been looked at closely before.

Throughout, we consider a closed surface S of genus g ≥ 2. A marked complex

structure on S is a pair consisting of a Riemann surface X and a diffeomorphism
ϕ : S → X . Two such marked complex structures (X, ϕ) and (X ′, ϕ′) are equivalent

if there is a biholomorphic map F : X → X ′ such that F ◦ ϕ is isotopic to ϕ′.
The Teichmüller space T (S) of S is the space of all equivalence classes of marked
complex structures on S.

Teichmüller space is a complex manifold which is biholomorphic to a bounded
domain in C

3g−3 (see [IT89]). As any complex manifold, it can be equipped with
the Kobayashi pseudo-distance dT which is invariant under the group of biholomor-
phic automorphisms.

It turns out that T (S) is complete Kobayashi hyperbolic which means that
the Kobayashi pseudo-distance is a complete distance. Then this distance is the
intrinsic path metric of a Finsler metric. The Finsler metric can be described
explicitly, and it has some nice properties. For example, any two points in T (S)
can be connected by a unique geodesic. The metric dT is more commonly called
the Teichmüller metric.
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The mapping class group Mod(S) of all isotopy classes of orientation preserving
diffeomorphisms of S acts on T (S) properly discontinuously by precomposition of
marking. This action preserves the complex structure on T (S). In fact, if g > 2 then
Mod(S) equals the group of biholomorphic automorphisms of T (S) (see [IT89]- in
the case g = 2 one has to divide Mod(S) by the hyperelliptic involution which acts
trivially on Teichmüller space). In particular, Mod(S) acts on (T (S), dT ) as a group
of isometries. As a consequence, the Teichmüller metric descends to a distance on
the moduli space Mg = T (S)/Mod(S) of Riemann surfaces. This moduli space is
a complex orbifold. If g > 2 then its singular locus is the projection of the set of
all Riemann surfaces which admit a non-trivial biholomorphic automorphism.

In Lecture 1 we construct the Teichmüller space as a real analytic manifold
using the fact that by the uniformization theorem, a complex structure on a closed
surface S can be identified with an isotopy class of hyperbolic metrics. Lecture
2 contains an account of the basic properties of the Teichmüller metric with an
emphasis on quasi-conformal analysis.

In Lecture 3 we have a closer look at Teichmüller space as a complex mani-
fold. We adopt the differential-geometric viewpoint and state the basic algebraic-
geometric facts about the moduli space and the Torelli map without proof. We in-
troduce complex geodesics and a second natural Mod(S)-invariant metric on T (S),
the so-called Weil-Petersson metric.

The Weil-Petersson metric is not complete. The completion of T (S) with re-
spect to this metric can be described explicitly, and this is explained in Lecture 4.
The completion of moduli space can be identified with the Deligne-Mumford com-

pactification of Mg. We introduce the curve complex of S as a combinatorial tool
and discuss some results which relate geometric properties of the curve complex to
geometric properties of Teichmüller space with the Teichmüller metric.

In the final lecture we look at the SL(2, R)-action on the moduli space of
quadratic differentials and relate some of its properties to geometric properties of
Teichmüller space and the mapping class group. As an application, we observe that
the projection of a complex geodesic in T (S) intersects a fixed compact subset of
Mg not depending on the geodesic, and it is unbounded.

There is nothing new contained in these notes. Everything presented is looked
at with the eyes of a differential geometer. This leads to omissions of results of fun-
damental importance, of viewpoints and references in a beautiful and overwhelm-
ingly rich theory. Most of the main contributors to this theory will not be given
proper credit. My apologies goes to all of them.



LECTURE 1

Hyperbolic Surfaces

In this lecture we introduce the Teichmüller space of a closed oriented surface
S of genus g ≥ 2 as the space of all marked hyperbolic structures on S. We dis-
cuss natural coordinates arising from hyperbolic geometry which equip Teichmüller
space with a smooth (in fact real analytic) structure. Throughout, we use standard
facts about the geometry of the hyperbolic plane, and we refer to the excellent
treatment in [B92] for details.

The starting point is the observation that every closed surface of genus g ≥ 2
admits a hyperbolic metric, i.e. a smooth Riemannian metric of constant Gauss
curvature −1.

Definition 1.1. Let S be a closed oriented surface of genus g ≥ 2. A marked

hyperbolic surface is a pair (X, ϕ) where X is a closed oriented hyperbolic surface
of genus g ≥ 2 and ϕ : S → X is an orientation preserving diffeomorphism. Two
such marked hyperbolic surfaces (X, ϕ), (X ′, ϕ′) are equivalent if there exists an
isometry g : X → X ′ such that ϕ′ and g ◦ ϕ are isotopic. The space of equivalence
classes is called the Teichmüller space T (S) of S.

In the sequel we often drop the diffeomorphism ϕ which defines the marking
from our notation if no confusion is possible.

The mapping class group

Mod(S) = Diff(S)+/Diff+
0 (S)

of isotopy classes of orientation preserving diffeomorphisms of S acts on Teichmüller
space by precomposition of marking: If ζ is a diffeomorphism of S then ζ(X, ϕ) is
the point in T (S) which is given by the same hyperbolic surface X but where the
diffeomorphism ϕ has been replaced by ϕ◦ζ−1. If η is isotopic to ζ then the marked
hyperbolic structures η(X, ϕ) and ζ(X, ϕ) are equivalent and hence this definition
indeed defines an action of the mapping class group on T (S).

A closed curve α on a compact surface F , possibly with non-trivial boundary
∂F , is essential if α is not contractible and non-peripheral, i.e. not freely homotopic
into the boundary. In the sequel we always assume that closed curves are essential.

Now let X be a marked hyperbolic surface. Let γ be an essential closed curve
on S. Then the free homotopy class of γ can be represented by a unique closed
geodesic on X . Here the identification of free homotopy classes on S with free
homotopy classes on X is via the marking. The following observation is contained

49
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in Theorem 1.6.6 and Theorem 1.6.7 of [B92]. For its formulation, call a closed
curve α on S simple if it is the image of an injective mapping S1 → S.

Proposition 1.2. Suppose that α is a simple closed curve on S.

(1) The closed geodesic on X freely homotopic to α is simple.

(2) If β is another simple closed curve on S which is disjoint from α and not

freely homotopic to α then the closed geodesics on X representing the free

homotopy classes of α, β are disjoint.

By Proposition 1.2, if α is a simple closed curve on S then we can cut X open
along the closed geodesic α̂ freely homotopic to α. The result is a hyperbolic surface
with two geodesic boundary circles.

There are now two possibilities. The first case is that α is non-separating, i.e.
S − α is connected. Then the genus of S − α equals g − 1. If α is separating then
S − α is disconnected. Its two connected components S1, S2 are surfaces of genus
g1 ≥ 0, g2 ≥ 0, respectively, with connected boundary. The Euler characteristic
of S equals the sum of the Euler characteristics of the components. Since the
Euler characteristic of each component is negative, the Euler characteristic of each
component is strictly bigger than the Euler characteristic of S. This reasoning also
applies to essential simple closed curves on surfaces with boundary.

By Proposition 1.2, if the simple closed curve β can be realized disjointly from

α and is not freely homotopic to α then the geodesic β̂ on X freely homotopic to β
is disjoint from the geodesic α̂. Thus we can successively decompose X into 2g − 2
hyperbolic pairs of pants, i.e. bordered hyperbolic surfaces with geodesic boundary
which are homeomorphic to a sphere with 3 holes. Namely, the Euler characteristic
of a sphere with 3 holes equals −1, moreover a sphere with 3 holes does not contain
any non-peripheral simple closed curve.

Definition 1.3. A pants decomposition P of S consists of 3g − 3 disjoint simple
closed curves which decompose S into 2g − 2 pairs of pants.

By the above discussion, for every pants decomposition P of S and every marked
hyperbolic surface (X, ϕ), the hyperbolic geodesics representing the pants curves of
P decompose X into 2g − 2 hyperbolic pairs of pants.

Given a hyperbolic pair of pants P , for each pair of distinct boundary geodesics
γ1, γ2 there is a unique embedded geodesic arc connecting γ1 to γ2 which meets
γ1, γ2 orthogonally at its endpoints. We call such an arc a seam. Every boundary
geodesic contains precisely two endpoints of seams which decompose the boundary
circle into two arcs of equal length. Cutting P open along the three seams results
in two isometric right angled convex hyperbolic hexagons (this is Proposition 3.1.5
of [B92]).

Now for an arbitrarily prescribed triple (a, b, c) of positive numbers there is up
to isometry a unique right angled convex hyperbolic hexagon with three pairwise
non-consecutive sides of length a, b, c (Theorem 2.4.1 of [B92]). In particular,
glueing two such hexagons along the remaining sides yields a hyperbolic pair of
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pants with geodesic boundary circles of length 2a, 2b, 2c. Summarizing, we obtain
Theorem 3.1.7 of [B92].

Proposition 1.4. For any triple (a, b, c) of positive numbers, there is up to isometry

a unique hyperbolic pair of pants with boundary circles of length a, b, c.

To reconstruct the hyperbolic surface X from the pairs of pants X − P we
have to remember how the surface was glued from the pairs of pants Pi which are
the components of X − P . Boundary circles of pairs of pants are glued in pairs.
In particular, since each pair of pants has precisely three boundary circles, the
glueing pattern can be represented by a trivalent graph. Each vertex of this graph
represents one of the pairs of pants, and each edge represents one of the simple
closed curves of the pants decomposition P . The vertices representing the pairs of
pants Pi, Pj are connected by an edge if and only if Pi, Pj have a common boundary
circle. Vice versa, every connected trivalent graph with 2g − 2 vertices determines
a glueing pattern for pairs of pants to a closed surface of genus g (see Section 3.5
of [B92]).

Definition 1.5. A combinatorial type of pants decomposition for a closed surface
S of genus g is a trivalent graph with 2g − 2 vertices.

A diffeomorphism of S maps disjoint simple closed curves on S to disjoint simple
closed curves. Therefore the mapping class group acts on free homotopy classes of
simple closed curves preserving disjointness. As a consequence, it acts on isotopy
classes of pants decompositions of S (this statement uses some subtle properties of
surface topology which are discussed in the appendix of [B92]). In the sequel we
always consider simple closed curves and pants decompositions up to isotopy. If P
is a pants decomposition and if ϕ ∈ Mod(S) then ϕP is a pants decomposition of
the same combinatorial type. Vice versa, any two pants decompositions of the same
combinatorial type can be transformed into each other by an element of Mod(S).
This follows easily from the fact that any two pairs of pants are diffeomorphic.
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To reconstruct the marked hyperbolic metric on X we have to glue the hyper-
bolic pairs of pants with isometries of their boundary circles. This requires that
the lengths of these boundary circles coincide. Now given two pairs of pants P1, P2

with a boundary curve γ1, γ2 of the same length, the seams of P1, P2 which end on
γ1, γ2 determine two preferred ways of glueing P1 to P2 along γ1, γ2. Namely, we
require that the identification of γ1 with γ2 is by an orientation reversing isometry
(where the orientation of γi is the boundary orientation of Pi) and that the two
endpoints of the seams on γ1 are glued to the endpoints of the seams on γ2. This is
possible because the seams decompose the boundary circles γ1, γ2 into two arcs of
equal length. The surface Y0 obtained by this identification is a hyperbolic sphere
with four holes and geodesic boundary.

There are more possibilities for glueing P1 to P2 along γ1, γ2. Namely, we can
start rotating P2 along γ1 with unit speed. Thus if γ1, γ2 : R → P1, P2 are unit
speed parametrizations of the boundary geodesics of P1, P2 defining the boundary
orientation and so that γ1(0) and γ2(0) is a point on a seam, then for each t we can
glue P2 to P1 by identifying γ1(s) with γ2(t − s). Denote the resulting hyperbolic
surface by Yt. Note that if r > 0 is the length of γi then the surface Yr obtained
by rotating by the angle 2π is isometric to the surface Y0, but any initial marking
has been changed by a full Dehn twist about the image of γi. We refer to Chapter
3 of [FM11] for a detailed discussion of Dehn twists. The surface Yr/2 obtained by
rotating by the angle π corresponds to the second preferred way of glueing P1 to
P2 along γ1, γ2 (i.e. endpoints of seams are glued to endpoints of seams).

The following result is basic for Teichmüller theory. For its formulation, note
first that every closed curve α on S defines a function ℓα on T (S) by associating to a
marked hyperbolic surface X the length ℓα(X) of the geodesic in the free homotopy
class of α.

Let P be a fixed pants decomposition of S. Then the 3g − 3 pants curves
α1, . . . , α3g−3 of P define 3g − 3 length functions ℓi = ℓαi

on T (S) with values in
R+. Moreover, for a fixed initial choice of glueing the pants in such a way that
endpoints of seams are identified, there are 3g − 3 twist parameters τi ∈ R for
the glueing arising as in the previous paragraph by rotating the two pairs of pants
adjacent to αi with unit speed. Using a surface for which endpoints of seams are
identified with endpoints of seams as a basepoint for the marking, this construction
associates to a (6g − 6)-tuple of lengths- and twist parameters a unique marked
hyperbolic surface.

The following statement is an extension of the above discussion.
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Theorem 1.6. For each pants decomposition P of S, the map which associates to

a tuple

(ℓ1, . . . , ℓ3g−3, τ1, . . . , τ3g−3) ∈ R
3g−3
+ × R

3g−3

of lengths and twist parameters the surface (X, ϕ) ∈ T (S) defined by these data is

a bijection onto T (S).

The map R
3g−3
+ × R3g−3 → T (S) is called a system of Fenchel-Nielsen coor-

dinates based at P . The above discussion shows that Fenchel Nielsen coordinates
define a surjective map from R

3g−3
+ × R

3g−3 onto T (S). To show that this map
is also injective we have to verify that distinct Fenchel Nielsen coordinates define
surfaces X, X ′ which are not isometric with an isometry preserving the marking.

Clearly marked isometric surfaces have the same lengths parameters, so we
have to study the effect of changing a twist parameter. To this end define the twist

vector field tα of the component α of the pants decomposition P to be the vector
field which integrates to the twist flow Ψt about α in Fenchel Nielsen coordinates.
The image ΨtX of X in Fenchel Nielsen coordinates equals the linear coordinate
change obtained by adding t to the twist parameter of α.

Let β be any simple closed geodesic on X . If β does not intersect α then β is
also a geodesic for ΨtX . In particular, in this case the length of β (i.e. the length
of its geodesic representative) does not change along a flow line of the twist flow
Ψt. In the case that β intersects α we can calculate the derivative of the length of
β along the twist flow about α. The calculation is taken from [K83].

Proposition 1.7.

tαℓβ =
∑

p∈α∩β

cos θp

where for each point p ∈ α ∩ β the angle θp is the angle between α and β measured

counter-clockwise from β to α.

Proof. We show the proposition in the case that β has a single point of
intersection with α. Let α1 be a lift of α to the hyperbolic plane H2 and let p ∈ α1

be a lift of the intersection point between α and β. There is a lift β̃ of β which
meets p. For a fixed orientation of β̃ let q be the first intersection point distinct
from p between β̃ and the preimage of α. Denote by α2 the lift of α through q.
The length of the subarc β0 of β̃ connecting p to q is the length of β. Orient α2 in
such a way that the orientation of the basis β′

0, α
′
2 of TqS is positive.

After twisting along α the amount of t, the projection of β0 to the twisted
surface ΨtX is not closed any more. To close it up, glide the endpoint of β0 on α2

the signed distance t. Let βt be the resulting geodesic arc and let ℓβt
be its length.

Then t → βt is a variation of geodesic arcs with one fixed endpoint p and the second
endpoint gliding along α2. The first variational formula for geodesic lengths (see
p.5 of [CE75]) states that the derivative at t = 0 of the lengths of these arcs equals
the cosine of the oriented angle between the tangent of β0 at q and the tangent of
α2 at q. Or, we have

d

dt
ℓβt

|t=0 = cos θp.
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The geodesic arc βt projects to a geodesic loop on the surface ΨtX . This
loop has a breakpoint at its intersection point with α. The angle defect at this
breakpoint (i.e. the angle between its incoming and outgoing angle) vanishes at
t = 0.

By hyperbolic trigonometry [B92], the length of a closed geodesic γ′ freely
homotopic to a geodesic loop γ with an angle defect ζ at its breakpoint depends
smoothly on the length of γ and the angle ζ, and the difference between the length
of γ and γ′ has a global minimum if ζ = 0. Thus since the angle defect of βt depends
smoothly on t, the derivative at t = 0 of the length of the closed geodesic on ΨtX
freely homotopic to β coincides with the derivative at t = 0 of the function which
associates to t the length of βt. This completes the proof of the proposition. �

Corollary 1.8. (1) For every simple closed curve β, the length function of β
is continuously differentiable along Fenchel Nielsen twists.

(2) tαℓβ = −tβℓα for all α, β.

Proof. By Proposition 1.7, we have to show that for every simple closed curve
β which intersects a pants curve α of P , the intersection angle between α and the
geodesic representative of β varies continuously with the twist parameter for α at
each intersection point between α and β.

A piecewise geodesic γ on a hyperbolic surface X with breakpoints on a simple
closed geodesic α is smooth if and only if at each of the intersection points between
γ and α, the incoming and the outgoing intersection angles coincide. This is a
closed condition which can be checked on the surface cut open along α.

As a consequence, as the twist parameter for α varies, the geodesic arcs on the
surface cut open along α which close up to the geodesic representatives of the curve
β vary continuously up to and including their endpoints.

To be more precise, consider for the moment a simple closed geodesic β which
intersects the pants curve α in a single point. Let β0 be the geodesic arc with both
endpoints on α obtained by cutting β at its intersection point with α. Gliding the
two endpoints of β0 along α defines a smooth two-parameter family of geodesic arcs
βs,u through β0 = β0,0. For all small s, t the arc βs,s+t defines a loop on the surface
ΨtX . Requiring that the incoming and outgoing angles of βs,u at the endpoints
coincide defines a smooth one-parameter subfamily A of the two-parameter family
βs,u. For each t, A intersects the arc s → βs,s+t in a single point which depends
continuously on t.

Together we conclude that the intersection angles of the geodesic representa-
tives of the curve β on the surface ΨtX vary continuously with t. The first part of
the lemma now follows from Proposition 1.7.

For the second part, simply note that cos θp = − cos(π − θp). �

The Dehn twists about the components of P define a free abelian subgroup Γ
of Mod(S) of rank 3g − 3. The group Γ acts on Fenchel-Nielsen coordinates for
P by preserving the length parameters and acting on the twist parameters as a
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cocompact group of translations. Thus to show that Fenchel-Nielsen coordinates
are injective, it suffices to find for every fixed tuple of length parameters and for a
fixed fundamental domain D for the action of Γ on twist parameters a collection
β1, . . . , β3g−3 of simple closed curves with the following properties.

(1) The curve βi intersects αi and no other curve from P .
(2) The map which associates to x ∈ D the tuple (ℓβ1

(x), . . . , ℓβ3g−3
(x)) is

injective.

Proposition 1.7 suggests how this can be accomplished: For a given hyperbolic
surface X , find simple closed geodesics on X with property 1) above which intersect
the geodesic representatives of the pants curves with a very small angle.

To this end we note

Lemma 1.9. Let α, β be simple closed geodesics on a hyperbolic surface X which

intersect transversely. Let ϕα be the positive Dehn twist about α. Then as k → ∞,

the intersection angles between α and ϕk
αβ measured counter-clockwise from ϕk

αβ
to α tend to zero.

Proof. Assume for simplicity that α, β intersect in a single point p (the ar-

gument we give is valid in general). Let α̃, β̃ be lifts of α, β to the hyperbolic
plane which intersect in a preimage p̃ of p. Let ξ, ν ∈ PSL(2, R) be the hyperbolic

isometries which preserve α̃, β̃ and whose conjugacy classes define α, β.

For each k the hyperbolic isometry ξk ◦ ν defines the conjugacy class of the
simple closed curve ϕk

αβ on S. This isometry fixes a unique pair of points (ak, bk)
in the ideal boundary ∂H2 of H2 which lie in the two different components of ∂H2

cut out by the endpoints (a, b) of α̃. Assume without loss of generality that a is
the attracting fixed point of ξ. By hyperbolic trigonometry, it now suffices to show
that as k → ∞ the attracting fixed point ak of ξk ◦ν converges to a and its repelling
fixed point bk converges to ν−1b.

To see that this is the case it suffices to show the following. For every neigh-
borhood U of a and V of ν−1(b) there is some k0 > 0 such that ξk ◦ ν(U) ⊂ U
and (ξk ◦ ν)−1(V ) ⊂ V for all k ≥ k0. Now observe that the points ν−1a, ν−1b are
the fixed points of the hyperbolic isometry σk = ν−1 ◦ ξk ◦ ν. These fixed points
are distinct from the fixed points a, b of ξ. Moreover, the translation length of the
isometry σk tends to infinity as k → ∞. Thus if U is a small neighborhood of a
not containing ν−1b and W is a neighborhood of ν−1a not containing ν−1b which is
mapped by ν into U then for sufficiently large k, the set U is mapped by σk into W .
Or, ξk ◦ ν maps U into itself. The same argument is also valid for a neighborhood
V of ν−1(b) and the maps (ξk ◦ ν)−1. From this the lemma follows.

Note that the above argument can be made uniform: For any compact set A ⊂
PSL(2, R) of hyperbolic isometries whose fixed points are contained in the different
components of ∂H2 −{a, b}, for any open neighborhood U of a not containing any
fixed point of an element ϕ ∈ A and every compact neighborhood K ⊂ ∂H2−{a, b}
of the repelling fixed points of the elements in A, there is some k0 > 0 so that for
each ϕ ∈ A and every k ≥ k0 the attracting fixed point of ξk ◦ ϕ is contained in U
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and the repelling fixed point of ξk ◦ ϕ is contained in K. In particular, as k → ∞
the angle of intersection with α̃ of an axis of ξk◦ϕ is arbitrarily close to 0, uniformly
in ϕ. �

Since intersection angles change continuously with twist parameters, the last
paragraph in the proof of Lemma 1.9 shows that the estimate of intersection angles
in Lemma 1.9 can be made uniform whenever the hyperbolic structure on S is
modified by changing the twist parameter for α in Fenchel Nielsen coordinates
by a bounded amount. From this observation, injectivity of the Fenchel-Nielsen
coordinate map follows.

To be more precise, let P be a pants decomposition of S and let x, x′ be two
tuples of Fenchel Nielsen coordinates defining hyperbolic structures X, X ′ which
are marked isometric. Then the length parameters of x, x′ coincide. Let α ∈ P and
let τ, τ ′ be the twist parameters of x, x′ for α. By Lemma 1.9, there is a simple
closed curve β which is disjoint from P − α and such that for each hyperbolic
structure Y obtained from X by varying the twist parameter for α within the line
segment connecting τ to τ ′, the geodesic representative of β on Y intersects α with
an oriented angle smaller than π/4. Proposition 1.7 shows that the length of β is
strictly increasing as the twist parameter is increasing. Since the length of β on
X, X ′ coincides, the twist parameters τ, τ ′ coincide.

To summarize, Fenchel Nielsen coordinates for a pants decomposition P of S
parametrize Teichmüller space. In particular, they define a topology on T (S). Our
next goal is to check that this topology does not depend on the choice of the pants
decomposition.

To this end let again P be a pants decomposition and let β be a simple closed
curve which intersects one of the pants curves αi but does not intersect any other
pants curve. Let ϕα be the Dehn twist about α. Lemma 1.9 shows that the angle
of intersection between α and the curve ϕk

αβ tends to zero as k → ∞.

By hyperbolic trigonometry [B92], two geodesics in the hyperbolic plane which
intersect with a very small intersection angle remain uniformly close for a very large
time. Or, the curve ϕk

αβ remains in a small tubular neighborhood of α for a long
time (i.e. it wraps around α many times) and therefore its length tends to infinity.
This observation is uniform as we change the Fenchel Nielsen coordinates within
a fixed compact set. Since the length of ϕk

αβ on the Riemann surface X ∈ T (S)
equals the length of β on the surface ϕ−k

α (X), the length of β is arbitrarily large
on surfaces whose twist parameter for α in Fenchel Nielsen coordinates is large in
absolute value provided that the length parameters are contained in a compact set
(in fact, this is even the case if the length parameter of α is arbitrarily large or
small).

For a marked hyperbolic surface X and ǫ > 0 define a set U(X, ǫ) ⊂ T (S) as
follows. X ′ ∈ U(X, ǫ) if and only if | log ℓc(X) − log ℓc(X

′)| < ǫ for every simple
closed curve c on S.

Lemma 1.10. The sets U(X, ǫ) (ǫ > 0) define a neighborhood basis of X in Fenchel

Nielsen coordinates.
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Proof. (Sketch) Let P be a pants decomposition of S which defines Fenchel
Nielsen coordinates. We first show that for every X ∈ T (S) and for every ǫ > 0
there is a neighborhood of X in Fenchel Nielsen coordinates which is contained in
U(X, ǫ).

Since a closed geodesic is the shortest curve in its free homotopy class, for this it
suffices to show the following. Let L > 1 be arbitrary; then there is a neighborhood
V of X in Fenchel Nielsen coordinates such that for every Y ∈ V , there is an L-
bilipschitz diffeomorphism F : X → Y compatible with the markings. Namely, let
γ be any closed geodesic on X of length ℓγ(X). Then F (γ) is a closed curve on Y
of length at most Lℓγ(X). Since F is compatible with the marking, ℓγ(Y ) is the
shortest length of a simple closed curve on Y freely homotopic to F (γ) and hence
ℓγ(Y ) ≤ Lℓγ(X). By symmetry, we also have ℓγ(X) ≤ Lℓγ(Y ).

Such a neighborhood can be obtained as follows. For a given number L > 1
and for every hyperbolic pair of pants P with boundary geodesics αi of lengths
ai (i = 1, 2, 3), find a number δ < min{ai | i}/2 with the following property. Let

ãi ∈ (ai−δ, ai+δ) (i = 1, 2, 3) and let P̃ be a hyperbolic pair of pants with boundary
geodesics α̃i of lengths ãi. Let moreover si ∈ (−δ, δ); then there is an L-bilipschitz

map F : P → P̃ which maps a boundary geodesic of P parametrized by arc length
to a boundary geodesic of P̃ parametrized proportional to arc length. Moreover,
the endpoints of the seams on γi are mapped to points of oriented distance si to
the endpoints of the seams on γ̃i.

Cut X open along the geodesic representatives of the pants curves of P . The
maps described in the previous paragraph on the components of the cut open surface
can be glued to an L-bilipschitz map respecting the markings of X onto any surface
whose Fenchel Nielsen coordinates differ from the Fenchel Nielsen coordinates of X
componentwise by at most δ.

As a consequence of this discussion, length functions are continuous in the
topology defined by Fenchel Nielsen coordinates. Moreover, for every compact set
K in Fenchel Nielsen coordinates, there is a number L > 1 and for any X, Y ∈ K
there is an L-bilipschitz map X → Y respecting the marking.

We are left with showing that any neighborhood V of X in Fenchel Nielsen
coordinates contains a set of the form U(X, ǫ) for some ǫ > 0. For this we argue
by contradiction and we assume that there is a neighborhood V of X in Fenchel
Nielsen coordinates and for each i > 0 there is some Xi ∈ U(X, 1

i ) − V . Then
as i → ∞, the length parameters in Fenchel Nielsen coordinates for the surfaces
Xi converge to the lengths parameters for X . By the discussion preceding this
lemma, the twist parameters of the surfaces Xi are bounded independent of i. As
a consequence, after passing to a subsequence we may assume that the Fenchel
Nielsen coordinates for Xi converge to the Fenchel Nielsen coordinates of some
surface Y 6= X . By continuity of length functions in Fenchel Nielsen coordinates,
we have ℓc(X) = ℓc(Y ) for every simple closed curve c. However, we observe in the
proof of injectivity of Fenchel Nielsen coordinates that this implies that Y = X . �
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Since the sets U(X, ǫ) are defined independently of the choice of a pants decom-
position we conclude that transition maps for Fenchel Nielsen coordinates defined
by distinct pants decompositions are homeomorphisms.

Now any ϕ ∈ Mod(S) maps Fenchel Nielsen coordinates for a pants decompo-
sition P to Fenchel Nielsen coordinates for ϕ(P) and therefore

Proposition 1.11. T (S) has a Mod(S)-invariant topology which is homeomorphic

to R6g−6.

The above discussion also indicates that Teichmüller space can be parametrized
by suitably chosen length functions. We will not discuss this fact and rather state
a useful easy property of length functions which can largely be generalized and
analyzed quantitatively. In fact, for hyperbolic surfaces, the lengths of the closed
geodesics are related to many other geometric invariants. We refer to [B92] for
more information.

Lemma 1.12. For every X ∈ T (S) and every ℓ > 0 there are only finitely many

closed geodesics on X of length at most ℓ.

Proof. Let X ∈ T (S). Choose any finite collection C = {γ1, . . . , γk} of simple
closed geodesics on X whose union is a graph G ⊂ X which decomposes X into
simply connected regions. Then each free homotopy class on X can be represented
by a closed edge-path on G. There are only finitely many homotopy classes of edge-
paths of uniformly bounded combinatorial length, where the combinatorial length
is the number of edges crossed through by the path.

Let γ be a closed geodesic on X which is distinct from a curve from C. Then γ
intersects each geodesic γi ∈ C transversely. It now suffices to show that the length
of γ is bounded from below by a constant multiple of the number ι(γ, C) of these
intersection points. Namely, since the components of X −G are simply connected,
there is an edge path on G which is homotopic to γ and whose combinatorial length
is bounded from above by a constant multiple of the number ι(γ, C).

For this note that each curve from the collection C has a tubular neighborhood
in X . Since the number of curves in C is finite, the width of each such neighborhood
is bounded from below by a fixed number κ > 0. Then each essential intersection of
γ with a component of C contributes at least 2κ to the length of γ. Now ι(γ, C) ≤
k maxi ι(γ, γi) and hence

ℓγ(X) ≥ 2κι(γ, C)/k

which completes the proof of the lemma. �

For more details about the proof of the following proposition we refer to Section
6.3 of [IT89].

Proposition 1.13. The action of Mod(S) on T (S) is properly discontinuous.



LECTURE 1. HYPERBOLIC SURFACES 59

Proof. It suffices to show the following. For every X ∈ T (S) and every pants
decomposition P for S there is a compact neighborhood K of X in Fenchel Nielsen
coordinates for P so that ϕK ∩ K 6= ∅ only for finitely many ϕ ∈ Mod(S).

For this we claim that there is a compact neighborhood K of X in Fenchel
Nielsen coordinates and there are finitely many pants decompositions P1, . . .Pk so
that ϕP ∈ {P1, . . .Pk} for all ϕ ∈ Mod(S) with ϕ(K) ∩ K 6= ∅.

Let ℓ = max{ℓα(X) | α ∈ P}. Let K be a compact neighborhood of X so that
for every Y ∈ K there is a marked 2-bilipschitz map F : Y → X . If ϕ ∈ Mod(S)
is such that ϕ(Y ) ∈ K for some Y ∈ K then ϕP is a pants decomposition whose
pants curves have geodesic representatives on X of length at most 2ℓ (since ϕ just
changes the marking). Thus the claim is an immediate consequence of Lemma 1.12.

Now observe that if ϕ1, ϕ2 map P to a fixed pants decomposition Pi then
ϕ−1

2 ◦ϕ1 preserves P . Since every diffeomorphism of a pair of pants which preserves
each of the boundary circles is isotopic to the identity (see[B92]), the stabilizer of
P in Mod(S) equals the free abelian group of Dehn twists about the pants curves
(we refer once more to [FM11] for a detailed account on Dehn twists). However,
by construction of the Fenchel Nielsen coordinates, the action of the stabilizer of P
in Mod(S) is properly discontinuous. From this the proposition follows. �

Example: Let P be a pair of pants all of whose boundary curves have the
same length. Glue two boundary curves together so that endpoints of seams are
glued to endpoints of seams, and glue two copies of the resulting one-holed torus
identifying endpoints of seams with endpoints of seams. The resulting hyperbolic
surface X of genus 2 has an isometric involution ϕ exchanging the two pairs of
pants which form X so that X/ϕ is a torus. Thus ϕ ∈ Mod(S) is a non-trivial
element which fixes X . Similar constructions can be carried out for surfaces of any
genus g ≥ 2 and show that the action of Mod(S) on T (S) is not free. For more
details and bounds on the order of the isometry group of a hyperbolic surface we
refer to [B92].

Fenchel Nielsen coordinates also define a real analytic structure on T (S), but
this is more difficult to see. In the remainder of this lecture, we discuss the special
case of the Teichmüller space T (S0) of a four-holed sphere S0. This is the space
of marked hyperbolic structures on S0 so that the boundary consists of four closed
geodesics. Any simple closed curve α on S0 defines a pants decomposition, and
hence there are Fenchel Nielsen coordinates consisting of five length functions and
one twist parameter about α.

Proposition 1.14. Let S0 be a four-holed sphere. Then Teichmüller space for S0

has a structure of a real analytic manifold so that all length functions of simple

closed geodesics are real analytic.

Proof. Let Y be a hyperbolic four-holed sphere. The universal covering of
Y is a convex subset of the hyperbolic plane H2 with geodesic boundary. The
fundamental group π1(Y ) of Y is a free subgroup of PSL(2, R) which is generated
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by three hyperbolic isometries ϕ1, ϕ2, ϕ3 ∈ PSL(2, R). The fixed points of these
elements on the boundary ∂H2 of the hyperbolic plane are pairwise distinct.

The group PSL(2, R) acts triply transitive on the ideal boundary ∂H2 of the
hyperbolic plane. If γ is an invariant geodesic for a hyperbolic isometry g and if
ϕ ∈ PSL(2, R) then ϕγ is invariant for ϕ◦g◦ϕ−1. On the other hand, two conjugate
discrete torsion free subgroups of PSL(2, R) define the same marked hyperbolic
surface. Therefore we may assume that in the upper half-plane model for H2, the
fixed points of ϕ1 on ∂H2 are the points 0,∞ and that 1 is a fixed point for ϕ2.
Since the group π1(Y ) is generated by ϕ1, ϕ2, ϕ3 and each element in PSL(2, R) is
determined by three real parameters (=matrix entries), there are 6 real parameters
which determine the conjugacy class of π1(Y ) < PSL(2, R).

In order to verify that we obtain 6 free parameters (i.e. there are no additional
constraints) it suffices to show the following. Let ϕ̃i ∈ PSL(2, R) be three elements
which are close to ϕi with respect to the topology of PSL(2, R) as a quotient of
SL(2, R). Then the elements ϕ̃i are hyperbolic and generate a free group which is
the fundamental group of a hyperbolic four holed sphere with geodesic boundary.

An element in PSL(2, R) is hyperbolic if and only if it has a preimage in SL(2, R)
whose trace is bigger than two. This clearly is an open condition.

Since the fixed points of the elements ϕi are pairwise distinct, there are six
pairwise disjoint closed intervals I1, . . . , I6 ⊂ ∂H2 so that ϕi maps the exterior of
Ii homeomorphically onto the interior of Ii+3. The intervals Ii, Ii+3 contain the
fixed points of ϕi. (This numbering of the intervals is not the numbering obtained
by their counter-clockwise order on ∂H2). A nearby triple of hyperbolic elements

ϕ̃i determines six new closed intervals Ĩi. The intervals Ĩi can be chosen to depend
continuously on the elements ϕ̃i. In particular, for ϕ̃i sufficiently close to ϕi these
intervals are pairwise disjoint.

A ping pong argument shows that any subgroup Γ of PSL(2, R) generated by
three elements with this property is free and consists of hyperbolic elements. For
this let u = u1 · · ·us be a nontrivial reduced word in the generators ϕ̃i. Let x ∈ ∂H2

be a point in the complement of all intervals Ĩj . If us = ϕ̃j then usx ∈ Ĩj+3

and inductively, if u1 = ϕ̃p then u(x) ∈ Ĩp+3 (indices are taken modulo six and

ϕ̃j+3 = ϕ̃−1
j ). In particular, u(x) 6= x and hence the group generated by ϕ̃1, ϕ̃2, ϕ̃3

is free (compare [M88]).

The same argument also shows that the group Γ generated by these elements
is discrete. Namely, otherwise for the point x ∈ ∂H2 chosen as in the previous
paragraph there is a sequence vj ⊂ Γ so that vj 6= e and that vjx → x. However,
the discussion in the previous argument shows that for a compact neighborhood U
of x in ∂H2 − ∪iĨi we have vx 6∈ U for v 6= e ∈ Γ.

Now the length of a closed geodesic on the hyperbolic surface Y can be calcu-
lated from the trace of a lift to SL(2, R) of the corresponding element of PSL(2, R).
Namely, if this trace equals λ+λ−1 for some λ > 1 then the length is 2 logλ (we re-
fer to [B92] for this fact). As a consequence, length functions are real analytic with
respect to the analytic structure on T (S0) defined by the matrix components. �
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Remark: Proposition 1.14 and its proof are equally valid for the Teichmüller
space of a sphere with an arbitrary number ℓ ≥ 4 of geodesic boundary compo-
nents. It can be extended to define coordinates for the Teichmüller space of closed
surfaces as well. These so-called Fricke coordinates are important for many aspects
of Teichmüller theory. For our purpose, however, they play no further role. We
refer the reader to [IT89] for details and more.

Corollary 1.15. Fenchel Nielsen coordinates are real analytic coordinates for the

Teichmüller space of S0. In particular, length functions are real analytic in Fenchel

Nielsen coordinates.

Proof. Let α be a simple closed curve in S0 and let (ℓ1, . . . , ℓ4, ℓ5, τ) be co-
ordinates for T (S0) defined by the 4 lengths ℓi of the boundary circles of S0, the
length ℓ5 of α and the twist parameter τ . We claim that the map which associates
to X ∈ T (S0) its Fenchel Nielsen coordinates is real analytic.

By Proposition 1.14, for this it suffices to show that the twist parameter is an
analytic function on T (S0). This can be seen as follows.

Let α̃ be a lift of α to H2. We may assume that in the upper half-plane model
its endpoints are 0,∞. There are lifts β1, β2 of seams of the two components P1, P2

of S0−α with one endpoint on α̃ and the second endpoint on a lift β̃i of a boundary
curve of Pi distinct from α (i = 1, 2). The geodesics β̃1, β̃2 are axes of loxodromic
elements ϕ1, ϕ2 ∈ π1(S0).

As these elements vary in PSL(2, R) in an analytic family, their axes vary in
an analytic family as well. As a consequence, the shortest distance projections of
these axes to the fixed geodesic α̃ depend in a real analytic fashion on the elements.
However, the signed distance between these projections is just the twist parameter
τ of the Fenchel Nielsen coordinates in the analytic family. As a consequence,
Fenchel Nielsen coordinates are real analytic.

To show that Fenchel Nielsen coordinates are real analytic coordinates for T (S0)
it now suffices to show that the map which associates to X ∈ T (S0) its Fenchel
Nielsen coordinates is of maximal rank differentiable at every point. This can easily
be seen explicitly. We omit the proof and refer to [A80, IT89]. �

We formulate without proof the corresponding result for the Teichmüller space
of a closed surface S. We refer to [A80] and to [IT89] for a more comprehensive
discussion and a proof.

Theorem 1.16. Fenchel Nielsen coordinates define a Mod(S)-invariant real ana-

lytic structure on T (S).

Remark: Everything in this lecture is equally valid for marked hyperbolic
metrics of finite area on a surface with punctures.





LECTURE 2

Quasiconformal Maps

In this lecture we discuss some analytic aspects of Teichmüller theory. We
introduce quasiconformal maps and abelian and quadratic differentials, and we
discuss Teichmüller’s existence and uniqueness theorem.

Recall the upper half-plane model for the hyperbolic plane H2. An oriented
hyperbolic surface can be defined as a surface S together with a covering of S by
orientation preserving charts ϕ : U ⊂ S → ϕ(U) ⊂ H2 so that chart transitions are
orientation preserving isometries. Since an orientation preserving isometry of H2

is in particular a biholomorphic map, these charts define a complex structure on S.
Thus we have

Proposition 2.1. An oriented hyperbolic surface is a Riemann surface.

By the uniformization theorem, the converse is also true. Namely, the conformal

class of a complex structure on S is the space of all Riemannian metrics g on S
with the property that the fibrewise multiplication with i in the tangent bundle of
S preserves g. Since i2 = −1, this means that multiplication by i in a fibre is just
rotation by the angle π/2.

Proposition 2.2. The conformal class of a complex structure on S contains a

unique hyperbolic metric.

Namely, the universal covering of a closed Riemann surface X of genus g ≥ 2
is the unit disc D ⊂ C which is a model for the hyperbolic plane H2 (see [FK80]).
Then X is the quotient of D by a discrete group of biholomorphic automorphisms of
D. But the group of all biholomorphic automorphism of D = H2 is just the group
PSL(2, R) of hyperbolic isometries. In particular, there is a hyperbolic metric on X
so that the orientation preserving charts determined by this metric are holomorphic
for the complex structure. Or, the complex structure coincides with the structure
constructed from the hyperbolic metric in the first paragraph of this lecture.

In Lecture 1 we saw that length functions of simple closed curves can be used
to define a Mod(S)-invariant topology on T (S). This topology is described by mea-
suring the deviation from the existence of a marked isometry between two marked
hyperbolic surfaces. (We remark here that Thurston initiated a systematic study
of Teichmüller theory via (bi)-Lipschitz maps with optimal Lipschitz constants,
and there is a substantial current activity in this line of investigation. We refer to
[PT07] for a recent survey and references on this subject).

63
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We can also define the topology on T (S) by measuring the deviation from the
existence of a marked biholomorphic map between two marked Riemann surfaces.
Recall that a map F between two Riemann surfaces is holomorphic if in complex
charts we have ∂̄F = 0.

Definition 2.3. Let X, X ′ be Riemann surfaces. For a number K ≥ 1, a map
F : X → X ′ is K-quasiconformal if F is a homeomorphism which is continuously
differentiable, with differential of maximal rank, outside a finite set Σ of points and
if

|∂̄F | ≤ k|∂F |

outside Σ where 0 ≤ k < 1 and K = 1+k
1−k .

The geometric significance is as follows. Let g, g′ be any Riemannian metric in
the conformal class defined by the complex structure on X, X ′. Then with respect
to these metrics, the differential of F at x ∈ X−Σ maps a round circle in the tangent
space TxX of X at x to an ellipse in the tangent space TF (x)X

′ of X ′ whose axes
have length ratio bounded by K. Note that this is independent of the choice of the
metrics g, g′ in the conformal class defined by the complex structures. (In Lemma
4.8 of [IT89], this easy calculation is carried out in detail). As a consequence, the
Jacobian of F at x is bounded from below by K−1 times the square of the operator
norm of the differential of F at x.

Example: Since S is compact by assumption, every orientation preserving
diffeomorphism F : X → X ′ is quasiconformal, i.e. there is a number K > 0 so
that F is K-quasiconformal.

It turns out that particularly nice quasiconformal maps can be constructed
using objects directly defined by the complex structure of the Riemann surface X .
We next introduce these structures and these maps and establish some of their most
important properties.

Definition 2.4. An abelian differential on a Riemann surface X is a nontrivial
holomorphic one-form ω on X . Such a one-form is a holomorphic section of the
holomorphic cotangent bundle T ′X of X .

In a holomorphic local coordinate z, a holomorphic one-form ω can be rep-
resented as f(z)dz with a holomorphic function f . Now the exterior differential
d for complex valued one-forms on C can be decomposed as d = ∂ + ∂̄ with
∂∂ = ∂̄∂̄ = 0 = ∂∂̄ + ∂̄∂ (see p.77/78 of [D11] for a calculation in local coor-
dinates) and hence dω = df ∧ dz = 0 since ∂̄f = 0. As a consequence, ω defines a
complex valued de Rham cohomology class on S.

Thus there is a natural homomorphism from the vector space Ω(X) of holomor-
phic one-forms on X into the first cohomology group H1(X, C) of X with complex
coefficients which associates to ω ∈ Ω(X) its de Rham cohomology class. The
complex vector space H1(X, C) is isomorphic to C2g.

Proposition 2.5. The homomorphism Ω(X) → H1(X, C) is an embedding onto a

complex subspace of dimension g.
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Proof. (Incomplete sketch) The complex Laplacian for smooth functions f :
X → C is defined by

∆ = 2i∂̄∂.

A function f is harmonic if ∆f = 0. Similarly, a one-form α on X is harmonic if
locally α is the differential of a harmonic function. Since d = ∂ + ∂̄ in a complex
coordinate, a harmonic one-form is closed. In fact, a one-form α on X is harmonic
if and only if it is both closed and coclosed (see p.27 of [FK80]).

Now a non-zero harmonic one-form α is not exact. Namely, otherwise α = df
for a function f . Then f is harmonic and non-constant. By Stokes theorem, we
have

∫

d(f∂̄f) = 0 =
∫

∂(f∂̄f), moreover ∂̄∂ = −∂∂̄ and therefore
∫

f∆f = 0 = 2i

∫

∂(f∂̄f) − f∂∂̄f = 2i

∫

∂f ∧ ∂̄f = i

∫

df ∧ df

which is possible only if df vanishes identically: In a local complex coordinate z, a
complex valued one-form α can be written in the form α = adz + bdz̄ and hence
iα ∧ ᾱ = i(aā + bb̄)dz ∧ d̄z which is a positive multiple of the euclidean area form
at any point where α does not vanish (we refer to [D11] for more details).

By the Cauchy Riemann equations, a real valued function f on a domain in
C is harmonic if and only if it is the real part of a holomorphic function. Thus a
real one-form α on X is harmonic if and only if it is the real part of a holomorphic
one-form. Since by the Hodge de Rham theorem every de Rham cohomology class
of degree one can be represented by a unique harmonic one-form (see Theorem
6 of [D11]), this implies that the homomorphism Ω(X) → H1(X, C) is injective.
Moreover, the R-linear map which associates to a holomorphic one-form ω the de
Rham cohomology class of its real part maps Ω(X) onto H1(X, R) and hence the
complex dimension of the image Ω(X) in H1(X, C) equals g. �

We also need related but more general objects which are defined as follows.

Definition 2.6. A quadratic differential on X is a holomorphic section of T ′X ⊗
T ′X .

In local coordinates, q can be represented in the form q = f(z)dz2 where f is
a nontrivial holomorphic function. In particular, if q 6= 0 then q has only finitely
many zeros.

Example: The square of every abelian differential is a quadratic differential.

The Riemann Roch formula (Theorem 7 of [D11]) implies

Theorem 2.7. The complex vector space Q(X) of quadratic differentials on X is

of dimension 3g − 3.
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Quadratic differentials can be described as follows. Let x ∈ X be a point so that
q ∈ Q(X) does not vanish at x. Then with respect to a holomorphic coordinate u
near x, the differential q can be represented in the form fdu2 with a non-vanishing
holomorphic function f . Use a branch of the square root to write q = g2du2 for a
non-vanishing holomorphic function g (perhaps defined on a smaller neighborhood
of x). Then locally near x, gdu is the differential of a holomorphic function z defined
by

z(y) =

∫ y

x

g(u)du

so that
q = dz2.

The coordinate z is unique up to translation and perhaps multiplication with −1,
i.e. up to an euclidean isometry. In particular, every quadratic differential q defines
an euclidean metric outside its zero set Σ. We refer to [S84] for a detailed account
on this construction.

The line fields {v ∈ T (X −Σ) | q(v) ≥ 0} and {v ∈ T (X−Σ) | q(v) ≤ 0} define
local foliations of X − Σ called the horizontal and vertical foliation, respectively.
In the distinguished coordinate z for q, these foliations are precisely the foliations
into lines parallel to the real and imaginary axis. Rectangles for these transverse
foliations are rectangles for the euclidean metric defined by q.

At a zero x we can write q = gpdz2 for some p > 0 and some holomorphic
function g which has a simple zero at x. Taking appropriate roots shows that the
metric has a standard p + 2-pronged singularity at x (we refer to the standard
reference [S84] for quadratic differentials for details). A neighborhood of such a
singular point is a neighborhood of 0 in the following space. Take p + 2 copies Hi

(i = 1, . . . , p + 2) of the upper half-plane and glue these half-planes along their
boundaries in cyclic order so that the ray {Im = 0, Re ≤ 0} in the boundary of the
half-plane Hi is glued to the corresponding ray in the boundary of the half-plane
Hi−1 with an orientation reversing isometry, and the ray {Im = 0, Re ≥ 0} in the
boundary of Hi is glued to the corresponding ray in the boundary of Hi+1. In
particular, the area of the singular euclidean metric defined by q is finite.

As a consequence, we can define a norm ‖ ‖ on the space Q(X) by

‖q‖ = area(q) =

∫

X

|q|.

For a finite subset Σ of S, a foliation of S−Σ is orientable if its tangent bundle
admits a smooth nowhere vanishing section.

Lemma 2.8. A quadratic differential is the square of a holomorphic one-form if

and only if its horizontal and vertical foliations are orientable.

Proof. If q = ω2 then ω > 0 defines an orientation of the horizontal foliation,
and iω > 0 defines an orientation of the vertical foliation.

On the other hand, if q has orientable foliations then away from the zeros of q
we can take a square root of q defining this orientation, and these square roots are
consistent under change of charts. �
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If the underlying complex structure of the quadratic differential is allowed to
be arbitrary then it is very easy to construct quadratic differentials explicitly. For
this purpose we define

Definition 2.9. Two simple closed curves α, β bind the surface S if α, β are in
minimal position (i.e. they intersect in the minimal number of points in their free
homotopy classes) and decompose S into simply connected regions.

The following construction is due to Thurston. We refer to Section 9 of [V89]
for a slightly more general account.

Proposition 2.10. A pair of simple closed curves on S which bind S defines a

quadratic differential.

Proof. We construct explicitly a quadratic differential from two simple closed
curves α, β which bind S as follows.

Note first that α, β decompose S into polygons with an even number of sides.
The sides alternate between subarcs of α and subarcs of β. Place an euclidean
square of side length one over each intersection point between α and β. This can
be done in such a way that the squares only meet along their sides or at their
vertices, and that an intersection of sides corresponds to a component of α − β or
a component of β − α. This means that each side contains precisely one point of
α − β or of β − α, and each component of α − β or of β − α intersects the sides in
precisely one point. Each component of S − {α ∪ β} contains exactly one vertex.
If this component is a 2p-gon for some p ≥ 2 then there are 2p squares coming
together at that vertex.

The euclidean structures on the squares define a singular euclidean metric on S
with one p-pronged singularity for each complementary polygon with 2p ≥ 6 sides.
Away from the singularities, this structure is just given by the standard euclidean
charts. It can be extended across the singular points since each such point is a
standard p-pronged singularity.

Up to maps of the form z → ±z + c for some c ∈ C, each square has a pre-
ferred isometric embedding into C which maps the sides parallel to α to horizontal
straight segments parallel to the real axis, and which maps the sides parallel to β
to vertical straight segments parallel to the imaginary axis. Then transitions for
these rectangles on their overlaps are of the form z → ±z + c (c ∈ C), and these
transitions preserve the quadratic differential dz2. As a consequence, these differ-
entials define a quadratic differential q on the complement of the singular points
which naturally extends to the singular points. �

We can use quadratic differentials to construct quasiconformal maps as follows.
Let q be a holomorphic quadratic differential with zero set Σ on a marked Riemann
surface X . Then on S − Σ, the differential q defines an euclidean metric g and
horizontal and vertical foliations. For t > 0 let gt be the singular euclidean metric
on S − Σ obtained by stretching the horizontal direction by the factor et/2 and
contracting the vertical direction by the factor e−t/2. The metric extends to a
singular euclidean metric on S with singular points at the zeros of q. This metric
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then defines a marked complex structure Xt on S and a holomorphic quadratic
differential qt for Xt. The marking of Xt is the composition of the marking of X
with the stretch map. The stretch map X → Xt is quasi-conformal with constant
et. It is called a Teichmüller map with initial differential q and stretch factor et/2.
The area of qt equals the area of q.

As is customary in Riemannian geometry, for t > 0 and a quadratic differential
q ∈ Q(X) of area one (= norm one) we associate to the quadratic differential tq of
norm t the image Ψ(tq) of the Teichmüller map with initial differential q and stretch
factor et/2. This convention defines a map Ψ : Q(X) → T (S) with Ψ(0) = X . We
call the image under Ψ of a ray in Q(X) a Teichmüller geodesic in T (S).

For two Riemann surfaces X, X ′ define

dT (X, X ′) =
1

2
inf{log K |

there is a K-quasiconformal map f : X → X ′ respecting the marking}.

The next result implies that Teichmüller maps are optimal for this invariant.
For its formulation, recall that a quadratic differential q determines an area element
dA on S. Its total area is the norm ‖q‖ of q. A separatrix for q is a maximal segment
or ray (i.e. a geodesic for the singular euclidean metric) which begins at a singular
point and does not contain any singular point in its interior. The proof of the
following theorem is taken from [FM11].

Theorem 2.11. Let f : X → X ′ be a quasiconformal map which is homotopic to

a Teichmüller mapping with initial differential q and stretch factor L. Then
∫

X

|fx|dA ≥ L‖q‖

where fx is the derivative of f in the horizontal direction and the norm is taken

with respect to the singular euclidean metric of q.

Proof. For p ∈ X and T > 0 let

δ(p, T ) =

∫ T

−T

|fx|dx

where the integration is over the horizontal arc α of length 2T centered at p. If
such a horizontal arc passes through a singular point then δ(p, T ) is undefined.
Since there are only finitely many horizontal separatrices and hence the union of
these separatrices has area zero, the value δ(p, T ) is defined almost everywhere with
respect to the area element dA of the quadratic differential q.

By Fubini’s theorem,

∫

X

(

∫ T

−T

|fx|dx

)

dA = 2T

∫

X

|fx|dA.
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However, δ(p, T ) is just the length of f(α) with respect to the singular euclidean
metric defined by the terminal differential q′ for the Teichmüller mapping. Thus

∫

X

(

∫ T

−T

|fx|dx

)

dA ≥

∫

X

(2LT − M)dA = (2LT − M)‖q‖

where M > 0 is a fixed constant which is obtained as follows.

The diameter of the singular euclidean metric defined by q′ is finite. By as-
sumption, there is a homotopy connecting f to the Teichmüller mapping with initial
differential q and stretch factor L. For each horizontal arc α, such a homotopy de-
termines a homotopy class of arcs connecting the endpoints of f(α) to the endpoints
of the stretched arc. The q′-length of any q′-geodesic representative of such an arc
is uniformly bounded, independent of α. If M/2 is an upper bound for these lengths
then the estimate holds true for M .

As a consequence, we have
∫

X

|fx|dA ≥ (L −
M

2T
)‖q‖.

As T → ∞ the theorem follows. �

Corollary 2.12. A Teichmüller map between two marked Riemann surfaces X, X ′

is the unique e2dT (X,X′)-quasi-conformal map in its homotopy class mapping X to

X ′.

Proof. Let q be an area one quadratic differential on a Riemann surface X
and let X ′ be the image of the Teichmüller mapping with initial differential q and
stretch factor L. If f : X → X ′ is K-quasi-conformal then with respect to the
singular euclidean metrics on X, X ′, the Jacobian Jac(f) of f at any point which
is both regular for the map f and the quadratic differential q is not smaller than
K−1 times the square of the operator norm of its differential df .

Now the K-quasi-conformal map f : X → X ′ is a homeomorphism and there-
fore using the Cauchy Schwarz inequality, Theorem 2.11 and the fact that |df | ≥
|fx|, with the notations from Theorem 2.11 we have

1 =

∫

X

Jac(f)dA ≥

∫

X

|df |2dA/K ≥

(
∫

|fx|dA

)2

/K ≥ L2/K.

This shows that the quasi-conformal constant K of f is at least L2.

Equality only holds if equality holds true in the Cauchy-Schwarz inequality and
if moreover |fx| = |df | almost everywhere. This implies that |df | = |fx| = L almost
everywhere.

The same argument applies to the restriction of f to the vertical foliation. Thus
since f is continuously differentiable on the complement of a finite set of points,
if K = L2 then the composition of f with the inverse of the Teichmüller map is
an isometry for the singular euclidean metric defined by q which is continuously
differentiable on the complement of a finite set of points. This isometry is moreover
isotopic to the identity.
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However, an isometry Φ of the singular euclidean metric defined by q which is
isotopic to the identity is the identity.

Namely, since the metric defined by q is singular euclidean with singular points
of cone angle bigger than 2π, it is a metric of non-positive curvature. An isotopy
between an isometry Φ and the identity determines for each point x ∈ S a homotopy
class of an arc connecting x to Φ(x). The homotopy class can be represented by
a unique geodesic αx : [0, 1] → S depending continuously on x. By convexity, the
map Φ0 : x → αx(1

2 ) is distance non-increasing. If Φ 6= Id then it is not isometric.
Then Φ0 is a map of degree one whose Jacobian is bounded from above by one and
which is different from one on some nontrivial open set. This is impossible. �

Theorem 2.11 and its proof can also be used to classify annuli up to biholo-
morphic equivalence. Here an annulus is a compact Riemann surface which is
biholomorphic to Aa = [0, 1] × [0, a]/ ∼ where (0, t) ∼ (1, t) for all t. Define the
modulus of Aa to be a. The reasoning in the proof of Theorem 2.11 shows that the
modulus is an invariant of the complex structure of such annuli.

Corollary 2.13. For b ≥ a the smallest quasiconformal dilatation of a quasicon-

formal map Aa → Ab equals b/a.

If A ⊂ C is any annulus then uniformization implies that A is biholomorphic
to Aa for some a > 0, and a is called the modulus of A. Corollary 2.13 immediately
shows

Corollary 2.14. The modulus classifies annuli up to biholomorphic equivalence.

We can use Corollary 2.14 to relate lengths of geodesics for hyperbolic metrics
directly to invariants of complex structures. As in Lecture 1, denote by ℓc the
hyperbolic length function on T (S) of a simple closed curve c. Wolpert showed (see
[W10] for references and for more details)

Proposition 2.15. Let X, X ′ be hyperbolic surfaces and let f : X → X ′ be a

K-quasiconformal map. Then for any simple closed curve c we have

ℓc(X)

K
≤ ℓc(X

′) ≤ Kℓc(X).

Proof. Let γ1, γ2 be the closed geodesics on X, X ′ in the free homotopy class
of c. There is a covering A1, A2 of X, X ′ whose fundamental group is generated by
γ1, γ2. If a1, a2 is the length of c on X, X ′ then we may assume that Ai = H2/ <
bi > where bi(z) = eaiz (here as before, we use the upper half-plane {Im > 0} as a
model for the hyperbolic plane).

There is a branch of the logarithm which maps the upper half-plane biholomor-
phically onto the infinite strip

Im ∈ (0, π).

Under this identification, the group < bi > corresponds to the infinite cyclic group
of translations generated by z → z + ai. As a consequence, the annulus Ai is
biholomorphic to a standard flat cylinder of circumference ai and height π. In
other words, the modulus of Ai equals mi = π/ai.
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A K-quasiconformal map X → X ′ lifts to a K-quasiconformal map of the
cylinder A1 onto the cylinder A2. By Corollary 2.13, this just means that m2/K ≤
m1 ≤ Km2 as claimed. �

As an immediate consequence we obtain

Proposition 2.16. dT is a Mod(S)-invariant metric on T (S) which defines the

topology given by Fenchel Nielsen coordinates.

Proof. Clearly dT is a Mod(S)-invariant pseudo-metric on T (S). Proposition
2.15 and Lemma 1.10 show that dT is in fact a metric (i.e. we have dT (X, X ′) > 0
if X 6= X ′) defining a topology which is finer than the topology induced by Fenchel
Nielsen coordinates. This means that the identity (T (S), dT ) → T (S) is continuous.

Thus for the proof of the proposition we are left with showing that the identity
map T (X) → (T (X), dT ) is continuous as well. For this it suffices to show that
in Fenchel Nielsen coordinates, if coordinate functions converge then the minimal
dilatation of a quasiconformal map between the two surfaces defined by these coor-
dinates converges to one. However, quasi-conformal maps with small quasiconfor-
mal dilatation between hyperbolic surfaces with nearby Fenchel Nielsen coordinates
can be constructed explicitly using elementary hyperbolic geometry exactly as in
the proof of Lemma 1.10. Namely, note that for some L > 1, an L-bilipschitz
diffeomorphism F between two hyperbolic surfaces is L2-quasi-conformal. �

As before, let Q(X) be the vector space of quadratic differentials on the Rie-
mann surface X . Recall the definition of the map Ψ : Q(X) → T (S). The following
important result is much more difficult than the rather elementary facts discussed
so far. We are not going to give a proof but rather indicate an elementary strategy
to this end which we hope gives some geometric intuition why the result holds true.
For this and later purpose, we define

Definition 2.17. A saddle connection of a quadratic differential q is a straight line
segment for the singular euclidean metric defined by q which connects two singular
points and does not have a singular point in its interior.

Thus a saddle connection is a compact separatrix.

In a sequel we mean by a triangulation of a surface S a decomposition of S
into triangles whose vertices are not necessarily distinct. The following simple
observation will be used several times.

Lemma 2.18. Let q be a quadratic differential on S. Then there exists a triangu-

lation of S consisting of saddle connections whose vertex set is the set of singular

points of S.

Proof. Throughout this proof, distances are taken with respect to the singular
euclidean metric.

Let B ⊂ S be any embedded graph whose vertices are singular points for q and
whose edges are saddle connections. If there is a component C of S−B which is not
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simply connected then choose an arc α ⊂ C with endpoints at singular points which
is not homotopic into B with fixed endpoints, which does not cross through an edge
of B and which is shortest with this property. Then α is a piecewise geodesic for
the singular euclidean metric. Since the length of α is minimal, it does not contain
an edge from the graph B. Moreover, it does not meet the interior of an edge of B
since otherwise α has a breakpoint at such an interior point with nontrivial angle
defect and hence it can be shortened by a local homotopy. As a consequence, α is
a saddle connection whose interior is disjoint from the interiors of the edges of B.
In other words, B ∪α is an embedded graph whose vertices are singular points and
whose edges are saddle connections.

By successively adding edges to B with the above procedure, one constructs an
embedded graph B′ in S whose edges are saddle connections and which decomposes
S into simply connected regions. Any such region can be subdivided into a union of
triangles by first connecting any singular point in the interior to a boundary vertex
with a saddle connection of minimal length and then subdividing the resulting
euclidean polygons. �

Theorem 2.19. The map Ψ is continuous.

Proof. The standard proof evokes the measurable Riemann mapping theorem
which is beyond the scope of these notes. We refer to Section 11 of [FM11] for a
nice account. Another reference is [IT89].

There is a partial result which can be proven with elementary methods. Namely,
let qi, q ∈ Q(X) and assume that qi → q. Since qi, q are holomorphic sections of the
same line bundle over X , the zeros of qi converge to the zeros of q. Assume that
the zeros of q are simple, i.e. all singular points for the singular euclidean metric
defined by q are 3-pronged singularities. Then for large i, the zeros of qi are simple
as well.

By Lemma 2.18 we can choose a triangulation T of X by saddle connections
for q which contains all singular points as vertices.

Every triangle of the triangulation T is isometric to an euclidean triangle. For
large enough i there is a corresponding triangulation Ti of the surface S whose edges
consist of saddle connections for qi. This triangulation is constructed by choosing
a diffeomorphism F of S isotopic to the identity which maps the singular points of
q to the singular points of qi and replacing the image under F of each edge from T
by the unique shortest arc for qi in the same homotopy class with fixed endpoints.
Since such an arc is a concatenation of saddle connections, for large enough i these
arcs are saddle connections.

Let q̃, q̃i be the terminal quadratic differentials of the Teichmüller maps Ψ(q),
Ψ(qi). Since the stretch maps are affine in euclidean coordinates, the triangulations
of S constructed in the previous paragraph define triangulations of S whose edges
are saddle connections for q̃, q̃i. As i → ∞, the side lengths of the triangles for q̃i

converge to the side lengths of the corresponding triangles for q̃.



LECTURE 2. QUASICONFORMAL MAPS 73

Choose a number r > 0 so that the circular discs of radius 2r about the sin-
gular points of q̃ are pairwise disjoint. Note that such a disc is up to isometry
determined by its radius and the order of the singular point. The intersection of
each triangle with the complement of the discs of radius r about the singular points
is the complement of discs of radius r about the vertices of the triangles.

Since the side lengths of the triangles for q̃i converge to the side lengths of
the triangles for q̃ as i → ∞, for large i one can construct explicitly a bilipschitz
diffeomorphism between the truncated triangles whose bilipschitz constants tend
to one as i → ∞. This can be done in such a way that the restrictions of these
maps to the truncated sides match up. Moreover, we can require that they match
up with suitably constructed bilipschitz maps between the circles of radius r which
are isometries near the singular point and whose bilipschitz constant tends to one
as i → ∞. Then these maps can be glued to a quasi-conformal map between the
Riemann surfaces Ψ(q̃i), Ψ(q̃), with constant tending to one as i → ∞ (compare
the proof of Lemma 1.10).

A variation of this elementary argument can also be used in the general case,
but apart from its intuitive appeal, it does not have any advantage over the elegant
proof using the important measurable Riemann mapping theorem. �

Lemma 2.20. Ψ is proper.

Proof. Since Ψ is continuous, it suffices to show that the preimage under Ψ
of a compact set in T (S) is bounded in Q(X).

To this end let κ(Y ) = dT (X, Y ). By Proposition 2.16, κ is a continuous func-
tion on T (S). In particular, if K ⊂ T (S) is compact then κ assumes a maximum
M > 0 on K. By Corollary 2.12, this implies that ‖q‖ ≤ M for every q ∈ Q(X)
with Ψ(q) ∈ K. The lemma follows. �

Now Ψ is an injective continuous proper map between topological manifolds
homeomorphic to R

6g−6. By invariance of domain, the map Ψ is in fact a homeo-
morphism. As a consequence, we obtain

Corollary 2.21. Any two points in T (S) can be connected by a unique Teichmüller

geodesic.





LECTURE 3

Complex Structures, Jacobians and the Weil

Petersson Form

The goal of this lecture is a differential geometric look at the complex geom-
etry of Teichmüller space and moduli space. We also evoke without proof some
connections to the algebraic geometry of the moduli space of curves.

We begin with having a closer look at the vector space Ω(X) of holomorphic
one-forms on a Riemann surface X . By integration along loops, any 1-form 0 6=
ω ∈ Ω(X) defines a homomorphism π1(S) → C called the period map.

Choose a basis a1, . . . , ag, b1, . . . , bg for H1(S, Z) so that ai · bj = δij where ·
is the homology intersection form. Such a basis is called a symplectic basis. An
example can be constructed as follows. Let Y be a 4g-gon with a counter-clockwise
numbering of the edges. For each 0 ≤ i ≤ g − 1 identify the edge ai = 4i + 1 with
the edge a−1

i = 4i + 3 with an orientation reversing homeomorphism, and identify

the edge bi = 4i + 2 with the edge b−1
i = 4i + 4 with an orientation reversing

homeomorphism. The result is a closed surface S of genus g. The image in S of
each oriented edge of Y is a simple closed curve which is identified with its edge
label, and these curves intersect in a single point. The curves a1, . . . , ag, b1, . . . , bg

define a symplectic basis of H1(S, Z).

Now assume that the above polygon Y is obtained by cutting the Riemann
surface X open along smooth simple closed loops intersecting in a single point. Let
αi, βi be the periods of ω for the corresponding symplectic basis of H1(S, Z). On
the polygon Y , ω is the differential df of a holomorphic function f . By Stokes’
theorem,

∫

X

ω ∧ ω̄ =

∫

Y

df ∧ ω̄ =

∫

∂Y

f ∧ ω̄.

Observe that if p, p′ are two points which are identified under the glueing of the
sides of Y and if p projects to an interior points of ai and p′ projects to an interior
point of a−1

i then

f(p′) − f(p) =

∫

bi

ω = βi.

Similarly, if u, u′ are identified under the glueing and if u projects to an interior
point of bi and u′ projects to an interior point of b−1

i then f(u′) − f(u) = −αi.

75
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Since the curve ai occurs precisely twice along ∂Y we therefore have
∫

ai

(f(p) − f(p′)) ∧ ω̄ = −βiᾱi and

∫

bi

(f(u) − f(u′)) ∧ ω̄ = αiβ̄i.

Together this yields the formula
∫

S

ω ∧ ω̄ =
∑

αiβ̄i − βiᾱi.

The formula implies that if the a-periods of ω vanish then so does ω. But there
are exactly g a-periods and hence the linear map ω →

∫

ai
ω is a linear isomorphism

Ω(X) → Cg (recall from Proposition 2.5 that Ω(X) is isomorphic to Cg; in fact,
the above discussion coincides with the discussion in the proof of Proposition 2.5,
only the viewpoint taken here is slightly different). Or, for a given symplectic basis
(ai, bj) of H1(S, Z), there is a canonical basis of Ω(X) such that ωi(aj) = δij . Then
the Riemannian period matrix of X is given by

Zi,j = ωi(bj).

Thus if ω ∈ Ω(X) has a-periods αi, the b-periods are βi =
∑

j Zijαj , or, equiva-
lently, β = Zα. Together we get

|ω|2 =
i

2

∫

ω ∧ ω̄ =
i

2
(αZ̄ᾱ − ᾱZα) = Im(ᾱZα).

As a consequence, the matrix Z is symmetric, and its imaginary part is positive
definite. This is one half of what is called Riemann binary relations in the literature
(see e.g p.262 of [Mi95] for more information).

For a given symplectic basis (ai, bj) of H1(S, Z) and every X ∈ T (S) let B(X)
be the basis of Ω(X) defined by ωi(aj) = δij . This defines a trivialization of the
space

H = ∪X∈T (S)Ω(X)

which equips H with the structure of a complex vector bundle on T (S). Any
other symplectic basis of H1(S, Z) defines a new trivialization which differs from
the initial one by a bundle isomorphism.

Indeed, that this is pointwise the case is immediate from the above discussion.
That these pointwise isomorphisms depend smoothly on the basepoint requires an
argument. One fairly easy way to see that this is the case is to observe that the
Laplacian depends smoothly on the marked hyperbolic structure in Fenchel Nielsen
coordinates, compare Proposition 2.5.

A mapping class defines a symplectic automorphism of H1(S, Z) and therefore
the group Mod(S) acts on this bundle by bundle automorphisms. In fact, the above
trivializations define on H a Mod(S)-invariant real analytic structure as well. The
bundle H → T (S) is called the Hodge bundle.

Since the imaginary part of the period matrix Z is positive definite the map

H1(S, Z) → Ω(X)∗
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defined by the periods is non-degenerate (here Ω(X)∗ is the dual of Ω(X)). In
particular, its image is a lattice in Ω(X)∗, and Ω(X)∗/H1(S, Z) is a complex torus.

To summarize, the period matrix determines a marked complex torus where
the marking is defined by the choice of a symplectic basis of H1(S, Z). The (real)
symplectic structure on H1(S, Z) defined by the intersection form · is called the
principal polarization. Recall that the intersection form is given by a∧ b = (a · b)[S]
where [S] denotes the fundamental cycle of S.

For each X ∈ T (S) there is an anti-symmetric real bilinear form 〈, 〉 on Ω(X)
defined by

〈ω, ζ〉 = Im
i

2

∫

ω ∧ ζ̄.

This form clearly is invariant under the complex multiplication J (here J is just
standard multiplication with the imaginary i), i.e. we have 〈Jω, Jζ〉 = 〈ω, ζ〉 for all
ω, ζ. Moreover, (u, v) → 〈Ju, v〉 is an inner product defining an hermitian metric
with imaginary part 〈, 〉. A complex multiplication J with these two properties is
called compatible with the symplectic structure 〈, 〉.

The Hermitian metric determined by the inner product 〈J ·, ·〉 defines a com-
plex linear isomorphism Ω∗(X) → Ω(X) which maps the principal polarization on
H1(S, Z) ⊂ Ω(X)∗ to the real bilinear form 〈, 〉 on Ω(X). Namely, separating into
real and imaginary part and identifying Ω(X)∗ with a subspace of H1(S, C), the
isomorphism Ω∗(X) → Ω(X) is just the isomorphism given by Poincaré duality.
In particular, the complex torus defined by the period matrix can be viewed as a
quotient of Ω(X).

As the Hermitian metric on Ω(X) is determined by the complex structure on
Ω(X) and the principal polarization, the unitary group U(g) for this metric does
not depend on any choices made. Moreover, it preserves the complex torus defined
by the period matrix.

The symplectic group Sp(2g, R) acts simply transitively on the space of sym-
plectic bases of R

2g. It also acts transitively on the space of complex structures
compatible with the symplectic structure. The standard identification of R2g

with Cg determines a particular symplectic basis, namely the standard basis ei, fj

(i, j = 1, . . . , g) of R2g where e1, . . . , eg is a complex basis of Cg and where the
symplectic structure 〈, 〉 satisfies 〈ei, ej〉 = 〈fi, fj〉 = 0 and 〈ei, fj〉 = δij .

The stabilizer in Sp(2g, R) of the standard complex structure on Cg is just the
unitary group U(g). Thus the Siegel upper half-space Sp(2g, R)/U(g) is the space
of complex tori which are quotients of R

2g equipped with a compatible complex
structure by a lattice generated by a symplectic basis. With this interpretation,
the map which associates to a marked Riemann surface X the complex torus defined
by the period matrix for a given symplectic basis of H1(S, Z) can be viewed as a
map from Teichmüller space T (S) into the Siegel upper half-space.

By Proposition 1.13 the mapping class group Mod(S) acts properly discontin-
uously on Teichmüller space. The quotient orbifold Mg = T (S)/Mod(S) is called
the moduli space.
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The automorphism group Sp(2g, Z) of the integral homology H1(S, Z) of S
equipped with the intersection form changes the marking of the complex torus
defined by the period matrix of Ω(X). The action of a mapping class on the first
homology H1(S, Z) defines a surjective homomorphism Mod(S) → Sp(2g, Z) (we
refer to [FM11] for surjectivity) and hence the map which associates to a marked
Riemann surface the marked complex torus defined by the period matrix descends
to a map Mg → Sp(2g, Z)\Sp(2g, R)/U(g) which is called the Torelli map. The
Torelli map does not depend on any choices made. It associates to an unmarked
Riemann surface X its Jacobian Jac(X) which is the unmarked complex torus
defined by a period matrix and equipped with its principal polarization.

The following is due to Torelli. A proof can be found in Section III of [FK80].

Theorem 3.1. The Torelli map Mg → Sp(2g, Z)\Sp(2g, R)/U(g) is injective.

The Siegel upper half-space is a Hermitean symmetric space of non-compact
type. In particular, it has an Sp(2g, R)-invariant complex structure given by a

system of charts with values in Cm. Its complex dimension equals g(g+1)
2 and hence

for g ≥ 4, this dimension exceeds half of the real dimension 3g−3 of the Teichmüller
space. Moreover, for g ≥ 3 the Torelli map is not an embedding in the sense of
differentiable orbifolds. Namely, it is branched at the hyperelliptic locus which is the
set of hyperelliptic curves, i.e. Riemann surfaces X with a biholomorphic involution
τ so that X/τ = CP 1. In particular, its differential fails to be of maximal rank at
the hyperelliptic locus. The well known Schottky problem asks for determining the
image of the Torelli map (see [HM98] for an account of what was known about
this problem 15 years ago).

The usual way to analyze this and related questions is via complex algebraic
geometry. This requires the existence of a Mod(S)-invariant complex structure
on T (S). Such a structure indeed exists (see [IT89, H06]), but it is difficult to
construct.

Instead we will adopt a differential geometric viewpoint and explore a (much
weaker) structure.

Definition 3.2. An almost complex structure on T (S) is a continuous (1, 1)-tensor
field J on the tangent bundle of T (S) with J2 = −Id.

It follows from the discussion in Lecture 2 that for every X ∈ T (S) the complex
vector space Q(X) can be identified with the cotangent space of T (S) at X (why
this is the cotangent space rather than the tangent space is not apparent from our
discussion. Instead we refer to [H06]). Moreover,

Q(S) = ∪XQ(X)

is a smooth (in fact real analytic) vector bundle over T (S) on which Mod(S) acts
as a group of bundle automorphisms (again this requires an argument which we do
not give here. Again we refer to [IT89, H06]).

For X ∈ T (S), the complex structure on Q(X) is given by the usual multipli-
cation of a quadratic differential with a complex number. These fibrewise complex
structures define a complex structure on the bundle Q(S).
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If q ∈ Q(X) then locally q = fdz2 for a holomorphic function f . The complex
conjugate of q then equals q̄ = f̄dz̄2. In particular, if u is another quadratic
differential then qū is locally of the form αdz2dz̄2 for a complex valued function α.
Now the hyperbolic metric h on X is a tensor field of the form βdzdz̄ and hence
we can define

g(q1, q2) =

∫

S

q1q̄2

h
.

This construction defines an Hermitian inner product on the cotangent bundle Q(S)
of T (S) which is called the Weil-Petersson metric. The Weil-Petersson metric is
invariant under the action of the mapping class group. It determines a Mod(S)-
equivariant bundle isomorphism TT (S) → Q(S) which maps the complex structure
on Q(S) to an almost complex structure J on T (S).

An almost complex structure J on a manifold M is called integrable if it can
be defined by charts with values in Cm for some m > 0 in the sense that in these
charts, the almost complex structure is just multiplication with i in the tangent
bundle. The following fundamental result is quite involved and will not be proven
in these notes. Proofs can be found in [H06, IT89].

Theorem 3.3. (1) The almost complex structure J on T (S) is integrable.

(2) The Torelli map is holomorphic.

Since the almost complex structure J is Mod(S)-invariant, it follows that
Mod(S) acts on T (S) properly discontinuously as a group of biholomorphic au-
tomorphisms.

The Hermitian metric g on T (S) defines a two-form

ω(q, z) = Im g(q, z)

which is called the Weil-Petersson form. The most important properties of the
Weil-Petersson metric and the form ω are summarized in the following theorem.
We refer to [IT89, W10, DW07] for more details and for references.

Theorem 3.4. (1) ω is closed, i.e. the Weil-Petersson metric is Kähler.

(2) The Weil-Petersson metric has negative sectional curvature which is nei-

ther bounded from below nor bounded from above by a negative constant.

(3) The Weil-Petersson metric is incomplete.

(4) Any two points in T (S) can be connected by a unique Weil-Petersson

geodesic.

(5) Lengths functions are convex along Weil-Petersson geodesics.

(6) The group of orientation preserving isometries for the Weil-Petersson

metric is the mapping class group.

The strength of this result is illustrated by the following short proof of the
Nielsen realization theorem. This result was first established by Kerckhoff [K83].
The proof below is due to Wolpert (see [W10]).

Theorem 3.5. Let Γ < Mod(S) be a finite subgroup. Then there is X ∈ T (S)
such that Γ(X) = X.
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Proof. Choose a Γ-invariant finite set C of simple closed curves on S so that
∑

c∈C ℓc is a proper function on T (S) where as before, ℓc(X) is the length of the
simple closed curve c on the hyperbolic surface X . Such a set of curves can easily
be found as follows. Let P be a pants decomposition of S. For each pants curve
α ∈ P choose a simple closed curve βα which is disjoint from P − α and which
intersects α in one or two points depending on whether the component containing
α of S − (P −α) is a bordered torus or a four-holed sphere. Let C0 be the union of
these curves. It follows from the discussion in Lecture 1 that

∑

c∈C0
ℓc is a proper

function on T (S). Let C = ΓC0.

For sufficiently large b > 0 the set K = {
∑

c∈C ℓc ≤ b} ⊂ T (S) is compact
and non-empty. Since length functions are convex along Weil-Petersson geodesics,
this set is moreover convex for the Weil-Petersson metric (i.e. the geodesic segment
connecting any two points in K is contained in K), and by Γ-invariance of C, it is
invariant under Γ.

The restriction to K of the Weil-Petersson metric is a smooth Riemannian
metric of negative sectional curvature. Thus K has a unique center for this metric
which can be found as follows. For each p ∈ K let κ(p) = max{dWP (p, u) | u ∈ K}
where dWP denotes the distance defined by the Weil-Petersson metric. The function
p → κ(p) is continuous. The center of K then is the unique point p ∈ K for which
κ(p) is minimal. Here uniqueness follows from convexity of K and the fact that
the Weil-Petersson metric is negatively curved and therefore distance functions
are strictly convex along Weil-Petersson geodesics. Since K is Γ-invariant and Γ
preserves dWP , this center is Γ-invariant. �

Recall from Corollary 1.8 the definition of the Fenchel-Nielsen twist vector
field tα for a simple closed curve α on S. The following important result is due to
Wolpert and can be found in [W10]. Its proof uses harmonic Beltrami differentials
and exceeds the scope of these notes.

Theorem 3.6. Let α be a simple closed curve. Then

2tα = Jgradℓα

and 2ω(·, tα) = dℓα.

Corollary 3.7. ω is invariant under the Fenchel Nielsen twist flow.

Proof. Since ω is closed, the Lie derivative Ltα
ω of ω in direction of tα equals

2Ltα
ω = 2d(tαyω) = −d(dℓα) = 0.

�

Wolpert uses this to show (Theorem 3.14 of [W10])

Theorem 3.8. In Fenchel Nielsen coordinates,

ω =
1

2

∑

i

dℓi ∧ dτi.
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Proof. Let P be a pants decomposition of S defining the Fenchel Nielsen
coordinates. For i 6= j we have

2ω(gradℓj, ti) = dℓi(gradℓj) = δij .

Our goal is to express ω in the length-twist parameters at a given surface X .
Since ω is invariant under the Fenchel Nielsen twist flow, we can modify the surface
X along the flow lines of the (commuting) twist flows about the pants curves of P
to a surface X ′ with vanishing twist coordinates without changing the expression
for ω in length-twist parameters. Then for X ′, the seams of a pairs of pants from
S − P are glued to the seams of the neighboring pants.

A pair of pants has an orientation reversing isometric reflection which preserves
all seams pointwise and exchanges the two right angled hexagons which together
form the pair of pants. By the choice of X ′, the involution of each individual pair
of pants extends to an isometric reflection ρ of X ′. The reflection reverses the
orientation of the twist vector fields and preserves the length coordinates.

The reflection ρ reverses the complex structure on T (S) and preserves the real
part of the Weil-Petersson metric and hence ω is anti-invariant under ρ. But X ′ is a
fixed point for ρ, moreover its differential at X ′ preserves the tangents of the length
parameter and reverses the tangents of the twist parameters. In particular, the ρ-
anti-invariant subspace of the second exterior power of the tangent space of T (S)
at X ′ is spanned by the two-forms dℓi ∧ dτj . As a consequence, in the expression
for ω the coefficients of the two-forms dτi ∧ dτj and dℓi ∧ dℓj vanish. The theorem
now follows from the second paragraph of this proof. �

As T (S) is a complex manifold, we can ask for holomorphic discs in T (S). Such
a disc is a holomorphic map D → T (S) where D ⊂ C is the standard unit disc or,
equivalently, the hyperbolic plane H2. Thus we are looking for holomorphic maps
H2 → T (S). Particular such maps can easily be constructed.

Let q ∈ Q(S) be arbitrary. Outside its set Σ of zeros, the quadratic differential q
defines a singular euclidean metric. This metric determines a family of charts Uj ⊂
S−Σ → ϕjUj ⊂ C, unique up to translation and perhaps reflection (multiplication
by −1). Chart transitions are translations, perhaps composed with multiplication
by −1. The charts are holomorphic for the complex structure X defined by q. For
every A ∈ SL(2, R) we can postcompose these charts with A. The resulting family
A◦ϕi of charts has chart transitions (A◦ϕi)◦(A◦ϕj)

−1 = A(ϕi◦ϕ−1
j )A−1 which are

translations, perhaps composed with −1. As a consequence, these charts define a
new complex structure and a new quadratic differential. If A is a diagonal matrix,
then the new Riemann surface is just the image of X under a Teichmüller map
defined by q. This construction defines an action of SL(2, R) on Q(S) preserving
the norm (=area) of the differential.

If A ∈ SO(2) then the new charts for S differ from the old ones by a rotation
by some angle θ. This amounts to replacing q by eiθq. This multiplication does not
change the complex structure on the underlying Riemann surface and therefore the
map SL(2, R) → Q(S) projects to a map SL(2, R)/SO(2) = H2 → T (S). We call
such a map a complex geodesic. Note that the orbits of the action of the diagonal
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subgroup of SL(2, R) project to Teichmüller geodesics on T (S). In particular, a
complex geodesic is totally geodesic for the Teichmüller metric. This means that
any geodesic segment connecting two points in the disc is entirely contained the
disc.

Lemma 3.9. A complex geodesic is holomorphic for the almost complex structure

J and totally geodesic for the Teichmüller metric.

Proof. Let P : Q(S) → T (S) be the canonical projection. By construction,
the differential at z = Pq of a complex geodesic σ : H2 → T (S) associates to
eiθ ∈ S1 ⊂ C = TiH

2 the cotangent at z of the Teichmüller geodesic with initial
velocity eiθq. But this just means that this differential satisfies J ◦ dσ = dσ ◦ i, i.e.
it is complex linear. �

The mapping class group acts on T (S) preserving the complex geodesics. Every
real Teichmüller geodesic is contained in a unique complex geodesic.

The Kobayashi pseudo-metric of a complex manifold M is defined as follows.
For any two points x, y ∈ M let ρ1(x, y) be the infimum of the hyperbolic distances
in H2 between two points x0, y0 so that there is a holomorphic map f : H2 → M
with f(x0) = x, f(y0) = y. For any positive integer n we put

ρn(x, y) = inf
n−1
∑

i=0

ρ1(xi, xi+1)

where the infimum is over all n-chains with x0 = x, xn = y. Finally put ρ(x, y) =
infn ρn(x, y). Clearly ρ is symmetric and satisfies the triangle inequality, so it is a
pseudo-metric.

The significance of this construction is as follows. If ϕ : M → N is any holo-
morphic map then ϕ is distance non-increasing for the Kobayashi pseudo-metric.
In particular, the Kobayashi pseudo-metric is invariant under all biholomorphic
automorphisms of M .

The above discussion immediately implies one part of the following theorem
due to Royden (see [IT89]).

Theorem 3.10. The Kobayashi pseudo-metric on T (S) equals the Teichmüller

metric.

Proof. Any two points x, y ∈ T (S) are contained in a complex geodesic.
This means that there is a holomorphic map H2 → T (S) which is an isometric
embedding for the hyperbolic metric on H2 and the Teichmüller metric on T (S).
Thus by definition, the Kobayashi pseudo-metric is not bigger than the Teichmüller
metric.

The other inequality is much harder. We refer to [IT89] for a proof. �

A complex geodesic (or Teichmüller disc) is a special case of the following
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Definition 3.11. A holomorphic family of Riemann surfaces is a holomorphic
surjection P : U → T of complex manifolds such that each fibre is a Riemann
surface and that P admits horizontally holomorphic trivializations.

Example: For any Riemann surface S and every complex manifold M , S×M
is a holomorphic family of Riemann surfaces.

Note that if P → T is a holomorphic family of Riemann surfaces, then the
holomorphic cotangent bundle of the fibre is a holomorphic line bundle over P .
Moreover, the Hodge bundle induces a holomorphic vector bundle over P etc. We
refer to the book [HM98] for a careful discussion of this and related results.

Theorem 3.12. The functor which associates to a complex manifold T the set of

isomorphism classes of holomorphic families of Riemann surfaces P : Y → T with

an equivalence class of markings is equivalent to the functor which associates to T
the set of holomorphic maps T → T (S).

Remark: The above theorem is false without the requirement that the marking
is being remembered. The difficulty is the existence of surfaces with non-trivial
automorphisms. This results in the non-existence of a fine moduli space of Riemann
surfaces which causes substantial difficulties for an algebraic geometric approach.
We refer once more to [HM98] for a comprehensive discussion of this problem and
the various ways to overcome it.





LECTURE 4

The Curve Graph and the Augmented Teichmüller

Space

In Lecture 3 we saw that there is a natural complex structure on Teichmüller
space which descends to a complex structure on moduli space. It turns out that
moduli space admits a natural compactification, the so-called Deligne-Mumford
compactification. The goal of this lecture is to give a differential geometric descrip-
tion of this compactification and relate its structure to the geometry of Teichmüller
space.

The idea is as follows. Consider a set of Fenchel Nielsen coordinates for a pants
decomposition P of S. For a given pants curve α, we can shrink the length of α to
zero and obtain a surface where the curve α has been degenerated to a pair of cusps.
The next observation is an immediate consequence of the classical collar lemma in
hyperbolic geometry (see [B92]). It is used to understand this degeneration.

Lemma 4.1. For every ǫ > 0 there is a number M(ǫ) > 0 with the following

property. Let α be a simple closed curve on the hyperbolic surface X of length at

most ǫ. Then α is the core curve of an embedded annulus of width and modulus at

least M(ǫ). Moreover, M(ǫ) → ∞ as ǫ → 0.

Proof. Let γ be a simple closed geodesic of length ǫ in a hyperbolic surface X .
Let A be the cover of X with fundamental group < γ >. In the proof of Proposition
2.15 we saw that A is an annulus of modulus π/ǫ.

Let γ̃ be the lift of γ to A. Define w(ǫ) by sinhw(ǫ) sinh(ǫ/2) = 1. An explicit
calculation shows that the cylinder about γ̃ of width w(ǫ) embeds into X (we refer
to [B92] for details). Its modulus can be calculated as in the proof of Proposition
2.15 using a branch of the logarithm. It goes to infinity as ǫ → 0. �

As a consequence, the lengths of two simple closed curves on X can both be
small only if the curves can be realized disjointly. This suggests to look more closely
at the combinatorial structure of the set of all simple closed curves on S.

Definition 4.2. The curve complex C(S) of S is the simplicial complex whose
vertices are isotopy classes of simple closed curves on S and where a k-tuple of such
curves spans a simplex if and only if they can be realized disjointly.

Example: 1) Let α be a simple closed non-separating curve. Then S − α is
a surface of genus g − 1 with two boundary components. In particular, there are

85
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infinitely many distinct free homotopy classes of simple closed curves in S − α. As
a consequence, C(S) is locally infinite.

2) Any k-tuple of mutually disjoint simple closed curves can be completed to
a pants decomposition of S. Thus any k-simplex in C(S) is a face of a simplex of
maximal dimension 3g − 4.

The mapping class group Mod(S) acts on free homotopy classes of simple closed
curves preserving disjointness and hence it acts on C(S) as a group of simplicial
automorphisms. The quotient C(S)/Mod(S) is a finite simplicial complex. Namely,
for any two non-separating simple closed curves α, β there is a mapping class which
maps α to β. If α, β are separating then there is a mapping class which maps α to β
if and only if the disconnected surfaces S−α, S−β are homeomorphic. Since these
surfaces are determined up to homeomorphism by the minimum of the genus of
one of their components, the number of Mod(S)-orbits of separating curves equals
[g/2]. As a consequence, C(S)/Mod(S) has only [g/2] + 1 vertices. Finiteness of
the number of simplices of dimension bigger than zero is seen in the same way.

The following important result is due to Ivanov (see [I02] for more and for
references) with some cases due to Korkmaz and Luo.

Theorem 4.3. For g ≥ 3 the automorphism group of the curve complex is the

extended mapping class group of S.

Here the extended mapping class group is the group of isotopy classes of all
diffeomorphisms of S including orientation reversing diffeomorphisms.

Consider again a pants decomposition P and its associated system of Fenchel
Nielsen coordinates (ℓ1, . . . , ℓ3g−3, τ1, . . . , τ3g−3). Let αi be the pants curve corre-
sponding to the length parameter ℓi. Fixing all coordinates but the length function
ℓ1 and letting ℓ1 go to zero defines a smooth curve of hyperbolic surfaces which
degenerate to a surface with two cusps:

The tuple (ℓ2, . . . , ℓ3g−3, τ2, . . . , τ3g−3) defines as before Fenchel Nielsen coor-
dinates for a surface with two cusps (which may be disconnected if the pants curve
α1 is separating). The twist parameter τ1 is not defined any more.

Replacing simple closed curves by punctures can simultaneously be done with
every tuple of disjoint simple closed curves, i.e. with all vertices of a simplex σ
in C(S). We denote by S(σ) the corresponding Teichmüller space of punctured
Riemann surfaces. This Teichmüller space is defined exactly in the same way as
the Teichmüller space of a closed surface. In particular, Fenchel Nielsen coordinates
define a real analytic structure which is invariant under the mapping class group.
Note that if σ is a maximal simplex whose vertices define a pants decomposition
then S(σ) consists of a unique point.

Definition 4.4. Augmented Teichmüller space is T (S) = T (S) ∪σ∈C(S) S(σ).
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We can define a topology on T (S) as follows. Let σ ∈ C(S) be a simplex
of dimension k − 1. Let P be a pants decomposition of S with pants curves αi

(1 ≤ i ≤ 3g − 3) with the property that σ is spanned by the curves α1, . . . , αk. Let
(ℓ1, . . . , ℓ3g−3, τ1, . . . , τ3g−3) be Fenchel Nielsen coordinates for the pants decompo-
sition P . Then every X ∈ S(σ) determines a tuple of Fenchel Nielsen coordinates

(ℓk+1, . . . , ℓ3g−3, τk+1, . . . , τ3g−3).

Define a sequence (Xi) ⊂ T (S) to converge to X if the following holds. Let
(ℓi

1, . . . , ℓ
i
3g−3, τ

i
1, . . . , τ

i
3g−3) be the Fenchel Nielsen coordinates of Xi with respect

to the pants decomposition P . We require that ℓi
j → 0 (1 ≤ j ≤ k) and ℓi

j →

ℓj, τ
i
j → τj (j ≥ k + 1). Since Fenchel Nielsen coordinates parametrize Teichmüller

space for all hyperbolic surfaces, this definition does not depend on the choice of
the pants decomposition P extending σ. It defines a topology on T (S) which is
invariant under the action of the mapping class group Mod(S).

Proposition 4.5. T (S) is a stratified non-locally compact Mod(S)-space.

Here the stratification is the decomposition of T (S) into subsets Sj called
strata. Each stratum Sj is a (topological) manifold of dimension nj . The closure
of a stratum is the union of the stratum with a collection of strata of smaller
dimension. A stratum in T (S) is defined by a simplex S(σ) ⊂ C(S) (which is
allowed to be empty). Its closure is the union of S(σ) with the sets S(σ′) where σ′

runs through all simplices in C(S) which contain σ as a face. T (S) is not locally
compact since a neighborhood basis of a point X ∈ S(σ) consists of sets with the
property that for a pants decomposition P extending σ, the Fenchel Nielsen length
parameters for the curves in σ are small but the twist parameters are arbitrary.

In spite of the fact that T (S) is not locally compact we have

Theorem 4.6. T (S)/Mod(S) is compact. It is called the Deligne Mumford com-
pactification of moduli space.

For the proof of compactness one uses an observation of independent interest.

Lemma 4.7. There is a number χ = χ(g) > 0 so that every closed hyperbolic

surface of genus g admits a pants decomposition with pants curves of length at most

χ.

Proof. (Sketch, a detailed proof can be found in Chapter 5 of [B92] which
also gives explicit bounds.)

Let X be a hyperbolic surface. By Lemma 4.1, any very short simple closed
geodesic γ on X is contained in an embedded annulus A of very large width. More-
over, if γ′ is any very short simple closed curve which is freely homotopic to γ then
γ′ is contained in A. In other words, in the complement C of the standard annuli
about the very short simple closed geodesics, the injectivity radius of X is bounded
from below by a universal constant 9r0 > 0. We may assume that these annuli
are convex with smooth boundary of constant curvature and uniformly bounded
length. Then C is a possibly disconnected surface with smooth boundary which is
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diffeomorphic to the surface obtained from X by cutting X open along the very
short simple closed geodesics. In particular, C has at most 2g − 2 components.

By the Gauss Bonnet theorem, the area of a hyperbolic surface X of genus
g ≥ 2 equals 2π(2g − 2). The area of a hyperbolic disc of radius r > 0 is 2π sinh r
and hence the cardinality of a maximal collection of disjoint embedded discs of
radius r0 in X with center in C is at most (2g − 2)/ sinh r0.

Let x1, . . . , xk be the set of centers of these discs. The open discs Di of radius
3r0 and center xi cover C. Two such discs intersect only if the distance between
their centers is at most 6r0. Since the injectivity radius at a center point is at least
9r0, if two such discs intersect then their union is contained in a contractible disc.
In particular, their centers can be connected by a unique minimal geodesic of length
at most 6r0.

The union of all geodesic arcs connecting centers of intersecting discs from the
collection {Di} is a graph G ⊂ X of uniformly bounded length. The inclusion
G → X maps the fundamental group of G onto the fundamental group of C.
Namely, every closed curve ρ in C travels successively through a chain of discs
among the discs Di so that any two adjacent discs intersect. Let Di1 , . . . , Dik

be this chain of discs. For each j ≤ k choose some tj so that tj < tj+1, that
ρ(tj) ∈ Dij

and such that ρ[tj , tj+1] ⊂ Dij
∪ Dij+1

. Connect ρ(tj) by a path αj

entirely contained in Dij
to the center xij

of Dij
. Then αj+1 ◦ ρ[tj , tj+1] ◦α−1

j is a
path connecting xij

to xij+1
which is entirely contained in Dij

∪ Dij+1
. Therefore

this path is homotopic with fixed endpoints to an edge of G. Now ρ is homotopic
to the concatenation of these paths and hence ρ is homotopic to an edge path in
G.

Since the number of edges of G is uniformly bounded, the fundamental group
of C can be generated by simple edge loops in G whose lengths are bounded from
above by a universal constant, and these loops pairwise intersect in uniformly few
points. Then there also is a pants decomposition consisting of curves of uniformly
bounded length. The lemma follows. �

A pants decomposition of a hyperbolic surface X with the properties stated in
Lemma 4.7 is called a Bers decomposition of X . The number χ is called a Bers

constant.

Let as before Mg = T (S)/Mod(S) be the moduli space of S. Bers decomposi-
tions are used in the following

Proposition 4.8. Let (xi) ⊂ Mg be a sequence which exits every compact set.

Then the shortest length of a simple closed curve on xi tends to zero as i → ∞.

Proof. We show that a sequence of surfaces (xi) ⊂ Mg so that the shortest
length ρi of a simple closed curve on xi is bounded away from zero is relative
compact in moduli space.
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For this let X̃i ∈ T (S) be a preimage of xi and let Pi be a Bers decomposition

for X̃i. Since there are only finitely many combinatorial types of pants decomposi-
tions for S and any two pants decompositions of the same combinatorial type can
be mapped to each other with an element of Mod(S), up to passing to a subse-

quence and changing the lift X̃i we may assume that these pants decompositions
all coincide. Let P be this fixed pants decomposition. Let ℓj (j = 1, . . . , 3g − 3)

be the length functions of the pants curves of P . The lengths ℓj(X̃i) are bounded
from above and below by a positive constant independent of i.

Dehn twists about the pants curves act with compact quotient on the twist
parameters. In other words, up to modifying the preimages of the points xi by
suitably chosen Dehn multitwists about the pants curves of P , these preimages
are contained in a compact subset of T (S). Therefore the sequence (xi) ⊂ Mg is
relative compact. �

To complete the proof that T (S)/Mod(S) is compact, observe that if the se-
quence (xi) ⊂ Mg exits every compact set then by Proposition 4.8, up to passing
to a subsequence we may assume that for each i there is at least one simple closed
curve on xi whose length is at most 1/i.

Assume as in the proof of Proposition 4.8 that there are lifts X̃i ∈ T (S) of xi

which admit a fixed pants decomposition P as a Bers decomposition. Let ǫ0 > 0 be
sufficiently small that for any hyperbolic surface X , any two distinct simple closed
geodesics on X of length at most ǫ0 are disjoint and moreover every simple closed
geodesic of length at most ǫ0 is contained in a Bers decomposition of X . Such
a number exists since a very short simple closed geodesic is the core curve of an
annulus of very large width. For sufficiently small ǫ < ǫ0 and sufficiently large i let
σi be the simplex in the curve complex corresponding to the curves of X̃i-length
at most ǫ. Then σi is a face of the maximal simplex defined by P and hence by
passing to a subsequence, we may assume that σi does not depend on i.

Let σ be this fixed simplex. The above argument implies that up to passing
to another subsequence, (X̃i) converges to a point in the stratum S(σ) and hence
(xi) converges in T (S)/Mod(S). This completes the proof that T (S)/Mod(S) is
compact.

We also have (see [W10] for references)

Theorem 4.9. Augmented Teichmüller space is the completion of T (S) with respect

to the Weil-Petersson metric. Strata are convex for the completed Weil-Petersson

metric.

The curve graph CG(S) is the one-skeleton of the curve complex. It is a locally
infinite graph. Providing each edge with a metric of length one defines the structure
of a metric space on CG(S). The mapping class group acts on this metric graph as
a group of simplicial isometries.

The curve graph can be used to obtain information on the geometry of Te-
ichmüller space and the mapping class group. To this end we look more closely at
the geometry of CG(S).
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Let ι(c, d) be the geometric intersection number between c, d. By definition,
ι(c, d) is the minimal number of intersection points between any two curves c′, d′

which are freely homotopic to c, d. We call curves which realize this intersection
number in minimal position.

Lemma 4.10. The distance in CG(S) between two simple closed curves c, d does

not exceed ι(c, d) + 1.

Proof. Let c, d be simple closed curves in minimal position. We may assume
that c and d intersect. If c and d intersect in a single point then the boundary of a
tubular neighborhood of c ∪ d in S is a simple closed curve which is disjoint from
both c and d. Thus the distance between c and d is at most two.

If ι(c, d) ≥ 2 then let β be a component of d − c. If β leaves and returns to
the same side of c then the concatenation of β with a subarc of c connecting the
endpoints of β is an essential simple closed curve disjoint from c whose intersection
number with d is strictly smaller than the intersection number between c and d.

If β leaves and returns to different sides of c and if β 6= d then a similar
argument produces a simple closed curve c′ whose intersection number with d does
not exceed ι(c, d) − 2 and which intersects c in at most one point. We saw above
that the distance between c and c′ does not exceed 2. The claim now follows by
induction on ι(c, d). �

Choose a map

Υ : T (S) → CG(S)

which associates to a hyperbolic metric a simple closed curve of length at most χ
where as before, χ is a Bers constant for S.

Define a map Ψ between metric spaces to be coarsely Lipschitz if there is some
L > 0 so that d(Ψ(x), Ψ(y)) ≤ Ld(x, y) + L. Proposition 2.15 and Lemma 4.10 are
used to show

Proposition 4.11. The map Υ is coarsely Lipschitz.

Proof. Let γ be a simple closed curve on X of length at most χ. By Lemma
4.1, there is a universal number c > 0 such that the length of every simple closed
curve β on X is at least cι(γ, β).

By Proposition 2.15, if dT (X, X ′) ≤ 1 then ℓβ(X) ≤ e4χ for every curve β with
ℓβ(X ′) ≤ χ. Then the intersection number between γ, β does not exceed e4χ/c
and therefore by Lemma 4.10, the distance between γ and β in CG(S) is at most
e4χ/c + 1. �

In fact, much more is true. The following fundamental result is due to Masur
and Minsky [MM99]. For its formulation, we say that a map γ : R → CG(S) is an
L-quasi-geodesic if

|s − t|/L − L ≤ d(γ(s), γ(t)) ≤ L|s − t| + L.
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The map is an unparametrized L-quasi-geodesic if there is a homeomorphism ρ :
R → R so that γ ◦ ρ is an L-quasigeodesic.

A geodesic metric space X is hyperbolic if there exists a constant δ > 0 with
the following property. Let ∆ be a geodesic triangle in X with sides a, b, c. Then
the side c is contained in the δ-neighborhood of a ∪ b.

Theorem 4.12. The curve graph is hyperbolic. The image under Υ of a Te-

ichmüller geodesic is a uniform unparametrized quasi-geodesic.

This result turned out to be very important not only for an understanding of
the geometry of the mapping class group, but also for an understanding of the
Teichmüller metric and the behavior of Teichmüller geodesics. To give a glimpse
of what has been recently achieved in this direction, denote for ǫ > 0 by T (S)ǫ

the ǫ-thick part of Teichmüller space. This set consists of all hyperbolic metrics on
S for which the shortest length of a closed geodesic is at least ǫ. Clearly T (S)ǫ

is invariant under Mod(S), moreover by Proposition 4.8, the action of Mod(S) on
T (S)ǫ is cocompact.

A closed unbounded subset B of T (S) is called coarsely convex if there is
a number r > 0 such that for any two points X, Y ∈ B the Teichmüller geodesic
connecting X to Y is contained in the r-neighborhood of B (note that this definition
is meaningless if B is bounded). With this terminology we have [H10]

Proposition 4.13. The restriction of the map Υ to a coarsely convex subset B of

T (S)ǫ is a quasi-isometry onto a coarsely convex subset of CG(S).

As a consequence, coarsely convex subsets of T (S)ǫ are hyperbolic for the
Teichmüller metric.

There is a particularly well known consequence of this statement. Namely, a
pseudo-Anosov mapping class is an element g ∈ Mod(S) which preserves a Te-
ichmüller geodesic γ and acts on it as a non-trivial translation. The geodesic γ
is called the axis of the pseudo-Anosov element. Since g acts cocompactly on its
axis, for some ǫ > 0 the geodesic is entirely contained in T (S)ǫ. Now a Teichmüller
geodesic is coarsely convex and hence this shows the “only if” part of the following
statement.

Corollary 4.14. A mapping class is pseudo-Anosov if and only if it acts on CG(S)
with unbounded orbits.

The “if” part of the corollary is a consequence of the fact that for a mapping
class g ∈ Mod(S) which is not pseudo-Anosov there is some k ≥ 1 so that gk fixes a
simple closed curve (see [FM11]). In particular, every g-orbit on CG(S) is bounded.

In the thin part of Teichmüller space, the Teichmüller metric is very far from
being hyperbolic. Indeed, Minsky’s product region theorem [M96] shows that
“coarse positive curvature” prevails in the thin part of Teichmüller space.

For the formulation of his result, let again P be a pants decomposition of S
and let σ ⊂ P be a simplex in C(S) with u ≥ 1 components γ1, . . . , γu. For some
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sufficiently small δ > 0 let V ⊂ T (S) be the region where the length of each of the
components γi is at most δ. Let S0 be the (possibly disconnected) surface obtained
by replacing each of the components γi of γ by a pair of punctures. The (6g−6−2u)-
tuple of Fenchel Nielsen coordinates at pants curves in P−σ defines Fenchel Nielsen
coordinates for S0. The natural coordinate forgetful map determines a projection
Π0 : V → T (S0).

For each component γi of γ let Hi be a copy of the upper half-plane equipped
with the hyperbolic metric. Define a map Πi : V → Hi by Πi(x) = (τi, 1/ℓi) where
(τi, ℓi) are the twist and length parameters for γi. In Fenchel Nielsen coordinates,
the positive Dehn twist about the curve γi preserves the length and twist parameter
of the pants curves ζ ∈ P − γi and projects to the transformation (τi, ℓi) → (τi +
1, ℓi). For two points x, y ∈ V define

dP (x, y) = max{dT (S0)(Π0(x), Π0(y)), dHi
(Πi(x), Πi(y))}

where dT (S0) denotes the Teichmüller distance on T (S0) and where dHi
is the

hyperbolic metric on Hi. The following is Theorem 6.1 of [M96].

Theorem 4.15. There is a constant a > 0 only depending on δ such that for all

x, y ∈ V ,

|dT (S)(x, y) − dP (x, y)| ≤ a.

More recently, this result has been used by Rafi [R07b] to establish a coarse
distance formula for the Teichmüller metric.

The product region theorem is silent about the precise behavior of Teichmüller
geodesics connecting any two given points in T (S)- the latter are unique while
geodesics for an L∞-metric are not. However, coarsely such geodesics can be un-
derstood explicitly [R10]. An example of possible behavior is illustrated in the
following [H12]

Theorem 4.16. For every ǫ > 0 there is a pseudo-Anosov element g ∈ Mod(S)
whose axis is entirely contained in T (S) − T (S)ǫ.

In fact, in imperfect analogy to Weil-Petersson geodesics (we refer once more to
[W10] for references), Teichmüller geodesics in the thin part or Teichmüller space
approach Teichmüller geodesics in boundary strata [H11, R10].



LECTURE 5

Geometry and Dynamics of Moduli Space

In this final lecture we relate some geometric properties of moduli space to
dynamics of the Teichmüller flow.

A basic question concerning the geometry of moduli space is as follows: To
what extend does Mg equipped with the Teichmüller metric resemble a locally
symmetric space of finite volume?

The Torelli map embeds the moduli space Mg into the finite volume locally
symmetric space Sp(2g, Z)\Sp(2g, R)/U(g). However, the dimension of this locally

symmetric space is g(g+1)
2 and hence for g large, the image of Mg is of high codi-

mension. Moreover, the kernel of the induced map on orbifold fundamental groups
is the Torelli group, a group which is large and complicated (in fact, for g = 2 the
Torelli group is an infinitely generated free group, see [I02] for this result of Mess).

The following result is due to Kaimanovich-Masur and Masur-Farb. Another
proof was given later by Bestivina and Fujiwara. We refer to [I02] for a history
and references.

Theorem 5.1. Let Γ be an irreducible lattice in a semisimple Lie group of non-

compact type and rank at least two. Then every homomorphism Γ → Mod(S) has

finite image.

An important geometric property of a locally symmetric space Y of non-
compact type and finite volume is the following. Let r ≥ 1 be the rank of Y
and let T ⊂ Y be an embedded flat torus of rank r. Then there is a compact set
K ⊂ Y such that T can not be homotoped outside K [PS09]. If r = 1 then this
means that a closed geodesic can not be homotoped outside K.

The mapping class group Mod(S) is finitely presented and hence it can be
equipped with a word metric defined by a finite generating set. Such a word met-
ric is unique up to bilipschitz equivalence. The geometric rank of the mapping
class group is defined to be the maximal dimension of a quasi-isometrically embed-
ded euclidean space. Since any abelian subgroup of Mod(S) is quasi-isometrically
embedded [FLM91], the geometric rank is not smaller than the number 3g − 3 of
components of a pants decomposition of S. Namely, the group of Dehn twists about
the components of a pants decomposition is free abelian of rank 3g − 3. In fact,
the geometric rank of Mod(S) equals 3g − 3 [BM08]. There should be a similar
statement for Teichmüller space with the Teichmüller metric as indicated by the
product region theorem, but we are not aware of such a statement in the literature.
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In contrast to locally symmetric spaces, using the Deligne Mumford compacti-
fication of moduli space it is easy to show

Proposition 5.2. For every compact set K ⊂ Mg, an embedded torus in Mg

whose fundamental group is the abelian group of Dehn twists about the components

of a pants decomposition can be homotoped into Mg − K.

Proof. Let P be a pants decomposition of S. For any ǫ > 0, a torus as in the
proposition can be represented by the projection to Mg of the set of all points in
T (S) whose Fenchel Nielsen coordinates with respect to P have lengths parameters
equal to ǫ. �

It turns out, however, that complex geodesics in Mg (i.e. projections of complex
geodesics in T (S)) are much more rigid. The remainder of this lecture is devoted
to the proof of

Theorem 5.3. (1) There is a compact set K ⊂ Mg so that every complex

geodesic intersects K.

(2) A complex geodesic is unbounded in moduli space.

The (easier) second part of the theorem is due to Masur [M86]. The strategy
is to use the geometry of the singular euclidean metrics on S of the quadratic dif-
ferentials defining the complex geodesic. For this we have to understand a bit more
explicitly the topology of Q(S). We begin with organizing quadratic differentials
as follows.

Definition 5.4. A stratum of quadratic or abelian differentials consists of differ-
entials with the same number and orders of zeros.

Each stratum is a complex orbifold. Relative periods of abelian differentials can
be used to define coordinates on strata. By this we mean the following.

Let ω be any abelian differential. Choose a triangulation T of S whose set of
vertices is the set of singular points of ω and whose edges are saddle connections for
ω. The existence of such a triangulation was shown in Lemma 2.18. The tangent
vector of each edge from the triangulation is a vector in C. These vectors determine
the singular euclidean metric defined by ω as well as the horizontal and vertical line
fields for ω and hence they determine ω.

A nearby abelian differential ζ in the stratum has nearby singular points of the
same orders and hence the triangulation T of S is isotopic to a triangulation T ′

whose vertices are singular points for ζ and whose edges are saddle connections.
Thus we obtain a new set of vectors from ζ by integrating the differential over the
edges of T ′. As a consequence, integration over the edges of T defines an embed-
ding of a neighborhood of ω in its stratum into Cr for some large r > 0, and this
embedding defines a topology on strata which is independent of any choices made.
Indeed, changing the triangulation amounts to an affine change of coordinates. As
another consequence, strata of abelian differentials are complex manifolds. Note
that this structure of a complex manifold is compatible with the structure on the
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Hodge bundle H defined by period coordinates as discussed in Lecture 3. In par-
ticular, the closure of a stratum of abelian differentials is a union of strata in H
of smaller dimension obtained by merging two or more zeros of the differentials.
(Using the not very difficult fact that every Riemann surface admits an abelian
differential with simple zeros (see p.98 of [FK80]), it seems possible to use the
natural complex structure on the maximal stratum of abelian differentials to give
a direct and elementary proof that Teichmüller space admits a Mod(S)-invariant
integrable complex structure).

Strata of quadratic differentials can be treated in the same way. Namely, given
a quadratic differential q which is not the square of a holomorphic one-form, there
is a two-sheeted cover Ŝ of S ramified at some of the zeros of q such that q lifts to
an abelian differential q̂ on Ŝ. Namely, for a simple closed loop α on S not passing
through a singular point, define the holonomy by parallel transport of a non-zero
vector v along α with respect to the singular euclidean metric defined by q. Then
the image of v either equals v or −v, and this association of sign defines a homology
class in H1(S − Σ, Z/2Z) where Σ is the set of singular points of q. The double
cover of S − Σ associated to this class determines a branched cover of S with the
desired properties.

Any nearby quadratic differential in the stratum of q has the same orientation
cover and hence a neighborhood of q in its stratum injects into a neighborhood of
q̂ in its stratum. The closure of a stratum in Q(S) is a union of strata of smaller
dimension obtained by merging two or more zeros of the differentials.

Strata are invariant under scaling. Their intersections with the space Q1(S) of
area one quadratic differentials will be called strata in Q1(S). Such strata in Q1(S)
are invariant under the natural SL(2, R)-action on Q1(S) and under the action of
the mapping class group. Therefore strata in Q1(S) project to strata in the moduli
space Q1(S)/Mod(S) = V of area one quadratic differentials.

Compact subsets of strata in V are easy to understand. The next definition is
used to this end.

Definition 5.5. The extremal length of a simple closed curve α on a Riemann
surface X is defined to be

E(α) = sup
ρ

ℓρ(α)2

areaρ(S)

where the supremum is taken over all Borel metrics ρ in the conformal class of X
and where ℓρ(α) is a shortest ρ-length of a curve in the free homotopy class of α.

If S contains a cylinder of modulus a > 0 then the extremal length of the core
curve of the cylinder is at most 1/a (we refer to [IT89] for references).

Proposition 5.6. A closed subset K of a stratum in V is compact if and only if

there is a number ǫ > 0 so that no q ∈ K has a saddle connection of length smaller

than ǫ.
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Proof. Let C be a stratum in V and let K ⊂ C be compact. Assume that
there is a sequence (qi) ⊂ K so that for each i there is a saddle connection γi

for qi of length less than 1/i. By passing to a subsequence we may assume that
qi → q ∈ K. But then two zeros of qi have collided to a single zero of q and hence
q 6∈ C, a contradiction.

For the reverse direction, let K be a closed subset of a stratum C ⊂ V so that
there is no saddle connection of length smaller than ǫ for any point in K. We
have to show that K is compact. For this note that for q ∈ K there is no simple
closed curve of q-length at most ǫ. Namely, by the Arzela Ascoli theorem, any
closed curve on S is freely homotopic to a closed geodesic for the singular euclidean
metric defined by q whose length is minimal in its free homotopy class. Such a
closed geodesic either is a concatenation of saddle connections and hence its length
is bigger than ǫ by assumption, or it does not pass through a singular point. Since
the metric q is euclidean, in the latter case the geodesic is the core curve of a flat
cylinder foliated by closed geodesics of the same length. A boundary circle of a
maximal such cylinder contains a singular point and hence it is a path composed
of saddle connections (we refer to [S84] for more details). Once again, the length
of the curve is at least ǫ.

Now the q-length of any simple closed curve on S is at least ǫ, and the area of q
equals one. This implies that the extremal length of any simple closed curve on the
Riemann surface X defined by q is bounded from below by ǫ2. As a consequence,
there is no embedded cylinder in X of modulus bigger than 1/ǫ2. On the other
hand, a short hyperbolic geodesic on a surface S is the core curve of an embedded
cylinder whose modulus tends to infinity as the length of the curve tends to zero.
This implies that K projects to a compact subset of Mg and hence it is relative
compact in V .

If there is an accumulation point of K in V which is not contained in C then the
shortest length of a saddle connection for points in K is not bounded from below
by a positive constant. The proposition follows. �

The Teichmüller flow Φt on Q1(S) is the flow defined by the action of the
diagonal subgroup of SL(2, R). Thus

Φtq =

(

et/2

e−t/2

)

q.

This flow commutes with the action of the mapping class group and hence it de-
scends to a flow on V which is called again the Teichmüller flow.

Corollary 5.7. Let q be a quadratic differential which admits a vertical saddle

connection. Then the image of q under the Teichmüller flow does not have an

accumulation point in the interior of the stratum containing q.

Proof. Let q be a quadratic differential with a vertical saddle connection of
length s. Then for every t > 0, the differential Φtq has a vertical saddle connection
of length e−t/2s. Now use Proposition 5.6. �
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If q is any quadratic differential and if v is any saddle connection for q then
there is some θ ∈ [0, 2π) so that v is vertical for eiθq. Thus Corollary 5.7 shows
that an SL(2, R)-orbit is not relative compact in any stratum. However, there are
quadratic differentials with arbitrarily short saddle connections which project to a
fixed compact subset of moduli space and hence this does not imply that a complex
geodesic intersects the complement of every compact subset of moduli space. That
this nevertheless holds true is due to Masur [M86].

Proposition 5.8. Let H ⊂ Mg be a complex geodesic and let K ⊂ Mg be any

compact set. Then H ∩ (Mg − K) 6= ∅.

Proof. Let q ∈ V be an area one quadratic differential. Let E ⊂ V be the set
of accumulation points of the SL(2, R)-orbit of q, i.e. the set of all points z so that
there is an unbounded sequence (gi) ⊂ SL(2, R) such that giq → z. Then E is a
closed SL(2, R)-invariant subset of V . We may assume that E 6= ∅.

For u ∈ V with zeros of order ki define O(u) =
∑

i(ki − 1). Let Emax = {u ∈
E | O(u) ≥ O(z) for all z ∈ E}. Since E is closed, the set Emax is closed as well.
Namely, if q is a quadratic differential with s zeros of order ki, then any nearby
differential has at least s zeros. By the Gauss Bonnet theorem, the sum of the
orders of the zeros is constant which implies that O(z) < O(q) if z has more than
s zeros. It now suffices to show that Emax is not compact.

For this we argue by contradiction and we assume that Emax is compact. For
a quadratic differential u let d(u) be the shortest length of a saddle connection for
the singular euclidean metric defined by u. Let d0 = infu∈Emax

d(u).

If d0 = 0 then choose a sequence ui ⊂ Emax so that d(ui) → 0. Since we
assume that Emax is compact, by passing to a subsequence we may assume that
ui → u ∈ Emax. But then two zeros of ui connected by a short saddle connection
collide to a single zero in u. As a consequence, we have O(u) > O(ui) (see the
discussion above) which contradicts the definition of Emax.

If d0 > 0 then by the same reasoning, there is some u ∈ Emax with d(u) = d0.
Let γ be a saddle connection of length d0 on u. There is some θ0 ∈ [0, 2π] so that
γ is vertical for eiθ0u. Since the Teichmüller flow contracts vertical distances, there
is some s > 0 so that Φseiθ0u has a saddle connection of length d0/2.

The set E is SL(2, R)-invariant and therefore Φseiθ0u ∈ E. However, the
SL(2, R)-action preserves the strata of V and hence we have Φseiθ0u ∈ Emax. This
is a contradiction to the definition of d0. The proposition follows. �

A degeneration of quadratic differentials which is particularly easy to under-
stand can be described as follows. A metric cylinder for a singular euclidean metric
q is an embedded cylinder in S which is foliated by closed geodesics for q. If these
geodesics are vertical then their lengths decrease and the height of the cylinder in-
creases under the Teichmüller flow Φt. Lemma 4.1 then shows that the hyperbolic
length of the core curve of the cylinder tends to zero as t → ∞. In particular,
the underlying family of Riemann surfaces leaves every compact subset of moduli
space.
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Masur [M86] showed the following result which is much stronger than Propo-
sition 5.8 (see also the survey [MT02]).

Theorem 5.9. For every quadratic differential q, the set of directions θ so that

eiθq has a vertical metric cylinder is dense in the unit circle.

The horocyle flow ht (t ∈ R) is the flow on V defined by the action of the
unipotent subgroup

(1)

(

1 t
0 1

)

of SL(2, R).

The following is a non-quantitative version of a result of Minsky and Weiss
[MW02]. Together with Proposition 5.8 it implies Theorem 5.3.

Theorem 5.10. For every stratum C ⊂ V there is a compact subset K of C which

is intersected by the orbit of the horocycle flow through every quadratic differential

q ∈ C without horizontal saddle connection.

Example: Let q be a quadratic differential which defines a flat metric consist-
ing of a single cylinder which is foliated by vertical simple closed geodesics. This
cylinder is bounded by vertical saddle connections (see [S84] for examples). As-
sume moreover that there is a closed horizontal curve. Then there is a closed orbit
of the horocycle flow through q. Choosing such quadratic differentials carefully
results in closed orbits for the horocycle flow which are disjoint from any given
compact subset K of the stratum containing q. Thus the statement of Theorem
5.10 does not hold for all quadratic differentials in C. This behavior is familiar
for other unipotent flows. An example of such a flow is the horocycle flow on the
unit tangent bundle of a non-compact hyperbolic surface of finite volume (which is
defined to be the action of same unipotent subgroup of PSL(2, R)). For this flow
every orbit is closed or equidistributed for the Haar measure (see [MW02] for an
overview and references), and closed orbits exist arbitrarily far out in the cusps.

Slightly stronger versions of Theorem 5.10 can be found in the appendix of
[LM08] and of [H09]. Beyond this, not much is known about the horocycle flow
on strata (see however [SW04]).

The remainder of these notes is devoted to the proof of Theorem 5.10. We
follow [MW02]. The proof uses an idea from the theory of unipotent flows: make
effective use of slow divergence of orbits to find a point on the orbit which does not
have a short saddle connection.

We begin with having a closer look at an orbit of the horocycle flow through
an area one quadratic differential q without horizontal saddle connection. Let δ
be a saddle connection for q. Then δ is a straight line segment for the singular
euclidean metric defined by q. Its tangent can be decomposed into its horizontal
part x = x(δ, q) and its vertical part y = y(δ, q). Since q does not have a horizontal
saddle connection, we have y 6= 0 and hence ht(x, y) = (x + ty, y) 6= (x, y) for t 6= 0
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(note that the image under ht of a saddle connection for q is a saddle connection
for htq). Write

ℓ(δ, q) = max{|x(δ, q)|, |y(δ, q)|}

and ℓq,δ(t) = ℓ(δ, htq). The next easy lemma describes these functions explicitly and
gives a quantitative version of the idea of slow divergence of orbits of the horocycle
flow.

Lemma 5.11. (1) There are t0 ∈ R, c > 0 so that

ℓq,δ(t) = max{c, c|t− t0|}.

(2) Let f, f̃ be two functions of the form t → max{c, c|t− t0|} for some c > 0.

Suppose that for some b > 0 and s ∈ R we have f(s) < b, f̃(s) < b. Then

possibly after exchanging f and f̃ , f(t) < 3b whenever f̃(t) < b.

Proof. Put c = |y| > 0 and t0 = −x/y. The first part of the lemma follows.

For the second part, let c, t0 and c̃, t̃0 be the constants for f, f̃ . Assume that
0 < c ≤ c̃.

By the hypothesis on s, t we have c̃|s − t̃0| < b, c̃|t − t̃0| < b and hence

c̃|t − s| ≤ c̃|t − t̃0| + c̃|t̃0 − s| < 2b.

Now f(s) < b and therefore c < b. If t0 is between s and t then

c|t − t0| ≤ c̃|t − t0| ≤ c̃|s − t| < 2b.

If t0 is not between s and t then

c|t − t0| = c|s − t0| + c|t − s| < f(s) + 2b < 3b.

In either case we get f(t) < 3b. �

Denote by |A| the Lebesgue measure of a subset of the real line. From the first
part of Lemma 5.11 one obtains the following. Let δ be any saddle connection, let
θ > 0, I ⊂ R be an interval and let

Iδ,θ = {s ∈ I | ℓq,δ(s) < θ}

and
‖ℓq,δ‖I = sup

s∈I
ℓq,δ(s).

Then
|Iδ,θ|

|I|
≤ 2(

θ

‖ℓq,δ‖I
).

Namely, using the above notation, if θ ≤ c then Iδ,θ = ∅. If θ > c then either

I ∩ {t ≥ t0} ⊂ Iδ,θ or for b = sup{s ∈ I} we have
|Iδ,θ∩{t≥t0}|
|I∩{t≥t0}|

= θ
c|b−t0|

≤ θ
‖ℓq,δ‖I

.

From this we deduce

Lemma 5.12. Assume that there is some M > 0, there is an interval I, a number

ρ > 0 and a collection ∆ of saddle connections for q with the following properties.

(1) For any t ∈ I, ℓq,δ(t) < ρ for at most M saddle connections δ ∈ ∆.
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(2) ‖ℓq,δ‖I ≥ ρ for every δ ∈ ∆.

Then

|{s ∈ I | ℓq,δ(s) < ρ/4M2 for some δ ∈ ∆}| < |I|/2M.

Proof. Let

J =

∫

I

♯{δ ∈ ∆ | ℓq,δ(s) < ρ}ds.

The integrand of J is bounded from above by M and therefore J ≤ M |I|. Let
β ≤ ρ/4M2. By the discussion after Lemma 5.11, for every δ ∈ ∆ we have |Iδ,β | ≤

2|Iδ,ρ|
β
ρ . Since the set of all saddle connections is countable, the sum

∑

δ∈∆

|Iδ,ρ|

is well defined and equals J . Together we obtain

J ≥ [2
β

ρ
]−1

∑

δ∈∆

|Iδ,β|.

Since β ≤ ρ/4M2 we conclude that
∑

δ∈∆ |Iδ,β | ≤ |I|/2M . �

While for every hyperbolic metric on S there are at most 3g − 3 short simple
closed curves, there is no uniform bound on the number of short saddle connections
for a quadratic differential. Examples can be constructed as follows.

Let T1, T2 be two flat tori of area one. For a small number δ > 0, cut T2 open
along an embedded line segment of length δ. For each i let T i

2 be the flat torus
obtained from T2 by scaling the flat metric by the constant 1/i. Cut T1 open along
a line segment of length δ/i and glue the tori T1 and T i

2 along the two slits of length
δ/i to obtain a surface T i of genus 2. The euclidean metrics on the tori T1 and T i

2

define a singular euclidean metric on T i which is the metric of an abelian differential
ωi. The images in T i of the endpoints of the slits in T1, T

i
2 are singular points for ωi,

and the slits are saddle connections. As i → ∞, the length of any saddle connection
of ωi which is entirely contained in T i

2 tends zero (with the obvious interpretation).
Now observe that there are countably many such saddle connections.

To overcome this difficulty one looks at “isolating” saddle connections which
play the role of the slits in the above example. One verifies that the number of
isolating saddle connections is uniformly bounded and that moreover in the absence
of isolating saddle connections, there are no short saddle connections at all.

To define such isolating saddle connection, we observe

Lemma 5.13. There is a number M > 0 so that the cardinality of any set of saddle

connections with mutually disjoint interior is at most M .
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Proof. Assume that q has k singular points. Let α1, . . . , αs be saddle con-
nections with disjoint interior. As in the proof of Lemma 2.18, by adding a finite
additional collection of saddle connections we may assume that the arcs αi decom-
pose S into triangles in such a way that all singular points of q occur as vertices.
We do not require that the vertices of these triangles are distinct.

The number of edges of this triangulation of S equals s. Any edge is contained
in the boundary of 2 triangles, and every triangle has 3 sides. Euler’s formula shows
that 2

3s − s + k = 2 − 2g and hence s = 3(2g − 2 + k). �

Let Lq be the set of all saddle connections for q. For r ≤ M define

Er = {E ⊂ Lq | E consists of r segments with disjoint interior}.

For E ∈ Er define S(E) to be the closure of the simply connected components of
S−∪δ∈Eδ. Then S(E) is a possibly empty subsurface of S whose boundary ∂S(E)
is contained in E. Let W (E) be the union of ∂S(E) with those saddle connections
in E whose interiors are disjoint from S(E). Then W (E) is a closed subset of S
which is empty only if S(E) = S.

The next lemma indicates how to find “isolating” saddle connections: As saddle
connections on the boundary of regions of S which can be decomposed by short
saddle connections into simply connected components. Note that the constant θ
in the assumptions of the lemma is a gap for lengths of saddle connections. The
main remaining task for the completion of the proof of Theorem 5.10 will then be
to show the existence of such a gap number to which the lemma can be applied.

Lemma 5.14. Suppose that E ∈ Er consists of segments of length ≤ θ. Suppose

furthermore that there is no saddle connection of length ≤ 4θ whose interior is

disjoint from E. Then any saddle connection δ′ which intersects the interior of a

saddle connection δ ∈ W (E) has length at least 2θ.

Proof. Let δ be a saddle connection in W (E) and assume that the saddle
connection δ′ intersects δ in an interior point p. Let ω ⊂ δ′ be a subsegment of
δ′ in S − (S(E) ∪ E) with one endpoint p and such that the second endpoint of ω
either is an interior point of a saddle connection in E or is a singular point. Then
ω is contained in a component C of S − E which is not simply connected.

The component C is an oriented surface with singular euclidean metric with
cone points of cone angles bigger than 2π and finite area. Its metric completion C
is a compact surface with piecewise geodesic boundary and finitely many singular
points. Each boundary arc with the boundary orientation is an oriented saddle
connection in S. The closure of C in S can be obtained from C by identifying some
of the boundary arcs with an orientation reversing isometry. The boundary of C
contains the saddle connection δ ∈ W (E).

Our goal is to show that the length of ω is at least 2θ. For this we argue by
contradiction and we assume that the length of ω is smaller than 2θ.

Assume furthermore for the moment that the second endpoint of ω is a singular
point. Let ρ1, ρ2 be the two subarcs of the saddle connection δ ⊂ C connecting p
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to the two endpoints x1, x2 of δ. The concatenation of ω with ρ1, ρ2 is a broken
geodesic in C with endpoints at singular points and length smaller than 3θ.

The shortest arc ρ′i in C which is homotopic with fixed endpoints to the con-
catenation of ω with ρi is composed of saddle connections all of whose lengths are
smaller than 3θ. The saddle connections either are contained in E or their interiors
are disjoint from E. By the assumption in the lemma, these saddle connections are
all contained in E.

Now ω is a smooth geodesic arc in C and hence it is the unique arc of minimal
length in its homotopy class with fixed endpoints. The concatenation ρ−1

i ◦ ρ′i is
homotopic to ω with fixed endpoints. In particular, ρ′i, ρi, ω bound an embedded
disc Ωi in C. Since ρ′i is minimal, the angle at each singular point of ∂Ωi which is
distinct from xi and the endpoints of ω is at least π. Since the cone angle at each
interior singular point of Ωi is bigger than 2π, by the Gauss Bonnet theorem the
angle at xi is smaller than π.

As a consequence, the concatenation δ ◦ ρ′1 is not length minimizing. By con-
struction, ρ′2 is a shortest arc in C with the same endpoints which is homotopic to
ρ′1 ◦δ. A homotopy between these two arcs with fixed endpoints covers a disc which
necessarily contains ω. By the definition of S(E), this region is contained in S(E)
which is a contradiction to the choice of ω.

If both endpoints of ω are interior points of saddle connections in E then
we argue in exactly the same way. In this case we construct from ω and the
subarcs of the saddle connections containing the endpoints of ω a simply connected
quadrangle Q ⊂ S(E). Two opposite sides of Q are the saddle connections δ, δ′ ∈
W (E) containing the endpoints of ω. The other two sides are geodesic arcs in
S − (S(E) ∪ E) homotopic to the concatenation of ω with the two subsegments of
δ, δ′ which are to the left (or right) of ω for some choice of orientation. �

Lemma 5.14 shows that under the assumption of the existence of a “gap”
the surface S can be decomposed into subsurfaces bounded by paths which are
composed of short saddle connections, and these subsurfaces either are small in size
or the short saddle connections they contain is a forest, i.e. a finite union of trees.

Our next goal is to find points on the orbit htq which satisfy the assumptions
in Lemma 5.14 for a suitably chosen gap constant. Let M > 0 be as in Lemma 5.13
and for r ∈ {1, . . . , M} define

αr(t) = min
E∈Er

max{ℓq,δ(t) | δ ∈ E}.

Note that α1(t) is just the shortest length of a saddle connection for htq.

Lemma 5.15. There is a number θ0 > 0 with the following property. Let E ∈ Er

be such that S(E) = S; then for each t, E contains at least one saddle connection

of htq-length at least θ0. In particular, we have αM (t) ≥ θ0 for all t.
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Proof. Let E be a collection of saddle connections with pairwise disjoint in-
teriors which decompose S into simply connected regions. Each of these regions is
a singular euclidean polygon. The number of these polygons is uniformly bounded.
Since the area of the singular euclidean metric defined by htq equals one, there is at
least one side of these polygons whose length is bounded from below by a constant
θ0 > 0 only depending on S.

This shows the first part of the lemma, and the second part follows from the
fact that by Lemma 5.13, any collection of M saddle connections with pairwise
disjoint interior decomposes S into simply connected components. �

In the following lemma, the number T > 0 depends in an essential way on
the initial quadratic differential q. Note that this corresponds to the fact that the
amount of time the ht-orbit through q spends before entering the fixed compact set
whose existence is stated in Theorem 5.10 can be arbitrarily large.

Lemma 5.16. There is a number T > 0 such that ‖ℓq,δ‖[0,T ] ≥ θ0 for every saddle

connection δ.

Proof. Since q is an arbitrary but fixed quadratic differential without horizon-
tal saddle connection there are only finitely many saddle connections for q whose
length is smaller than θ0. By Lemma 5.11, for each of these saddle connections
δ there is a number τ(δ) > 0 so that ℓq,δ(τ(δ)) ≥ θ0. The maximum T of these
numbers τ(δ) satisfies the requirement in the lemma. �

Write I = [0, T ]. For k ≤ M − 1 define

Lk = θ0/(48M2)M−k

and for each t let

r(t) = max{k | αk(t) < Lk}.

If E ∈ Er(t) is any collection of r(t) disjoint saddle connections for htq of length at
most Lk then any saddle connection whose interior is disjoint from E has length at
least 48M2Lk. The sets

Vk = {t ∈ I | r(t) = k} (k = 1, . . . , M − 1)

are disjoint, and their union equals the set V of all t ∈ I so that htq has a saddle
connection of length smaller than L1. In particular, there is some k ≤ M − 1 such
that

|Vk| ≥
|V |

M − 1
.

For δ ∈ Lq, let H(δ) be the set of all t ∈ I so that ℓq,t(t) < Lk, and whenever
δ ∩ δ′ 6= ∅ for some δ′ ∈ Lq then

ℓq,δ′(t) ≥ 24M2Lk.

Thus if t ∈ H(δ) then htq satisfies the gap assumption in Lemma 5.14 and hence it
is “isolating”. Define

F0 = {δ ∈ Lq | Vk ∩ H(δ) 6= ∅}.
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In other words, F0 is the set of all saddle connections which are “isolating” for some
time in Vk. The following statement is the main remaining step towards Theorem
5.10.

Lemma 5.17. For all t ∈ I,

♯{δ ∈ F0 | ℓq,δ(t) ≤ 4M2Lk} ≤ M.

Proof. All we have to show is the following. If δ, δ′ are any two saddle connec-
tions with H(δ) ∩ Vk 6= ∅, H(δ′) ∩ Vk 6= ∅ and if ℓq,δ(t) ≤ 4M2Lk, ℓq,δ′(t) ≤ 4M2Lk

then δ, δ′ are disjoint.

Now choose s ∈ Vk ∩ H(δ) so that ℓq,δ(s) < Lk < 4M2Lk; such an s exists by
the assumption on δ. After perhaps exchanging δ and δ′, the second part of Lemma
5.11 shows that ℓq,δ′(s) < 24M2Lk (the factor 2 in this estimate comes from the
fact that the function f measures the sup of the vertical and horizontal component
rather than the euclidean metric) and hence the claim follows from the definition
of the set F0. �

Now

Vk ⊂ ∪δ∈Lq
H(δ).

Namely, if t ∈ Vk then there is a collection E ⊂ Ek of k saddle connections of length
at most Lk with disjoint interior so that any additional saddle connection whose
interior is disjoint from E has length at least 48M2Lk. By Lemma 5.15 and the
choice of Lk, the union S(E) of the closures of the simply connected components
of S − E is not all of S. Then W (E) 6= ∅ and by Lemma 5.14, we have t ∈ H(δ)
for every δ ∈ W (E).

Apply Lemma 5.12 to the interval I = [0, T ] and to ρ = 4M2Lk < θ0. It follows
that |Vk| ≤ |I|/2M . Since |Vk| ≥ |V |/M − 1 this shows that I − V is non-empty.
This completes the proof of Theorem 5.10.

Particularly nice complex geodesics are complex geodesic whose stabilizers in
Mod(S) act with cofinite volume on the geodesic. We refer to [HS06] for an
introduction to this fascinating subject.

The proof of Theorem 5.10 relies on a careful analysis of the geometry of a
singular euclidean metric defined by a quadratic differential and its change under
the horocycle flow.

Rafi [R07a] obtained a fairly precise understanding of such singular euclidean
metrics. To explain his result, define for a number ǫ > 0 an ǫ-thick piece of a
hyperbolic surface X to be a component of X − ∪α where α runs through the
simple closed geodesics of length at most ǫ.

Provided that ǫ > 0 is sufficiently small, if q ∈ Q(X) then for every ǫ-thick piece
Y there is an associated (perhaps degenerate) subset Yq of S. This set is bounded
by q-geodesics freely homotopic to the boundary circles of Y . Moreover, Yq is
disjoint from the interior of any flat cylinder whose core curve is freely homotopic
to a boundary circle of Y . Rafi showed [R07a]
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Theorem 5.18. For every ǫ-thick piece Y of X there is a number λ(Y ) > 0 so

that the q-length of every essential closed curve α ⊂ Y equals λ(Y )ℓα(X) up to a

multiplicative constant which is bounded independent of X.

In other words, maximal subsets of X which can be decomposed into simply
connected regions by short saddle connections correspond to ǫ-thick pieces Y of X
for which the scaling constant λ(Y ) is small.
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