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ADDENDUM TO NEW EXAMPLES OF MAXIMAL SURFACES

URSULA HAMENSTÄDT

Consider the Teichmüller space Tg,3 of hyperbolic surfaces of genus g ≥ 2 with
three punctures. The systole function on Tg,3 associates to a surface S ∈ Tg,3 its
systole, i.e. the length of its shortest closed geodesic. A surface S is called maximal

if the systole function has a local maximum at S.

Let S ∈ Tg,3 and let γ1, . . . , γk be the systoles of S, i.e. the shortest closed
geodesics on S. Each of these systoles is a simple closed curve. Denote by ℓγi

the length function of γi, viewed as a function on Tg,3. Following Theorem 1.2 of
Schmutz [S93], the surface S is maximal if and only if the following two conditions
hold true.

(1) The differentials of the k length functions dℓγi
span the cotangent space of

Tg,3 at S.
(2) The function X ∈ Tg,3 → min{ℓγi

(X) | 1 ≤ i ≤ k} has a local maximum at
S.

Corollary 5.5 of [H01] states that three explicit triangle surfaces S(7; 3) in genus
3, S(13; 4) in genus 6 and S(21, 5) in genus 10 are maximal.

The proof of this result is based on Corollary 5.3 of that article which shows that
indeed, property (1) above is fulfilled for these surfaces.

The proof of property (2) is erroneously omitted and is provided here. We use
the following

Lemma 0.1. Let f1, . . . , fk be smooth functions on R
n. Assume that fi(0) = a > 0

independent of i and that moreover the convex hull of the differentials dfi(0) of fi
at 0 contains 0 in its interior. Then the function x → min{fi(x) | i ≤ k} has a

local maximum at 0.

Proof. The condition in the lemma is equivalent to stating that for every vector
0 6= X ∈ T0R

n there exists some i ≤ k such that dfi(X) < 0. As a consequence,
min{fi(x) | i ≤ k} locally strictly decreases along any ray issuing from 0. The
statement of the lemma now follows from continuity. �

Now let p ≥ 5 be an odd number and let Λ be the linear isometry of Rp defined
in canonical coordinates by Λ(x1, . . . , xp) = (x2, . . . , xp, x1), and let Λ3 = Λ×Λ×Λ
be the diagonal isometry of R3p. Let furthermore τ by the linear isometry of R3p

which cyclicly permutes the factors Rp in the direct decomposition of R3p. Denote
by G be the subgroup of the isometry group of R3g generated by Λ and τ .

.
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The eigenvalues of Λ are the p-th roots of unity. The eigenspace for the eigenvalue
1 is spanned by (1, . . . , 1), and the other generalized eigenspaces are of dimension 2.
Let Z be the eigenspace of Λ3 for the eigenvalue one, and let Z⊥ be its orthogonal
complement. The space Z⊥ decomposes into g = (p − 1)/2 invariant subspaces of
dimension 6 each corresponding to the p−1 distinct eigenvalues of Λ different from
one. The group G acts on the dual (R3p)∗ of R3p as a group of isometries for the
obvious invariant inner product.

Lemma 0.2. Let f1, . . . , fk be a G-invariant set of real linear functional on R
3p

whose differentials span Z⊥. Then the convex hull of the restriction of fi to Z⊥

contains 0 in its interior.

Proof. Let us assume to the contrary that there is a closed halfspace in (Z⊥)∗ such
that dfi ∈ H for all i. Denote by H the intersection of all such half-spaces. By
invariance of the set dfi under the group G, the closed convex set H ⊂ (Z⊥)∗ is
invariant under G, furthermore its interior is not empty.

Let D ⊂ S3p−7 be the intersection of H with the unit sphere in (Z⊥)∗. Then
D is a compact convex G-invariant subset of S3p−7 with non-empty interior which
is contained in a hemisphere. As a hemisphere in S3p−7 is convex for the round
metric, the set D has a unique center of mass v. Now G acts as a group of isometries
on (Z⊥)∗ preserving D and hence G preserves the center of mass v. Then v is an
eigenvector for the generators of G for the eigenvalue one which is a contradiction.
The lemma follows. �

The isometry group of each of the surfaces S = S(7; 3), S(13; 4), S(21; 7) contains
a subgroup G of the above form, and by Lemma 5.1 of [H01] there is a natural G-
equivariant linear isomorphism of the tangent space of Tg,3 at each of these three
surfaces onto the vector space Z⊥, where this tangent space is viewed as a G-space.
The set of systoles for S is G-invariant, and by Corollary 5.3 of [H01], their length
functions satisfy the assumptions in Lemma 0.2. An application of Lemma 0.1 then
shows that indeed, the surfaces S(7; 3), S(13; 4), S(21; 7) have property (2) above
and are maximal.
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