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Abstract. We discuss covers of closed hyperbolic manifolds branched
along a totally geodesic codimension two submanifold Σ and their ge-
ometries. We survey what is known about the existence of Einstein
metrics on such manifolds. In dimension n ≥ 4, we show for suitable
branch loci Σ, at most one of these branched coverings admits a hyper-
bolic metric.

1. Introduction

As a consequence of the solution to the geometrization conjecture by Perel-
mann, any closed manifold of dimension three which admits a negatively
curved metric also admits a hyperbolic metric, that is, a metric of constant
curvature −1. The existence of hyperbolic metrics on closed surfaces of neg-
ative Euler characteristic is a classical consequence of the uniformization
theorem. An analogous property is not true any more for closed negatively
curved manifolds of dimension at least four.

Gromov and Thurston
GT87
[GT87] considered cyclic coverings of arithmetic

hyperbolic manifolds of simplest type, branched along a null-homologous
totally geodesic submanifold of codimension two. They showed that suitable
choices of such manifolds, called Gromov Thurston manifolds in the sequel,
admit metrics whose curvature is arbitrarily close to −1 but which do not
admit a hyperbolic metric. The proof of non-existence of a hyperbolic metric
on such manifolds is however indirect, that is, it it shown that among an
infinite collection of candidate manifolds with pinched curvature, at most
finitely many admit hyperbolic metrics.

This leads to the question of the existence of distinguished metrics on
Gromov Thurston manifolds. A class of metrics which generalizes constant
curvature metrics on 3-manifolds are Einstein metrics h, characterized by
the property that their Ricci curvature Rich satisfies Rich = ch for a constant
c ∈ R.

Part of the following conjecture was phrased as a question in
GT87
[GT87].
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Conjecture. A nontrivial covering of a closed hyperbolic manifold M of
dimension n ≥ 4, branched along a closed totally geodesic submanifold, ad-
mits a unique Einstein metric up to scale, and this metric is not of constant
curvature

Progress towards this conjecture is due to Fine and Premoselli
FP20
[FP20]

who constructed examples of negatively curved Einstein metrics on some
four-dimensional Gromov Thurston manifolds which are not of constant cur-
vature. That in dimension four such Einstein metrics are unique up to scal-
ing follows from the work of Besson, Courtois and Gallot (see

And10
[And10] for

an explicit statement). The results in
FP20
[FP20] were extended in

HJ24
[HJ24a] as

follows.

main1 Theorem 1 (Hamenstädt-Jäckel
HJ24
[HJ24a]). For any n ≥ 4, there are Gromov

Thurston manifolds of dimension n which admit a negatively curved Einstein
metric but no hyperbolic metric.

The article
GH25
[GH25] contains an analogous result in the Kähler case.

The fact that the examples of
HJ24
[HJ24a] do not admit a hyperbolic metric

used some additional property of the branched covers considered. Namely,
the branch locus of the base hyperbolic manifold is contained in a closed
totally geodesic hyperplane H which is contained in the fixed point set of an
isometric involution on M and is null-homologous in H. We call such a sub-
manifold of y closed hyperbolic manifoldM special in the sequel. In

HJ24
[HJ24a],

it was shown that among the covers of degree a multiple of four, branched
along a special submanifold, at most one can admit a hyperbolic metric.
The following is an improvement of this result following the arguments inHJ24
[HJ24a]. For the formulation, denote by ∥M∥ the simplicial volume of the
manifoldM , defined as the infinimum of the quantity ∑i ∣ai∣ where ∑i aiσi is
a simplicial cycle representing the fundamental class of M . It is known that
for hyperbolic manifolds, the simplicical volume equals a constant multiple
of the volume for a constant only depending on the dimension. We refer toFr17
[Fr17] for more information.

mainthm Theorem 2. Let M be an n-dimensional closed hyperbolic manifold and let
Σ ⊂M be a closed totally geodesic embedded null-homologous submanifold of
codimension two. For d ≥ 2 let Md be the cyclic covering of M of degree d,
branched along Σ.

(1) If n = 3 then Md admits a hyperbolic metric, and the non-compact
manifold M ∖Σ admits a complete hyperbolic metric of finite volume.

(2) If n ≥ 4 and if Σ is special, then Md admits a hyperbolic metric for
at most one degree d.

(3) For all n, it holds ∥Md∥ > d∥M∥.

The organization of this article is as follows. In Section
sec:branched
2 we give a proof of

the following statement which is well known to the experts but hard to find
in the literature: Given a closed oriented n-manifold M , a closed oriented
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embedded codimension two submanifold Σ ⊂ M and a number d ≥ 2, there
exists a degree d cyclic covering of M , branched along Σ, if and only if the
mod d fundamental class of Σ is trivial in Hn−2(M,Z/dZ).

In Section
sec:cone
3 we give a short introduction to hyperbolic cone metrics and

their relation to Theorem
mainthm
2. This is used in Section

sec:branched3
4 to study branched

covers of hyperbolic 3-manifolds and review some results from
HJ22
[HJ22]. The

proof of Theorem
mainthm
2 is contained in Section

sec:branched4
5.

Acknowledgement: This article summarizes and slightly extends results
obtained within the framework of the Schwerpunktprogramm Geometry at
infinity.

2. Branched covers
sec:branched

The goal of this section is to introduce cyclic coverings of smooth closed
oriented manifolds M branched along a smooth closed oriented embedded
submanifold Σ of codimension two.

cyclic Definition 2.1. A cyclic d-fold covering of M branched along Σ is a man-
ifold Md which admits a degree d map Π ∶ Md → M with the following
properties.

(1) The restriction of Π to Π−1(M ∖ Σ) is a degree d regular covering
onto M ∖Σ, with deck group Z/dZ.

(2) Π∣Π−1(Σ) is a homeomorphism.

We refer to
F57
[F57] for more information on more general branched coverings

of simplicial complexes.
Let ν → Σ be the normal bundle of Σ, which is an oriented two-dimensional

vector bundle over Σ. The orientation of ν can be used to equip ν with
the structure of a complex line bundle. Denote by e(ν) ∈ H2(Σ,Z) the
Euler class of ν. By Proposition 6.41 of

BT82
[BT82], this is the pull-back of the

Thom class of ν by the zero section. Proposition 6.18 of
BT82
[BT82] shows that

the Thom class of ν is the unique class in the second compactly supported
cohomology groupH2

c (ν,Z) which restricts to the generator of the compactly
supported second cohomology of the fiber. This characterizing property is
all we shall use.

The complex line bundle ν → Σ is defined by a classifying map Σ→ CP∞,
so that ν is the pull-back of the tautological bundle τ → CP∞ under this
map. Since the odd dimensional homology of CP∞ vanishes, the universal
coefficient theorem shows that any class a ∈ H2(CP∞,Z) can be identified
with a homomorphism H2(CP∞,Z)→ Z and hence for every d ≥ 2, the mod
d reduction of a is the class in H2(CP∞,Z/dZ) which arises from composing
this homomorphism with the quotient map Z→ Z/dZ. The mod d reduction
of the Euler class of ν then is the class e(ν)d ∈ H2(Σ,Z/dZ) which is the
pull-back of the resulting class in H2(CP∞,Z/dZ) by the classifying map.
Similarly, for every integer d ≥ 2 the mod d fundamental class of Σ is the
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generator of the group Hn−2(Σ,Z/dZ). Its image under the inclusion Σ→M
is a class in Hn−2(M,Z/dZ).

A cyclic cover of M branched along Σ restricts to a cyclic branched cover
Π∣Π−1(U) → U of a tubular neighborhood U of Σ in M , and U can be
chosen to be diffeomorphic to the total space of the normal bundle ν. With
this identification and up to homotopy, this cyclic cover restricts to a cyclic
unbranched cover of the complement of zero in each fiber.

euler Lemma 2.2. There is a d-fold cyclic cover of U branched along Σ if and
only if the mod d reduction of the Euler class e(ν)d ∈H2(Σ,Z/dZ) vanishes.

Proof. Let ν0 ⊂ ν be the complement of the zero section of ν. Let R be
a ring with unit and donsider the exact cohomology sequence of the pair
(ν, ν0) given by

{exact}{exact} (2.1) ⋯→H1
(ν0;R)→H2

(ν, ν0;R)→H2
(ν;R)→H2

(ν0;R)→ ⋯

The Thom class τ(ν) of ν is a distinguished element of H2(ν, ν0;Z) which
for each x ∈ Σ restricts to the generator of H2(νx, νx ∖ 0;Z) where νx is
the oriented fiber of ν over x (Theorem 10.4 of

MS74
[MS74]). Using the Gysin

sequence Theorem 12.2 of
MS74
[MS74] or Proposition 6.41 of

BT82
[BT82], the image

of τ(ν) under the restriction map H2(ν;ν0;Z)→H2(ν,Z) is the Euler class
e(ν) of ν via the homotopy equivalence of the total space of ν with Σ.

Now the fundamental group of a d-fold cyclic cover of ν0 restricting to
a d-fold cover of a fiber is the kernel of a homomorphism π1(ν0) → Z/dZ
which restricts to a surjective homomorphism of the fundamental group Z
of the fiber of ν0 onto Z/dZ. By the exact cohomology sequence (

exact
2.1, with

R = Z/dZ, such a homomorphism exists if and only if the mod d reduction
of the Euler class of ν vanishes. �

For a ring R with unit consider now the exact sequence

⋯→H1
(M ∖Σ;R)→H2

(M ;M ∖Σ;R)→H2
(M,R)→H2

(M ∖Σ;R)→ ⋯

By excision, the Thom class of the normal bundle ν defines a nontrivial
class in H2(M ;M ∖Σ;R) = H2(U,U ∖Σ;R) = H2(ν, ν0;R). It image under
the map H2(M ;M ∖ Σ;R) → H2(M ;R) is just the Poincaré dual of Σ by
Proposition 6.24 of

BT82
[BT82]. Passing to the ring Z/dZ, this class vanishes

if and only if the mod d reduction of the Thom class is contained in the
image of H1(M ∖Σ;Z/dZ). Now every element of H1(M ∖Σ;Z/dZ) defines
a homomorphism π1(M ∖Σ)→ Z/dZ, and the kernel of this homomorphism
defines a d-fold cyclic covering of M ∖Σ. This covering restricts to a cyclic
d-fold covering of U and hence defines a cyclic cover of M branched along
Σ. Using Poincaré duality, we thus have shown.

prop:branched Proposition 2.3. There exists a cyclic d-fold covering of M branched along
Σ if and only if [Σ] = 0 ∈Hn−2(M,Z/dZ).
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3. Branched covers and hyperbolic cone metrics
sec:cone

Let Hn be the hyperbolic space and let Hn−2 be a totally geodesic subspace
of codimension two. The subgroup of the group PO(n,1) of orientation
preserving isometries of Hn which fixes Hn−2 pointwise is the circle group
S1 acting on a fiber of the normal bundle as a group of rotations. The
fundamental group of Hn ∖Hn−2 equals the group Z.

If we denote by X̃ the universal covering of Hn ∖Hn−2, then the abelian
group R, which is the universal covering of the circle S1, acts freely and
isometrically on X̃ with respect to the (incomplete) hyperbolic pull-back
metric. Thus we can take the quotient X of X̃ under an infinite cyclic
subgroup of R. The metric completion X̄ of X contains the isometrically
embedded subspace Hn−2, and a fiber of the normal bundle has a natural
identification with a two-dimensional hyperbolic cone with angle α ∈ (0,∞).
If α ∈ (0,2π] then this cone is obtained as follows.

In the disk model D = {z ∣ ∣z∣ < 1} for the hyperbolic plane, straight line
segments starting at the origin are geodesic up to parameterization. Cut D
open along the rays ρ = {I = 0,R ≥ 0} and eiαρ and glue the component
of the resulting space which is a sector of angle α along the boundary with
the rotation eiα. The hyperbolic metric on D descends to a hyperbolic cone
metric with cone angle α at the image of the vertex 0 of the sector.

We call a metric on a closed manifold which is hyperbolic outside of a
closed codimension two submanifold Σ and such that any point x ∈ Σ has a
neighborhood which is isometric to a neighborhood of a point in the singular
set of a hyperbolic cone metric as described above, with locally constant cone
angle, a hyperbolic cone metric as well.

Assume now that M is a closed oriented hyperbolic manifold containing a
closed totally geodesic oriented submanifold Σ of codimension two which is
homologous to zero. By Proposition

prop:branched
2.3, for each d ≥ 2 we then can construct

a d-fold cyclic cover Π ∶Md →M branched along Σ. The pull-back under Π
of the hyperbolic metric on M is a hyperbolic cone metric with cone angle
2dπ. This observation is summarized as follows.

conemetric Lemma 3.1. The d-fold cyclic branched covering Md of M admits a hyper-
bolic cone metric with conical singularity along Σ and cone angle 2πd.

For a hyperbolic cone metric, the volume form is defined and gives rise
to a volume by integration. The following is immediate from the above
construction.

cor:cone Corollary 3.2. The volume ofMd with respect to the hyperbolic cone metric
equals dvol(M).

Proof. As the branched covering projection Π ∶Md →M is a map of degree
d which is furthermore an orientation preserving local diffeomorphism on
Md ∖ Σ, the volume form of the cone metric equals the pull-back of the
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volume form of M outside of a submanifold of codimension two and this
form integrates to dvol(M). �

We next discuss another viewpoint of the hyperbolic cone metric gd on
Md. Namely, consider again the hyperbolic space Hn and a totally geodesic
subspace Hn−2 of codimension two. The stabilizer Stab(Hn−2) of Hn in
PO(n,1) which consists of isometries whose restriction to Hn−2 is orientation
preserving can be identified with PO(n−2,1)×S1 where S1 is the subgroup
fixing Hn−2 pointwise.

The hyperbolic cone metric on Md pulls back to a hyperbolic cone metric
on the covering M̂d ofMd with fundamental group π1(Σ). The singular locus
of this metric is the submanifold Σ. The cyclic deck group Γ of Md acts on
M̂d as a cyclic group of isometries fixing each point of Σ pointwise. If h
is a smooth Riemannian metric on Md which is invariant under the action
of Γ, then h lifts to a smooth metric ĥ on M̂d which is invariant under Γ.
Consequently h descends to a cone metric on Γ/M̂d =M with singular locus
Σ and cone angle 2π

d . This manifold in turn is just the quotient of Hn under
the action of the fundamental group of Σ.

Thus if one is interested in understanding distinguished metrics on Md

one is led to studying distinguished cone metrics on Hn with singular locus
Hn−2 and cone angle 2π

d which are invariant under the action of the group
S1 × PO(n − 2,1). In order to be the lift of a metric on Md, it is necessary
that the metric glues to a metric on Md ∖ Σ. This motivates the study of
cone metrics on Hn which are asymptotic to the hyperbolic metric as the
distance from Hn−2 tends to infinity.

In the absence of negatively curved locally symmetric metrics, which do
not admit deformations as soon as the dimension of the manifold is at least 3
by Mostow rigidity, one has to look for other distinguished classes of metrics
which are stable under small deformations and extend the class of locally
symmetric metrics. A natural such class is the class of Einstein metrics g
which are defined by the requirement that the Ricci tensor Ricg satisfies
Ricg = cg for a constant c ∈ R. While by the Bonnet Myers theorem, c > 0
forces the manifold to be compact, with finite fundamental group, metrics
with negative Ricci curvature abound

Lo94
[Lo94] on any closed manifold of di-

mension at least 3.
For three-dimensional manifolds, the Einstein condition is equivalent to

constant curvature
Bes08
[Bes08], but this is not true any more in higher dimen-

sion. Einstein metrics on the branched coverings Md of closed hyperbolic
manifolds lift to Einstein metrics on M̂d, and hence one is lead to look for
S1 ×PO(n − 2,1)-invariant Einstein cone metrics on Hn with singular locus
Hn−2 and Einstein constant −(n−1) whose desingularizations serve as models
for Einstein metrics on Md near the submanifold Σ.

The following is due to Fine-Premoselli (Proposition 3.2 of
FP20
[FP20]). An

analogous statement in the Kähler setting was established in
GH25
[GH25].
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prop:cone Proposition 3.3 (Proposition 3.2 and Lemma 3.3 of
FP20
[FP20]). Let us consi-

der a totally geodesic subspace Hn−2 ⊂ Hn and let α ∈ (0,∞). Then there ex-
ists a S1×PO(n−2,1)-invariant Einstein cone metric gα on Hn with Einstein
constant −(n − 1) and the following properties.

(1) The singular locus of gα equals Hn−2, and Hn−2 is totally geodesic for
gα.

(2) The cone angle of gα along Hn−2 equals α.
(3) The sectional curvature of gα is negative.
(4) As d(γ, x) → ∞, the metric converges smoothly to the hyperbolic

metric g.
We have α < 2π if and only if the restriction of gα to Hn−2 satisfies gα∣Hn−2 ≤

g1∣Hn−2. In particular, for α /= 2π, the metric is hyperbolic if and only if
n = 3.

Proposition
prop:cone
3.3 allows to glue the singular Einstein metric on a collar

neighborhood of Σ in π1(Σ)/Hn to the hyperbolic metric on the complement
of the collar neighborhood and desingularize to obtain a smooth metric on
Md which is Einstein on the complement of the gluing region. Theorem

main1
1

is proved by deforming the metric to an Einstein metric using an implicit
function theorem. This strategy is also used in

GH25
[GH25] in the Kähler case,

and in
J25
[J25] to construct Einstein metrics on manifolds which admit metrics

with controlled curvature properties in dimension at most twelve.
The simplicial volume ∥M∥ of a closed oriented manifoldM is the infimum

of the quantities ∑ ∣ai∣ where ∑i aiσi is a singular chain representing the
fundamental class of M and where ai ∈ R. It is know that κn∥M∥ = vol(M)

for every closed hyperbolic manifold M where κn is the volume of a regular
ideal hyperbolic tetrahedron. Thus we have.

bcg Corollary 3.4. The simplicial volume of Md is strictly larger than d∥M∥.

Proof. Since the natural map Md →M is of degree d, we know that ∥Md∥ ≥

d∥M∥. We have to show that this inequality is strict. As the cone metric is
a limit of smooth metrics of sectional curvature bounded from below by −1,
the cone manifold is an RCD(n− 1, n)-space. Thus the rigidity statement is
an immediate consequence of Corollary 1.5 of

C++24
[C++24]. �

4. Branched coverings of hyperbolic 3-manifolds
sec:branched3

Consider now a closed hyperbolic 3-manifold M and an embedded geo-
desic multicurve c ⊂ M which is homologous to zero. By Proposition

prop:branched
2.3,

we know that for every d ≥ 2 there exists a covering Md → M of degree
d, branched along c. It follows from the discussion in Section

sec:cone
3 that this

branched covering manifold admits a hyperbolic cone metric with cone an-
gle 2πd > 2π whch can be deformed to a smooth negatively curved metric.
We refer to

GT87
[GT87] for an explicit construction of such a metric which is a

warped product metric near the singular set of the cone metric. Thus as a
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consequence of hyperbolization, there also exists a hyperbolic metric on Md.
Note that this is consistent with the fact that the Einstein cone metric on
Hn with singular locus Hn−2 found in Proposition

prop:cone
3.3 is hyperbolic if and

only if n = 3.
Since Md is a cyclic branched cover of M , it admits a deck group action

by a cyclic group of order d, with quotient M . The fixed point set of a
generator ζ of this group is the preimage of the geodesic multicurve c under
the covering map. By Mostow rigidity, there exists a cyclic group of order d
of isometries of Md for the hyperbolic metric. This means that there exists
an isometry ζ♯ of Md which is homotopic to ζ and such that (ζ♯)d = Id.

As follows from the work
CLW18
[CLW18], in general it is difficult to determine

the relation between the fixed point sets of ζ and ζ♯. However, in the specific
situation at hand we have the following.

fixed3 Proposition 4.1 (Proposition 5.8 of
HJ24
[HJ24a]). The fixed point set Fix(ζ#) ⊂

X of ζ# is (abstractly) diffeomorphic to Fix(ζ). Moreover, Fix(ζ#) and
Fix(ζ) are freely homotopic inside X.

As a consequence, the quotient of Md by the group ⟨ζ♯⟩ generated by ζ♯ is
a hyperbolic orbifold, or a cone manifold, which is diffeomorphic to M , with
singular locus homotopic to c. The cone angle equals 2π/d.

Question. Is it true that the length of c for the smooth hyperbolic metric
on Md is strictly smaller than the length of c on M?

As a consequence of Corollary
bcg
3.4, we know that the volume of the hy-

perbolic cone metric on M is strictly larger than the volume of the smooth
hyperbolic metric.

Since the quotient ⟨ζ♯⟩/Md is a hyperbolic cone manifold so that the mul-
ticurve c is the singular locus and the cone angle is at most π we can now
invoke a result of Kojima

Ko98
[Ko98] and obtain the following.

Theorem 4.2. The cone metric can be deformed to a complete finite volume
hyperbolic metric on M ∖ c.

As a consequence we obtain.

finitevol Corollary 4.3. Let c ⊂M be any null homologous embedded finite collection
of closed geodesics on M . Then M ∖ c admits a complete hyperbolic metric
of finite volume.

The volume of a hyperbolic 3-manifold can be studied using various tools.
To obtain an upper bound one can proceed as follows. Choose an effective
triangulation of a closed hyperbolic manifold M . This triangulation can
be straightened to a triangulation with geodesic edges and totally geodesic
facets. The hyperbolic volume of a straightened simplex does not exceed the
hyperbolic volume κn of an ideal hyperbolic tetrahedron, so the volume of
M is at most κn∣T ∣ where ∣T ∣ denotes the number of maximal simplices of
the triangulation.
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Lower bounds on the volume of a hyperbolic manifold in terms of topo-
logical information are much harder to obtain. The following was shown inHJ22
[HJ22].

Theorem 4.4. For every g ≥ 2 there exists a constant C(g) > 0 so that
the following holds true. The volume of a closed hyperbolic 3-manifold of
Heegaard genus g is at least c(g)dHempel where dHempel denotes the Hempel
distance of the Heegaard splitting.

Here a Heegaard spliting of a closed 3-manifold M of genus g is the de-
composition of into two handlebodies of genus g which are glued along the
boundary with a diffeomorphism to obtain M . The Hempel distance is an
invariant of the gluing diffeomorphism. We refer to

HJ22
[HJ22] for more infor-

mation.

5. Branched covers in dimension n ≥ 4
sec:branched4

In this section we consider a degree d cyclic covering Md →M of a closed
hyperbolic oriented manifold of dimension n ≥ 4 branched along a closed
totally geodesic oriented submanifold Σ of codimension two. We assume
that there exists an isometric involution ι ∶ M → M whose fixed point set
is a compact (possibly disconnected) totally geodesic embedded hyperplane.
We also assume that a component H of this hyperplane contains a totally
geodesic embedded hyperplane Σ which is homologous to zero in H and
consists of at most two connected components. We refer to

FP20,HJ24
[FP20, HJ24a]

for a discussion of examples.
By Proposition

prop:branched
2.3, for every d ≥ 2 there exists a cover Md of M of degree

d, branched along Σ. We assume that Md admits a hyperbolic metric and
seek to obtain a geometric understanding of this metric.

fixedpointset
5.1. Fixed point sets of isometries. Since Σ is homologous to zero in H,
it bounds a submanifold H0 ⊂H. Put H1 =H ∖H0.

Fix a number d ≥ 2. The d-fold covering X of M branched along the
totally geodesic submanifold Σ ⊂ H ⊂ M can be realized as follows. Let
Mcut be obtained from M by cutting along H0, that is, Mcut is the metric
completion ofM −H0. ThusMcut is a compact (topological) manifold whose
boundary consists of two copies H−

0 and H+

0 of H0 intersecting in Σ. The
manifold X is obtained by gluing d copies M1

cut, . . . ,M
d
cut of Mcut along the

boundary, so that the copy of H+

0 in M i
cut is glued to the copy of H−

0 in
M i+1

cut (where the superscripts i are taken modd). We denote by Hd,i
0 ⊂ X

the resulting manifold with boundary which is homeomorphic to H0.
Let ι = ιM ∶ M → M be the isometric involution whose fixed point set

contains H ⊆ Fix(ι). Since locally near H, ιM acts as a reflection in H, it
exchanges the two components of U∖H where U is a tubular neighborhood of
H in M . Thus ιM acts as an involution ιcut ∶Mcut →Mcut which exchanges
H+

0 and H−

0 and fixes W = Fix(ιM) ∖H0 ⊇H1.
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As a consequence, ιM induces an involution ι ∶ X → X with the property
that ι(M i

cut) = M
d+2−i
cut and so that the restrictions ι∣M i

cut ∶ M
i
cut → Md+2−i

cut

are identified with ιcut ∶Mcut →Mcut (superscripts are again taken modd).
If the degree d of the covering is odd, then the fixed point set of this

involution of X is the union of the copy W 1 of W in M1
cut and of Hd,(d−1)/2

0 ,
glued H1

1 ⊂W
1 along Σ. If d is even then the fixed point set of ι consists of

the two copies of W in M1
cut and M

d/2+1
cut glued along Σ.

Let ζ be a generator of the cyclic deck group of X → M . It cyclically
permutes the copies M1

cut, . . . ,M
d
cut of Mcut in X. If the degree d is even

define j = ζ ○ ι (read from right to left), and for odd degree define j = ι. The
following is now immediate from the construction.

factfixed Fact 5.1. ● If d is even, then the fixed point set of j in X is the union
Fix(j) =Hd,1

0 ∪H
d,1+d/2
0 , and the manifolds Hd,1

0 and Hd,1+d/2
0 of H0

are glued along Σ.
● If d is odd then the fixed point set of j in X is Fix(j) = W 1 ∪

H
d,(d−1)/2
0 , and it is homeomorphic to Fix(ιM).

The fixed point set of each of the involutions ζi ○ j ○ ζ−i (i = 0, . . . , d− 1) is
the embedded submanifold ζi(Fix(j)) of X. Their union cuts X up into the
d copies of Mcut if d is even, and into d copies of M ∖H if d is odd. We call
any diffeomorphism of X contained in the finite group of diffeomorphisms of
X generated by j and ζ an admissible diffeomorphism of X.

By Mostow rigidity, any homotopy self-equivalence σ of X is homotopic
to a unique isometry σ# of X. Furthermore, by uniqueness, the map

Homeo(X)→ Isom(X), σ ↦ σ#

which associates to a homeomorphism the unique isometry homotopic to it
is a group homomorphism. The following result was established in

HJ24
[HJ24a].

fixed Proposition 5.2. Let φ be an admissible diffeomorphism of X and let φ# be
the isometry of X homotopic to φ. Then the fixed point set Fix(φ#) ⊂ X of
φ# is (abstractly) diffeomorphic to Fix(φ). Moreover, Fix(φ#) and Fix(φ)
are freely homotopic inside X.

Let j be the involution of X described in Fact
factfixed
5.1, and ζ be the gen-

erator of the deck group of X → M which cyclically permutes the copies
M1

cut, . . . ,M
d
cut of Mcut in X.

From now on we always denote by F the component of Fix(j) containing
Σ and by F# the homotopic component of Fix(j#) whose existence was
shown in Proposition

fixed
5.2. By Proposition 5.2 and Mostow rigidity for closed

hyperbolic manifolds of dimension n − 1 ≥ 3, there exists an isometry ψ ∶

F → F# which maps Σ to the fixed point set Σ# of ζ#. Furthermore, with
a homotopy we may identify Σ and Σ# in X. For each i = 0, . . . , d − 1, the
map (ζ#)i ○ ψ ○ ζ−i maps ζi(F ) isometrically onto (ζ#)i(F#).
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After possibly changing the hyperbolic metric of X with an isotopy, we
may assume that for each connected component Σ0 of Σ we have Σ0 ∩Σ#

0 ≠

∅, where Σ#
0 = ψ(Σ0). So, for each component, we can fix a basepoint

x0 ∈ Σ0∩Σ#
0 , and we may assume without loss of generality that ψ(x0) = x0.

We call such a basepoint preferred. Due to Proposition 5.2, we may also
assume that

π1(Σ0, x0) = π1(Σ
#
0 , x0) and π1(F,x0) = π1(F

#, x0).

In the sequel, the fundamental group π1(X,x0) will always be represented
with respect to a fixed choice x0 of preferred basepoint.

Although by Proposition 5.2, the cyclic group generated by ζ# acts freely
on X ∖Σ# and the manifold F# is homotopic to F , this does not necessarily
imply that ζ#(F#)∩F# = Σ#. The following lemma takes care of this issue
and was also established in

HJ24
[HJ24a].

intersection Lemma 5.3. (1) The differential of ζ# acts on the normal bundle of
Σ# by a rotation with angle 2π/d.

(2) We have F# ∩ ζ#(F#) = Σ#.

Let N be the compact hyperbolic manifold with totally geodesic boundary
∂N which is obtained by cutting M open along H, that is, N is the metric
completion ofM −H. If H is non-separating, then N is connected, otherwise
N has two connected components. The boundary ∂N of N is totally geodesic
and consists of two copies of H containing one copy of Σ each. The main
tool towards Theorem

mainthm
2 is the following result.

prop:boundaryrigidity Proposition 5.4. If the cyclic d-fold branched cover X of M admits a hy-
perbolic metric, then there exists a hyperbolic cone manifold N# satisfying
the following properties:
(i) N# is homotopy equivalent to N .
(ii) The boundary ∂N# of N# is path isometric to ∂N .
(iii) The singular locus of N# consists of the two copies of Σ in ∂N#. The

cone angle at each of these copies equals 2π/d.

kerckhoffstorm Remark 5.5. As the dimension of N is at least four, by a result of Ker-
ckhoff and Storm

KS12
[KS12, Theorem 2.5] there is no continuous deformation

of the convex cocompact hyperbolic manifold N̂ within the space of convex
cocompact hyperbolic manifolds.

This does not reduce Theorem
mainthm
2 to Proposition

prop:boundaryrigidity
5.4 as the result of Ker-

ckhoff and Storm does not rule out that there are isolated faithful convex
cocompact representations of Γ which are not conjugate to ρ.

even
5.2. The proof of Proposition

prop:boundaryrigidity
5.4. In this subsection we assume as before

that X admits a hyperbolic metric. Let j be the involution of X described in
Fact

factfixed
5.1, and ζ be the generator of the deck group of X →M which cyclically

permutes the copies M1
cut, . . . ,M

d
cut of Mcut in X. The union ∪iζi(F ) of the
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corresponding components of the fixed point sets of the involutions ζi○j ○ζ−i
cut X up into d copies of the manifold N from Proposition 5.4.

Using these conventions, Proposition
fixed
5.2 shows that the fixed point set of

each of the isometric involutions (ζ#)i○j#○(ζ#)−i homotopic to ζi○j○ζ−i has
a component (ζ#)i(F#) which is a hyperplane isometric to the component
ζi(F ) of the fixed point set of ζi ○ j ○ ζ−i and contains Σ. We shall show
that the union ∪i(ζ#)i(F#) of these submanifolds of X cut X into d sectors
homotopy equivalent toMcut if d is even, and homotopy equivalent to N if d
is odd. This yields Proposition

prop:boundaryrigidity
5.4 if d is odd. If d is even then such a sector

contains an embedded isometric copy of H1 which intersects the boundary
of M#

cut in Σ#. Cutting M#
cut along this copy of H1 then yields a hyperbolic

cone manifold with the properties stated in Proposition
prop:boundaryrigidity
5.4.

From now on we always denote by F the component of Fix(j) containing
Σ and by F# the homotopic component of Fix(j#) whose existence was
shown in Proposition

fixed
5.2.

For each i = 0, . . . , d − 1, Proposition 5.2 yields an isometry φi ∶ ζi(F )
≅

Ð→

(ζ#)i(F#) such that the maps

inclζi(F ) ∶ ζ
i
(F )↪X and incl

(ζ#)i(F#) ○ φi ∶ ζ
i
(F )

≅

Ð→ (ζ#)
i
(F#

)↪X

are homotopic. As (ζ#)i(F#) ⊆X is totally geodesic, φi(Σ) ⊆X is a closed
totally geodesic submanifold of codimension two which is in the same free
homotopy class as Σ. Since each free homotopy class can contain at most one
totally geodesic representative, this implies that φ0(Σ) = ⋅ ⋅ ⋅ = φd−1(Σ). We
define Σ# ⊂X to be this closed totally geodesic submanifold of codimenson
two. So, by construction, Σ# ⊆ (ζ#)i(F#) for all i = 0, . . . , d − 1.

After possibly changing the hyperbolic metric of X with an isotopy, we
may assume that for each connected component Σ0 of Σ we have Σ0∩Σ#

0 ≠ ∅,
where Σ#

0 = φ0(Σ). So, for each component, we can fix a basepoint x0 ∈

Σ0 ∩ Σ#
0 , and we may assume without loss of generality that φ0(x0) = x0.

We call such a basepoint preferred. Due to Proposition 5.2, we may also
assume that

π1(Σ0, x0) = π1(Σ
#
0 , x0) and π1(F,x0) = π1(F

#, x0).

In the sequel, the fundamental group π1(X,x0) will always be represented
with respect to a fixed choice x0 of preferred basepoint. We can now prove
Proposition 5.4.

Proof of Proposition 5.4. By construction, the subspace F ∪ ζ(F ) of X sep-
arates X. If d is even, then by the definition of the map j, the complement
X−(F ∪ζ(F )) contains two connected components whose closures are home-
omorphic to Mcut. If d is odd then it contains one connected component
whose closure is homeomorphic to Mcut. In both cases, let Z be the closure
of such a component. Its boundary consists of two copies of H0 glued along
Σ.
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By Lemma
intersection
5.3, there exists a corresponding componentM#

cut of X−(F#∪

ζ#(F#)). The boundary of its closure Z# is connected and consists of two
copies of H0 meeting along Σ with an angle 2π/d. Identifying Σ and Σ# as
before and choosing a basepoint x ∈ Σ, we claim that π1(Z,x) = π1(Z#, x).

Namely, as π1((ζ#)i(F#), x0) = π1(ζ
i(F ), x0) for all i = 0,⋯, d − 1, it

holds that π1(∂Z,x) = π1(∂Z#, x). As ∂Z is a separating hypersurface in X
homotopic to Z#, by the theorem of Seifert-van Kampen, we know that

π1(X,x) = π1(Z,x)∗π1(∂Z,x)π1(X−Z,x) = π1(Z
#, x)∗π1(∂Z,x)π1(X−Z#, x).

It then follows from the normal form for amalgamated products
LS01
[LS01, p.186]

that π1(Z#, x) is isomorphic to either π1(Z,x) or to π1(X,Z,x).
If d = 2 then π1(Z,x) is isomorphic to π1(X −Z,x) and the claim is clear.

If d ≥ 3 then note that ζ∗ = ζ#∗ maps π1(Z,x) to a proper subgroup of
π1(X −Z,x), and it maps π1(X −Z,x) to a proper supergroup of π1(Z,x).
Furthermore, it maps π1(Z#, x) to a proper subgroup of π1(X −Z#, x) and
it maps π1(X − Z#, x) to a proper supergroup of π1(Z#, x). Thus we have
π1(Z,x) = π1(Z

#, x) as claimed.
Note that if d is odd, then the component Z# contains a totally geodesic

hypersurface isometric to H1 which intersects the boundary of Z# along
Σ. There exists an isometric involution of M#

cut which exchanges the two
copies of H0 in its boundary and hence H1 meets the boundary of M#

cut with
an angle of π/d. We refer to Fact

factfixed
5.1 for more information. Cutting Z#

open along this hypersurface then yields a cone manifold with the properties
stated in Proposition 5.4.

Now assume that the covering degree d is even. Note that the roles of
the hypersurfaces H0 and H1 can be exchanged and hence there exists a
second involution j0 of X whose fixed point set is the union H1

1 ∪ H
1+d/2
1

of the copies of H1 in M1
cut and M1+d/2

cut , glued along Σ, as fixed point set.
Denote by j#0 the isometric involutions of X freely homotopic to j0. Note
that we j0 is admissible. Thus Fix(j#0 ) is a separating totally geodesic
hyperplane in X which is isometric to two copies of H1 glued along Σ. This
hyperplane contains Σ# as Σ# is the unique submanifold of X homotopic
to Σ which contains each closed geodesic in the free homotopy class of an
element of π1(Σ). Furthermore, j#0 fixes Σ# pointwise, and it exchanges the
two components of X ∖ Fix(j#0 ).

By Mostow rigidity, we have

j#0 = j# ○ ζ#.

In particular, for x ∈ Fix((ζ#)−1 ○ j# ○ ζ#) it holds j#0 (x) = ζ#(x). As a
consequence, j#0 induces an isometric involution ofM#

cut which exchanges the
two components of ∂M#

cut∖Σ#. As j#0 acts as a reflection along a connected
separating hyperplane in X containing Σ#, the restriction of j#0 acts as a
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reflection along a totally geodesic embedded hyperplane H#
1 which intersects

∂M#
cut in Σ#. In particular, as j#0 is an isometry, the hyperplane H#

1 meets
a component of ∂M#

cut ∖ Σ# along Σ# with an angle of π/d. Thus cutting
M#

cut open along H#
1 yields a hyperbolic manifold N# with piecewise totally

geodesic boundary with properties (ii) and (iii) of Proposition
prop:boundaryrigidity
5.4.

That N# is homotopy equivalent to M − H follows from the fact that
both are aspherical manifolds with boundary and isomorphic fundamental
groups. �

5.3. Proof of the main Theorem. We showed so far that the existence
of a hyperbolic metric on the d-fold covering X of M branched along Σ
gives rise to a convex cocompact hyperbolic manifold Nd with two boundary
components, each of which is path isometric to the hypersurface H. The
manifold is singular along Σ ⊂ H, with cone angle (or bending angle) π/d,
and it is homotopy equivalent to the hyperbolic manifold N with totally
geodesic boundary obtained by cutting M open along H. Note that N is
connected if and only if the hypersurface H is non-separating. By a result of
Kerckhoff and Storm

KS12
[KS12], we know that such a hyperbolic cone manifold

Nd can not be obtained from a deformation of N , or, more precisely, by a
deformation of the representation ρ ∶ π1(N) → O+(n,1) which defines the
unique complete hyperbolic manifold N̂ with convex core N .

Construct a new manifold W by gluing 2d copies N i
d (i = 1, . . . ,2d) of Nd

along the boundary as follows. Let ∂N±

d be the two distinct boundary com-
ponents of N , and let (∂N i

d)
± be the corresponding boundary components of

N i
d. Each of these components contains a copy of Σ which decomposes the

component into two connected components (H i
0,d)

±, (H i
1,d)

±. For each odd
i ≤ 2d identify (H i

0,d)
± with (H i+1

0,d )
±, and for even i ≤ 2d identify (H i

1,d)
±

with (H i+1
1,d )

±. As the cone angle of ∂N±

d along Σ equals π/d, the hyperbolic
metrics on the bordered manifolds N i

d induce a smooth hyperbolic metric on
W .

twosheet Lemma 5.6. The manifold W is a two-sheeted unbranched covering of X.

In fact, if the hypersurface H inM is non-separating, then the same holds
true for the component F containing Σ of the fixed point set of the lift ι to
X of the involution ιM specified in Fact

factfixed
5.1. Then W is the two-sheeted

covering of X so that the preimage of F consists of two components which
separate W . If H ⊂ M is separating, then N consists of two connected
components, and W consists of two copies of X.

Proof. The case that H is separating is clear from the above remark. Thus
assume that H is non-separating. Then the same holds true for the hyper-
surface F . Cut X open along F . The resulting manifold Q is connected and
has two boundary components ∂Q−, ∂Q+ which are homeomorphic and path
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isometric to H. The metric is singular along the two copies of the totally
geodesic submanifold Σ# in the two boundary components of Q.

Glue a second copy Q̂ of Q to Q along the boundary in such a way that the
boundary component ∂Q̂− is glued to the boundary component ∂Q+, and the
boundary component ∂Q̂+ is glued to the boundary component ∂Q−. The
resulting manifold is equipped with a smooth hyperbolic metric, and admits
an obvious two sheeted unbranched covering ontoX. The lemma follows. �

We are now in a position to present the proof of our main result.

Proof of the main Theorem. We divide the proof into two claims.
Claim 1: Among the branched coverings of M of even degree d ∈ 2N, at
most one can be homeomorphic to a hyperbolic manifold.

Proof of Claim 1: We argue by contradiction and we assume that there are
distinct multiples of d1 /= d2 ∈ 2N such that the cyclic di-fold branched cover
X(di) admits a smooth hyperbolic metric for i = 1,2. Then, for each i = 1,2,
Proposition 5.4 (see the end of the proof for an explicit statement) implies
that there exists a hyperbolic cone manifold M

2π/di
cut with totally geodesic

boundary ∂M2π/di
cut homeomorphic and path isometric to ∂Mcut, with singular

set isometric to Σ, cone angle 2π/di along Σ, and π1(M
2π/di
cut ) = π1(Mcut).

Note that d1
2

2π
d1
+ d2

2
2π
d2

= 2π. Therefore, we can glue d1/2 copies of M2π/d1
cut

and d2/2 copies ofM2π/d2
cut in cyclic order along the components of ∂M2π/di

cut ∖Σ
to a smooth hyperbolic manifold Y . An application of the Seifert–van Kam-
pen theorem shows that the fundamental group of Y is isomorphic to the
fundamental group of the (d1+d2)/2-fold cyclic coverX ofM branched along
Σ. In particular, this fundamental group admits a finite group of automor-
phisms generated by an element ζ∗ of order (d1 + d2)/2 and an involution
j∗ corresponding to the automorphisms induced by the homeomorphisms ζ
and j of X (notations are as before). By the proof of Proposition 5.4, for
each i = 0, . . . , (d1 + d2)/2 − 1, the fixed point group of ζi

∗
○ j∗ ○ ζ

−i
∗

is the
fundamental group of an embedded codimension one submanifold Fi that,
by construction of the hyperbolic metric on Y , is already totally geodesic.
Moreover, for some i the totally geodesic submanifolds Fi and Fi+1 intersect
with angle 2π/d1, while for other i they intersect with angle 2π/d2.

By Mostow rigidity, there exist isometries ζ#, j# of the hyperbolic man-
ifold Y of order (d1 + d2)/2 and 2, respectively, that induce the outer auto-
morphism given by ζ∗ and j∗. By Lemma 5.3, the fixed point set of ζ# is a
codimension two totally geodesic submanifold Σ# freely homotopic to Σ, and
thus Σ# = Σ since Σ is already totally geodesic in Y . Similarly, by Proposi-
tion 5.4, the fixed point set (ζ#)i(F#) of the involution (ζ#)i ○ j# ○ (ζ#)−i

is a totally geodesic hyperplane freely homotopic to the manifold Fi satisfy-
ing π1(Fi) = Fix(ζi

∗
○ j∗ ○ ζ

−i
∗
), and thus (ζ#)i(F#) = Fi since Fi is already

hyperbolic. However, as ζ# acts by rotation with a fixed angle in the normal
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bundle of Σ, the intersection angle of (ζ#)i(F#) and (ζ#)i+1(F#) is the
same for all i. But this contradicts the fact that, by construction, the in-
tersection angle of Fi with Fi+1 varies between 2π/d1 and 2π/d2, completing
the proof of the claim. ∎

Claim 2: No branched covering of M of odd degree d ≥ 3 can be homeomor-
phic to a hyperbolic manifold.

Proof of Claim 2: Assume that there exists a covering X of M branched
along Σ of odd degree d which admits a hyperbolic metric. By Propositionprop:boundaryrigidity
5.4, there exists a hyperbolic cone manifold Nd homotopy equivalent to the
manifold N with cone angle π/d along the copies of Σ in each boundary
component of Nd. Glue d copies of Nd to the manifold N =M ∖H along the
boundary as described in Lemma

twosheet
5.6. Note that this is possible because d is

odd. The resulting manifold is homotopy equivalent to a double unbranched
covering of the branched covering X of M of degree d+1

2 as in Lemma
twosheet
5.6,

and it is equipped with a smooth hyperbolic metric.
On the other hand, as W → X is a two-sheeted unbranched covering, the

hyperbolic metric onX lifts to a hyperbolic metric onW . However, it follows
precisely as in the proof of Claim 1 that this leads to a contradiction. ∎ �
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