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Abstract. For an oriented surface S of genus g ≥ 0 with m ≥ 0 punctures
and 3g − 3 + m ≥ 2, let Q(S) and QWP (S) be the moduli space of area
one quadratic differentials and of quadratic differentials of unit norm for the
Weil-Petersson metric, respectively. We show that there is a Borel subset E

of Q(S) which is invariant under the Teichmüller flow Φt
T

and of full measure
for every invariant Borel probability measure, and there is a measurable map
Λ : E → QWP (S) which conjugates Φt

T
|E into the Weil-Petersson flow Φt

WP .

This conjugacy induces a continuous injection of the space of all Φt
T
-invariant

Borel probability measures on Q(S) into the space of all Φt
WP -invariant Borel

probability measures on QWP (S). The map Θ is not surjective, but its im-
age contains the Lebesgue Liouville measure. A measure not in the image

corresponds to a locally finite infinite invariant Borel measure on Q(S).
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1. Introduction

An oriented surface S of finite type is a closed surface of genus g ≥ 0 from
which m ≥ 0 points, so-called punctures, have been deleted. We assume that
3g − 3 +m ≥ 2, i.e. that S is not a sphere with at most four punctures or a torus
with at most one puncture. We then call the surface S nonexceptional.

Since the Euler characteristic of S is negative, the Teichmüller space T (S) of
S is the quotient of the space of all complete finite volume hyperbolic metrics on
S under the action of the group of diffeomorphisms of S which are isotopic to
the identity. The mapping class group Mod(S) of all isotopy classes of orientation
preserving diffeomorphisms of S acts properly discontinuously on T (S)

There are two Mod(S)-invariant metrics on Teichmüller space T (S) which have
been studied extensively in the past: The so-called Teichmüller metric and the
Weil-Petersson metric.

The Teichmüller metric is a complete Mod(S)-invariant Finsler metric on T (S).
It is customary to view this metric as a metric on the cotangent bundle of Te-
ichmüller space. This cotangent bundle is the bundle of holomorphic quadratic
differentials over T (S). The unit sphere bundle of the metric is the bundle Q̃(S)
of quadratic differentials of area one. Although the large scale geometry of the
Teichmüller metric does not resemble a metric of non-positive curvature, any two
points of T (S) can be connected by a unique geodesic. We call such a geodesic a
Teichmüller geodesic.

Teichmüller distances can be effectively estimated (see [R07b]), and there are
many recent results on the asymptotic behavior of Teichmüller geodesics. We refer
to [LM10, LR11] for more information.

The Teichmüller metric defines a geodesic flow on Q̃(S) which is equivariant
with respect to the action of the mapping class group and hence projects to a flow
ΦtT on the moduli space

Q(S) = Q̃(S)/Mod(S)

of area one quadratic differentials.

Although Q(S) is not compact, it admits many ΦtT -invariant Borel probabil-
ity measures. For example, there are countably many periodic orbits for the Te-
ichmüller flow on Q(S), and each such orbit supports a natural invariant Borel
probability measure. These periodic orbits are in bijection with conjugacy classes of
pseudo-Anosov mapping classes, and they can be counted according to their lengths
[EM11, H13]. Borel probability measures supported on periodic orbits are dense
in the space MT (Q(S)) of all ΦtT -invariant Borel probability measures on Q(S)
equipped with the weak∗-topology. However, for every compact setK ⊂ Q(S) there
are periodic orbits which do not intersect K [H05] and hence the space MT (Q(S))
is non-compact: There are sequences of such measures supported on periodic orbits
which converge weakly to the trivial measure of vanishing total mass.
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The Weil-Petersson metric is a Mod(S)-invariant Kähler metric on T (S) of
negative sectional curvature which induces an incomplete distance dWP . The com-
pletion T (S) of T (S) with respect to dWP is a Cat(0)-space, however it is not

locally compact. As a consequence, any two points in T (S) can be connected by
a unique geodesic. Such a geodesic will be called a Weil-Petersson geodesic in the
sequel. Finite length Weil-Petersson geodesic arcs with both endpoints in T (S) are
entirely contained in T (S) (Corollary 5.4 of [W87]).

The Weil-Petersson metric can be viewed as a Mod(S)-invariant metric on the
cotangent bundle of Teichmüller space. The norm of a quadratic differential q is the
L2-norm of q with respect to the underlying hyperbolic metric on the base point of
q. The unit cotangent bundle Q̃WP (S) for the metric projects to an orbifold bundle
QWP (S) over the moduli space of curves. The geodesic flow ΦtWP for the metric
acts on QWP (S), however this flow is incomplete. Periodic orbits for ΦtWP are in
bijection with conjugacy classes of pseudo-Anosov elements [DW03] and hence they
are in bijection with periodic orbits for the Teichmüller flow. Each of these orbits
supports an invariant Borel probability measure, and the set of all these measures is
dense in the space MWP(QWP(S)) of Φ

t
WP-invariant Borel probability measures on

QWP(S) equipped with the weak∗-topology [H!0b]. In other words, there is a natu-
ral bijection between dense subsets of MT (Q(S)) and MWP(QWP(S)). The space
MWP (QWP (S)) contains the Lebesgue Liouville measure for the Weil-Petersson
metric. This measure was shown to be ergodic in [BMW12].

For a measure µ ∈ MT (Q(S)) (or ν ∈ MWP(Q(S))) let h(µ) be the entropy
of µ (or of ν). The entropy of a measure µ ∈ MT (Q(S)) is at most 6g − 6 + 2m
[H11]. In contrast, Brock, Masur and Minsky constructed invariant Borel probabil-
ity measures for the Weil-Petersson geodesic flow whose entropy is arbitrarily large
[BMM11]. The paper [PWW10] also contains some information on the dynamics
of ΦtWP .

Definition. A measurable (or continuous) conjugacy of a continuous flow Ψt on a
topological spaceX into a continuous flow Ξt on a topological space Y is an injective
measurable (or continuous) map Λ : X → Y such that there is a measurable (or
continuous) function ρ : X × R → R with the following properties.

(1) ρ(x, 0) = 0 for all x ∈ X.
(2) For each fixed x ∈ X the function ρ(x, ·) : s → ρ(x, s) is an increasing

homeomorphism.
(3) Λ(Ψtx) = Ξρ(x,t)Λ(x) for all x ∈ X, t ∈ R.

We show

Theorem 1. There is a ΦtT -invariant Borel subset E ⊂ Q(S) with the following
properties.

(1) µ(E) = 1 for every ΦtT -invariant Borel probability measure µ on Q(S).
(2) There is a measurable conjugacy Λ : E → (QWP (S),Φ

t
WP ) whose restriction

to any compact invariant set is continuous.
(3) Λ induces a continuous injection

Θ : MT (Q(S)) → MWP(QWP(S)).
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(4) Θ is not surjective, but its image contains the Lebesgue Liouville measure.
(5)

∞ > h(Θ(µ)) ≥ h(µ)/
√

2π(2g − 2 + n) for all µ ∈ MT (Q(S)).

To show that the map Θ is not surjective we construct an explicit ΦtWP -invariant
Borel probablity measure on QWP (S) which is not contained in its image. However,
this measure is not ergodic.

We also obtain information on ΦtWP -invariant Borel probability measures which
are not contained in the image of Θ. For simplicity we restrict our attention to
ergodic measures.

Theorem 2. Let ν be any ΦtWP -invariant ergodic Borel probability measure on
QWP (S). Then there is an invariant Borel set A ⊂ QWP (S) with ν(A) = 1, and
there is a measurable conjugacy

Ξ : A→ (QT (S),Φ
t
T ).

The measure Ξ∗ν determines a locally finite ΦtT -invariant Borel measure on Q(S)
which is finite if and only if ν ∈ Θ(MT (Q(S))).

The strategy for the proof of Theorem 1 consists in a geometric comparison be-
tween biinfinite Teichmüller geodesics and biinfinite Weil-Petersson geodesics pro-
vided that these geodesics satisfy suitable recurrence properties under the action
of the mapping class group. Particular such geodesics are geodesics which are
contained in the thick part of Teichmüller space.

Denote for ǫ > 0 by T (S)ǫ the Mod(S)-invariant subset of all hyperbolic metrics
whose systole is at least ǫ. The mapping class group acts cocompactly on T (S)ǫ
and hence by invariance, the restrictions to T (S)ǫ of the Teichmüller metric and the
Weil-Petersson metric are locally uniformly bilipschitz equivalent. It follows easily
from the work of Masur and Minsky (see [R07b]) and Brock [B03] that on the
large scale, the restrictions to T (S)ǫ of the distances dT and dWP induced by the
Teichmüller metric and the Weil-Petersson metric, respectively, are not bilipschitz
equivalent. For example, there is a sequence of points {xi} ⊂ T (S)ǫ and a number
c > 0 such that dT (x0, xi) → ∞ and dWP (x0, xi) ≤ c. The Teichmüller geodesics
connecting x0 to xi enter arbitrarily deeply into the thin part of Teichmüller space.

In [BMM11], Brock, Masur and Minsky showed that for every ǫ > 0, biinfinite
Teichmüller geodesics which are entirely contained in T (S)ǫ are fellow-traveled by
biinfinite Weil-Petersson geodesics, and binifinite Weil-Petersson geodesics entirely
contained in T (S)ǫ are fellow-traveled by biinfinite Weil-Petersson geodesics.

The arguments used for the proof of Theorem 1 yield a similar result. For a
formulation, we use the distance dT on T (S) induced by the Teichmüller metric to
define the Hausdorff-distance dH(A,B) ∈ [0,∞] between two subsets A,B of T (S)
as the infimum of all numbers r > 0 such that A is contained in the r-neighborhood
of B and B is contained in the r-neighborhood of A.

Theorem 3. For every ǫ > 0 there is a number R = R(ǫ) > 0 with the following
property.
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(1) Let J ⊂ R be a closed connected set and let γ : J → T (S)ǫ be a Teichmüller
geodesic. Then there is a closed connected set J ′ ⊂ R and there is a Weil-
Petersson geodesic ξ : J ′ → T (S) with dH(γ(J), ξ(J ′)) ≤ R.

(2) Let J ⊂ R be a closed connected set and let ξ : J → T (S)ǫ be a Weil-
Petersson geodesic. Then there is a closed connected set J ′ ⊂ R and there
is a Teichmüller geodesic γ : J ′ → T (S) with dH(ξ(J), γ(J ′)) ≤ R.

The organization of this work is as follows. In Section 2 we establish the second
part of Theorem 3 from standard properties of Teichmüller geodesics and some
results of Brock, Masur and Minsky [BMM10].

Section 3 contains some geometric results on the Weil-Petersson metric. We
begin with the fairly easy observation that given ǫ > 0 and a Teichmüller ge-
odesic γ : R → T (S)ǫ, there are infinite Weil-Petersson geodesic rays γ+, γ− :
[0,∞) → T (S) which are uniform limits on compact sets of Weil-Petersson ge-
odesic segments connecting γ(0) to points γ(Ti), γ(−Ri) for suitably choosen se-
quences Ti → ∞, Ri → ∞. Since the completion of Teichmüller space with respect
to the Weil-Petersson metric is a CAT(0) geodesic metric space, Theorem 3 now
predicts the existence of a biinfinite Weil-Petersson geodesic which is forward as-
ymptotic to γ+ and backward asymptotic to γ−. However, the curvature of the
Weil-Petersson metric is not bounded from above by a negative constant, and the
existence of such a geodesic is not immediate.

With an argument based on ruled surfaces and angle comparison we derive a
sufficient condition for the existence of a biinfinite Weil-Petersson geodesic which is
forward and backward asymptotic to given Weil-Petersson geodesic rays. Roughly
speaking, this condition is satisfied if the geodesic rays spend a sufficient (but finite)
amount of time in the thick part of Teichmüller space.

In Section 4 we find a sufficient condition for a Weil-Petersson geodesic segment of
uniformly bounded length to pass through the thick part of Teichmüller space. This
condition is a consequence of a quantitative version of the following result of Wolpert
[W03]: If ζ : [0, R] → T (S) is any Weil-Petersson geodesic of uniformly bounded
length and if there is a simple closed curve α which is long at both endpoints of ζ
and becomes very short along ζ, then ζ twists about α or about a curve β which is
disjoint from α.

Section 5 contains the main technical results of this work. We use hyperbolicity
of the curve graph and some of the combinatorial tools introduced by Masur and
Minsky [MM00] to establish a sufficient condition for a Weil-Petersson geodesic
segment of arbitrary length to spend a fixed proportion of time in the thick part
of Teichmüller space. This result is used in Section 6 to construct the Borel set E
and the conjugacy Λ : E → QWP (S) from Theorem 1. The first part of Theorem 3
follows easily.

In Section 7 we show that the conjugacy Λ induces an injection Θ of the space
of invariant Borel probability measures on Q(S) into the space of invariant Borel
probability measures on QWP (S). In Section 8 we prove Theorem 2 and use this to
characterize the image of the map Θ. We also construct an example of a measure
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which is not contained in the image of the map Θ. Finally in Section 9 we find that
the image of Θ contains the Lebesgue Liouville measure.

Notation: Throughout the paper, we write f ≍ g for two nonvanishing functions
f, g if f/g and g/f are uniformly bounded.

Acknowledgement: This work began in fall 2007 during a visit of the MSRI
in Berkeley and was inspired by discussions with Jeff Brock, Howard Masur and
Yair Minsky. Most of the results in Sections 2-7 were written in spring 2008 while
I visited the IHES in Bures-sur-Yvette. I thank the institute for its hospitality and
the good working conditions it provided. The paper was completed in spring 2015
during another visit of the MSRI in Berkeley. During this visit I benefitted from
discussions with Howard Masur and Scott Wolpert.

2. Weil-Petersson geodesics in the thick part of T (S)

Let S be an oriented surface of genus g ≥ 0 withm ≥ 0 punctures and 3g−3+m ≥
2 and let T (S) be the Teichmüller space for S. In this section we investigate
geodesics for the Weil-Petersson metric on T (S) which remain entirely in a fixed
thick part of Teichmüller space. Our goal is to prove the second part of Theorem
3 which relates such a geodesic to a Teichmüller geodesic.

We begin with summarizing those properties of the Weil-Petersson metric which
are needed in the sequel. More information and references are contained in the
survey paper [W03].

A geodesic for the Weil-Petersson metric is also called a WP-geodesic. Such a
geodesic will always be parametrized by arc length. A WP-ray in T (S) is a WP-
geodesic γ : [0, T ) → T (S) for some T ∈ (0,∞] which can not be extended, i.e.
which leaves every compact set.

A geodesic lamination for a complete hyperbolic structure on S of finite volume is
a compact subset of S which is foliated into simple geodesics. A geodesic lamination
λ on S is called minimal if each of its half-leaves is dense in λ. Thus a simple closed
geodesic is a minimal geodesic lamination. A minimal geodesic lamination with
more than one leaf has uncountably many leaves and is called minimal arational. A
geodesic lamination λ is said to fill S if every simple closed geodesic on S intersects
λ transversely. This is equivalent to stating that the complementary components
of λ are all topological discs or once punctured topological discs.

A measured geodesic lamination is a geodesic lamination λ together with a trans-
lation invariant transverse measure. Such a measure assigns a positive weight to
each compact arc in S which intersects λ nontrivially and transversely and whose
endpoints are contained in complementary regions of λ. The geodesic lamination λ
is called the support of the measured geodesic lamination; it consists of a disjoint
union of minimal components. Every minimal geodesic lamination is the support of
a measured geodesic lamination. The space ML of measured geodesic laminations
on S can be equipped with the weak∗-topology. Its projectivization PML is called
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the space of projective measured geodesic laminations, and it is homeomorphic to
the sphere S6g−7+2m.

For every marked hyperbolic metric h ∈ T (S), every essential free homotopy
class α on S can be represented by a closed h-geodesic which is unique up to
parametrization. This geodesic is simple if the free homotopy class admits a simple
representative. The h-length ℓα(h) of the class α is the length of its geodesic
representative. Equivalently, ℓα(h) equals the minimum of the h-lengths of all
closed curves representing the class α.

Length of simple closed curves extends to a continuous length function T (S) ×
ML → (0,∞) which assigns to a hyperbolic metric h ∈ T (S) and a measured geo-
desic lamination µ the h-length ℓµ(h) of µ. This length function satisfies ℓaµ(h) =
aℓµ(h) for all h ∈ T (S), µ ∈ ML and every a > 0. For every fixed h ∈ T (S), the set
of all measured geodesic laminations of h-length one is a section of the projection
ML → PML.

The following result is due to Wolpert (Corollary 4.7 of [W87]) and is of funda-
mental importance for this work.

Theorem 2.1. For any µ ∈ ML and for every Weil-Petersson geodesic γ : [a, b] →
T (S) the function t→ ℓµ(γ(t)) is convex.

There is a continuous pairing i : ML × ML → [0,∞), the so-called intersec-
tion form, which extends the geometric intersection number between simple closed
curves (see [Bo86] for this result of Thurston). Two measured geodesic laminations
µ, ν bind S if i(ζ, µ) + i(ζ, ν) > 0 for every ζ ∈ ML. Pairs (µ, ν) of measured geo-
desic laminations which bind S and which satisfy i(µ, ν) = 1 correspond precisely
to area one quadratic differentials for S via a map which associates to an area one
quadratic differential q the ordered pair (qv, qh) composed of its vertical and its
horizontal measured geodesic lamination, respectively.

A pants decomposition for S is a collection of 3g−3+m pairwise disjoint simple
closed essential curves on S which decompose S into 2g − 2 + m pairs of pants.
Here by a pair of pants we mean a surface which is homeomorphic to a three-holed
sphere. By a classical result of Bers (see [B92]), there is a number χ0 > 0 only
depending on the topological type of S such that for every complete hyperbolic
metric h on S of finite volume, there is a pants decomposition for S consisting of
simple closed curves of h-length at most χ0. A number χ0 > 0 with this property
is called a Bers constant for S, and a simple closed curve of h-length at most χ0

is called a Bers curve for h. Such a curve supports a unique projective measured
lamination. A pants decomposition which consists of Bers curves for h will be called
a Bers decomposition for h.

We begin with recalling from [BMM10] (Definition 2.5) the definition of an ending
measure for a WP-ray.

Definition 2.2. A projective ending measure [µ] ∈ PML for a WP-geodesic ray
γ : [0, T ) → T (S) (T ∈ (0,∞]) is any limit in PML of the projective classes of any
infinite sequence of distinct Bers curves for γ.
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The following theorem combines Corollary 2.12 and Proposition 4.4 of [BMM10].
For its formulation, for a number ǫ > 0 denote by T (S)ǫ the set of all points whose
systole is at least ǫ. Call an infinite WP-ray γ : [0,∞) → T (S) recurrent if there is
some ǫ > 0 and an unbounded sequence (ti) ⊂ [0,∞) such that γ(ti) ∈ T (S)ǫ. Here
as in the introduction, T (S)ǫ ⊂ T (S) is the subset of all surfaces whose systole is
at least ǫ.

Theorem 2.3. Let γ : [0,∞) → T (S) be a recurrent WP-geodesic ray.

(1) Any two ending measures for γ have the same support.
(2) The support of an ending measure for γ is a minimal geodesic lamination

which fills S.
(3) If µ ∈ ML is any measured geodesic lamination whose length along γ is

bounded then the support of µ equals the support of an ending measure for
γ.

Unlike in the case of Teichmüller geodesics, however, there are recurrent WP-
rays so that the support of an ending measure is not uniquely ergodic, i.e. it admits
more than one transverse measure up to scale [BMo14].

The main tool for the proof of the second part of Theorem 3 from the introduction
is the curve graph CG(S) of S. The vertex set of this graph is the set C(S) of all
free homotopy classes of unoriented essential simple closed curves on S, i.e. simple
closed curves which are neither contractible nor freely homotopic into a puncture.
Two vertices are joined by an edge if and only if the corresponding free homotopy
classes can be realized disjointly. Since 3g − 3 +m ≥ 2 by assumption, CG(S) is
connected (see [MM99] and the references given there). In the sequel we often do
not distinguish between an essential simple closed curve α on S and the vertex of
the curve graph defined by α.

Providing each edge in CG(S) with the standard euclidean metric of diameter 1
equips the curve graph with a geodesic metric dC . However, CG(S) is not locally
finite and therefore the metric space (CG(S), dC) is not locally compact. Masur and
Minsky [MM99] showed that nevertheless its geometry can be understood quite
explicitly. Namely, CG(S) is hyperbolic of infinite diameter. The mapping class
group naturally acts on CG(S) as a group of simplicial isometries.

Define a map
ΥT : T (S) → C(S)

by associating to a complete hyperbolic metric h on S of finite volume a Bers curve
ΥT (h) ∈ C(S). Note that such a map is not unique. The ambiguity in this definition
is uniformly controlled [MM99] (or see Lemma 2.1 of [H10a]).

Lemma 2.4. For every χ > 0 there is a number a(χ) > 0 with the following
property. Let h ∈ T (S) and let α, β be two simple closed curves of h-length at most
χ. Then dC(α, β) ≤ a(χ).

Masur and Minsky [MM99] showed that ΥT is coarsely Lipschitz with respect
to the Teichmüller distance dT on T (S) and the distance dC on the curve graph.
We use the version which is explicitly stated as Lemma 2.2 in [H10a].
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Lemma 2.5. There is a number L0 > 1 such that

(1) dC(ΥT (g),ΥT (h)) ≤ L0dT (g, h) + L0 for all g, h ∈ T (S).
(2) dC(ΥT (ϕh), ϕΥT (h)) ≤ L0 for all h ∈ T (S), ϕ ∈ Mod(S).

Let J ⊂ R be a closed connected set. For a number L > 1, a map γ : J → CG(S)
is an L-quasi-geodesic if

|t− s|/L− L ≤ dC(γ(s), γ(t)) ≤ L|t− s|+ L for all s, t ∈ J.

A map γ : J → CG(S) is an unparametrized L-quasi-geodesic if there is a closed
connected set I ⊂ R and a homeomorphism ρ : I → J such that γ ◦ ρ : I → CG(S)
is an L-quasi-geodesic.

The following result of Masur and Minsky (Theorem 2.3 and Theorem 2.6 of
[MM99]) is essential for the proof of Theorem 1.

Theorem 2.6. There is a number L1 > 1 such that the image under ΥT of every
Teichmüller geodesic γ : R → T (S) is an unparametrized L1-quasi-geodesic in
CG(S).

In the case that the Teichmüller geodesic γ remains entirely in the ǫ-thick part
of Teichmüller space, the path ΥT (γ) is in fact a parametrized L′-quasi-geodesic
where L′ > 0 only depends on ǫ [H10a].

We do not know whether the image under the map ΥT of a Weil-Petersson
geodesic is an unparametrized quasi-geodesic in CG(S). But we can use ending
measures to show that the image under ΥT of a Weil-Petersson geodesic ray which
is entirely contained in T (S)ǫ for some ǫ > 0 makes a definite progress in CG(S) in
uniformly bounded time.

Lemma 2.7. For every ǫ > 0 and every R > 0 there is a number T0 = T0(ǫ, R) > 0
with the following property. Let b ≥ T0 and let γ : [0, b] → T (S)ǫ be a Weil-
Petersson geodesic. Then dC(ΥT γ(0),ΥT γ(b)) ≥ R.

Proof. Assume to the contrary that there is some ǫ > 0 and some R > 0 such that
there is no T0(ǫ, R) > 0 with the properties stated in the lemma. Then there is for
every n > 0 a number Tn > n and a WP-geodesic γn : [0, Tn] → T (S)ǫ such that
dC(ΥT (γn(0)),ΥT (γn(Tn))) ≤ R.

By coarse equivariance of the map ΥT under the action of the mapping class
group (part (2) of Lemma 2.5) and cocompactness of the action of Mod(S) on
T (S)ǫ, we may assume that the WP-geodesics γn issue from the same compact set
K ⊂ T (S)ǫ. Since γn ⊂ T (S)ǫ for all n, after passing to a subsequence we may
assume that the geodesics γn converge uniformly on compact sets to a WP-ray
γ : [0,∞) → T (S)ǫ.

For n > 0 let αn ∈ ML be the measured geodesic lamination with ℓαn
(γn(0)) = 1

which is contained in the projective class of the curve ΥT (γn(Tn)), viewed as a pro-
jective measured geodesic lamination. Since γn(0) ∈ K ⊂ T (S)ǫ, the systole of the
metric γn(0) is at least ǫ. Therefore the lamination αn is obtained by multiplying
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the simple closed curve ΥT (γn(Tn)) with a weight which is bounded from above by
1/ǫ. Now the γn(Tn)-length of the simple closed curve ΥT (γn(Tn)) is at most χ0

and hence the γn(Tn)-length of αn does not exceed χ0/ǫ. By convexity of the length
function along WP-geodesics, this implies that the length of αn along γn[0, Tn] is
uniformly bounded, independent of n.

The set

{α ∈ ML | ℓα(x) = 1 for some x ∈ K}

is compact. Thus by passing to a subsequence we may assume that the measured
geodesic laminations αn converge as n→ ∞ to a measured geodesic lamination α.
By continuity of the length function, we have ℓα(γ(0)) = 1. Moreover, the length
of α along γ is uniformly bounded. Namely, by convexity, for each T > 0 and each
n which is sufficiently large that Tn > T , we have

ℓαn
(γn(T )) ≤ χ0/ǫ.

Since αn → α weakly and γn(T ) → γ(T ) as n → ∞, continuity of the length
function yields ℓα(γ(T )) ≤ χ0/ǫ as well. Now T > 0 was arbitrary and therefore
the length of α is uniformly bounded along γ.

We claim that the support of α does not fill up S. This is equivalent to stating
that there is a measured geodesic lamination ν whose support does not coincide
with the support of α and such that i(ν, α) = 0.

To see that this is indeed the case, note that since γn(0) → γ(0), by coarse
continuity of the map ΥT (part (1) of Lemma 2.5) and by our assumption that

dC(ΥT (γn(0)),ΥT (γn(Tn))) ≤ R for all n,

the distance in CG(S) between ΥT (γn(Tn)) and c0 = ΥT (γ(0)) is bounded indepen-
dent of n. By passing to a subsequence we may assume that this distance equals
a fixed number k ≥ 0. Then for each n in the subsequence, there is a collection
c0n, . . . , c

k
n ⊂ ML of weighted simple closed geodesics of (weighted) length one for

the metric γ(0) ∈ T (S) such that

i(cjn, c
j+1
n ) = 0 for every j < k

(here as before, i is the intersection form) and that [c0] = [c0n] and [ckn] = [αn] =
[ΥT (γn(Tn))] for all n (where [µ] denotes the projective class of µ ∈ ML). By
passing to another subsequence, we may assume that for each j the measured
geodesic laminations cjn converge as n → ∞ to a measured geodesic lamination
νj . By continuity of the intersection form, we have i(νj , νj+1) = 0 for all j. Since
νk = α = limn→∞ αn and since [ν0] = [c0], if the support of α fills S then the
supports of the laminations νj have to coincide with the support of α. But [cn0 ] = [c0]
for all n and the support of c0 is a simple closed curve and hence this is impossible
(compare [MM99] for this argument of Luo). As a consequence, the support of α
does not fill S.

However, the WP-ray γ is entirely contained in T (S)ǫ, in particular it is recur-
rent. Since the length of α is bounded along γ, this violates the second part of
Theorem 2.3. The lemma follows from this contradiction. �
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As in the introduction, let dH be the Hausdorff distance for subsets of T (S) with
respect to the Teichmüller metric. We use Lemma 2.7 and an idea of Mosher [Mo03]
to show the second part of Theorem 3 from the introduction. For its formulation,
denote as in the introduction by QWP (S) the moduli space of quadratic differen-
tials of Weil-Petersson norm one. Recall moreover the definition of a continuous
conjugacy of two flows on topological spaces.

Proposition 2.8. (1) For every ǫ > 0 there is a number R = R(ǫ) > 0
with the following property. Let J ⊂ R be a closed connected set and let
γ : J → T (S)ǫ be a Weil-Petersson geodesic. Then there is a closed con-
nected set J ′ ⊂ R and there is a Teichmüller geodesic ξ : J ′ → T (S) with
dH(γ(J), ξ(J ′)) ≤ R.

(2) Let C ⊂ QWP (S) be a compact set which is invariant under the geodesic
flow ΦtWP for the Weil-Petersson metric. Then there is a continuous con-
jugacy Ψ : C → Q(S) of the restriction of ΦtWP to C into the Teichmüller
geodesic flow.

Proof. Let ǫ > 0, let a(χ0) > 1 be as in Lemma 2.4 and let T0 = T0(ǫ, 2a(χ0)+3) > 0
be as in Lemma 2.7. Note that T0 only depends on ǫ.

Unit balls in the cotangent bundle of T (S) for both the Teichmüller metric
and the Weil-Petersson metric depend continuously on the basepoint. Thus by
invariance under the action of the mapping class group and cocompactness of the
action of Mod(S) on T (S)ǫ, the restriction to T (S)ǫ of the Weil-Petersson metric is
locally uniformly bilipschitz equivalent to the restriction of the Teichmüller metric.
Hence there is a number L = L(ǫ) > 1 such that dT (γ(0), γ(b)) ≤ Lb for any
WP-geodesic γ : [0, b] → T (S)ǫ where as before, dT is the distance induced by
the Teichmüller metric. As a consequence, for every b ≤ T0, every WP-geodesic
γ : [0, b] → T (S)ǫ is entirely contained in the ball of radius LT0 about γ(0) for
the Teichmüller metric and therefore dH(γ[0, b], γ(0)) ≤ LT0. Thus it is enough to
show the proposition for Weil-Petersson geodesics in T (S)ǫ of length at least T0.

By Lemma 2.7, if γ : [b, c] → T (S)ǫ is a WP-geodesic of length c − b ≥ T0
then dC(ΥT γ(b),ΥT γ(c)) ≥ 2a(χ0) + 3 and hence by Lemma 2.4, the γ(b)-length
of any simple closed curve α ∈ C(S) with ℓα(γ(c)) ≤ χ0 is bigger than χ0. In
particular, by convexity of length functions along Weil-Petersson geodesics, we have
ℓα(γ(t)) ≤ ℓα(γ(b)) for every t ∈ [b, c].

For the WP-geodesic γ : [b, c] → T (S)ǫ we say that the projective measured
geodesic lamination [α] defined by a simple closed curve α ∈ C(S) is realized at
the right endpoint c of the parameter interval [b, c] if the γ(c)-length of α does not
exceed χ0. By the above, we then have ℓα(γ(t)) ≤ ℓα(γ(b)) for every t ∈ [b, c].
If γ : [0,∞) → T (S)ǫ is an infinite WP-geodesic ray then the projectivization
[λ] ∈ PML of a measured geodesic lamination λ is realized at the right endpoint
∞ if the length of λ along γ[0,∞) assumes its maximum at γ(0). By Theorem 2.3,
Lemma 2.7 and the above discussion, an ending measure for γ is realized at the
right endpoint of J = [0,∞), moreover any projective measured geodesic lamination
which is realized at ∞ is supported in the support of an ending measure.
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Using an idea of Mosher [Mo03], define Γǫ to be the set of all triples (γ : J →
T (S)ǫ, µ+, µ−) with the following properties.

(1) J ⊂ R is a closed connected set of diameter at least T0 containing 0.
(2) γ : J → T (S)ǫ is a Weil-Petersson geodesic.
(3) µ+, µ− ∈ ML are measured geodesic laminations of γ(0)-length one whose

projectivizations [µ+], [µ−] are realized at the right and left endpoint of J ,
respectively.

We equip Γǫ with the product topology, using the weak∗-topology on ML for the
second and third factor and the compact open topology for the arcs γ : J → T (S)ǫ.
The mapping class group Mod(S) naturally acts diagonally on Γǫ.

We follow Mosher (Proposition 3.17 of [Mo03]) and show that the action of
Mod(S) on Γǫ is cocompact. Since Mod(S) acts isometrically and cocompactly on
T (S)ǫ, for this it is enough to show that the subset of Γǫ consisting of all triples with
the additional property that γ(0) is contained in a fixed compact subset A of T (S)ǫ
is compact. Now the topology of Γǫ is metrizable and hence this follows if every
sequence in Γǫ contained in the subset {(γ : J → T (S), µ+, µ−) ∈ Γǫ | γ(0) ∈ A}
has a convergent subsequence.

By the Arzela Ascoli theorem (or simply by properties of geodesics for the Weil-
Petersson metric), the set of geodesic arcs γ : J → T (S)ǫ where J ⊂ R is a closed
connected subset containing 0 and such that γ(0) ∈ A is compact with respect to the
compact open topology. As the length function is continuous on T (S)×ML, it is
enough to show that the following holds. Let γi : Ji → T (S)ǫ (i > 0) be a sequence
of Weil-Petersson geodesics which converge locally uniformly to γ : J → T (S)ǫ.
For each i let µi be a measured geodesic lamination of γi(0)-length one whose
projectivization [µi] is realized at the right endpoint of Ji. If µi → µ ∈ ML, then
the projectivization [µ] of µ is realized at the right endpoint of J .

Assume first that J ∩ [0,∞) = [0, b] for some b ∈ (0,∞). Then for sufficiently
large i we have Ji ∩ [0,∞) = [0, bi] with bi ∈ (0,∞) and bi → b. Thus γi(bi) → γ(b)
(i → ∞) and therefore by continuity of length functions and the collar lemma,
there is only a finite number of simple closed curves α ∈ C(S) of length at most χ0

with respect to one of the metrics γi(bi), γ(b). Hence by passing to a subsequence
we may assume that there is a curve α ∈ C(S) such that [µi] = [α] = [µ] for all
sufficiently large i. The γi(bi)-length of α is at most χ0 for all sufficiently large i
and hence by continuity of length functions, the same is true for the γ(b)-length of
α. In other words, the limit [µ] ∈ PML of the sequence [µi] is realized at the right
endpoint b of J .

The same argument is also valid if the right endpoint of J is infinite. Namely,
assume first that Ji ∩ [0,∞) = [0, bi] for some bi > 0 with bi → ∞ (i → ∞). By
the above discussion, for sufficiently large i (namely, for all i such that bi > T0) the
length of µi along γi[0, bi] assumes its maximum at γi(0). Thus if T > 0 is arbitrary
and if i > 0 is sufficiently large that bi > max{T0, T} then ℓµi

(γi(T )) ≤ ℓµi
(γi(0)).

Since γi(0) → γ(0) and γi(T ) → γ(T ) and µi → µ, continuity of the length function
implies that ℓµ(γ(T )) ≤ ℓµ(γ(0)). Now T > 0 was arbitrary and therefore the
length of µ along γ assumes its maximum at γ(0). However, this just means that
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the projectivization [µ] is realized at the right infinite endpoint of J . The case that
bi = ∞ for infinitely many i follows in the same way.

Any two simple closed curves α, β ∈ C(S) with dC(α, β) ≥ 3 bind S. Thus by
Theorem 2.3, Lemma 2.7 and the choice of T0, for any (γ : J → T (S), µ+, µ−) ∈ Γǫ
the measured geodesic laminations µ+, µ− bind S. These laminations then deter-
mine up to parametrization a Teichmüller geodesic η([µ+], [µ−]) whose vertical and
horizontal projective measured geodesic laminations are just the classes [µ+], [µ−].

Let σ(γ, µ+, µ−) be the unique point on η([µ+], [µ−]) which is the foot-point
of the quadratic differential with vertical and horizontal measured geodesic lam-
inations µ+/

√

i(µ+, µ−), µ−/
√

i(µ+, µ−). By continuity of the length function
and the intersection form, the map taking (γ : J → T (S)ǫ, µ+, µ−) ∈ Γǫ to
(γ(0), σ(γ, µ+, µ−)) ∈ T (S) × T (S) is continuous. Moreover by construction, this
map is equivariant with respect to the natural diagonal action of Mod(S) on Γǫ and
on T (S)× T (S). Since the action of Mod(S) on Γǫ is cocompact, the same is true
for the action of Mod(S) on the image of this map. Thus the Teichmüller distance
between γ(0) and σ(γ, µ+, µ−) is bounded from above by a universal constant b > 0.

Let again (γ : J → T (S)ǫ, µ+, µ−) ∈ Γǫ. For each s ∈ J define

a−(s) =
1

ℓµ−
(γ(s))

, a+(s) =
1

ℓµ+
(γ(s))

.

Let moreover γs(t) = γ(t + s). Then the ordered triple (γs, a+(s)µ+, a−(s)µ−)
lies in the Mod(S)-cocompact set Γǫ and hence the distance between γ(s) and the
point σ(γs, a+(s)µ+, a−(s)µ−) ∈ η([µ+], [µ−]) is at most b. As a consequence, γ(J)
is contained in the b-neighborhood of the geodesic η([µ+], [µ−]).

Now s ∈ J was arbitrary and the ordered triple (γs, a+(s)µ+, a−(s)µ−) depends
continuously on s with respect to the topology of Γǫ. Hence γ(J) is contained in
the b-neighborhood of a suitably chosen subarc of η([µ+], [µ−]). Moreover, the map
γ(s) → σ(γs, a+(s)µ+, a−(s)µ−) is continuous in s. This means that the image
subarc is contained in the b-neighborhoood of γ(J). Together we showed that the
Hausdorff distance between γ(J) and a subarc of η([µ+], [µ−]) is at most b. The
first part of the proposition is proven.

The results obtained so far show that if γ : R → T (S)ǫ is any biinfinite Weil-
Petersson geodesic and if [µ+], [µ−] are ending measures for γ+ = γ[0,∞), γ− =
γ(−∞, 0] then the Teichmüller geodesic η([µ+], [µ−]) defined by a quadratic differ-
ential with vertical measured geodesic lamination in the class [µ+] and horizontal
measured geodesic lamination in the class [µ−] is a uniform fellow-traveler of γ,
measured with respect to the Teichmüller metric. In particular, there is a number
κ > 0 only depending on ǫ such that η([µ+], [µ−]) is contained in T (S)κ. Hence by
a result of Masur [M82], the projective measured geodesic laminations [µ+], [µ−]
are uniquely ergodic. Theorem 2.3 then implies that a projective ending measure
for a subray of γ is unique.

Let µ+(γ), µ−(γ) ∈ ML be the representative of the forward and backward
projective ending measures whose γ(0)-length equals one. We claim that µ+(γ)
and µ−(γ) depend continuously on γ. Namely, assume that γi → γ uniformly on
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compact sets and that β is a weak limit of the sequence (µ+(γi)). Then by continuity
of length functions we have ℓβ(γ(0)) = 1, moreover we conclude as above (see also
the proof of Lemma 2.7) that the length of β is bounded along γ[0,∞). Since
these two properties determine the measured geodesic lamination µ+(γ) uniquely,
continuous dependence of µ+(γ) on γ is immediate. Continuous dependence of
µ−(γ) on γ follows in the same way.

Let C ⊂ QWP (S) be a compact set which is invariant under the geodesic flow

ΦtWP for the Weil-Petersson metric. Let C̃ be the preimage of C in the space of
quadratic differentials of Weil-Petersson norm one. By compactness of C there is a
number ǫ > 0 such that for every q ∈ C̃ the Weil-Petersson geodesic γq with initial
velocity q is entirely contained in T (S)ǫ.

For q ∈ C̃ define Ψ̃(q) ∈ Q̃(S) to be the unique area one quadratic differential
with vertical and horizontal measured geodesic lamination

µ+(γq)/
√

i(µ+(γq), µ−(γq)), µ−(γq)/
√

i(µ+(γq), µ−(γq)),

respectively. Here µ+(γq) (or µ−(γq)) is as before the forward (or backward) ending

measure for the geodesic γq with initial velocity q. Then q → Ψ̃(q) is continuous
and equivariant with respect to the action of the mapping class group and hence
it projects to a map Ψ : C → Q(S). By convexity of length functions along WP-
geodesics, the length of µ+(γq) is strictly decreasing along γq, and the length of

µ−(γq) is strictly increasing. This implies that the restriction of Ψ̃ to the unit
cotangent line γ′q of the WP-geodesic γq is a homeomorphism onto the unit cotan-

gent line of the Teichmüller geodesic γ̃ with initial velocity γ̃′(0) = Ψ̃(q). Therefore
the map Ψ defines a continuous conjugacy of the Weil-Petersson flow on C into the
Teichmüller flow as defined in the introduction. This shows the second part of the
proposition. �

3. Asymptotic rays for the Weil-Petersson metric

The goal of this section is to establish some differential geometric properties of
Weil-Petersson geodesic rays which are needed for the proof of Theorem 1 from the
introduction.

Using the assumptions and notations from Section 2, we begin with collecting
some additional results from [BMM10].

The completion T (S) of T (S) for the Weil-Petersson metric is a CAT(0)-space.
Call two infinite Weil-Petersson geodesic rays γ : [0,∞) → T (S), ξ : [0,∞) → T (S)
asymptotic if the function

t→ dWP (γ(t), ζ(t))

is bounded. Since T (S) is neither locally compact nor hyperbolic in the sense
of Gromov (see [W03] for an overview and for references), it is difficult to find
out whether or not for two given infinite non-asymptotic WP-rays γ1, γ2 there is a
biinfinite WP-geodesic which is forward asymptotic to γ1 and backward asymptotic
to γ2.
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Brock, Masur and Minsky [BMM10] found a sufficient condition for the existence
of a biinfinite WP-geodesic which is forward and backward asymptotic to two given
WP-rays. Namely, as in Section 2, call a WP-ray γ : [0,∞) → T (S) recurrent if
there is a number ǫ > 0 and there is a sequence of numbers ti → ∞ such that
γ(ti) ∈ T (S)ǫ for all i. In other words, a geodesic ray is recurrent if its projection
to moduli space returns to a fixed compact set for arbitrarily large times. Theorem
1.3 of [BMM10] shows that for every recurrent WP-geodesic ray γ and for every
WP-geodesic ray ξ which is not asymptotic to γ there is a biinfinite WP-geodesic
which is forward asymptotic to γ and backward asymptotic to ξ.

We use some ideas from [BMM10] to establish a related technical result (Corol-
lary 3.2) which is used in an essential way in the proof of Theorem 1.

We begin with an observation which is a consequence of the Gauß-Bonnet formula
for ruled surfaces as in [BMM10]. For its formulation, for ǫ > 0 let

(1) 2b(ǫ) = inf{dWP(x, y) | x ∈ T (S)ǫ, y ∈ T (S)− T (S)}.

By invariance of T (S)ǫ under the action of Mod(S) and cocompactness, we have
b(ǫ) > 0 (in fact b(ǫ) ≍ ǫ1/2 by Wolpert’s estimate [W03]). Moreover, the sec-
tional curvature of the Weil-Petersson metric on the b(ǫ)-neighborhood of T (S)ǫ is
bounded from above by a negative constant.

A geodesic quadrangle in (T (S), dWP ) consists of four WP-geodesic segments
connecting four distinct points in T (S). We always assume that a geodesic quad-
rangle Q is non-degenerate, i.e. that that no vertex of Q is contained in the interior
of any side of Q. Two sides α, β of such a quadrangle are opposite if they do not
share a vertex.

For a Weil-Petersson geodesic segment γ : [0, τ ] → T (S) and ǫ > 0 let ℓǫ−thick(γ)
be the length of the intersection of γ with T (S)ǫ (in other words, ℓǫ−thick(γ) is the
Lebesgue measure of the set {t ∈ [0, τ ] | γ(t) ∈ T (S)ǫ}).

In the remainder of this section, distances are always distances with respect to
the Weil-Petersson metric. Moreover, angles are always unoriented angles with
respect to the Weil-Petersson inner product.

Lemma 3.1. (1) For every ǫ > 0 and every α > 0 there is a number k1 =
k1(ǫ, α) > 0 with the following property. Let τ ≥ k1 and let γ : [0, τ ] →
T (S) be a Weil-Petersson geodesic segment with ℓǫ−thick(γ) ≥ k1. As-
sume that γ is a side of a geodesic quadrangle Q with angles at least α at
γ(0), γ(τ). Then the side of Q which is opposite to γ passes through the
b(ǫ)-neighborhood of γ[0, τ ] ∩ T (S)ǫ.

(2) For every ǫ > 0, α > 0 and every θ > 0 there is a number k2 = k2(ǫ, α, θ) >
0 with the following property. Let τ ≥ k2 and let γ : [0, τ ] → T (S) be a
Weil-Petersson geodesic segment with ℓǫ−thick(γ) ≥ k2. Assume that γ is a
side of a geodesic triangle T with angle at least α at γ(τ). Then the angle
of T at γ(0) is at most θ.

Proof. The idea of the proof is taken from [BMM10] (and has been used before by
other authors, notably by Bonahon [Bo86] and Canary [C93]). Namely, let for the
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moment τ > 0 be arbitrary and let γ : [0, τ ] → T (S) be a WP-geodesic segment.
Let Q be a WP-geodesic quadrangle with vertices γ(0), γ(τ), x1, x2 and such that
γ(τ) is connected to x1 by a side.

The vertices γ(0), γ(τ), x1 determine a WP-geodesic triangle which can be filled
by WP-geodesic segments issuing from the vertex x1 and connecting x1 to the op-
posite side γ. The thus obtained ruled triangle T is an embedded subsurface of
T (S) which is smooth in its interior, with piecewise geodesic boundary. The intrin-
sic distance in T between any two points x, y ∈ T is not smaller than dWP(x, y).
Moreover, the (intrinsic) Gauß curvature of T with respect to the restriction of
the Weil-Petersson metric at a point x ∈ T does not exceed the maximum of the
sectional curvatures of the Weil-Petersson metric at x. In particular, the Gauß
curvature of T is negative, and for every ǫ > 0 there is a constant κ(ǫ) > 0 only
depending on ǫ such that the Gauß curvature at every point in T whose distance
to T (S)ǫ is at most b(ǫ) is bounded from above by −κ(ǫ) (see [BMM10] for this
construction of Bonahon [Bo86] and Canary [C93] and for references).

x1 x2

γ(τ) γ(σ) γ(0)

α

βσ

ξ(σ′)

ζ

T

T ′

Even though the ruled triangle T is not naturally an embedded subsurface with
piecewise geodesic boundary of a smooth simply connected surface U with a Rie-
mannian metric, the intrinsic angle of T is defined at every vertex of T . At the
vertex x1, this angle is just the length of the arc in the unit tangent sphere for the
Weil-Petersson metric which consists of the directions of all geodesics joining x1 to
γ. This length exists since the initial direction of a geodesic depends smoothly on
its endpoints. We claim that the intrinsic angles of T at the vertices γ(0), γ(τ) co-
incide with the angles for the Weil-Peterssen metric. Namely, by slightly extending
the WP-geodesic γ and the geodesics defining the ruling of T we obtain a smooth
subsurface of T (S) containing a neighborhood of γ(0), γ(τ) in its interior. The
intrinsic angle at γ(0), γ(τ) of the triangle T is just the angle of T at γ(0), γ(τ) in
this subsurface equipped with the restriction of the Weil-Petersson metric.

Let ǫ > 0 and let κ = κ(ǫ) > 0 be as in the second paragraph of this proof.
Consider first the case that the angle of the quadrangle Q at the vertex γ(τ) is
not smaller than π/2. By the consideration in the previous paragraph, this angle
coincides with the intrinsic angle at γ(τ) of the triangle T . By the Gauß-Bonnet
formula, the integral of the Gauß curvature over the triangle T equals the sum of
the intrinsic angles of T minus π. Thus if θ1, θ2 are the angles of T at γ(0), x1 then
this curvature integral is not smaller than −π/2 + θ1 + θ2 > −π/2.

Denote by ξ be the side of T connecting γ(0) = ξ(0) to x1. The triangle T is
negatively curved and therefore intrinsic distance functions in T are convex. Since
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the angle of T at γ(τ) is not smaller than π/2, for each t ∈ [0, τ ] the endpoint of
the intrinsic geodesic arc βt in T which issues from γ(t) and is perpendicular to
γ at γ(t) is contained in the side ξ. The length of βt equals the intrinsic distance
between its endpoint on ξ and the side γ of T and hence by convexity of the distance
function, this length is increasing with t. Thus if there is a number σ ∈ [0, τ ] so
that the length of βσ is not smaller than b(ǫ)/2, then for every s ∈ [σ, τ ] the length
of βs is not smaller than b(ǫ)/2. Then T contains an embedded strip A0 of width
b(ǫ)/2 and length τ − σ which consists of all points in T on the initial subsegments
of length b(ǫ)/2 of the geodesics βs for all s ∈ [σ, τ ].

Assume that there is such a point σ ∈ [0, τ ] such that moreover ℓǫ−thick(γ[σ, τ ]) ≥
π/κ(ǫ)b(ǫ) where κ(ǫ) > 0 is as in the second paragraph of this proof. Let A ⊂ A0

be the closed subset of the embedded strip A0 ⊂ T which consists of the union of
all initial subarcs of length b(ǫ)/2 of those of the geodesic arcs βs which issue from
a point in γ[σ, τ ] ∩ T (S)ǫ. Since ℓǫ−thick(γ[σ, τ ]) ≥ π/κ(ǫ)b(ǫ) and the curvature of
T is negative, comparison with the euclidean plane shows that the area of A is at
least π/2κ(ǫ). Now the Gauß curvature of T at every point of A does not exceed
−κ(ǫ) and therefore the integral of the Gauß curvature over T is smaller than
−π/2. This contradicts the above observation that by the Gauß Bonnet formula,
this curvature integral is bigger than −π/2. As a consequence, if σ ∈ [0, τ ] is such
that ℓǫ−thick(γ[σ, τ ]) ≥ π/κ(ǫ)b(ǫ) then for s ∈ [0, σ] the length of the geodesic arc
βs does not exceed b(ǫ)/2.

Now assume more restrictively that the angles of the quadrangle Q at the vertices
γ(0), γ(τ) are not smaller than 3π/4. Then the angle of the triangle T at the vertex
γ(τ) is not smaller than 3π/4. Since the triangle T is negatively curved, the sum of
its angles is smaller than π. In particular, the Weil-Petersson angle at γ(0) between
γ and the WP-geodesic ξ connecting γ(0) to x1 does not exceed π/4.

Assume that ℓǫ−thick(γ) ≥ 2π/κ(ǫ)b(ǫ) and let σ ∈ [0, τ ] be such that

ℓǫ−thick(γ[0, σ]) ≥ π/κ(ǫ)b(ǫ) and ℓǫ−thick(γ[σ, τ ]) ≥ π/κ(ǫ)b(ǫ).

Let σ′ > σ be such that ξ(σ′) is the endpoint of the geodesic segment βσ in the ruled
triangle T issuing perpendicularly from γ(σ). Since ℓǫ−thick(γ[σ, τ ]) ≥ π/κ(ǫ)b(ǫ),
the above consideration shows that the distance between γ(σ) and ξ(σ′) does not
exceed b(ǫ)/2. Since the distance function for the Weil-Petersson metric is convex,
we conclude that dWP (ξ(t), γ(tσ/σ

′)) ≤ b(ǫ)/2 for all t ∈ [0, σ′].

Let T ′ be the ruled triangle obtained by connecting x2 to each point of ξ by a
geodesic arc. The angle at γ(0) of T ′ is at least π/2. Apply the above discussion
to the ruled triangle T ′, the side ξ of T ′ and the side ζ connecting x1 to x2. Note
that ζ is the side of the quadrangle Q opposite to γ.

By the assumption that ℓǫ−thick(γ[0, σ]) ≥ π/κ(ǫ)b(ǫ), if the distance between
ζ and γ[0, σ] ∩ T (S)ǫ is at least b(ǫ) then there is an embedded strip in T ′ with
curvature integral smaller than −π/2. This strip consists of all points on geodesic
arcs in T ′ of length b(ǫ)/2 issuing perpendicularly from a point ξ(t) for some t ∈
[0, σ′] such that γ(tσ/σ′) ∈ T (S)ǫ. Since the angle of T ′ at γ(0) is bounded from
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below by π/2, this is impossible. As a consequence, the side ζ intersects the b(ǫ)-
neighborhood of γ[0, σ]∩T (S)ǫ. This shows the first part of the lemma for α = 3π/4
with k1(ǫ, α) = 2π/κ(ǫ)b(ǫ).

The first part of the lemma for an arbitrary angle α > 0 is now a consequence
of the second part of the lemma for ǫ, α and θ = π/4.

Namely, assume that the second part of the lemma holds true and let Q be
a geodesic quadrangle with a side γ : [0, τ ] → T (S) and angles at least α at the
vertices γ(0), γ(τ). Let x1, x2 be the vertices of Q which are distinct from γ(0), γ(τ)
and assume that ℓǫ−thick(γ) ≥ 2π/κ(ǫ)b(ǫ) + 2k2 where k2 = k2(ǫ, α, π/4) > 0 is as
in the second part of the lemma. Let 0 < t1 < t2 < τ be such that

ℓǫ−thick(γ[0, t1]) ≥ k2, ℓǫ−thick(γ[t1, t2]) ≥ 2π/κ(ǫ)b(ǫ), ℓǫ−thick(γ[t2, τ ]) ≥ k2

and let Q′ be the quadrangle with vertices γ(t1), γ(t2), x1, x2. The side ζ of Q
′ oppo-

site to γ[t1, t2] coincides with the side of Q opposite to γ. By the choice of t1, t2 and
by the second part of the lemma, applied to the triangle with vertices γ(0), γ(t1), x2
and an angle at least α at γ(0) and the triangle with vertices γ(t2), γ(τ), x1 and
an angle at least α at γ(τ), the angle of Q′ at the vertices γ(t1), γ(t2) is at least
3π/4. Therefore we conclude from the first part of the lemma for α = 3π/4 that ζ
passes through the b(ǫ)-neighborhood of γ[t1, t2] ∩ T (S)ǫ. This is what we wanted
to show.

To establish the angle estimate in the second part of the lemma, let α > 0, θ > 0
and let T be a triangle in (T (S), dWP ) with a side ζ : [0, σ] → T (S) of length σ > 0,
an angle θ0 ≥ θ at ζ(0) and an angle α0 ≥ α at ζ(σ). Let x1 be the vertex of T
opposite to the side ζ and assume that T is ruled by WP-geodesics connecting x1
to the points on ζ. The Gauss curvature of T is negative, in particular we have
α0 + θ0 < π.

Let T̂ be a comparison triangle in the euclidean plane R2 with a side ζ̂ : [0, σ] →

R
2 of length σ, an angle θ at ζ̂(0) and an angle α at ζ̂(σ). Note that the angles

of T̂ at ζ̂(0), ζ̂(σ) may both be smaller than the corresponding angles of T . Since
θ0 ≥ θ, by CAT(0)-comparison (see [BH99]), for every s ∈ [0, σ] the length of the
intrinsic geodesic βs in the ruled triangle T which is orthogonal to ζ at ζ(s) and
which ends on one of the two sides different from ζ is not smaller than the length of

the geodesic β̂s in T̂ which is orthogonal to ζ̂ at ζ̂(s) and ends on one of the sides

of T̂ distinct from ζ̂.

As the length σ of ζ̂ tends to infinity, the distance between ζ̂ and the vertex of
T̂ not contained on σ̂ tends to infinity as well. Thus there is a number t(α, θ) > 0
only depending on α and θ such that for s ∈ [t(α, θ), σ − t(α, θ)] the length of the
geodesic arc βs in T is not smaller than b(ǫ)/2. In particular, by comparison, the
ruled triangle T contains an embedded strip of area at least b(ǫ)(σ − 2t(α, θ))/2
which is the union of the initial subsegments of length b(ǫ)/2 of the geodesic arcs
βs issuing from points ζ(s) where s ∈ [t(α, θ), σ − t(α, θ)].

Now by the argument in the beginning of this proof, if ρ = ℓǫ−thick(ζ) then the
integral of the Gauss curvature over this strip is at most −κ(ǫ)b(ǫ)(ρ− 2t(α, θ))/2,
and hence the sum of the angles of the triangle T is at most π − κ(ǫ)b(ǫ)(ρ −
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2t(α, θ))/2. On the other hand, the angle sum of T is at least α+ θ by assumption
which implies that

ρ ≤ 2(π − α− θ)/κ(ǫ)b(ǫ) + 2t(α, θ).

As a consequence, if T is a WP-geodesic triangle in T (S) with a side ζ : [0, σ] →
T (S) such that ℓǫ−thick(ζ) ≥ 2(π − α− θ)/κ(ǫ)b(ǫ) + 2t(α, θ) and if the angle of T
at ζ(σ) is not smaller than α, then the angle of T at ζ(0) does not exceed θ. This
is just the statement in the second part of the lemma. �

As a consequence of Lemma 3.1, we obtain a sufficient condition for the existence
of a biinfinite WP-geodesic which is forward and backward asymptotic to WP-
rays with specific geometric properties which does not use require these rays to be
recurrent.

Corollary 3.2. For ǫ > 0 and α > 0 let k1 = k1(ǫ, α) > 0 be as in Lemma 3.1. Let
γ0 : [0, τ ] → T (S) be a WP-geodesic segment with ℓǫ−thick(γ0) ≥ k1 and let γ1, γ2 :
[0,∞) → T (S) be infinite WP-rays issuing from γ1(0) = γ0(0), γ2(0) = γ0(τ). As-
sume that the angle at γ0(0), γ0(τ) between the unit tangent vectors γ′0(0), γ

′
1(0) and

between the unit tangent vectors −γ′0(τ), γ
′
2(0) is at least α. Assume furthermore

that there are measured geodesic laminations µ1, µ2 which fill S and such that the
length of µi is bounded along γi (i=1,2). Then there is a unique biinfinite WP-
geodesic ξ which is forward asymptotic to γ1 and backward asymptotic to γ2.

Proof. Let γ0, γ1, γ2 be as in the lemma. For t > 0 consider the geodesic quadrangle
Qt with vertices γ0(0), γ0(τ), γ2(t), γ1(t). By Lemma 3.1, the side ξt of Qt which
connects γ1(t) to γ2(t) passes through a fixed compact neighborhood K of γ0[0, τ ]∩
T (S)ǫ. We parametrize ξt by arc length in such a way that ξt(0) ∈ K. Then the
WP-distance between γ0(0) and ξt(0) is uniformly bounded, independent of t.

By the CAT(0)-triangle comparison property, the Hausdorff distance with re-
spect to the Weil-Petersson metric between the geodesic arc γ1[0, t] and the sub-
segment of ξt connecting ξt(0) to γ1(t) is uniformly bounded, independent of t.
Similarly, the Hausdorff distance with respect to the Weil-Petersson metric be-
tween the geodesic arc γ2[0, t] and the subsegment of ξt connecting ξt(0) to γ2(t) is
uniformly bounded.

The restriction to K of the unit tangent bundle for the Weil-Petersson metric
is compact. Therefore there is a sequence ti → ∞ such that the directions ξ′ti(0)
of ξti at ξti(0) converge as i → ∞ to a direction v. Let ξ : (−r, T ) → T (S) be
the (maximal) WP-geodesic with initial velocity v. The WP-geodesics ξti converge
uniformly on compact subsets of (−r, T ) to ξ. In particular, if ξ is biinfinite (i.e.
if r = T = ∞) then ξ is indeed a geodesic which is forward asymptotic to γ1 and
backward asymptotic to γ2.

To see that ξ is indeed biinfinite, let µ1 ∈ ML be a measured geodesic lamina-
tion which fills up S and whose length is bounded along the geodesic ray γ1. Such
a measured geodesic lamination exists by assumption. Since ξt(0) ∈ K for all t, the
ξt(0)-length of µ1 is bounded independent of t > 0. Now for every t the forward
endpoint ξt(τt) of ξt equals γ1(t) and hence by convexity of length functions along
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WP-geodesics, the length of µ1 is bounded along ξt[0, τt] by a universal constant,
independent of t. Note also that τt → ∞ (t → ∞). By continuity of the length
pairing, we conclude that the length of µ1 on ξ[0, T ) is uniformly bounded (com-
pare the proof of Lemma 2.7 and Proposition 2.8 for a more detailed argument).
However, if T <∞ then there is a simple closed curve c on S so that the ξ(t)-length
of c tends to zero as t→ T (see [W03] for more and for references). Since µ1 fills S
we have i(c, µ1) > 0 and therefore the length of µ1 along ξ[0, T ) tends to infinity as
t→ T which is a contradiction. This argument also applies to the ray ξ(−r, 0] and
yields that ξ is indeed a biinfinite WP-geodesic which is forward asymptotic to γ1
and backward asymptotic to γ2.

To show that such a geodesic is unique, recall from comparison for CAT(0)-spaces
that if there is a second such geodesic ξ′ then ξ and ξ′ bound a flat strip. Since
the sectional curvature of the Weil-Petersson metric is negative, this is impossible.
The corollary follows. �

4. Short curves and twisting

In Corollary 3.2 we established a sufficient condition for the existence of a bi-
infinite Weil-Petersson geodesic which is forward and backward asymptotic to two
given Weil-Petersson geodesic rays. To apply this result, we have to find a sufficient
condition for a Weil-Petersson geodesic to spend a definitive amount of time in the
thick part of Teichmüller space.

We approach this problem by analyzing WP-geodesic segments of uniformly
bounded length which enter deeply into the thin part of Teichmüller space. Our goal
is a quantitative version of the following result of Wolpert [W03]: If γ : [0, r] → T (S)
is any Weil-Petersson geodesic of uniformly bounded length and if γ enters the thin
part of Teichmüller space then γ twists a definitive amount about one of the curves
which becomes very short along γ. Or, put differently, if γ does not twist much
about its short curves then γ can not be entirely contained in the thin part of
Teichmüller space.

We continue to use the assumptions and notations from Sections 2-3. Following
Masur and Minksy, we measure the amount of twisting about a curve α ∈ C(S) as
follows (see in particular p. 919 of [MM00]). Fix a complete hyperbolic metric of
finite volume h ∈ T (S) and identify α with the h-geodesic it defines. There is a

locally isometric annular cover Ã→ S of (S, h) whose geodesic core curve α̃ projects

isometrically onto α. The hyperbolic annulus Ã admits a natural compactification
to a closed annulus Â which is obtained as follows. The fundamental group < α >
of Ã acts on the hyperbolic plane H2 as a group of hyperbolic isometries fixing two
points a 6= b in the ideal boundary ∂H2 of H2. The quotient of H2∪ (∂H2−{a, b})

under the action of < α > is a compact annulus Â containing Ã as an open dense
subset. Any geodesic in Ã for the hyperbolic metric which intersects the geodesic
core curve α̃ transversely extends to a continuous path in Â connecting the two
distinct boundary components of Â.
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Let C(α) be the set of all simple paths in Â connecting the two distinct boundary

components of Â modulo homotopies that fix the endpoints. Then C(α) is the set
of vertices of a metric graph CG(α) whose edges are determined by requiring that
two such homotopy classes of arcs γ, γ′ are connected by an edge of length one if
and only if γ, γ′ have representatives with disjoint interior.

Following p. 920 of [MM00], define a projection πα of C(S) into the family of
all subsets of CG(α) as follows. Let γ ∈ C(S) be represented by a simple closed h-
geodesic. If γ does not intersect α transversely then we define πα(γ) = ∅. Otherwise

the preimage γ̃ of γ in Ã has at least one component which extends continuously to
an arc connecting the two distinct boundary components of Â. The set πα(γ) of all
these components is a finite set of diameter at most 1 in CG(α). This definition of
πα is essentially independent of the choice of the hyperbolic metric h (see [MM00]
for more details). If c is a simple multi-curve, i.e. a disjoint union of mutually not
freely homotopic simple closed curves, then let πα(c) be the union of the projections
of its components. As before, the diameter of πα(c) is at most one (Lemma 2.3 of
[MM00]). The projection πα can be used to measure the relative twisting about α
of two simple closed curves which intersect α transversely [MM00].

As in Section 2, let χ0 > 0 be a Bers constant for S and let ΥT : T (S) → C(S) be
a map which associates to a hyperbolic metric h a simple closed curve of h-length
at most χ0. We use the projections πα (α ∈ C(S)) and Wolpert’s description of
the Weil-Petersson metric near its completion locus (see [W03, W08]) to obtain
information on the image of a Weil-Petersson geodesic γ under the map ΥT . We
are in particular interested in the twisting behavior of points in ΥT (γ) about a
simple closed curve which becomes very short along γ.

For this we first need a better control of the projections of WP-geodesics into
the graph CG(α) for a simple closed curve α ∈ C(S). We obtain such a control using
the pants graph PG(S) for S.

A pants decomposition P for S is changed to a pants decomposition P ′ by an
elementary move if P ′ is obtained from P by replacing one of the pants curves α
of P by a curve which does not intersect P − α and intersects α in the minimal
number of points (i.e. in precisely two points if the component of S − (P − α)
containing α is a four-holed sphere, and in precisely one point if this component
is a one-holed torus). The pants graph PG(S) of S is the geodesic metric graph
whose set of vertices is the set P(S) of pants decompositions for S and where two
such pants decompositions P, P ′ are connected by an edge of length one if and only
if P ′ can be obtained from P by an elementary move.

As in Section 2, call a pants decomposition P for S a Bers decomposition for
h ∈ T (S) if the h-length of each of the components of P is bounded from above by
χ0. Note that if α ∈ C(S) is any simple closed curve whose h-length is bigger than
χ0 then every Bers decomposition P for h contains a component which intersects
α transversely. In particular, the projection πα(P ) is not empty, and its diameter
diam(πα(P )) is at most one.

Define a map
ΥP : T (S) → PG(S)
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by associating to a hyperbolic metric x ∈ T (S) a Bers decomposition for x. The
following Lemma is a quantitative version of Lemma 2.4 for pants decompositions
which enables us to control for a simple closed curve α the projections into the
graph CG(α) of Bers decompositions along Weil-Petersson geodesics. Compare also
Section 3 of [B03].

Lemma 4.1. There is a constant χ1 > χ0 with the following property. Let ξ :
[0, σ] → T (S) be a WP-geodesic segment of length σ ≤ 1 and let P0, Pσ be Bers
decompositions for ξ(0), ξ(σ). Then P0 can be connected to Pσ by an edge path
ρ in PG(S) of length at most χ1 with the following property. For every vertex
P ∈ P(S) passed through by ρ there is some t ∈ [0, σ] such that the ξ(t)-length of
every component curve of P is smaller than χ1.

Proof. By Lemma 3.12 of [W08], there is a number a > 0 with the following
property. Let h ∈ T (S) and let α ∈ C(S) be a simple closed curve of h-length
ℓh(α) ≤ 2χ0. Then the norm at h of the Weil-Petersson gradient of the length
function x → ℓx(α) is bounded from above by a. This implies the following. Let
τ ≤ χ0/a, let ξ : [0, τ ] → T (S) be any WP-geodesic and let P be a Bers decompo-
sition for ξ(0). Then for every t ∈ [0, τ ] the ξ(t)-length of every component of P
does not exceed 2χ0.

Choose an integer ℓ > a/χ0 and note that ℓ is a universal constant. Let ξ :
[0, σ] → T (S) be a WP-geodesic of length σ ≤ 1 and let j ≤ ℓ be the smallest
integer such that j/ℓ ≥ σ. Let P0, Pσ be Bers decompositions for ξ(0), ξ(σ) and for
each i ∈ {1, . . . , j−1} let Pi be a Bers decomposition for ξ( iℓ ). By the choice of the

constant ℓ, for each i the ξ( i+1
ℓ )-length of each component of Pi does not exceed

2χ0. Since j ≤ ℓ, for the proof of the lemma it is enough to show the existence
of a number β > 0 with the following property. For every x ∈ T (S), any pants
decomposition Q0 of S with components of x-length at most 2χ0 can be connected
to a given Bers decomposition Q1 for x by a path in PG(S) of length at most β
passing through vertices of the pants graph which are pants decompositions for S
with components of x-length at most β.

Thus let x ∈ T (S) and let Q0, Q1 be such pants decompositions whose com-
ponents are x-geodesics of length at most 2χ0 and χ0, respectively. Let c1, . . . , ck
(0 ≤ k ≤ 3g − 3 + m) be those components of Q0 which are also components of
Q1. Note that by the collar lemma, the set c1, . . . , ck contains every simple closed
x-geodesic of sufficiently small length. Let Ŝ be the metric completion of the (per-
haps disconnected) surface which we obtain by cutting S open along the geodesics

c1, . . . , ck. Choose a component Ŝ0 of Ŝ which is different from a three-holed sphere.

The intersection Q0 ∩ Ŝ0 of Q0 with the interior of Ŝ0 is a pants decomposition
for Ŝ0, and the same is true for the intersection Q1 ∩ Ŝ0 of Q1 with the interior of
Ŝ0. Thus (Q0 ∪Q1) ∩ Ŝ0 is an embedded connected piecewise geodesic graph G in

Ŝ0 which decomposes Ŝ0 into non-essential annuli, i.e. annuli whose core curves are
homotopic to a boundary component of Ŝ0 or to a puncture, and into topological
discs with piecewise geodesic boundary. In particular, the injection of the graph G
into Ŝ0 induces a surjection of fundamental groups. By the collar lemma and the
length bound for the components of Q0, Q1, the number of intersections between
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Q0 and Q1 is bounded from above by a number only depending on χ0 and the
topological type of S. This number of intersections is the number of vertices of the
graph G. Now the valency of a vertex of G equals four and therefore the number of
edges of G is uniformly bounded as well. The length of each edge does not exceed
2χ0.

Up to the action of the mapping class group Mod(Ŝ0) of Ŝ0, there are only finitely

many pairs of pants decompositions of Ŝ0 whose union is an embedded connected
graph in Ŝ0 with a uniformly bounded number of edges and whose complementary
components are topological discs and non-essential annuli. By invariance under
the action of Mod(Ŝ0), this means that there is a number p = p(Ŝ0) > 0 only

depending on the topological type of Ŝ0, there is a number n ≤ p and there is a
sequence of pants decompositions R0 = Q0 ∩ Ŝ0, R1, . . . , Rn = Q1 ∩ Ŝ0 for Ŝ0 with
the following properties. For each i < n, Ri+1 can be obtained from Ri by an

elementary move. Moreover, each simple closed curve on Ŝ0 appearing as a pants
curve of one of the pants decompositions Ri is freely homotopic to an edge path
in the graph (Q0 ∪Q1) ∩ Ŝ0 of uniformly bounded combinatorial length. Since the

x-length of an edge of (Q0 ∪ Q1) ∩ Ŝ0 is uniformly bounded, the x-length of each
component curve of Ri is bounded from above by a constant which only depends
on Ŝ0.

On the other hand, there are only finitely many topological types of subsurfaces
of S which can arise as complementary components of a simple multi-curve on S.
Thus a successive application of this construction to all components of Ŝ shows
that Q0 can be modified to Q1 in a uniformly bounded number of steps consisting
of pants decompositions whose components have uniformly bounded x-length. The
lemma is proven. �

Lemma 4.1 together with the results of [MM00] imply the following projection-
diameter control.

Corollary 4.2. Let ξ : [0, R] → T (S) be any Weil-Petersson geodesic. Let α ∈
C(S) be a simple closed curve with ℓξ(t)(α) ≥ χ1 for every t ∈ [0, R], where χ1 > 0
is as in Lemma 4.1. Let P,Q be Bers decompositions for ξ(0), ξ(R). Then

diam(πα(P ) ∪ πα(Q)) ≤ 4χ1R+ 8χ1.

Proof. Let ξ : [0, R] → T (S) be a Weil-Petersson geodesic and let P0, P1 be Bers
decompositions for ξ(0), ξ(R). Let moreover α ∈ C(S) be a simple closed curve
with ℓξ(t)(α) ≥ χ1 for every t ∈ [0, R]. By Lemma 4.1, P0 can be connected to
P1 by a path in PG(S) of length n ≤ Rχ1 + χ1 which passes through vertices
Q0 = P0, . . . , Qn = P1 of the pants graph defined by pants decompositions with
component curves of ξ(t)-length smaller than χ1 for some t ∈ [0, R]. Since ℓξ(t)(α) ≥
χ1 for all t, each of the pants decompositions Qi intersects α transversely.

By Lemma 2.3 of [MM00], for every pants decomposition P of S with an essential
intersection with α, the projection πα(P ) of P to CG(α) is non-empty and of diam-
eter at most 2. If for some i < n the pants decomposition Qi+1 is obtained from Qi
by an elementary move preserving at least one curve which intersects α transversely,
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then the projection of this curve to CG(α) is contained in πα(Qi) ∩ πα(Qi+1) and
therefore the diameter of πα(Qi)∪πα(Qi+1) is at most 4. Otherwise the elementary
move which transforms Qi to Qi+1 exchanges two simple closed curves βi, βi+1, and
the connected component Y of S − (Qi − βi) distinct from a pair of pants contains
α. Now Y is a four-holed sphere or a one-holed torus which is bounded by simple
closed curves in Qi∩Qi+1, and α intersects both βi and βi+1 transversely. However,
in this case the diameter of πα(Qi)∪πα(Qi+1) = πα(βi)∪πα(βi+1) is also bounded
from above by 4 by another application of Lemma 2.3 of [MM00].

As a consequence and by induction, the diameter in CG(α) of the projection
πα(P0) ∪ πα(P1) is at most 4(n + 1) ≤ 4χ1(R + 1) + 4 ≤ 4χ1(R + 1) + 8χ1 (note
that χ1 > 1 by construction). The corollary follows. �

Let again χ0 > 0 be a Bers constant for S and let χ1 > χ0 be as in Lemma
4.1. By the collar lemma and the fact that the distance in CG(S) between any
two simple closed curves α, β ∈ C(S) does not exceed i(α, β) + 1 (Lemma 2.1 of
[MM99]), there is a number p = p(χ0, χ1) > 0 with the following property. Let
x ∈ T (S) and let α be a simple closed curve on S whose x-length is at most χ0. If
dC(α, β) ≥ p− 1 then the x-length of β is bigger than χ1.

We use Corollary 4.2 and the results of Wolpert [W03] to control Weil-Petersson
geodesics in the thin part of Teichmüller space.

Proposition 4.3. For every R > 1, c > 0 there is a number ǫ = ǫ(R, c) > 0 with
the following property. Let ζ : [0, σ] → T (S) be a WP-geodesic segment of length
σ ≤ R and let P0, Pσ be Bers decompositions for ζ(0), ζ(σ). Let α ∈ C(S) be a
curve whose distance in CG(S) to any component of P0, Pσ is at least p. Assume that
diam(πβ(P0)∪πβ(Pσ)) ≤ c for every simple closed curve β ∈ C(S) with dC(α, β) ≤ 1.
Then ℓζ(t)(α) ≥ ǫ for all t ∈ [0, σ].

Proof. The proof relies on Wolpert’s description of Weil-Petersson geodesics near
the completion locus of Teichmüller space as explained in [W03].

We argue by contradiction and we assume that the statement of the proposition
does not hold. Then there are numbers R > 1, c > 0 and there is a sequence ǫi → 0,
a sequence of WP-geodesics ζi : [0, σi] → T (S), a sequence of numbers ti ∈ (0, σi)
and a sequence of simple closed curves αi ∈ C(S) such that for every i the following
holds true.

(a) σi ≤ R.
(b) The distance in CG(S) between αi and any component of some Bers de-

composition Pi, Pσi
of ζi(0), ζi(σi) is at least p.

(c) diam(πβ(Pi) ∪ πβ(Pσi
)) ≤ c for every simple closed curve β ∈ C(S) with

dC(αi, β) ≤ 1.
(d) There is some ti ∈ (0, σi) such that ℓζi(ti)(αi) ≤ ǫi.
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Our strategy is to analyze a sequence of geodesics ζi : [0, σi] → T (S) which has
the properties (a), (b) and (d) above. By the choice of the constants p > 0 and
χ1 > 0, for each i we have

(2) ℓζi(0)(αi) ≥ χ1, ℓζi(σi)(αi) ≥ χ1.

A result of Wolpert [W03] gives some geometric information on the sequence. This
information allows us to formulate an additional condition on the sequence. We
then consider sequences which satisfy this additional condition and use Corollary
4.2 to show that for such a sequence, property (c) above is violated. The general
case is then reduced to the special case, applied to subarcs of the sequence ζi

Let now ζi : [0, σi] → T (S) be a sequence with properties (a),(b),(d). By
Wolpert’s gradient estimates for length functions (see Lemma 3.12 of [W08]), for
every β ∈ C(S) the norm of the Weil-Petersson gradient of the length function
x → ℓβ(x) is uniformly bounded on {x | ℓβ(x) ≤ χ1}. This implies that the
Weil-Petersson distance between a point x ∈ T (S) with ℓαi

(x) ≥ χ1 and a point
y ∈ T (S) with ℓαi

(x) ≤ χ0/2 is bounded from below by a universal constant a > 0.
In particular, we have σi ≥ 2a for all i which are sufficiently large that ǫi ≤ χ0/2
and hence by passing to a subsequence we may assume that σi → σ ∈ [2a,R].

The mapping class group acts on the Weil-Petersson completion T (S) of Te-

ichmüller space. The quotient T (S)/Mod(S) is just the Deligne-Mumford com-
pactification of moduli space, in particular it is compact. Thus up to passing to
another subsequence and up to the action of the mapping class group, we may as-
sume that the initial points ζi(0) of the geodesics ζi converge to a point x0 ∈ T (S)
(compare the discussion in [W03]).

A point in T (S) − T (S) is a surface with nodes, where a node is obtained by
pinching a simple closed curve on S to a point. For a simple multi-curve c on S let
T (c) ⊂ (T (S)−T (S)) be the stratum of the completion locus for the Weil-Petersson
metric which consists of all Riemann surfaces with nodes at the components of c (i.e.
Riemann surfaces obtained from S by pinching the components of c to punctures).
By Proposition 23 of [W03], up to passing to another subsequence and up to possibly
a composition with Dehn multi-twists about the nodes of x0, there exists a finite
partition 0 = t0 < t1 < · · · < tk = σ of the interval [0, σ] and there are simple
multi-curves c0, c1, . . . , ck and points xj ∈ T (cj) such that the following holds true.

For 0 ≤ j ≤ k − 1 consider the (possibly trivial) multi-curve τj = cj ∩ cj+1. If
1 ≤ j < k − 1 then τj is a proper subset of both cj and cj+1, and τ0 = c0 ∩ c1
is a proper subset of c1, τk−1 is a proper subset of ck−1. For each i and each
1 ≤ j ≤ k − 1 there is a Dehn multi-twist T(j,i) about the components of cj − τj
such that on the parameter interval [tj , tj+1] the arcs

(3) T(j,i) ◦ · · · ◦ T(1,i)ζi

converge as i → ∞ to the geodesic arc ξj in T (S) connecting xj to xj+1 in the

sense of parametrized unit-speed curves. The concatenation ξ : [0, σ] → T (S) of
the arcs ξj (0 ≤ j ≤ k − 1) is the piecewise Weil-Petersson geodesic connecting x0
to xk and passing through x1, . . . , xk−1 in this order.
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For each i the ζi(0)-length and the ζi(σi)-length of the curve αi is bounded from
below by χ1, and the minimum of the length of αi along the WP-geodesics ζi tends
to zero as i→ ∞. This implies that k ≥ 2 and that up to passing to a subsequence,
there is a number j2 ∈ {1, . . . , k−1} such that for every sufficiently large i we have

T(j2−1,i) ◦ · · · ◦ T(1,i)αi = α ∈ cj2 − τj2 .

By Proposition 23 of [W03], the sequence of Dehn multi-twists T(j2,i) about the
components of cj2 − τj2 is unbounded as i → ∞. In particular, up to passing to a
subsequence there is a simple closed curve β ∈ cj2 −τj2 with the following property.
Let Tβ be the Dehn twist about β. Then there is a sequence r(i) → ∞ such that

T(j2,i) = T
r(i)
β ◦ T̂(j2,i)

where T̂(j2,i) is a (possibly trivial) Dehn multi-twist about the components of cj2 −
τj2 −β. We note for later reference that property (b) was used here to ensured that
the length of βi at the endpoints o f ζi is at least χ1.

As α, β ∈ cj2−τj2 we have dC(α, β) ≤ 1 and hence by invariance under the action
of the mapping class group, for sufficiently large i the distance in CG(S) between
αi and

βi = (T(j2−1,i) ◦ · · · ◦ T(1,i))
−1β

is at most one. By property (b) above and the choice of p, this implies that the
ζi(0)-length of βi and the ζi(σi)-length of βi is at least χ1. Moreover, the curve βi
becomes short along ζi.

Using the notations in the previous paragraph, we consider now the case that
β does not intersect any of the multi-curves cj (0 ≤ j ≤ k). Then β is invariant
under each of the Dehn multi-twists T(j,i). Thus we have βi = β for all i and hence
ℓβ(ζi(0)) ≥ χ1, ℓβ)(ζi(σi)) ≥ χ1. Since the arcs T(j,i) ◦ · · · ◦ T(1,i)ζi|[tj , tj+1] converge
as i→ ∞ to the arc ξj , the ζi(0)-length and the ζi(σi)-length of β is bounded from
above independent of i. Moreover, the curve β becomes short along the geodesics
ζi.

Call a pants decomposition P of S a Bers decomposition for some x ∈ T (S) if
the x-length of any component of P is at most χ0 (this means in particular that P
contains all nodes of x). Length functions on T (S) extend continuously to functions

on T (S) with values in [0,∞]. Thus by the collar lemma, there is a neighborhood

U of x0 in T (S) such that the number of pants decompositions which are Bers
decompositions for points in U is finite. Namely, if the simple closed curve ω is
a node of x0 then there is a neighborhood V of x0 in T (S) such that every Bers
decomposition for any x ∈ V contains ω. Consequently, by passing to another
subsequence we may assume that the Bers decompositions Pi for ζi(0) coincide for
all i. We denote this common pants decomposition by P .

For each i let as before Pσi
be a Bers decomposition for ζi(σi). We claim that

diam(πβ(P ) ∪ πβ(Pσi
)) → ∞ (i→ ∞).

Namely, the Dehn twist Tβ about β commutes with each of the Dehn multi-twists

T(j,i). Write T̂(j,i) = T(j,i) for j 6= j2 and let as before T̂(j2,i) be the (possibly
trivial) Dehn multi-twist about the components of cj2 − τj2 − β such that T(j2,i) =
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T
r(i)
β ◦ T̂(j2,i) for some r(i) ∈ Z. Since by the above assumption β is disjoint from

each of the multicurves cj (j ≤ k − 1) we have

T(k−1,i) ◦ · · · ◦ T(1,i) = T
r(i)
β ◦ (T̂(k−1,i) ◦ · · · ◦ T̂(1,i))

for all i.

Now if ω ∈ C(S) is any simple closed curve and if T is any Dehn multi-twist about
a simple closed curve κ ∈ C(S)−{β} which is disjoint from β then πβ(ω) = πβ(Tω).
As a consequence, for each i we have

(4) πβ(Pσi
) = πβ(T̂(k−1,i) ◦ · · · ◦ T̂(1,i)(Pσi

)) ⊂ CG(β).

Proposition 23 of [W03] together with Mod(S)-invariance of the Weil-Petersson
metric shows that the Weil-Petersson distance between the points

(T(k−1,i) ◦ · · · ◦ T(1,i))
−1(xk) = (T̂(k−1,i) ◦ · · · ◦ T̂(1,i))

−1(T
−r(i)
β (xk))

and the points ζi(σi) converges to zero as i → ∞. Using once more invariance of
the Weil-Petersson metric under the mapping class group, we conclude that

dWP (T̂(k−1,i) ◦ · · · ◦ T̂(1,i)(ζi(σi)), T
−r(i)
β (xk)) → 0 (i→ ∞).

Now there are only finitely many Bers decompositions for all points in a small
neighborhood of xk and therefore by invariance under the action of the mapping
class group and by (4) above, up to passing to a subsequence there is a Bers

decomposition P̂ for xk such that

πβ(Pσi
) = πβ(T

−r(i)
β P̂ )

for all sufficiently large i. By property (2) for β, the pants decomposition Pσi
has

an essential intersection with β and hence the same holds true for P̂ .

Since the diameter in CG(β) of the projection πβ(P ) ∪ πβ(P̂ ) is finite and since
|r(i)| → ∞(i → ∞), this implies that the diameters of the projections πβ(P ) ∪
πβ(Pσi

) tend to infinity with i. But Pi = P for all i and dC(β, αi) ≤ 1 and hence
this contradicts the assumption (c) above.

For the proof of the proposition we are now left with the case that there is some
j ∈ {0, . . . , k} such that β intersects the multi-curve cj . Let j1 ∈ {0, . . . , j2 − 1}
be the maximal number j ≤ j2 − 1 such that i(cj , β) 6= 0. If there is no such j
then write j1 = −1. Similarly, let j3 ∈ {j2 + 1, . . . , k} be the mimimal number
j ≥ j2 + 1 such that i(cj , β) 6= 0. If there is no such number then write j2 = k + 1.
By our assumption, we either have j1 ≥ 0 or j3 ≤ k. For j1 < j < j3, the curve β
is invariant under the Dehn multi-twist T(j,i). Define

ρi = T(j1,i) ◦ · · · ◦ T(1,i)ζi.

If j1 > −1 then we have ℓβ(ρi(tj1)) → ∞ (i → ∞), ℓβ(ρi(tj1+1)) → 0 (i → ∞)
and therefore by convexity of length functions along Weil-Petersson geodesics, for
sufficiently large i there is a unique number si ∈ (tj1 , tj2) such that ℓβ(ρi(si)) = χ1.
If j1 = −1 then using once more convexity and the assumption that the ζi(0)-
length of βi is not smaller than χ1 we also find a unique number si ∈ (tj1 , tj2)
such that ℓβ(ρi(si)) = χ1. Similarly we find for all sufficiently large i a unique
number ui ∈ (tj2 , tj3) such that ℓβ(ρi(ui)) = χ1. By passing to a subsequence, we



28 URSULA HAMENSTÄDT

may assume that si → s, ui → u. Using again Wolpert’s gradient bound for length
functions, we have s ∈ (tj1 , tj2), u ∈ (tj2 , tj3) and s < u.

The Weil-Petersson geodesics ρi[si, ui], the Bers decompositions Q0
i for ρi(si),

Q1
i for ρi(ui) and the curve β have all properties required to apply the special case

of the proposition established in the first part of this proof. The first part of this
proof implies that the diameters of the projections

πβ(Q
0
i ) ∪ πβ(Q

1
i )

tend to infinity with i. By equivariance under the mapping class group, if

βi = (T(j1,i) ◦ · · · ◦ T(1,i))
−1β

and if Q̂0
i , Q̂

1
i are Bers decompositions for ζi(si), ζi(ui), then

(5) diam(πβi
(Q̂0

i ) ∪ πβi
(Q̂1

i )) → ∞

as well.

By equivariance of length functions under the action of Mod(S), we have

ℓβ(ζi(si)) = χ1, ℓβi
(ζi(ui)) = χi,

moreover the length of βi become arbitrarily small along ζi[si, ui] as i→ ∞. Thus
by convexity, the length of βi is at least χ1 on [0, si]∪ [ui, σi]. Corollary 4.2, applied
to the Weil-Petersson geodesics ζi[0, si] and ζi[ui, σi] of length at most R and the
curves βi ∈ C(S), yields that

max{diam(πβi
(Pi) ∪ πβi

(Q̂0
i )), diam(πβi

(Q̂1
i ) ∪ πβi

(Pσi
))} ≤ 4χ1R+ 8χ1.

Together with (5) this implies that diam(πβi
(Pi) ∪ πβi

(Pσi
)) → ∞ (i → ∞) which

contradicts assumption (c) above. The proposition is proven. �

5. Length bounds in the thick part of Teichmüller space

In this section we use the results from Section 4 to estimate the length of the in-
tersection of a family of Weil-Petersson geodesics with the thick part of Teichmüller
space. In particular, we show that for every ǫ > 0, a Weil-Petersson geodesic
ζ : [0, σ] → T (S) which connects two points on a Teichmüller geodesic γ ⊂ T (S)ǫ
spends a fixed percentage of time in the thick part of Teichmüller space. The main
two ingredients for the proof of this fact are Proposition 4.3 and the following con-
sequence of hyperbolicity of the curve graph (which holds true for every hyperbolic
geodesic metric space).

Lemma 5.1. For every κ > 1 there is a number b(κ) > 0 and for every n > 0
there are numbers τ = τ(κ, n) > 0, T = T (κ, n) > 0 with the following properties.
Let k > 0, let ρ : [0, k] → CG(S) be any geodesic and let ω : [0, r] → CG(S) be a
one-Lipschitz curve of length r ≤ κk connecting ω(0) = ρ(0) to ω(r) = ρ(k). Then
there is a set A ⊂ {0, . . . , k − 1} of cardinality at least τk and for every i ∈ A
there are numbers ri ∈ [0, r], si ∈ [ri, ri + T ] with ri+1 ≥ si and there is a number
ji ≥ i+ n so that

dC(ω(ri), ρ(i)) ≤ b(κ), dC(ω(si), ρ(ji)) ≤ b(κ) (i = 1, 2).
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Proof. Let ρ : [0, k] → CG(S) be any geodesic in the curve graph. Let Π : CG(S) →
ρ[0, k] be a shortest distance projection (i.e. Π associates to a point x ∈ CG(S)
a point Π(x) ∈ ρ[0, k] of minimal distance; note that such a point need not be
unique, and the map Π need not be continuous). By hyperbolicity of CG(S), there
are numbers a ≥ 1, b > 0 only depending on the hyperbolicity constant such that the
projection Π satisfies the following contraction properties (see Section 2 of [MM99]
for these properties in the case of the curve graph).

(1) If dC(x, y) ≤ 1 then dC(Π(x),Π(y)) ≤ a.
(2) If dC(x,Π(x)) ≥ a and dC(x, y) ≤ bdC(x,Π(x)) then dC(Π(x),Π(y)) ≤ a.

As a consequence, the following holds true. For every p > a and for every one-
Lipschitz edge path θ : [0, s] → CG(S) of length s > 0 which does not intersect the
p-neighborhood of ρ[0, k], we have

(6) diam(Πθ[0, s]) ≤ as/bp+ a.

Namely, by property (2) above, the claim holds true if dC(θ(0), θ(σ)) < bp for all σ ∈
[0, s]. Otherwise let s1 ≥ bp be the smallest number such that dC(θ(0), θ(s1)) = bp.
Then dC(Πθ(0),Πθ(σ)) ≤ a for every σ ∈ [0, s1]. Moreover, dC(θ(s1),Πθ(s1)) ≥ p
and hence we can repeat this argument for the interval [s1, s2] where s2 ≥ s1+ bp is
the smallest number such that dC(θ(s1), θ(s2)) = bp. The estimate (6) now follows
by induction.

Let κ > 1 and let ω : [0, r] → CG(S) be any one-Lipschitz edge path of length
r ≤ κk connecting ω(0) = ρ(0) to ω(r) = ρ(k). Then property (1) above implies
that the image of ω[0, r] under the projection Π is a-dense in ρ[0, k]. This means
that for every t ∈ [0, k] there is some s ∈ [0, r] such that dC(Π(ω(s)), ρ(t)) ≤ a.
Moreover, we have Π(ω(0)) = ρ(0) and Π(ω(r)) = ρ(k).

Identify ρ[0, k] with the line segment [0, k]. Let ℓ > 0 be the largest integer
so that 5aℓ ≤ k; then k/5a − 1 ≤ ℓ ≤ k/5a. Choose inductively a sequence
0 = q0 < · · · < qℓ < r ≤ κk by requiring that qi is the smallest number such that
dC(Π(ω(qi)), ρ(5ai)) ≤ a. Note that

Π(ω(qi)) + 3a ≤ Π(ω(qi+1)) ≤ Π(ω(qi)) + 7a for all i.

Define
A = {i ≤ ℓ | qi+1 ≤ qi + 15κa}.

Since the length of ω does not exceed κk and ℓ + 1 ≥ k/5a, the cardinality of the
subset A of {0, . . . , ℓ} exceeds 2(ℓ+ 1)/3 > k/8a.

Now if i ∈ A then the arc ω[qi, qi+1] of length at most 15κa is mapped by Π
to a subset of [0, k] of diameter at least 3a. Thus by the estimate (6), if χ > 0
is such that 15κa2/bχ + a = 3a then there is some j(i) ∈ [qi, qi+1] such that the
distance between ω(j(i)) and ρ[0, k] is at most χ. Since qi+1 ≤ qi + 15κa, since
ω is a one-Lipschitz-curve and since the projection Π is distance minimizing, the
distance between ω(qi) and Πω(qi) is bounded from above by χ + 15κa, i.e. by a
universal constant only depending on κ.

Let n ∈ [1, ℓ− 1] and let Tn : Z → Z be the translation Tn(z) = z− n. Since the
cardinality of A ⊂ {0, . . . , ℓ} is not smaller than 2(ℓ + 1)/3, the cardinality of the
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intersection A∩Tn(A) is at least (ℓ+1−n)/3. The cardinality of a maximal subset
C ⊂ A ∩ Tn(A) with the additional property that if c ∈ C then p 6∈ C for every
p ∈ {c+1, . . . , c+n−1} is at least (ℓ+1−n)/3n ≥ (k/5a−n)/3n = k/15an−1/3.

If c ∈ C then c ∈ A, c + n ∈ A and c + j 6∈ C for 1 ≤ j ≤ n − 1. Recall that
c ∈ A implies that the distance between ω(qc) and ρ[0, k] is uniformly bounded.

Define τ = τ(κ, n) = 1/40κan and T = T (κ, n) = 30κan. Since the cardinality
of C is not smaller than k/15an−1 and the length of ω does not exceed κk, there is

a subset Ĉ ⊂ C of cardinality at least τk such that qc+n − qc ≤ T for every c ∈ Ĉ.

By construction, if c ∈ Ĉ then

max{dC(ω(qc), ρ(5ac)), dC(ω(qc+n), ρ(5a(c+ n)))} ≤ χ+ 15κa

and dC(ρ(5ac), ρ(5a(c+ n))) = 5an > n (recall that a ≥ 1). This shows the lemma

with b(κ) = χ+ 15κa and with rc = qc and sc = qc+n for c ∈ Ĉ. �

To use Lemma 5.1 to obtain a control on the intersection of a Weil-Petersson
geodesic with the thick part of Teichmüller space we have to compare the distances
dWP and dT on T (S).

The following statement is well known. We include it as a lemma for easy
reference.

Lemma 5.2. For all x, y ∈ T (S) the following holds true.

(1) dWP (x, y) ≤
√

2π(2g − 2 +m)dT (x, y).
(2) There is a number L > 1 such that dC(ΥT (x),ΥT (y)) ≤ LdWP (x, y) + L.

Proof. The first part of the lemma is due to Linch [Li74].

To show the second part of the lemma, let as before χ0 > 0 be a Bers constant
for S. Let ΥP : T (S) → P(S) be any map which associates to a hyperbolic metric
x ∈ T (S) a Bers decomposition for x. By a result of Brock [B03], the map ΥP

is a quasi-isometry with respect to the Weil-Petersson metric on T (S) and the
combinatorial metric dP on the pants graph PG(S): There is a number L1 > 0
such that

(7) dWP (x, y)/L1 −L1 ≤ dP(ΥPx,ΥPy) ≤ L1dWP (x, y) +L1 for all x, y ∈ T (S).

Let Ψ : P(S) → C(S) be a map which associates to a pants decomposition
P ∈ P(S) one of its component curves. If P, P ′ are pants decompositions with
dP(P, P

′) = 1 then P ′ can be obtained from P by an elementary move and hence
P ∩P ′ 6= ∅ (recall that by assumption, the surface S is not a once punctured torus
or a four-punctured sphere). This implies that the distance in CG(S) between any
component of P and any component of P ′ is at most 2. Since the pants graph
PG(S) is a geodesic metric graph, we have

dC(ΨP1,ΨP2) ≤ 2dP(P1, P2) for all P1, P2 ∈ P(S).
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Now the map ΥT : T (S) → C(S) which associates to a point x ∈ T (S) a simple
closed curve of x-length at most χ0 can be chosen to coincide with Ψ◦ΥP . Together
with inequality (7), the second part of the lemma follows. �

As before, let χ0 > 0 be a Bers constant for S. By Lemma 2.4, if α, β ∈ C(S) are
such that there is some x ∈ T (S) with ℓα(x) ≤ χ0, ℓβ(x) ≤ χ0 the the distance in
CG(S) between α, β is at most a(χ0) > 0. In particular, if α ∈ C(S) is of x-length
at most χ0 and and if β ∈ C(S) is such that dC(α, β) ≥ a(χ0) + 3 then β ∪ ξ binds
S for any simple closed curve ξ ∈ C(S) with ℓξ(x) ≤ χ0.

For α ∈ C(S) recall from Section 4 the definition of the graph CG(α) and the
definition of the projection πα : C(S) → CG(α). The following lemma is a version
of a result of Masur and Minsky [MM00]: Teichmüller geodesics in the thick part
of Teichmüller space have bounded combinatorics (see also [R05] and [R14]).

Lemma 5.3. For every R > 0 there are numbers δ = δ(R) > 0, c = c(R) > 0
with the property that for every Teichmüller geodesic arc γ : [0, r] → T (S) of length
r ≤ R such that dC(ΥT γ(0),ΥT γ(r)) ≥ 2a(χ0) + 3 the following is satisfied.

(1) γ[0, r] ⊂ T (S)δ.
(2) diam(πβ(ΥT γ(0)) ∪ πβ(ΥT γ(r))) ≤ c for all β ∈ C(S).

Proof. For R > 0 a Teichmüller geodesic γ : [0, r] → T (S) of length r ≤ R such that
dC(ΥT γ(0),ΥT γ(r)) ≥ 2a(χ0)+ 3 is entirely contained in T (S)δ where δ = χ0e

−R.
Namely, by Lemma 3.1 of [W79], if ζ : J ⊂ R → T (S) is any Teichmüller geodesic
and if s ∈ J , α ∈ C(S) are such that ℓα(ζ(s)) ≤ δ then ℓα(ζ(t)) ≤ χ0 for every t
with |s− t| ≤ logχ0 − log δ. In particular, by Lemma 2.4, if |s− ti| ≤ logχ0 − log δ
for i = 1, 2 then we have dC(ΥT (ζ(t1)),ΥT (ζ(t2))) ≤ 2a(χ0). The first part of the
lemma follows.

The second part of the lemma can be extracted from [MM00]. Perhaps the most
convenient reference is the distance formula of [R07b]. �

We use Proposition 4.3 and Lemma 5.1-5.3 to show that a WP-geodesic connect-
ing two sufficiently far apart points on a Teichmüller geodesic γ : R → T (S) whose
image under ΥT makes controlled progress in the curve graph spends a definitive
proportion of time in the thick part of Teichmüller space.

Proposition 5.4. For every θ > 0 there are numbers δ = δ(θ) > 0 and η = η(θ) >
0 with the following property. Let ξ ≥ 1/η and let γ : [0, ξ] → T (S) be a Teichmüller
geodesic such that

dC(ΥT (γ(0)),ΥT (γ(ξ))) ≥ θξ.

If ζ : [0, σ] → T (S) is the Weil-Petersson geodesic connecting ζ(0) = γ(0) to
ζ(σ) = γ(ξ) then ℓδ−thick(ζ) ≥ ηξ.

Proof. Let θ > 0 and let γ : [0, ξ] → T (S) be any Teichmüller geodesic of length
ξ ≥ 2a(χ0) + 3/θ such that

(8) dC(ΥT (γ(0)),ΥT (γ(ξ))) ≥ θξ.
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Here a(χ0) > 0 is as in Lemma 2.4 for a Bers constant χ0 for S.

Write C =
√

2π(2g − 2 +m). Lemma 5.2 yields that

dC(ΥT γ(0),ΥT γ(ξ))/L− 1 ≤ dWP (γ(0), γ(ξ))(9)

≤ Cξ = CdT (γ(0), γ(ξ)) ≤ CdC(ΥT γ(0),ΥT γ(ξ))/θ.

Let ζ : [0, σ] → T (S) be the WP-geodesic connecting ζ(0) = γ(0) to ζ(σ) = γ(ξ).
By the second part of Lemma 5.2, we have dC(ΥT (ζ(i)),ΥT (ζ(i + 1))) ≤ 2L for
all i. Thus via connecting ΥT (ζ(i)) to ΥT (ζ(i + 1)) by a geodesic segment in
CG(S) for each i and subsequent reparametrization we obtain a 1-Lipschitz curve
ω : [0, u] → CG(S) connecting ω(0) = ΥT (γ(0)) to ω(u) = ΥT (γ(ξ)) whose length u
does not exceed 2LdWP (γ(0), γ(ξ)). (To obtain this estimate we slightly adjust the
constant L to accommodate for the problem that the length σ of ζ is not integral
in general. This adjustment simplifies the notation).

Inequality (9) then implies that the length u of ω is also bounded from above by

u ≤ 2LCdC(ΥT γ(0),ΥT γ(ξ))/θ = κdC(ΥT γ(0),ΥT γ(ξ))

where κ = 2LC/θ > 0 only depends on θ. Moreover, every point on the curve ω is
of distance at most L from a point in ΥT (ζ[0, σ]).

Let k = dC(ΥT γ(0),ΥT γ(ξ)) ≥ max{θξ, u/κ}. By Theorem 2.6, there is a
number L1 > 1 such that the curve t → ΥT (γ(t)) is an unparametrized L1-quasi-
geodesic in the curve graph. Hence by hyperbolicity, the Hausdorff distance between
its image and the image of a geodesic ρ : [0, k] → CG(S) with the same endpoints
is bounded from above by a universal constant β > 0.

Let p = p(χ0, χ1) ≥ 1 be as defined before Proposition 4.3. For κ = 2LC/θ > 1
let b(κ) > 0 be as in Lemma 5.1 and write

B = b(κ) + β + L.

Note that B > 0 only depends on θ.

Apply Lemma 5.1 to the geodesic ρ in CG(S) of length k, the one-Lipschitz edge
path ω : [0, u] → CG(S) of length u ≤ κk connecting ω(0) = ρ(0) to ω(u) = ρ(k)
and the constant

n = 2p+ 4B + 2β + 5a(χ0) + 8.

Note that n > 0 only depend on θ. Using the fact that every point on ω[0, u] is
of distance at most L from a point in ΥT (ζ[0, σ]) and that the Hausdorff distance
between ΥT γ[0, ξ] and ρ[0, k] is at most β, we conclude that there are numbers
τ = τ(θ) > 0 and T = T (θ) > 0 and there is a subset A0 of {1, . . . , k} of cardinality
at least τk and for each i ∈ A0 there is some ri ∈ [0, σ] and some ti ∈ [0, ξ] such
that the following holds true.

(1) dC(ΥT (ζ(ri)),ΥT (γ(ti))) ≤ B.
(2) There are numbers ei ≤ T, vi > 0 such that dC(ΥT ζ(ri+ei),ΥT γ(ti+vi)) ≤

B.
(3) dC(ΥT γ(ti),ΥT γ(ti + vi)) ≥ 2p+ 4B + 5a(χ0) + 8.
(4) ri+1 ≥ ri + ei, ti+1 ≥ ti + vi.
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Since the length ξ of the Teichmüller geodesic arc γ does not exceed k/θ and
since the cardinality of A0 is at least τk, there is a subset A1 of A0 of cardinality
at least τk/2 such that vi ≤ 2/θτ for every i ∈ A1. Lemma 5.3 then yields the
existence of a number c > 0 only depending on θ such that for every i ∈ A1 and
for every α ∈ C(S) we have

(10) diam(πα(ΥT γ(ti)), πα(ΥT γ(ti + vi))) ≤ c.

Let i ∈ A1 and let ϕ,ψ ∈ C(S) be such that

dC(ϕ,ΥT γ(ti)) ≤ B, dC(ψ,ΥT γ(ti + vi)) ≤ B.

If α ∈ C(S) is such that dC(ϕ, α) ≥ B + 3, dC(ψ, α) ≥ B + 3 then a geodesic
in CG(S) connecting ϕ,ψ to ΥT (γ(ti)),ΥT (γ(ti + vi)) does not intersect the ball
of radius 2 about α. In particular, each of the vertices of CG(S) passed through
by these geodesics intersects α transversely. Now by Lemma 2.3 of [MM00], if
β1, β2 ∈ C(S) are two curves of distance one in CG(S) which intersect α trans-
versely then the diameter in CG(α) of the projection πα(β1) ∪ πα(β2) is at most
2. An inductive application of this fact to a geodesic in CG(S) connecting ϕ,ψ to
ΥT (γ(ti)),ΥT (γ(ti + vi)) shows that

diam(πα(ϕ) ∪ πα(ΥT γ(ti))) ≤ B + 1, diam(πα(ψ) ∪ πα(ΥT γ(ti + vi))) ≤ B + 1.

Together with the estimate (10) we obtain that

(11) diam(πα(ϕ) ∪ πα(ψ)) ≤ c+ 2B + 2.

For i ∈ A1 (where A1 ⊂ {1, . . . , k} is as above) consider the WP-geodesic arc
ζ[si, si + ei]. By the properties (1)-(3) above, we have

dC(ΥT ζ(si),ΥT ζ(si + ei)) ≥ 2p+ 2B + 5a(χ0) + 8.

Even though the map t→ ΥT (ζ(t)) is not continuous, by the choice of the constant
a(χ0) the set ΥT ζ[0, σ] is a(χ0)-dense in a simplicial arc connecting ΥT (ζ(0)) to
ΥT (ζ(σ)). Therefore there is a number t ∈ (si, si + ei) so that

dC(ΥT ζ(t),ΥT ζ(si)) ≥ p+B + 2a(χ0) + 4,(12)

dC(ΥT ζ(t),ΥT ζ(si + ei)) ≥ p+B + 2a(χ0) + 4.

Note that by the second part of Lemma 5.2, there is a number v0 > 0 such that
min{|si − t|, |si + ei − t|} ≥ v0.

If Pi, Qi are Bers decompositions for ζ(si), ζ(si + ei), then using once more the
definition of a(χ0), inequality (12) implies that the distance in C(S) between any
component of Pi, Qi and every component ψ of a Bers decomposition for ζ(t) is at
least p+B + 4. Thus the estimate (11), applied to components ϕ,ψ of Pi, Qi and
to every β ∈ C(S) with dC(ξ, β) ≤ 1 (which is possible by the property (1) above)
yields that

diam(πβ(Pi) ∪ πβ(Qi)) ≤ c+ 2B + 2.

Now ψ is an arbitrary component of a Bers decomposition for ζ(t), and the
length ei of the arc ζi[si, si + ei] does not exceed T . Therefore Proposition 4.3
shows the existence of a number δ = δ(θ) > 0 only depending on θ such that
ζ(t) ∈ T (S)2δ. Since by Wolpert’s results the Weil-Petersson distance between
T (S)2δ and T (S)−T (S)δ is bounded from below by a universal constant (compare
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the beginning of the proof of Lemma 4.1 for a more precise statement), there is a
number v ≤ v0 such that ℓδ−thick(ζ[si, si + ei]) ≥ v.

Recall that i ∈ A1 was arbitrary and that the cardinality of A1 is not smaller
than τk/2. Then the above consideration shows that ℓδ−thick(ζ) ≥ τkv/2 ≥ τξv/2θ.
Since τ, v only depend on θ, the proposition follows. �

6. Conjugating the flows

For a ΦtT -invariant Borel subset A of Q(S) define a measurable conjugacy of the
restriction of ΦtT to A into the geodesic flow of the Weil-Petersson metric to be
an injective measurable map Λ : A → QWP (S) such that there is a measurable
function ψ : A× R → R with the following properties.

(1) ψ(x, 0) = 0 for all x ∈ A.
(2) For each fixed x ∈ A the function ψ(x, ·) : s → ψ(x, s) is an increasing

homeomorphism.

(3) Λ(ΦtT x) = Φ
ψ(x,t)
WP Λ(x) for all x ∈ A, t ∈ R.

The goal of this section is to construct such a measurable conjugacy Λ on a
ΦtT -invariant Borel subset E of Q(S) which has full measure for every ΦtT -invariant
Borel probability measure. The restriction of the map to any compact invariant
subset of Q(S) is continuous. We use this to establish the first part of Theorem 3.

We begin with isolating properties of typical orbits for ΦtT -invariant Borel prob-
ability measures. We continue to use the assumptions and notations from Sections
2-6. Let again ΥT : T (S) → C(S) be a map which associates to a point x ∈ T (S) a
Bers curve on x, i.e. a simple closed curve of x-length at most χ0 where χ0 > 0 is
a Bers constant for S. Our first goal is to study the distances dC(ΥT γ(0),ΥT γ(t))
as t → ∞ for a Teichmüller geodesic γ whose cotangent line projects to an orbit
of the flow ΦtT on Q(S) which is typical for an invariant ergodic Borel probability
measure on Q(S).

For this we face the problem that the map ΥT depends on choices and may
not be measurable, and the same problem may arise for the function (x, y) →
dC(ΥT (x),ΥT (y)) on T (S)×T (S). We resolve this problem by using a construction
from [H10a].

Namely, choose a smooth function σ : [0,∞) → [0, 1] with σ[0, χ0] ≡ 1 and
σ[2χ0,∞) ≡ 0. For every h ∈ T (S) we obtain a finite Borel measure µh on C(S)
by defining

µh =
∑

β

σ(ℓh(β))δβ

where δβ denotes the Dirac mass at β. By the collar lemma, the number of simple
closed geodesics on (S, h) of length at most 2χ0 is bounded from above independent
of h. Thus the total mass of µh is bounded from above and below by a universal
positive constant, and by Lemma 2.4, the diameter in CG(S) of the support of µh
is uniformly bounded as well.
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Define a symmetric non-negative function ρ on T (S)× T (S) by

ρ(h, h′) =

∫

C(S)×C(S)

dC(·, ·)dµh × dµ′
h/µh(C(S))µh′(C(S)).

Lemma 3.3 of [H10a] shows that the function ρ is continuous and invariant under
the diagonal action of Mod(S). Moreover, there is a universal constant a0 > 0 such
that

(13) ρ(h, h′)− a0 ≤ dC(ΥT (h),ΥT (h
′)) ≤ ρ(h, h′) + a0 for all h, h′ ∈ T (S).

For q ∈ Q(S) and for t ≥ 0 we can now define a number r(q, t) ≥ 0 as follows.

A lift q̃ of q to Q̃(S) determines a Teichmüller geodesic γ : R → T (S) with initial
unit cotangent q̃. By invariance of the function ρ under the diagonal action of the
mapping class group, the number

r(q, t) = ρ(γ(0), γ(t))

does not depend on the choice of q̃ and hence it defines a continuous function
r : Q(S)× R → [0,∞). We have.

Lemma 6.1. Let µ be a ΦtT -invariant ergodic Borel probability measure on Q(S).
Then there is a number b = b(µ) > 0 such that

lim
t→∞

1

t
r(q, t) = b

for µ-almost every q ∈ Q(S).

Proof. By the triangle inequality for dC and the estimate (13) above, for q ∈ Q(S)
and s, t > 0 we have

r(q, s+ t) ≤ r(q, s) + r(ΦsT q, t) + 2a0

where a0 > 0 is as in (13). Thus by the subadditive ergodic theorem [Kr85], for
µ-almost every q ∈ Q(S) the limit

lim
t→∞

1

t
r(q, t)

exists and does not depend on q. (Here we apply the subadditive ergodic theorem
to the function (q, t) → r(q, t) + 2a0).

We have to show that this limit is positive almost everywhere. For this recall
from Theorem 2.6 that there is a number L1 > 0 such that the image under ΥT of
any Teichmüller geodesic is an unparametrized L1-quasi-geodesic in CG(S). By the
Poincaré recurrence theorem, the ΦtT -orbit of µ-almost every q ∈ Q(S) is recurrent
under the Teichmüller flow. Therefore the support of the vertical measured geodesic
lamination of µ-almost every q ∈ Q(S) fills S and is uniquely ergodic [M82]. As a
consequence, if γ : R → T (S) is a geodesic whose unit cotangent line is a lift of an
orbit of ΦtT which is typical for µ then the map t→ ΥT (γ(t)) is an unparametrized
L1-quasi-geodesic of infinite length [Kl99, H06]. This means that r(q, t) → ∞
(t→ ∞) for µ-almost every q. Moreover, by Lemma 2.4 of [H10a] and the estimate
(13) above, there is a number c > 0 such that

(14) r(q, t+ s)− c ≤ r(q, s) + r(Φsq, t) ≤ r(q, t+ s) + c for all q ∈ Q(S), s, t > 0.
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Now the function r : Q(S) × R → [0,∞) is continuous and the measure µ is
Borel regular. Hence there is a compact subset A of Q(S) with µ(A) > 3/4 and
a number t0 > 0 such that r(q, t0) ≥ 4c for all q ∈ A where c > 0 is as in (14)
above. For the continuous non-negative function ϕ(q) = r(q, t0) on Q(S) we then
have

∫

ϕdµ ≥ 3c. The Birkhoff ergodic theorem implies that

1

t0

∫ t0

0

(

lim
n→∞

1

n

n−1
∑

i=0

ϕ(Φit0T ΦsT q)
)

ds ≥ 3c

for µ-almost every q. The estimate (14) shows that r(q, nt0) ≥
∑n−1
i=0 ϕ(Φ

it0
T q)−nc

and therefore

lim inf
n→∞

1

nt0
r(q, nt0) ≥ 2c

for µ-almost every q. This completes the proof of the lemma. �

For j > 0, ℓ > 0 define

B+(j, ℓ) = {q ∈ Q(S) | r(q, t) ≥ t/j for all t ≥ ℓ}.

Lemma 6.2. The set B+(j, ℓ) is compact and consists of quadratic differentials
with uniquely ergodic vertical measured lamination.

Proof. Since the function r is continuous, we have

B+(j, ℓ) = ∩s≥ℓ,s∈Q{q | r(q, s) ≥ s/j}

and hence B+(j, ℓ) is a countable intersection of closed sets. In particular, B(j, ℓ) ⊂
Q(S) is closed.

For ǫ > 0 let M(S)ǫ be the projection of T (S)ǫ into the moduli space of curves.
Let q be a quadratic differential whose vertical measured geodesic lamination is
not uniquely ergodic. Then for every ǫ > 0 there is some τ(ǫ) > 0 such that for
every s ≥ τ(ǫ), the surface underlying ΦsT (q) is not contained in M(S)ǫ [M82]. By
Lemma 3.1 of [W79], if α is a curve of length at most ǫ on the surface underlying
ΦsT (q), then the length of α on the surface underlying ΦuT (q) is at most χ0 for every
u ∈ [s− log(χ0 − ǫ), s+ log(χ0 − ǫ)]. This implies that if ǫ is sufficiently small then
we have r(z, s) ≤ s/2j for all sufficiently large s and every quadratic differential z
with the property that the projection of the forward orbit {ΦtT z | t ≥ 0} of z does
not intersect M(S)ǫ.

By the definition of the set B+(j, ℓ), this shows first that B(j, ℓ) projects into
M(S)ǫ for a number ǫ > 0 depending on j, ℓ. In particular, B(j, ℓ) is compact.
Moreover, by the estimate (14), the orbit of q ∈ B+(j, ℓ) under ΦtT recurs to a
fixed compact set for arbitrarily large times hence its vertical measured lamination
is uniquely ergodic [M82]: �

Let F : Q(S) → Q(S) be the flip F(q) = −q. Define

B(j, ℓ) = B+(j, ℓ) ∩ F(B+(j, ℓ)),

E+(j, ℓ) = B+(j, ℓ) ∩ lim sup
i→∞

Φ−iB+(j, ℓ) = B(j, ℓ) ∩ (∩∞
u=1(∪

∞
i=uΦ

−iB(j, ℓ))),

E(j, ℓ) = E+(j, ℓ) ∩ F(E+(j, ℓ)) and E = ∪j(∪ℓE(j, ℓ)).
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Lemma 6.3. (1) E is a ΦtT -invariant Borel subset of Q(S).
(2) µ(E) = 1 for every ΦtT -invariant Borel probability measure.
(3) The horizontal and vertical meausured geodesic laminations of every q ∈ E

are uniquely ergodic.
(4) Every compact ΦtT -invariant subset of Q(S) is contained in E.

Proof. That E is a Borel set is immediate from Lemma 6.2 and the definitions.
Moreover, Lemma 6.2 shows that the horizontal and vertical measured geodesic
laminations of every q ∈ E are uniquely ergodic.

Part (2) of the lemma follows from Lemma 6.1 and the fact that the image under
the flip of any ΦtT -invariant Borel probability measure on Q(S) is an invariant Borel
probability measure.

To show invariance of E under ΦtT , it suffices to show that ∪j(∪ℓE
+(j, ℓ)) is

invariant. For this recall that E+(j, ℓ) is the set of all points q ∈ B+(j, ℓ) so that
ΦiT q ∈ B+(j, ℓ) for infinitely many i > 0. Thus if q ∈ E+(j, ℓ) and if t > 0 then
there is some u ≥ 0 with ΦuT (Φ

t
T q) ∈ E+(j, ℓ). Inequality (14) shows that

r(ΦtT (q), s) ≥ r(Φu+tT (q), s− u)− c ≥ (s− u)/j − c

for all s ≥ ℓ+ u and hence putting ℓ′ = 2max{ℓ+ u, 2c} we conclude that ΦtT (q) ∈
B(2j, ℓ′). The same argument also shows that ΦtT q ∈ E+(2j, ℓ′).

Part (4) of the lemma is an immediate consequence of the fact that the image
under Υ of a Teichmüller geodesic which is entriely contained in T (S)ǫ for some
ǫ > 0 is a parametrized quasi-geodesic in CG(S). �

The idea for constructing the conjugacy is to find for a Teichmüller geodesic with
uniquely ergodic horizontal and vertical measured laminations a Weil-Petersson
geodesic which has these laminations as ending measures. For this we need a
technical preparation which we formulate as two lemmas.

Lemma 6.4. Let γi : R → T (S) be a sequence of Teichmüller geodesics converging
locally uniformly to a Teichmüller geodesic γ. Assume that the vertical measured ge-
odesic lamination ν of the quadratic differential which defines γ is uniquely ergodic.
Let ni → ∞ and for each i let ζi : [0, σi] → T (S) be the WP-geodesic connecting
ζi(0) = γi(0) to ζi(σi) = γi(ni). Then up to passing to a subsequence, the geodesics
ζi converge locally uniformly to an infinite WP-ray ζ : [0,∞) → T (S). The length
of ν is bounded along ζ.

Proof. By Theorem 2.6, there is a number L1 > 0 such that the image under
ΥT of every Teichmüller geodesic γ : R → T (S) in an unparametrized L1-quasi-
geodesic in CG(S). By hyperbolicity of the curve graph, this means in particular
that there is a number b > 0 and there is a geodesic ρ : [0, b) → CG(S) such that
the Hausdorff distance between ρ(J) and ΥT (γ[0,∞) is bounded from above by a
universal constant p1 > 0.

Let γi, γ : R → T (S) be as in the lemma. Let ν be the vertical measured geodesic
lamination of γ, normalized in such a way that the γ(0)-length of ν equals one. By
assumption, ν is uniquely ergodic. This implies that the diameter of ΥT (γ[0,∞))



38 URSULA HAMENSTÄDT

is infinite and the support of ν defines a point in the boundary ∂CG(S) of the curve
graph CG(S). If (βi) ⊂ C(S) is any sequence converging in CG(S) ∪ ∂CG(S) to
the support of ν then by unique ergodicity of ν, the projective measured geodesic
laminations [βi] supported in βi converge in PML to the projective measured
geodesic lamination [ν] which is the class of ν (see Theorem 1.4 of [Kl99] and
Theorem 1.1 of [H06]).

Since γi → γ uniformly on compact sets, as i → ∞ longer and longer subarcs
of the uniform unparametrized quasi-geodesic ΥT ◦ γ are uniformly fellow-traveled
by subarcs of the uniform unparametrized quasi-geodesics ΥT ◦ γi. Thus for any
sequence ni → ∞, the curves ci = ΥT (γi(ni)) converge in CG(S) ∪ ∂CG(S) to the
support of ν (compare the more detailed argument in the proof of Proposition 3.4
of [H10a]). As a consequence, we have [ci] → [ν] in PML.

For i > 0 let ζi be the WP-geodesic connecting ζi(0) = γi(0) to ζi(σi) = γ(ni).
After passing to a subsequence we may assume that the directions vi = ζ ′i(0) of
the geodesics ζi converge as i → ∞ to a direction v with footpoint γ(0). Let
ζ : [0, T ) → T (S) be the WP-ray with direction v. Then ζi → ζ uniformly on
compact subsets of [0, T ).

We claim that the length of ν is bounded along ζ. Namely, for each i let µi be the
measured geodesic lamination of γi(0)-length one which we obtain from ΥT (γi(ni))
by multiplication with a positive constant. Since γi(0) → γ(0) (i → ∞) there is
a number ǫ > 0 such that γi(0) ∈ T (S)ǫ for all i. This means that the shortest
length of a simple closed curve for the metric γi(0) is not smaller than ǫ. Therefore
µi is obtained from the counting measure for ΥT (γi(ni)) by multiplication with
a constant which does not exceed 1/ǫ. By definition of the map ΥT , the γi(ni)-
length of µi is not bigger than χ0/ǫ. Thus by convexity, the length of µi along ζi
is uniformly bounded, independent of i.

By the above consideration and continuity of the length pairing, as i → ∞
the measured geodesic laminations µi converge weakly to the measured geodesic
lamination ν. Since ζi → ζ locally uniformly, continuity of the length pairing implies
that the length of ν is uniformly bounded along ζ (compare the more detailed
argument in the proof of Proposition 2.8).

Since ν fills S, the WP-ray ζ is infinite. Namely, otherwise there is a simple
closed curve c on S so that the ζ(t)-length of c tends to zero as t → T . But
i(c, ν) > 0 and consequently in this case the length of ν is unbounded along ζ
which is a contradiction. The lemma is proven. �

The following angle control is the second and last preparatory step toward the
construction of a WP-ray associated to a Teichmüller geodesic γ : R → T (S) whose
initial direction is contained in the preimage of one of the sets B(j, ℓ).

Lemma 6.5. Let B ⊂ Q(S) be a compact set consisting of quadratic differentials
with uniquely ergodic vertical and horizontal measured geodesic laminations. Then
there are numbers α = α(B) > 0 and R0 = R0(B) > 0 with the following property.

Let B̃ ⊂ Q̃(S) be the preimage of B and let γ : R → T (S) be a Teichmüller geodesic

with initial velocity γ′(0) ∈ B̃. Let R1, R2 ≥ R0 and let ξ1, ξ2 be the Weil-Petersson



TEICHMÜLLER FLOW AND WEIL-PETERSSON FLOW 39

geodesics which connect γ(0) = ξ1(0) = ξ2(0) to γ(−R1), γ(R2). Then the angle
∠γ(0)(ξ

′
1(0), ξ

′
2(0)) at γ(0) between the geodesics ξ1, ξ2 is at least α.

Proof. We argue by contradiction and we assume that there is a set B as in a
lemma for which the statement of the lemma does not hold. Let B̃ ⊂ Q̃(S) be
the preimage of B. By assumption, there is a sequence of Teichmüller geodesics
γi : R → T (S) with initial velocity γ′(0) ∈ B̃, and there is a sequence of numbers
Ri, Ti → ∞ so that the angle between the WP-geodesics ζi, ξi connecting γi(0) to
γi(−Ri), γi(Ti) tends to zero as i→ ∞.

By invariance under the action of the mapping class group and cocompactness of
the action of Mod(S) on B̃, up to passing to a subsequence we may assume that the
Teichmüller geodesics γi converge as i→ ∞ to a Teichmüller geodesic γ. By Lemma
6.4, by passing to another subsequence we may assume that the WP-geodesics ζi, ξi
converge as i→ ∞ to infinite Weil-Petersson rays ζ, ξ : [0,∞) → T (S).

Let qh, qv be the horizontal and vertical measured geodesic lamination, respec-
tively, of the area one quadratic differential q which is the unit cotangent vector of
γ at γ(0). By Lemma 6.4, the length of qv is bounded along ζ, and the length of
qh is bounded along ξ.

On the other hand, by assumption, the angle at γi(0) between ζi, ξi converges to
zero as i→ ∞ and therefore we have ζ = ξ. As a consequence, the lengths of both
qh, qv are bounded along ζ. But the measured geodesic laminations qh, qv bind S
(i.e. we have i(µ, qh) + i(µ, qv) > 0 for every measured geodesic lamination µ on
S) and hence the function on T (S) which associates to a point x ∈ T (S) the value
ℓx(qh) + ℓx(qv) is proper (see Theorem 1.2 of [K92]). Since ζ is an infinite ray, this
is a contradiction. The lemma follows. �

Denote by P : T ∗T (S) → T (S) the canonical projection of the vector bundle
T ∗T (S) of all holomorphic quadratic differentials (which is the cotangent bundle
of T (S)) onto the base. Then P restricts to the canonical projection of the sphere
bundles for both the Teichmüller metric and the Weil-Peterssen metric. The next
theorem is the first part of Theorem 1 from the introduction.

Theorem 6.6. There is a measurable conjugacy Λ : E → QWP (S) of the restriction
of ΦtT to E into the geodesic flow of the Weil-Petersson metric. Its restriction to
every compact subset of E is continuous.

Proof. Recall that the preimage Ẽ ⊂ Q̃(S) of E consists of differentials with uniquely
ergodic horizontal and vertical measured geodesic laminations.

For all j, ℓ let Ẽ(j, ℓ) ⊂ Ẽ be the preimage of E(j, ℓ) in Q̃(S). Let moreover

B̃(j, ℓ) be the preimage of B(j, ℓ).

Fix (j, ℓ) and recall that E(j, ℓ) ⊂ B(j, ℓ). By Lemma 6.2 we may apply Lemma
6.4 and Lemma 6.5 to the sets B(j, ℓ). Thus for every q ∈ E(j, ℓ) and every lift q̃
of q there are unique WP-geodesics rays ζ+(q̃), ζ−(q̃) which are limits of segments
connecting points on the forward or backward geodesic subray of the geodesic γq̃
with initial velocity q̃. The angle between ζ+(q̃) and ζ−(q̃) is bounded from below
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by α = α(B(j, ℓ)) as in Lemma 6.5. Moreover, these rays depend continuously on

q̃ ∈ Ẽ(j, ℓ).

Let δ = δ(1/j) and η = η(1/j) as in Proposition 5.4. Let k = k(δ, α) > 0 be as in
the first part of Lemma 3.1. Let n > max{ℓ, k/η} be such that ΦnT q ∈ B(j, ℓ); such
a number exists by the definition of E(j, ℓ). By the choice of α, if n is sufficiently
large then for sufficiently large R ≥ k/η the angle at γq̃(0) of the geodesic triangle
with vertices γq̃(n), γq̃(0), γq̃(−R) is at least α and the same holds true for the
angle at γq̃(n) of the triangle with vertices γq̃(n+R), γq̃(n), γq̃(0). Proposition 5.4
shows moreover that ℓδ−thick(γq̃[0, n]) ≥ k. Thus by Corollary 3.2, there is a unique
Weil-Petersson geodesic ξ(q̃) which is forward asymptotic to ζ+(q̃) and backward

asymptotic to ξ−(q̃). Moreover, this geodesic depends continuously on q̃ ∈ Ẽ(j, ℓ).
Its projective ending measures are the classes [q̃v], [q̃h] of the vertical and horizontal
measured geodesic laminations of q̃.

We complete the proof of the theorem using the arguments from the proof of
Proposition 2.8. Namely, let q̃ ∈ Ẽ(j, ℓ) and let q̃v, q̃h be the vertical and the
horizontal measured geodesic lamination of q̃, respectively. The function x→ ℓx(q̃

v)
is strictly convex along the Weil-Petersson geodesic ξ(q̃) and tends to zero as t→ ∞.

Let Λ̃(q̃) be the unit cotangent vector of ξ(q̃) at the unique point ξ(q̃)(s) where this
length equals one. Since length functions are strictly convex along Weil-Petersson
geodesics, the assignment t → Λ̃(ΦtT q̃) is a homeomorphism of the orbit of the

Teichmüller flow through q̃ onto the orbit of the Weil-Petersson flow through Λ̃(q̃).

Since the Teichmüller geodesic t→ PΦtT q̃ is uniquely determined by the projec-
tive classes of the horizontal and vertical measured geodesic laminations, respec-
tively, and these projective measured geodesic laminations are the ending measures
of the WP-geodesic determined by Λ̃(q̃), the map q̃ ∈ Ẽ(j, ℓ) → Λ̃(q̃) is injective,
moreover it is continuous and equivariant under the action of the mapping class
group. Thus this map projects to a measurable map Λ : E → QWP (S) which
defines a conjugacy of the Teichmüller geodesic flow on E into the Weil-Petersson
geodesic flow. Its restriction to each of the sets B(j, ℓ) is continuous. �

Remark 6.7. The proof of Theorem 6.6 moreover shows that for every q ∈ E there
is a number c = c(q) > 0 with the following property. Let Λ̃ : Q̃(S) → Q̃WP (S) be

a Mod(S)-equivariant lift of Λ, defined on the preimage Ẽ of E , and let q̃ ∈ Ẽ be a
lift of q. Then there is a sequence ti (i ∈ Z) with ti → ±∞ (i → ±∞) and such

that dT (PΦ
ti
T q̃, P Λ̃(Φ

ti
T q̃)) ≤ c for all i.

Namely, by continuity, for any compact set K̃ ⊂ Q̃(S) which projects onto B(j, ℓ)

there is some c > 0 such that dT (P q̃, PΛ(q̃)) ≤ c for every q̃ ∈ K̃. As for every
q ∈ E(j, ℓ) the flow line of ΦtT through q intersects B(j, ℓ) for arbitrarily large
and small times, by eqivariance this number c satisfies the properties stated in the
proposition for all q ∈ E(j, ℓ).

We conclude this section with the proof of the first part of Theorem 3 from
the introduction (which is a version of a special case of Theorem 6.6). As in the
introduction, we always denote by J, J ′ a closed connected subset of R.
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Proposition 6.8. (1) For every ǫ > 0 there is a number R = R(ǫ) > 0 with
the following property. For every Teichmüller geodesic γ : J → T (S)ǫ there
is a Weil-Petersson geodesic ξ : J ′ → T (S) with dH(γ(J), ξ(J ′)) ≤ R.

(2) Let K ⊂ Q(S) be any compact set which is invariant under the Teichmüller
geodesic flow ΦtT . Then there is a conjugacy Λ : K → QWP (S) of the
restriction of ΦtT to K into the geodesic flow ΦtWP for the Weil-Petersson
metric.

Proof. The second part of the proposition is immediate from Theorem 6.6.

The argument for the first part is similar to the proof of Proposition 2.8. Namely,
let J ⊂ R be a closed connected set containing 0 and let γ : J → T (S)ǫ be a
Teichmüller geodesic. We say that the projective measured geodesic lamination [β]
defined by a simple closed curve β ∈ C(S) is realized at some t ∈ J if the γ(t)-length
of β does not exceed χ0. If J contains [0,∞) then we say that the projectivization
[qv] of the vertical measured geodesic lamination defined by the unit cotangent
vector q of γ at γ(0) is realized at the right endpoint of J , and similarly for a left
infinite endpoint.

Let Γ be the set of all triples (γ : J → T (S)ǫ, λ+, λ−) with the following prop-
erties.

(1) J ⊂ R is a closed connected set containing 0.
(2) γ : J → T (S)ǫ is a Teichmüller geodesic.
(3) λ+, λ− are measured geodesic laminations of γ(0)-length one, and the pro-

jective measured geodesic lamination [λ+] is realized at the right endpoint
of J , the projective measured geodesic lamination [λ−] is realized at the
left endpoint of J .

We equip Γ with the product topology, using the weak∗-topology on ML for
the second and the third component of the triple and the compact-open topology
for the arc γ : J → T (S)ǫ. Note that this topology is metrizable. Moreover, Γ is
invariant under the natural action of the mapping class group.

We claim that the action of Mod(S) on Γ is cocompact. Since Mod(S) acts
cocompactly on T (S)ǫ, for this it is enough to show that the following holds true.
If γi : Ji → T (S)ǫ (i > 0) is any sequence of Teichmüller geodesics which converge
locally uniformly to a Teichmüller geodesic γ : J → T (S)ǫ, if the projective mea-
sured geodesic lamination [λi] is realized at the right endpoint of Ji and if [λi] → [λ]
in PML (i → ∞) then [λ] is realized at the right endpoint of J . However, that
this holds true was shown in the proof of Proposition 3.4 of [H10a] (compare also
the argument in the proof of Proposition 2.8).

To each triple (γ : J → T (S)ǫ, λ+, λ−) ∈ Γ associate a Weil-Petersson geodesic
ρ(γ, λ+, λ−) as follows. Assume first that J = [−a, b] is bounded, Then there
is up to parametrization a unique WP-geodesic ξ connecting γ(−a) to γ(b). The
restriction to ξ of the function which associates to x ∈ T (S) the sum ℓx(λ+)+ℓx(λ−)
is strictly convex and non-constant (unless a = b = 0) and hence it assumes a unique
minimum along ξ [W08]. Let ρ(γ, λ+, λ−) be the parametrization of ξ so that this
minimum is assumed at ρ(γ, λ+, λ−)(0).
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If J is one-sided unbounded, say if J = [−a,∞) for some a ≥ 0, then there is a
unique infinite WP-geodesic ray ξ issuing from γ(−a) which is asymptotic to η(γ+)
where η(γ+) is as in Lemma 6.4. The function x → ℓx(λ+) + ℓx(λ−) assumes a
unique minimum along ξ. We define ρ(γ, λ+, λ−) to be the parametrization of ξ for
which this minimum is assumed at ρ(γ, λ+, λ−)(0).

If J is two-sided infinite then let ρ(γ, λ+, λ−) be the parametrization of the
geodesic ζ(γ) as in the second part of Lemma 6.5 so that the minimum of the
function x→ ℓx(λ+) + ℓx(λ−) along η(γ) is assumed at ρ(γ, λ+, λ−)(0).

By Lemma 6.5 and continuity and convexity of length functions, the assignment
which associates to (γ : J → T (S)ǫ, λ+, λ−) ∈ Γ the point ρ(γ, λ+, λ−)(0) is contin-
uous, moreover it is equivariant under the action of the mapping class group. Since
Mod(S) acts cocompactly on Γ, this means that for every (γ : J → T (S)ǫ, λ+, λ−) ∈
Γ the Teichmüller distance between γ(0) and ρ(γ, λ+, λ−)(0) is uniformly bounded.
The first part of the proposition now follows as in the proof of Proposition 2.8. �

7. Invariant measures for the Teichmüller flow

Denote by h(µ) ≥ 0 the entropy of a ΦtT -invariant Borel probability measure
µ on Q(S) (or of a ΦtWP-invariant Borel probability measure µ on QWP(S)). We
continue to use the assumptions and notations from Section 2-7

Theorem 7.1. The conjugacy Λ induces a continuous injective map

Θ : MT (Q(S)) → MWP(QWP(S)).

Moreover,

h(Θ(µ)) ≥ h(µ)/
√

2π(2g − 2 +m)

for all µ ∈ MT (Q(S)).

Proof. Since the Teichmüller space T (S) is contractible and the Teichmüller metric

on T (S) is complete, the action of ΦtT on Q̃(S) is proper. This implies that the
space of oriented geodesics G(S) for the Teichmüller metric is a locally compact
Mod(S)-space (which is naturally homeomorphic to a Mod(S)-invariant open subset
of PML×PML−∆ (where ∆ denotes the diagonal). This set consists of all pairs
([µ], [ν]) which bind S.

The measure µ induces a locally finite ΦtT -invariant Mod(S)-invariant measure

µ̃ on Q̃(S). Via disintegration, the measure µ̃ projects to a locally finite Mod(S)-
invariant measure µ̂ on G(S). Since µ is ergodic under the Teichmüller flow, the
measure µ̂ is ergodic under the action of Mod(S).

Let Ẽ ⊂ Q̃(S) be the preimage of the set E defined in Section 6. Then Ẽ is

invarariant under ΦtT and hence it projects to a Mod(S)-invariant Borel subset Ê
of G(S) of full measure for µ̂.

Let GWP (S) be the space of biinfinite geodesics for the Weil-Peterson metric.

The conjugacy Λ : E → QWP (S) lifts to a Mod(S)-equivariant conjugacy Λ̂ : Ê →

GWP (S). The push-forward Λ̂∗(µ̂) of the measure µ̂ is a Mod(S)-invariant ergodic
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measure on GWP (S). Its product with the standard Lebesgue measure on the flow
lines of the Weil-Petersson geodesic flow defines a ΦtWP -invariant Mod(S)-invariant

locally finite Borel measure on Q̃WP (S) which determines a locally finite Borel
measure µ0 on QWP (S) (we explain in more detail in the sequel that µ0 is in fact
finite). The measure µ0 is ergodic under the action of the Weil-Petersson geodesic

flow since the measure Λ̂∗(µ̂) is ergodic under the action of Mod(S).

Let b =
√

2π(2g − 2 +m). We claim that the the total mass of the measure µ0 on
QWP (S) is bounded from above by b. To see that this is the case, let ψ : E×R → R

be the measurable function defined by the conjugacy. The function ψ satisfies the
cocycle identity

(15) ψ(x, s+ t) = ψ(x, s) + ψ(ΦsT x, t) (x ∈ E , s, t ∈ R).

Moreover, its restriction to E × [0,∞) is non-negative, and we have ψ(x, 0) <
ψ(x, s) < ψ(x, t) for 0 < s < t.

Let q ∈ E be a typical point for µ and let q̃ be a lift of q to Q̃(S). By Re-
mark 6.7 there is a number c > 0 and there is a sequence ti → ∞ such that

dT (PΦ
ti
T q̃, P Λ̃(Φ

ti
T q̃)) ≤ c. Now Λ̃(ΦtiT q̃) = Φ

ψ(q,ti)
WP Λ̃(q̃) and hence since geodesics

for the Weil-Petersson metric are globally length minimizing, Lemma 5.2 shows
that ψ(q, ti) ≤ b(ti + 2c) for all i. As a consequence, we have

lim inf
t→∞

1

t
ψ(q, t) ≤ b.

Since q ∈ E was an arbitrary typical point for µ, the Birkhoff ergodic theorem
together with the cocycle identity (15) implies that the (non-negative) function
x→ ψ(x, 1) is integrable with respect to µ, and

∫

ψ(x, 1)dµ ≤ b.

Recall that length functions are smooth along Weil-Petersson geodesics. There-
fore by construction of the conjugacy Λ, for every q ∈ E ⊂ Q(S) the function
t → ψ(q, t) is continuously differentiable, with derivative f(q) at t = 0 depending
measurably on q. By invariance of the measure µ under the Teichmüller flow we
have

∫

fdµ =

∫

(

∫ 1

0

f(ΦtT q)dt)dµ(q) =

∫

ψ(q, 1)dµ(q) ≤ b.

On the other hand, for µ-almost every q the Radon-Nikodym derivative of µ0

with respect to Λ∗(µ) exists at Λ(q) and equals f(q). Therefore we have

µ0(QWP (S)) =

∫

fdµ ≤ b

as claimed.

As a consequence, the conjugacy Λ induces a map

Θ : MT (Q(S) → M)WP (QWP (S).

Namely, we showed so far that Λ defines a map Θ̂ from the set of ergodic ΦtT -
invariant Borel probability measure on Q(S) to a ΦtQ-invariant Borel measure on

QWP (S) whose total mass is at most b. The map Θ̂ does not depend on any choices
made and hence it is compatible with convex combinations. Thus it naturally
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extends to a map from MT (Q(S)) into the space of ΦtWP -invariant Borel measures
on QWP (S) of total mass at most b. We then define

Θ(µ) = Θ̂(µ)/Θ̂(µ)(QWP (S).

We claim that the map Θ is injective. Namely, by construction, if µ is an ergodic
ΦtT -invariant Borel probability measure onQ(S) and if q̃ ∈ Q1(S) is the lift of a typ-
ical point for µ with vertical and horizontal measured geodesic laminations q̃v, q̃h,
respectively, then there is a lift of a typical point for Θ(µ) which determines a biinfi-
nite Weil-Petersson geodesic with forward and backward ending measures [q̃v], [q̃h].
This Weil-Petersson geodesic is recurrent and hence by Theorem 1.3 of [BMM10]
and the fact that T (S) is a CAT(0)-space without flat strips contained in its open
dense subset T (S), such a recurrent geodesic is determined up to parametrization
by its projective ending measures. As the ΦtT -orbit of q̃ is determined by the pair
([q̃v], [q̃h]) as well, this means that the pairs of all ending measures of all geodesics
whose initial cotangents are typical for Θ(µ) determine both Θ(µ) and µ. In other
words, the restriction of the map Θ to the extreme points of MT (Q(S)) is injective,
and its image consists of extreme points of MWP (QWP (S)). By naturality of the

map Θ̂ with respect to convex combination, injectivity of Θ follows.

Next we show that h(Θ(µ)) ≥ h(µ)/b for every measure µ ∈ MT (Q(S)). For
this we use Rudolph’s theorem (see Section 11.4 in [CFS82]) and Abramov’s for-
mula. Namely, let ǫ > 0. Then there is a special representation of the flow ΦtT
on (E , µ) given by a Lebesgue space (M,ν), a measure preserving automorphism
H : (M,ν) → (M,ν) and a roof function ρ : M → [1 − ǫ, 1]. The flow ΦtT on E
is just the vertical flow on the space {(x, t) ∈ M × R | 0 ≤ t < ρ(x)}/ ∼ where
(x, ρ(x)) ∼ (Hx, 0) for all x. The measure µ is the product of ν with the Lebesgue
measure on R. In particular, since µ is a probability measure, the total mass of ν
is contained in the interval [1, 1

1−ǫ ].

Let h1 ≥ 0 be the entropy of the H-invariant measure ν. By Abramov’s formula,
the entropy h(µ) of µ equals h1/

∫

ρdν. Since ρ assumes values in [1− ǫ, 1] we have
∫

ρdν ∈ [1− ǫ, 1]. In particular, the entropy of ν is within h1ǫ of the entropy h(µ)
of µ.

The space (M,ν) can be thought of as a measurable section for the flow ΦtT . Via
the conjugacy Λ, it determines a measurable section for the flow ΦtWP . Let ρ̂ be
the corresponding first return time. Using again Abramov’s formula, the entropy
of Θ(µ) equals h1/

∫

ρ̂dν.

Now for each t ∈ [0, 1 − ǫ] the set ΦtTM is a measurable section for ΦtT as well
to which the above reasoning can be applied. Since t → ψ(x, t) is increasing and
non-negative we can estimate

∫

ρ̂dν ≤
1

1− ǫ

∫

M

∫ 1−ǫ

0

ψ(ΦtT x, 1)dtdν ≤
1

1− ǫ

∫

ψ(x, 1)dµ ≤
1

(1− ǫ)
b.

But ǫ > 0 was arbitrary and therefore h(Θ(µ)) ≥ h(µ)/b as claimed.

Finally we are left with showing that the map Θ is continuous with respect to
the weak∗-topology. For this it suffices to show that this holds true for the map Θ̂.
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As Θ̂ is natural with respect to convex combinations, standard properties of the
weak∗-topology, for this it is enough to show the following. Let (µi) ⊂ MT (Q(S))
be a sequence of ergodic measures converging to an ergodic measure µ. Then
Θ̂(µi) → Θ(µ).

To see that this is the case, note first that the locally finite Mod(S)-invariant
measures µ̂i on G(S) which are the disintegrations of the lifts µ̃i of the measures

µi to Q̃(S) converge weakly to the locally finite Mod(S)-invariant measure µ̂. Let
K ⊂ G(S) be any compact set consisting of typical points for µ̂ in the above sense.
In particular, K is contained in the support of µ̂. Moreover, we may assume that
µ̂(K ′) < µ̂(K) for every proper compact subset K ′ of K.

For j > 0 let Uj be an open relative compact neighborhood of K with Uj ⊃ Uj+1

and ∩jUj = K. Then µ(K) = limj→∞ µ(Uj). For each j we have

lim inf
i→∞

µ̂i(Uj) ≥ µ̂(K).

Moreover, as K is compact, we also have lim supi→∞ µ̂i(K) ≤ µ̂(K).

Since the measures µ̂i are Borel regular, for every j we can find a number i(j) > 0
with i(j + 1) > i(j) and a compact subset Kj ⊂ Uj consisting of typical points for
µ̂i(j) and such that µ̂i(j)(Kj) ≥ µ̂(K). By passing to a subsequence we may assume
that the compact sets Ki(j) converge as j → ∞ in the Hausdorff topology to a
compact set C. Then C ⊂ ∩jUj = K, on the other hand also µ̂(C) ≥ µ̂(K) and
hence C = K. In particular, for every γ ∈ K there is a sequence γj ∈ Ki(j) with
γj → γ.

A point γ ∈ K is determined by its pair of projective ending measures ([ξ+], [ξ−])-
If γj → γ then the projective ending measures ([ξ+j ], [ξ

−
j ]) of γj converge to the

projective ending measures of γ. By continuous dependence of Teichmüller geodesic
on its pair of ending lamination this implies the following. There is a compact set
B ⊂ Q̃(S) so that the cotangent line of each of the geodesics γj , γ intersects B.

Moreover, the map Λ̃ is defined on B.

By Theorem 6.6, the restriction of Λ̃ to ever compact subset of Ẽ is continuous.
But this just means that if γj ∈ Kj and if γj → γ then Λ̂(γj) → Λ̂(γ). By the

above discussion and the definition of the weak∗-topology, we have Θ̂(µj) → Θ̂(µ)
which is what we wanted to show. �

8. Invariant measures for the Weil Petersson flow

The main goal of this section is to show Theorem 2 from the introduction.

The proof relies on estimating the decay of length of an ending measure along an
orbit for ΦtWP which is typical for an invariant ergodic Borel probability measure
ν on QWP (S).

For a quadratic differential z̃ ∈ Q̃WP (S) denote by ζz̃ the maximal WP-geodesic
with initial velocity z̃. Call a point q ∈ QWP (S) birecurrent if it is contained
in its own α- and ω-limit set for the action of ΦtWP . Let ν be a ΦtWP -invariant
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ergodic Borel probability measure on QWP (S). Then a typical point q for ν is

birecurrent. A preimage q̃ of q in Q̃WP (S) defines a biinfinite WP-geodesic ζq̃.
This geodesic admits filling topological ending laminations λ+(q̃), λ−(q̃). Every
forward (or backward) ending measure, i.e. an ending measure for the ray ζq̃[0,∞)
(or for the ray ζq̃(−∞, 0]), is supported in λ+(q̃) (or in λ−(q̃)), but recurrence of
the orbit does not necessarily imply that such an ending measure is unique up to
scale [BMo14].

Our first goal is to establish that for a typical orbit for ν, an ending lamination is
uniquely ergodic. We begin with a length estimate for measured laminations along
a typical orbit for ν.

Let as before P : T ∗T (S) → T (S) be the canonical projection. Let z ∈ QWP (S)

and let z̃ ∈ Q̃WP (S) be a preimage of z. For a number u > 0 define a measured lam-
ination β to be u-admissible for z̃ if the length of β is decreasing along the segment
ζz̃[0, u]. This only depends on the projective class of the lamination. Moreover, it

is invariant under the action of Mod(S) on Q̃WP (S)× PML.

For the purpose of the next lemma, note that if z ∈ Q̃WP (S) is the initial velocity
of a biinfinite geodesic then for every R > 0 there is a compact neighborhood B
of z̃ in Q̃WP (S) so that for every y ∈ B the WP-geodesic with initial velocity y is
defined on [−R,R].

Lemma 8.1. Let q be a typical point for ν. Then there is a number T > 0, and
there is a compact neighborhood V of q with the following properties. Let z ∈ V
and let β ∈ ML be T -admissible for a preimage z̃ of z; then

log ℓβ(P z̃)− log ℓβ(PΦ
T
WP (z̃)) ≥ 10.

Proof. Let µ be an ending measure for the geodesic ζq̃ with initial velocity a lift
q̃ of q. Then the length of µ is strictly decreasing along ζq̃. Moreover, if ξ is a
measured lamination whose length strictly decreases along ζq̃ then ξ belongs to the
cone ∆ ⊂ ML of measured laminations whose support coincides with the support
of µ.

We argue by contradiction and we assume that the lemma does not hold. Then
there is a sequence ti → ∞, a sequence q̃i ⊂ Q̃WP (S) with q̃i → q̃, and for each
i there is a ti-admissible lamination ξi ∈ ML for q̃i so that log ℓξi(P q̃i) = 1 and
log ℓξi(PΦ

ti(q̃i)) ≥ −10. By compactness of PML and continuity of length, after
passing to a subsequence we may assume that the measured laminations ξi converge
as i→ ∞ to a measured lamination ξ with ℓξ(P q̃) = 1.

By continuity of length functions and convexity of length functions along WP-
geodesics, the length of ξ is decreasing along the geodesic ζq̃ (compare the proof of
Lemma 2.7 and Proposition 2.8 where such an argument is used for the first time
in this work). Thus ξ is contained in the cone ∆, in particular the length of ξ tends
to zero along ζq̃.

On the other hand, by the definition of admissibility, we have log ℓξi(PΦ
s(q̃i)) ≥

−10 for all s ∈ [0, ti] and hence by continuity, log ℓξ(ζq̃(s)) ≥ −10 for all s ≥ 0.
This is a contradiction which yields the lemma. �
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For a typical point q ∈ QWP (S) for ν and a preimage q̃ of q in Q̃WP (S) let as
above λ+(q̃) be the forward ending lamination of q̃. This is a topological lamination
which a priori may admit more than one transverse measure up to scale. For t > 0
and a transverse measure µ for λ+(q̃) let

α̃(q̃, t, µ) = log ℓµ(P q̃)− log ℓµ(PΦ
t
WP q̃).

This does not depend on the normalization of µ. The thus defined function is
invariant under the action of Mod(S) on Q̃WP (S)× PML. The cocycle equality

(16) α̃(q̃, s+ t, µ) = α̃(q̃, s, µ) + α̃(ΦsWP q̃, t, µ)

holds true.

Define

α̃(q̃, t) = min{α̃(q̃, t, µ) | µ}.

The function α̃ : Q̃WP (S) × R → R is invariant under the action of Mod(S) and
hence it descends to a function

α : QWP (S)× [0,∞) → [0,∞).

This function is clearly measurable, and equation (16) implies that

(17) α(z, s+ t) ≥ α(z, s) + α(ΦsWP z, t).

Thus by the subadditive ergodic theorem [Kr85], for ν-almost all z the limit

lim
t→∞

1

t
α(z, t) ∈ [0,∞]

exists, and its value σ is independent of z.

Lemma 8.2. σ > 0.

Proof. It suffices to assume that σ <∞. Let q ∈ QWP (S) be a typical point for ν
and let V be a compact neighborhood of q as in Lemma 8.1. Denote by ǫ > 0 the
ν-mass of V . Let moreover T > 0 be as in Lemma 8.1. Choose n > 0 sufficiently
large that the set

Z = {z | |
1

t
α(z, t)− σ| ≤ ǫ/4 for all t ≥ nT}

satisfies ν(Z) ≥ 1− ǫ/4. By the Birkhoff ergodic theorem, we may assume that for
z ∈ Z and all k > n we have

1

k

k−1
∑

i=0

χV (Φ
iT
WP z) ≥ 3ǫ/4

where χV denotes the characteristic function of V .

Now by the choice of Z, T, ǫ, the ΦiTWP -orbit (i ≥ 1) of a point z ∈ Z intersects
V in a frequency of at least 3ǫ/4. Since the function α is non-negative, equation
(17) and the choice of V implies that the logarithmic length decrease of any ending
measure along an orbit segment through a point in Z is at least 3ǫ/4. On the other
hand, by definition the minimum of this length decrease over all ending measures
is ǫ/4-close to σ whence the lemma. �
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Lemma 8.2 is used to relate a typical orbit for ν to an orbit for the Teichmüller
flow ΦtT on Q(S) which recurs to a compact set for arbitrarily large times. The
vertical geodesic lamination of a quadratic differential defining such an orbit is
known to be uniquely ergodic [M82], and we deduce that the same holds true for
the ending lamination of a typical point for ν.

Assume for the moment that for ν-almost all z the ending lamination λ+(z)
is uniquely ergodic. For simplicity denote again by λ+(z) a measured lamination
supported in λ+(z). We then can unambiguously define

β(z) = −
d

dt
log ℓλ+(z)(Φ

t
WP (z))|t=0.

The function z → β(z) is measurable and positive. We have

Proposition 8.3. Let ν be a ΦtWP -invariant ergodic Borel probability measure on
QWP (S).

(1) The ending lamination of ν-almost every q ∈ QWP (S) is uniquely ergodic.
(2) There is a ΦtWP -invariant subset Z of QWP (S) of full measure, and there

is a measurable conjugacy Ξ : Z → (Q(S),ΦtT ) into the Teichmüller flow.
(3) There is a measure µ ∈ MT (Q(S)) with Θ(µ) = ν if and only if

∫

βdν <∞.

Proof. The set of all projective transverse measures for a forward ending lamina-
tion of a typical point for ν is a simplex whose dimension is at most 3g − 3 +m.
Its vertices are precisely the ergodic projective transverse measures for the lami-
nation. (This is well known, but we were not able to locate the statement in this
form in the literature. The work [K73] shows that there are only finitely many
ergodic projective invariant measures for an interval exchange transformation, and
this implies finiteness of ergodic projective transverse measures for an orientable
geodesic lamination which is all we need in the sequel. The case of a non-orientable
measured laminations follows via passing to the orientation cover).

By ergodicity of the measure ν, the dimension of this simplex of projective
transverse measures is ν-almost everywhere constant. Similarly, for ν-almost every
z the backward ending lamination of z supports a simplex of transverse measures
whose dimension does not depend on z. We have to show that the dimension of
these simplices equals zero almost everywhere.

Let n+ ≥ 1, n− ≥ 1 be the number of vertices of the forward and backward sim-
plex, respectively, and let Z be a ΦtWP -invariant Borel set of full measure consisting
of points where these simplices are defined. There is an n = n+ · n−-sheeted cover
Zn of Z as follows. Each point in Zn corresponds to a triple (q, [ξ+], [ξ−]) where
q ∈ Z and where [ξ+] (or [ξ−]) is a vertex of the simplex of projective transverse
measures for the forward (or backward) ending lamination of q. The flow ΦtWP on
Z naturally lifts to a flow on Zn. This flow preserves a finite Borel measure ν̂ which
projects to ν. The measure ν̂ has at most n = n+ · n− ergodic components.

The preimage Z̃ of Z in Q̃WP (S) is a Mod(S)-invariant ΦtWP -invariant Borel

subset of Q̃WP (S). The covering Zn of Z induces a (formal) n+·n−-sheeted covering

Z̃n of Z̃. A point z̃ ∈ Z̃ is a triple (q̃, [ξ+], [ξ−]) which consists of a quadratic
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differential q̃ ∈ Q̃WP (S) and a choice of a pair ([ξ+], [ξ−]) of ergodic forward and
backward projective ending measures for the WP-geodesic determined by q̃. The
support of each of these measures fills S, and as in the proof of Lemma 6.5, the
supports of [ξ+], [ξ−] are distinct. Thus this pair of projective measured geodesic
laminations binds S and hence it determines a Teichmüller geodesic Ψ([ξ+], [ξ−]).

Let ξ+(z̃), ξ−(z̃) ∈ ML be the measured laminations whose projective classes
are determined by the triple z̃ and whose lengths on the surface P q̃ underlying the
quadratic differential z̃ equal one. Wirte i(ξ+(z̃), ξ−(z̃)) = a−2 where as before, i

is the intersection form. Let Ξ̃(z̃, [ξ+], [ξ−]) be the unit cotangent vector for the
geodesic Ψ([ξ+], [ξ−]) with the property that the vertical and horizontal measured

geodesic laminations of Ξ̃(z̃, [ξ+], [ξ−]) equal aξ+(z̃), aξ−(z̃).

By smoothness and strict convexity of length functions along Weil-Petersson
geodesics and by Lemma 8.2, the map t → Ξ̃(ΦtWP (q̃), [ξ+], [ξ−]) is a homeomor-
phism onto the cotangent line of the geodesic Ψ([ξ+], [ξ−]). This construction de-

fines a measurable map Ξ̃ : Z̃n → Q̃(S) which is equivariant under the action of the
mapping class group. Thus this map descends to a measurable map Ξ : Zn → Q(S)
which conjugates the flow on Zn into the Teichmüller flow.

Let K ⊂ Zn be a compact set of positive ν̂-measure so that the restriction of Ξ
to K is continuous. The image of K under the map Ξ is compact. The projection
of K to Z is a compact subset K0 of Z of positive measure. By ergodicity of ν, for
ν-almost every q ∈ K0 the ΦtWP -orbit of q recurs to K0 for arbitrarily large times.
As every point in K0 has n preimages in Zn, this means that there is a Borel subset
A of K with ν̂(A) > 0 which consists of points whose orbit under the flow on Zn
recurs to K for arbitrarily large times.

For z ∈ A the orbit of Ξ(z) under the Teichmüller flow ΦtT recurs to the compact
set Ξ(K) for arbitrarily large times. Therefore by Masur’s result [M82], for all z ∈ A
the vertical measured lamination of Ξ(z) is uniquely ergodic. But this vertical
measured lamination is the forward ending measure of the geodesic defined by a lift
of z. Thus for all z ∈ A the forward ending lamination for q is uniquely ergodic.
But A projects to a subset of Z of positive measure and hence by ergodicity of ν,
for almost all z ∈ QWP (S) the forward ending measure is uniquely ergodic. The
same argument applies to the backward ending measure. Together the first part
of the proposition follows, and the second part is an immediate consequence of the
first and the above construction.

The push-forward Ξ∗ν of ν under the map Ξ is a Borel probability measure on
Q(S) which is quasi-invariant under the flow ΦtT . To construct an invariant measure
for ΦtT we use again a special representation of the flow ΦtWP on Z given by a
Lebesgue space (M,χ), a measure preserving automorphism H : (M,χ) → (M,χ)
and a roof function ρ : M → [1 − ǫ, 1[. The flow ΦtWP is just the vertical flow on
the space {(x, t) ∈ M × R | 0 ≤ t < ρ(x)}/ ∼ where (x, ρ(x)) ∼ (Hx, 0) for all
x. Viewing M as a Borel section for the flow ΦtWP , we can map M with Ξ to a
Borel section for ΦtT . The image Ξ∗(χ) is a finite Borel measure which determines
a ΦtT -invariant locally finite Borel measure µ on Q(S).



50 URSULA HAMENSTÄDT

For x ∈M let f(x) be the length of the orbit segment ∪0≤t<ρ(x)Ξ(Φ
t
WP (x)). It

follows as in the proof of Theorem 7.1 that the measure µ is finite if and only if
∫

fdχ < ∞. Moreover, if this is the case then Θ(µ) = ν is immediate from our
construction.

We are left with showing that
∫

fdχ <∞ if and only if
∫

βdν <∞. To this end
observe that the restriction of the map Ξ to a flow line of the Weil-Petersson flow
is smooth. Namely, lengths functions are smooth along Weil-Petersson geodesics
and strictly convex, and by Lemma 8.2, the length of the forward ending measure
decays with exponential rate. Thus if ω(z, t) is the function defining the conjugacy
Ξ, i.e. if we have

Ξ(ΦtWP (z)) = Φ
ω(z,t)
T Ξ(z),

then ω can be differentiated in direction of the real parameter. Now using again the
explicit construction, the function β in part (3) of the proposition coincides with
the function

d

dt
(t→ ω(z, t))]|t=0 > 0

almost everywhere. Thus the measure µ is finite if and only if the function β is
integrable. The proposition follows. �

We conclude this section with showing that Proposition 8.3 is not a redundant.

Proposition 8.4. The map Θ is not surjective.

Proof. It suffices to construct a (not necessarily ergodic) Borel probability measure
ν such that

∫

βdν = ∞.

For this let ϕ be a pseudo-Anosov mapping class which admits an invariant train
track τ with the following properties. First we require that the transition matrix for
the carrying relation ϕ(τ) ≺ τ is positive. Second we require that there is a simple
closed curve c smoothly embedded in τ as a subgraph consisting of two branches,
one large branch b and one small branch.

Splitting ϕ(τ) at ϕ(b) results in a train track which is obtained from ϕ(τ) by a
single Dehn twist T (ϕ(c)) about ϕ(c). The train track T (ϕ(c))(ϕ(τ)) is carried by
ϕ(τ) and hence by τ , and the transition matrix T (ϕ(c))(ϕ(τ)) ≺ τ is positive.

As a consequence, the mapping class T (ϕ(c))◦ϕ is pseudo-Anosov and admits τ
as an invariant train track. Iteration of this construction shows that for each k > 0
the mapping class T (ϕ(c))k ◦ ϕ is pseudo-Anosov. Moreover, for a suitable chocie
of ϕ, the closed orbit for the Teichmüller flow in Q(S) which defines the conjugacy
class of T (ϕ(c))kϕ contains a subarc of fixed positive length in a fixed compact
subset K of Q(S).

Let ℓ(k) be the length of the periodic orbit for the Teichmüller flow which defines
the conjugacy class of T (ϕ(c))k ◦ ϕ. Then ℓ(k) → ∞ (k → ∞).

As Teichmüller space with the Weil-Petersson metric is quasi-isometric to the
pants graph [B03], the periodic orbits for ΦtWP corresponding to the conjugacy
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classes of T (ϕ(c))k ◦ϕ have uniformly bounded length, say their length is bounded
by n > 0.

Choose a sequence k(i) → ∞ so that
∑

i
1
i2 ℓ(k(i)) = ∞. Let µ(i) be the (unnor-

malized) ΦtWP -invariant Borel measure supported on the periodic orbit in QWP (S)
which defines the conjugacy class of T (ϕ(c))k ◦ ϕ. Define a ΦtWP -invariant Borel
measure ν on QWP (S) by

ν =
∑

i

1

i2
µ(k(i)).

This measure is finite and can be normalized to a probability measure.

The conjugacy Ξ constructed in the proof of Proposition 8.3 maps the measure
ν to a weighted sum of invariant measures on the periodic orbits for ΦtT . As
∑

i
1
i2 ℓ(k(i)) = ∞, this measure on Q(S) is infinite. Thus Θ is not surjective. �

Remark: As the space MT (Q(S)) is not compact, Proposition 8.4 does not
imply that there is an ergodic Borel probability measure for ΦtWP not contained in
the image of Θ. We do now know whether such a measure exists.

9. The Lebesgue Liouville measure

Recall from Section 7 the definition of the map

Θ : MT (Q(S)) → MWP (QWP (S)).

The goal of this section is to show

Proposition 9.1. The Lebesgue Liouville measure of the Weil-Petersson metric is
contained in the image of the map Θ.

Proof. Let ν be the Lebesgue Liouville measure of the Weil-Petersson metric. Recall
from Section 8 the definition of the function β, defined on a Borel subset of QWP (S)
which is of full measure for every ΦtWP -invariant Borel probability measure. By the
third part of Proposition 8.3, we have to show that

∫

βdν <∞.

For q̃ ∈ Q̃WP (S) let ζq̃ be the WP-geodesic with initial velocity q̃. Recall that

for every q̃ ∈ Q̃WP (S) and every measured lamination σ ∈ ML the derivative

d

dt
log ℓσ(ζq̃(t))|t=0

is defined and depends continuously on q̃ and σ. Moreover, this derivative does not
depend on the normalization of σ and hence this defines a continuous function on
Q̃WP (S)× PML which is invariant under the action of the mapping class group.

The function f̃ : Q̃WP (S) → (0,∞) defined by

f̃(q̃) = max{
d

dt
log ℓσ(ζq̃(t))|t=0 | σ ∈ ML}

is Mod(S)-invariant and continuous and hence it descends to a continuous function
f on QWP (S). By definition of the function β, if µ is a ΦtWP - invariant Borel
probability measure on QWP (S) with

∫

fdµ <∞ then
∫

βdµ <∞.
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The WP-metric on moduli space M(S) = T (S)/Mod(S) is incomplete. Its

completion coincides with the Deligne Mumford compactification M(S) of M(S).
Let

ρ : M(S) → (0,∞)

be the function which associates to a point x the distance from the boundary
∂M(S) = M(S) − M(S). This boundary consists of surfaces with nodes, i.e.
surfaces where each component of some non-trivial simple multicurve has been
pinched to a point.

The boundary ∂M(S) of M(S) is divided into strata according to the number
and types of nodes. For a stratum Σ defined by the vanishing of the geodesic-length
sum ℓ = ℓ1 + · · ·+ ℓn, the distance to the stratum is given locally as

dWP (p,Σ) = (2πℓ)1/2 +O(ℓ2)

(Corollary 21 of [W03]). In particular, the distance of a point x ∈ M(S) to the
boundary ∂M(S) equals (2πℓα)

1/2 +O(ℓ2α) where α is a systole of x.

The WP-gradients of the geodesic-length functions also have general expansions
[W87]. For a curve α of length at most ǫ we have

‖gradℓα‖ =

√

2

π
ℓ1/2α +O(ℓ3/2α )

and hence
‖d log ℓα‖ ≍ ℓ−1/2

α .

where as before, the symbol ≍ relating two positive functions means that their
quotient is bounded from above and below by a universal positive constant. The
sharpest infinitesimal length decrease of any normalized measured lamination along
any Teichmüller geodesic issuing from x is the length decrease of a systole along a
shortest path connecting x to ∂M(S) [W87, W08].

Let P : QWP (S) → M(S) be the canonical projection. For sufficiently small
ρ(Pq) and a systole α of Pq we obtain

(18) f(q) ≍ ‖d log ℓα(Pq)‖ ≍ ρ−1(Pq).

Thus to show that the function f is integrable with respect to ν it suffices to
show that there is a number δ > 0 such that for sufficiently small r the WP-volume
of the set ρ−1(0, r) is at most r1+δ (compare also [BMW12]).

That this volume is O(r4) is immediate from Wolpert’s asymptotic expansion
of the Weil-Petersson metric near ∂M(S) (as explained on p.889 of [BMW12]).
Alternatively, we can use Wolpert’s formula for the Weil-Petersson Kähler form ω
in Fenchel Nielsen coordinates for a Bers decomposition by simple closed curves αi.
This expression equals

ω =
∑

i

dℓαi
∧ dθαi

.

The Fenchel Nielsen twist θαi
is the unit speed twist along the simple closed

curve αi, and its period equals ℓαi
. Replacing the length-twist coordinates about a

systole α by distance-angle coordinates (ρ, κ) (ρ ≍ ℓ−1
α , κ ∈ [0, 2π)) multiplies the
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twist speed by 2π times the length of α which is O(ρ2). Thus in distance-angle
coordinates, the volume form is bounded from above by a constant multiple of ρ3.
This gives

vol{ρ ≤ r} ≍

∫ r

0

r3ds =
1

4
r4.

Together with equation (18), we conclude that the function f is integrable with
respect to the Lebesgue Liouville measure ν. This completes the proof of the
proposition. �

To summarize, there is a ΦtT -invariant Borel probability measure µ on Q(S) such
that Θ(µ) = ν. We do not have a description of the measure µ, but we conjecture
that in the case of the once punctured torus, this measure is the Lebesgue measure
on Q(S) (this makes sense even though we assumed throughout the paper that the
surface S is non-exceptional).

We conclude this work with some remarks on absolute continuity and invariant
measure classes on PML.

The mapping class group Mod(S) acts diagonally on PML × PML−∆. The
space of oriented geodesic G(S) for the Teichmüller metric is the invariant subset
of PML × PML − ∆ of all pairs (µ, ν) which bind S. Any ΦtT -invariant Borel

probability measure µ on Q(S) lifts to a measure on Q̃(S) which disintegrates to a
Mod(S)-invariant locally finite Borel measure µ̂ on G(S). By Masur’s result [M82],
the measure µ̂ gives full mass to the set of pairs of uniquely ergodic projective
measured laminations.

The space GWP (S) of biinfinite oriented geodesics for the Weil-Petersson metric
does not have such an easy description. However, the main result of this paper
shows that there is such a description for a Mod(S)-invariant subset of GWP (S)
whose unit tangent lines project to a subset of QWP (S) of full mass for every
ΦtWP -invariant Borel probability measure.

To be more precise, call a point q ∈ QWP (S) typical if q has the following two
properties.

• Let q̃ ∈ Q̃(S) be a preimage of q. Then q̃ determines a biinfinite geodesic
whose ending measures are uniquely ergodic.

• q is contained in its own α-and ω limit set.

The following is immediate from Proposition 8.3 and the Poincaré recurrence
theorem.

Lemma 9.2. The set Z ⊂ QWP (S) of typical points has full measure with respect
to every invariant Borel probability measure.

By Lemma 9.2, a ΦtWP -invariant Borel probability measure µ on QWP (S) de-
termines a locally finite Mod(S)-invariant Borel measure µ̂ on PML×PML−∆
which gives full mass to the set of pairs of uniquely ergodic projective measured
laminations. The measure µ is ergodic if and only if µ̂ is ergodic under the action
of Mod(S).
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Call an invariant Borel probability measure µ on QWP (S) absolutely continuous
with respect to the stable foliation if the following holds true. Let µ̂ be the induced
invariant measure on PML × PML − ∆. Let µ̂1 be a conditional measure on a
leaf PML× {[β]} of the product foliation; then for a Borel set A ⊂ PML× {[β]}
we have µ̂1(A) = 0 if and only if µ̂(A × PML) = 0. Similarly there is a notion of
absolute continuity with respect to the unstable foliation.

The classical Hopf argument (as explained in Section III.3 of [Mn87]) implies

Proposition 9.3. If µ is absolutely continuous with respect to the stable and un-
stable foliation then µ is ergodic.

Examples of absolutely continuous measures are the invariant Lebesgue measure
for the Teichmüller flow [M82, V86] and the Lebesgue Liouville measure for the
Weil-Petersson flow [BMW12].
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