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Abstract. We construct a uniformly finite CAT(0) cube complex which ad-

mits a coarsely vertex bijective Lipschitz map onto the mapping class group

MCG of a surface S of genus g with m punctures (3g−3+m ≥ 2). We identify
the regular Roller boundary of this complex with the space of complete geo-

desic laminations on S. Furthermore, we construct an explicit compactification

of the mapping class group which is small at infinity. We define an electrifi-
cation of the curve graph of S and use it to identify the Poisson boundary of

a random walk on MCG with some mild moment condition as a stationary

measure on the space of minimal complete geodesic laminations on S.
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1. Introduction

The mapping class group MCG of a surface S of finite type, that is, S is a closed
surface of genus g ≥ 0 from which m ≥ 0 points, so-called punctures, have been
deleted, is the group of isotopy classes of diffeomorphisms of S. We assume that S
is non-exceptional, that is, S is not a sphere with at most 4 punctures or a torus
with at most 1 puncture.

Searching for geometric similarities between the mapping class group and non-
positively curved groups has a long history, perhaps culminating in equivariant
embedding results of the mapping class group into a finite product of quasi-trees
[BBF19].

However, the mapping class group is not non-positively curved in spite of the
fact that it admits an isometric action on a simply connected Kähler manifold of
negative sectional curvature, namely, the Teichmüller space equipped with the Weil-
Petersen metric. One manifestation of the failure of being nonpositively curved is
the fact that for any action of MCG on a complete CAT(0)-space by semisimple
isometries, Dehn twists act as elliptic elements [Br10].

The goal of this article is to add to the positive results concerning the relation
of the mapping class group and non-positively curved spaces. To this end define
a cube complex to be a metric space obtained by gluing standard cubes [0, 1]n

(n ≥ 0) with isometries along proper faces. The cube complex is uniformly finite if
the number of one-cubes incident on each vertex is uniformly bounded. A uniformly
finite cube complex has finite dimension and is proper (closed balls of finite radius
are compact).

The Roller boundary ∂X of a uniformly finite CAT(0)-cube complex X defines
a compactification of X. It depends on the cubical structure, and it is intimately
related to the fact that the one-skeleton of a CAT(0) cube complex is a median
space. We refer to [FLM18] and Section 7 for an account on this construction.

The Roller boundary of a CAT(0) cube complex contains a closed (possibly
empty) subset, called the regular Roller boundary. This set is invariant under the
natural action of the automorphism group of the complex (Section 5.3 of [FLM18]).

We use these notions in our first main result. For its formulation, recall from
[H09] that a complete geodesic lamination on S is a geodesic lamination which can
be approximated in the Hausdorff topology by simple closed geodesics and which
decomposes S into ideal triangles and once punctured monogons. The space CL of
all complete geodesic laminations on S, equipped with the Hausdorff topology, is a
compact totally disconnectedMCG-space. Furthermore, the action ofMCG on CL
is amenable [H09].

Theorem 1. There exists a uniformly finite CAT(0) cube complex C with the
following properties.

(1) There exists a proper coarsely surjective Lipschitz map F : C →MCG.
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(2) There is a natural homeomorphism of the regular Roller boundary of C onto
the space of complete geodesic laminations, equipped with the Hausdorff
topology.

The map F in the statement of the theorem is however not bilipschitz.

Among others, the interest in the second part of the theorem lies in the fact
that three distinct point of the Roller boundary of a uniformly finite CAT(0) cube
complex X have a unique median in X and hence there is a natural map from
the space of pairwise distinct triples in ∂X into X. This map is proper, but it is
not injective. By Theorem 1, the regular Roller boundary of the uniformly finite
CAT(0) cube complex C is a compactMCG-space. On the other hand, the action of
a group with Kazhdan’s property (T) by isometries on a median space has bounded
orbits [CDH10]. This supportes the idea that the mapping class group does not
have property (T).

A uniformly finite CAT(0) cube complex X can be compactified by adding its
geometric boundary ∂∠X, which is the space of equivalence classes of geodesic rays
starting at a fixed point. This boundary does not depend on the choice of the
basepoint.

As the cube complex C is not bilipschitz equivalent toMCG andMCG does not
act on C as a group of simplicial isometries, the geometric boundary of C is not a
boundary for MCG in the sense of the following

Definition. A boundary of a finitely generated group Γ is a compact Γ-space Y
with the following properties. There exists a topology on Γ ∪ Y which restricts to
the discrete topology on Γ, to the given topology on Y and is such that Y ∪ Γ is
compact. The left action of Γ on itself extends to the Γ-action on Y . The boundary
is called small if the right action of Γ extends to the trivial action of Γ on Y .

The space CL of complete geodesic laminations is a compact MCG-space, but
it is not a boundary in the sense of the above definition as it does not define a
compactification of MCG.

The second goal of this article is to construct an explicit small boundary X for
MCG. As a set, this boundary X is given as follows.

The curve complex CG(S0) of a subsurface S0 of S different from a pair of pants
or an annulus is the simplicial complex whose vertices are isotopy classes of simple
closed curves and where k such curves span a k − 1-simplex if they can be realized
disjointly. If S0 is a four-holed sphere or a one holed torus, then this definition
has to be slightly modified. The curve complex is a hyperbolic geometric graph of
infinite diameter [MM99]. Its Gromov boundary ∂CG(S0) is the space of minimal
geodesic laminations on S0 which fill S0, that is, which intersect every essential
simple closed curve on S0 transversely. The topology on ∂CG(S0) is the coarse
Hausdorff topology. With respect to this topology, a sequence λi of minimal filling
laminations converges to the lamination λ if and only if the limit of any subsequence
which converges in the Hausdorff topology on compact subsets of S0 contains λ as a
sublamination [H06, K99]. The space ∂CG(S0) is separable and metrizable. Define
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the boundary of the curve complex of an essential annulus A ⊂ S with core curve
c to consist two points c+, c−.

If S1, . . . , Sk is a collection of isotopy classes of pairwise disjoint subsurfaces of
S then we can form the join

X (∪ki=1Si) = ∂CG(S1) ∗ · · · ∗ ∂CG(Sk).

It can be viewed as the set of formal sums
∑
i aiλi where ai > 0,

∑
i ai = 1 and

where λi ∈ ∂CG(Si) for all i. This join is a separable metrizable topological space.
Note that if Si1 , . . . , Sis is a subset of the set of surfaces S1, . . . , Sk, then X (∪sj=1Sij )

is naturally a closed subset of X (∪ki=1Si). Define

X = ∪X (∪ki=1Si)

where the union is over all collections of pairwise disjoint essential subsurfaces of S.
Here we view an essential annulus A as an essential subsurface which is disjoint from
any subsurface which can be moved off A by an isotopy. The union is not a disjoint
union. Thus X is just the set of formal sums

∑
i aiλi where ai > 0,

∑
i ai = 1

and where λ1, . . . , λk are pairwise disjoint minimal geodesic laminations on S and
where each simple closed curve component λi is equipped with an additional label
+,−.

Define the oriented curve complex of an essential subsurface S0 of S to be the
complex whose vertices are isotopy classes of oriented simple closed curves and
where k+1 such vertices span a k-simplex if they are pairwise distinct as unoriented
simple closed curves and if they can be realized disjointly. With this terminoloy,
the union of the oriented curve complex of S0 with its Gromov boundary is an
embedded subspace of X (a priory only as as set). Note that the mapping class
group acts on X as a set.

Recall that an embedding of a topological space X into a topological space Y is
an injective map f : X → Y which is a homeomorphism onto its image, equipped
with the subspace topology. We show

Theorem 2. The space X admits a MCG-invariant topology O with the following
properties.

(1) For any collection S1, . . . , Sk or pairwise disjoint subsurfaces of S, the in-
clusion X (∪ki=1Si)→ (X ,O) is an embedding.

(2) (X ,O) is compact, and the MCG-action is minimal and strongly proximal.
(3) (X ,O) is a small boundary for MCG.

We call the space (X ,O) the geometric boundary of MCG. If follows immedi-
ately from the construction that the geometric boundary of any essential connected
subsurface S0 ⊂ S is a closed embedded subspace of the geometric boundary of
S. The description of the topology on X which gives X the structure of a small
boundary of MCG is slightly involved and can be understood best by describing
convergent sequences in MCG. We give a detailed account in Section 8.

Another less explicit construction of a boundary for MCG is due to Durham,
Hagen and Sisto [DHS17] taking advantage of a hierarchially hyperbolic structure of
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MCG. We do not know the relation between these constructions- in fact, hierarchial
hyperbolicity forMCG does not play any role in this article. The advantage of our
construction is that the space X and its topology as well as the action of the group
MCG on X is completely explicit and can be used to study subgroups of MCG, as
for example in Koberda’s work [Kb12] who constructed subgroups of MCG which
are isomorphic to right angled Artin groups.

We conjecture that the geometric boundary X ofMCG is in fact a Z-set for any
torsion free finite index subgroup ofMCG. We refer to [B96] for a nice account on Z-
sets for torsion free groups. Note that the work of Gabai [G14] relates the covering
dimension of the boundary of the curve complex of S to the virtual cohomological
dimension of MCG, and Bestvina and Bromberg relate the asymptotic dimension
of the curve complex to the virtual cohomological dimension of MCG.

In the course of the proof of Theorem 1, we use an auxiliary tool which is defined
as follows.

Definition. The principal curve graph of a closed surface S of genus g ≥ 2 is the
graph whose vertices are simple closed curves and where two such curves c, d are
connected by an edge of length one if and only if S − (c ∪ d) has a complementary
component which neither is a fourgon nor a sixgon nor a once punctured bigon.

We show in Section 6.

Theorem 3. The principal curve graph is hyperbolic, and its Gromov boundary
equals the space of minimal complete geodesic laminations equipped with the Haus-
dorff topology.

As an application, we obtain the following strengthening of the main result of
[GM18].

Theorem 4. The Poisson boundary of a random walk on MCG generated by a
probability measure µ whose support generates MCG, with finite entropy and finite
logarithmic moment for the action on the curve graph, can be realized by a stationary
measure on the space of minimal complete geodesic laminations on S.

The condition on the group generated by the support of the measure µ can be
relaxed as in [GM18] to be non-elementary and to contain at least one pseudo-
Anosov element with minimal complete attracting geodesic lamination. We do not
address the question pursued in [GM18] here whether the attracting lamination of a
typical element for the random walk is complete, however this can readily be derived
from Theorem 4 and the results in [BGH20] which establishes precise information
on the axis of a typical mapping class in Teichmüller space from information on the
exit measure of the random walk.

We illustrate the usefulness of the tools developed for the proof of Theorem
1 by establishing three geometric results about subgroups of MCG(S). However,
variants of these results are available in the literature.

Namely, a finite symmetric set G′ of generators of a subgroup Γ′ of a finitely
generated group Γ can be extended to a finite symmetric set of generators of Γ.
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Thus for any two word norms | | on Γ and | |′ of Γ′ there is a number L > 1 such that
|g| ≤ L|g|′ for every g ∈ Γ′. However, in general the word norm in Γ of an element
g ∈ Γ′ can not be estimated from below by L′|g|′ for a universal constant L′ > 0.
Define the finitely generated subgroup Γ′ of Γ to be undistorted in Γ if there is a
constant c > 1 such that |g|′ ≤ c|g| for all g ∈ Γ′. Thus Γ′ < Γ is undistorted if
and only if the inclusion Γ′ → Γ is a quasi-isometric embedding.

There are subgroups of MCG(S) with particularly nice geometric descriptions.
To begin with, let S0 ⊂ S be an essential subsurface of S different from a pair of
pants. A finite index subgroup MCG0(S0) of the mapping class group MCG(S0)
of S0 can be identified with the subgroup of MCG(S) of all elements which can
be represented by a homeomorphism of S fixing S − S0 pointwise. We give an
alternative proof of the following extension of a result of Masur and Minsky (the
statement about distortion is implicitly but not explicitly contained in Theorem
6.12 of [MM00] and has been rediscovered in several other disguises ever since).
For notational clarity, we write MCG(S) for the mapping class group of a surface
S if this surface needs to be specified.

Theorem 5. If S0 ⊂ S is an essential subsurface of a non-exceptional surface S of
finite type, then MCG0(S0) <MCG(S) is undistorted, and the union of MCG(S0)
with its geometric boundary embeds into the union of MCG(S) with its geometric
boundary.

Now let S be a closed surface of genus g ≥ 2 and let Γ <MCG(S) be any finite
subgroup. By the solution of the Nielsen realization problem [Ke83], Γ can be
realized as a subgroup of the automorphism group of a marked complex structure h
on S. Then the quotient (S, h)/Γ is a compact Riemann surface, and the projection
S → S/Γ is a branched covering ramified over a finite set Σ of points. Let S0 =
S/Γ− Σ and let N(Γ) be the normalizer of Γ in MCG(S). Then there is an exact
sequence

0→ Γ→ N(Γ)→MCG0(S0)→ 0

whereMCCG0(S0) is the subgroup of the mapping class group of S0 of all elements
which can be represented by a homeomorphism which lifts to a homeomorphism of
S [BH73]. We use this to observe (compare [RS07] for a similar statement)

Theorem 6. Let S be a closed surface of genus g ≥ 2 and let Γ <MCG(S) be a
finite subgroup. Then the normalizer of Γ is undistorted in MCG(S).

There are other relations between mapping class groups which can be described
by exact sequences of groups. An example of such a relation is as follows. Let S0

be any non-exceptional surface of finite type and let S be the surface obtained from
S0 by deleting a single point p. Then there is an exact sequence [B74]

0→ π1(S0)→MCG(S)
Π→MCG(S0)→ 0.

The image in MCG(S) of an element α ∈ π1(S0) is the mapping class obtained by
dragging the puncture p of S along a simple closed curve in the homotopy class α.
The projection Π : MCG(S) → MCG(S0) is induced by the map S → S0 defined
by closing the puncture p.
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Define a coarse section for the projection Π to be a map Ψ : MCG(S0) →
MCG(S) with the property that there exists a number κ > 0 such that

d(ΠΨ(g), g) ≤ κ

for all g ∈MCG(S0). The following result is a special case of a much more general
result of Mosher [M96] (the quasi-isometric section lemma).

Theorem 7. The projection MCG(S)→MCG(S0) admits a coarse section which
is a quasi-isometric embedding.

Theorem 7 contrasts a result of Braddeus, Farb and Putman [BFP11] who showed
that the normal subgroup π1(S0) of MCG(S) is exponentially distorted.

The organization of this article is as follows.

The proof of Theorem 1 builds on the results of [H09]. In that paper we con-
structed a locally finite connected directed graph T T whose vertex set V(T T ) is
the set of all isotopy classes of complete train tracks on S. The mapping class group
MCG(S) acts property and cocompactly on T T as a group of simplicial isometries.

In Section 5, we construct the CAT(0) cube complex C whose existence is stated
in Theorem 1 from a subgraph of this complex. This construction depends on
some rather technical results, established in Section 3, which shows that directed
edge-paths in T T connect a coarsely dense set of pairs of points in T T .

An inspection of hyperplanes in C leads to the introduction of the principal curve
graph in Section 6, which is independent of the rest of the article. It contains the
proof of Theorem 3 and Theorem 4. The principal curve graph is a key tool in
Section 7 to control hyperplanes in the CAT(0) cube complex C and complete the
proof of Theorem 1.

The construction of the geometric boundary ofMCG is motivated by properties
of the geometric boundary of the CAT(0) cube complex C, but it is independent of
the rest of the article. It is contained in Section 8.

The first part of Theorems 5 as well as Theorem 6 and Theorem 7 are derived
in Section 4. In Section 2 we summarize the properties of the train track complex
T T of S which are needed for our purpose.

Acknowledgement: The work reported in this article was started in fall 2007
while the author was in residence at the Mathematical Sciences Research Institute
in Berkeley, California. The Sections 2-4 of this article are essentially identical with
Sections 2-4 of the preprint arXiv:0912.0137 whose second part is contained in part
B of this work. The results in Sections 5-7 were accomplished while the author was
in residence at the Mathematical Research Institute in Berkeley, California, during
the fall 2016 semester. Both visits of the MSRI were supported by the National
Science Foundation.
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2. The complex of train tracks

In this section we summarize some results from [H09] which will be used through-
out the paper.

Let S be an oriented surface of genus g ≥ 0 with m ≥ 0 punctures and where
3g − 3 + m ≥ 2. A train track on S is an embedded 1-complex τ ⊂ S whose
edges (called branches) are smooth arcs with well-defined tangent vectors at the
endpoints. At any vertex (called a switch) the incident edges are mutually tangent.
Through each switch there is a path of class C1 which is embedded in τ and contains
the switch in its interior. In particular, the half-branches which are incident on a
fixed switch are divided into two classes according to the orientation of an inward
pointing tangent at the switch. Each closed curve component of τ has a unique
bivalent switch, and all other switches are at least trivalent. The complementary
regions of the train track have negative Euler characteristic, which means that they
are different from discs with 0, 1 or 2 cusps at the boundary and different from
annuli and once-punctured discs with no cusps at the boundary. A train track is
called maximal if each of its complementary components either is a trigon, i.e. a
topological disc with three cusps at the boundary, or a once punctured monogon,
i.e. a once punctured disc with one cusp at the boundary. We always identify train
tracks which are isotopic. The book [PH92] contains a comprehensive treatment of
train tracks which we refer to throughout the paper.

A train track is called generic if all switches are at most trivalent. The train track
τ is called transversely recurrent if every branch b of τ is intersected by an embedded
simple closed curve c = c(b) ⊂ S of class C1 which intersects τ transversely and
is such that S − τ − c does not contain an embedded bigon, i.e. a disc with two
corners at the boundary.

A trainpath on a train track τ is a C1-immersion ρ : [m,n]→ τ ⊂ S which maps
each interval [k, k + 1] (m ≤ k ≤ n − 1) onto a branch of τ . The integer n − m
is called the length of ρ. We sometimes identify a trainpath with its image in τ .
Each complementary region of τ is bounded by a finite number of (not necessarily
embedded) trainpaths which either are closed curves or terminate at the cusps of
the region. A subtrack of a train track τ is a subset σ of τ which itself is a train
track. Thus every switch of σ is also a switch of τ , and every branch of σ is a
trainpath on τ . We write σ < τ if σ is a subtrack of τ .

A transverse measure on a train track τ is a nonnegative weight function µ on
the branches of τ satisfying the switch condition: for every switch s of τ , the half-
branches incident on s are divided into two classes, and the sums of the weights
over all half-branches in each of the two classes coincide. The train track is called
recurrent if it admits a transverse measure which is positive on every branch. We
call such a transverse measure µ positive, and we write µ > 0. If µ is any transverse
measure on a train track τ then the subset of τ consisting of all branches with
positive µ-weight is a recurrent subtrack of τ . A train track τ is called birecurrent
if τ is recurrent and transversely recurrent. We call τ complete if τ is generic,
maximal and birecurrent.



CUBE COMPLEXES 9

Remark: As in [H09], we require every train track to be generic. Unfortunately
this leads to a slight inconsistency of our terminology with the terminology found
in the literature.

There is a special collection of complete train tracks on S which were introduced
by Penner and Harer [PH92]. Namely, a pants decomposition P for S is a collection
of 3g−3+m simple closed curves which decompose S into 2g−2+m pairs of pants.
Here a pair of pants is a planar orientable bordered surface of Euler characteristic
−1 which may be non-compact. Define a marking of S (or complete clean marking
in the terminology of [MM00]) to consist of a pants decomposition P for S and a
system of spanning curves for P . For each pants curve γ ∈ P there is a unique
simple closed spanning curve which is contained in the connected component S0 of
S − (P − γ) containing γ, which is not freely homotopic into the boundary or a
puncture of this component and which intersects γ in the minimal number of points
(one point if S0 is a one-holed torus and two points if S0 if a four-holed sphere).
Note that any two choices of such a spanning curve differ by a Dehn twist about γ.

For each marking F of S we can construct a collection of finitely many maximal
transversely recurrent train tracks as follows. Let P be the pants decomposition
of the marking. Choose an open neighborhood A of P in S whose closure in S is
homeomorphic to the disjoint union of 3g− 3 +m closed annuli. Then S−A is the
disjoint union of 2g− 2 +m pairs of pants. We require that each train track τ from
our collection intersects a component of S − A which does not contain a puncture
of S in a train track with stops which is isotopic to one of the four standard models
shown in Figure A (see Figure 2.6.2 of [PH92]).

Figure A

Type 1

Type 2 Type 3

Type 0

If S0 is a component of S − A which contains precisely one puncture, then we
require that τ intersects S0 in a train track with stops which we obtain up to
diffeomorphism of S0 from the standard model of type 2 or of type 3 by replacing
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the top boundary curve by a puncture and by deleting the branch which is incident
on the stop of this boundary component. If S0 is a component of S − A which
contains two punctures, then we require that τ intersects S0 in a train track with
stops which we obtain up to diffeomorphism of S0 from the standard model of type
1 by replacing the two lower boundary components by a puncture and by deleting
the two branches which are incident on the stops of these boundary components.

The intersection of τ with a component of the collection A of 3g− 3 +m annuli
is one of the following four standard connectors which are shown in Figure B (see
Figure 2.6.1 of [PH92]).

Figure B

Twist connectors

Tight connectors

From the above standard pieces we can build a train track τ on S by choosing
for each component of S − A one of the standard models as described above and
choosing for each component of A one of the four standard connectors. These train
tracks with stops are then glued at their stops to a connected train track on S. Any
two train tracks constructed in this way from the same pants decomposition P , the
same choices of standard models for the components of S−A and the same choices
of connectors for the components of A differ by Dehn twists about the pants curves
of P . The spanning curves of the marking F determine a specific choice of such a
gluing [PH92]. We call each of the resulting train tracks in standard form for F
provided that it is complete (see p.147 of [PH92] for examples of train tracks built
in this way which are not recurrent and hence not complete).

A geodesic lamination for a complete hyperbolic structure on S of finite volume
is a compact subset of S which is foliated into simple geodesics. A geodesic lami-
nation λ is minimal if each of its half-leaves is dense in λ. A geodesic lamination
is maximal if its complementary regions are all ideal triangles or once punctured
monogons (note that a minimal geodesic lamination can also be maximal). The
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space of geodesic laminations on S equipped with the Hausdorff topology is a com-
pact metrizable space.

A geodesic lamination λ is called complete if λ is maximal and can be approx-
imated in the Hausdorff topology by simple closed geodesics. The space CL of all
complete geodesic laminations equipped with the Hausdorff topology is compact.
The mapping class group MCG(S) naturally acts on CL as a group of homeomor-
phisms. Every geodesic lamination λ which is a disjoint union of finitely many min-
imal components is a sublamination of a complete geodesic lamination, i.e. there
is a complete geodesic lamination which contains λ as a closed subset (Lemma 2.2
of [H09]).

A train track or a geodesic lamination σ is carried by a transversely recurrent
train track τ if there is a map ϕ : S → S of class C1 which is homotopic to the
identity and maps σ into τ in such a way that the restriction of the differential of ϕ
to the tangent space of σ vanishes nowhere; note that this makes sense since a train
track has a tangent line everywhere. We call the restriction of ϕ to σ a carrying
map for σ. Write σ ≺ τ if the train track σ is carried by the train track τ . Then
every geodesic lamination λ which is carried by σ is also carried by τ . A train track
τ is complete if and only if it is generic and transversely recurrent and if it carries a
complete geodesic lamination. The space of complete geodesic laminations carried
by a complete train track τ is open and closed in CL (Lemma 2.3 of [H09]). In
particular, the space CL is totally disconnected.

For every pants decomposition P of S there is a finite set of complete geodesic
laminations on S which contain (the geodesic representatives of) the components
of P as their minimal components. We call such a geodesic lamination in standard
form for P . If λ is a geodesic lamination in standard form for P then for each
component S0 of S−P which does not contain a puncture of S, there are precisely
three leaves of λ contained in S0 which spiral about the three different boundary
components of S0. The leaves of λ spiraling from two different sides about a com-
ponent γ of P define opposite orientations near γ (as shown in Figure A of [H09]).
If S0 contains exactly one puncture of S there there are two leaves of λ contained
in S0 which spiral about the two boundary components of S0.

For every marking F of S with pants decomposition P and every train track
τ in standard form for F with only twist connectors there is a unique complete
geodesic lamination in standard form for P which is carried by τ . This implies that
for every marking F of S with pants decomposition P , there is a bijection between
the complete train tracks in standard form for F with only twist connectors and
the complete geodesic laminations in standard form for P . The set of all complete
geodesic laminations in standard form for some pants decomposition P is invariant
under the action of the mapping class group, moreover there are only finitely many
MCG(S)-orbits of such complete geodesic laminations.

Define the straightening of a train track τ on S with respect to some complete
finite volume hyperbolic structure g on S to be the edgewise immersed graph in S
whose vertices are the switches of τ and whose edges are the unique geodesic arcs
which are homotopic with fixed endpoints to the branches of τ . For a number ε > 0
we say that the train track τ ε-follows a geodesic lamination λ if the tangent lines
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of the straightening of τ are contained in the ε-neighborhood of the projectivized
tangent bundle PTλ of λ (with respect to the distance function induced by the
metric g) and if moreover the straightening of every trainpath on τ is a piecewise
geodesic whose exterior angles at the breakpoints are not bigger than ε.

Lemma 2.1. Let λ ∈ CL be a complete geodesic lamination on S in standard form
for a pants decomposition P of S and let ε > 0. Then there is a complete train
track τ on S in standard form for a marking F of S with pants decomposition P
which carries λ and ε-follows λ.

Proof. The train track τ can be obtained from λ by collapsing a sufficiently small
tubular neighborhood of λ. We refer to Theorem 1.6.5 of [PH92] and to Lemma
3.2 of [H09] and its proof for more details of this construction. �

Note that in Lemma 2.1, the marking F of S depends on the number ε as well
as on choices made in the construction.

A measured geodesic lamination is a geodesic lamination equipped with a trans-
verse translation invariant measure of full support. The space ML of measured
geodesic laminations on S equipped with the weak∗-topology is homeomorphic to
the product of a sphere of dimension 6g − 7 + 2m with the real line. A measured
geodesic lamination µ is carried by a train track τ if its support is carried by τ .
Then µ defines a transverse measure on τ , and every transverse measure on τ arises
in this way [PH92].

We use measured geodesic laminations to establish another relation between
train tracks in standard form for a marking of S and complete geodesic laminations
which is a variant of a result of Penner and Harer (Theorem 2.8.4 of [PH92]).

Lemma 2.2. For any marking F of S, every complete geodesic lamination on S
is carried by a unique train track in standard form for F .

Proof. A complete geodesic lamination λ can be approximated in the Hausdorff
topology by a sequence {ci} of simple closed geodesics. For a fixed marking F of
S, each such geodesic is carried by a train track in standard form for F (this is
contained in Theorem 2.8.4 of [PH92]). Since there are only finitely many train
tracks in standard form for F , there is a fixed train track τ in standard form for
F which carries infinitely many of the curves ci. By Lemma 3.2 of [H09], the set
of geodesic laminations carried by a fixed train track τ is closed in the Hausdorff
topology and hence the geodesic lamination λ is carried by τ .

Now assume that there is a second train track η in standard form for F which
carries λ. By Lemma 3.2 and Lemma 3.3 of [H09], there is a complete train track
σ which is carried by both τ and η. The train track σ carries a measured geodesic
lamination µ whose support is both minimal and maximal (see the top of p.556 of
[H09] for a detailed discussion of this fact). Thus µ is carried by two distinct train
tracks in standard form for F which violates Theorem 2.8.4 of [PH92]. �
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A half-branch b̂ in a generic train track τ incident on a switch v of τ is called

large if every trainpath containing v in its interior passes through b̂. A half-branch
which is not large is called small. A branch b in a generic train track τ is called
large if each of its two half-branches is large; in this case b is necessarily incident
on two distinct switches. A branch is called small if each of its two half-branches
is small. A branch is called mixed if one of its half-branches is large and the other
half-branch is small (see p.118 of [PH92]).

There are two simple ways to modify a complete train track τ to another complete
train track. First, we can shift τ along a mixed branch b to a train track τ ′ as shown
in Figure C. If τ is complete then the same is true for τ ′. Moreover, a train track

Figure C

or a geodesic lamination is carried by τ if and only if it is carried by τ ′ (see [PH92]
p.119). In particular, the shift τ ′ of τ is carried by τ . There is a natural bijection
ϕ(τ, τ ′) of the set of branches of τ onto the set of branches of τ ′ which is induced
by the identity of the complement of a small neighborhood of b in S. The bijection
ϕ(τ, τ ′) also induces a bijection of the set of half-branches of τ onto the set of
half-branches of τ ′ which we denote again by ϕ(τ, τ ′).

Second, if e is a large branch of τ then we can perform a right or left split of τ
at e as shown in Figure D. Note that a right split at e is uniquely determined by

left split

right splitFigure D

a

b c

d
e

the orientation of S and does not depend on the orientation of e. Using the labels
in the figure, in the case of a right split we call the branches a and c winners of the
split, and the branches b, d are losers of the split. If we perform a left split, then
the branches b, d are winners of the split, and the branches a, c are losers of the
split. The split τ ′ of a train track τ is carried by τ , and there is a natural choice of
a carrying map which maps the switches of τ ′ to the switches of τ . The image of a
branch of τ ′ is then a trainpath on τ whose length either equals one or two. There
is a natural bijection ϕ(τ, τ ′) of the set of branches of τ onto the set of branches
of τ ′ which maps the branch e to a small branch e′ which we call the diagonal of
the split. This bijection is induced by the identity on the complement of a small
neighborhood of e in S. The map ϕ(τ, τ ′) also induces a bijection of the set of
half-branches of τ onto the set of half-branches of τ ′ again denoted by ϕ(τ, τ ′).
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Occasionally we also have to consider the collision of a train track η at a large
branch e. This collision is obtained from η by a split at e and removal of the
diagonal in the split track. Such a collision is shown in Figure 2.1.2 of [PH92].

A split of a maximal transversely recurrent generic train track is maximal, trans-
versely recurrent and generic. If τ is a complete train track and if λ ∈ CL is carried
by τ , then for every large branch e of τ there is a unique choice of a right or left
split of τ at a large branch e of τ with the property that the split track τ ′ carries λ
(see p. 557 of [H09] for a more complete discussion). We call such a split a λ-split.
The train track τ ′ is complete. In particular, a complete train track τ can always
be split at any large branch e to a complete train track τ ′; however there may be a
choice of a right or left split at e such that the resulting train track is not recurrent
any more (compare p.120 in [PH92]).

For a number L ≥ 1, an L-quasi-isometric embedding of a metric space (X, d)
into a metric space (Y, d) is a map ϕ : X → Y such that

d(x, y)/L− L ≤ d(ϕ(x), ϕ(y)) ≤ Ld(x, y) + L

for all x, y ∈ X. The map ϕ is called an L-quasi-isometry if moreover the L-
neighborhood of ϕX in Y is all of Y . An L-quasi-geodesic in a metric space (X, d)
is an L-quasi-isometric embedding of a closed connected subset of R or of the
intersection of such a closed connected subset of R with Z.

Denote by T T the directed metric graph whose set V(T T ) of vertices is the set
of isotopy classes of complete train tracks on S and whose edges are determined as
follows. The train track τ ∈ V(T T ) is connected to the train track τ ′ by a directed
edge of length one if and only if τ ′ can be obtained from τ by a single split. The
graph T T is connected (Corollary 2.7 of [H09]). The mapping class groupMCG(S)
of S acts properly and cocompactly on T T as a group of simplicial isometries. In
particular, T T isMCG(S)-equivariantly quasi-isometric toMCG(S) equipped with
any word metric (Corollary 4.4 of [H09]).

Define a splitting sequence in T T to be a sequence {α(i)}0≤i≤m ⊂ V(T T ) with
the property that for every i ≥ 0 the train track α(i + 1) can be obtained from
α(i) by a single split. Thus splitting sequences in V(T T ) correspond precisely to
directed edge-paths in T T . If τ can be connected to η by a splitting sequence then
we say that τ is splittable to η. If {α(i)}0≤i≤m is a splitting sequence then the
composition

ϕ(α(0), α(m)) = ϕ(α(m− 1), α(m)) ◦ · · · ◦ ϕ(α(0), α(1))

(read from right to left) is a bijection of the branches (or half-branches) of α(0)
onto the branches (or half-branches) of α(m) which does not depend on the choice
of the splitting sequence connecting α(0) to α(m) (Lemma 5.1 of [H09]).

3. Density of splitting sequences

The goal of this section is to show the following proposition which is the main
technical tool for the proof of Theorem 1 and Theorems 5-7.
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Proposition 3.1. There is a number d0 > 0 with the following property. For
any train tracks τ, σ ∈ V(T T ) there is a train track τ ′ which is contained in the
d0-neighborhood of τ and which is splittable to a train track σ′ contained in the
d0-neighborhood of σ.

To simplify the argument we reduce Proposition 3.1 to the following

Proposition 3.2. There is a number d1 > 0 with the following property. Let F
be any marking of S. Then for any train track σ ∈ V(T T ) there is a train track
τ ∈ V(T T ) in standard form for F which carries a train track σ′ contained in
the d1-neighborhood of σ. If σ is in standard form for a marking G with pants
decomposition Q, then σ′ can be chosen to contain the pants decomposition Q as
an embedded subtrack.

We begin with explaining how Proposition 3.1 follows from Proposition 3.2. The
mapping class group acts on the set of all markings of S, with finitely many orbits,
and it acts properly and cocompactly on T T preserving the set of train tracks in
standard form for some marking of S. Thus every complete train track is contained
in a uniformly bounded neighborhood of a train track in standard form for some
marking F of S. Furthermore, the diameter in T T of a set of train tracks in
standard form for a fixed marking is bounded from above by a universal constant.
Thus there is a number d2 > 0, and for every complete train track τ on S there is
a marking F of S such that d(τ, η) ≤ d2 for any train track η in standard form for
F (here d is the distance on T T ).

By Lemma 6.6 of [H09], there is a number p > 0, and for two complete train
tracks σ ≺ τ there is a train track ζ which can be obtained from τ by a splitting
sequence and such that d(σ, ζ) ≤ p. As a consequence, Proposition 3.1 follows from
Proposition 3.2.

The idea of proof for Proposition 3.2 is as follows. Define a splitting and shifting
sequence to be a sequence {α(i)}0≤i≤m with the property that for every i ≥ 0 the
train track α(i + 1) can be obtained from α(i) by a sequence of shifts followed by
a single split. Theorem 2.4.1 of [PH92] relates splitting and shifting to carrying.

Proposition 3.3. If σ ∈ V(T T ) is carried by τ ∈ V(T T ) then τ can be connected
to σ by a splitting and shifting sequence.

Now let F,G be any two markings of S. We attempt to construct a splitting
and shifting sequence connecting some train track in standard form for F to some
train track in standard form for G.

A train track in standard form for G with only twist connectors carries a com-
plete geodesic lamination λ in standard form for the pants decomposition Q of the
marking G of S. By Lemma 2.2, every complete geodesic lamination λ on S is car-
ried by a unique train track τ in standard form for F . We modify τ with a sequence
of splits as efficiently as possible to a train track ξ which carries λ and contains the
pants decomposition Q as a subtrack. This train track ξ carries a train track η in
standard form for some marking of S with pants decomposition Q whose distance
to ξ is uniformly bounded. There is a multi-twist ϕ (that is, a concatenation of
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mutually commuting Dehn twists) about the pants curves of Q which maps η to a
train track ϕη in standard form for G. In general, ϕη is not carried by η, but we
obtain enough control that we can find a perhaps different train track in standard
form for F which can be connected with a splitting and shifting sequence to a train
track in a uniformly bounded neighborhood of ϕη which is in standard form for a
marking with pants decomposition Q.

To carry out this strategy we use the pants decomposition Q for the construction
of splitting sequences. However, Q may not fill τ , that is, a carrying map Q → τ
may not be surjective. Therefore we are lead to investigate splitting sequences of
complete train tracks which are determined by modifications of subtracks. This
will occupy the major part of this section and will also be important in Section 7.

Fix a complete Riemannian metric on S of finite volume. With respect to this
metric, a complementary region C of a train track σ on S is a hyperbolic surface
whose metric completion C is a bordered surface with boundary ∂C. This boundary
consists of a finite number of arcs of class C1, called sides of C or of C. Each side of
C either is a closed curve of class C1 (that is, the boundary component containing
the side does not contain any cusp) or an arc with endpoints at two not necessarily
distinct cusps of the component. We call a side of C which does not contain cusps
a smooth side of C. The closure of C in S can be obtained from C by some
identifications of subarcs of sides (the inclusion C → S extends to an immersion
of each side of C, but the image arc may have tangential self-intersections or may
meet another side tangentially). For simplicity we call the image in σ of a side of
C a side of C as well. Most of the time we view a side of C as an immersed arc of
class C1 in σ. Using this abuse of notation, a side of C then is an immersed arc or
an immersed closed curve of class C1 in σ with only tangential self-intersections.
However, we reserve the notation C for the metric completion of C.

If T ⊂ ∂C is a smooth side of a complementary region C of σ then we mark a
point on T . We view this point as a single point on the boundary of the completion
C of C, even if the point corresponds to a point of tangential self-intersection of
the image of ∂C in σ and hence its preimage in C under the natural map C → S
consists of more than one point.

If C is a complementary region of σ whose boundary contains precisely k ≥ 0
cusps, then the Euler characteristic χ(C) is defined by χ(C) = χ0(C)− k/2 where
χ0(C) is the usual Euler characteristic of the compact topological surface with
boundary C. Note that the sum of the Euler characteristics of the complementary
regions of σ is just the Euler characteristic of S (see the discussion in Chapter 1.1
of [PH92]).

A complete extension of a train track σ is a complete train track τ containing σ
as a subtrack. We require that the switches of τ are distinct from the images in σ
of the marked points on smooth boundary components of complementary regions
of σ. Such a complete extension τ intersects each complementary region C of σ in
an embedded graph with smooth edges. The closure of τ ∩C in the completion C of
C is a graph whose univalent vertices are contained in the complement of the cusps
and marked points of the boundary ∂C of C. At a univalent vertex, the graph is
tangential to ∂C. We call two such graphs τ ∩ C, τ ′ ∩ C equivalent if there is a
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smooth isotopy of C which fixes the cusps and the marked points in ∂C and which
maps τ ∩C onto τ ′ ∩C. The complete extensions τ, τ ′ of σ are called σ-equivalent
if for each complementary region C of σ the graphs τ ∩C and τ ′ ∩C are equivalent
in this sense. The purpose of marking a point on a smooth boundary component T
of a complementary region of σ is to control the amount of relative twisting about
T of two complete extensions τ, τ ′ of σ.

For two complete extensions τ, τ ′ of σ define the intersection number iσ(τ, τ ′) to
be the minimal number of intersection points contained in S − σ between any two
complete extensions η, η′ of σ which are σ-equivalent to τ, τ ′ and with the following
additional properties.

a) A switch v of η (or η′) is also a switch of η′ (or η) if and only if v is a switch
of σ.

b) A switch of η (or η′) contained in the interior of a complementary region C
of σ is not contained in η′ (or η), that is, an intersection point of η with η′

contained in C is an interior point of a branch of η and of a branch of η′.

Since the number of switches of a complete train track on S only depends on the
topological type of S, for any complete extension τ of σ the intersection number
iσ(τ, τ) is bounded from above by a constant only depending on S but neither
on σ nor on τ . Moreover, for every number m > 0 there is a number q(m) > 0
not depending on σ so that for every complete extension τ of σ, the number of
σ-equivalence classes of complete extensions τ ′ of σ with iσ(τ, τ ′) ≤ m is bounded
from above by q(m).

To simplify the notation we do not distinguish between σ as a subgraph of τ (and
hence containing switches of τ which are bivalent in σ) and σ viewed as a subtrack
of τ , that is, the graph from which the bivalent switches not contained in simple
closed curve components have been removed. A branch e of σ defines an embedded
trainpath ρ : [0,m] → τ , unique up to orientation, whose image is precisely e. We
call τ tight at e if e is a branch in τ , that is, if the length m of ρ equals one. If e
is a large branch of σ, then ρ begins and ends with a large half-branch and hence
ρ[0,m] contains a large branch of τ (Lemma 2.7.2 of [PH92]).

A proper subbranch of a branch e of σ is a branch b of τ which is a proper subset
of e. Then b is incident on at least one switch v of τ which is not a switch of σ.
There is a half-branch c of τ which is incident on v and not contained in σ. We
call c a neighbor of σ at v. We distinguish three different types of large proper
subbranches b of a branch e of σ. These types are shown in Figure E. Note that a
large branch of any train track on S is embedded in S.

Type 1 Type 2 Type 3

Figure E

Type 1: b is contained in the interior of e and the two neighbors of σ at the two
endpoints of b lie on different sides of e in a small tubular neighborhood of b in S.
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Type 2: b is contained in the interior of e and both neighbors of σ at the two
endpoints of b lie on the same side of e in a small tubular neighborhood of b in S.

Type 3: One endpoint of b is incident on a switch of σ.

A split of τ at a large proper subbranch b of σ (that is, of a large branch of τ
which is a proper subbranch of a branch of σ) is called a σ-split if the split track
contains σ as a subtrack. Note that such a split always exists. If b is a large proper
subbranch of σ of type 2 then any split of τ at b is a σ-split.

Let q be the number of branches of a complete train track on S. The number of
switches of a complete train track on S then equals 2q/3 < q. For a subtrack σ of
a complete train track τ let β(τ, σ) be the number of neighbors of σ in τ , that is,
the number of half-branches of τ − σ which are incident on a switch contained in
σ. If τ1 is obtained from τ by a split at a large proper subbranch b of σ of type 2
then β(τ1, σ) = β(τ, σ)− 1.

Now let σ be a recurrent train track on S. Then there is a measured geodesic
lamination ν on S which is carried by σ and which defines a positive transverse
measure on σ. We call such a measured geodesic lamination filling for σ. For
every complete extension τ of σ there is a complete geodesic lamination λ which
is carried by τ and contains the support of ν as a sublamination. Namely, the
positive transverse measure on σ defined by ν can be approximated by positive
transverse measures µi on τ which define a measured geodesic lamination whose
support is a minimal and maximal geodesic lamination carried by τ (see p.556 of
[H09] for a detailed proof of this fact). Since the space CL of all complete geodesic
laminations on S is compact, as µi → ν in the space of transverse measures on
τ , up to passing to a subsequence the supports of µi converge in the Hausdorff
topology to a complete geodesic lamination λ which contains the support of ν as
a sublamination. By Lemma 2.3 of [H09], λ is carried by τ . We call λ a complete
τ -extension of ν.

The following observation will be used throughout several times in the sequel.

Lemma 3.4. Let σ be a recurrent subtrack of a complete train track τ and let λ be
a complete τ -extension of a σ-filling measured geodesic lamination. Then for every
large branch e of σ there is a unique train track τ ′ with the following properties.

(1) τ ′ can be obtained from τ by at most q2 σ-splits at large proper subbranches
of e. In particular, τ ′ contains σ as a subtrack.

(2) τ ′ carries λ and is complete.
(3) τ ′ is tight at e.

Moreover, given any complete extension η of σ, if the branch e does not contain
any marked point on a smooth side of a complementary region C of σ then

iσ(τ ′, η) ≤ iσ(τ, η) + q(β(τ, σ)− β(τ ′, σ)).

Otherwise we have iσ(τ ′, η) ≤ iσ(τ, η) + q3.
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Proof. If τ is tight at the large branch e of σ then τ = τ ′ satisfies the requirements
in the lemma.

Otherwise let a be a neighbor of σ at a switch of τ contained in e. There is
a unique maximal trainpath ρ : [−1,m] → τ with ρ[−1/2, 0] = a and such that
ρ[0,m] ⊂ e. Then ρ(m) is a switch of σ on which e is incident. Let c(a, e) = m ≤ q
be the length of the intersection of the trainpath ρ with e and let

c(τ, e) =
∑
a

c(a, e)

where the sum is taken over all neighbors of e in τ . Since e has at most q neighbors
we have c(τ, e) ≤ q2, and c(τ, e) = 0 if and only if τ is tight at e.

Now note (see [PH92]) that any trainpath ρ : [0,m]→ τ which begins and ends
with a large half-branch contains a large branch. This is clear is the length m of ρ
equals one, so by induction, let us assume that it holds true whenever this length
is at most m − 1 ≥ 1. If ρ : [0,m] → τ is trainpath beginning and ending with
a large half-branch and if the branch ρ[0, 1] is not large, then ρ[0, 1] is mixed and
ρ[1,m] is a trainpath beginning and ending with a large half-branch. By induction
hypothesis, this trainpath contains a large branch.

Thus let b ⊂ τ be a large proper subbranch of e. Let λ be a complete τ -extension
of a σ-filling measured geodesic lamination ν and let τ1 be the train track obtained
from τ by a λ-split at b. We distinguish two cases according to the type of b.

If b is of type 1 or of type 3, then there is a unique choice of a right or left
split of τ at b such that the split track τ ′1 contains σ as a subtrack. Since ν is a
σ-filling measured geodesic lamination, τ ′1 is also the unique train track obtained
from τ by a split at b which carries ν. Now λ is a complete extension of ν and
therefore τ ′1 = τ1. The natural bijection ϕ(τ, τ1) of the half-branches of τ onto the
half-branches of τ1 maps any neighbor a of σ in τ to a neighbor ϕ(τ, τ1)(a) of σ in
τ1, and c(ϕ(τ, τ1)(a), e) ≤ c(a, e). If the neighbor a of σ is incident at an endpoint
of b, then we have c(ϕ(τ, τ1)(a), e) = c(a, e)− 1 (see Figure E). Together this shows
that c(τ1, e) ≤ c(τ, e)− 1.

If b is of type 2 then once again, the train track τ1 contains σ as a subtrack.
Moreover, we have β(τ1, σ) = β(τ, σ)−1 and c(τ1, e) < c(τ, e). As a consequence, a
splitting sequence of length at most q2 at large proper subbranches of e transforms
τ to a train track τ ′ which contains σ as a subtrack, is tight at e and carries λ.
By uniqueness of sequences of λ-splits up to order (Lemma 5.1 of [H09]), the train
track τ ′ is uniquely determined by τ, σ, λ, e.

To estimate intersection numbers between τ, τ ′ and an arbitrary complete exten-
sion η of σ, let again b be a large proper subbranch of e of type 1 or type 3 and let
τ1 be the train track obtained from τ by a λ-split at b. If e does not contain the
image of any marked point on a smooth boundary component of a complementary
region of σ, then τ and τ1 are σ-equivalent.

Otherwise there are one or two (not necessarily distinct) complementary regions
C1, C2 of σ and smooth sides Ti of Ci whose images in σ contain e. Up to isotopy,
a split of τ at b can be realized by moving one of the neighbors of σ incident on an
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endpoint of b, say the neighbor a, across b while leaving the second neighbor (or
the branches of σ incident on an endpoint of e in case the branch b is of type 3)
fixed. Assume that the half-branch a is contained in the complementary region C1

of σ and that a terminates at a point in the smooth boundary component T1 of C1.
There are at most q half-branches of η contained in η ∩ C1 which terminate at a
point in T1. Up to isotopy of C1 ∪C2 preserving the cusps and the marked points,
moving the half-branch a of τ across the marked point in T1 increases the number
of intersection points between τ and η by at most q. Namely, up to isotopy such
a move creates at most one additional intersection point with any half-branch of η
with endpoint T1. As a consequence, we have

(1) iσ(τ1, η) ≤ iσ(τ, η) + q.

If τ1 is obtained from τ by a λ-split at a large proper subbranch of e of type 2
then the split which modifies τ to τ1 can be realized by moving one of the neighbors
of σ incident on an endpoint of b across b to a half-branch which is incident on a
point in the interior of the neighbor of σ at the second endpoint of b. As before,
this implies that the inequality (1) holds true for every complete extension η of σ
(independent of whether or not e contains the image of a marked point).

To summarize, if there is no marked point on the boundary of a complementary
region of σ which is mapped into e and if η is any complete extension of σ, then
the above discussion shows that only splits at large proper subbranches of e of type
2 change the intersection number between τ and η. A successive application of the
estimate (1) yields that

iσ(τ ′, η) ≤ iσ(τ, η) + q(β(τ, σ)− β(τ ′, σ)).

The second estimate of intersection numbers stated in the lemma follows in the
same way from the inequality (1). �

For a recurrent subtrack σ of a complete train track τ , for a large branch e of σ
and a complete τ -extension λ of a σ-filling measured geodesic lamination, we call
the complete train track τ ′ constructed in Lemma 3.4 the (e, λ)-modification of τ .

Remark 3.5. 1) Lemma 3.4 and its proof remain valid if the large branch e of a
recurrent subtrack σ of τ is replaced by any embedded trainpath ρ : [0,m] → τ
which begins and ends with a large half-branch. A large branch e of a non-recurrent
subtrack of τ is an example. In this case the complete geodesic lamination λ has
to be replaced by a measured geodesic lamination whose support is minimal and
complete and is carried by τ and which defines a transverse measure on τ giving
positive weight to the set of arcs which are mapped homeomorphically onto ρ[0,m]
by a carrying map. We call such a complete geodesic lamination ρ-filling, and
we call the train track obtained from τ, ρ, λ with the procedure from the proof of
Lemma 3.4 the (ρ, λ)-modification of τ . Note that a ρ-filling complete geodesic
lamination may not always exist.

2) Let e1, e2 be distinct large branches of a train track σ on S, let τ be a complete
extension of σ and let λ be a complete τ -extension of a σ-filling measured geodesic
lamination. Denote by τ1, τ2 the complete train tracks constructed from σ and λ
as in Lemma 3.4 which are tight at the large branch e1, e2. Then up to isotopy,
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for every neighborhood U1, U2 of e1, e2 in S the intersection τi ∩ (S −Ui) coincides
with the intersection τ ∩ (S − Ui) (i = 1, 2). As a consequence, the train track
τ1,2 obtained from τ1, σ, λ by the construction in Lemma 3.4 which is tight at the
large branch e2 coincides with the train track τ2,1 obtained from τ2, σ, λ by the
construction in Lemma 3.4 which is tight at e1.

If σ is any train track on S and if τ, η are two complete extension of σ, then
we defined an intersection number iσ(τ, η) which depends on the choice of marked
points, one on each smooth boundary component of a complementary region of σ.
A different choice of a marked point only changes the intersection number up to a
uniformly bounded amount (compare the proof of Lemma 3.4 for a more detailed
explanation and recall that the choice of the marked point is needed to control
twisting of η relative to τ along the smooth boundary components of σ). The last
statement of the following proposition then means that there are choices of marked
points on σ, σ` so that the stated inequality holds true for these choices.

For a precise formulation, for a train track τ which is splittable to a train track
η (that is, such that τ can be connected to η by a splitting sequence) denote by

(2) E(τ, η) ⊂ T T
the graph whose vertex set consists of all train tracks which can be obtained from
τ by a splitting sequence and which are splittable to η and where such a vertex ξ is
connected to a vertex ζ by a directed edge of length one if ζ can be obtained from
ξ by a single split.

Call a splitting sequence {σi} of train tracks on S recurrent if each of the train
tracks σi is recurrent.

Proposition 3.6. Given a recurrent splitting sequence {σi}0≤i≤` of train tracks
on S, there is an algorithm which associates to a complete extension τ of σ0 and
a complete τ -extension λ of a σ`-filling measured geodesic lamination ν a sequence
{τi}0≤i≤2` ⊂ V(T T ) with the following properties.

(1) τ0 = τ , and for each i ≤ ` the train tracks τ2i, τ2i+1 contain σi as a subtrack
and carry λ.

(2) If σi+1 is obtained from σi by a right (or left) split at a large branch ei then
τ2i+1 is the (ei, λ)-modification of τ2i, and τ2i+2 is obtained from τ2i+1 by
a right (or left) split at ei.

(3) The train track τ2` only depends on τ, σ, σ`, λ but not on the choice of a
splitting sequence connecting σ to σ`.

(4) Every complete train track τ ′ ∈ E(τ, τ2`) contains a subtrack σ′ ∈ E(σ0, σ`).
(5) If {ηi}0≤i≤2` is another such sequence beginning with a complete extension

η = η0 of σ then

iσ`
(τ2`, η2`) ≤ iσ(τ, η) + 4q5.

Proof. Let σ′ be a train track which can be obtained from a train track σ by a single
split at a large branch e. Let U be any neighborhood of e in S. Then up to modifying
σ′ with an isotopy we may assume that σ′∩ (S−U) = σ∩ (S−U) and that there is
a map F : S → S of class C1 which equals the identity on S−U and which restricts
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to a carrying map σ′ → σ. In particular, there is a natural bijection ψ between the
complementary regions of σ and the complementary regions of σ′ which preserves
the topological type of the regions and which maps a complementary region C of
σ to the complementary region ψ(C) of σ′ containing C −U (here we assume that
U is sufficiently small that C − U 6= ∅ for every complementary region C of σ).

If T is a smooth side of C then there is a smooth side T ′ of ψ(C) whose image
in σ′ is mapped by the carrying map F onto the image of T in σ. Let ρ : [0, n]→ σ
be a trainpath which parameterizes the image of T in σ. Then ρ passes through
any branch of σ at most twice, in opposite direction. In particular, the length n of
ρ is at most 2q where as before, q is the number of branches of a complete train
track on S (which is the maximal number of branches of any train track on S). If
ρ[0, n] contains the branch e, then the image in σ′ of the side T ′ of ψ(C) does not
pass through the diagonal branch of the split. As a consequence, the length of a
trainpath ρ′ on σ′ parameterizing the image of T ′ is strictly smaller than the length
n of the trainpath on ρ parameterizing the image of T (see Figure E).

The number of distinct smooth boundary components of complementary regions
of σ is bounded from above by 3g − 3 + m < q/2. If {σi}0≤i≤` is any splitting
sequence, then the discussion in the previous paragraph shows that there are at
most q2 numbers i ∈ {1, . . . , `} such that σi+1 is obtained from σi by a split at a
large branch which is contained in the image of a smooth boundary component of
a complementary region of σi.

Now let τ, η be complete extensions of a recurrent train track σ = σ0. As in the
beginning of this section, mark a point on each smooth boundary component of a
complementary region of σ in such a way that no marked point of σ is a switch of
either τ or η (this can always be achieved with a small isotopy of τ, η preserving σ
as a set). Let {σi}0≤i≤` be a recurrent splitting sequence issuing from σ = σ0 and
let λ, µ be complete τ, η-extensions of a σ`-filling measured geodesic lamination ν.
We construct sequences {τi}0≤i≤2`, {ηi}0≤i≤2` ⊂ V(T T ) with the properties stated
in the proposition inductively as follows.

Let τ0 = τ, η0 = η and assume that the train tracks τ2i, η2i have already been
constructed for some i ≥ 0. Assume that σi+1 is obtained from σi by a right (or
left) split at the large branch ei. Define τ2i+1, η2i+1 to be the (ei, λ)-modification
(or the (ei, µ)-modification, respectively) of τ2i, η2i. By construction, these train
tracks carry the geodesic laminations λ, µ, and they are tight at ei.

Since ν is σ`-filling, the right (or left) split of σi at ei is the unique split so
that the split track carries ν. Namely, otherwise ν is carried by the train track
obtained from σi by splitting at ei and removing the diagonal of the split. But
this then means that a carrying map ν → σi+1 is not surjective which violates the
assumption that ν fills σ` ≺ σi+1. Define τ2i+2, η2i+2 to be the train track obtained
from τ2i+1, η2i+1 by a right (or left) split at the large branch ei. Then τ2i+2, η2i+2

contains σi+1 as a subtrack, and by the above reasoning, it is the unique train
track obtained from τ2i+1, η2i+1 by a split at ei which carries ν. On the other
hand, there is a unique choice of a split of τ2i+1, η2i+1 at ei so that the split track
carries λ, µ and hence ν. But ν is a sublamination of λ, µ and therefore the train
tracks τ2i+2, η2i+2 carry λ, µ. In particular, these train tracks are complete.
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As a consequence, the inductively defined sequences {τi}0≤i≤2`, {ηi}0≤i≤2` have
properties 1)-2) stated in the proposition. The third property follows from the fact
that a splitting sequence connecting σ to σ` is unique up to order (Lemma 5.1 of
[H09] is also valid for splitting sequences of train tracks which are not complete since
the assumption of completeness is nowhere used in the proof) and from the second
remark after Lemma 3.4. Namely, by this remark, the train track obtained from
a complete extension τ of σ and a complete τ -extension of a σ-filling measured
geodesic lamination λ by two consecutive applications of Lemma 3.4 at distinct
large branches e1, e2 of σ only depends on τ, σ, λ, e1, e2 but not on the order in
which these two applications of Lemma 3.4 are carried out.

Property 4) follows in the same way by induction on the length of a splitting
sequence connecting τ to τ2`. If this length vanishes then there is nothing to show,
so assume that the claim holds true whenever the length of such a sequence does
not exceed n−1 for some n ≥ 1. Under the hypotheses used throughout this proof,
assume that the length of a splitting sequence connecting τ to τ2` equals n.

Let τ ′ ∈ E(τ, τ2`). If τ ′ = τ then τ ′ contains σ as a subtrack and there is nothing
to show. Otherwise there is a train track τ̃ ∈ E(τ, τ ′) ⊂ E(τ, τ2`) which can be
obtained from τ by a single split at a large branch b. By uniqueness of splitting
sequences (Lemma 5.1 of [H09]), we have b ⊂ σ.

If b is a large branch of σ (that is, if τ is tight at b), then it follows once again by
uniqueness of splitting sequences that τ̃ contains a subtrack σ̃ ∈ E(σ, σ`) which can
be obtained from σ by a single split at b. Property 4) now follow s from property
3) and the induction hypothesis, applied to τ̃ , τ2`, σ̃, σ`, τ

′. Otherwise b is a large
proper subbranch of σ. If b is of type 2 then any split of τ at b contains σ as
a subtrack. If b is of type 1 or type 3 then there is a unique split of τ at b so
that the split track contains σ as a subtrack, and by the previous discussion, the
split track coincides with τ̃ . Once again, we can apply the induction hypothesis to
τ̃ , τ2`, σ, σ`, τ

′ to complete the induction step and hence the proof of property 4).

We are left with the verification of property 5). For this we control the increase
of intersection numbers between the train tracks τ2i, η2i and τ2i+2, η2i+2. This is
done by distinguishing two cases.

Case 1: No marked point of a smooth side of a complementary component of σi
is mapped into the large branch ei of σi.

By two applications of Lemma 3.4, in this case we have

iσi(τ2i+1, η2i+1) ≤ iσi(τ2i+1, η2i) + q(β(η2i, σi)− β(η2i+1, σi))

≤ iσi
(τ2i, η2i) + q(β(τ2i, σi)− β(τ2i+1, σi)) + q(β(η2i, σi)− β(η2i+1, σi)).

Let ψ be the natural bijection between the complementary regions of σi and
the complementary regions of σi+1 as introduced in the first paragraph of this
proof. Up to isotopy, for an arbitrary given neighborhood U of ei in S and for any
complementary region C of σi, there is a diffeomorphism F of the completion C
of C onto the completion ψ(C) of ψ(C) respecting cusps and marked points and
which equals the identity outside of U . Since τ2i+2 is obtained from τ2i+1 by a
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right or left split at the tight large branch b, and the corresponding right or left
split of σi at b transforms σi to σi+1, the intersection τ2i+2 ∩ ψ(C) is equivalent to
F (τ2i+1 ∩ C), and η2i+2 ∩ ψ(C) is equivalent to F (η2i+1 ∩ C). This shows that

iσi+1
(τ2i+2, η2i+2) = iσi

(τ2i+1, η2i+1)

≤ iσi
(τ2i, η2i) + q(β(τ2i, σi)− β(τ2i+1, σi)) + q(β(η2i, σi)− β(η2i+1, σi)).

Case 2: There is a marked point on a smooth boundary component of a comple-
mentary region of σi which is mapped into the branch ei.

In this case, ei is contained in the image of one or two smooth boundary com-
ponents T1, T2 of complementary regions of σi. By two applications of Lemma 3.4,
we have

iσi(τ2i+1, η2i+1) ≤ iσi(τ2i, η2i+1) + q3 ≤ iσi(τ2i, η2i) + 2q3.

The marked points on T1, T2 determine marked points on smooth sides T ′1, T
′
2 of

complementary regions of σi+1 so that we have

iσi+1(τ2i+2, η2i+2) = iσi(τ2i+1, η2i+1) ≤ iσi(τ2i, η2i) + 2q3.

Now by the consideration in the beginning of this proof, Case 2 can occur at
most q2 times. Moreover, the number of neighbors of σ in τ, η is bounded from
above by the upper bound q for the number of switches of τ, η and hence this
number can not be decreased by more than q in this process. Together we conclude
that there are at most q2 + 2q ≤ 2q2 among the numbers 0, . . . , ` − 1 such that
iσi+1

(τ2i+2, η2i+2) 6= iσi
(τ2i, η2i). Since

|iσi+1
(τ2i+2, η2i+2)− iσi

(τ2i, η2i)| ≤ 2q3

for all i, this completes the proof of the proposition. �

We call the sequence {τj}0≤j≤2` constructed in Proposition 3.6 from a recur-
rent splitting sequence {σi}0≤i≤`, a complete extension τ of σ0 and a complete
τ -extension of a σ`-filling measured geodesic lamination a sequence induced by
{σi}.

If σ0 is an arbitrary (not necessarily recurrent) subtrack of a complete train
track τ0 and if {σi}0≤i≤` is a splitting sequence issuing from σ0, then the defi-
nition of a sequence of complete train tracks {τi}0≤i≤2` induced by the splitting
sequence {σi}0≤i≤` always makes sense. However, if the splitting sequence {σi}
is not recurrent then such an induced sequence of complete train tracks may not
exist.

Given any train track σ and a complementary component C of σ which is a
topological disc, the number of equivalence classes of graphs τ ∩ C where C is a
complete extension of σ is bounded from above by a universal constant. By invari-
ance under the action of the mapping class group, this implies the following. There
exists a number k > 0 such that if σ is a recurrent train track whose complementary
components are all topological discs or once punctured topological discs, and if τ, η
are complete extensions of σ, then d(τ, η) ≤ k.
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Furthermore, splitting a complete train track τ along a subtrack σ does not
change the intersection of τ with the complement of a neighborhood of σ in S.
Moreover, it commutes with the action of the pure mapping class group of a bor-
dered subsurface of S which is contained in a complementary component of σ. As
twisting about smooth boundary components of complementary regions of σ is con-
trolled via marked points along an induced splitting sequence, together we obtain
the following consequence.

Corollary 3.7. For every R > 0 there is a number p(R) > 0 with the following
property. Let {σi}0≤i≤` be a recurrent splitting sequence of train tracks on S. Let
τ, η be complete extensions of σ0 with d(τ, η) ≤ R and let τ ′, η′ be the endpoints of
a sequence induced by {σi} and issuing from τ, η. Then

d(τ ′, η′) ≤ p(R).

For a simple geodesic multi-curve c and a train track τ which carries c we denote
by τ(c) ⊂ τ the subgraph of τ of all branches which are contained in the image of c
under a carrying map. Note that τ(c) is a recurrent subtrack of τ and hence either
it is a disjoint union of simple closed curves which define the multi-curve c, or it
contains a large branch (Lemma 2.7.2 of [PH92]).

Now let more specifically Q be a pants decomposition of S. If C is any comple-
mentary component of τ(Q), then a simple closed curve c contained in C is disjoint
from Q. Thus if c is neither contractible nor freely homotopic into a puncture of S
then c is freely homotopic to a component of the pants decomposition Q. In par-
ticular, the Euler characteristic of the completion of a complementary component
of τ(Q) is at least −1. Thus this completion is of one of the following seven types,
where in our terminology, a pair of pants can be a twice punctured disc or a once
punctured annulus or a planar compact bordered surface of Euler characteristic −1
with three boundary components.

(1) A triangle, that is, a disc with three cusps at the boundary.
(2) A quadrangle, that is, a disc with four cusps at the boundary.
(3) A punctured disc with one cusp at the boundary.
(4) A punctured disc with two cusps at the boundary.
(5) An annulus with one cusp at the boundary.
(6) An annulus with two cusps at the boundary.
(7) A pair of pants with no cusps at the boundary.

If C is a complementary component of τ(Q) which is an annulus then the core curve
of this annulus is freely homotopic to a component of Q. Since τ(Q) carries Q, this
implies that if the boundary of C contains two cusps then these cusps are contained
in the same boundary component, that is, one of the boundary components of C is
a smooth circle. In other words, every complementary component of type (6) is of
the more restricted following type.

(6′) An annulus with one smooth boundary component and one boundary com-
ponent containing two cusps.
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For the proof of Proposition 3.2 we need some control on τ(Q) where Q is
any pants decomposition of S and where τ is a train track in standard form for a
marking F of S which carries Q. The next lemma provides such a control. It follows
immediately from the work of Penner and Harer [PH92] and uses an argument due
to Thurston (see [FLP91]). We present the lemma in the form needed in Section 5.

Lemma 3.8. Let F be a marking for S with pants decomposition P . Let ν be
a measured geodesic lamination; then there is a train track σ with the following
properties:

(1) σ carries ν.
(2) ν fills σ.
(3) Every train track in standard form for F which carries ν contains σ as a

subtrack.

Proof. We begin with showing the lemma in the case that ν is supported in a simple
geodesic multi-curve.

Thus let F be a marking of S with pants decomposition P and let c be a simple
geodesic multi-curve. Let S0 be a connected component of S − P with boundary
circles γi ∈ P (the number of these circles is contained in {1, 2, 3}). Up to homotopy,
the multi-curve c intersects S0 in a (perhaps empty) collection of disjoint simple arcs
with endpoints on the boundary of S0 which are essential, that is, not homotopic
with fixed endpoints into the boundary of S0.

For each i let n(γi) be the intersection number between c and γi. Note that if γi
is a component of c then n(γi) = 0. Since any two essential simple arcs in S0 with
endpoints on the same boundary component of S0 are isotopic in S0 relative to the
boundary, there is up to isotopy a unique configuration of mutually disjoint simple
arcs in S0 with endpoints on the boundary of S0 which realizes the intersection
numbers n(γi) (see [FLP91] for details). For this configuration there is a unique
isotopy class of a train track (with stops) in S0 which carries the configuration with
a surjective carrying map and which can be obtained from a standard model as
shown in Figure A by removing some (perhaps all) of the branches (Figure 2.6.2 of
[PH92] shows in detail how to remove some of the branches of a standard model).
These train tracks with stops can be glued to connectors obtained from the standard
models shown in Figure B by removing some of the branches (see Figure 2.6.1 of
[PH92]) in such a way that the resulting train track σ has the following properties.

(1) σ carries c.
(2) c fills σ.
(3) There is a train track in standard form for F which contains σ as a subtrack.

Note that the direction of the winding of a component of c relative to a curve
from the marking F which intersects the pants curve γi determines the connector
about γi in σ. It is immediate from the construction that a complete train track
in standard form for F carrying c is an extension of σ (compare the discussion in
[PH92]).
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Now if ν is an arbitrary measured geodesic lamination then the support of ν can
be approximated in the Hausdorff topology by a sequence {ci} of simple geodesic
multi-curves [CEG87]. There are only finitely many train tracks which are subtracks
of a train track in standard form for F . Thus if {σi} is a sequence of train tracks
as above for the multi-curves ci then there is some train track σ so that σ = σi for
infinitely many i. Since the set of all geodesic laminations carried by the fixed train
track σ is closed in the Hausdorff topology, σ carries ν and satisfies the requirements
in the lemma. �

We use this to show

Lemma 3.9. There is a number κ > 0 with the following properties. Let F be a
marking for S and let Q by any pants decomposition of S. Then there is a set D of
complete train tracks in standard form for some marking with pants decomposition
Q (the marking may depend on the train track from D) with the following properties.

(1) Every geodesic lamination in standard form for Q is carried by some train
track in the set D.

(2) The diameter of D in T T is at most κ.
(3) For every η ∈ D there is a train track in standard form for F which carries

η.

Proof. By the discussion in the beginning of this section, it suffices to show the
existence of a number χ > 0 with the following properties. Let F be a marking of
S and let Q by any pants decomposition of S. Then for every geodesic lamination
λ in standard form for Q there is a train track τ(λ) with the following properties.

(1) τ(λ) carries λ.
(2) τ(λ) is in standard form for a marking with pants decomposition Q.
(3) τ(λ) is carried by a train track τ0(λ) in standard form for F .
(4) If λ′ is any other geodesic lamination in standard form for Q then we have

iQ(τ(λ), τ(λ′)) ≤ χ.

Note that (4) above makes sense since by the definition of a train track in standard
form for a marking with pants decomposition Q and by the fact that a geodesic
lamination in standard form for Q contains Q as a sublamination, the pants de-
composition Q is a subtrack of τ(λ).

Thus let F be a marking for S with pants decomposition P , let Q be a second
pants decomposition and let λ, λ′ be two geodesic laminations in standard form
for Q. By Lemma 2.2, there are unique train tracks τ, τ ′ in standard form for F
which carry λ, λ′; in particular, τ, τ ′ carry Q. Let as before τ(Q), τ ′(Q) be the
subtrack of τ, τ ′ of all branches of positive Q-weight. By Lemma 3.8, the train
tracks τ(Q), τ ′(Q) are isotopic. This means that τ, τ ′ are complete extensions of
τ(Q). We equip the smooth boundary components of complementary regions of
τ(Q) with marked points and use these marked points to define the intersection
number between the complete extensions τ, τ ′ of τ(Q). Then iτ(Q)(τ, τ

′) is bounded
from above by a universal constant.
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Assume first that τ(Q) = Q, that is, that Q is a subtrack of τ . By invariance
under the action of the mapping class group and cocompactness, Lemma 2.1 to-
gether with Lemma 3.3 of [H09] shows that there is a number β > 0, and there is
a train track η in standard form for some marking of S with pants decomposition
Q which carries λ, which is carried by τ and such that d(τ, η) ≤ β. Thus if we put
τ(λ) = η, then the distance in T T between the train track τ in standard form for
F and the train track τ(λ) is uniformly bounded. As the same holds true for τ(λ′)
where λ′ is another complete geodesic lamination on S in standard form for Q, the
intersection number iQ(τ(λ), τ(λ′)) is uniformly bounded as this number measures
the twisting of τ(λ′) about the components of Q relative to τ(λ). Therefore we may
assume that τ(Q) contains a large branch.

Let {σi}0≤i≤s be a splitting sequence issuing from σ0 = τ(Q) so that for each
i ≤ s the pants decomposition Q is carried by σi and fills σi. Then for each i the
pants decomposition Q defines an integral transverse counting measure on σi by
assigning to a branch b the number of connected components of the preimage of b
under a carrying map Q → σi. For i < s the total Q-weight of σi+1, i.e. the sum
of the weights of this counting measure over all branches of σi+1, is bounded from
above by the total Q-weight of σi minus two. Namely, if σi+1 is obtained from σi
by a split at the large branch e and if e′ is the diagonal branch of the split in σi+1,
then the Q-weight of e equals the sum of the Q-weights of e′ and the Q-weights of
the two losing branches of the split. As by assumption that Q fills σi these weights
are all positive and integral, the weight of e′ does not exceed the weight of e minus
two. The weights of the branches of σi which are distinct from e coincide with
the weights of their images in σi+1 under the natural bijection ϕ(σi, σi+1) of the
branches of σi onto the branches of σi+1 (which maps e to e′). Therefore the length
of the splitting sequence {σi} is bounded from above by the total Q-weight of τ(Q).

Assume that the sequence {σi}0≤i≤s is of maximal length. This means that for
every large branch e of σs, the pants decomposition Q is carried by a collision of
σs at e (that is, a split followed by the removal of the diagonal).

By Proposition 3.6, there are complete extensions τ1, τ
′
1 of σs with τ1(Q) =

τ ′1(Q) = σs so that τ1 carries λ, τ ′1 carries λ′ and that moreover

(3) iτ1(Q)(τ1, τ
′
1) ≤ iτ(Q)(τ, τ

′) + 4q5.

Let e be any large branch of τ1(Q) = σs. The pants decomposition Q is carried
by the train track ξ obtained from σs by the collision at e. Let τ2 (or τ ′2) be the
(τ1(Q), λ)-modification (or the (τ ′1(Q), λ′)-modification) of τ1 (or τ ′1) at e. Two
applications of Lemma 3.4 show that

(4) iτ2(Q)(τ2, τ
′
2) ≤ iτ1(Q)(τ1, τ

′
1) + 2q3.

The train tracks τ2, τ
′
2 are tight at e. Let τ3, τ

′
3 be the train tracks obtained from

τ2, τ
′
2 by a split at e with the property that the split tracks carry λ, λ′. The number

of branches of τ3(Q) = τ ′3(Q) = ξ is strictly smaller than the number of branches of
τ1(Q). The diagonal branch d = ϕ(τ2, τ3)(e) of the split of τ2 at e is a small branch
of τ3 which is contained in a complementary region C of ξ = τ3(Q) and which is
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attached at both endpoints to a side of C. Let d′ = ϕ(τ ′2, τ
′
3)(e) be the diagonal of

the split of τ ′2 at e.

Let U be a neighborhood of e in S which is sufficiently small that σs intersects
U in the union of e with the four half-branches of σs which are incident on the
endpoints of e. Up to isotopy, the intersections of σs, ξ with S−U coincide. Thus if
there is a complementary region C of ξ containing a smooth boundary component
T which newly arises in the process, then this boundary component intersects U .
Mark a point on T which is mapped into U . Note that any marked point on a
smooth boundary component of a complementary region of σs induces a marked
point on a smooth boundary component of a complementary region of ξ.

Let ζ, ζ ′ be complete extensions of σs which are σs-equivalent to τ2, τ
′
2 and which

have the minimal number of intersection points in S−σs, that is, which realize the
intersection number iσs

(τ2, τ
′
2). By the definition of equivalence, after perhaps

replacing ζ, ζ ′ by equivalent train tracks and after perhaps a modification with an
isotopy, we may assume that ζ, ζ ′ are tight at e.

Using once more the definition of equivalence, the train tracks ζ, ζ ′ can be mod-
ified with a single split at e to train tracks ζ0, ζ

′
0 which are complete extensions of ξ

and which are equivalent to the complete extensions τ3, τ
′
3 of ξ. If τ3, τ

′
3 is obtained

from τ2, τ
′
2 by a right (or left) split at e then ζ0, ζ

′
0 is obtained from ζ, ζ ′ by a right

(or left) split at e.

Let d0, d
′
0 be the diagonal of the split in ζ0, ζ

′
0. The train track ξ intersects U in

two disjoint embedded arcs which are joined by the two branches d0, d
′
0 of ζ0, ζ

′
0.

We may assume that the branches d0, d
′
0 either are disjoint (if the train tracks τ3, τ

′
3

are both obtained from τ2, τ
′
2 by the same type of split, left or right) or that they

intersect transversely in a single point. By the definition of intersection numbers,
this shows that

(5) iτ3(Q)(τ3, τ
′
3) = iξ(ζ0, ζ

′
0) ≤ iτ2(Q)(τ2, τ

′
2) + 1.

Inequalities (5) and (4) now yield that

iτ3(Q)(τ3, τ
′
3) ≤ iτ2(Q)(τ2, τ

′
2) + 1 ≤ iτ1(Q)(τ1, τ

′
1) + 2q3 + 1

and hence from the estimate (3) we obtain (since q ≥ 2)

iτ3(Q)(τ3, τ
′
3) ≤ iτ(Q)(τ, τ

′) + 6q5.

Repeat this procedure with the train track ξ = τ3(Q). After at most k ≤ q such
steps where k is the number of branches of τ(Q), we arrive at train tracks η, η′

which contain Q as a disjoint union of simple closed curves and carry λ, λ′.

To summarize, we obtain in at most q steps two splitting sequences connecting
τ, τ ′ to train tracks η, η′ so that η(Q) = η′(Q) = Q and that η, η′ carry λ, λ′. Each
of these steps increases intersection numbers by at most 6q5. In particular, the
intersection number iQ(η, η′) is uniformly bounded and hence the distance in T T
between η, η′ is uniformly bounded as well.

Now λ, λ′ is carried by η, η′ and is in standard form for Q. Hence by the reasoning
in the third paragraph of this proof, there are train tracks β, β′ in standard form
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for some marking with pants decomposition Q which carry λ, λ′, which are carried
by η, η′ and such that d(η, β) ≤ κ, d(η′, β′) ≤ κ. As a consequence, the distance
between β, β′ is uniformly bounded. Since λ, λ′ were arbitrarily chosen geodesic
laminations in standard form for Q the lemma follows. �

In the situation of Lemma 3.9, it may happen that the pants decomposition Q
fills a train track τ in standard form for F , that is, the subtrack τ(Q) of Q coincides
with τ . In this case each of the train tracks in standard form for Q is carried by
τ . As in this case the proof of Lemma 3.9 does not use any further information on
the marking F , we also obtain the following statement, where the constant κ > 0
is the constant from Lemma 3.9.

Corollary 3.10. There is a number κ > 0 with the following properties. Let Q
be a pants decomposition of S and let τ be a complete train track which carries all
complete geodesic laminations λ in standard form for Q. Then there is a set D of
complete train tracks in standard form for some marking with pants decomposition
Q (where the marking may depend on the train track from D) with the following
properties.

(1) Every geodesic lamination in standard form for Q is carried by some train
track in the set D.

(2) The diameter of D in T T is at most κ.
(3) Every η ∈ D is carried by τ .

Now we are ready for the proof of Proposition 3.2. For later use, we formulate
it as a consequence of Lemma 3.9 and Corollary 3.10.

Lemma 3.11. There exists a number d2 > 0 with the following properties. Let
G be a marking with pants decomposition Q. For a complete geodesic lamination
λ in standard form for Q let τ(λ) be the train track constructed in Lemma 3.9 or
in Corollary 3.10. Then there exists λ such that τ(λ) carries a train track ξ in
the d2-neighborhood of a train track in standard form for G. Furthermore, ξ is in
standard form for a marking with pants decomposition Q.

Proof. Let λ be a complete geodesic lamination in standard form for Q and let
τ(λ) ∈ V(T T ) be as in Lemma 3.9 or in Corollary 3.10. Then τ(λ) is in standard
form for a marking G′ with pants decomposition Q. Any two markings with pants
decomposition Q differ from each other by a multi-twist about the pants curves of
Q. Thus if we write k = 3g−3+m for simplicity of notation and if we let θ1, . . . , θk
be the positive Dehn twists about the components γ1, . . . , γk of Q then there is an
integral vector (n1, . . . , nk) ∈ Zk such that

G = θn1
1 · · · θ

nk

k G′.

Every pants curve γi of Q is the core curve of a twist connector for τ(λ). Split-
ting a standard twist connector at the large branch, with the small branch of the
connector as a winner, results in deforming a train track by a (positive or nega-
tive) Dehn twist about the core curve of the connector. The sign of the twist is
determined by the type of the twist connector which in turn is determined by the
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spiraling direction of the geodesic lamination λ in standard form for Q about the
pants curve γi.

Assume after reordering that for some p ≤ k and for every i ≤ p, either ni = 0
or the sign of ni coincides with the sign determined by the spiraling direction of
λ about γi, and that for i > p we have ni 6= 0 and the sign of ni differs from this
direction. Let σ be a train track in standard form for the marking G′ which is
obtained from τ(λ) by reversing the directions in the twist connectors about the
curves γp+1, . . . , γk. By Lemma 2.6.1 of [PH92], σ is complete, and σ is splittable
to the train track θn1

1 · · · θ
nk

k σ in standard form for G. The train track σ carries a
complete geodesic lamination λ′ in standard form for Q. By equivariance under the
action of the mapping class group and cocompactness, there is a universal constant
χ > 0 such that

d(σ, τ(λ)) ≤ χ.

By Lemma 3.9 or Corollary 3.10 there is a train track τ(λ′) which is in standard
form for a marking with pants decomposition Q, which carries λ′ and such that

d(τ(λ), τ(λ′)) ≤ κ.
Since MCG(S) acts isometrically on T T , we have

d(θn1
1 · · · θ

nk

k σ, θn1
1 · · · θ

nk

k τ(λ′)) ≤ κ+ χ.

But θn1
1 · · · θ

nk

k σ is in standard form for G and therefore the train track η =
θn1

1 · · · θ
nk

k τ(λ′) is at distance at most κ+χ from a train track in standard form for
G. It contains the pants decomposition Q as an embedded subtrack. This is what
we wanted to show. �

Proposition 3.2 is an immediate consequence of Lemma 3.11. Namely, given any
two markings F,G, by Lemma 3.9 the train track τ(λ) found in Lemma 3.11 is
carried by some train track η in standard form for F and hence η carries a train
track σ in the d2-neighborhood of a train track in standard form for G. This is
precisely what is claimed in Proposition 3.2. The same reasoning using Corollary
3.10 then yields the following

Corollary 3.12. There exists a number d3 > 0 with the following property. Let Q
be a pants decomposition of S and let τ be a complete train track which carries Q
and such that Q fills τ . Then for any marking G of S with pants decomposition Q,
the train track τ is splittable to a train track in the d3-neighborhood of a train track
in standard form for G.

Remark 3.13. The results in this section are also valid if the surface S is a once
punctured torus or a four punctured sphere.

4. Quasi-isometric embeddings

In this section we use the results from Section 3 to give a unified proof of Theo-
rems 5-7 from the introduction.

We begin with an investigation of the mapping class group of an essential subsur-
face S0 of S. This means that S0 is a bordered subsurface of S with the property
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that the inclusion S0 → S induces an injection π1(S0) → π1(S) of fundamental
groups and that moreover every boundary component of S0 is an essential simple
closed curve in S. Let PMCG(S0) be the pure mapping class group of S0, i.e. the
subgroup of the mapping class group MCG(S0) of S0 of all mapping classes which
fix each of the boundary components and each of the punctures. Then PMCG(S0)
is a subgroup of MCG(S0) of finite index. It can be identified with the subgroup
of the mapping class group of S of all elements which can be realized by a homeo-
morphism preserving S − S0 pointwise and fixing each of the punctures of S.

As in the introduction, call a finitely generated subgroup Γ of MCG(S) undis-
torted if the inclusion Γ→MCG(S) is a quasi-isometric embedding. For example,
every subgroup of MCG(S) of finite index is undistorted. The following result is
implicitly but not explicitly contained in Theorem 6.12 of [MM00].

Proposition 4.1. For an essential subsurface S0 ⊂ S the subgroup PMCG(S0) of
MCG(S) is undistorted.

Proof. If S0 = S1 ∪ S2 for two disjoint essential subsurfaces S1, S2 of S whose
fundamental groups as subgroups of π1(S) have trivial intersection then

PMCG(S0) = PMCG(S1)× PMCG(S2).

Now a subgroup of a finitely generated group which is a direct product of two
undistorted subgroups is undistorted and hence it suffices to show the proposition
for connected essential subsurfaces of S. The case that S0 is an essential annulus
is treated in detail in [FLM01, H09], so we assume that the Euler characteristic of
S0 is negative. If S0 is a thrice punctured sphere then PMCG(S0) equals the free
abelian group of Dehn twists about the boundary components of S0. Thus we also
may assume that S0 is different from a thrice punctured sphere.

Our goal is to show that any two elements of PMCG(S0) can be connected by
a uniform quasi-geodesic in MCG(S) which is entirely contained in PMCG(S0).

For this let Ŝ0 be the surface which we obtain from S0 by replacing each boundary
component by a puncture. There is an exact sequence

0→ Zp → PMCG(S0)
Π→ PMCG(Ŝ0)→ 0

where Zp is identified with the free abelian group of Dehn twists about the boundary
components of S0.

Choose a pants decomposition P for S which contains the boundary of S0 as a
subset. Let τ be a complete train track in standard form for a marking F with
pants decomposition P and only twist connectors. Let τ1 be the subtrack of τ which
we obtain from τ by removing all branches contained in the interior of S0. We can
choose τ in such a way that any two points in the same connected component of τ1
can be connected by a trainpath in τ1 (however, in general τ1 is neitiher connected
not recurrent).

Let c1, . . . , cp be the boundary circles of S0. Every complete train track σ on Ŝ0 is
a subtrack of a complete train track η on S which contains τ1 as a subtrack. Namely,
up to isotopy, each boundary component ci of S0 is contained in a complementary
once punctured monogon region Ci of σ. It cuts Ci into an annulus Ai ⊂ S0 and
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a once punctured disc. Add a small branch bi to σ ∪ τ1 which is contained in the
closure Ai of the annulus Ai and connects the boundary of Ci to the boundary circle
ci of S0. Since σ is complete and hence non-orientable, if for each i ≤ p we connect
the branch bi to the circle ci in such a way that the resulting train track η intersects
an annulus neighborhood of ci in a twist connector as shown in Figure B, then η
is recurrent [PH92]. The train track η is also very easily seen to be transversely
recurrent and hence it is complete.

The train track η is not uniquely determined by τ1 and σ. The choices made are
the positions of the additional switches on the boundaries of the complementary
regions Ci, the inward pointing tangents of the added branches bi at these switches
and the homotopy class with fixed endpoints of the branch bi ⊂ Ai. By invariance
under the action of the group PMCG(Ŝ0) and cocompactness, for any two such
choices η, η′ there is a multi-twist ϕ about the multi-curve c = ∪ici such that
the distance in T T between η, ϕη′ is uniformly bounded. The set E of all such
extensions of all complete train tracks on Ŝ0 is invariant under the action of the
group PMCG(S0), with finitely many orbits and finite point stabilizers.

Let F be a marking for Ŝ0. As by Corollary 3 of [H09] splitting sequences
are uniform quasi-geodesics, we deduce from Proposition 3.2 and the following
remark that any complete train track η on Ŝ0 can be obtained from a train track
σ in standard form for F by a uniform quasi-geodesic in the train track complex
T T (Ŝ0) of Ŝ0 which is a concatenation of a splitting sequence with an edge-path
of uniformly bounded length.

For every train track σ on Ŝ0 in standard form for F choose an extension Ψ(σ) ∈
V(T T ) as above. By Proposition 3.6, there is a universal number p > 0 (depending
on the topological type of S) and for every splitting sequence {σi}0≤i≤m of complete

train tracks on Ŝ0 issuing from a train track σ0 = σ in standard form for F and for
every complete Ψ(σ)-extension of a σm-filling measured geodesic lamination there
is an induced sequence {τj}0≤j≤2m ⊂ T T connecting τ0 = Ψ(σ) to a train track
τ2m which contains σm as well as τ1 as a subtrack. There is a universal number
s > 0 such that for every i < m the train track track τ2i+2 can be obtained from
τ2i by a splitting sequence whose length is contained [1, s].

By Corollary 3 of [H09], splitting sequences are uniform quasi-geodesics in both

T T and the train track complex T T (Ŝ0) of Ŝ0. As a consequence, there is a number

c > 0 with the following property. For every train track ξ ∈ V(T T (Ŝ0)) there is a
train track Ψ(ξ) ∈ E which contains both ξ and τ1 as a subtrack and is such that

the distance in T T (Ŝ0) between ξ and a train track σ in standard form for F is not
bigger than cd(Ψ(σ),Ψ(ξ)) + c.

The resulting map Ψ : V(T T (Ŝ0))→ E is used to define a map ρ : PMCG(Ŝ0)→
PMCG(S0) as follows. Let σ be a fixed train track in standard form for F . For

g ∈ PMCG(Ŝ0) define ρ(g) ∈ PMCG(S0) in such a way that the distance between
Ψ(gσ) and ρ(g)(Ψ(σ)) is uniformly bounded. Since PMCG(S0) acts on E with

finitely many orbits and finite point stabilizers and since T T (Ŝ0) is equivariantly

quasi-isometric to PMCG(Ŝ0), the map ρ is a coarse section of the projection Π.
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By this we mean that there is a universal constant κ > 0 such that d(Πρ(g), g) ≤ κ
for all g.

The image of V(T T (Ŝ0)) under the map Ψ consists of train tracks which contain
each boundary component ci of S0 as the core curve of a twist connector. Splitting
such a train track τ at the large branch in this twist connector, with the small
branch as the winner, results in replacing τ by θc(τ) where θc is a Dehn twist about
c whose direction (positive or negative) depends on the twist connector. Thus
if Γ denotes the semi-group of Dehn twists about the boundary components of
S0 determined by the train track τ1 then for every g ∈ ρ(PMCG(Ŝ0)) and every
ϕ ∈ Γ there is a uniform quasi-geodesic inMCG(S) connecting the identity to ϕρ(g)
and which is entirely contained in PMCG(S0). However, the choice of the twist
connector in the train track τ1 was arbitrary and consequently the unit element
in MCG(S) can be connected to any mapping class g ∈ PMCG(S0) by a uniform
quasi-geodesic inMCG(S) which is entirely contained in PMCG(S0). By invariance
of the word metrics under left translation, this just means that PMCG(S0) <
MCG(S) is undistorted. �

Now let S0 be any non-exceptional surface of genus g ≥ 0 with m ≥ 0 punctures
and let S be the surface S0 punctured at one additional point p. There is an exact
sequence [B74]

0→ π1(S0)→MCG(S)
Π→MCG(S0)→ 0.

The projection Π is induced by the map S → S0 which consists in closing the
puncture p. An element α of the fundamental group π1(S0) of S0 is mapped to
the element ofMCG(S) obtained by dragging the point p along a loop in S0 in the
homotopy class α. Braddeus, Farb and Putman [BFP11] showed that π1(S0) is an
exponentially distorted subgroup ofMCG(S). We next observe that in contrast, the
projection Π :MCG(S)→MCG(S0) has a coarse section which is a quasi-isometric
embedding. Here by a coarse section we mean a map Ψ : MCG(S0) → MCG(S)
such that

d(ΠΨ(g), g) ≤ κ
for all g ∈MCG(S) where κ ≥ 0 is a universal constant. The following proposition
is a special case of a general result of Mosher [M96].

Proposition 4.2. Let S0 be a non-exceptional surface of genus g ≥ 0 with m ≥ 0
punctures and let S be the surface of genus g with m + 1 punctures. Then there
is a coarse section for the projection Π : MCG(S) → MCG(S0) which is a quasi-
isometric embedding.

Proof. Let T T (S) and T T (S0) be the train track complex of S and of S0. We first
define a map Ψ : V(T T (S0))→ V(T T (S)) as follows.

For a complete train track τ on S0 choose any complementary trigon C of τ .
Mark a point p in the interior of C and add two switches v1, v2 and two branches
b1, b2 ⊂ C − {p} to τ in the following way. The switch v1 is an interior point of a
branch of τ contained in a side of C, v2 6= p is a point in the interior of C, b1 connects
v1 to v2 and b2 is a small branch contained in the interior of C whose endpoints are
both incident on v2 and which is the boundary of a subdisc of C containing p in its



CUBE COMPLEXES 35

interior. Since τ is complete, Proposition 1.3.7 of [PH92] shows that the resulting
train track η0 on S = S0 −{p} is recurrent. It is also easily seen to be transversely
recurrent. The train track η0 decomposes S into trigons, once punctured monogons
and one fourgon. The fourgon can be subdivided into two trigons by adding a single
small branch. The resulting train track η on S is complete, and it contains τ as a
subtrack. This construction defines a map Ψ : V(T T (S0))→ V(T T (S)).

The map Ψ depends on some choices among a finite set of possibilities: The
choice of the complementary trigon C, the choice of the position of the switch v1 on
a side of C, the orientation of the inward pointing tangent of the branch b1 at the
switch v1 and the choice of the small branch subdividing the fourgon. Any train
track constructed in this way contains τ as a subtrack. Moreover, for g ∈MCG(S0)
there is some h ∈ MCG(S) such that h(Ψ(τ)) is one of the possibilities for Ψ(gτ).
Since there are only finitely many orbits of complete train tracks on S0 under the
action of the mapping class group, by coarse equivariance of the construction we
conclude that there is a universal number κ0 > 0 such that for any other choice Ψ′

of such a map we have d(Ψ(τ),Ψ′(τ)) ≤ κ0 for all τ ∈ V(T T (S0)).

We use the map Ψ to define a map Φ : MCG(S0) → MCG(S) as follows. The
mapping class groups of S0, S act properly and cocompactly on T T (S0), T T (S).
Choose τ ∈ V(T T (S0)) and a fundamental domain D for the action ofMCG(S) on
T T (S) containing Ψ(τ). For g ∈ MCG(S0) choose Φ(g) ∈ MCG(S) in such a way
that Ψ(gτ) ∈ Φ(g)D. If Φ′ is any other such map then d(Φ(g),Φ′(g)) ≤ κ1 where
κ1 > 0 is a universal constant (and d is any distance onMCG(S) defined by a word
norm of a finite symmetric generating set).

By construction, the map Φ : MCG(S0) → MCG(S) is a coarse section for the
projectionMCG(S)→MCG(S0). Thus we are left with showing that Φ is a quasi-
isometric embedding, and this holds true if this is the case for the map Ψ. To this
end, note that τ is a subtrack of Ψ(τ). By Proposition 3.6, a splitting sequence
{τi}0≤i≤` ⊂ T T (S0) issuing from τ0 = τ induces a splitting sequence in T T (S)
issuing from Ψ(τ). The length of this sequence is not smaller than the length ` of
the splitting sequence of τ , and it is not bigger than q` for a universal constant
q > 0. On the other hand, a point on the induced sequence which contains τi as a
subtrack is a possible choice for Ψ(τi) and hence it is at uniformly bounded distance
to Ψ(τi).

By Corollary 3 of [H09], splitting sequences in T T (S) and T T (S0) are uniform
quasi-geodesics. As a consequence, there is a number c > 1 such that

d(τ0, τ`)/c− c ≤ d(Ψ(τ0),Ψ(τ`)) ≤ cd(τ0, τ`) + c

whenever τ0 ∈ V(T T (S0)) is splittable to τ` ∈ V(T T (S0)). By Proposition 3.1,
splitting sequences connect a coarsely dense set of pairs of points in the train track
complex T T (S0). This implies that the map Ψ : V(T T (S0)) → V(T T (S)) defines
a quasi-isometric embedding and hence the same holds true for Φ : MCG(S0) →
MCG(S). �

Finally, for a closed surface of genus g ≥ 2 we investigate the normalizer of a
finite subgroup Γ of MCG(S) (see [RS07] for an earlier proof of this result, stated
a bit differently).
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Proposition 4.3. For a closed surface S of genus g ≥ 2, the normalizer of a finite
subgroup of MCG(S) is undistorted.

Proof. Let T (S) be the Teichmüller space of S. By the Nielsen realization problem,
a finite subgroup Γ of MCG(S) fixes a point x ∈ T (S) [Ke83]. This means that Γ
can be realized as a finite group of biholomorphisms of (S, x). The quotient (S, x)/Γ
is a Riemann surface, and the projection π : (S, x)→ (S, x)/Γ is a branched covering
ramified over a finite number of points p1, . . . , p` ∈ (S, x)/Γ. The marked complex
structure x on S projects to a marked complex structure on (S, x)/Γ.

Let (S1, x1), (S0, x0) be the punctured Riemann surfaces which are obtained from
(S, x), (S, x)/Γ by removing the branch points of the covering (S, x) → (S, x)/Γ.
The projection π restricts to an unbranched covering S1 → S0. The Teichmüller
spaces T (S0) of S0, T (S1) of S1 are contractible. For every point y ∈ T (S0) which
is sufficiently close to x0 there is a covering Ψ(y) ∈ T (S1) of the Riemann surface
(S0, y) which is of the same topological type as the covering (S1, x1) → (S0, x0).
The marking of Ψ(y) is determined in such a way that the map Ψ is continuous
near x0. This construction defines a developing map Ψ : T (S0) → T (S1). Since
T (S0) is simply connected, the developing map is in fact single-valued. Moreover,
it is clearly injective and hence an embedding. (In fact, its is not hard to see
that this construction defines an isometric embedding of T (S0) into T (S1) for the
Teichmüller metrics). There is a natural projection Π : T (S1) → T (S) defined by
filling in the punctures.

Let MCG0(S0) be the subgroup of the mapping class group MCG(S0) of S0 of
all mapping classes realizable by a homeomorphism of S0 which lifts to a homeo-
morphism of S. Let N(Γ) be the normalizer of Γ in MCG(S). Then there is an
exact sequence [BH73]

0→ Γ→ N(Γ)→MCG0(S0)→ 0.

(Theorem 3 in [BH73] states this only in the case that the group Γ is cyclic. How-
ever, as pointed out explicitly in [BH73], the result for all finite groups is immediate
from the argument given there and the Nielsen realization problem).

Since the group Γ is finite, the groups N(Γ) andMCG0(S0) are quasi-isometric.
Thus to show the proposition it is enough to show that there is quasi-isometric
embedding of MCG0(S0) into MCG(S) whose image is contained in a uniformly
boundedd neighborhood of N(Γ). Following Proposition 4.2, it suffices in fact to
show that there is a quasi-isometric embedding of MCG(S0) into MCG(S1) whose
image is contained in a uniformly bounded neighborhood of the image of N(Γ)
under a a coarse section for the projection MCG(S1)→MCG(S).

For this note that the preimage of a complete train track τ on S0 under the
covering S1 → S0 is a Γ-invariant graph ξ in S which decomposes S into polygons
and once punctured polygons. The preimage of each trigon component of τ is a
union of n trigon components of ξ where n = |Γ| is the number of sheets of the
covering. Each once punctured monogon in τ encloses one of the points pi and lifts
to a punctured mi-gon in S1 − ξ where 2 ≤ mi ≤ n is the ramification index of pi.
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The branch points of the covering define a set of marked points contained in
complementary regions of ξ. Each complementary region of ξ contains at most one
such point. Thus ξ defines a (non-complete) train track on the punctured surface
S1, again denoted by ξ. Now a positive transverse measure on τ lifts to a positive
transverse measure on ξ and therefore ξ is recurrent. The same argument also
shows that ξ is transversely recurrent. Then ξ is a subtrack of a complete train
track on S1 obtained by subdividing some of the complementary regions as in the
proof of Proposition 4.2. As before, the resulting complete train track η depends
on choices among a uniformly bounded number of possibilities (compare the proof
of Proposition 4.2).

Now if the complete train track τ1 on S0 is obtained from the complete train
track τ by a single split at a large branch e then the preimage ξ1 of τ1 can be
obtained from the preimage ξ of τ by a splitting sequence of length n. Namely,
the preimage of any large branch of τ is the union of n large branches of ξ. Such
a splitting sequence then induces a splitting sequence of length at most qn of the
complete train track η on S1 constructed in the previous paragraph where q > 0 is
a universal constant.

By Proposition 3.1, splitting sequences in the train track complex T T (S0) of S0

connnect a coarsely dense set of pairs of points. By Corollary 3 of [H09], each such
splitting sequence defines a uniform quasi-geodesic in the subgroup MCG0(S0) of
the mapping class group of S0. This quasi-geodesic lifts to a uniform quasi-geodesic
inMCG(S1) contained in a uniformly bounded neighborhood of the image of N(Γ)
under the coarse section for the projection MCG(S1) → MCG(S) constructed in
Proposition 4.2. As a consequence, the normalizer N(Γ) of Γ is undistorted. �

Remark: 1) Since splitting sequences define quasi-geodesics in the curve graph
of a surface of finite type [H06], the above argument immediately implies the fol-
lowing. Let S be a closed surface and let Γ be a finite subgroup ofMCG(S). Then
there is a quasi-isometric embedding of the curve graph of S/Γ into the curve graph
of S. This was shown in [RS07].

2) In [ALS09], Aramayona, Leininger and Souto constructed for infinitely many
gi > 0 injective homomorphisms of the mapping class group of a closed surface of
genus gi into the mapping class group of a closed surface of strictly bigger genus
using unbranched coverings. The reasoning in the proof of Proposition 4.3 can be
used to show that these homomorphisms are quasi-isometric embeddings.

5. A CAT(0) cube complex related to the mapping class group

This section is devoted to the proof of Theorem 1 from the introduction. Our
goal is to construct a CAT(0) cube complex from a subgraph of the train track
complex T T .

A subgraph G0 of a metric graph G is called coarsely dense if there exists a
number κ > 0 such that any point in G is of distance at most κ from a point in G0.
We show
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Theorem 5.1. There exists a MCG-invariant family Gi of complete connected
subgraphs of T T with the following properties.

(1) The subgraphs Gi are mutually isometric, and they are isometric to the
one-skeleton of a CAT(0) cube complex.

(2) The image of each of the subgraphs under the inclusion Gi → T T is coarsely
dense in T T .

Theorem 1 follows from Theorem 5.1 and the fact that the train track complex
T T is connected, and the mapping class groupMCG of S acts on T T properly and
cocompactly [H09].

We begin the discussion with looking at subcomplexes of the cube complex ob-
tained by subdividing Rn into cubes with integral vertices. Namely, let e1, . . . , en
be the standard basis of Rn. We call the set {±ei | i ≤ n} the set of standard basis
vectors. If we talk about a standard basis vector in the sequel, then we mean a
point in this set.

Define a cubical graph in Rn to be an embedded connected directed graph G
whose vertices are points with integer coordinates (that is, points contained in Zn)
and whose edges are oriented line segments of length one connecting a vertex v1 to
a vertex v2 with v2−v1 = ei for some i ≤ n. The full grid G is the maximal cubical
graph in Rn with vertex set Zn. It is the one-skeleton of a CAT(0) cube complex
which is isometric to Rn.

Call an embedded cube C ⊂ Rn of dimension 0 ≤ k ≤ n standard if it is isometric
to [0, 1]k and if its vertices are contained in Zn; then its one-skeleton consists of
arcs of length one parallel to the axes. A cubical graph G in Rn is naturally the
one-skeleton of a cube complex C(G), called the span of G, as follows. A standard
cube C of dimension k ≥ 2 is contained in C(G) if the one-skeleton of C is entirely
contained in G.

The next lemma establishes a criterion for a special class of cubical graphs G
which is necessary and sufficient for their span C(G) to be nonpositively curved.
To define this class we say that a cubical graph G ⊂ Rn is locally determined by
its 0-skeleton if whenever x is a vertex of G and a is a standard basis vector of Rn
such that x + a ∈ G, then the edge connecting x to x + a is contained in G. The
cubical graph G satisfies the 3-cube condition if the following holds true. Let x be
a vertex of G, let ai1 , ai2 , ai3 be linearly independent standard basis vectors and
assume that x, x+ aij , x+ aij + aik ∈ G for k 6= j ∈ {1, 2, 3}; then x+

∑
j aij ∈ G.

We have

Lemma 5.2. Let G ⊂ Rn be the cubical graph which is locally determined by its 0-
skeleton. Then the span C(G) of G is nonpositively curved if and only if G satisfies
the 3-cube condition.

Proof. By a result of Gromov (Theorem 5.18 of [BH99]), C(G) is nonpositively
curved if and only if for every vertex x ∈ G ⊂ C(G), the link complex of x is a
flag complex. This means that if there are k vertices in the link complex which
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are pairwise connected by an edge, then these vertices span a simplex in the link
complex of dimension k − 1.

By the definition of the span of a cubical graph G ⊂ Rn which is locally de-
termined by its 0-skeleton, for each vertex x ∈ G, an edge in G incident on x is
determined by a standard basis vector a of Rn with the property that x + a ∈ G.
The vertices in the link complex of C(G) at the vertex x are precisely the edges in
G defined in this way.

Assume that the link complex of C(G) is a flag complex. By the definition of the
span C(G) of G, edges in the link complex of x are defined by pairs (x, ai), (x, aj)
where ai, aj are linearly independent standard basis vectors and such that x, x +
ai, x + aj , x + ai + aj ∈ G. Now let x, x + ai1 , x + ai2 , x + ai3 ∈ G for linearly
independent standard basis vectors aij . Assume furthermore that x+aiu +ais ∈ G
for any pair of distinct points u 6= s ∈ {1, 2, 3}. This implies that the one-skeletons
of the three faces of a 3-cube C ⊂ Rn which has x as one of its vertices are contained
in G. Since the link complex of C(G) is a flag complex by assumption, the 3-cube
C containing these three faces in its boundary is contained in C(G). But the vertex
of C opposite to x is the vertex x+ai1 +ai2 +ai3 and hence this vertex is contained
in G. This shows that G satisfies the 3-cube condition.

Now let us assume that the cubical graph G which is locally determined by its
0-skeleton satisfies the 3-cube condition. Let x ∈ G and assume that for a collection
A = {ai1 , . . . , aik} of k ≥ 3 linearly independent standard basis vectors and any
pair ij , i` the vertices x+ aij , x+ ai` , x+ aij + ai` are all contained in G. Since G
is locally determined by its 0-skeleton, this implies that C(G) contains the square
spanned by these vertices. Thus the link complex of x contains the one-skeleton a
(k−1)-simplex which is the span of the vertices defined by the edges in G connecting
x to x+ aij .

As G satisfies the 3-cube condition, for any three distinct of the vectors aij ,
say the vectors aij , ai` , ais , the point x + aij + ai` + ais is a vertex of G. As G
is locally determined by its 0-skeleton, G contains the 1-skeleton of the cube with
these vertices and hence C(G) contains the 3-cube spanned by these vertices.

Now let aiu be an element of A − {aij ,ai` , ais}. Apply the 3-cube condition to
the vertex y = x+ aij and the vectors ai` , ais , aiu to conclude that x+ aij + ai` +
ais +aiu ∈ G. By induction on 3 ≤ m ≤ k, we obtain in this way that for any subset
aij(1) , . . . , aij(m)

of A of cardinality m, the vertex x +
∑
s aij(s) is contained in G.

Since G is locally determined by its 0-skeleton, by the definition of C(G), the cube
C in Rn which is spanned by the edges connecting x to x+aij is contained in C(G).
Since the link complex of the cube C at the vertex x is the simplex spanned by these
edges, this yields that the link complex of x in C(G) satisfies the flag condition.
Thus C(G) is nonpositively curved which is what we wanted to show. �

For a complete train track τ on S let

E(τ) ⊂ T T
be the full subgraph of T T whose vertex set is the set of all train tracks which
can be obtained from τ by a splitting sequence. By Lemma 5.1 of [H09], such a
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splitting sequence is unique up to the order of commuting splits, and the splitting
distance to τ of a train track η ∈ E(τ), defined to be the shortest length of an edge
path in E(τ) connecting τ to η, is the length of a splitting sequence connecting τ
to η. Moreover, if η′ is obtained from η by a single split, then the splitting distance
of η′ to τ equals the splitting distance of η to τ plus one. In particular, edges
in E(τ) either strictly increase or strictly decrease the splitting distance to τ and
consequently any closed edge path in E(τ) has even length.

For a complete geodesic lamination ξ carried by τ define E(τ, ξ) to be the com-
plete subgraph of E(τ) consisting of all train tracks which carry ξ. If σ ∈ E(τ),
then let E(τ, σ) ⊂ E(τ) be the subgraph of all train tracks which are splittable to
σ.

The following is an extension of Lemma 5.4 of [H09].

Lemma 5.3. Let σ, η ∈ E(τ) be any two vertices. Then there is a unique train
track Θ−(σ, η) ∈ E(τ) such that σ, η ∈ E(Θ−(σ, η)) and that the splitting distance
between τ and Θ−(σ, η) is maximal with this property.

Proof. As τ is splittable to both σ, η, and σ, η have finite splitting distance to τ ,
there exists a train track Θ−(σ, η) ∈ E(τ) so that σ, η ∈ E(Θ−(σ, η)) and such that
the splitting distance between τ and Θ−(σ, η) is maximal with this property. We
have to show that Θ−(σ, η) is unique.

To this end assume that there exists a second such train track ξ, of the same
splitting distance to τ . By Lemma 5.4 of [H09], as Θ−(σ, η), ξ ∈ E(τ, σ), there
exists a unique train track β ∈ E(τ, σ) which is splittable to both Θ−(σ, η), ξ and
which has maximal splitting distance to τ with this property. Furthermore, there
is a partition of the branches of β into two disjoint subsets B1, B2 so that Θ−(σ, η)
is obtained from β by a splitting sequence only involving splits at the branches in
B1, and ξ is obtained from β by a splitting sequence only involving splits at the
branches in B2. As ξ 6= Θ−(σ, η) and as both Θ−(σ, η), ξ have the same splitting
distance to τ and hence the same splitting distance to β, both sets B1, B2 contain
a large branch, and a splitting sequence connecting β to Θ−(σ, η), ξ is of positive
length.

But if e1 ∈ B1 is a large branch so that a (right or left) split β′ of β at e1 is
splittable to Θ−(σ, η), then since Θ−(σ, η) is splittable to both σ, η, β′ is splittable
to both σ, η. Furthermore, since the splitting sequence connecting β to ξ does not
involve a split at e1, under the natural identification of branches of β with branches
of ξ, the branch e1 in ξ is large. By uniqueness of splitting sequences, this implies
that a (right or left) split ξ′ of ξ at e1 is splittable to both σ, η. But the splitting
distance between τ and ξ′ is strictly larger than the splitting distance between τ and
ξ which contradicts the assumption on ξ. This contradiction shows the lemma. �

We use these observations to establish the following strengthening of Lemma 5.1
and Lemma 5.4 of [H09]. For its formulation, let m ≥ 2 be the number of branches
of a complete train track τ on S.
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Proposition 5.4. If λ is a complete geodesic lamination carried by τ , then there
is an isometry Φ of E(τ, λ), equipped with the intrinsic path metric dE, onto a
cubical graph in Rm which maps any splitting arc in E(τ, λ) to a directed edge path
in Φ(E(τ, λ)). The cubical graph Φ(E(τ, λ)) is locally determined by its 0-skeleton,
and its span C(τ, λ) is nonpositively curved.

Proof. The first part of the proposition is just the statement of Lemma 5.1 of [H09].
We have to show that the image cubical graph Φ(E(τ, λ)) is locally determined by
its 0-skeleton, and is nonpositively curved.

To see that this is the case, we recall from the proof of Lemma 5.1 of [H09] the
construction of the map Φ. Namely, number the vertices of τ in an arbitrary way
with numbers 1, . . . ,m. If η is obtained from τ by a single split at a large branch e,
then there is a natural bijection ϕ(τ, η) of the branches of τ onto the branches of η
which induces a numbering of the branches of η. For this numbering, a branch not
incident on an endpoint of e is mapped to the corresponding branch in η, where we
view this branch as being contained in the complement of an open neighborhood
of e in τ which is unchanged in the splitting process. The branch e is mapped to
the diagonal of the split. Thus we can talk about numbered splitting sequences.

Choose a point Φ(τ) ∈ Zm in an arbitrary way, say Φ(τ) = 0. For η ∈ E(τ, λ)
define Φ(η) as follows. Connect τ to η by a splitting sequence, say the sequence
(τi)0≤i≤k, with τ0 = τ and τk = η, and let Φ(η) = Φ(τk−1) + ej where j is the
number of the large branch of τk−1 defining the split and where ej is the j-th
standard basis vector of Rn. Lemma 5.1 of [H09] shows that this is well defined,
that is, it does not depend on the choice of the splitting sequence. Connect Φ(τk−1)
with Φ(τk) by an edge.

We claim that Φ(E(τ, λ)) = G is locally determined by its 0-skeleton. To this
end let x = Φ(ξ) ∈ Φ(E(τ, λ)) and assume that x + ej = Φ(η) ∈ Φ(E(τ, λ)) for
some j. Let k be the splitting distance between τ and ξ; then the splitting distance
between τ and η equals k + 1.

By Lemma 5.3, there exists a unique train track Θ−(ξ, η) ∈ E(τ, λ) so that
ξ, η ∈ E(Θ−(ξ, η)) and such that Θ−(ξ, η) has maximal splitting distance to τ with
this property. Furthermore, there is a partition of the branches of Θ−(ξ, η) into
two disjoint subsets B1, B2 so that ξ can be obtained from Θ−(ξ, η) by a splitting
sequence at branches in B1, and η can be obtained from Θ−(ξ, η) by a splitting
sequence at branches in B2. Thus Φ(ξ) − Φ(Θ−(ξ, η)) is contained in the linear
span of the basis vectors e` for ` ∈ B1, and Φ(η)− Φ(Θ−(ξ, η)) is contained in the
linear span of the basis vectors eu for u ∈ B2. Since Φ(η) = Φ(ξ) + ej , this implies
that ξ = Θ−(ξ, η) and indeed, η is obtained from ξ by a split at the branch j and x
is connected to x+ ej by an edge. As a consequence, the cubical graph G is locally
determined by its 0-skeleton.

The above discussion implies the following.

(1) If x ∈ G and if i1 6= i2 are such that x+ei1 , x+ei2 ∈ G, then x+ei1+ei2 ∈ G.
(2) If x ∈ G and if ii 6= i2 are such that x−ei1 , x−ei2 ∈ G then x−ei1−ei2 ∈ G.
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Write ξ < η if ξ is splittable to η. This defines a partial order on E(τ, λ). If we
denote by ρ1, . . . , ρn the basis of (Rn)∗ dual to the basis e1, . . . , en, then we have
ξ < η if and only if ρj(Φ(ξ)) ≤ ρj(Φ(η)) for all j ≤ n. Since the cubical graph G is
locally determined by its 0-skeleton, Lemma 5.2 shows that its span is nonpositively
curved if G fulfills the 3-cube condition.

To verify that this is indeed the case let x ∈ G and assume that for some
j = 1, 2, 3, the vertices x + ιijeij are contained in G where ιij = ±1, and that the
same holds true for x+ ιijeij + ιiseis for j 6= s. We distinguish three cases.

Case 1: ιij = −1 for all j ∈ {1, 2, 3}.

By property (2) above, applied to each of the points x − eij , we know that
x − eij − eis ∈ G for all j 6= s. We can now apply property (2) to the vertices
x − ei1 , x − ei1 − ei2 , x − ei1 − ei3 to conclude that x − ei1 − ei2 − ei3 ∈ G. This
verifies the 3-cube condition in this case.

Case 2: ιij = 1 for all j ∈ {1, 2, 3}.

If we use property (1) instead of property (2) above, and change signs, then the
argument in Case 1 is valid to show the 3-cube condition.

Case 3: Up to permuting labels, ιi1 = 1 and ιi2 = ιi3 = −1.

By assumption, for j = 2, 3 the vertices x, x + ei1 , x − eij are contained in a
square whose fourth vertex is x + ei1 − eij . Writing y = x + ei1 , we observe that
y, y − ei1 = x, y − ei2 = x + ei1 − ei2 , y − ei3 = x + ei1 − ei3 ∈ G. Using property
(2) for this quadruple of points as in Case 1 above yields the the 3-cube condition.

Case 4: Up to permuting labels, ιi1 = −1 and ι(i2) = ι(i3) = 1.

Arguing as in Case 3 above reduces the claim to Case 2.

As these cases exhaust all possibilities, we conclude that the 3-cube condition is
fulfilled for the graph G. Since G is locally determined by its 0-skeleton, the span
C(G) of G is a nonpositively curved cube complex as claimed. �

To summarize, for any complete geodesic lamination λ carried by τ , the cubical
graph E(τ, λ) is the one-skeleton of a non-positively curved cube complex C(τ, λ).
Our next goal is to show that the same holds true for E(τ). We begin with having
a closer look at cycles in E(τ) of length four.

Lemma 5.5. Let c ⊂ E(τ) by an embedded closed edge-path of length four. Then
there is a train track η ∈ E(τ), and there are two large branches a 6= b of η such
that the vertices of the edge path c are η, two train tracks which are obtained from
η by a split at a, b, respectively, and a train track σ obtained from η by a split at
both a, b. In particular, c ⊂ E(η, σ) ⊂ E(τ, σ).
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Proof. Let c be a closed embedded edge-path in E(τ) of length four. Let η be a
vertex in this edge path of minimal splitting distance to τ . Let ζ, ξ be the two
vertices on the edge path c connected to η by an edge. As edges in E(τ) either
strictly increase or strictly decrease the splitting distance to τ (compare Section
5 of [H09]) and η is of minimal splitting distance to τ , the train tracks ζ, ξ are
obtained from η by a single split. Thus there are two (a priori not distinct) large
branches a, b of η such that ζ, ξ can be obtained from η by a split at a, b.

The vertex σ on c opposite to η is connected to both ζ, ξ by an edge. Thus its
splitting distance to τ either coincides with the splitting distance of η, or it equals
this splitting distance plus two.

If the splitting distance of σ to τ equals the splitting distance of η plus two, then
both ζ, ξ are splittable to σ. Together with uniqueness of splitting sequences, this
implies that the large branches a, b of η are distinct, that is, ζ, ξ are not obtained
from η by a right and left split, respectively, at the same large branch. As ζ is
obtained from η by a split at the large branch a, it contains the large branch b
(using the natural bijection between the large branches of η and ζ as before), and
σ is obtained from ζ by a split at b. By symmetry, a is a large branch in ξ, and σ
is obtained from ξ by a split at a. Thus the statement of the lemma holds true in
this case.

To complete the proof of the lemma it now suffices to show that the splitting
distance between τ and σ can not coincide with the splitting distance between τ and
η. We argue by contradiction and assume that this is the case. Then σ 6= η ∈ E(τ)
are of the same splitting distance to τ , and they are both splittable with a single
split to ζ, ξ. This violates uniqueness of the minimizer Θ−(ζ, ξ) of maximal splitting
distance to τ in Lemma 5.3. The lemma follows. �

We are now ready to construct a cube complex C(τ) from the graph E(τ) as
follows.

If c ⊂ E(τ) is an embedded cycle of length 4, then we attach to c an euclidean
square of side length one whose vertices are the vertices of E(τ) contained in c.
If a collection of such squares is isometric to the boundary of a standard cube of
dimension 3, then we attach a 3-cube to these squares, with an isometry of the
boundary, and we continue inductively. Let C(τ) be the resulting cube complex.
Observe that for any complete geodesic lamination λ carried by τ , the nonpositively
curved cube complex C(τ, λ) is isometrically embedded in C(τ). Furthermore, the
number of edges of C(τ) incident on a fixed vertex is bounded from above by twice
the number of branches of a complete train track on S and hence C(τ) is uniformly
finite (which is defined to be a cube complex such that the number of edges incident
on any vertex is uniformly bounded).

A combinatorial geodesic in a CAT(0) cube complex X is an edge path in X
which is a geodesic in the one-skeleton of the complex. A splitting arc in T T to be
a simplicial edge path with consecutive vertices τi such that for each i, τi+1 can be
obtained from τi by a single split. Let as before m > 0 be the number of branches
of a complete train track τ on S. We are now ready to show the main result of this
section.
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Proposition 5.6. Let τ be a complete train track on S.

(1) The cube complex C(τ) is CAT(0).
(2) Splitting arcs are combinatorial geodesics in C(τ).
(3) There exists a natural locally injective cubical map Φ : C(τ) → R2m where

R2m is equipped with the standard grid cubulation.

Proof. We first construct a map Φ : C(τ) → R2m as stated in part (3) of the
proposition.

Number the m branches of τ in an arbitrary way with numbers 1, . . . ,m. If
(τi) is any splitting sequence beginning with τ0 = τ , then the numbering of the
branches of τ induces a numbering of the branches of τi for all i, and this numbering
only depends on the numbering of the branches of τ but not on the choice of a
splitting sequence connecting τ to τi (see [H09] for details). If we keep track of
these numberings then we talk about numbered splitting sequences.

Extending the construction in Section 5 of [H09], define a map Φ : E(τ)→ R2m

as follows. Let e1, . . . , e2m be the standard basis of R2m, and let ρ1, . . . , ρ2m be
the dual basis of (R2m)∗. Define Φ(τ) = 0. Given a splitting sequence (τi) starting
from τ0 = τ , we extend Φ to (τi) inductively as follows.

Let us assume that we defined already Φ(τi). Assume that τi+1 is obtained from
τi by a single split at the large branch j. Define Φ(τi+1) = Φ(τi) + ej if the split
connecting τi to τi+1 is a right split, and define Φ(τi+1) = Φ(τi) + em+j if this split
is a left split. Connect Φ(τi) and Φ(τi+1) by an edge of the standard grid.

It follows from Lemma 5.1 of [H09] that with this definition, the image Φ(η) of
η ∈ E(τ) only depends on the choice of Φ(τ) and a choice of a numbering of the
branches of τ but not on the choice of a splitting sequence connecting τ to η. The
thus defined map Φ : E(τ) → R2m maps vertices of E(τ) to points in Z2m, and it
maps edges to edges in the standard grid of R2m. Every vertex in the image of Φ
can be obtained from 0 by a directed edge path, and splitting arcs are mapped by
Φ to directed edge paths in the standard grid. Here an edge path in the standard
grid of R2m is called directed if the restriction of every standard coordinate function
ρi to the path is non-decreasing. Furthermore, for η ∈ E(τ) the splitting distance
between τ and η coincides with the shortest length of a path in the standard grid
of R2m between 0 = Φ(τ) and Φ(η), and this is just the sum

∑
i(ρi(Φ(η)).

By Lemma 5.5 and the definition of the map Φ, closed edge paths in E(τ) of
length 4 are mapped by Φ to the boundary of a square, that is, a cube of dimension
2. Equivalently, Φ maps a square in C(τ) to a square in R2m. As C(τ) is determined
by its two-skeleton, we conclude that the map Φ extends to a locally injective cubical
map of C(τ) onto the span C of the cubical graph Φ(E(τ)). Furthermore, for every
complete geodesic lamination λ carried by τ , it maps C(τ, λ) onto a nonpositively
curved subcomplex of C.

Since nonpositive curvature of a cube complex is equivalent to the statement that
the link complex of every vertex is a flag complex, to show that C(τ) is nonpositively
curved it now suffices to show the following claim: Let η ∈ C(τ) and assume that
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for some k ≥ 3 there are train tracks ξ1, . . . , ξk connected to η by an edge such that
for any i 6= j, the vertices η, ξi, ξj are contained in a closed edge path in E(τ) of
length 4, that is, their images under Φ define the one-skeleton of a k− 1-simplex in
the link complex of Φ(η). Then there exists a complete geodesic lamination λ which
is carried by each of the train tracks η, ξi. Namely, if this is the case then these
edges are contained in the link complex of the nonpositively curved cube complex
C(τ, λ) (see Proposition 5.4), and as the link complex of a nonpositively curved
cube complex is a flag complex, this simplex is contained in the link complex of a
cube C ∈ C(τ, λ) ⊂ C(τ).

To see that the claim holds indeed true, assume by reordering that ξ1, . . . , ξs
are obtained from η by a collapse (the inverse of a split), and that ξs+1, . . . , ξk are
obtained from η by a split. By Lemma 5.5, as for i 6= j the train tracks η, ξi, ξj are
contained in a square, no two distinct of the train tracks ξj for s + 1 ≤ j ≤ k are
obtained from η by a split at the same large branch. But this means that there are
pairwise distinct large branches as+1, . . . , ak of η so that ξj is obtained from η by
a (right or left) split at aj . The train track ζ obtained from η by a (right or left
according to the split which results in ξi) split at each of the branches aj has the
property that η, ξi are all splittable to ζ. Furthermore, as each of the train tracks
ξi is recurrent, the same holds true for ζ and hence ζ is complete. Thus if λ is
any complete geodesic lamination carried by ζ, then η, ξi ∈ E(τ, λ) for all i ≤ k as
required. This completes the proof that C(τ) is nonpositively curved. Furthermore,
splitting arcs are combinatorial geodesics in C(τ) since the combinatorial distance
in C(τ) between τ and ζ ∈ C(τ) equals precisely the splitting distance between τ
and ζ.

To conclude that C(τ) is CAT(0) it now suffices to show that C(τ) is simply
connected, and this is the case if any closed edge-path γ in C(τ) with basepoint τ
is homotopic to the constant path.

We proceed by induction on the maximal splitting distance to τ of a point on the
path γ. If this distance equals zero then γ is constant and there is nothing to show.
Thus assume by induction that contractibility holds true for all edge loops in C(τ)
based at τ which only pass through vertices of splitting distance at most k ≥ 0 to
τ . Let γ be an edge loop based at τ which only meets vertices of splitting distance
at most k+ 1 to τ . Assume that there are n ≥ 0 vertices of splitting distance k+ 1
on γ. We successively remove these points with a homotopy as follows.

Assume without loss of generality that n ≥ 1. Let ` > 0 be such that the splitting
distance between γ(`) and τ equals k + 1. As an edge in E(τ) either increases or
decreases the splitting distance to τ by one, by Lemma 5.5 and its proof, the
splitting distance of γ(`− 1), γ(`+ 1) to τ equals k and therefore γ(`− 1), γ(`+ 1)
are both splittable to γ(`). If γ(`− 1) = γ(`+ 1) then γ[`− 1, `+ 1] passes through
the same edge twice, in opposite direction, and we can homotope γ to an edge-path
with n− 1 points of splitting distance k + 1 to τ .

Otherwise by Lemma 5.5 and Lemma 5.3 and their proofs, the arc γ[`− 1, `+ 1]
is contained in the boundary of a two-dimensional cube C in C(τ) whose fourth
vertex x = Θ−(γ(`− 1), γ(`+ 1)) opposite to γ(`) has splitting distance k− 1 to τ .
Then γ[`− 1, `+ 1] can be homotoped in C with fixed endpoints to an edge path of
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length two passing through the vertices γ(`−1), x, γ(`+1). This homotopy reduces
the number of vertices on γ with splitting distance k + 1 to τ by one. Removing
in n steps each of vertices on γ of splitting distance k + 1 to τ in this way yields a
closed edge path which is homotopic to γ and which does not pass through a vertex
of splitting distance k + 1 to τ . An application of the induction hypothesis then
yields the induction step and completes the proof that C(τ) is CAT(0). �

The interval I(x, y) defined by two vertices x, y in the CAT(0) cube complex
C(τ) is the set of all vertices z such that d(x, y) = d(x, z) + d(z, y) where d denotes
the combinatorial distance, that is, the shortest length of a path in the one-skeleton
of C(τ) connecting x to y. The median of three distinct vertices x, y, z is the
intersection I(x, y) ∩ I(y, z) ∩ I(z, x), and this median is unique. We have

Lemma 5.7. Let σ, η ∈ E(τ); then the vertex Θ−(σ, η) is the median of the points
σ, η, τ in C(τ).

Proof. Let σ, η ∈ E(τ). Since τ is splittable to Θ−(σ, η) and since splitting arcs
are combinatorial geodesic in C(τ), it suffices to show that there is a combinatorial
geodesic connecting σ to η which passes through Θ−(σ, η).

This statement is a consequence of Lemma 5.4 of [H09] if there exists some
complete geodesic lamination λ such that σ, η ∈ E(τ, λ). To extend the claim to
the more general situation at hand, we proceed by induction on the sum of the
lengths of the two splitting sequences connecting Θ−(σ, η) to σ, η.

If this length is zero there is nothing to show, so assume that the claim holds
true if the sum of these lengths is at most k − 1 for some k − 1 ≥ 0. Let now σ, η
be such that the sum of these lengths equals k. Let σi, ηj be a splitting sequence
connecting Θ−(σ, η) to σ, η. We may assume that the length of these sequences is
positive. Connect σ to η by a combinatorial geodesic ζi.

We consider two cases. In the first case, ζ1 is obtained from ζ0 = σ by a single
split. We claim that in this case Θ−(ζ1, η) is obtained from Θ−(σ, η) by a single
split at a large branch e with the following properties. Via the natural identification
of the branches of Θ−(σ, η) with the branches of σ defined by some (and hence any)
splitting sequence connecting Θ−(σ, η) to σ, the branch e is a large branch in σ,
and the splitting sequence connecting Θ−(σ, η) to η contains a split at e.

To see that this holds true note that by induction assumption, the length of a
combinatorial geodesic connecting ζ1 to η is the sum of the lengths of a splitting
sequence connecting Θ−(ζ1, η) to ζ1, η, and hence the sum of these lengths has to
be strictly smaller than the sum of the lengths of the splitting sequences σi, ηj .
Since Θ−(σ, η) is splittable to both ζ1, η, we conclude that Θ−(ζ1, η) is obtained
from Θ−(σ, η) by a nontrivial splitting sequence. By Lemma 5.3 and its proof, this
splitting sequence is of length one and of the above form. But then the sum of
the combinatorial distances between σ and Θ−(σ, η) and η and Θ−(σ, η) equals the
combinatorial distance between σ, η and we are done.
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In the second case, ζ1 is obtained from σ by a single collapse. Using once more
Lemma 5.3 and its proof, we conclude that we have Θ−(ζ1, η) = Θ−(σ, η) in this
case and the claim follows as before. This completes the proof of the lemma. �

Let ϕ be a pseudo Anosov mapping class whose horizontal and vertical measured
geodesic laminations are complete (that is, minimal and maximal). Let τ be a train
track defining a splittable expansion of ϕ. This means that τ can be connected to
ϕ(τ) by a splitting sequence (τi), with τ0 = τ and τn = ϕ(τ). We require further-
more that a carrying map τi+n → τi maps every edge of τi+n onto τi. As every
pseudo-Anosov mapping class admits a train track expansion, a pair consisting of
a pseudo-Anosov mapping class ϕ with minimal and maximal horizontal and verti-
cal measured geodesic lamination and a complete train track τ which is splittable
to ϕ(τ) and has the above properties can be found by perhaps replacing a given
pseudo-Anosov mapping class by a positive power.

Denote as before by E(τi) ⊂ T T the complete subgraph of all train tracks which
can be obtained from τi by a splitting sequence. Then ϕ−1(E(τi+n)) = E(τi) ⊃
E(τi+n) for all i. Hence

E = ∪jϕ−jE(τ0)

is the one-skeleton of a complete uniformly finite CAT(0)-cube complex

C(E)

which contains each of the cube complexes C(E(τi)). Note that E is a complete
subgraph of T T .

For i ∈ Z and j = 0, . . . , n − 1 write τin+j = ϕiτj . Then for each i, the train
track τi is splittable to τi+1.

Let ν be the support of the repelling measured geodesic lamination of the pseudo-
Anosov mapping class ϕ. Then ν is a minimal complete uniquely ergodic geodesic
lamination. Let CL be the space of complete geodesic laminations on S equipped
with the Hausdorff topology. The following is taken from [H09], we include the
short argument for completeness.

Lemma 5.8. For every complete geodesic lamination µ ∈ CL−ν there exists some
i such that µ is carried by τi.

Proof. By Lemma 2.3 of [H09], the set U of all complete geodesic laminations
carried by τ0 is open and closed in CL, and it contains the support of the attracting
measured geodesic lamination for ϕ. As ϕ acts on CL with north-south dynamics,
we conclude that ∪iϕ−iU = CL−{ν}. Now a lamination in the set ϕ−iU is carried
by ϕ−iτ0 = τi which shows the lemma. �

A map between metric spaces F : X → Y is called coarsely surjective if there
exists a number R > 0 such that every point in Y is at distance at most R to F (X).
We have

Proposition 5.9. The map C(E) → T T which is defined by the vertex inclusion
is coarsely surjective.
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Proof. Let F be any marking of S with pants decomposition Q. By Lemma 5.8,
there exists i such that the train track τi carries each complete geodesic lamination
ν in standard form for Q and that furthermore τi is filled by Q. The proposition
now follows from Corollary 3.12. �

6. The principal curve graph

In this section we consider the curve graph CG(S) of a non-exceptional surface
S of finite type. Its vertices are isotopy classes of essential simple closed curves
on S, that is, simple closed curves which are not contractible or homotopic into
a puncture, and where two such vertices are connected by an edge of length one
if they can be realized disjointly. We introduce an electrification of the curve
graph, called the principal curve graph, and show that it is hyperbolic, of infinite
diameter. We study the Gromov boundary of this graph and prove Theorem 4
from the introduction. In Section 7, we use the principal curve graph to identify
the regular Roller boundary of the CAT(0) cube complex C(E). This section can
be read independently of the rest of the article.

Let c, d be two simple closed curves on S in minimal position, that is, c, d intersect
in the minimal number of points. In the sequel we always assume that this is the
case. Then S − (c ∪ d) is a union of complementary regions whose boundaries
consist of subarcs of c and d in alternating order. In particular, a complementary
component which is simply connected is a polygon with an even number of sides,
and a complementary component which is a punctured disk is a punctured polygon
with an even number of sides.

The curves c, d bind S if each component of S−(c∪d) is a disk or a once punctured
disk. This is equivalent to stating that there is no component of S − (c ∪ d) which
contains an essential simple closed curve.

Let us assume in the sequel that c, d bind S. By reasons of Euler characteristic,
there is at least one complementary component which is a polygon with at least 6
sides or once punctured polygons with at least 4 sides.

Definition 6.1. The principal curve graph PC(S) of S is the graph whose vertices
are isotopy classes of essential simple closed curves on S and where two such curves
c, d are connected by an edge of length one if and only if there is a component
of S − (c ∪ d) which either contains an essential simple closed curve of S, or is a
polygon with at least 8 sides or a once punctured polygon with at least four sides.

By construction, the mapping class groupMCG acts on PC(S) as a group of sim-
plicial automorphisms. Furthermore, PC(S) contains a MCG-invariant subgraph
CG0(S), with the same set of vertices, that is, vertices are simple closed curves, and
where two such vertices c, d are connected by an edge of length one if and only if
there is a component of S − (c∪ d) which contains an essential simple closed curve
of S. Then this curve is disjoint from both c, d and therefore the distance in the
curve graph CG(S) of S between c, d is at most two. Vice versa, if c, d are connected
in the curve graph by an edge, then they are disjoint, and S − (c ∪ d) contains a
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component which is not simply connected. Thus c, d are connected in CG0(S) by
an edge. This shows

Lemma 6.2. CG0(S) is two-quasi isometric to the curve graph CG(S) of S.

As PC(S) is obtained from CG0(S) by adding some edges, the graph PC(S) can
be thought of as an electrification of CG(S). If dPC(c, d) ≥ 2 then we say that c, d
completely fill S.

The following lemma is based on a construction due to Masur and Minsky (Sec-
tion 4 of [MM04]).

Lemma 6.3. Let c, d be any two simple closed curves on S which bind S. Then
there exist a recurrent one-switch train track η(c, d) which carries d and intersects
c in a single point. This train track is maximal only if c, d completely fill S.

Proof. Using the notations from the lemma, choose a component I of c−d contained
in the boundary of a polygonal component of S − (c ∪ d) with at least 6 sides or a
once punctured polygonal component of S − (c ∪ d) with at least four sides. Such
a component C always exists by reasons of Euler characteristic. If the distance
between c, d in PC(S) equals one, then we may assume that C is a polygonal
component with at least 8 sides or a once punctured polygonal component with at
least 4 sides. Contract c − I to a point. The graph G obtained from c ∪ d in this
way has a single vertex p which is the image of c− I. Furthermore, it intersects c
in a single point. Impose a switch structure at the vertex p as follows.

Declare all half-edges of G which are subarcs of d and leave c to a fixed side to
be incoming, and declare the half-edges of G which are subarcs of d and leave c to
the opposite side to be outgoing. The result of this construction is a bigon track σ̂,
that is, a graph which has all properties of a train track except that it may contain
bigons. These bigons can be collapsed to yield a train track σ which carries d and
intersects c in a single point. As σ carries the simple closed curve d and is filled by
d, the train track σ is recurrent.

Let us inspect the complementary regions of σ̂. If E is a component of S−(c∪d)
with 2` sides not containing I, then each side e of E contained in c is contracted
to a point in the construction of σ̂, and the two sides of E adjacent to e meet at
a cusp of the complementary region of σ̂ which is the collapse of E. Thus any
complementary polygon (or once punctured complementary polygon) of S − (c ∪
d) with 2` sides not containing I gives rise to a complementary component of σ̂
which is a topological disk (or once punctured disk) with ` cusps in the boundary.
Complementary quadrangles collapse to complementary bigons.

The side I of the component C is removed, and the component C merges with
the second component C ′ of S − (c ∪ d) which contains I in its boundary to a
complementary component D of σ̂. To analyze this component, we distinguish
three cases.

If C ′ = C then D contains an essential simple closed curve. Namely, in this case
there is a simple closed curve in C ∪ I which intersects c in a single point contained
in I, and this simple closed curve is contained in the complementary region D of σ̂.
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Now let us assume that C is a polygon without puncture and 2` ≥ 6 sides and
that C ′ 6= C. If C ′ is a polygon with 2k ≥ 4 sides, then D is disk with `+k− 2 ≥ `
cusps in the boundary. Similarly, if C ′ is a once punctured polygon with 2k ≥ 2
sides, then D is a once punctured disk with `+k−2 ≥ `−1 cusps in the boundary.

By symmetry, we are left with the case that both C,C ′ are once punctured
polygons. But then the component D contains two punctures and hence it contains
an essential simple closed curve on S surrounding the punctures.

As a consequence, if C is a polygon with at least 8 sides or a once punctured
polygon with at least 4 sides, then the bigon track σ̂ and hence the train track
σ contains a complementary component which either contains an essential simple
closed curve, or is a polygon with at least 8 sides, or is a once punctured polygon
with at least 4 sides. In particular, σ is not maximal. This completes the proof of
the lemma. �

Denote by

Ψ : CG(S)→ PC(S)

the map induced by the vertex inclusion. This map is one-Lipschitz. An unparam-
eterized L-quasi-geodesic in a geodesic metric space X is a map ψ : [a, b]→ X with
the property that there exists an increasing homeomorphism ρ : [0, c]→ [a, b] such
that ψ ◦ ρ : [0, c]→ X is an L-quasi-geodesic.

A vertex cycle of a recurrent train track τ is an immersed simple closed curve
in τ which is an extreme point for the cone of all transverse measures for τ . Such
a vertex cycle either is an embedded simple closed curve in τ or a dumbbell. In
particular, a closed trainpath defined by a vertex cycle passes through any branch
at most twice. As a consequence, the geometric intersection number between any
two vertex cycles on τ is uniformly bounded, and there is a coarsely well defined
map

(6) Υ : T T → CG(S)

which associates to a train track one of its vertex cycles. Here coarsely well defined
means that Υ depends on choices, but any two choices give rise to maps which map
a given point to images of uniformly bounded distance. We refer to [H06] for more
information on this construction.

Proposition 6.4. The principal curve graph PC(S) is hyperbolic. Geodesics in
CG(S) map by Ψ to uniform unparameterized quasi-geodesics in PC(S).

Proof. The proposition follows from the work of Kapovich and Rafi [KR14] if we can
verify that the conditions in Corollary 2.4 of [KR14] are fulfilled. For this it suffices
to show the existence of a number L > 1 with the following property. Whenever
c, d are curves whose distance in the principal curve graph is one, then there exists
an L-quasi-geodesic ρ : [0,m]→ CG(S) connecting ρ(0) = c to ρ(m) = d such that
the diameter of Ψ(ρ[0,m]) ⊂ PC(S) is at most L.

This is obvious if c, d do not bind S as in this case, their distance in the curve
graph is at most two. If c, d bind S then we construct such a quasi-geodesic using
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the fact that splitting sequences of (not necessarily complete) train tracks on S are
mapped by the map Υ to uniform unparameterized quasi-geodesics in CG(S) [H06].

Let σ be a one-switch train track as in Lemma 6.3. Then σ has a complementary
component different from a trigon or a once punctured monogon. In particular, any
two simple closed curves carried by σ have distance one in PC(S). Furthermore,
the distance between a vertex cycle of σ and the curve c is uniformly bounded since
this holds true for their distance in the curve graph.

There is a splitting and collision sequence σi issuing from σ which consists of
train tracks which carry d and which connects σ to the train track which consists
of the single curve d [PH92]. Associating to each train track σi one of its vertex
cycles ci defines a uniform unparameterized quasi-geodesic in CG(S) [H06] which
connects a vertex cycle c0 of σ = σ0, that is, a simple closed curve in a uniformly
bounded neighborhood of c in CG(S), to the curve d. Since each of the curves ci
is carried by σ, this quasi-geodesic consists of curves whose distance to d in the
principal curve graph equals at most one.

Hyperbolicity of the principal curve graph now follows from Corollary 2.4 of
[KR14]. This result also shows that geodesics in CG(S) map to uniform unparam-
eterized quasi-geodesic in PC(S). This is what we wanted to show. �

Proposition 6.4 does not imply that the principal curve graph has infinite di-
ameter. We next show that this is indeed the case. To this end recall that by a
construction due to Thurston and Veech, simple closed curves c, d which bind S
determine a line of area one holomorphic quadratic differentials on S with hori-
zontal and vertical measured geodesic lamination supported in c, d, respectively.
These differentials define the cotangent line of a Teichmüller geodesic. If c, d are
connected by an edge in the principal curve graph, then these quadratic differentials
either have a zero of order at least two, or one of the marked points (punctures) is
a regular point or a zero of the differential and not a simple pole.

A simple closed curve admits a unique transverse measure up to scale and hence
can be viewed as a projective measured geodesic lamination. Using compactness of
the space PML of projective measured geodesic laminations we observe

Lemma 6.5. Let (ci, di) be a sequence of pairs of simple closed curves such that
dPC(ci, di) ≤ 1 for all i. Assume that the sequence ci converges as i→∞ in PML
to a projective measured geodesic lamination whose support µ is both minimal and
maximal. Then after perhaps passing to a subsequence, the sequence di converges
to a projective measured geodesic lamination with support µ.

Proof. Let ρ ∈ PML be a limit of the sequence ci. The support of ρ equals µ.
Using the notations from the lemma, by compactness and passing to a subsequence
of the sequence di, we may assume that di converges in PML to a projective
measured geodesic lamination ξ. We argue by contradiction and assume that the
support of ξ is distinct from µ. Since µ is minimal and maximal, this implies
that ξ together with the projective measured geodesic lamination ρ determines a
Teichmüller geodesic whose cotangent line γ consists of quadratic differentials with
vertical and horizontal projective measured geodesic laminations ρ, ξ, respectively.
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Now two projective measured geodesic laminations ρ, ξ determine a Teichmüller
geodesic in this way if and only if for every measured geodesic lamination ζ, the
geometric intersection number between ζ and at least one of the two laminations
ρ, ξ is positive. Note that this property is invariant under scaling and hence makes
sense for projective measured geodesic laminations. As this is an open condition,
we conclude that for sufficiently large i the pair (ci, di) defines the cotangent line
γi of a Teichmüller geodesic, that is, an orbit of the Teichmüller flow on bundle of
area one quadratic differentials. Furthermore, by continuity, the cotangent lines γi
of these Teichmüller geodesics converge locally uniformly to γ in the bundle over
Teichmüller space whose fiber over a Riemann surface X is the sphere of area one
quadratic differentials on X.

On the other hand, as the distance in the principal curve graph between ci, di
equals one, the cotangent line γi is not contained in the principal stratum of qua-
dratic differentials with only simple zeros and simple poles at the marked points
(here we view an abelian differential as a quadratic differential with all zeros of
even order). As the complement of the principal stratum in the Teichmüller space
of quadratic differentials is closed and invariant under the Teichmüller flow, the
cotangent line of the limiting Teichmüller geodesic is contained in the complement
of the principal stratum as well. But any quadratic differential whose horizon-
tal measured lamination is supported in a minimal complete geodesic lamination
is contained in the principal stratum. This is a contradiction which shows the
lemma. �

We are now ready to complete the proof that the diameter of PC(S) is infinite.
The following proposition gives a more precise information used for the investigation
of hyperplanes in C(E). For its purpose and later use, define a full split of a train
track η to be a train track obtained from η by a single split at each large branch. A
full splitting sequence is a sequence (ξi) of complete train tracks such that for each
i, the train track ξi+1 can be obtained from ξi by a full split. If λ is a complete
geodesic lamination carried by η, then a full λ-split of η is a full split with the
property that the split track carries λ.

For the purpose of the proof of the following propopsition and later use, recall
[H06, K99] that the Gromov boundary of the curve graph is the space of minimal
geodesic laminations which fill S, that is, which intersect each simple closed curve
on S transversely, equipped with the coarse Hausdorff topology. In this topology,
a sequence νi of minimal geodesic laminations which fill converges to a minimal
filling lamination ν if any limit of νi in the Hausdorff topology contains ν as a
sublamination. Note that it also makes sense for a sequence of simple closed curves
to converge to a minimal filling lamination in the coarse Hausdorff topology.

Proposition 6.6. Let η be a complete train track and let λ be a minimal complete
geodesic lamination carried by η. Let (ηi) be a sequence of full λ-splits issuing from
η0 = η. If ci is a vertex cycle of ηi then dPS(c0, ci) → ∞. In particular, the
diameter of PC(S) is infinite.

Proof. The proof of this proposition is a variation of an argument of Luo as used
in [MM99].
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Let (ηi) be any full splitting sequence consisting of λ-splits for a minimal com-
plete geodesic lamination λ. The map which associates to i the simple closed curve
Υ(ηi) = ci is a uniform unparameterized quasi-geodesic in the curve graph [H06]
converging to λ, viewed as a point in the Gromov boundary of CG(S). In particular,
ci converges in the Hausdorff topology to λ as i → ∞ [H06] (more precisely, we
would have to consider convergence in the coarse Hausdorff topology, but as λ is
minimal and complete, this is equivalent to convergence in the Hausdorff topology).

By Proposition 6.4, the assignment i → ci = Υ(ηi) also defines a uniform un-
parameterized quasi-geodesic in the principal curve graph. Let us assume to the
contrary that this quasi-geodesic is of finite diameter, that is, that dPC(c0, ci) is
uniformly bounded. Then by passing to a subsequence, we may assume that there
is a number k > 0 so that dPC(c0, ci) = k for all i. Let c1i ∈ PC(S) be a vertex so
that dPC(c0, c

1
i ) = k − 1 and dPC(c

1
i , ci) = 1 for all i.

By Lemma 6.5, we know that c1i → λ in the Hausdorff topology. Repeat this
argument with the sequence c1i . After k such steps we conclude that c0 → λ in the
Hausdorff topology, which is a contradiction. �

We use this to show

Proposition 6.7. The Gromov boundary of the principal curve graph is the space
of minimal complete geodesic laminations, equipped with the Hausdorff topology.

Proof. A point in the Gromov boundary ∂CG(S) of CG(S) can be viewed as an
equivalence class of uniform quasi-geodesic rays in CG(S) where two such quasi-
geodesic rays are equivalent if their Hausdorff distance in CG(S) in finite (this is
true in the situation at hand in spite of the fact that the curve graph is not locally
finite). The same holds true for the Gromov boundary of the principal curve graph.

Since CG(S) and PC(S) have the same vertices and, by Proposition 6.4, the
same uniform quasi-geodesics up to parameterization, we conclude that the Gromov
boundary of the principal curve graph is a quotient of the subspace of the Gromov
boundary of CG(S) consisting of equivalence classes of those quasi-geodesic rays in
CG(S) whose diameter in PC(S) are infinite.

By [H06], the image under the map Υ of a full splitting sequence consisting of
λ-splits for a minimal complete geodesic lamination λ is a uniform unparameter-
ized quasi-geodesic in the curve graph converging to λ ∈ ∂CG(S), and by Proposi-
tion 6.6, this unparameterized quasi-geodesic has infinite diameter in PC(S). Fur-
thermore, two distinct such minimal complete geodesic laminations define non-
equivalent quasi-geodesic rays in PC(S) and hence distinct points in the Gromov
boundary of PC(S). Namely, such a pair of points determines a biinfinite uniform
quasi-geodesic in the curve graph and hence by Proposition 6.4 a biinfinite unpa-
rameterized quasi-geodesic in PC(S) whose two half-rays have infinite diameter by
Proposition 6.6. As a consequence, the subspace of ∂CG(S) of all minimal complete
geodesic laminations embeds (as a set) into the Gromov boundary of PC(S).
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We show next that a minimal filling geodesic lamination which is not complete
defines an equivalence class of uniform quasi-geodesic rays in CG(S) which have
finite diameter in PC(S).

Thus let λ be a minimal geodesic lamination which fills S but which is not

complete. Let λ̂ be a complete geodesic lamination which contains λ as its minimal
component. By Lemma 3.2 of [H09], there exists a complete train track η containing
a subtrack ξ so that λ is carried by ξ and such that there is a bijection between
the complementary components of λ and the complementary components of ξ. In
particular, at least one of the complementary components of ξ is a polygon with
more than three sides or a once punctured polygon with at least two sides.

Let (ηi) be a splitting sequence beginning at η0 = η which is induced from a
full sequence of λ-splits ξi of ξ. For each i let ci be a vertex cycle of ξi. As both
c0, ci are carried by ξ, there is at least one component of S − (c0 ∪ ci) which is a
polygon with at least 8 sides or a once punctured polygon with at least four sides.
This yields that the distance in PC(S) between c0 and ci is at most one for all i.
Since i → ci is an unparameterized quasi-geodesic in the curve graph of S which
converges in CG(S) ∪ ∂CG(S) to λ ∈ ∂CG(S) [H06], this implies that λ does not
define a point in the Gromov boundary of PC(S).

To summarize, as a set, the Gromov boundary of PC(S) can be identified with
the subspace ∂PC(S) of ∂CG(S) of all minimal complete geodesic laminations. That
this inclusion is a homeomorphism onto its image can be seen with the same argu-
ments used before. Namely, as the inclusion CG(S) → PC(S) is one-Lipschitz, the
topology on ∂PC(S) as a subspace of ∂CG(S) is finer than the topology on ∂PC(S)
as the Gromov boundary of PC(S). Thus it suffices to show that the inclusion map
∂PC(S) → ∂CG(S) is continuous where ∂PC(S) is equipped with the topology as
the Gromov boundary of PC(S), and this is equivalent to stating that if λi → λ in
∂PC(S), then λi converges to λ in the Hausdorff topology.

To establish this claim we argue by contradiction and we assume that there exists
a sequence λi ⊂ ∂PC(S) which converges to λ ∈ ∂PC(S) but does not converge
to λ in ∂CG(S). By compactness of the space of geodesic laminations equipped
with the Hausdorff topology, up to passing to a subsequence, we may assume that
λi → µ in the Hausdorff topology where µ 6= λ. Assume without loss of generality
that λi 6= λ for all i. Equip λi, λ with projective transverse measures αi, β. Then
for each i, the pair (αi, β) of projective measured geodesic laminations determines
a Teichmüller geodesic γi.

By passing to another subsequence, we may assume that the Teichmüller geo-
desics γi converge locally uniformly to a Teichmüller geodesic γ defined by a pair
(α, β) of projective measured geodesic laminations, where α is supported in µ 6= λ.
Now by [MM99], associating to a point X on the Teichmüller geodesic γ a sim-
ple closed curve in CG(S) whose length for the hyperbolic metric X is uniformly
bounded defines a uniform unparameterized quasi-geodesic in CG(S). As the Te-
ichmüller geodesics γi, γ all pass through a fixed compact subset of Teichmüller
space, together with Proposition 6.4, this implies that there are uniform quasi-
geodesics in PC(S) connecting λ to λi which pass through a fixed subset of PC(S)
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of uniformly bounded diameter, violating the assumption that λi → λ in ∂PC(S).
This completes the proof of the proposition. �

Recall that any pseudo-Anosov mapping class ϕ ∈ MCG has a unique axis in
Teichmüller space T (S) of S, that is, an invariant Teichüller geodesic on which ϕ
acts as a nontrivial translation.

Corollary 6.8. Let ϕ ∈ MCG be a pseudo-Anosov mapping class. The ϕ acts as
a hyperbolic isometry on the principal curve graph if and only if the cotangent line
of its axis is contained in the principal stratum of quadratic differentials with only
simple zeros.

Proof. For a point X ∈ T (S) define Υ0(X) ∈ CG(S) to be a simple closed curve of
uniformly bounded length. If γ is any Teichmüller geodesic, then the assignment
t→ Υ0(γ(t)) is a uniform unparameterized quasi-geodesic in CG(S) [MM99].

Let γ ⊂ T (S) be the axis of a pseudo-Anosov element ϕ and assume that the
cotangent line of γ is defined by quadratic differentials in the principal stratum.
Then the horizontal and vertical measured geodesic laminations are minimal and
complete as there can not be any horizontal or vertical saddle connections. By
Proposition 6.4 and Proposition 6.6, the image under Υ0 of the line γ is an un-
parameterized quasi-geodesic in PC(S) of infinite diameter. As ϕ acts on this
quasi-geodesic as a nontrivial translation, this quasi-geodesic is a quasi-axis for ϕ
acting on PC(S) and hence ϕ acts as a hyperbolic isometric on PC(S).

Vice versa, if the axis of ϕ is not contained in the principal stratum, then the
support of the horizontal and vertical measured geodesic laminations defined by
this axis is not complete. By Proposition 6.7, this implies that the image of the
axis under the map Υ0 has finite diameter in PC(S). The corollary follows. �

We use Proposition 6.7 and Corollary 6.8 to show Theorem 4 from the introduc-
tion. For its formulation, call a subgroup Γ of MCG non-elementary if it contains
at least two independent pseudo-Anosov elements.

The entropy of a probability measure µ on the group MCG is defined as

H(µ) = −
∑

g∈MCG
µ(g) logµ(g).

The measure µ is said to have finite logarithmic moment for the action ofMCG on
the curve graph CG(S) if ∑

g∈MCG
µ(g)| log dCG(S)(c, gc)| <∞.

Theorem 6.9. Let Ω be a random walk onMCG generated by a probability measure
µ on MCG with the following properties.

(1) The support of µ generates a non-elementary subgroup Γ ofMCG as a semi-
group which contains at least one pseudo-Anosov element whose attracting
fixed point is a minimal complete geodesic lamination.
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(2) µ has finite entropy and finite logarithmic moment for the action of MCG
on the curve graph.

Then the Poisson boundary of the walk can be realized as aMCG-invariant measure
class on the space ∂PC(S) of minimal complete geodesic laminations.

Proof. Since by assumption and Corollary 6.8, the semigroup generated by the
support of µ is non-elementary and contains at least one pseudo-Anosov element
ϕ which acts as a hyperbolic isometry on PC(S), this group is non-elementary as
a group of isometries acting on PC(S) (apply Proposition 6.7 and Corollary 6.8 to
conjugates of ϕ).

Theorem 1 of [MT18] now shows that for any vertex x ∈ PC(S), almost every
sample path (ωnx) ⊂ PC(S) converges to a point ω+ ∈ ∂PC(S). The resulting
hitting measure ν is non-atomic, and it is the unique µ-stationary measure on
∂PC(S).

The same construction also applies for the action of the random walk on CG(S).
As ∂PC(S) ⊂ ∂GG(S) by Proposition 6.7, the µ-stationary measure ν on ∂PC(S)
also can be viewed as a µ-stationary measure on ∂CG(S). By uniqueness, ν equals
the hitting measure of the random walk on CG(S).

Now the action ofMCG on CG(S) is acylindrical [Bw08] and therefore by Theo-
rem 1.5 of [MT18], the Poisson boundary of (MCG, µ) equals the Gromov boundary
∂CG(S) of CG(S), equipped with the hitting measure ν. But this hitting measure
is just the unique stationary measure for the action of MCG on the boundary of
the principal curve graph, which completes the proof of the theorem. �

7. The regular Roller boundary and geodesic laminations

In this section we resume the discussion of the large scale geometry of the CAT(0)
cube complex C(E) constructed in Section 5 and prove the second part of Theorem
1 from the introduction. When discussing general properties of CAT(0) cube com-
plexes, we follow [FLM18] which contains an excellent summary of the statements
we need.

We begin with defining the Roller boundary of a CAT(0) cube complex X. To
this end define a midcube of a cube [0, 1]n to be the preimage of 1/2 under one of
the i coordinate projections. A hyperplane in X is a CAT(0)-convex subset whose
intersection with each cube is either a midcube or empty. The complement of a
hyperplane in X has two connected components. The intersection of one of these
components with the vertex set of X is called a halfspace h. The intersection of
the second component with the vertex set of X is the complementary half-space h∗.
Let H be the collection of all halfspaces in X.

For a vertex x ∈ X consider the collection Ux = {h ∈ H | x ∈ h}. The vertex x
is uniquely determined by the set Ux. This yields an embedding X → 2H obtained
by x→ Ux.
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Definition 7.1. The Roller compactification X of X is the closure of X in 2H.
The Roller boundary is then ∂X = X −X.

Note that for any ξ ∈ ∂X we can consider the set Uξ of half-spaces defined by
ξ, an analog of the set of half-spaces containing a vertex of X. The set Uξ fulfills
the axioms of an ultrafilter on H:

(1) For all h ∈ H, either h ∈ Uξ or h∗ ∈ Uξ but not both.
(2) If h ∈ Uξ and h′ ⊃ h then h′ ∈ Uξ.

Two half-spaces h, k are called transverse if the four intersections h ∩ k, h ∩ k∗,
h∗ ∩ k, h∗ ∩ k∗ are all nonempty. We use this terminology to define the regular
Roller boundary (Section 5.3 of [FLM18]).

Definition 7.2. Two half-spaces h and k are strongly separated if there is no half-
space which is transverse to both h, k. Two hyperplanes are strongly separated if
this holds true for the half-spaces they bound.

Definition 7.3. A point ξ ∈ ∂X is called regular if for every h1, h2 ∈ Uξ there is
k ∈ Uξ such that k ⊂ h1∩h2 and that k is strongly separated from both h1, and h2.
The regular Roller boundary is the closure in ∂X of the set ∂rX of regular points.

By definition, the regular Roller boundary of X is a compact totally disconnected
topological space. The goal of this section is to show

Theorem 7.4. There is a natural homeomorphism from the space CL of complete
geodesic laminations on S, equipped with the Hausdorff topology, onto the regular
Roller boundary of C(E).

The idea of the proof of Theorem 7.4 is to relate hyperplanes in C(E) to the
principal curve graph PC(S) of S. To this end note that a hyperplane H in C(E) is
determined by an edge in E and hence by a large branch b in a train track η ∈ C(E)
and the choice of a right or left split of b, viewed as an edge in E.

Any hyperplane H in a CAT(0) cube complex is parallel to two combinatorial
hyperplanes which are subcomplexes of the cube complex. As the graph E is di-
rected, for a hyperplane H ⊂ C(E) determined by a train track η and a large branch
b in η we can distinguish the negative combinatorial hyperplane H− consisting of
train tracks which contain the large branch b. The parallel combinatorial hyper-
plane consists of train tracks which can be obtained from a train track in H− by a
single right (or left) split at the distinguished large branch and is called the positive
combinatorial hyperplane H+ of H. Note that if both the right and the left split of
η are complete, then H− is the negative combinatorial hyperplane of two distinct
(and in fact disjoint) positive combinatorial hyperplanes in C(E).

Denote by dPC the distance in the principal curve graph. We show

Lemma 7.5. There is a number χ > 0 with the following property. Let H− ⊂ C(E)
be a negative combinatorial hyperplane and let η, ξ ∈ H− be such that η is splittable
to ξ. Then for any vertex cycles c of η, d of ξ we have dPC(c, d) ≤ χ.
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Proof. Let b be a large branch of a train track η. The large branch b determines a
negative hyperplane H− in C(E). If ξ ∈ H− can be obtained from η by a splitting
sequence, then such a splitting sequence does not contain a split at b. In particular,
b is a large branch in ξ.

Let ξ′ be obtained from ξ by a right (or left) split at b, chosen in such a way that
ξ′ is complete. Let η′ be obtained from η by a right (or left) split at b. Then η′ is
transversely recurrent and splittable to the complete train track ξ′ and hence it is
complete. The train track ξ′′ obtained from ξ′ by removal of the small branch of
the split is carried by the train track η′′ obtained from η′ by removal of the small
branch of the split.

Now the complementary component of η′′ containing the diagonal of the split
which connects η to η′ is neither a trigon nor a once punctured monogon. Since ξ′′

is carried by η′′, the distance in the principal curve graph between a vertex cycle
of η′′ and ξ′′ is at most one. But the distance in the curve graph between a vertex
cycle of η and a vertex cycle of η′′ is uniformly bounded, and the same holds true
for the distance in the curve graph between a vertex cycle of ξ and a vertex cycle
of ξ′′. Hence by the triangle inequality, the distance in the principal curve graph
between a vertex cycle of η and a vertex cycle of ξ is uniformly bounded. This
shows the lemma. �

The next example shows that hyperplanes give a finer information than a de-
composition of S into subsurfaces.

Example 7.6. Let η be a non-complete recurrent transversely recurrent train track
which decomposes S into trigons and one sixgon. This train track can be extended
to a complete train track ξ by inserting in the interior of the sixgon the union of
a large branch e and 4 small branches, each with one endpoint on a different side
of the sixgon. Assuming that ξ is a vertex of the cube complex C(E), any splitting
sequence ξi starting at ξ0 = ξ which is induced by a splitting sequence of η is
contained in the negative combinatorial hyperplane defined by the large branch e.
This also extends to train tracks obtained from η by a collapse at a small branch not
contained in the interior of the sixgon as long as this train track is still contained
in C(E).

We use Lemma 7.5 to show.

Corollary 7.7. Let c, d be any two vertex cycles of train tracks η, ξ contained in
the same negative combinatorial hyperplane of C(E). Then dPC(c, d) ≤ 2χ where
χ > 0 is as in Lemma 7.5.

Proof. Let H− be a negative combinatorial hyperplane in C(E) and let ξ, η ∈ H−.
Consider the train track Θ−(ξ, η) ∈ E constructed in Lemma 5.3. By construction,
Θ−(ξ, η) is splittable to ξ, η. Furthermore, if b is any large branch of Θ−(ξ, η) then
there are three possibilities.

(1) A splitting sequence connecting Θ−(ξ, η) to both ξ, η does not contain a
split at b. We call b neutral in this case.
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(2) Up to exchanging ξ, η, a splitting sequence connecting Θ−(ξ, η) to ξ contains
a split at b, but this is not true for a splitting sequence connecting Θ−(ξ, η)
to η.

(3) A splitting sequence connecting Θ−(ξ, η) to ξ contains a right (or left) split
at b, and a splitting sequence connecting Θ−(ξ, η) to η contains a left (or
right) split at b.

Since ξ, η are contained in the same negative combinatorial hyperplane H−, there
exists a neutral large branch b in Θ−(ξ, η) defining the hyperplane, and Θ−(ξ, η) ∈
H−. Since Θ−(ξ, η) is splittable to both ξ, η, Proposition 7.5 shows that the distance
in the principal curve graph between a vertex cycle of Θ−(ξ, η) and a vertex cycle
of η is at most χ, and the same holds true for the distance in the principal curve
graph between a vertex cycle of Θ−(ξ, η) and a vertex cycle of ξ. The corollary now
follows from the triangle inequality. �

Fix a vertex τ ∈ E. Associate to a vertex η ∈ E the one-Lipschitz function

hη : E → R, hη(x) = d(η, x)− d(η, τ)

where d is the combinatorial distance on E, that is, the distance in the graph
E which is the one-skeleton of C(E). The combinatorial horoboundary of E is the
boundary of the closure of the set of these functions in the space of all one-Lipschitz
functions on E. It does not depend on the choice of the basepoint τ .

The following is Proposition 6.20 of [FLM18].

Proposition 7.8. There exists a natural homeomorphism h : ξ → hξ of the Roller
boundary ∂C(E) of C(E) onto the combinatorial horoboundary of C(E). If for ξ ∈
∂C(E) and x ∈ E we denote by m(x, ξ) the median between x, τ, ξ, then

hξ(x) = d(m(x, ξ), x)− d(m(x, ξ), τ).

Recall from Section 5 that for any two points η, ζ ∈ E, there exists a combina-
torial geodesic in C(E) connecting η to ζ which is the composition of the inverse of
a splitting sequence connecting Θ−(η, ζ) to η and a splitting sequence connecting
Θ−(η, ζ) to ζ. We call such a combinatorial geodesic a tail splitting sequence. We
next compute in more detail the interval I(η, ζ) between η, ζ. To this end define
a full rearrangement of a full splitting sequence (ηi) ⊂ E(η, λ) to be a splitting
sequence η̂i beginning at η0 = η̂0 = η so that for each j there is i such that ηj is
splittable to η̂i.

Let as before CL be the space of complete geodesic laminations, equipped with
the Hausdorff topology. This is a compact totally disconnected topological space
[H09]. Proposition 7.8 is used to establish the following

Lemma 7.9. Let λ ∈ CL be arbitrary and let (ηi) ⊂ E(η, λ) be a full splitting
sequence starting at η0 = η. Then (ηi) determines a point Ψ(λ) ∈ ∂C(E), and
I(η,Ψ(λ)) = E(η, λ). Any full rearrangement of ηi defines the same point Ψ(λ).
If ζj ⊂ E(η, λ) is a splitting sequence which is not a full rearrangement of ηj,
then there exists a negative combinatorial hyperplane H− containing ζj for all large
enough j.
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Proof. If ζ ∈ E is obtained from η by a splitting sequence, then we have I(η, ζ) =
E(η, ζ). This implies the following. Define the interval of a sequence ηi of λ-splits to
be ∪iI(η0, ηi). If the splitting sequence ηi is a full rearrangement of a full sequence
of λ-splits, then this interval equals the convex subspace E(η, λ) of E.

Any one sided infinite splitting sequence in E is a combinatorial geodesic in
C(E) and hence it defines a point in the combinatorial horoboundary of C(E). If
ζi ⊂ E(η, λ) is a splitting sequence which is not a full rearrangement of the full
splitting sequence (ηi), then there exists some j so that ηj is not splittable to any of
the train tracks ζi. As a consequence, there is some ξ ∈ E(η, λ) which is splittable
to ζi for some i, and there is a large branch b of ξ such that a splitting sequence
connecting ξ to ζj for any large enough j does not contain a split at b. But then
for all large enough j the train track ζj is contained in the negative combinatorial
hyperplane of the CAT(0) cube complex E(η, λ) defined by the large branch b, and
the train track obtained by splitting ξ at b once is not contained in the interval
defined by the sequence ζi. �

Before we complete the proof of Theorem 7.4 we introduce some more terminol-
ogy.

Definition 7.10. Let λ be a minimal geodesic lamination on S. The subsurface of
S filled by λ is the intersection Sλ of all subsurfaces of S which contain λ.

Note that if λ is a simple closed curve, then the subsurface Sλ of S filled by λ is
an annulus with core curve λ. More generally, Sλ is characterized by the property
that Sλ contains λ and that any simple closed non-peripheral curve in Sλ intersects
λ.

The following statement is main step towards the proof of Theorem 7.4.

Proposition 7.11. There exists a continuous injective map from the space CL of
complete geodesic laminations into the Roller boundary of C(E).

Proof. By Lemma 7.9, a point in CL determines a point in the combinatorial
horoboundary of C(E). Thus by Proposition 7.8, there is a map Ψ : CL → ∂C(E).
We have to show that Ψ is injective and continuous, and that its image is the
regular Roller boundary of C(E).

To show that Ψ is injective, let λ 6= µ ∈ CL; we have to show that Ψ(λ) 6= Ψ(µ).
This is equivalent to stating that for some η ∈ E, the intervals E(η, λ) and E(η, µ)
are distinct.

It follows easily from the above discussion that this is the case if one of λ, µ is the
repelling fixed point of the pseudo-Anosov mapping class used in the construction of
E, so assume without loss of generality that λ, µ are both carried by the same train

track η ∈ E. Let λ1, . . . , λk be the minimal components of λ and write λ̂ = ∪iλi.

By Corollary 2.4.3 of [PH92], there exists a splitting and collision sequence which
connects τ to a train track ξ = ∪iξi (disjoint union) where ξi is contained in the
subsurface Si filled by λi and carries λi. As a consequence of the results in Section
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3, τ is splittable to a complete train track ζ which carries λ and such that ξi is a
subtrack of ζ for each i. Furthermore, we conclude the following.

For each i, the train track ξi admits an infinite sequence of λi-splits, and a
sequence of vertex cycles on these train tracks converge in the coarse Hausdorff
topology to λi. By Section 3, these splitting sequences induce splitting sequences
of ζ contained in E(τ, λ). As a consequence, if there is a minimal component λi

of λ which is not a minimal component of µ, then E(τ, λ) 6= E(τ, µ). Thus by
symmetry, if E(τ, λ) = E(τ, µ) then the minimal components of λ, µ coincide.

To summarize, if E(τ, λ) = E(τ, µ) and if λ 6= µ, then λ and µ differ by finitely
many isolated leaves. Now consider as before a train track ζ ∈ E(τ, λ) which carries
λ and has the additional property that ζ contains a subtrack ξ which is a disjoint
union of train tracks ξ1, . . . , ξk contained in the surfaces Si filled by the components
ξi and which carry the laminations λi. Since λ is complete by assumption, every
branch of ζ − ξ is passed through by an isolated leaf of λ. Since an isolated leaf
of λ spirals about some minimal components of λ and hence passes through any
branch of ζ − ξ only finitely many times, the sum over all branches a of ζ − ξ of
the number of times the branch a is passed through by a leaf of λ is finite, and it
strictly decreases if ζ is split at a large branch in ζ − ξ to a train track ζ ′ which
carries λ.

As any train track carrying a complete geodesic lamination µ can be split at any
large branch to another complete train track which carries λ, this means that ζ
can be split to a train track σ ∈ E(τ, λ) which contains ξ as a subtrack and such
that σ − ξ does not contain a large branch. Thus it now suffices to show that any
complete extension of ∪iλi which is carried by σ coincides with λ.

However, this follows from the fact that as σ−ξ does not contain a large branch,
any two simple arcs α1, α2 carried by σ − ξ are disjoint up to homotopy. Namely,
let α1, α2 be two oriented simple arcs carried by σ − ξ which pass through the
same branch of σ − ξ in the same direction. Let us assume that for the given
orientation, their first intersection point on σ − ξ is a switch v ∈ σ − ξ. Then the
large half-branch b of σ−ξ which is incident on v is traveled through by both α1, α2

as oriented arcs starting at v. Since σ − ξ does not contain a large branch, it does
not contain a large embedded trainpath starting at v [PH92], see also Section 3.
Thus the trainpaths beginning at v which are defined by α1, α2 and a carrying map
coincide up to their first intersection with ξ [PH92]. In particular, the arcs α1, α2

can be homotoped to be disjoint. Now if µ 6= λ and if the minimal components of
µ coincide with the minimal components of λ, then there are isolated leaves of µ, λ
which have essential intersections. Then µ can not be carried by σ. This completes
the proof that the map Ψ is injective.

Since both CL and ∂C(E) are compact separable Hausdorff spaces, to show that
the map Ψ is continuous it suffices to show the following. Let λi ⊂ CL be a sequence
which converges in the Hausdorff topology to a lamination λ; then Ψ(λi)→ Ψ(λ).

To this end let (τi) ⊂ E be a full splitting sequence converging to λ. Then for each
i, the set CL(τi) of all complete geodesic laminations carried by τi is a neighborhood
of λ in CL [H09]. Thus for any m > 0 there exists a number i(m) > 0 such that
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for i ≥ i(m), the train track τm carries λi and hence it is contained in the interval
E(τ, λi) defined by λi. But this means that the points Ψ(λi) ∈ ∂C(E) converge to
Ψ(λ) showing continuity.

Since both CL and ∂C(E) are compact, the map Ψ is closed. As Ψ is also
injective, it is open as a map onto its image and hence it is a homeomorphism onto
its image. This completes the proof that Ψ : CL → ∂C(E) is an embedding and
shows the proposition. �

Proof of Theorem 7.4. By Proposition 7.11, we are left with showing that the image
of the continuous injective map Ψ : CL → ∂C(E) equals the regular Roller boundary
of C(E).

We begin with showing the following

Claim: The image under Ψ of a minimal complete geodesic lamination is a regular
point in ∂C(E).

Since the subset of minimal complete geodesic laminations is dense in CL, by
continuity this then implies that the subspace Ψ(CL) ⊂ ∂C(E) is contained in the
regular Roller boundary of C(E).

To see that the claim holds indeed true recall that splitting sequences contained
in E are combinatorial geodesics in C(E). Furthermore, if ϕ is the pseudo-Anosov
mapping class used in the construction of the graph E, then the infinite cyclic
subgroup ofMCG generated by ϕ acts on C(E) as an infinite cyclic group of combi-
natorial isometries. This group preserves a ϕ-invariant biinfinite splitting sequence.
Therefore if the forward ray of this splitting sequence defines a point in the regular
Roller boundary of C(E), then by symmetry and the definition of the regular Roller
boundary via strongly separated hyperplanes, the same holds true for the backward
ray. Thus to show the claim it suffices to show the following.

Let λ be a minimal complete geodesic lamination different from the minimal
complete geodesic lamination which is the repelling fixed point of the action of ϕ
on CL. Let (ηi)i≥0 ⊂ E be a full splitting sequence consisting of train tracks which
carry λ. For each i let Hi be a negative combinatorial hyperplane containing ηi.
Then there is a sequence ij →∞ such that for all j, the hyperplanes Hij and Hij+1

are strongly separated.

To this end let χ ≥ 2 be as in Corollary 7.7. Let ij be a subsequence of the
positive integers such that dPC(cij , cij+1

) ≥ 8χ for any vertex cycle cij of ηij and
any vertex cycle cij+1 of ηij+1 . Such a sequence exists by Proposition 6.6. We
claim that there is no negative combinatorial hyperplane Q which intersects both
Hij , Hij+1

.

Namely, assume to the contrary that there is a negative combinatorial hyperplane
Q which intersects Hij and Hij+1 in points ζ1, ζ2. Let c(ζi) be a vertex cycle of ζi.
By Corollary 7.7, applied to the hyperplane Q, we have dPC(c(ζ1), c(ζ2)) ≤ 2χ, and
similarly we obtain dPC(c(ζ1), ci1) ≤ 2χ, dPC(c(ζ2), cij+1

) ≤ 2χ. This contradicts
the choice of the train tracks ηij , ηij+1

.
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As a consequence, the combinatorial geodesic (ηi) ⊂ C(E) determines an infinite
descending chain of pairwise strongly separated half-spaces in C(E) and hence by
Proposition 5.10 of [FLM18], it determines a regular point in the Roller boundary
of C(E). On the other hand, by Lemma 6.5, the quasi-geodesic in PC(S) which
is the image of the splitting sequence under the map Υ is of infinite diameter and
hence converges to a point in the Gromov boundary of PC(S). This point is just
the minimal complete geodesic lamination λ. As a consequence, the image under Ψ
of a minimal complete geodesic lamination is a regular point of the Roller boundary
of C(E).

We are left with showing that Ψ(CL) coincides with the regular Roller boundary.
Since Ψ(CL) is a closed subset of ∂C(E), to this end it suffices to show that a
regular point ξ ∈ ∂rC(E) is contained in Ψ(CL). Now by definition of the regular
Roller boundary, if ξ ∈ ∂rC(E) then ξ it can be approximated by a nested strongly
separated sequence of hyperplanes. On the other hand, any combinatorial geodesic
in C(E) different from a geodesic parallel to the axis of the isometry ϕ is a tail
splitting sequence and therefore all we need to show is that if ξ ∈ ∂rC(E), then
a splitting sequence defining ξ is a full rearrangement of a full splitting sequence.
But this is an immediate consequence of Lemma 7.9. �

Remark 7.12. Theorem 7.4 does not state that the set of regular points in the
Roller boundary of C(E) corresponds to the minimal complete geodesic laminations,
and we expect that there are additional regular points.

8. A small boundary for MCG

A proper Cat(0) cube complex X not only has a Roller boundary, but also has a
CAT(0) boundary ∂∠X, called geometric boundary in the sequel. Given a basepoint
x ∈ X, the geometric boundary is the space of geodesic rays for the CAT(0) metric
starting at x, equipped with the topology of uniform convergence on compact sets.
It does not depend on the choice of the basepoint x. The boundary ∂∠X is compact,
and the same holds true for X = X ∪ ∂∠X. Furthermore, the geometric boundary
∂∠X of X is a Z-set for the compactification X of X. Thus if Γ is any torsion free
group acting properly and cocompactly on X, then the cohomology of ∂X can be
used to obtain information on the cohomology of Γ with coefficients in the group
ring of Γ [B96].

For the CAT(0) cube complex C(E), we can try to analyze the geometric bound-
ary and use it to obtain information on the large scale geometry of MCG. One
difficulty in this endeavor is that there are distinct geodesic rays in C(E) whose im-
ages under the natural embedding C(E)→ T T are of uniformly bounded distance
in T T .

Nevertheless, we shall use the geometric information collected so far to make a
guess for a boundary ofMCG which can be thought of as a quotient of the geometric
boundary of C(E), and show that it is indeed a small boundary for MCG. This
leads to the proof of Theorem 2 from the introduction.
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Recall that the join X1 ∗ X2 of two topological spaces X1, X2 is the quotient
X1×X2× [0, 1]/ ∼ where the equivalence relation ∼ collapses X1×X2×{0} to X1

and collapses X1×X2×{1} to X2. For example, the join S0
1 ∗S0

2 of two 0-spheres is
the circle S1, thought of as a union of four intervals glued at the endpoints, where
each interval has one endpoint in S0

1 and the second endpoint in S0
2 . The join of

two spaces X,Y contains an embedded copy of X,Y .

Let OG(S) be the oriented curve complex of S. This is the complex whose
vertices are isotopy classes of oriented simple closed curves in S and where two such
vertices are connected by an edge (of length 1) if they can be realized disjointly
and are not homotopic up to orientation. Thus any simple closed curve in S defines
two distinct vertices in OG(S), and these vertices are not connected by an edge.
Furthermore, we require that any k ≥ 2 oriented disjoint simple closed curves span
a simplex. The union of these simplices corresponding to this collection of curves
equipped with all combinations of orientations is a sphere of dimension k−1. Note

that a point inOG(S) can be viewed as a formal linear combination
∑k
i=1 aiλi where

for some k ≥ 1, λ1, . . . , λk are pairwise disjoint oriented simple closed curves, where
ai > 0 for all i and

∑
i ai = 1.

Remark 8.1. If we choose the length of the edges of the oriented curve complex
to be π/2, then this is consistent with the idea that the oriented curve complex
can be thought of as being contained in the Tits boundary ofMCG, equipped with
the angular length metric which identifies each sphere with a sphere of constant
curvature one.

A simple closed curve c is the core curve of an embedded annulus A(c) ⊂ S. The
”curve graph” CG(A(c)) of the annulus A(c) is a graph of isotopy classes of arcs
connecting the two boundary components and whose endpoints are allowed to move
freely in the complement of a fixed point on each of the two boundary circles. The
curve graph of A(c) is a simplicial line. If α is a fixed vertex of CG(A(c)), then any
other isotopy class of arcs can be represented by an arc which is the image of α by
a Dehn multi-twist about c. With this viewpoint, the choice of an orientation of c
can be thought of as a spiraling direction about c. However, the distinction between
a positive and a negative Dehn twists about c only depends on the orientation of
S but not on the orientation of c. In the sequel we denote by c+ the point in the
Gromov boundary of CG(A(c)) (which consists of two points) defined by iteration
of positive Dehn twists about c, and we denote by c− the point in the Gromov
boundary of CG(A(c)) defined by iteration of negative Dehn twists about c. Write
X (c) = {c+, c−}. It will be convenient in the sequel to think about X (c) as two
points in the oriented curve complex, with the same underlying curve.

If S0 is a subsurface of S different from a pair of pants or an annulus, then
we denote its (non-oriented) curve complex by CG(S0). Note that CG(S0) is a
subcomplex of the curve complex of S unless S0 is a one-holed torus or a four
punctured sphere; in this case, the edges of CG(S0) are not edges in CG(S). The
curve complex of S0 is hyperbolic and hence it has a Gromov boundary ∂CG(S0).
As a set, the Gromov boundary ∂CG(S0) is the set of all minimal filling geodesic
laminations on S0.
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There is a natural topology on the union CG(S0) of CG(S0) with its Gromov
boundary, called the coarse Hausdorff topology. With respect to this topology, the
subspace CG(S0), equipped with its natural topology, is an open dense subset. The
topology is metrizable, and a sequence λi ⊂ CG(S0) ∪ ∂CG(S0) converges in this
topology to λ ∈ ∂CG(S0) if and only if the limit of any converging subsequence of
λi in the Hausdorff topology on compact subsets of S contains λ as a sublamination
[H06]. Define X (S0) = ∂CG(S0), equipped with the topology as a subset of CG(S0).
If S0 is a pair of pants, then we define X (S0) = ∅.

If S1, . . . , Sk are disjoint connected subsurfaces of S (we allow that they share
boundary components, and annuli about such boundary components may be in-
cluded in the list), then we define

X (∪iSi) = ∂CG(S1) ∗ · · · ∗ ∂CG(Sk)

to be the join of the spaces X (Si) = ∂CG(Si). For example, if S1 ⊂ S is a subsurface
which is the complement of a non-separating simple closed curve c, then X (S1 ∪
A(c)) = ∂CG(S1) ∗ {c+, c−}. A point in X (S1 ∪ · · · ∪ Sk) can be viewed as a
formal linear combination ξ =

∑
i aiξi where ξi ∈ ∂CG(Si), ai ≥ 0 for all i and,

furthermore,
∑
i ai = 1. The union ξ̂ = ∪ai>0ξi is a geodesic lamination with

minimal components ξi, and ξ can be viewed as a weighted (and partially labeled
if there are simple closed curve components) geodesic lamination. For all u ≤ k
there is an inclusion X (S1 ∪ · · · ∪ Su) ⊂ X (S1 ∪ · · · ∪ Sk) which is a topological
embedding.

A collection S1, . . . , Sk of disjoint connected subsurfaces of S is called maximal
if S − ∪iSi = ∅. By convention, this means that if c is a boundary component
of one of the surfaces Si, then A(c) is contained in the collection. Any collection
of disjoint connected subsurfaces of S is contained in a maximal collection of such
subsurfaces, however this maximal collection is in general not unique. Note that
there is a canonical maximal collection which is comprised of the surfaces Si, the
annuli A(c) where c runs through all boundary components of ∪iSi which are not
already contained in that list and all connected components of S − ∪iSi.

Define

X = ∪X (S1 ∪ · · · ∪ Sk)/ ∼
where the union is over all collections of disjoint subsurfaces S1, . . . , Sk of S. The
equivalence relation ∼ identifies two points

∑
i aiξi and

∑
j bjζj if they coincide

as weighted labeled geodesic laminations. Thus a point in X is nothing else but

a formal sum
∑k
i=1 aiξi where ai > 0,

∑
i ai = 1, where ξ1, . . . , ξk are pairwise

disjoint minimal geodesic laminations on S and where every simple closed curve
component of this collection is in addition equipped with a label ±. Note that the
oriented curve complex OG(S) of S naturally is a subset of X , and the same holds
true for its Gromov boundary (which is just the Gromov boundary ∂CG(S) of the
non-oriented curve graph).

The oriented curve graph of S is connected, and any non-filling geodesic lam-
ination, that is, a geodesic lamination which is disjoint from some simple closed
curve, is disjoint from some vertex of OG(S). Thus if we equip X − ∂CG(S) with
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the topology of a simplicial complex whose edges are the joins of two disjoint la-
beled geodesic laminations, then this complex is connected. As a consequence, the
set X can be equipped with a topology which coincides with the topology of a
(non-locally finite) simplicial complex on X − ∂CG(S) and is such that each point
in ∂CG(S) is isolated. We write XT for X equipped with this topology (having the
Tits boundary of a CAT(0) space as guidance). From this description, we obtain

Lemma 8.2. The mapping class group MCG of S acts on XT as a group of auto-
morphisms.

Proof. The mapping class group acts on the oriented curve graph of S as a group
of simplicial automorphisms, and this action extends to an action on the space of
formal sums of weighted disjoint minimal geodesic laminations preserving weight
and disjointness. Furthermore, it acts on ∂CG(S) as a group of transformations.
Since the topology on XT is the topology of a disconnected simplicial complex,
constructed from the curve graphs of subsurfaces, the lemma follows. �

The Tits boundary of a CAT(0) space X can be viewed as the geometric bound-
ary (that is, the CAT(0) boundary) of X, equipped with a topology which in general
is finer than the geometric topology. Our goal is to equip the set X with a topology
which is coarser than the Tits topology so that for this topology, X becomes a
compact space which indeed defines a small compactification of MCG.

To achieve this goal we use markings of subsurfaces of the surface S (see Section
2). There is a natural way to equip the set of all markings on S with the structure
of a locally finite connected graph on which MCG acts properly and cocompactly.

Choose a marking µ on S as a basepoint for MCG. For every subsurface S0 of
S which is distinct from a pair of pants, this marking determines a coarsely well
defined marking µ(S0) of S0. Namely, the intersection of each marking curve c
with S0 either is a simple closed curve contained in S0, a collection of pairwise
disjoint arcs with endpoints on the boundary of S0 or empty. The union of these
intersections over all curves from the marking decompose S0 into simply connected
regions and hence coarsely defines a marking µ(S0) of S0, called the subsurface
projection of µ [MM00]. Here coarse definition means that the construction depends
on choices, but any two choices give rise to markings which are uniformly close in
the marking graph of S0, independent of the subsurface S0.

Now let S = ∪ki=1Si be a collection of pairwise disjoint subsurfaces of S. By
the above, each of the surfaces Si is equipped with a coarsely well defined marking
µ(Si). Let xi be one of the marking curves of µ(Si). We then obtain a based
product space

(CG(∪iSi), x) = (CG(S1)× · · · × CG(Sk), x)

where the basepoint x = (x1, . . . , xk) is the product of the coarsely well defined
basepoints in CG(Si).

For any subsurface S0 of S, denote by prS0
: CG(S)→ CG(S0) the (coarsely well

defined) subsurface projection. Define a topology on the union

Y(∪iSi) = CG(∪iSi) ∪ ∂CG(S1) ∗ · · · ∗ ∂CG(Sk) = CG(∪iSi) ∪ X (∪iSi),
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by the following requirement. The product space CG(∪iSi) is equipped with the
product topology, and the topology on the subspace X (∪iSi) is the topology de-
scribed above as a join of the Gromov boundaries of the curve graphs of Si. Fur-
thermore, a sequence of points (yj1, . . . , y

j
k) ∈ CG(∪iSi) converges to

∑
i aiξi ∈

∂CG(S1) ∗ · · · ∗ ∂CG(Sk) if the following two conditions are fulfilled.

(1) For each i with ai > 0, the components yji converge as j →∞ to ξi in the

coarse Hausdorff topology (and hence they converge in CG(Si) to ξi). In

particular, we have dCG(Si)(y
j
i , xi)→∞.

(2) Assume without loss of generality that a1 > 0. Then for all i ≥ 2 we have

dCG(Si)(y
j
i , xi)

dCG(S1)(y
j
1, x1)

→ ai
a1

(j →∞).

Lemma 8.3. This notion of convergence defines a topology on Y(∪iSi) which re-
stricts to the given topology on CG(∪Si) and on ∂CG(S1) ∗ · · · ∗ ∂CG(Sk). The
subspace ∂CG(S1) ∗ · · · ∗ ∂CG(Sk) is closed in Y(∪iSi).

Proof. Define a subset A of Y(∪Si) to be closed if A1 = A ∩ CG(∪iSi) is closed,
A2 = A ∩ ∂CG(S1) ∗ · · · ∗ ∂CG(Sk) is closed and if furthermore the following holds
true. If yi ⊂ A1 is a sequence which converges in the sense described above to a
point y ∈ ∂CG(S1) ∗ · · · ∗ ∂CG(Sk), then y ∈ A2. Note that by definition, the empty
set is closed, and the same holds true for the total space.

We have to show that complements of closed sets defined in this way fulfill the
axioms of a topology, that is, they are stable under arbitrary unions and finite
intersections. Equivalently, the family of closed sets is stable under arbitrary in-
tersections and finite unions. As this holds true for the closed subsets of CG(∪iSi)
and for the closed subsets of ∂CG(S1) ∗ · · · ∗ ∂CG(Sk), all we need to observe is
that taking arbitrary intersections and finite unions is compatible with the notion
of convergence of points in CG(∪iSi) to points in the join ∂CG(S1) ∗ · · · ∗ ∂CG(Sk)
in the sense specified above.

Consistency with arbitrary intersections is straightforward. To show consistency
with finite unions let B1, . . . , B` ⊂ Y(∪iSi) be closed in the above sense. Let
yj ⊂ ∪k(Bk ∩ CG(∪iSi)) be any sequence which converges to a point in X (∪iSi)
according to the definition of convergence. By passing to a subsequence, we may
assume that yj ∈ Bm for a fixed m and all j. As Bm is closed and the subsequence
also fulfills the requirements for convergence, its limit is contained in Bm ⊂ ∪kBk.
Hence indeed, the notion of a closed set is consistent with taking finite unions. �

So far we have constructed a topology on the spaces Y(∪iSi) where S1, . . . , Sk
is a collection of disjoint subsurfaces of S. We now use these spaces to define
convergent sequences in X and use this notion of convergent sequence to construct
a topology on X which gives X the structure of a compact Hausdorff space.

Thus let ξj =
∑
i a
j
i ξ
j
i be a sequence in X . We shall impose 3 requirements for

the sequence to converge to a point
∑k
i=1 biζi ∈ X (here as before, we require that
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aji > 0, bi > 0,
∑
i bi = 1 =

∑
i a
j
i for all j and that furthermore, ζ1, . . . , ζk are

disjoint minimal geodesic laminations).

By definition of the space X , for each j the union

ξ̂j = ∪iξji
is a geodesic lamination on S, and the same holds true for ζ̂ = ∪iζi. Recall that
the space of geodesic laminations on S is compact with respect to the Hausdorff
topology.

Requirement 1: Convergence in the coarse Hausdorff topology
Let ξ`n be any subsequence of the sequence ξj such that the geodesic laminations

ξ̂`n converge in the Hausdorff topology to a geodesic lamination β. Then β contains

ζ̂ as a sublamination.

Let MinL be the set of all minimal geodesic laminations on S where as before, a
simple closed curve carries in addition a label ±. We next define for each collection
S1, . . . , Sk of pairwise disjoint subsurfaces of S a coarsely well defined projection

(7) prY(∪iSi) : MinL → Y(∪iSi)
as follows.

Let ν ∈ MinL. The either its subsurface projection into a given subsurface Si
of S is empty, or it equals ν if ν is supported in Si, or it consists of a collection
of simple arcs with endpoints on the boundary which coarsely define a point in
CG(Si).

(1) If ν ∈ ∂CG(Si) for some i, then prY(∪iSi)(ν) = ν ∈ ∂CG(S1) ∗ · · · ∗∂CG(Sk).

(2) If ν ⊂ Si for some i but if ν is disjoint from an essential simple closed
curve c ⊂ Si then define prY(∪iSi)(ν) = (x1, . . . , c, . . . , xk) where xj is the

basepoint in CG(Sj).
(3) If ν 6⊂ Si for any i, then the subsurface projections of ν into Si are either

coarsely well defined simple closed curves or empty. Let prY(∪iSi)(ν) =

(ν1, . . . , νk) where for each i, the component νi either is a subsurface projec-
tion of ν into Si if ν intersects Si, or νi = xi for the basepoint xi ∈ CG(Si).

We are now ready to define convergence of a sequence ξj ⊂ X of minimal geodesic
laminations to a limit point ζ =

∑
i biζi.

Requirement 2: Assume that ξj is a minimal geodesic lamination for all j. Let
ξj` ⊂ ξj be any subsequence which converges in the Hausdorff topology to a lami-

nation β. By the first requirement, we have β ⊃ ζ̂. Let β1, . . . , βs be the minimal
components of β, ordered in such a way that βi = ζi for i ≤ k. For each i let
Si be the subsurface of S filled by βi, that is, the intersection of all surfaces of S
containing β; then prY(∪iSi)ξ

j` → ζ in Y(∪iSi).

Example 8.4. i) Let ϕ ∈ MCG be a pseudo-Anosov element, with attracting
geodesic lamination ν ∈ ∂CG(S). Let µ ∈ X be any minimal geodesic lamination
which is different from the repelling fixed point ζ for the action of ϕ on ∂CG(S).
Then ϕjµ → ν (j → ∞) in the coarse Hausdorff topology and therefore ϕjµ → ν
in X .
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ii) Now let us assume that S0 ⊂ S is a proper connected subsurface different from
an annulus and a pair of pants and that ϕ ∈ MCG restricts to a pseudo-Anosov
mapping class on S0 and to the trivial mapping class on S−S0. Let ν ∈ ∂CG(S0) be
the attracting geodesic lamination for the action of ϕ on S0. Let furthermore µ ∈ X
be any minimal geodesic lamination on S which is different from the repelling fixed
point ζ for the action of ϕ on CG(S0). Then there are two possibilities. In the first
case, µ is disjoint from ν, that is, µ is supported in S−S0. Then we have ϕj(µ) = µ
for all j. However, if µ intersects S0, then µ intersects ν and we have ϕj(µ) → ν
(j →∞) in X .

The definition of convergence of a general sequence ξj =
∑
i a
j
i ξ
j
i ⊂ X to a limit

point
∑k
i=1 biζi is a bit more involved. To obtain a better understanding of what

it captures, for a collection ∪ki=1Si of disjoint subsurfaces of S we define

Z(∪iSi) = {aζ1 + (1− a)ζ2 | a ∈ [0, 1], ζ1 ∈ X (∪j≤sSij ), ζ2 ∈ Y(∪u6∈{i1,...,is}Su)}
to be the union of the joins of the spaces X (∪jSij ) and Y(∪u 6∈{i1,...,is}Su) where
{i1, . . . , is} runs through all (possibly empty) subsets of the set {1, . . . , k}. Note
that Z(∪iSi) contains Y(∪iSi) as a subset. However, the union is not meant to
be a disjoint union as we identify points if they correspond to the same weighted
geodesic laminations.

Construct next a projection prZ(∪Si) : X → Z(∪iSi) as follows. Let ξ =∑m
i=1 aiξi ∈ X with ai > 0 and

∑
i ai = 1 and write as before ξ̂ = ∪iξi. As-

sume that after perhaps a reordering that for some u ≤ min{k,m} the components
ξ1, . . . , ξu fill the subsurfaces S1, . . . , Su, that is, they define points in ∂CG(Si), and
that for no i > u, the component ξi fills any of the surfaces Sj . As the components

of ξ̂ are disjoint, this implies that if s, t > u, if j ∈ {u+ 1, . . . , k} and if the subsur-
face projections of ξs, ξt into Sj are not empty, then they are points of uniformly
bounded distance in CG(Sj) (where we adopt the convention to associate to any
non-filling geodesic lamination in Sj a disjoint essential simple closed curve).

Define

prZ(∪Si) =
u∑
i=1

aiξi + (1−
u∑
i=1

ai)(prY(∪i≥u+1Si) ∪i≥u+1 ξi).

Here the term on the right hand side is understood in the following sense. Let us
consider a subsurface Sj for some j > u. If there exists some s > u such that ξs
intersects Sj , then the component in Sj of the projection prY(∪i≥u+1Si)(∪i≥u+1ξi)

is a point in CG(Sj) which is coarsely determined by this projection. The above
remark shows that this projection coarsely does not depend on choices, nor on the

component ξs of ξ intersecting Sj . If the lamination ξ̂ = ∪iξi is disjoint from the
subsurface Sj , then the projection component is defined to be the basepoint of
CG(Sj) constructed from the base marking.

Requirement 3: Let ξjs be any subsequence of the sequence ξj so that the lam-

inations ξ̂js converge as s → ∞ in the Hausdorff topology to a lamination β with
minimal components β1, . . . , βn for some n ≥ k. By the first requirement, we have

β = ∪iβi ⊃ ζ̂. Assume by reordering that βi = ζi for i ≤ k. For each i let Si be the
subsurface filled by βi; then prZ(∪iSi)(ξ

js)→ ζ in Z(∪iSi) ⊃ Z(∪i≤kSi) ⊃ X (∪iSi).
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Remark 8.5. It follows from the above description that for this notion of conver-
gence, the following holds true. Let ξj be a sequence in X consisting of minimal
geodesic laminations which converges to a point ζ =

∑
u buζu.

(1) The lamination ∪uζu is a sublamination of the limit in the coarse Hausdorff

topology of any convergent subsequence of the sequence ξ̂j = ∪iξji .
(2) For each j let ηj be a minimal geodesic lamination disjoint from ξj (we allow

ηj = ξj) and let si ∈ [0, 1]. Then any limit of a convergent subsequence of
the sequence νj = siξ

j + (1− si)ηj is of the form sζ + (1− s)η where η is
a limit of a subsequence of the sequence ηj and where s ∈ [0, 1].

Definition 8.6. A subset A ⊂ X is called closed for the geometric topology of X
if the following holds true. Let ξi ⊂ A be any sequence which converges to a point
ξ ∈ X in the sense described by the requirements (1),(2),(3); then ξ ∈ A.

An embedding of a topological space X into a topological space Y is an injective
map f : X → Y which is a homeomorphism onto its image, equipped with the
subspace topology. Recall that for any collection S1, . . . , Sk of pairwise disjoint
subsurfaces of S, the space X (∪ki=1Si) is equipped with a natural topology as a join
of the Gromov boundaries of the curve graphs of the subsurfaces Si. The following
statement is the key step towards the proof of Theorem 2.

Proposition 8.7. (1) Closed subsets of X in the sense of Definition 8.6 define
a topology O on X .

(2) With respect to this topology, X is a compact separable Hausdorff space.
(3) For any collection S1, . . . , Sk of pairwise disjoint subsurfaces, the natural

inclusion X (∪ki=1Si)→ (X ,O) is an embedding.
(4) The group MCG acts on X as a group of transformations.

Proof. Let O ⊂ X be the family of all subsets of X whose complement is closed in
the above sense. As the empty set and the entire space are open, to show that O
is indeed a topology on X it suffices to show that arbitrary unions of open sets are
open, and that finite intersections of open sets are open as well. Or, equivalently,
arbitrary intersections of closed sets are closed, and finite unions of closed sets are
closed. However, this can be established using exactly the same reasoning as in the
proof of Lemma 8.3.

We show next the third property claimed in the proposition. Thus let S1, . . . , Sk
be a collection of pairwise disjoint subsurfaces of S. Our goal is to show that the
inclusion X (∪ki=1Si) → (X ,O) is an embedding. Since X (∪ki=1Si) is a separable
Hausdorff space, for this it suffices to verify the following

Claim: Let ξj =
∑
i a
j
i ξ
j
i ⊂ X (∪ki=1Si) be any sequence. Then ξj converges in

X (∪ki=1Si) to a point ζ =
∑
i biζi ∈ X (∪ki=1Si) if and only if ξj → ζ in X .

Consider first a sequence ξj =
∑
i a
j
i ξ
j
i ⊂ X (∪ki=1Si) which converges in the

space X (∪ki=1Si) to ζ =
∑
i biζi. By reordering, assume that 1 ≤ m ≤ k is such

that bi > 0 if and only if i ≤ m. Let β be a limit in the coarse Hausdorff topology

of a subsequence of the sequence of laminations ξ̂j = ∪aji>0ξ
j
i . By the definition of
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convergence in X (∪ki=1Si), up to reordering, we may assume that for some m ≤ n ≤
k, we have β = ∪i≤nβi where βi is a (not necessarily minimal and not necessarily
filling) geodesic lamination on the surface Si, and βi = ζi for 1 ≤ i ≤ m. The fact
that n may be strictly smaller than k arises from the possibility that the formal
sum describing ξj may not have a positive coefficient corresponding to a surface S`
for ` > m.

Since ξj ∈ X (∪ki=1Si) for all j, we know that the projection prZ(∪i≤mSi)ξ
j of

ξj to Z(∪i≤mSi) is contained in X (∪mi=1Si). Now by definition of the topology
on X (∪ki=1Si), the subset X (∪mi=1Si) is an embedded subspace of X (∪ki=1Si), and
the surfaces Si for i > m are precisely those surfaces with the property that the
coefficients aji of the components ξji of ξj in Si tend to zero as j →∞. Furthermore,

for i ≤ m the coefficients aji converge to bi. Thus an application of the first and
third requirement in the definition of convergent sequences for O shows that indeed,
ξj → ζ ∈ X .

To summarize, we showed that a sequence ξj ⊂ X (∪ki=1Si) which converges in
X (∪ki=1Si) to a limit point ζ =

∑
i biζi also converges in (X ,O) to the same limit

point. To complete the proof of the claim, we have to show that a sequence in
X (∪ki=1Si) which converges in (X ,O) to a limit point ζ =

∑
i biζi ∈ X (∪ki=1Si) also

converges in X (∪ki=1Si) to the same limit point. However, this can be established
with essentially the same argument and will be omitted. The third part of the
proposition follows.

Establishing the second property in the proposition is the most involved part
of the proof. Note first that each of the countably many embedded subspaces
X (∪ki=1Si) of X is a join of finitely many separable spaces and hence separable, and
their union is all of X . Thus it follows from the third property in the proposition
that the space (X ,O) is separable as well.

We show next that the topology O is Hausdorff. Thus let ξ =
∑
i aiξi 6= ζ =∑

j bjζj ∈ X . We have to show that ξ, ζ have disjoint neighborhoods. If this is not
the case, then any neighborhoods Uξ of ξ and Uζ of ζ intersect nontrivially. Since
X is separable, and since points in X are closed by construction, we conclude that
there is a sequence ξj ⊂ X which converges both to ξ, ζ. But for the notion of
convergence used to define the topology O, the limit of a converging sequence is
unique. Thus O is Hausdorff as stated.

For the completion of the proof of the third property in the proposition, we are
left with showing that the topological space (X ,O) is compact. As X is a separable
Hausdorff space, this is equivalent to being sequentially compact.

Thus let ξj =
∑
i a
j
i ξ
j
i ⊂ X be any sequence. We have to construct a convergent

subsequence. Since the space of geodesic laminations equipped with the Hausdorff
topology is compact, by passing to a subsequence we may assume that the geodesic

laminations ξ̂j = ∪iξji converge in the Hausdorff topology to a geodesic lamination

ζ̂ with minimal components ζ1, . . . , ζk.
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Let Si ⊂ S be the subsurface of S filled by ζi. Assume by passing to another sub-

sequence that for each component ζi of ζ̂, either this component also is a component

of ξ̂j for all j, or it is not a component of ξ̂j for all j.

For some u ≤ k let ζ1, . . . , ζu be those components of ζ̂ which are also components

of ξ̂j for all j. By reordering, we then can write

ξj = (

u∑
i=1

aji ζ
±
i ) +

∑
`>u

aj`ξ
j
` .

By convention, the label ± is only relevant if ζi is a simple closed curve component.

By passing to another subsequence, we may assume that for i ≤ u, the labels of
the components ξji are constant along the sequence, and that the weights aji ∈ (0, 1]

of the components ξji converge to weights bi ≥ 0. In particular, the sums 1−
∑
i≤u a

j
i

converge to 1−
∑
i≤u bi = κ. If κ = 0, then by the definition of convergent sequences

in X , the sequence ξj converges to
∑
i biζ

±
i and we are done.

Now assume that κ 6= 0 and hence
∑
i>u a

j
i > κ/2 > 0 for all sufficiently

large j. By passing to a subsequence, we may assume that this holds true for all
j. For all i > u and for all j, the subsurface of S filled by ξji is disjoint from
the subsurfaces S1, . . . , Su filled by the laminations ζ1, . . . , ζu. In other words, if we
denote by Σu+1, . . . ,Σn the components of S−∪i≤uSi, then for i ≥ u+1, each of the

laminations ξji , ζi is supported in ∪i≥u+1Σi. Thus by the definition of the topology

on X and writing ξj = (
∑
i≤u a

j
i ξ
j) + (

∑
i≥u+1 a

j
i ξ
j), viewed as points in the join

of two subspaces of X and similarly for ζ, we conclude that it suffices to construct
a convergent subsequence of a sequence ξj under the additional assumption that

for all j, no component ξji of ξ̂j coincides with a component of the limit ζ̂ = ∪i≤kζi
in the coarse Hausdorff topology.

From now on we assume that the latter assumption holds true. Let as before
Si be the subsurface of S filled by ζi. Up to passing to a subsequence, we may
assume that there is a number u ≤ k such that for each i ≤ u and each j, the

geodesic lamination ξ̂j has a component ξji which is supported in Si and fills Si.

Since ξ̂j converges as j → ∞ in the Hausdorff topology to a geodesic lamination
with minimal components ζ1, . . . , ζk, we conclude that for i ≤ u, the laminations ξji
converge as j → ∞ in the coarse Hausdorff topology to ζi. By passing to another
subsequence, we may assume that for each i ≤ u, the coefficients aji converge as
j → ∞ to a coefficient bj . As above, if

∑
i≤u bi = 1, then by the definition of a

convergent sequence in X , we know that ξj →
∑
i biζi and hence once again, we

are done.

According to what we established so far, it now suffices to assume that for no

j there exists a component of ξ̂j which fills any of the subsurfaces Si. Then for

each i, we can consider the subsurface projection prSi
(ξ̂j) of ξ̂j into the surface Si.

Furthermore, by passing to another subsequence, we may assume that for all j and
all i ≤ k, this subsurface projection it is non-empty since the geodesic lamination ζi
which fills Si is contained in the limit with respect to the Hausdorff topology of the

sequence of laminations ξ̂j . Put differently, we may assume that for each i and all
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j, the subsurface projection prSi
(ξ̂j) of the lamination ξ̂j into the subsurface Si is

a coarsely well defined point in CG(Si). Furthermore, using once more that ζi fills

Si and that ζi is contained in the Hausdorff limit of the sequence ξ̂j , if we denote

by xi the fixed basepoint in CG(Si), then we know that dCG(Si)(prSi
(ξ̂j), xi) → ∞

(j →∞).

By passing to another subsequence and reordering indices, we may assume that

aj1 = dCG(S1)(prS1
(ξj), x1) ≥ aji = dCG(Si)(prSi

(ξj), xi)

for all i ≥ 2 and all j. Passing to another subsequence, we may assume furthermore
that aji/a

j
1 → ai ∈ [0, 1] for all i ≥ 2. Put a1 = 1; then we have

∑
u au ≥ 1 and

hence defining bi = ai/
∑
u au > 0, we conclude that

∑
u bu = 1. It now follows

from the definition of the topology on X that ξj →
∑
i biζi. This completes the

proof that X is sequentially compact.

We are left with showing that the mapping class group MCG acts on X as a
group of transformations. To this end observe first that by construction,MCG acts
on X as a group of bijections. Thus it suffices to show that this action is continuous
for the topology O.

By the definition of O, for this it suffices to show the following. Let ξj be a
sequence converging for the topology O to a point ξ. Then for every ϕ ∈ MCG,
the sequence ϕ(ξj) converges to ϕ(ξ).

That the first defining requirement for convergence is passed on to the image
sequence follows from continuity of the action of ϕ on the space of geodesic lami-
nations, equipped with the Hausdorff topology.

For the second requirement, if S1, . . . , Sk is a partition of S into disjoint subsur-
faces, then the same holds true for ϕ(S1), . . . , ϕ(Sk), and for any geodesic lamina-
tion ν, we have prY(∪iϕ(Si))(ϕ(ν)) = ϕ(prY(∪iSi)(ν)) up to replacing the basepoints

yi of CG(ϕ(Si)) by ϕ(xi). As for all i, we have dCG(ϕ(Si)(prϕ(Si)(ξ
j), ϕ(xi)) =

dCG(Si)(ξ
j , xi) → ∞ (j → ∞) and the determination of the weights of the limit

points are computed using ratios of distances to the basepoint defined by sub-
surface projections, with the distances tending to infinity along the sequence, we
conclude that the second requirement in the definition of convergence is fulfilled for
ϕ(ξi) if it is fulfilled for ξi. The same reasoning also applies to the third require-
ment. Thus indeed,MCG acts on X as a group of transformations. This completes
the proof of the proposition. �

Let us note another naturality property of the geometric boundary of MCG.
Namely, if S0 ⊂ S is any essential subsuface, then we can construct a geometric
boundary X0 forMCG(S0). As a set, this is a subset of the geometric boundary of
S. The above construction immediately yields

Corollary 8.8. If S0 ⊂ S is any subsurface of S, then the geometric boundary of
MCG(S0) is a closed subspace of the geometric boundary of MCG(S).
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In the remainder of this article, we show that the geometric boundary X is indeed
a small boundary for MCG. To this end recall that the mapping class group acts
properly and cocompactly on T T . Thus to show that X is a boundary forMCG it
suffices to construct a topology O0 on T T = T T ∪ X with the following property.

(1) O0 restricts to the simplicial topology on T T and to the topology O on X .
(2) T T is compact.
(3) The group MCG acts on T T as a group of transformations.

As before, we define a topology O0 on T T ∪ X by defining what it means for a
sequence (τi) ⊂ T T to converge to a point ζ =

∑
i biζi ∈ X . Namely, let VC(τ) be

the set of all vertex cycles of τ , viewed as simple closed curves. Since τ is complete,
for every vertex cycle v ∈ VC(τ) there exists a second vertex cycle w ∈ VC(τ)
which intersects v transversely. The number of intersection points between two
vertex cycles of a train track τ is bounded from above independent of τ and hence
the distance of their subsurface projections into any subsurface S0 of S is uniformly
bounded as well provided these projections are non-empty. Note also that for any
subsurface S0 of S, there exists a vertex cycle v ∈ VC(τ) which intersects S0. Thus
we can talk about the (coarsely well defined) subsurface projections of VC(τ) into
S0. We denote this projection by prS0

(τ).

As before, for a subsurface S0 of S let µ(S0) be a marking of S0 obtained by
projecting a fixed marking of S. This choice coarsely defines a basepoint in CG(S0).

Definition 8.9. A sequence τj ⊂ T T converges to a point ξ =
∑
i aiξi ∈ X if and

only if the following holds true.

(1) Let vi ∈ VC(τi) be an arbitrary vertex cycle. Then any limit of vi in the

Hausdorff topology is disjoint from ξ̂ = ∪iξi.
(2) Let Si be the subsurface of S filled by ξi and let U be any subsurface of

S disjoint from the surfaces Si. Then for each i, the projections prSi
(τj)

converge in CG(Si) to ξi. Furthermore, if xi is the basepoint in CG(Si) and
xU is the basepoint of CG(U) then we have

dCG(Si)(prSi
(τj), xi)/dCG(S1)(prS1

(τj), x1)→ ai/a1 for all i,

and dCG(U)(prU (τj), xU )/dCG(S1)(prS1
(τj), x1)→ 0.

We first observe that this notion of converge gives indeed rise to a topology on
T T ∪ X .

Lemma 8.10. There exists a topology O0 on T T = T T ∪X with the property that
a set A ⊂ T T is closed for O0 if and only if the following holds true.

(1) A ∩ T T is closed in T T , and A ∩ X is closed in X .
(2) If τi ⊂ A ∩ T T converges in the above sense to a point ξ ∈ X , then ξ ∈ A.

Proof. The proof of completely analogous to the proof of Lemma 8.3 and will be
omitted. �

The following is the main remaining step towards a proof of Theorem 2.
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Proposition 8.11. The topological space (T T ,O0) has the following properties.

(1) T T is a compact separable Hausdorff space.
(2) The mapping class group acts on T T as a group of transformations.

Proof. T T is clearly separable since this holds true for X and T T . We show next
that T T is a Hausdorff space.

Since T T is open in T T and a Hausdorff space, all we need to show is that two
points ξ 6= η ∈ X have disjoint neighborhoods. Now ξ, η have disjoint neighbor-
hoods in X and hence it suffices to show that the limit of any sequence τi ⊂ T T
converging to a point in X is unique. But this is clear from the definitions.

We show next that T T is compact. Since X is compact, for this it suffices to
show that any sequence τi ⊂ T T has a convergent subsequence.

If the sequence has a bounded subsequence in T T , then as T T is proper, we
can extract a converging subsequence. Thus we may assume that the sequence is
unbounded.

Since the space of geodesic laminations on S equipped with the Hausdorff topol-
ogy is compact, by extracting a subsequence we may assume that the sets VC(τi)
converge in the Hausdorff topology to a finite union of geodesic laminations. Note
that the number of such laminations is bounded from above by the maximal number
of vertex cycles of a train track τ and hence this number is uniformly bounded.

Let ζ1, . . . , ζs be those of the components of the limit laminations which are
distinct from simple closed curves. The number of such components is finite. Each
of the laminations ζi fills a subsurface Si of S which is different from an annulus
or a pair of pants. Furthermore, the subsurface projections to CG(Si) of the sets
VC(τj) converge as j → ∞ in CG(Si) to the lamination ζi ∈ ∂CG(Si). Since this
holds true for any sequence of subsurface projections of some choice of vertex cycle
of τj provided that these projections are not empty, this implies that none of the
limits in the Hausdorff topology of any sequence of vertex cycles of τj can intersect
ζi.

By a similar argument, if ζi is a closed curve component, then we can consider
the subsurface projections of a vertex cycle of τj to an annulus A(ζi) with core curve
ζi. Up to passing to a further subsequence, we may assume that these projections
are either bounded along the sequence, or converge to one of the two boundary
components of the curve graph of A(ζi). In the first case call ζi unlabeled. In the
second case, label ζi with the corresponding point in the Gromov boundary of the
curve graph of A(ζi) and note by the reasoning used in the previous paragraph, no
labeled simple closed curve component ζi can be intersected by another component
ζj .

By reordering, let ζ1, . . . , ζk be the components of the limit laminations which
either are distinct from simple closed curves or which are labeled simple closed

curves. By the above discussion, we know that ζ̂ = ∪ki=1ζi is a geodesic lami-
nation. Furthermore, we know that if Si is the subsurface of S filled by Si then
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dCG(prSi
(VC(τj)), xi) → ∞ where as before, xi ∈ CG(Si) is a fixed basepoint for

CG(Si).

By passing to a subsequence and reordering, we may assume that

dCG(Si)(prS1
(VG(τj)), x1) ≥ dCG(Si)(prSi

(VG(τj)), xi) + b

for all i, j where b is twice the maximal diameter of the subsurface projection of
any of the sets VC(τj). Then by passing to another subsequence, we may assume
that

dCG(Si)(prSi
(VG(τj)), xi)/dCG(Si)(prS1

(VG(τj)), x1)→ bi ≤ 1.

Define ai = bi/
∑
j bj and let ξ =

∑k
i=1 aiζi.

We claim that τi → ξ ∈ (T T ,O0). To this end note that the first property in
the definition of a convergent sequence is fulfilled by the above discussion, and the
second holds true by the observation that if there exists a subsurface U different
from the surfaces Si (i ≤ k) such that for some subsequence, the subsurface projec-
tions of VC(τj) to U are unbounded, then the subsurface projections prU (VC(τj))
converge up to passing to a subsequence in the Hausdorff topology to a lamination
which fills U , violating the choice of the laminations ζi.

To summarize, we showed so far that T T is a compact Hausdorff space. We are
left with showing that MCG acts on T T as a group of transformations. However,
asMCG acts on T T and on X as a group of transformations, and as the definition
of convergence which determines the topology O0 is natural with respect to the
action of MCG on subsurfaces and subsurface projections, this is indeed the case.
The proposition is proven. �

Theorem 8.12. X is a small boundary forMCG. A pseudo-Anosov mapping class
acts on X with north-south dynamics. In particular, the action of MCG on X is
strongly proximal.

Proof. We showed so far that X defines a boundary of T T and hence of MCG.
Furthermore, a pseudo-Anosov element acts on X with north-south dynamics and
hence the action of MCG on X is strongly proximal.

We are left with showing that the right action of MCG induces the identity.
However, this action just consists of a change of basepoint. As a sequence of points
of uniformly bounded distance from a convergent sequence converges to the same
point, this yields the statement of the theorem. �
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[BGH20] H Baik, I. Gekhtman, U. Hamenstädt, The smallest positive eigenvalue of fibered hy-

perbolic 3-manifolds, Proc. Lond. Math. Soc. 120 (2020), 704–741.
[B96] M. Bestvina, Local homology properties of boundaries of groups, Michigan Math. J. 1996,

123–141.
[BB19] M. Bestvina, K. Bromberg, On the asymptotic dimension of the curve complex, Geom-

etry & Topology 23 (2019), 2227–2276.



CUBE COMPLEXES 77

[BBF19] M. Bestvina, K. Bromberg, K. Fujiwara, Proper actions on finite products of quasi-trees,

arXiv:1905.10813.

[BH73] J. Birman, H. Hilden, On isotopies of homeomorphisms of Riemann surfaces, Ann.
Math. 97 (1973), 424-439.

[B74] J. Birman, Braids, links and mapping class groups, Ann. Math. Studies, Princeton Univ.

Press, Princeton 1974.
[Br10] M. Bridson, Semisimple actions of mapping class groups on CAT(0) spaces, in ”Geom-

etry of Riemann surfaces”, 1-14, London Math. Soc. Lecture Note Ser., 368, Cambridge

Univ. Press, Cambridge, 2010.
[BH99] M. Bridson, A. Haefliger, Metric spaces of non-positive curvature, Springer Grundlehren

319, Springer, Berlin 1999.

[Bw08] B. Bowditch, Tight geodesics in the curve complex, Invent. Math. 171 (2008), 281–300.
[BFP11] N. Braddeus, B. Farb, A. Putman, Irreducible Sp-representations and subgroup distor-

tion in the mapping class group, Comment. Math. Helv. 86 (2011), 537–556.
[CEG87] R. Canary, D. Epstein, P. Green, Notes on notes of Thurston, in “Analytical and geo-

metric aspects of hyperbolic space”, edited by D. Epstein, London Math. Soc. Lecture

Notes 111, Cambridge University Press, Cambridge 1987.
[CDH10] I. Chatterji, C. Drutu, F. Haglund, Kazhdan and Haagerup properties from the median

viewpoint, Adv. Math. 225 (2010), 882–921.

[DHS17] M. Durham, M. Hagen and A. Sisto, Boundaries and automorphisms of hierarchically
hyperbolic spaces, Geometry & Topology 21 (2017), 3659–3758.

[FLM01] B. Farb, A. Lubotzky, Y. Minsky, Rank one phenomena for mapping class groups, Duke

Math. J. 106 (2001), 581-597.
[FLP91] A. Fathi, F. Laudenbach, V. Poénaru, Travaux de Thurston sur les surfaces, Astérisque
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