GEOMETRIC PROPERTIES OF THE MAPPING CLASS GROUP

URSULA HAMENSTADT

1. INTRODUCTION

Consider a compact oriented surface S of genus g > 0 from which m > 0 points,
so-called punctures, have been deleted. The mapping class group Mgy, of S is
the space of isotopy classes of orientation preserving homeomorphisms of S. It is
a subgroup of index 2 in the extended mapping class group Mgi,m defined as the
group of isotopy classes of all homeomorphisms of S.

The extended mapping class group of the two-sphere S? is the group Z, generated
by the orientation-reversing involution z — —z (where we identify S? with the set
{z € B | ||z|]]| = 1}). In the case that S is a closed surface different from S?
it was shown by Dehn, Nielsen and Baer that the extended mapping class group
coincides with the group of outer automorphisms of the fundamental group 1 (S)
of S (see Section 2.9 of [I] for details and references). In particular, the mapping
class group of the two-torus equals the group SL(2,Z). Similarly, the extended
mapping class group of a surface S with punctures coincides with the group of
outer automorphisms of m; (S) which preserve the peripheral structure, i.e. the set
of conjugacy classes of elements of 71 (S) which can be represented by simple closed
curves homotopic into a puncture. Thus the mapping class group M ; of the once
punctured torus coincides with SL(2,Z), and the mapping class group Mg 4 of the
four punctured sphere has a subgroup of finite index isomorphic to SL(2,7Z). We
therefore only consider non-exceptional surfaces, i.e. we restrict to the case that
3g—3+m > 2.

The mapping class groups have been intensively studied in the past. Many of
the most important results known to date are described in the beautiful survey of
Ivanov [I] which also contains an extensive list of references. The goal of this note
is to present open problems about the mapping class groups of geometric nature.
Our presentation includes the discussion of geometric results on the mapping class
groups which either were obtained after the appearance of Ivanov’s survey or can
be understood with the present knowledge in a more consistent and unified way.

Our point of view will be the one of geometric group theory. This is possible
because the mapping class group M, n, is finitely generated (it is even finitely
presented, see Section 4.3 of [I]). A finite symmetric set of generators G for My n,
defines a word norm || || on Mg, where ||g|| equals the smallest length of a word
in the generators G which represents g. This word norm in turn induces a distance
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function on My ,, which is invariant under the left action of Mg, on itself by
defining d(g, h) = ||g~1h||. The distance function depends on the choice of G, but
its large-scale properties are independent of this choice. Namely, changing the set
of generators changes the metric d to an equivalent metric d’ which means that the
identity (Mg m,d) = (Mg m,d') is a bilipschitz map.

A basic idea of geometric group theory is to relate geometric properties of a
finitely generated group I to global group theoretic properties of I'. A fundamental
and striking example for such an interplay between geometry and group theory
is the following celebrated theorem of Gromov [G]. Define the growth function of
a finitely generated group I' as follows. For R > 0, let m(R) be the number of
elements in I" whose distance to the identity element with respect to some fixed
word norm is at most R. The group is called of polynomial growth if there is some
d > 0 such that m(R) < dR? for all R. Note that this property is independent of
the choice of generators. Gromov shows that a group is of polynomial growth if
and only if it is virtually nilpotent, i.e. if it contains a nilpotent subgroup of finite
index.

On the other hand, a group I' which acts on a geodesic metric space X as a
group of isometries inherits from X large-scale geometric properties provided that
the action satisfies some discreteness assumptions. The most elementary result
along this line is the theorem of Svarc and Milnor (see Chapter 1.8 in [BH]) which
can be stated as follows. Assume that a countable group I' acts as a group of
isometries on a proper geodesic metric space (X,d). If the action is proper and
cocompact then I' is finitely generated, and for any x € X the orbit map g € I' —
gz € X is a quasi-isometry. This means that if we denote by dr any distance
on I' defined by a finite generating set, then there is a number ¢ > 0 such that
dr(g,h)/c—c < d(gz,hz) < cdr(g,h) +cfor all g,h € T.

There are two natural metric graphs on which the mapping class group M, p,
acts by isometries. These graphs are the so-called curve compler (or, rather, its
one-skeleton) and the train track complex. In Chapter 3 we give a description of
the curve complex and its most relevant geometric properties. In Chapter 4 we
discuss the action of Mg ,, on the curve complex and some of its consequences for
the structure of M ,,. In Chapter 5 we introduce the complex of train tracks and
show how it can be used to study Mg .. In Chapter 2 we collect those properties
of train tracks and geodesic laminations which are important for the later chapters.
Chapters 3-5 also contain a collection of open problems.

2. GEODESIC LAMINATIONS AND TRAIN TRACKS

A geodesic lamination for a complete hyperbolic structure of finite volume on S
is a compact subset of S which is foliated into simple geodesics. Particular geodesic
laminations are simple closed geodesics, i.e. laminations which consist of a single
leaf. A geodesic lamination A is called minimal if each of its half-leaves is dense
in A. Thus a simple closed geodesic is a minimal geodesic lamination. A minimal
geodesic lamination with more than one leaf has uncountably many leaves. Every
geodesic lamination A is a disjoint union of finitely many minimal components and
a finite number of non-compact isolated leaves. Each of the isolated leaves of A
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either is an isolated closed geodesic and hence a minimal component, or it spirals
about one or two minimal components ([Bol], Theorem 4.2.8 of [CEG], [O]).

A geodesic lamination A is mazimal if all its complementary components are ideal
triangles or once punctured monogons. A geodesic lamination is called complete
if it is maximal and can be approximated in the Hausdorff topology for compact
subsets of S by simple closed geodesics. Every minimal geodesic lamination A is
a sublamination of a complete geodesic lamination [H1], i.e. there is a complete
geodesic lamination which contains A as a closed subset. In particular, every simple
closed geodesic ¢ on S is a sublamination of a complete geodesic lamination. Such a
lamination can be constructed as follows. Let P be a geodesic pants decomposition
for S containing c; this means that P consists of a collection of 3g — 3 + m simple
closed pairwise disjoint geodesics, and ¢ is one of these. Then S — P consists of
2g — 2+ m connected components, and each of these components is a pairs of pants,
i.e. an oriented surface homeomorphic to a thrice punctured sphere. The metric
completion of each such pair of pants is a bordered surface with one, two or three
boundary circles depending on the number of punctures of S which it contains. For
each such pair of pants Sy choose a maximal collection of simple disjoint geodesics
embedded in Sy which spiral about the boundary circles of its metric completion
So. We also require that for every pair ¢, d of boundary components of Sy there is
a geodesic from the collection which spirals in one direction about ¢, in the other
direction about d. In particular, there is at least one geodesic spiraling from each
side of a curve from the collection P. We require that the spiraling directions from
both sides of such a pants curve are opposite. The resulting lamination is then
complete [HI1].

A measured geodesic lamination on S is a geodesic lamination A together with a
translation invariant transverse measure supported in A. Here a transverse measure
for A assigns to every smooth arc ¢ on S with endpoints in the complement of A and
which intersects A transversely a measure on ¢ supported in ¢ N A. These measures
transform in the natural way under homotopies of ¢ by smooth arcs transverse to A
which move the endpoints of the arc ¢ within fixed complementary components. The
support of the measure is the smallest sublamination v of A such that the measure
on any arc ¢ which does not intersect v is trivial. This support is necessarily a
union of minimal components of A. As an example, every simple closed geodesic
v naturally carries a transverse counting measure which associates to an arc ¢ as
above the sum of the Dirac masses at the intersection points between ¢ and .
If p is any transverse measure for A, then for every a > 0 the same is true for
ap and hence the group (0,00) of positive reals naturally acts on the space ML
of measured geodesic laminations. The space ML carries a natural topology, the
so-called weak*-topology, which locally restricts to the usual weak*-topology for
measures on transverse arcs. The action of (0, 00) is continuous with respect to the
weak*-topology. The projectivization of ML — {0} is the space PML of projective
measured laminations on S. Equipped with the quotient of the weak*-topology,
PML is homeomorphic to a sphere of dimension 6g — 7 + 2m; in particular, PML
is compact (for all this, see [FLP] and [PH], in particular Theorem 3.1.4).

The intersection number i(vy,d) between two simple closed curves v,d € C(S)
equals the minimal number of intersection points between representatives of the
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free homotopy classes of ,d. This intersection number extends bilinearly to a
continuous pairing for measured geodesic laminations on S.

A train track on the surface S is an embedded 1-complex 7 C S whose edges
(called branches) are smooth arcs with well-defined tangent vectors at the end-
points. At any vertex (called a switch) the incident edges are mutually tangent.
Through each switch there is a path of class C* which is embedded in 7 and con-
tains the switch in its interior. In particular, the branches which are incident on
a fixed switch are divided into “incoming” and “outgoing” branches according to
their inward pointing tangent at the switch. Each closed curve component of 7 has
a unique bivalent switch, and all other switches are at least trivalent. The comple-
mentary regions of the train track have negative Euler characteristic, which means
that they are different from discs with 0, 1 or 2 cusps at the boundary and different
from annuli and once-punctured discs with no cusps at the boundary. We always
identify train tracks which are isotopic. A detailed account on train tracks can be
found in [PH] and [M2].

A train track is called generic if all switches are at most trivalent. The train
track 7 is called transversely recurrent if every branch b of 7 is intersected by an
embedded simple closed curve ¢ = ¢(b) C S which intersects 7 transversely and is
such that S —7—c does not contain an embedded bigon, i.e. a disc with two corners
at the boundary. In this case we say that c hits 7 efficiently.

A geodesic lamination or a train track A is carried by a transversely recurrent
train track 7 if there is a map F' : S — S of class C' which is isotopic to the identity
and maps A to 7 in such a way that the restriction of its differential dF' to every
tangent line of X is non-singular. Note that this makes sense since a train track has
a tangent line everywhere. A train track 7 is called complete if it is generic and
transversely recurrent and if it carries a complete geodesic lamination [H1].

If ¢ is a simple closed curve carried by 7 with carrying map F' : ¢ — 7 then
¢ defines a counting measure p, on 7. This counting measure is the non-negative
weight function on the branches of 7 which associates to an open branch b of 7 the
number of connected components of F~1(b). A counting measure is an example for
a transverse measure on T which is defined to be a nonnegative weight function p
on the branches of 7 satisfying the switch condition: For every switch s of 7, the
sum of the weights over all incoming branches at s is required to coincide with the
sum of the weights over all outgoing branches at s. The set V(1) of all transverse
measures on 7 is a closed convex cone in a linear space and hence topologically it
is a closed cell. For every transverse measure y on 7 there is a measured geodesic
lamination A and a carrying map F' : A — 7 such that for every branch b of 7,
the weight u(b) is just the transverse measure of a compact arc transverse to A
which is mapped by F' to a single point in the interior of b. A train track is called
recurrent if it admits a transverse measure which is positive on every branch. For
every recurrent train track 7, measures which are positive on every branch define
the interior of the convex cone V(7). A complete train track 7 is recurrent [H1].
An arbitrary train track which is both recurrent and transversely recurrent is called
birecurrent.
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A half-branch b in a generic train track 7 incident on a switch v is called large
if the switch v is trivalent and if every arc p : (—¢,€) — 7 of class C' which passes
through v meets the interior of b. A branch b in 7 is called large if each of its two
half-branches is large; in this case b is necessarily incident on two distinct switches
(for all this, see [PH]).

There is a simple way to modify a complete train track 7 to another complete
train track. Namely, if e is a large branch of 7 then we can perform a right or left
split of T at e as shown in Figure A below. The split 7’ of a train track 7 is carried
by 7. If 7 is complete and if the complete geodesic lamination A is carried by 7,
then for every large branch e of 7 there is a unique choice of a right or left split of
T at e with the property that the split track 7' carries A\, and 7' is complete. In
particular, a complete train track 7 can always be split at any large branch e to a
complete train track 7'; however there may be a choice of a right or left split at e
such that the resulting track is not complete any more (compare p.120 in [PH]).

Figure A right split
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In the sequel we denote by 7T the collection of all isotopy classes of complete
train tracks on S. A sequence (7;); C TT of complete train tracks is called a
splitting sequence if 7;41 can be obtained from 7; by a single split at some large
branch e. Note that in this case for each ¢ the train track 7;41 is carried by 7;.

3. THE COMPLEX OF CURVES

In [Ha], Harvey defined the complex of curves C(S) for S. The vertices of this
complex are free homotopy classes of essential simple closed curves on S, i.e. simple
closed curves which are not contractible nor homotopic into a puncture. For every
fixed choice of a complete hyperbolic metric on S of finite volume, every such
free homotopy class can be represented by a unique simple closed geodesic. The
simplices in C(S) are spanned by collections of such curves which can be realized
disjointly and hence the dimension of C(S) equals 3g — 3 + m — 1 (recall that
39 — 3 +m is the number of curves in a pants decomposition of S). In the sequel we
restrict our attention to the one-skeleton of C(S) which we denote again by C(S)
by abuse of notation. Since 3g — 3 +m > 2 by assumption, C(S) is a nontrivial
graph which moreover is connected [Ha]. However, this graph is locally infinite.
Namely, for every simple closed curve a on S the surface S — a which we obtain
by cutting S open along a contains at least one connected component which is
different from a thrice punctured sphere, and such a component contains infinitely
many distinct free homotopy classes of simple closed curves which viewed as curves
in S are disjoint from .
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Providing each edge in C(S) with the standard euclidean metric of diameter 1
equips the complex of curves with the structure of a geodesic metric space. Since
C(S) is not locally finite, this metric space (C(S),d) is not locally compact. Nev-
ertheless, its geometry can be understood quite explicitly. Namely, for some ¢ > 0
a geodesic metric space is called d-hyperbolic in the sense of Gromov if it satisfies
the d-thin triangle condition: For every geodesic triangle with sides a, b, ¢ the side
¢ is contained in the §-neighborhood of a Ub. The following important result is due
to Masur and Minsky [MM1] (see also [B1] and [H4] for alternate proofs).

Theorem 3.1 [MM1]: The complex of curves is hyperbolic.

For some ¢ > 1, a g-quasi-geodesic in C(S) is a curve ¢ : [a,b] — C(S) which
satisfies

d(c(s),c(t))/q —q <|s—t| < qd(c(s),c(t)) +q for alls,t € [a,b].

Note that a quasi-geodesic does not have to be continuous. Call a curve ¢ : [0, m] —
C(S) an unparametrized q-quasigeodesic if there is some p > 0 and a homeomor-
phism p : [0, p] — [0, m] such that the curve cop : [0,p] — C(S) is a g-quasi-geodesic.
In a hyperbolic geodesic metric space, every ¢g-quasi-geodesic is contained in a tubu-
lar neighborhood of fixed radius about any geodesic joining the same endpoints, so
the 0-thin triangle condition also holds for triangles whose sides are uniform un-
parametrized quasi-geodesics (Theorem 1.7 in Chapter IIL.H of [BH]). Moreover,
to understand the coarse geometric structure of C(S) it is enough to identify for a
fixed ¢ > 1 a collection of unparametrized g-quasi-geodesics connecting any pair of
points in C(S).

To obtain such a system of curves we define a map from the set 77T of complete
train tracks on S into C(S). Call a transverse measure p on a birecurrent train
track 7 a werter cycle if p spans an extreme ray in the convex cone V(1) of all
transverse measures on 7. Up to scaling, every vertex cycle p is a counting measure
of a simple closed curve ¢ which is carried by 7 (p. 115 of [MM1]). A simple closed
curve which is carried by 7, with carrying map F : ¢ — 7, defines a vertex cycle on
7 if and only if F(c) passes through every branch of 7 at most twice, with different
orientation (Lemma 2.2 of [H2]). Thus if ¢ is a vertex cycle for 7 then its counting
measure p. satisfies p.(b) < 2 for every branch b of 7.

In the sequel we mean by a vertex cycle of a complete train track 7 an integral
transverse measure on 7 which is the counting measure of a simple closed curve
¢ on S carried by 7 and which spans an extreme ray of V(7); we also use the
notion vertex cycle for the simple closed curve ¢. Since the number of branches of
a complete train track on S only depends on the topological type of S, the number
of vertex cycles for a complete train track on S is bounded by a universal constant
(see [MM1] and [H2]). Moreover, there is a number Dy > 0 with the property that
for every train track 7 € 7T the distance in C(S) between any two vertex cycles of
7 is at most Dy (see [MM1] and the discussion following Corollary 2.3 in [H2]).

Define a map ® : 7T — C(S) by assigning to a train track 7 € TT a vertex
cycle ®(7) for 7. By our above discussion, for any two choices @, ®’ of such a map



GEOMETRIC PROPERTIES OF THE MAPPING CLASS GROUP 7

we have d(®(7),®'(7)) < Dq for all 7 € TT. The following result is due to Masur
and Minsky ([MM3], see also [H2] for an alternate proof).

Theorem 3.2 [MM3]: There is a number ¢ > 0 such that the image under ®
of an arbitrary splitting sequence in TT is an unparametrized q-quasi-geodesic.

Theorem 3.2 can be used to construct for any pair «, S of points in C(S) an
unparametrized g-quasi-geodesic connecting a to . Namely, for a given a € C(S)
choose a pants decomposition P containing . Then every 8 € C(S) is uniquely
determined by the 3g — 3 + m-tuple of intersection numbers between  and the
pants curves of P and a 3g — 3 + m-tuple of twist parameters with respect to a fixed
system of spanning arcs. Such a system of spanning arcs consists of a choice of a
point on each component of P and a maximal collection of disjoint simple pairwise
not mutually homotopic arcs each embedded in a pair of pants and with endpoints
at the distinguished points on the components of P (see [FLP]). Using the pants
decomposition and the spanning arcs we can construct explicitly a complete train
track 7 which admits a as a vertex cycle and carries § (such a construction can be
found in Section 2.6 of [PH]); this train track is then the initial point of a splitting
sequence which connects a train track admitting a as a vertex cycle to a train
track admitting 8 as a vertex cycle. For a suitable choice of the map ®, the image
under @ of this splitting sequence is an unparametrized g-quasi-geodesic in C(S)
connecting a to f.

However, it is also possible to construct explicitly for each pair of points «, 8 €
C(S) a geodesic connecting a to B. Namely, building on the results of [MM2],
Shackleton recently proved [S].

Theorem 3.3 [S]: There is an algorithm which takes as input two curves a, 3 €
C(S) and returns a geodesic between o and 3.

A hyperbolic geodesic metric space X admits a Gromov boundary which is de-
fined as follows. Fix a point p € X and for two points z,y € X define the Gromov
product (z,y), = 3(d(z,p) +d(y,p) —d(z,y)). Call a sequence (z;) C X admissible
if (z5,2;)p — 00 (i,j = o). We define two admissible sequences (;), (y;) C X to
be equivalent if (z;,y;), — o0. Since X is hyperbolic, this defines indeed an equiv-
alence relation (see the discussion on p. 431 of [BH]). The Gromov boundary 0X
of X is the set of equivalence classes of admissible sequences (z;) C X. It carries a
natural Hausdorff topology. For the complex of curves, the Gromov boundary was
determined by Klarreich [K] (see also [H2]).

For the formulation of Klarreich’s result, we say that a geodesic lamination A
fills up S if every simple closed geodesic on S intersects A transversely, i.e. if
every complementary component of A is an ideal polygon or a once punctured ideal
polygon with geodesic boundary. For any geodesic lamination A which fills up S,
the number of geodesic laminations which contain A as a sublamination is bounded
by a universal constant only depending on the topological type of the surface S.
Namely, each such lamination y can be obtained from A by successively subdividing
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complementary components P of A which are different from an ideal triangle or a
once punctured monogon by adding a simple geodesic line which either connects
two non-adjacent cusps of P or goes around a puncture of S. Note that every leaf
of p which is not contained in ) is necessarily isolated in p.

The space L of geodesic laminations on S can be equipped with the Hausdorff
topology for compact subsets of S. With respect to this topology, £ is compact and
metrizable. We say that a sequence (A;) C L converges in the coarse Hausdorff
topology to a minimal lamination g which fills up S if every accumulation point
of (\;) with respect to the Hausdorff topology contains u as a sublamination. We
equip the space B of minimal geodesic laminations which fill up S with the following
topology. A set A C B is closed if and only if for every sequence (\;) C A which
converges in the coarse Hausdorff topology to a lamination A € B we have A € A.
We call this topology on B the coarse Hausdorff topology. Using this terminology,
Klarreich’s result [K] can be formulated as follows.

Theorem 3.4 [K],[H2]:

(1) There is a natural homeomorphism A of B equipped with the coarse Haus-
dorff topology onto the Gromov boundary 0C(S) of the complex of curves
C(S) for S.

(2) For p € B a sequence (¢;) C C(S) is admissible and defines the point
A(p) € 8C(S) if and only if (¢;) converges in the coarse Hausdorff topology
to w.

For every hyperbolic geodesic metric space X, the Gromov product (), based

at a point p € X can be extended to a product on X U9X by defining
(&mp = sup lim inf (zi,y;)p
(wi),(y;) DI

where the supremum is taken over all sequences representing the points £, 7 (i.e. if
& € X the z; = £ for all 7). There is a natural topology on X U9X which restricts to
the given topology on X and on 8X. For any given point p € X and every £ € 0X,
the family of cones based at p of the form C,(&,d) = {y € XUIX | (y,&)p, > —logd}
(6 > 0) define a neighborhood basis at £ with respect to this topology.

The Gromov boundary 0X of every Gromov hyperbolic geodesic metric space X
carries a natural distance function § defining its topology with the property that
there are numbers ¢ > 0,k > 0 only depending on the hyperbolicity constant such
that ce *(&O» < §(¢,¢) < e #&r for all £,¢ € X [GH]. If X is proper, then the
metric § is complete and (0X,4d) is compact. However, the metric space C(S) is
not proper, and the metric é on its boundary is not complete. Thus unlike in the
case of proper hyperbolic metric spaces, (metrically) diverging sequences of points
in C(S) may not have any accumulation point in 9C(S).

Problem 1: Determine the metric completion of the Gromov boundary of C(S)
and relate this metric completion to the geometry of C(S).
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There is yet another way to construct unparametrized uniform quasi-geodesics in
C(S). Namely, Teichmiiller space for S is the space Ty, of marked isometry classes
of complete hyperbolic metrics on S of finite volume. The Teichmiiller space can
naturally be identified with a domain in C*=3+™ (see Chapter 6 of [IT]).

By a classical result of Bers (see [Bu]), there is a number x > 0 such that for every
complete hyperbolic metric h on S there is a pants decomposition for S consisting
of simple closed h-geodesics of length at most x. Moreover, the diameter in C(S) of
the set of simple closed curves on S of h-length at most x is bounded from above
by a universal constant D > 0. Thus we can define a map ¥ : 7., — C(S) by
associating to a marked hyperbolic metric A a simple closed curve of h-length at
most y. For any two such maps ¥, ¥’ we then have sup,c7. d(¥(h),¥'(h)) < D.

The Teichmiiller metric on Ty ., is a complete Finsler metric which is just the
Kobayashi metric on the domain in C*9 3™ representing 7, (see [IT]). Through
any two distinct points in 7Ty ., passes a unique Teichmiiller geodesic. Each such
geodesic line in 7Ty p, is uniquely determined by its endpoints in the Thurston bound-
ary of Ty m which is just the space PML of projective measured laminations on S.
The supports of the two measured laminations on S defining the endpoints of the
geodesic together fill up the surface S, i.e. every simple closed curve on S intersects
at least one of the two laminations transversely. These laminations then define a
holomorphic quadratic differential (we refer to Section 4 of [Ke] for a discussion of
this fact). The following result is implicitly contained in the paper [MM1] by Masur
and Minsky; an explicit proof using a result of Rafi [R] can be found in Section 4
of [H4].

Theorem 3.5 [MM1]: There is a universal constant G > 0 such that the image
under U of every Teichmiiller geodesic is an unparametrized §-quasi-geodesic in
C(S).

The mapping class group acts properly discontinuously on 7, ., viewed as a
domain in C39—3+™ a5 a group of biholomorphic automorphisms. The quotient of
Tg,m under this action is the moduli space Mod(S) of S, a non-compact complex
orbifold. A geodesic lamination A on S is called uniquely ergodic if it supports up
to scaling a unique transverse measure. Masur [Mas] showed that the endpoint in
PML of a Teichmiiller ray which projects to a compact subset of moduli space is
uniquely ergodic.

Problem 2: For a fixed number R > 0, is there is compact subset K(R) of
moduli space containing the projection of every Teichmiiller geodesic v which
satisfies d(¥(y(s)), T(vy(t))) > |s — t|/R — R for all s,t € R? Conversely, is
there for a given compact set K in Mod(S) a number R = R(K) > 0 such that
d(T(v(s)), ®(y(t))) > |s — t|/R — R for every Teichmiiller geodesic which projects
into K7 Analyze the images in C(S) of geodesics in 7, ,, determined by minimal
geodesic laminations which fill up S and are not uniquely ergodic.
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4. THE ACTION OF Mg ;, ON THE COMPLEX OF CURVES

The relevance of the geometry of the complex of curves for the understanding
of the geometry of the mapping class group comes from the obvious fact that the
extended mapping class group Mg:,m of S acts on the complex of curves as a group
of simplicial automorphisms and hence isometries. Even more is true: If S is not
a torus with 2 punctures then the extended mapping class group is precisely the
group of isometries of C(S) (see Chapter 8 of [I] for references and a sketch of
the proof). Thus the mapping class group inherits geometric properties from the
complex of curves provided that the action satisfies some properness assumption.
In this section we discuss a result of Bowditch [B2] who proved that this is indeed
the case, and we derive some consequences for the group structure of Mg ,.

To begin with, recall that the action of the mapping class group on C(S) is
essentially transitive.

Lemma 4.1:

(1) There are only finitely many orbits for the action of Mgy m on C(S).
(2) For any pair a, B € C(S) there is some h € Mg n, with d(ha, ) < 2.

The limit set of a group I of isometries of a Gromov hyperbolic metric space X is
the set of accumulation points in 0X of a fixed T'-orbit I'z on X. This limit set does
not depend on z. The group I' naturally acts as a group of homeomorphisms on
the boundary 0X, and the limit set A(T") is invariant under this action. Moreover,
if A(T") contains at least 3 points then A(T") is uncountable and it is the smallest
nontrivial closed I'-invariant subset of X . This means in particular that for every
& € A(D) the I'-orbit of £ is dense in A(T).

The following is immediate from Lemma 4.1.

Corollary 4.2: The limit set of the action of My ., on C(S) equals the whole
boundary 0C(S). In particular, every Mg ,-orbit on OC(S) is dense.

Proof: By Lemma 4.1, the action of M, ,,, on C(S) is essentially transitive. Thus
for every fixed a € C(S) and every admissible sequence (¢;) C C(S) converging in
C(S)UAC(S) to some & € AC(S) there is a sequence (p;) C Mgy m with d(p;(a), ¢;) <
2. Then (p;(c)) converges to &, i.e. ¢ is contained in the limit set of M, ,,,. This
shows the corollary. O

A simple Dehn twist about a simple closed essential curve ¢ in S is an element of
M m which can be represented in the following form. Let A C S be an embedded
closed annulus with smooth boundary and core curve ¢. There is a diffeomorphism
¢ of A which preserves the boundary pointwise and maps an arc « : [0,1] — A
connecting two points on the two different boundary components and intersecting
¢ in a single point a(t) to an arc with the same endpoints which is homotopic to
the composition a[0,t] * ¢ * aft, 1]. The homeomorphism @ of S whose restriction to
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A equals ¢ and whose restriction to S — A is the identity then represents a simple
Dehn twist about ¢. Such a simple Dehn twist generates an infinite cyclic subgroup
of Mg, which just equals the center of the stabilizer of ¢ in M, ,,,. It follows that
the stabilizer of ¢ in M, is the direct product of the infinite cyclic group of Dehn
twists about ¢ and the mapping class group of the surface S — c.

As we saw so far, the action of M, ,,, on C(S) is essentially transitive, and for
every a € C(S) the stabilizer of @ in My ,, contains the mapping class group of
the surface S — a as a subgroup of infinite index. Now if 8 € C(S) is such that
d(a,) > 3 then B — a consists of a collection of simple arcs which decompose
S — a into discs and once punctured discs. Since 8 does not have self-intersections,
the number of free homotopy classes relative to « of such components of § — « is
bounded from above by a universal constant. However, the number of arcs in each
free homotopy class is invariant under the action of the stabilizer of o in My,
indicating that this action is by no means transitive on the set of curves whose
distance to « is a fixed constant. Indeed, Bowditch [B2] showed that the action of
Mg m on pairs of points in C(S) of sufficiently large distance is proper in a metric
sense.

To explain his result, call an isometric action of a group I' on a hyperbolic
metric space X acylindrical if for every m > 0 there are numbers R = R(m) >
0,¢ = ¢(m) > 0 with the following property. Let y, 2 € X be such that d(y,z) > R;
then there are at most ¢(x,m) elements ¢ € T with d(p(y),y) < m,d(p(z),z) < m.
This is a weak notion of properness in a metric sense for a group of isometries of
a hyperbolic geodesic metric space. Using an indirect argument via the geometry
and topology of 3-manifolds, Bowditch shows (Theorem 1.3 of [B2]).

Theorem 4.3 [B2]: The action of Mgy, on C(S) is acylindrical.

By Thurston’s classification of elements of the mapping class group (see [FLP)]
and [CB]), M, can be divided into three disjoint subsets. The first set contains
all periodic elements ¢ € M, ,, i.e. elements for which there is some ¥ > 1 with
o = Id. Every orbit of the action on C(S) of the cyclic group generated by ¢ is
finite and hence bounded. The second set contains all reducible elements in M, ,
which are not periodic. Such a reducible non-periodic element ¢ of M, ,,, preserves
a non-trivial multi-curve, i.e. a collection of pairwise disjoint mutually not freely
homotopic simple closed essential curves on S. Then there is some m > 1 such
that ¢™ fixes an element of C(S) and once again, the orbits of the action on C(S)
of the cyclic group generated by ¢ are bounded. The third set contains the so-
called pseudo-Anosov elements. A pseudo-Anosov mapping class ¢ acts on C(S) as
a hyperbolic isometry. The action of ¢ on the boundary 8C(S) of C(S) has north-
south dynamics with respect to a pair £ # ( of fixed points. By this we mean the
following (compare the discussion in [H3]).

(1) For every neighborhood U of £ and every neighborhood V of ¢ there is some
m > 0 such that ¢™(0C(S) — V) C U and ¢~™(0C(S) —-U) C V.

(2) There is a closed subset D of dC(S) — {&,(} such that U;p'D = 0C(S) —
{& ¢



12 URSULA HAMENSTADT

There is a number p > 0 only depending on the hyperbolicity constant for C(S)
such that every pseudo-Anosov element preserves a p-quasi-geodesic connecting the
two fixed points of ¢ on C(S). Even more is true. Bowditch (Theorem 1.4 in [B2])
showed that for a pseudo-Anosov mapping class ¢ there is some m > 0 such that
@™ preserves a geodesic in C(S). Moreover, the stable length ||¢|| of ¢ is positive
(and moreover rational and bounded from below by a positive constant) where
lloll = limy,— 00 d(x,™x)/n for an arbitrary point z € C(S) (note that this limit
always exists and is independent of z).

Let ¢ € My, be a pseudo-Anosov element; this element determines a point
a(p) in the complement of the diagonal A of 9C(S) x 9C(S). By Bowditch’s result,
the set of points a(p) where ¢ ranges over all elements of M, ,,, representing the
conjugacy class of ¢ is a discrete subset of dC(S) x dC(S) — A (this also follows
from [BF]). Imitating a construction for Riemannian manifolds of bounded negative
curvature and hyperbolic groups (see [Bo2]), define a geodesic current for Mg ,, to
be a locally finite My m-invariant Borel measure on 9C(S) x dC(S) — A. The sum
of Dirac masses at the pairs of points corresponding to a pseudo-Anosov element
of My m, is a such a geodesic current.

Problem 3: Describe the space of geodesic currents for My ,,. Is the set
of weighted sums of Dirac masses at the pairs of fixed points of pseudo-Anosov
elements dense? Is there a geodesic current p which is absolutely continuous, i.e.
such that there is a M n,-invariant measure class po on 9C(S) with the property
that for every Borel subset A of dC(S) we have puo(A) = 0 if and only if p(A x
OC(S) — A) = 07 Is there a distinguished absolutely continuous current such that
the invariant measure class on 9C(S) is determined by a Hausdorff measure with
respect to one of the distance functions § on 9C(S)?

A subgroup I' of M, ,, is called elementary if its limit set contains at most 2
points. The next lemma follows from the work of McCarthy (compare [MP]).

Lemma 4.4 [MP]: Let T be an elementary subgroup of Mgy . Then either
T is virtually abelian or T' contains a subgroup of finite index which stabilizes a
nontrivial subsurface of S.

Proof: Our lemma relies on the following observation. Call a subgroup I' of
M m reducible if there is a non-empty finite I'-invariant family of disjoint simple
closed curves on S. A reducible subgroup I' of M, , has a finite orbit on C(S) and
therefore its limit set is trivial. A subgroup I' which is neither finite nor reducible
contains a pseudo-Anosov element ¢ (this is claimed in Lemma 2.8 of [MP]) and
hence its limit set contains at least the fixed points a # 3 of the action of ¢ on
9C(S). Thus if T is elementary then the limit set of I" coincides with the set {a, 8}
and therefore every element ¢ € I" preserves {a, 3}. Since the action of M, ,, on
C(S) is weakly acylindrical the cyclic group generated by ¢ is of finite index in the
subgroup of M, ,,, which preserves «, # (this is claimed in Lemma 9.1 of [MC] and
also follows from the results in [BF]). As a consequence, an elementary subgroup
of Mgy, either is finite or reducible or virtually abelian. O
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Let I" be a countable group and let V' be a continuous Banach module for T'.
This means that V is a Banach space and that there is a representation of I" into
the group of linear isometries of V. We are only interested in the case when V = R
with the trivial I'-action or V' = £P(T") for some p € [1,00) with the standard left
action of . The second bounded cohomology group HZ(T', V) of T with coefficients
in V is defined as the second cohomology group of the complex

0— L®T, V)" & 1oT2,v)F & ...
with the usual homogeneous coboundary operator d and the twisted action of I'.
For V = R there is a natural homomorphism of HZ(T',R) into the ordinary second
cohomology group H2(T, R) of T which in general is neither injective nor surjective.
Since the action of My, on C(S) is weakly acylindrical we obtain the following
[BF], [H3].

Theorem 4.5 [BF], [H3]: Let I' < M., be any subgroup. If T' is not vir-
tually abelian then for every p € [1,00) the second bounded cohomology groups
HZ(T,¢7(T)), HX(T,R) are infinitely generated.

As a corollary, one obtains the following super-rigidity theorem for mapping class
groups which was earlier shown by Farb and Masur [FM] building on the work of
Kaimanovich and Masur [KM].

Corollary 4.6 [FM], [BF]: Let G be a semi-simple Lie group without compact
factors, with finite center and of rank ot least 2. Let T' < G be an irreducible lattice
and let p: T — Mg, be a homomorphism; then p(T') is finite.

Proof: Burger and Monod [BM] observed that the second bounded cohomology
group of an irreducible lattice in a semi-simple Lie group of higher rank as in the
statement of the corollary is finite dimensional. On the other hand, by Margulis’
normal subgroup theorem [Ma], for every homomorphism p : I' = M, , either
the kernel of p is finite or the image of p is finite. If the kernel of p is finite
then p(T') is a subgroup of M, ,, which admits I' as a finite extension. Since the
second bounded cohomology group of a countable group coincides with the second
bounded cohomology group of any finite extension, the second bounded cohomology
group of p(T) is finite dimensional. But p(T') is not virtually abelian and hence this
contradicts Theorem 4.5. d

Theorem 4.3 and Theorem 4.5 can be viewed as structure theorems for subgroups
of the mapping class group describing a rank 1-phenomenon (see also [FLM] for
other results along this line). It indicates that a finitely generated infinite group
whose geometry is incompatible with the geometry of a hyperbolic space (in a
suitable sense) can not be a subgroup of Mg .

However, the mapping class group has many interesting subgroups, for example
free subgroups consisting of pseudo-Anosov elements. We conclude this section
with a description of some families of subgroups with particularly simple geometric
properties.
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Let ¢, € My m be pseudo-Anosov elements. Then ¢, 7 act as hyperbolic isome-
tries on C(S), and they act with north-south dynamics on 8C(S). Assume that the
fixed point sets of p,n on JC(S) are disjoint. By the classical ping-pong argument
(see Chapter ITL.T".3 in [BH]), there are numbers £ > 0, k > 0 such that the subgroup
T of M, generated by ¢*,n* is free and consists of pseudo-Anosov elements. We
call such a group a Schottky-group. Clearly M, ,, contains infinitely many con-
jugacy classes of Schottky groups. These Schottky groups are conver cocompact
groups in the sense of [FMo].

Now define a finitely generated subgroup I' of M, ,,, to be convex cocompact if
for one (and hence every) a € C(S) the orbit map ¢ € T' — pa € C(S) is a quasi-
isometry where I is equipped with the distance function defined by the word norm
of a fixed symmetric set of generators. A convex cocompact subgroup of M, p, is
necessarily word hyperbolic. Schottky groups in M, ,, are convex cocompact in
this sense.

Problem 4: Does the above definition of a convex cocompact subgroup of M, p,
coincide with the definition of Farb and Mosher in [FMo]? Is the natural extension
of such a group I" by the fundamental group m(S) of S word hyperbolic? Is there
a convex cocompact subgroup of Mg, which is isomorphic to the fundamental
group of a closed surface of genus at least 27

A particular interesting class of subgroups of M, ,, arise from Veech surfaces.
These surfaces are the projections to moduli space of the stabilizer of a complex
geodesic in Teichmiiller space (which is a maximal embedded complex disc in the
Teichmiiller space viewed as a bounded domain in C39—3+™) with the additional
property that this stabilizer is a lattice in PSL(2,R). Veech surfaces are surfaces
of finite type with isolated singularities embedded in moduli space; they are never
closed [V]. Thus their corresponding subgroup of M, ,, contains a free group of
finite index with a distinguished family of conjugacy classes corresponding to the
cusps of the curve. Veech surfaces have many beautiful algebraic and geometric
properties (see e.g. [McM1], [McM2]). Elementary constructions of such surfaces
and their coresponding subgroups of M, ,, are for example discussed in [L]. Veech
surfaces can also be used to construct explicit subgroups of mapping class groups
with prescribed geometric properties. A particularly beautiful result along this line
was recently obtained by Leininger and Reid [LR].

Theorem 4.7 [LR]: For every g > 2 there exists a subgroup of Mg o which is
isomorphic to the fundamental group of a closed surface of genus 2g and such that
all but one conjugacy class of its elements (up to powers) is pseudo-Anosov.

Problem 5: Develop a theory of geometrically finite subgroups of M, ,,, which
include the groups defined by Veech surfaces.



GEOMETRIC PROPERTIES OF THE MAPPING CLASS GROUP 15

5. THE TRAIN TRACK COMPLEX

In Section 4 we indicated that it is possible to derive many large-scale geometric
properties of the mapping class group from the fact that it admits an acylindrical
action on a hyperbolic geodesic metric space. On the other hand, the mapping class
group M, , of a non-exceptional surface is not hyperbolic except in the case when
the surface is a twice punctured torus [BFa]. To get more precise informations on
the geometry of the mapping class group we introduce now a geometric model.

Define a graph whose vertices are the isotopy classes of complete train tracks on
S by connecting two such train tracks 7,7’ by a (directed) edge if 7' is obtained
from 7 by a single split at a large branch e. We call this graph the train track
complez; it is locally finite and hence locally compact. The mapping class group
acts on 7T as a group of simplicial isometries. We have.

Proposition 5.1 [H1]: 7T is connected, and Mg, acts on TT properly and
cocompactly.

As an immediate consequence of Proposition 5.1 we observe that the train track
complex is My ,-equivariantly quasi-isometric to the mapping class group and
hence can be viewed as a geometric model for M, ,. The usefulness of this model
comes from the fact that 77 admits a natural family of uniform quasi-geodesics.
Namely, we have [M3], [H1].

Proposition 5.2: Splitting sequences in TT are uniform quasi-geodesics.

A finitely generated subgroup A of a finitely generate group I' is called undistorted
in T if the inclusion ¢+ : A — T satisfies d(wg,th) > cd(g, h) for some ¢ > 0 and all
g,h € T (note that the reverse estimate d(tg,ch) < Cd(g,h) for a constant C' > 0
is always satisfied). As an immediate consequence of Proposition 5.2 we conclude
(see [BFa] which contains a proof of the first part of the corollary).

Corollary 5.3:

(1) Any free abelian subgroup of Mgy m, is undistorted in Mg p,.
(2) Let S' C S be a non-trivial connected subsurface. Then the mapping class
group of S' as a subgroup of S is undistorted.

Proof: We begin with the proof of the second part of our lemma. Namely, let
S' € S be a subsurface bounded by some simple closed pairwise disjoint curves.
Choose a pants decomposition P which contains this system of curves. For every
geodesic lamination A on the surface S’ there is a train track 7 € 77T which carries
A and is adapted to P. As before, the mapping class group of S’ is quasi-isometric
to the subgraph G of 7T which contains precisely all train tracks of this form and
with a fixed intersection with S — S’. Since splitting sequences in 7T which do not
contain any split at a large branch which is not contained in S’ are uniform quasi-
geodesics in 7T and define uniform quasi-geodesics in the mapping class group of
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S', the mapping class group of S’ is an undistorted subgroup of M, , provided
that the collection of pairs of vertices in the graph G which can be connected by a
splitting sequence is k-dense in G x G for some k > 0. However, it was shown in
[H1] that this is indeed the case.

To show the first part of the lemma it is enough to show that every infinite cyclic
subgroup of M, , is undistorted in Mg ,,. For this let ¢ € Mg, be an element
of infinite order. We may assume that ¢ either is a pseudo-Anosov element or it
its reducible. In the first case ¢ preserves a pair of transverse minimal laminations
which fill up S. The action of ¢ on the curve complex C(S) is hyperbolic and the
stable length lim; %d(goia:,:c) is positive. Since 7T is quasi-isometric to Mg
and the map ® : 7T — C(S) introduced in Section 3 is uniformly Lipschitz we
conclude that the cyclic group generated by ¢ is undistorted in Mg .

If ¢ is reducible and not a Dehn twist then there is some & > 0 such that
¥ fixes a non-trivial subsurface of S and generates an undistorted subgroup of
the mapping class group of this subsurface. Together with the second part of the
corollary we conclude that the infinite cyclic subgroup of M, ,,, generated by ¢ is
undistorted. However, if ¢ is a Dehn-twist along a simple closed curve a then there
is a splitting sequence (7;) C 7T issuing from a train track 7o which is adapted to
a pants decomposition P containing a and such that ¢(72;_2) = 72;. Since splitting
sequences are uniformly quasi-geodesic, our claim follows. |

The Torelli group is the subgroup of M, , of all elements which act trivially on
the first homology group of the surface S. For a closed surface of genus g > 3, the
Torelli group is finitely generated [J]; however, this is not true for g = 2 [MCM].

Problem 6: For a closed surface of genus g > 3, is the Torelli subgroup of M, p,
undistorted? More generally, find a distorted finitely generated subgroup of M .

The splitting sequences on the complex of train tracks can be used to investigate
the large-scale geometric behavior of the mapping class group. Note that such a
splitting sequence (7;) is determined by an initial train track and for each i by
a choice of a splitting move among a uniformly bounded number of possibilities
which transforms the train track 7; to the train track 7;41. In other words, it is
possible to treat splitting sequences and hence uniform quasi-geodesics in M, ,, in
an algorithmic way.

Algorithmic calculations in a finitely generated group I' are very intimately re-
lated to two basis decision problems which go back to Dehn and can be formulated
as follows (see Chapter IIL.T.1 in [BH]).

Word problem: A word w in a fixed system of generators for T' is given. One is
required to find a method to decide in a finite number of steps whether or not this
word represents the identity in T'.

Congugacy problem: Two elements g,h € ' are given. A method is sought to

decide in a finite number of steps whether or not the elements g, h are conjugate,

i.e. whether there is some u € I such that h = ugu™!.
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In the last decade of the twentith century, Epstein, Cannon, Holt, Levy, Paterson,
Thurston [E] formulated a property for finitely generated groups which ensures that
these problems can be solved in controlled time. Namely, a biautomatic structure
for a finitely generated group I' consists of a finite alphabet A, a (not necessarily
injective) map 7 : A — ' and a regular language L over the alphabet A with the
following properties. The set w(A) generates I', and there is an inversion ¢ : A — A
(i.e. 12 = 1d) with 7(a) = w(a) ! for all @ € A. In particular, w(A) is a symmetric
set of generators for I'. Via concatenation, every word w in the alphabet A is
mapped by 7 to a word in the generators w(A) of T and hence it defines an element
m(w) € T. We require that the restriction of the map 7 to the set of all words from
the language L maps L onto I'. For all z,y € A and each word w € L of length
k > 0, the word zwy defines via the projection m a path s : [0,k + 2] — I". By
assumption, there is a word w' € L of length £ > 0 with w(w') = w(zwy). Let
s' 1 [0,€] = T be the corresponding path in I'; we require that the distance in T
between s(i) and s'(¢) is bounded by a universal constant which neither depends
on 7 nor on the choice of z,y, w,w'.

Extending earlier work of Mosher [M1], in [H1] the complex of train tracks and
its algorithmic properties are used to show.

Theorem 5.4 [H1]: The mapping class group of a non-exceptional surface of
finite type admits a biautomatic structure.

Using the results of [E] one obtains as an immediate corollary.

Corollary 5.5: Let G be a finite symmetric set of generators of M, ,,, and let
F(G) be the free group generated by G.

(1) There is a constant k; > 0 such that a word w in G represents the identity
in My, if and only if in the free group F(G) we have w = [[}, zir;z; "
where n < k1|w|?, r; is a word in G of length at most x; which represents
the identity, and |z;| < k1|w|. Thus the word problem for M, ,, is solvable
in quadratic time.

(2) There is a constant ko > 0 such that words u,v € F(G) represent conju-
gate elements of I if and only if there is a word w € F(G) of length at
most n;nax{lul’lvl} with w™ uw = v in M, ,,,. Consequently the conjugacy
problem for M, ., is solvable in exponential time.

Mosher [M1] showed that the mapping class group admits an automatic struc-
ture, and from this it is possible to deduce many of the known properties of mapping
class groups including the first part of Corollary 5.5. The fact that the conjugacy
problem is solvable for M ,, was first shown by Hemion [He].

Call a finitely generated group I' linear if it admits an injective homomorphism
into GL(n,C) for some n > 0. Consider for a moment the mapping class group
of a closed surface of genus g > 2. This mapping class group contains a free
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abelian subgroup of dimension 3g — 3 which is generated by Dehn twists about
the curves of a pants decomposition for S. Since the Zariski closure of an abelian
subgroup of a linear algebraic group is abelian, the existence of such a free abelian
subgroup of M, ¢ of dimension 3g — 3 can be used to show that there is no injective
homomorphism of M, into GL(n,C) for n < 2y/g — 1 [FML].

On the other hand, Krammer [Kr] recently showed that the braid groups are lin-
ear. There are many known similarities between the braid groups and the mapping
class groups (see for example [Bi]). However, the following problem is open.

Problem 7: Is the mapping class group linear?

A locally compact group I is said to satisfy the Haagerup approximation property
or is a-T-menable if there exists a continuous, isometric action « of I' on some
affine Hilbert space H which is metrically proper. This means that for all bounded
subsets B of H, the set {g € T | a(g)B N B # {} is relatively compact in T'. There
are other equivalent characterizations of this property (see [CCJJV]) which can
be viewed as a strong negation of the (perhaps more widely know) property (T)
of Kazhdan. The class of a-T-menable groups contains for example all amenable
groups, Coxeter groups and the isometry groups of real and complex hyperbolic
spaces. It is also known that for a-T-menable groups the Baum-Connes conjecture
holds (see [CCJIV]).

Problem 8: Is the mapping class group a-T-menable?
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