
AN EZ-STRUCTURE FOR THE MAPPING CLASS GROUP

URSULA HAMENSTÄDT

Abstract. We construct a boundary for the mapping class group Mod(S) of
a surface S of finite type. The action of Mod(S) on this boundary is minimal,

strongly proximal and topologically free. The boundary is the boundary of an

EZ-structure for Mod(S).

1. Introduction

The mapping class group Mod(S) of a closed oriented surface S of genus g ≥ 0
from whichm ≥ 0 points have been removed and so that 3g−3+m ≥ 1 is the group
of isotopy classes of diffeomorphisms of S. The mapping class group is well known
to be finitely presented, and it admits explicit torsion free finite index subgroups.

A torsion free finite index subgroup Γ of Mod(S) admits a finite classifying space.
Such a classifying space can be constructed as follows.

Since the Euler characteristic of S is negative, the Teichmüller space T (S) of
S of all marked finite area complete hyperbolic structures on S is defined. By
elementary hyperbolic geometry, there exists a number ϵ0 > 0 such that any two
closed geodesics on a hyperbolic surface of length at most ϵ0 are disjoint. The systole
systole(X) of a hyperbolic metric X is the length of a shortest closed geodesic. For
ϵ < ϵ0 define

Tϵ(S) = {X ∈ T (S) | systole(X) ≥ ϵ}.
The following is due to Ji and Wolpert [JW10], extending an earlier result of Ivanov
[Iv02], see Proposition 3.1 and Theorem 3.9 of [J14] for an explicit statement.

Theorem 1 (Ji-Wolpert). For sufficiently small ϵ < ϵ0, the set Tϵ(S) is a manifold
with corners which is a deformation retract of T (S). The mapping class group
Mod(S) acts on Tϵ(S) properly and cocompactly.

Since T (S) is homeomorphic to R6g−6+2m, we obtain that Tϵ(S) is contractible,
locally contractible and finite dimensional. As torsion free finite index subgroups Γ
of Mod(S) act freely on Tϵ(S), this implies that Γ\Tϵ(S) is a finite classifying space
for Γ. In particular, Γ is of type F .

Motivated by the construction of the Borel-Serre bordification of an arithmetic
group which can be used to compute its virtual cohomological dimension, that is,
the cohomological dimension of a torsion free finite index subgroup, Harer [Har86]
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initiated the construction of a bordification of Tϵ(S) which computes the virtual
cohomological dimension vcd(Mod(S)) of the mapping class group. This program
was completed by Ivanov [Iv02] and consists in attaching to Tϵ(S) the curve complex
as an analog of a spherical building. The bordification, which indeed computes the
virtual cohomological dimension of Mod(S), has the homotopy type of an infinite
wedge of spheres [IJ08] and does not compactify the space Tϵ(S).

In the setting of hyperbolic groups Γ, it turns out that the Gromov boundary
of Γ can be used to compute the virtual cohomological dimension [BM91]. This
Gromov boundary is the boundary of a compactification of Γ in the following sense.

Definition 2 (Small boundary). A boundary of a finitely generated group Γ is a
compact Γ-space Z with the following properties.

• There exists a topology on Γ ∪ Z which restricts to the discrete topology
on Γ, to the given topology on Z and is such that Γ ∪ Z is compact.

• The left action of Γ on itself extends to the Γ-action on Z.

The boundary is called small if the right action of Γ extends to the trivial action
of Γ on Z.

The Gromov boundary of a hyperbolic group has additional desirable properties.
One of these is captured in the following definition, which is Lemma 1.3 of [B96]
and Definition 1.1 of [FL05].

Definition 3 (EZ-structure). An EZ-structure for a finitely generated torsion free
group Γ consists of a pair (X,Z) of finite dimensional compact metrizable spaces,
with Z nowhere dense in X, and the following additional properties.

(1) X = X − Z is contractible and locally contractible.
(2) For every z ∈ Z and every neighborhood U of z inX there exists a neighbor-

hood V ⊂ U of z such that the inclusion V −Z → U −Z is null-homotopic.
(3) X admits a covering space action of Γ with compact quotient.
(4) The collection of all translates of a compact set in X form a null sequence

in X: that is, for every open cover U of X, all but finitely many translates
are U-small.

(5) The action of Γ on X extends to an action on X.

The significance of an EZ-structure (X,Z) for a torsion free group Γ lies in the
fact that the Čech cohomology of the space Z computes the cohomological dimen-
sion cd(Γ) of the group, with a dimension shift of one (Theorem 1.7 of [B96]). Fur-
thermore, groups with an EZ-structure admit an EZ-structure of the form (Dn,∆)
where ∆ is a closed subset of ∂Dn = Sn−1, and the Novikov conjecture and the K-
theoretic Farell Jones conjecture hold for these groups (Theorem 1.1 and Theorem
1.2 of [FL05]).

An action of a group G on a compact topological space Z is called minimal if
every G-orbit is dense. It is called topologically free if for every φ ∈ G − {1} the
fixed point set of φ has empty interior. Furthermore, it is called strongly proximal
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if the action of G on the space of Borel probability measures on Z is such that the
closure of any orbit contains some Dirac measure. The following is our main result.

Theorem 4. There exists a compactification T (S) of Tϵ(S) with the following
properties.

(1) X (S) = T (S) \ Tϵ(S) is a small boundary for Mod(S).
(2) The action of Mod(S) on X (S) is minimal, strongly proximal and topolog-

ically free.
(3) The pair (T (S),X (S)) is a EZ-structure for Mod(S).

We call the space X (S) the geometric boundary of Mod(S).

By the main results of [FL05], Theorem 4 implies the following.

Corollary 5. Mod(S) satisfies the Novikov conjecture and the K-theoretic Farell-
Jones conjecture.

Both statements in the corollary are known and were earlier established with
different methods. Proofs of the Novikov conjecture can be found in [H09, K10,
BBF15, BaB19]. The full Farell Jones conjecture for mapping class groups is due
to Bartels and Bestvina [BaB19].

An alternative approach to the construction of an EZ-structure for the mapping
class group, based on hierarchical hyperbolicity, is due to Durham, Minsky and
Sisto [DMS25]. Hierarchical hyperbolicity was also used by Durham, Hagen and
Sisto [DHS17] to construct a boundary for Mod(S). As a set, this boundary can
be identified with the boundary constructed in Theorem 4, however the topology is
different. There are open sets in the boundary of [DHS17] which do not contain any
open subset of the boundary we construct. Hierarchical hyperbolicity for Mod(S)
only appears indirectly in this article, but our construction shares with [DMS25]
the strategy to view the mapping class group as a CAT(0)-space on the large scale.

As the virtual cohomological dimension vcd(Mod(S)) equals 4g− 5 if g ≥ 2 and
m = 0, 4g − 4 + m if g ≥ 1 and m − 3 if g = 0 [Har86], the covering dimension
of the space X (S) equals 4g − 6 if g ≥ 2 and m = 0, 4g − 5 + m if g ≥ 1 and
m > 0, and m − 4 if g = 0 [B96]. Note that for any torsion free finite index
subgroup Γ of Mod(S), the cohomology group Hvcd(Mod(S))(Γ,ZΓ) identifies with
the 2g − 2 +m-th homology group of the curve complex. Since the curve complex
has the homotopy type of an infinite wedge of spheres of dimension 2g − 2 + m
(Theorem 1.4 of [IJ08]), this implies that the top dimensional Čech cohomology
group of X (S) is also infinite dimensional by Proposition 1.5 of [B96].

Theorem 4 can be viewed as giving some evidence that the asymptotic dimension
of Mod(S), which is known to be finite and at most quadratic in the virtual coho-
mological dimension, in fact equals the virtual cohomological dimension of Mod(S).
We refer to [BB19] for a more detailed discussion on this and related questions and
results.

The following is an easy consequence of Theorem 4 and Theorem 1.1 and Theo-
rem 1.2 of [FL05]. In its formulation we denote by Dn the standard ball in Rn.
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Corollary 6. If 3g − 3 +m ≥ 3 then there exists a closed subset ∆ of S6g−5+2m

such that Mod(S) admits an EZ-structure of the form (D6g−4+2m,∆).

The boundary of the curve graph can be obtained from the subset FML of
PML = S6g−7+2m of measured geodesic laminations with minimal filling support
by an equivariant continuous surjective map FML → ∂CG(S). This map is however
not injective and the following statement requires a proof.

Corollary 7. The boundary ∂CG(S) of the curve graph of S admits an embedding
into a manifold of dimension 6g − 6 + 2m and into S6g−5+2m.

We next describe the boundary X (S) of Mod(S) as a set.

The curve complex CG(S0) of a (not necessarily proper) essential subsurface S0

of S different from a pair of pants or an annulus is the simplicial complex whose
vertices are isotopy classes of simple closed curves and where k such curves span a
k− 1-simplex if they can be realized disjointly. If S0 is a four-holed sphere or a one
holed torus, then this definition has to be modified by connecting two vertices by
an edge if they intersect in the minimal number of points.

The curve complex, equipped with the natural simplicial metric, is a hyperbolic
geodesic metric space of infinite diameter [MM99]. Its Gromov boundary ∂CG(S0)
is the space of minimal geodesic laminations on S0 which fill S0, that is, which
intersect every essential simple closed curve on S0 transversely. The topology on
∂CG(S0) is the coarse Hausdorff topology. With respect to this topology, a sequence
λi of minimal filling laminations converges to the lamination λ if and only if the
limit of any subsequence which converges in the Hausdorff topology on compact
subsets of S0 contains λ as a sublamination [H06, K99]. The space ∂CG(S0) is
separable and metrizable. Define the boundary of the curve complex of an essential
annulus A ⊂ S with core curve c to consist of two points c+, c−.

If S1, . . . , Sk is a collection of isotopy classes of pairwise disjoint subsurfaces of
S, then we can form the join

J (∪k
i=1Si) = ∂CG(S1) ∗ · · · ∗ ∂CG(Sk).

It can be viewed as the set of formal sums
∑

i aiλi where ai > 0,
∑

i ai = 1 and
where λi ∈ ∂CG(Si) for all i. This join is a separable metrizable topological space.
Note that if Si1 , . . . , Sis is a subset of the set of surfaces S1, . . . , Sk, then J (∪s

j=1Sij )

is naturally a non-empty closed subset of J (∪k
i=1Si) corresponding to formal sums∑

i aiλi with ai = 0 for i ̸∈ {i1, . . . , is}. Define

X (S) = ∪J (∪k
i=1Si)

where the union is over all collections of pairwise disjoint essential subsurfaces of S
and we use the obvious identification of points which arise in more than one way in
this union. Here we view an essential annulus A as an essential subsurface which is
disjoint from any subsurface which can be moved off A by an isotopy. Thus X (S)
is just the set of formal sums

∑
i aiλi where ai > 0,

∑
i ai = 1, where λ1, . . . , λk are

pairwise disjoint minimal geodesic laminations on S and where each simple closed
curve component λi is equipped with an additional label +,−. The mapping class
group acts naturally on X (S) as a set.
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The following theorem summarizes some more technical properties of the geomet-
ric boundary. For its formulation, let us invoke the Nielsen Thurston classification
which states that any nontrivial mapping class has a finite power φ with the follow-
ing property. There exists a decomposition S = S1 ∪ · · · ∪ Sk of S into subsurfaces
that are preserved by φ and such that for all i < k, the surface Si is connected and
the restriction of φ to Si is pseudo-Anosov if Si is not an annulus, and it is a Dehn
twist if Si is an annulus. The restriction of φ to Sk is trivial. We call a mapping
class with this property a Nielsen Thurston mapping class.

Let φ be a Nielsen Thurston mapping class. For each i < k such that Si is not an
annulus, the restriction φi of φ to Si preserves precisely two geodesic laminations
ξ±i which are the attracting and repelling laminations of φi. Similarly, for any
component Si which is an annulus, the two labeled copies ξ±i of the core curve of
the annulus are preserved as well. Thus φ fixes any point of the form

∑
i aiζi where

ζi is one of the laminations ξ±i if i < k and where ζk is an arbitrary point of the
geometric boundary of the (possibly disconnected) surface Sk. We call points of
this form the obvious fixed point set.

An embedding of a topological space X into a topological space Y is an injective
map f : X → Y which is a homeomorphism onto its image, equipped with the
subspace topology.

Proposition 8. Let X (S) be the geometric boundary of Mod(S).

(1) For any collection S1, . . . , Sk of pairwise disjoint subsurfaces of S, the in-
clusion J (∪k

i=1Si) → X (S) is an embedding. In particular, the covering
dimension of ∂CG(S) is at most vcd(Mod(S))− 1.

(2) The fixed point set for the action of a Nielsen Thurston mapping class φ
on X (S) is precisely the obvious fixed point set of φ.

That the covering dimension of ∂CG(S) is bounded from above by vcd(Mod(S))
is due to Gabai (Proposition 16.3 of [Ga14]).

Our construction is valid for the mapping class group of a once punctured torus
or a four punctured sphere. In this case the mapping class group is virtually free
and, in particular, it is a hyperbolic group whose Gromov boundary is a Cantor
set. It is due to Bestvina and Mess [BM91] that a hyperbolic group admits a EZ-
structure whose boundary is its Gromov boundary. The boundary we find is the
Gromov boundary of the group as well.

The construction of the boundary X (S) is motivated by the construction of the
visual boundary of a CAT(0)-space. Along the way we identify in Section 2 an
analog of the familiar Tits boundary of a symmetric space of higher rank.

The advantage of our construction is that the space X (S) and its topology as
well as the action of the group Mod(S) on X (S) is completely explicit and can be
used among others to study subgroups of Mod(S).

Overview of the article: In the first part of the article, we define a topology
on the set X (S) and show that this topology extends to Tϵ(S) ∪ X (S) and defines
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a compactification of Tϵ(S). This is carried out with an inductive construction set
up in Section 3 and Section 4. We also observe that the action of Mod(S) on X (S)
is strongly proximal. In Section 2, we introduce the oriented curve complex and
show that it can be viewed as a Tits type boundary for the mapping class group.

In Section 5, we show that X (S) is metrizable. This result depends on the
construction of an explicit neighborhood basis of a given point in X (S) ⊂ T (S).
The neighborhood basis is used in Section 7 to construct another neighborhood basis
for points in X (S) consisting of sets whose intersections with Tϵ(S) are contractible,
which is the most involved part of the article. We use the augmented Teichmüller
space as a witness of CAT(0) properties to this end. Section 6 is devoted to showing
that the covering dimension of X (S) is finite.

Acknowledgement: I am grateful to Alessandro Sisto for informing me about the
article [DMS25]. This work was partially supported by the Hausdorff Center Bonn
and completed while the author visited the Newton Institute in Cambridge during
the program Operators, Graphs, Groups in summer 2025.

2. The Tits boundary of Mod(S)

The join X1 ∗X2 of two topological spaces X1, X2 is defined to be the quotient
X1×X2× [0, 1]/ ∼ where the equivalence relation ∼ collapses X1×X2×{0} to X1

and collapses X1×X2×{1} to X2. For example, the join S0
1 ∗S0

2 of two 0-spheres is
the circle S1, thought of as a union of four intervals glued at the endpoints, where
each interval has one endpoint in S0

1 and the second endpoint in S0
2 . The join of

two spaces X1, X2 contains an embedded copy of X1, X2.

Example 2.1. The product of two hyperbolic planes H2×H2 is a complete simply
connected Riemannian manifold of non-positive curvature. Its visual boundary is
the join S1 ∗ S1 of two circles that are the Gromov boundaries of the embedded
copies of H2. This corresponds to the fact that the projection of any geodesic in
H2 × H2 to each of the two factors is a geodesic. Note that the join of two circles
is homeomorphic to S3.

Define the oriented curve complex OG(S) of an oriented connected surface S of
genus g with m punctures and 3g−3+m ≥ 2 to be the complex whose vertices are
isotopy classes of oriented simple closed curves in S and whose one-skeleton consists
of edges (of length 1) connecting two vertices if they can be realized disjointly and
are not homotopic up to orientation. Thus any simple closed curve in S defines
two distinct vertices in OG(S), and these vertices are not connected by an edge.
Furthermore, we require that any collection of k ≥ 2 oriented disjoint simple closed
curves which are distinct as unoriented curves span a simplex. The union of these
simplices defined by a fixed collection of k curves equipped with all combinations
of orientations is a sphere of dimension k − 1. Note that a point in OG(S) can be

viewed as a formal linear combination
∑k

i=1 aiλi where for some k ≥ 1, λ1, . . . , λk
are pairwise disjoint oriented simple closed curves, where ai > 0 for all i and∑

i ai = 1. In other words, a point in the oriented curve complex can be viewed
as a point in the join of a finite collection of oriented pairwise disjoint simple
closed curves. If S is a once punctured torus or a four punctured sphere, then the
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oriented curve complex is defined in the same way except that two oriented curves
are connected by an edge if they intersect in the minimal number of points (one for
the once punctured torus and two for the four punctured sphere).

Remark 2.2. If we choose the length of the edges of the oriented curve complex
to be π/2, then this is consistent with the idea that the oriented curve complex can
be thought of as being contained in the Tits boundary of Mod(S), equipped with
the angular length metric which identifies each sphere with a sphere of constant
curvature one.

A simple closed curve c on S is the core curve of an embedded annulus A(c) ⊂ S.
The ”curve graph” CG(A(c)) of the annulus A(c) is a graph of isotopy classes of
arcs connecting the two boundary components and whose endpoints are allowed to
move freely in the complement of a fixed point on each of the two boundary circles.
The curve graph of A(c) is a simplicial line. If α is a given vertex of CG(A(c)), then
any other isotopy class of arcs can be represented by an arc which is the image of
α by a multipe of a Dehn twist about c. The distinction between a positive and a
negative Dehn twist about c only depends on the orientation of S but not on the
orientation of c. The choice of an orientation of c can be thought of as a spiraling
direction about c for oriented arcs connecting the two boundary components of
A(c).

In the sequel we denote by c+ the point in the Gromov boundary of CG(A(c))
(which consists of two points) which corresponds to an iteration of positive Dehn
twists about c, and we denote by c− the point in the Gromov boundary of CG(A(c))
which corresponds to an iteration of negative Dehn twists about c. Write J (c) =
{c+, c−}. It will be convenient to think about J (c) as a set of two distinct points
in the oriented curve complex of S, with the same underlying curve.

If S0 is a subsurface of S different from a pair of pants or an annulus, then we
denote its (non-oriented) curve complex by CG(S0). The vertices of this complex
are isotopy classes of non-peripheral simple closed curves. If S0 is different from
a one-holed torus or a four-holed sphere, then a collection of k ≥ 2 such disjoint
simple closed curves span a simplex of dimension k−1. If S0 is a one-holed torus or
a four-holed sphere then two simple closed curves are connected by an edge if they
intersect transversely in the minimal number of points. The curve complex of S0

is hyperbolic and hence it has a Gromov boundary ∂CG(S0). As a set, the Gromov
boundary ∂CG(S0) is the set of all minimal filling geodesic laminations on S0. We
refer to [H06] for an account on this result of Klarreich.

There is a natural metrizable topology on the union CG(S0) of CG(S0) with
its Gromov boundary, called the coarse Hausdorff topology. With respect to this
topology, the subspace CG(S0), equipped with its simplicial topology, is an open
dense subset. To define this topology equip the surface S0 with a hyperbolic metric
with geodesic boundary. This choice defines a Hausdorff topology on the space of
compact subsets of S0. A sequence λi ⊂ CG(S0) ⊂ CG(S0) ∪ ∂CG(S0) of vertices in
CG(S0) converges in the coarse Hausdorff topology to λ ∈ ∂CG(S0) if and only if
the limit of any converging subsequence of λi in the Hausdorff topology on compact
subsets of S0 contains λ as a sublamination [H06]. Define

J (S0) = ∂CG(S0),
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equipped with the topology as a subset of CG(S0). If S0 is a pair of pants, then we
define J (S0) = ∅.

If S1, . . . , Sk are disjoint connected subsurfaces of S (we allow that they share
boundary components, and annuli about such boundary components may be in-
cluded in the list), then we define

(1) J (∪iSi) = ∂CG(S1) ∗ · · · ∗ ∂CG(Sk)

to be the join of the spaces J (Si) = ∂CG(Si). For example, if S1 ⊂ S is a subsurface
which is the complement of a non-separating simple closed curve c, then

J (S1 ∪A(c)) = ∂CG(S1) ∗ {c+, c−}.

A point in J (S1 ∪ · · · ∪ Sk) can be viewed as a formal linear combination

ξ =
∑
i

aiξi

where ξi ∈ ∂CG(Si), ai ≥ 0 for all i and, furthermore,
∑

i ai = 1. The union

supp(ξ) = ∪ai>0ξi

is a geodesic lamination with minimal components ξi, and ξ can be viewed as a
weighted (and partially labeled if there are simple closed curve components of ξ
with positive weight) geodesic lamination. For all u ≤ k there is an inclusion
J (S1 ∪ · · · ∪ Su) ⊂ J (S1 ∪ · · · ∪ Sk) which is a topological embedding.

A collection S1, . . . , Sk of disjoint connected subsurfaces of S is called maximal if
S−∪iSi = ∅. By convention, this means that for any boundary component c of one
of the surfaces Si, the annulus A(c) is contained in the collection. Any collection
S1, . . . , Sℓ of disjoint connected subsurfaces of S is contained in a maximal collection
of such subsurfaces, however this maximal collection is in general not unique. For
example, there is a canonical maximal collection containing S1, . . . , Sk which is
comprised of the surfaces Si, the annuli A(c) where c runs through all boundary
components of ∪iSi which are not already contained in the list, and all connected
components of S − ∪iSi.

Define

(2) X (S) = ∪J (S1 ∪ · · · ∪ Sk)/ ∼

where the union is over all collections of disjoint subsurfaces S1, . . . , Sk of S. The
equivalence relation ∼ identifies two points

∑
i aiξi and

∑
j bjζj if they coincide

as weighted labeled geodesic laminations. Thus a point in X (S) is nothing else

but a formal sum
∑k

i=1 aiξi where ai > 0,
∑

i ai = 1, where ξ1, . . . , ξk are pairwise
disjoint minimal geodesic laminations on S and where every simple closed curve
component of this collection is in addition equipped with a label ±. Note that the
oriented curve complex OG(S) of S can naturally be identified with the union of
the subsets J (A(c1) ∪ · · · ∪ A(ck)) of X (S), and its Gromov boundary (which is
just the Gromov boundary ∂CG(S) of the non-oriented curve complex of S) also
is contained in X (S). The mapping class group Mod(S) naturally acts on the set
X (S).



BOUNDARY 9

Example 2.3. The definition (2) also makes sense if S is a once punctured torus
or a four punctured sphere. In this case there are no non-peripheral subsurfaces of
S different form annuli and pairs of pants, and the set X (S) is just the union of
the Gromov boundary of the curve graph CG(S) with a countable set, consisting of
all oriented non-peripheral simple closed curves on S. We discuss the case of the
once punctured torus in detail, the case of the four punctured sphere is completely
analogous.

The curve graph of S is the well-known Farey graph. It vertices can be repre-
sented by the rational points in the boundary ∂H2 = R ∪ {∞} of the hyperbolic
plane. If one represents the edges of the Farey graph by geodesics in H2, then one
obtains a tesselation of the hyperbolic plane by ideal triangles which is invariant
under the mapping class group PSL(2,Z) of S. The boundary ∂T of the dual tree T
of this tesselation is a Cantor set which admits a surjective continuous map onto the
boundary ∂H2 of the hyperbolic plane. Each irrational point in ∂H2 corresponds
to a point in the Gromov boundary of CG(S) and has precisely one preimage, and
the rational points which correspond to the vertices of the curve graph have two
preimages.

The vertices of the Farey graph correspond to the fixed points of the parabolic
subgroups of PSL(2,Z). With this interpretation, the set X (S) can be identified
with the Cantor set ∂T obtained by replacing each rational point in R ∪ {∞} by
a compact interval and removing the interior of the interval. This Cantor set in
turn has a natural identification with the Gromov boundary ∂T of the virtually
free group PSL(2,Z). In particular, there is a natural invariant topology on X (S)
so that with this topology, X (S) is a compact PSL(2,Z)-space which contains the
Gromov boundary ∂CG(S) of the curve graph of S as a dense embedded subset.
Furthermore, following [BM91], with this topology the set X (S) is the boundary of
an EZ-structure for PSL(2,Z).

Example 2.4. Let S1, . . . , Sk be a disjoint union of subsurfaces of S which are
different from pairs of pants. Then the join X (S1)∗ · · · ∗X (Sk) is a subset of X (S).

The oriented curve complex of S is connected, and any non-filling geodesic lam-
ination, that is, a geodesic lamination which is disjoint from some simple closed
curve, is disjoint from some vertex of OG(S). Thus if we equip X (S) \ ∂CG(S)
with the topology of a simplicial complex whose edges are the joins of two disjoint
(perhaps labeled) geodesic laminations, then this complex is connected. As a con-
sequence, the set X (S) can be equipped with a topology which coincides with the
topology of a (non-locally finite) simplicial complex on X (S) \ ∂CG(S) and is such
that each point in ∂CG(S) is isolated. We write XT (S) for X (S) equipped with this
topology and call XT (S) the Tits boundary of Mod(S) (having the Tits boundary
of a CAT(0) space as guidance). From this description, we obtain

Lemma 2.5. The mapping class group Mod(S) of S acts on XT (S) as a group of
simplicial automorphisms.

Proof. The mapping class group acts on the oriented curve complex of S as a group
of simplicial automorphisms, and this action extends to an action on the space of
formal sums of weighted disjoint minimal geodesic laminations preserving weight
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and disjointness. Furthermore, it acts on ∂CG(S) as a group of transformations.
Since the topology on XT (S) is the topology of a disconnected simplicial complex,
constructed from the curve complexes of subsurfaces, the lemma follows. □

Remark 2.6. The Tits boundary of a CAT(0) space X can be viewed as the
geometric boundary (that is, the CAT(0) boundary) ofX, equipped with a topology
which in general is finer than the geometric topology. We shall see in Section 4 that
the same holds true for the Tits boundary and the geometric boundary of Mod(S).

3. A topology for X (S)

The goal of this section is to equip the set X (S) with a topology which is coarser
than the Tits topology so that for this topology, X (S) becomes a compact Mod(S)-
space.

Let ξj =
∑

m ajmξ
j
m be a sequence in X (S). We shall impose two requirements

for the sequence to converge to a point ζ =
∑k

i=1 biζi ∈ X (S). Here as before, we
assume that ajm > 0, bi > 0,

∑
i bi = 1 =

∑
m ajm for all j and that furthermore,

supp(ξi), supp(ζ) are disjoint unions of minimal components. The three steps
needed to construct the topology are contained in three different subsections.

3.1. Convergence to a minimal filling lamination. Recall that the space of
geodesic laminations on S is compact with respect to the Hausdorff topology.

Requirement 1: Convergence in the coarse Hausdorff topology
Let ξℓn be any subsequence of the sequence ξj such that the geodesic laminations
supp(ξℓn) converge in the Hausdorff topology to a geodesic lamination β. Then β
contains supp(ζ) as a sublamination.

Example 3.1. A geodesic lamination c coarsely determines a point in CG(S) ∪
∂CG(S). Namely, if c is minimal filling, then c ∈ ∂CG(S). Otherwise c is disjoint
from a simple closed curve c′ ∈ CG(S).

By a result of Klarreich [K99] as reported in [H06], a sequence of non-filling
geodesic laminations ci converges in the coarse Hausdorff topology to a minimal
filling geodesic lamination η if and only if the simple closed curves c′i ∈ CG(S)
converge in CG(S) ∪ ∂CG(S) to η ∈ ∂CG(S).

Example 3.2. Let S1, . . . , Sk ⊂ S be disjoint subsurfaces. Example 2.4 shows
that X (S) contains the join X (S1) ∗ · · · ∗ X (Sk) as a subset. An element ξ ∈
X (S1) ∗ · · · ∗ X (Sk) can be represented in the form

ξ =
∑
i

aiξi

where ξi ∈ X (Si), in particular, supp(ξi) ⊂ Si, and
∑

i ai = 1. Since the subset of
geodesic laminations on S which are supported in Si is closed with respect to the
Hausdorff topology, this implies that for any topology on X (S) which fulfills the
first requirement above, the subspace X (S1) ∗ · · · ∗ X (Sk) of X (S) is closed.
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The examples show that the requirement (1) determines completely and geomet-
rically the convergence of a sequence ξi ⊂ X (S) to a point ξ ∈ ∂CG(S) ⊂ X (S).

Example 3.3. In the case that S is a once punctured torus or a four punctured
sphere, then any non-trivial subsurface of S different from a pair of pants is an annu-
lus. This easily implies that the topology of X (S) is determined by the requirement
(1). Furthermore, it follows from Example 2.3 and the discussion in Example 3.1
that the space X (S) is naturally homeomorphic to the Gromov boundary of the
hyperbolic group Mod(S).

3.2. Product spaces. In this subsection we consider a collection Si (1 ≤ 1 ≤ k) of
pairwise disjoint proper subsurfaces of S. This collection determines the subspace

X (∪iSi) = X (S1) ∗ · · · ∗ X (Sk) ⊂ X (S).

Put

CG(∪iSi) = CG(S1)× · · · × CG(Sk).

Our goal is to define a topology on the union

Y(∪iSi) = CG(∪iSi) ∪ ∂CG(S1) ∗ · · · ∗ ∂CG(Sk) = CG(∪iSi) ∪ J (∪iSi)

which will be used in the construction of a topology on X (S).

Our main tool are complete markings of (not necessarily proper) essential sub-
surfaces S0 of the surface S. Such a marking consists of a pants decomposition P for
S0 together with a collection of spanning curves. For every component c of P , there
exists such a spanning curve which intersects c in the minimal number of points (one
or two) and is disjoint from all other pants curves. Two spanning curves may not
be disjoint, but we require that the number of their intersection points is bounded
from above by a universal constant. Since there are only finitely many topological
types of pants decompositions, this can clearly be achieved. There is a natural
way to equip the set of all markings on S0 with the structure of a locally finite
connected graph on which the mapping class group Mod(S0) of S0 acts properly
and cocompactly. We refer to [MM00] for more information on this construction.

Choose a marking µ on S as a basepoint for the proper cocompact action of
Mod(S) on the marking graph. For every subsurface S0 of S which is distinct from
a pair of pants or an annulus, this marking can be used to construct a marking
prS0

(µ) of S0 as follows.

There is a coarsely well defined subsurface projection

prS0
: CG(S) → CG(S0)

which associates to a simple closed curve c its intersection prS0
(c) = c∩S0 with S0

in the following sense. If c ⊂ S0 then put prS0
(c) = c, and if c is disjoint from S0

then put prS0
(c) = ∅. In all other cases, c ∩ S0 consists of a collection of pairwise

disjoint arcs with endpoints on the boundary of S0. We then put prS0
(c) = u for a

simple closed curve u in S0 which is obtained from one of these intersection arcs by
choosing a component of the boundary of a tubular neighborhood of the union of
the arc with the boundary components of S0 containing its endpoints. Informally,
we say that the simple closed curve is obtained by surgery on the arc.
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Given a marking µ for S, the union of the intersections of the marking curves with
S0 consists of a union of arcs and simple closed curves on S0 with pairwise uniformly
bounded intersection numbers which decompose S0 into simply connected regions.
Hence via deleting some of these arcs and modifying some arcs with a surgery to
simple closed curves as described in the previous paragraph, the projection of µ
into S0 coarsely defines a marking prS0

(µ) of S0 (there is a small abuse of notation
here), called the subsurface projection of µ [MM00]. Here a coarse definition means
that the construction depends on choices, but any two choices give rise to markings
which are uniformly close in the marking graph of S0, independent of the subsurface
S0.

If S0 is an annulus, then a similar construction applies. In this case a marking
consists of the choice of a marked point on each boundary component of S0 and
an embedded arc in S0 connecting the two distinct boundary components which
is disjoint from the marked points. With a bit of care, a subsurface projection is
defined for annuli as well. We refer to [MM00] for more information.

By the above discussion, for every subsurface S0 of S the marking µ coarsely
determines a basepoint for CG(S0) by choosing one of the marking curves (or arcs if
Si is an annulus) of prSi

(µ). As the intersection number between any two curves (or
arcs) of prSi

(µ) is uniformly bounded, the distance in the curve graph of Si between
xi and any other curve from prSi

(µ) or any other marking of Si constructed in the
same fashion from µ is uniformly bounded.

Let Min∪(S) be the space of geodesic laminations on S which are disjoint unions
of minimal components. Using the basepoint x0 for CG(S0), we can extend the
subsurface projection prS0

to all of Min∪(S) as follows. Let ν = ∪iνi ∈ Min∪(L).
Then there are three possibilities.

• If the lamination ν is disjoint from S0 up to homotopy, define prS0
(ν) = x0.

• If there exist components ν1, . . . , νℓ of ν which are contained in S0 then
define prS0

(ν) = ∪ℓ
i=1νi.

• If ν∩S0 consists of a collection of disjoint simple arcs with endpoints on the
boundary of S0 which coarsely define a point in CG(S0) then define prS0

(ν)
to be any one of these points.

Note that by the definition, prS0
is contained in Min∪(S0), and if ν is a disjoint

union of simple closed curves, then the same holds true for prS0
(ν).

Let again S = ∪k
i=1Si be a collection of pairwise disjoint subsurfaces of S. It

then follows from the above discussion that a choice µ of a marking of S coarsely
determines a basepoint x = (x1, . . . , xk) for the product space CG(∪iSi) consisting
of the product of the coarsely well defined basepoints xi ∈ CG(Si).

Recall from (1) the definition of the sets J (∪iSi). Since the curve graph CG(Si)
is a hyperbolic geodesic metric space, for every p > 1 and every p-quasi-geodesic ray
γ : [0,∞) → CG(Si), there exists a coarsely well defined shortest distance projection
Πγ : CG(Si) → γ which extends to the complement of the endpoint γ(∞) ∈ ∂CG(Si)
in ∂CG(Si).

Definition 3.4. Define a topology on Y(∪iSi) by the following requirements.



BOUNDARY 13

• The product space CG(∪iSi) is equipped with the product topology and is
an open subset of Y(∪iSi).

• The subspace J (∪iSi) is equipped with the topology as a join of the Gromov
boundaries of the curve graphs of Si.

• Let ξ =
∑

i aiξi ∈ ∂CG(S1) ∗ · · · ∗ ∂CG(Sk) and after reordering, assume
that ai > 0 for all i ≤ ℓ and ai = 0 for i > ℓ. A sequence of points
(yj1, . . . , y

j
k)j ⊂ CG(∪iSi) converges to ξ if the following three conditions

are fulfilled.
(1) For each i ≤ ℓ the components yji ∈ CG(Si) converge as j → ∞ to ξi

in the coarse Hausdorff topology (and hence they converge in CG(Si)∪
∂CG(Si) to ξi, see [H06]). In particular, we have dCG(Si)(y

j
i , xi) → ∞

(j → ∞).
(2) For all i ≤ ℓ denote by Πi the shortest distance projection of CG(Si)

onto a p-quasi-geodesic connecting the basepoint xi to ξi; then

dCG(Si)(Πi(y
j
i ), xi)

dCG(S1)(Π1(y
j
1), x1)

→ ai
a1

(j → ∞).

(3) Let i > ℓ and let V ⊂ Si be any subsurface; then

dCG(V )(prV (y
j
i ),prV (µ))

dCG(S1)(Π1(y
j
1), x1)

→ 0 (j → ∞).

Lemma 3.5. The notion of convergence in Definition 3.4 defines a topology on
Y(∪iSi) which restricts to the given topology on ∂CG(S1) ∗ · · · ∗ ∂CG(Sk) and on
CG(∪Si). The subspace ∂CG(S1) ∗ · · · ∗ ∂CG(Sk) is closed in Y(∪iSi).

Proof. Define a subset A of Y(∪iSi) to be closed if A1 = A ∩ CG(∪iSi) is closed,
A2 = A ∩ ∂CG(S1) ∗ · · · ∗ ∂CG(Sk) is closed and if furthermore the following holds
true. If yi ⊂ A1 is a sequence which converges in the sense described above to a
point y ∈ ∂CG(S1) ∗ · · · ∗ ∂CG(Sk), then y ∈ A2. Note that by definition, the empty
set is closed, and the same holds true for the total space.

We have to show that complements of closed sets defined in this way fulfill the
axioms of a topology, that is, they are stable under arbitrary unions and finite
intersections. Equivalently, the family of closed sets is stable under arbitrary inter-
sections and finite unions. As this holds true for the closed subsets of CG(∪iSi) and
for the closed subsets of J (∪iSi) = ∂CG(S1) ∗ · · · ∗ ∂CG(Sk), all we need to observe
is that taking arbitrary intersections and finite unions is consistent with the notion
of convergence of points in CG(∪iSi) to points in the join ∂CG(S1) ∗ · · · ∗ ∂CG(Sk)
in the sense of Definition 3.4.

Consistency with arbitrary intersections is straightforward. To show consistency
with taking finite unions let B1, . . . , Bℓ ⊂ Y(∪iSi) be closed in the above sense.
Let yj ⊂ ∪k(Bk∩CG(∪iSi)) be any sequence which converges to a point in J (∪iSi)
according to the definition of convergence. By passing to a subsequence, we may
assume that yj ∈ Bm for a fixed m ≤ ℓ and all j. As Bm is closed and the
subsequence also fulfills the requirements for convergence, its limit is contained in
Bm ⊂ ∪kBk. Hence indeed, the notion of a closed set is consistent with taking
finite unions. □
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3.3. Projections and a topology on X (S). For a disjoint union ∪k
i=1Si of sub-

surfaces of S define now

Z(∪iSi) = ∪IY(∪i∈ISi) ∗ J (∪j∈{1,...,k}\ISj)

where I runs through all (possibly empty) subsets of the index set {1, . . . , k}. Note
that for every I, the space Y(∪i∈ISi) ∗ J (∪j∈{1,...,k}\I ∪ Sj) contains J (∪k

i=1Si),
the join of the boundaries of the curve graphs of the surfaces Si. Furthermore,
Z(∪iSi) contains Y(∪i∈ISi) for all I ⊂ {1, . . . , k}.

Lemma 3.6. There exists a unique separable Hausdorff topology on Z(∪iSi) so
that a set U ⊂ Z(∪iSi) is open if and only if its intersection with each of the
subspaces Y(∪i∈ISi) ∗ J (∪j∈{1,...,k}\ISj) is open.

Proof. For every I ⊂ {1, . . . , k}, the set J (∪iSi) is a closed subspace of

Y(∪i∈ISi) ∗ J (∪j∈{1,...,k}\ISj),

equipped with the topology of a join. Thus the topology described in the lemma
is just the quotient topology on the quotient of the disjoint union of the spaces
Y(∪i∈ISi)

∗J (∪j∈{1,...,k}\ISj) by the closed equivalence relation which identifies
the points in the subspaces J (∪iSi). □

We next define a projection

prZ(∪Si) : X (S) → Z(∪iSi)

as follows. Let ξ =
∑m

j=1 ajξj ∈ X (S) with aj > 0 and
∑

j aj = 1 and write as be-

fore supp(ξ) = ∪jξj . After perhaps a reordering of the components ξj , assume that
for some u ≤ min{k,m} the components ξ1, . . . , ξu fill the subsurfaces S1, . . . , Su,
that is, they define points in ∂CG(Si), with the convention of remembering labels
of simple closed curves, and that for no j > u, the component ξj fills any of the
surfaces Si. As the components of supp(ξ) are disjoint, this implies that if s, t > u,
if i ∈ {u+1, . . . , k} and if the subsurface projections prSi

(ξs),prSi
(ξt) of ξs, ξt into

Si are not empty, then they are of uniformly bounded distance in CG(Si). Recall
that this makes sense even if ξs, ξt are different from simple closed curves.

Define

prZ(∪Si)(

m∑
j=1

ajξj) =

u∑
j=1

aiξj + (1−
u∑

j=1

aj)(prCG(∪i≥u+1Si)(∪j≥u+1ξj))

∈ CG(∪k
i=u+1Si) ∗ J (∪u

i=1Si).

Here the term on the right hand side is understood in the following sense. First,
if one of the surfaces Si (i ≤ u) is an annulus then the label of ξi is remembered
in prZ(∪iSi)(

∑
j ajξj). Second, for some ℓ ∈ {u + 1, . . . , k} let us consider the

subsurface Sℓ. If there exists some s > u such that ξs intersects Sℓ, then the
component in Sℓ of the projection prCG(∪i≥u+1Si)(∪j≥u+1ξj) is a point in CG(Sℓ).

Although this projection depends on choices, it is coarsely well defined, that is,
well defined up to a uniformly bounded error. If the lamination supp(ξ) = ∪iξi is
disjoint from the subsurface Sℓ, then the projection component is defined to be the
basepoint of CG(Sℓ) constructed from the base marking.
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Requirement 2: A sequence ξj =
∑

m ajmξ
j
m ⊂ X (S) converges to ζ =

∑k
i=1 biζi ∈

X (S) if the following holds true. Put Sk+1 = S \ ∪k
i=1; then

prZ(∪k+1
i=1 Si)

(ξjs) → ζ in Z(∪k+1
i=1 Si) ⊃ J (∪k+1

i=1 Si) ⊃ J (∪i≤kSi).

Remark 3.7. It follows from the above description that for this notion of conver-
gence, the following holds true. Let ξj be a sequence in X (S) consisting of minimal
geodesic laminations which converges to a point ζ =

∑
u buζu.

(a) The lamination supp(ζ) is a sublamination of the limit in the Hausdorff
topology of any convergent subsequence of the sequence supp(ξj).

(b) For each j let ηj be a minimal geodesic lamination disjoint from ξj (we allow
ηj = ξj) and let si ∈ [0, 1]. Then any limit of a convergent subsequence of
the sequence νj = siξ

j + (1− si)η
j is of the form sζ + (1− s)η where η is

a limit of a subsequence of the sequence ηj and where s ∈ [0, 1].

Definition 3.8. A subset A ⊂ X (S) is called closed for the geometric topology of
X (S) if the following holds true. Let ξi ⊂ A be any sequence which converges to a
point ξ ∈ X (S) in the sense described by the requirements (1),(2); then ξ ∈ A.

An embedding of a topological space X into a topological space Y is an injective
map f : X → Y which is a homeomorphism onto its image, equipped with the
subspace topology. Recall that for any collection S1, . . . , Sk of pairwise disjoint
subsurfaces of S, the space J (∪k

i=1Si) is equipped with a natural topology as a join
of the Gromov boundaries of the curve graphs of the subsurfaces Si. The following
statement is the first main step towards the proof of Theorem 4.

Proposition 3.9. (1) Closed subsets of X (S) in the sense of Definition 3.8
define a separable Hausdorff topology O on X (S).

(2) For any collection S1, . . . , Sk of pairwise disjoint subsurfaces, the natural
inclusion J (∪k

i=1Si) → (X (S),O) is an embedding.

Proof. Let O ⊂ X (S) be the family of all subsets of X (S) whose complement is
closed in the above sense. Sets in O are called open. We have to show that O
defines a topology on X (S).

As the empty set and the entire space X (S) are open, to show that O is indeed a
topology on X (S) it suffices to show that arbitrary unions of open sets are open, and
that finite intersections of open sets are open as well. Or, equivalently, arbitrary
intersections of closed sets are closed, and finite unions of closed sets are closed.
This can be established using exactly the same reasoning as in the proof of Lemma
3.5.

Namely, that the collection of closed sets is stable under arbitrary intersections
is immediate from the definition. So let B1, . . . , Bk be closed sets and let B = ∪iBi.
Choose a sequence ξi ⊂ B which converges in the sense of requirements (1)-(3) to
some point ζ. By passing to a subsequence, we may assume that ξi ∈ Bℓ for some
ℓ ≤ k and all i. But then ζ ∈ Bℓ ⊂ B as Bℓ is closed which completes the proof
that O is indeed a topology on O.
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We show next the second property claimed in the proposition. Thus let S1, . . . , Sk

be a collection of pairwise disjoint subsurfaces of S. Our goal is to show that the
inclusion J (∪k

i=1Si) → (X (S),O) is an embedding. Since the inclusion is injective,
and J (∪k

i=1Si) is a separable Hausdorff space, for this it suffices to show that
the inclusion is continuous and its image is locally closed. This is equivalent to
stating that a sequence ξj =

∑
i a

j
i ξ

j
i ⊂ J (∪k

i=1Si) converges in (X (S),O) to a
point ζ ∈ J (∪k

i=1Si) if and only if ξj converges in J (∪k
i=1Si) to ζ. However,

putting Sk+1 = S \ ∪iSi, this is immediate from the definition of the topology on

Z(∪k+1
i=1 Si) and the second requirement in the definition of convergence in X (S)

and shows the second part of the proposition.

Since each of the spaces J (∪k
i=1Si) is a finite join of separable metrizable spaces

(namely, the Gromov boundary of a curve graph of a subsurface of S) and hence
separable metrizable, the second part of the proposition implies that (X (S),O) is a
countable union of (in general not disjoint) separable metrizable spaces and hence
is separable.

To show that the topology is Hausdorff let ξ =
∑

i aiξi ̸= ζ =
∑

j bjζj ∈ X (S).
We have to show that ξ, ζ have disjoint neighborhoods.

If this is not the case, then any neighborhoods Uξ of ξ and Uζ of ζ intersect
nontrivially. Since X (S) is separable, and since points in X (S) are closed by con-
struction, we conclude that there is a sequence ξj ⊂ X (S) which converges both to
ξ, ζ. But for the notion of convergence used to define the topology O, the limit of
a converging sequence is unique. Thus O is indeed Hausdorff which completes the
proof the first part of the proposition. □

Example 3.10. i) Let φ ∈ Mod(S) be a pseudo-Anosov element. Then φ acts as
a loxodromic isometry on the curve graph of S, with attracting and repelling fixed
points ν+, ν− ∈ ∂CG(S). Let µ ∈ X (S) be any minimal geodesic lamination which
is distinct from the repelling fixed point ν− of φ. Then φjµ→ ν+ (j → ∞) in the
coarse Hausdorff topology and therefore φjµ→ ν+ in X (S).

ii) Now let us assume that S0 ⊂ S is a proper connected subsurface different from
an annulus and a pair of pants and that φ ∈ Mod(S) restricts to a pseudo-Anosov
mapping class on S0 and to the trivial mapping class on S−S0. Let ν+ ∈ ∂CG(S0)
be the attracting geodesic lamination for the action of φ on S0. Let furthermore
µ ̸= ν− ∈ X (S) be any minimal geodesic lamination on S which is different from
the repelling fixed point ν− for the action of φ on CG(S0). Then there are two
possibilities. In the first case, µ is supported in S − S0. Then we have φj(µ) = µ
for all j. However, if µ intersects S0, then either µ = ν± or µ intersects ν+ and we
have φj(µ) → ν+ (j → ∞) in X (S).

Namely, if µ intersects S0 then the subsurface projection of µ into any subsurface
disjoint from S0 is a collection of arcs intersecting ∂S0. In particular, the subsurface
projection into any subsurface V of S − S0 is a point of CG(V ). Since φ can be
represented by a diffeomorphism which fixes S − S0 pointwise, it acts trivially on
CG(V ) which yields the above statement.

Corollary 3.11. (X (S),O) is a Lindelöf space.
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Proof. We have to show that any open cover of X (S) has a countable subcover. To
this end let U be such an open cover. List the countably many spaces J (∪iSi) as
J1,J2, . . . . Since for each i, the space Ji is separable and metrizable, the restriction
of U to Ji, which is an open covering of Ji, has a countable subcover, say by sets
U1
i , U

2
i , . . . . The standard diagonal argument shows that the union V = ∪i,jU

j
i

consists of countably many sets, and for each i, the sets from V cover Ji. Since
X (S) = ∪iJi (as a set), this shows that V is a countable subcover of the cover U .
In other words, X (S) is a Lindelöf space as claimed. □

Proposition 3.12. (X (S),O) is compact.

Proof. As by Corollary 3.11, the space X (S) is a separable Lindelöf space, moreover
it is Hausdorff by Proposition 3.9, to show that X (S) is compact it suffices to show
that X (S) is sequentially compact.

Thus let ξj =
∑

i a
j
i ξ

j
i ⊂ X (S) be any sequence. We have to construct a con-

vergent subsequence. Since the space of geodesic laminations equipped with the
Hausdorff topology is compact, by passing to a subsequence we may assume that
the geodesic laminations supp(ξj) = ∪iξ

j
i converge in the Hausdorff topology to a

geodesic lamination ζ̂ with minimal components ζ1, . . . , ζk.

For each i ≤ k let Si ⊂ S be the subsurface of S filled by ζi. Assume by passing
to a subsequence that

ξj =

u∑
i=1

aji ξ
±
i +

∑
ℓ>u

ajℓξ
j
ℓ

for all j where for each i ≤ u, the component ξji fills Si and that none of the com-
ponents ξjs for s > u fills any of the surfaces Si. By passing to another subsequence,
we may assume that for i ≤ u, the labels ± of the components ζi are constant along
the sequence, and that the weights aji ∈ (0, 1] of the components ζi converge to

weights bi ≥ 0. In particular, the sums 1−
∑

i≤u a
j
i converge to 1−

∑
i≤u bi = κ.

Since supp(ξj) → ζ̂ in the Hausdorff topology, we know that for each i ≤ u,

the laminations ξji converge in the coarse Hausdorff topology to ζi and hence ξji
converges to ζi in ∂CG(Si). Thus if κ = 0 then by the definition of the topology on
X (S), we know that ξj →

∑u
i=1 biζi and we are done. Thus we are left with the

case κ > 0. Moreover, viewing ξj = (
∑

i≤u a
j
i ζi) + (

∑
i≥u+1 a

j
i ξ

j
i ) as points in the

join of two subspaces of X (S), using the above argument it now suffices to assume
that for no j there exists a component of supp(ξj) which fills any of the subsurfaces
Si.

Then for each i, we can consider the subsurface projection prSi
(supp(ξj)) of

supp(ξj) into the surface Si. Furthermore, by passing to another subsequence, we
may assume that for all j and all i ≤ k, this subsurface projection is non-empty
since the geodesic lamination ζi which fills Si is contained in the limit with respect
to the Hausdorff topology of the sequence of laminations supp(ξj). Put differently,
we may assume that for each i and all j, the subsurface projection prSi

(supp(ξj))

of the lamination supp(ξj) into the subsurface Si is a coarsely well defined point in
CG(Si). Furthermore, using once more that ζi fills Si and that ζi is contained in
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the Hausdorff limit of the sequence supp(ξj), if we denote by xi the fixed basepoint
in CG(Si), then we know that dCG(Si)(prSi

(supp(ξj)), xi) → ∞ (j → ∞).

By passing to another subsequence and reordering indices, we may assume that

aj1 = dCG(S1)(prS1
(supp(ξj)), x1) ≥ aji = dCG(Si)(prSi

(supp(ξj)), xi)

for all i ≥ 2 and all j. Passing to another subsequence, we may assume furthermore
that aji/a

j
1 → ai ∈ [0, 1] for all i ≥ 2. Put a1 = 1; then we have

∑
u au ≥ 1 and

hence defining bi = ai/
∑

u au > 0, we conclude that
∑

u bu = 1. It now follows
from the definition of the topology on X (S) that ξj →

∑
i biζi. This completes the

proof that X (S) is sequentially compact. □

Lemma 3.13. Mod(S) acts on X (S) as a group of transformations.

Proof. Observe first that by construction, Mod(S) acts on X (S) as a group of
bijections (equivalently, transformations for the discrete topology). Thus it suffices
to show that this action is continuous for the topology O.

By the definition of O, for this it suffices to show the following. Let ξj be a
sequence converging for the topology O to a point ξ. Then for every φ ∈ Mod(S),
the sequence φ(ξj) converges to φ(ξ).

That the first defining requirement for convergence is passed on to the image
sequence follows from continuity of the action of φ on the space of geodesic lami-
nations, equipped with the Hausdorff topology.

For the second requirement, if S1, . . . , Sk is a partition of S into disjoint subsur-
faces, then the same holds true for φ(S1), . . . , φ(Sk), and for any geodesic lamination
ν, we have prY(∪iφ(Si))(φ(ν)) = φ(prY(∪iSi)(ν)) up to replacing the basepoints yi
of CG(φ(Si)) by φ(xi). Note that φ also naturally acts on orientations of simple
closed curves on S as no oriented simple closed curve on S is freely homotopic to
its inverse and hence φ acts on labelled simple closed curves. As for all i, we have
dCG(φ(Si))(prφ(Si)(ξ

j), φ(xi)) = dCG(Si)(ξ
j , xi) → ∞ (j → ∞) and the determina-

tion of the weights of the limit points are computed using ratios of distances to the
basepoint defined by subsurface projections, with the distances tending to infinity
along the sequence, we conclude that the second requirement in the definition of
convergence is fulfilled for φ(ξi) if it is fulfilled for ξi. The same reasoning also
applies to the third requirement. Thus indeed, Mod(S) acts on X (S) as a group of
transformations and shows the lemma. □

Definition 3.14. The space (X (S),O) is called the geometric boundary of Mod(S).

Let us note another naturality property of the geometric boundary of Mod(S).
Namely, if S0 ⊂ S is any essential subsuface, then we can construct a geometric
boundary X (S0) for the mapping class group Mod(S0) of isotopy classes of home-
omorphisms of S0 fixing the boundary pointwise. As a set, this is a subset of the
geometric boundary of S which includes the Gromov boundary of the curve graph
for peripheral annuli. The above construction immediately yields

Corollary 3.15. If S0 ⊂ S is any subsurface of S, then the geometric boundary of
Mod(S0) is a closed subspace of the geometric boundary of Mod(S).
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4. A small boundary for Mod(S)

Define the complexity κ(S) of a connected surface of genus g ≥ 0 with m ≥ 0
holes (which can be boundary components or punctures) as

κ(S) = 3g − 3 +m

if S is not a sphere with two holes, e.g. an annulus. If S is an annulus then define
κ(S) = 0. If S = ⊔m

i=1Si is a disjoint union of connected surfaces Si then define
κ(S) =

∑
i κ(Si).

The purpose of this section is to set up an inductive procedure over the complex-
ity of the surface S to construct a topology on T (S) = Tϵ(S)∪X (S) which restricts
to the given topologies on Tϵ(S) and on X (S) and such that with respect to this
topology, T (S) is a compact Mod(S)-space. The construction of this topology is
carried out using Teichmüller geometry.

Remark 4.1. In [DHS17], there is a construction of a topology on Mod(S)∪X (S)
(where however the topology on X (S) differs from the one we introduced) using the
combinatorics of hierarchical hyperbolic spaces and such that with respect to this
topology, Mod(S) ∪ X (S) is compact. It is possible that the notion of consistence
we introduce below is related to the construction in [DHS17], but it is geared at
capturing features of Mod(S) which resemble properties of a CAT(0) group and is
not well adapted to hierarchical hyperbolicity, see however [DMS25].

4.1. The thick part of Teichmüller space. By the collar lemma for hyperbolic
surfaces, there exists a number ϵ0 > 0 with the following property. For any closed
hyperbolic surface Σg of genus g ≥ 2, any two closed geodesics γ1, γ2 on Σg of
length ℓ(γ1), ℓ(γ2) ≤ ϵ0 are disjoint.

Let syst : T (S) → (0,∞) be the systole function which associates to a point in
T (S) its systole, that is, the shortest length of a closed geodesic on S. For ϵ ≤ ϵ0
define the ϵ-thick part Tϵ(S) of the Teichmüller space T (S) of marked hyperbolic
metrics on S by

Tϵ(S) = {X ∈ T (S) | syst(X) ≥ ϵ}.
The following statement is well known. We refer to Proposition 1.1 of [JW10] for
an explicit account.

Theorem 4.2. For ϵ < ϵ0, the following holds.

(1) The subspace Tϵ(S) ⊂ T (S) is non-empty, closed, connected and stable
under Mod(S). Its quotient under the action of Mod(S) is compact.

(2) Tϵ(S) is a real-analytic manifold with corners and hence admits a Mod(S)-
invariant triangulation such that Mod(S)\Tϵ(S) is a finite CW -complex.

As a consequence, Tϵ(S) is a topological manifold with boundary and interior

T̊ϵ(S) = {X | syst(X) > ϵ} ⊂ Tϵ(S).

There is a coarsely well defined map

Υ : T (S) → CG(S)
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which maps a marked hyperbolic metric to a closed non-contractible curve of mini-
mal length. Coarsely well defined means that the map depends on choices, but the
images of a point X ∈ T (S) for any two choices of such a map are of distance at
most two.

Call a map Ψ : T (S) → T (S) coarsely Υ-invariant if d(Υ(Ψ(X)),Υ(X)) ≤ 2
for all X. The following is due to Ivanov [Iv02] if one replaces the mapping class
group by a torsion free subgroup. The full version is Theorem 1.2 of [JW10], see
also Theorem 3.9 of [J14].

Theorem 4.3 (Ji-Wolpert). For ϵ < ϵ0/3 there is a Mod(S)-equivariant coarsely
Υ-invariant deformation retraction T (S) → Tϵ(S).

The deformation retraction is constructed as follows. First Ji and Wolpert con-
struct a Mod(S)-invariant continuous uniquely integrable vector field V on T (S)
with the following properties (p.9 of [JW10]).

(1) V (syst) = 1 on {syst ≤ 2ϵ} and
(2) V vanishes on {syst ≥ 3ϵ}.

The deformation retraction is then given by the time ϵ-map of the flow defined by
V . Note however that the image of T (S) under this map is the interior of Tϵ(S).
Since the time ϵ map of a continuous flow is a homeomorphism, we obtain the
following statement as an immediate consequence.

Corollary 4.4. For every ϵ < ϵ0/3 there is a Mod(S)-equivariant homeomorphism

Λϵ : T (S) → T̊ϵ(S).

For our purpose, the difficulty arises that we need to construct contractible
subsets of Tϵ(S) and not of its interior. But the closure of a contractible open set in
a smooth manifold may not be contractible. The following construction will allow
us to address this issue.

Define the small closure Asmall of a subset A of T̊ϵ(S) to be the union of A with
the set of all points z ∈ ∂Tϵ(S) so that z has a neighborhood U in Tϵ(S) with
U ∩ (Tϵ(S) \ ∂Tϵ(S)) ⊂ A. Note that Asmall \A is an open subset of ∂Tϵ(S). More
precisely, we have.

Lemma 4.5. (1) The small closure in Tϵ(S) of an open subset of T̊ϵ(S) is open
in Tϵ(S).

(2) If U ⊂ Tϵ(S) is open, then U ⊂ U ∩ T̊ϵ(S)small.

Proof. If U ⊂ T̊ϵ(S) is open, then as T̊ϵ(S) ⊂ Tϵ(S) is open, a point x ∈ U ⊂ U small

has a neighborhood in Tϵ(S) which is contained in U .

On the other hand, if x ∈ U small \U then it follows from the definition of U small

that x has a neighborhood in Tϵ(S) entirely contained in U small. This shows the
first part of the lemma.

The second part of the lemma is immediate from the definitions. □
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Lemma 4.6. The small closure of a contractible subset of Tϵ(S) is contractible.

Proof. It suffices to deformation retract the small closure Asmall of a contractible
subset A of Tϵ(S) into A. The composition of this deformation retraction with a
deformation retraction of A to a point then shows that Asmall is contractible.

Since Tϵ(S) ⊂ T (S) is a manifold with corners, for z ∈ Asmall\A there is a neigh-
borhood of z in Asmall which is homeomorphic to the set B0 = {(x1, . . . , xn) ∈ Rn |∑

i x
2
i < 1, x1 ≥ 0}, with z corresponding to 0, and such that B0 ∩ {x1 > 0} ⊂ A.

There is a deformation retraction of B0 into B0\V where V is a small neighborhood
of 0 and such that the following two additional properties are satisfied. The time
one map of the deformation retraction is a homeomorphism onto its image, and the
support of this deformation retraction is contained in

∑
i x

2
i <

1
2 . Thus for every

z ∈ Asmall \ A there is a deformation retraction of Asmall which moves a neighbor-
hood of z in Asmall into A and such that the intersection of the resulting set with
∂Tϵ(S) is contained in the complement of a neighborhood of z in the intersection
of Asmall with ∂Tϵ(S).

Each compact subset K of Asmall \A ⊂ ∂Tϵ(S) can be covered by finitely many
open sets in Asmall which admit a deformation retraction into A. As the composition
of finitely many deformation retractions of Asmall is a deformation retraction, there
is a deformation retraction α of Asmall with α(Asmall)∩(Asmall\A) ⊂ Asmall\K. By
induction and using the fact that Asmall \A is an open subset of ∂Tϵ(S) and hence
has a countable basis, this implies that Asmall admits a deformation retraction into
A. From this the lemma follows. □

4.2. A topology on Tϵ(S) ∪ X (S). The construction of a topology on T (S) =
Tϵ(S) ∪ X (S) uses induction on the complexity κ(S) of the surface S. We begin
with having a short look at annuli, which are connected surfaces with κ = 0. The
only other connected surface S with κ(S) = 0 is the sphere with three holes which
plays no role for us as its mapping class group has a finite index subgroup which is
a direct product of the mapping class groups of its boundary annuli.

Example 4.7. In the case S is an annulus, then we have T (S) = R, X (S) =
{+,−}. If we equip T (S) with the topology of the compactification of R which is
homeomorphic to a compact interval and is obtained by attaching two points ±∞,
then this construction defines an EZ-structure for the infinite cyclic group of Dehn
twists along the core curve of the annulus.

Assume now that κ(S) ≥ 1. Then the Teichmüller space T (S) of S is of dimen-
sion at least two. There exists a constant ρ = ρ(S) > ϵ, a so-called Bers constant,
such that any marked hyperbolic surface X ∈ T (S) admits a pants decomposition
by simple closed curves of X-length at most ρ [Bu92]. If X ∈ Tϵ(S), then by possi-
bly enlarging ρ, we may in fact assume that X admits a marking µ(X) consisting
of simple closed curves of length at most ρ. We call such a marking short for X.

By the collar lemma [Bu92], the geometric intersection number between any
two simple closed curves on S of X-length at most ρ is bounded from above by a
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universal constant. In particular, the marking µ(X) defines a subset of uniformly
bounded diameter in CG(S) (see [MM99] for more information).

The marking curves from the marking µ(X) decompose S into disks. Thus for
every proper essential not necessarily connected subsurface S0 of S, the subsurface
projections of the marking curves from µ(X) decompose S into disks and hence they
coarsely define a marking prS0

(µ(X)) of S0. Here as before, the marking depends
on choices, but any two markings obtained in this way are of uniformly bounded
distance in the marking graph.

For a proper essential subsurface S0 of S denote by S∗
0 the finite type surface

obtained from S0 by replacing each boundary component by a puncture.

Lemma 4.8. For every proper essential subsurface S0 of S there exists a natural
coarsely well defined projection prS∗

0
: Tϵ(S) → Tϵ(S∗

0 ).

Proof. Choose for X ∈ Tϵ(S) a short marking µ(X) of S. We saw above that µ(X)
coarsely projects to a marking of S0 and hence of S∗

0 . On the other hand, by proper
discontinuity of the action of Mod(S∗

0 ) on Tϵ(S∗
0 ) and cocompactness, given a point

prS∗
0
(X) ⊂ Tϵ(S∗

0 ) for which this marking is short, any other such point is contained

in a uniformly bounded neighborhood of prS∗
0
(X). This construction thus defines

a projection as claimed in the lemma. □

The above lemma also is valid in the case that S0 is an annulus, where S∗
0 = S0

and as before, T (S0) = Tϵ(S∗
0 ) = R. Note that there is a natural identification

X (S0) = X (S∗
0 ) ∗ J (∂S0) where J (∂S0) is a join of two element spaces, one for

each boundary component of S0, so we can view X (S∗
0 ) as a subspace of X (S).

Definition 4.9. Let S0 ⊂ S be a proper not necessarily connected subsurface which
may have components which are annuli. A topology on T (S) is called consistent
with a topology on T (S∗

0 ) if the following holds true. If ξ ∈ X (S∗
0 ) ⊂ X (S) then

a sequence Xi ⊂ Tϵ(S) converges to ξ if prS∗
0
(Xi) → ξ in T (S∗

0 ). The topology is

called consistent if it is consistent with a family of topologies on T (S∗
0 ) for every

proper subsurface S0 of S.

Note that if S2 ⊂ S1 ⊂ S are nested essential subsurfaces, then by construction,
for every X ∈ Tϵ(S) the identity prS∗

2
(X) = prS∗

2
(prS∗

1
(X)) coarsely holds. As a

consequence, if the topology on T (S) is consistent, then the same holds true for
the topologies of T (S∗

0 ) for every essential subsurface S0 of S.

The following definition is geared at overcoming some purely technical difficulties
in the construction of an EZ-structure for Mod(S).

Definition 4.10. A topology on T (S) is called nice if every point ξ ∈ X (S) has a

neighborhood basis consisting of sets Uξ so that Uξ∩T̊ϵ(S) is open and contractible.
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Example 4.11. If S is a once punctured torus or a four-holed sphere, then we saw
in Example 3.3 that X (S) has a natural identification with the Gromov boundary
∂Mod(S) of the mapping class group of S. Recall that X (S) is a disjoint union of
the set ∂CG(S) of minimal filling geodesic laminations with the set of all labeled
simple closed curves.

Since Mod(S) is a hyperbolic group which acts properly and cocompactly on
Tϵ(S), the space T (S) has a natural topology which is inherited from the topology
of the union of Mod(S) with its Gromov boundary. The restrictions of this topology
to the subsets Tϵ(S) and X (S) are the given topologies.

Any proper essential subsurface of S is an annulus. Let A ⊂ S be such an
annulus. We claim that the topology of T (S) is consistent with the topology of the
compactification R ∪ {±∞} of the Teichmüller space T (A).

Namely, let c be the core curve of A and let c+ ∈ X (S) be the curve c equipped
with a label. Denote by ⟨Tc⟩ the infinite cyclic group of Dehn twists about c and
assume that c+ corresponds to the limit point of the sequence T k

c as k → ∞. Note
that ⟨Tc⟩ is a quasi-convex subgroup of Mod(S). Let X ∈ Tϵ(S) be an arbitrary
point. With respect to the topology of Mod(S) ∪ ∂Mod(S) as the union of a
hyperbolic group with its Gromov boundary, a sequence of points Xi = φi(X) ⊂
Tϵ(S) for φi ∈ Mod(S) converges to c+ ∈ X (S) if the shortest distance projections
of the elements φi into the quasi-convex infinite cyclic subgroup ⟨Tc⟩ converge to
c+. Translated into properties of the subsurface projections of points in the Farey
graph, this just means that the topology on T (S) is consistent.

We can also check that the topology is nice. Namely, recall that Tϵ(S) can be
identified with the complement in the hyperbolic plane H2 of a Mod(S) invariant
countable collection of horoballs whose closures are pairwise disjoint. The horoballs
are based at the rational points of ∂H2 and are fixed by an infinite cyclic subgroup
of Mod(S) of parabolic isometries.

Let H ⊂ H2 be such a horoball, with boundary ∂H, fixed by the parabolic
group G ⊂ Mod(S). Let η : R → ∂H be a parameterization of ∂H by arc length.
The geodesics in H2 which are asymptotic to the fixed point of G in ∂H2 foliate
H2 and determine a shortest distance projection P : H2 \ H̊ → ∂H. The set

Um = P−1(η(m,∞))\η(m,∞) is contractible and intersects T̊ϵ(S) in a contractible
open set whose small closure is a neighborhood of the labeled point η(∞) = c+.
These neighborhoods define a countable neighborhood basis of c+ which are small

closures of contractible open subsets of T̊ϵ(S).

Alternatively, let Vm ⊃ Um be the union of all leaves of the foliation which pass
through η(m,∞). Clearly Vm is contractible. The small closures of the images of the

sets Vm under the homeomorphism T (S) → T̊ϵ(S) then define another neighborhood
basis of c+ in the above topology of T (S) consisting of small closures of contractible

open subsets of T̊ϵ(S).

As neighborhood bases of minimal filling laminations will be discussed in detail
in a more general context, we omit the discussion here.
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If S = ⊔k
i=1Si is a disconnected surface of finite type, then a hyperbolic metric on

S is a hyperbolic metric on each component Si of S. In this vein, the Teichmüller

space T (S) =
∏k

i=1 T (Si) is the product of the Teichmüller spaces of the compo-

nents, and the mapping class group Mod(S) =
∏k

i=1 Mod(Si) is the direct product

of the mapping class groups of the surfaces Si. Put T (S) =
∏

Tϵ(Si) ∪ X (⊔iSi)
where as before, X (⊔iSi) is the join of the spaces X (Si).

The following is a more precise version of the third part of Theorem 4. In its
formulation, we do not require S to be connected.

Theorem 4.12. For a surface S of finite type there exists a topology on T (S) with
the following properties.

(1) The topology is nice and consistent.

(2) Let ξ =
∑k

i=1 aiξi ∈ X (S) and let Sk+1 = S \ ∪k
i=1Si. A sequence Xj ⊂

Tϵ(S) converges to ξ if and only if (prS1
(µ(Xj)), . . . ,prSk+1

(µ(Xj))) → ξ

in Y(∪k+1
i=1 Si).

(3) The pair (T (S),X (S)) is an EZ-structure for Mod(S).

Remark 4.13. Indirectly, consistency is a consequence of the second property in
the theorem. The formulation of the theorem was chosen to keep the technical
aspects of this article as simple as possible.

The remainder of this article is devoted to the proof of Theorem 4.12.

We proceed by induction on the complexity κ(S) of S. Example 4.7 and Example
4.11 cover the case of a connected surface of complexity κ(S) ≤ 1. In Subsection 7.2
we shall establish Theorem 4.12 for all possibly disconnected surfaces of complexity
κ(S) = 0, that is, for disjoint unions of annuli. This allows to use induction on
the complexity of the surface. For the remainder of this section, we assume that
Theorem 4.12 is known for all surfaces of complexity at most k−1 for some k−1 ≥ 0,
and we use this assumption to set up the induction step. To this end consider a
connected surface S of finite type and complexity κ(S) = k.

We show next that this notion of convergence gives indeed rise to a topology on
Tϵ(S) ∪ X (S).

Proposition 4.14. There exists a Hausdorff topology O0 on T (S) = Tϵ(S)∪X (S)
with the property that a set A ⊂ T (S) is closed for O0 if and only if the following
holds true.

(1) A ∩ Tϵ(S) is closed in Tϵ(S), and A ∩ X (S) is closed in X (S).
(2) If Xj ⊂ A ∩ Tϵ(S) is a sequence which converges to ξ ∈ X (S) in the sense

of (2) of Theorem 4.12, then ξ ∈ A.

Proof. The proof is analogous to the proof of Lemma 3.5. By the Hausdorff property
of Tϵ(S) and Lemma 3.5, note first that any limit of a convergent sequence Xj ⊂
Tϵ(S) is unique.
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To show that the notion of convergence defines a topology on T (S) with the
property that Tϵ(S) ⊂ T (S) is open and a set A ⊂ T (S) is closed if A ∩ Tϵ(S)
and A ∩ X (S) are closed and if A contains the limit of any sequence Xj ⊂ T (S)
which converges to a point in X (S), it suffices to verify that the empty set and
the entire space are closed, and the same holds true for finite unions and arbitrary
intersections of closed sets. The verification that this is satisfied is identical to the
argument used in the proof of Lemma 3.5.

Finally we have to show that the topology thus constructed is Hausdorff. Since
X (S) ⊂ T (S) is a closed Hausdorff space and Tϵ(S) ⊂ T (S) is an open Hausdorff
subspace of T (S), all we need to show is that two points ξ ̸= η ∈ X (S) have
disjoint neighborhoods. Now ξ, η have disjoint neighborhoods in X (S) and hence
since T (S) is separable, it suffices to show that the limit of any sequence Xi ⊂ Tϵ(S)
converging to a point in X (S) is unique. But this was established in the beginning
of this proof. □

Assume from now on that T (S) is equipped with the topology defined in Propo-
sition 4.14. We have to verify that this topology satisfies the properties stated in
Theorem 4.12. The following proposition is the first step.

Proposition 4.15. The topological space (T (S),O0) has the following properties.

(1) T (S) is compact and separable.
(2) The mapping class group acts on T (S) as a group of transformations.

Proof. T (S) is clearly separable since this holds true for X (S) and Tϵ(S). By
Proposition 4.14, it is a Hausdorff space.

To show that T (S) is compact, note that since X (S) is compact and Tϵ(S) is a
Lindelöf space, the space T (S) is Lindelöf. Since T (S) also is Hausdorff, it suffices
to show that T (S) is sequentially compact, and this follows if we can show that
any sequence Xi ⊂ Tϵ(S) has a convergent subsequence in T (S).

If the sequence has a bounded subsequence in Tϵ(S) with respect to a fixed base-
point X ∈ Tϵ(S), then as Tϵ(S) is proper, we can extract a converging subsequence.
Thus it suffices to show the following

Claim: Any unbounded sequence in Tϵ(S) admits a subsequence which converges
in T (S) to a point ξ ∈ X (S).

Proof of the claim: The proof of the claim is essemtially identical with the proof of
Proposition 3.12.

Since the space of geodesic laminations on S equipped with the Hausdorff topol-
ogy is compact, by extracting a subsequence we may assume that the sets of all
simple closed curves contained in the marking µ(Xi) converge in the Hausdorff
topology to a finite union ∪ℓ

j=1βj of (not necessarily minimal) geodesic lamina-
tions. Note that as some of the curves in µ(Xi) may intersect, these laminations
are not necessarily disjoint, that is, ∪ℓ

j=1βj may not be a lamination in its own
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right. However, since the number of components of µ(Xi) is uniformly bounded,
the same holds true for the number of limit laminations.

Let ζ1, . . . , ζs be the collection of all minimal components of the laminations βu
which are distinct from simple closed curves. The number of such components is
finite. Each of the laminations ζj fills a subsurface Sj of S which is different from
an annulus or a pair of pants. Thus ζj is a point in the Gromov boundary of the
curve graph CG(Sj) of Sj .

Now for j ≤ s, a sequence cji of simple closed curves on the surface Sj converges

to ζj in CG(Sj) ∪ ∂CG(Sj) if and only if their geodesic representatives cji for some
fixed hyperbolic metric on Sj converge to ζj in the coarse Hausdorff topology. As
the diameter of the subsurface projection of µ(Xi) to Sj is bounded independent of
i, hyperbolicity of CG(Sj) implies that the subsurface projection to Sj of any of the
curves in µ(Xi) which intersects Sj converges in the coarse Hausdorff topology to
ζj . As a consequence, none of the limits in the Hausdorff topology of any sequence
of components of µ(Xi) can intersect ζj .

By a similar argument, if ζj is a closed curve component, then we can consider the
subsurface projections of a component of µ(Xi) to an annulus A(ζj) with core curve
ζj . Up to passing to a further subsequence, we may assume that these projections
are either bounded along the sequence, or converge to one of the two boundary
components of the curve graph of A(ζj). In the first case call ζj unlabeled. In the
second case, label ζj with the corresponding point in the Gromov boundary of the
curve graph of A(ζj) and note by the reasoning used in the previous paragraph, no
labeled simple closed curve component ζj can be intersected by another component
ζℓ.

By reordering, let ζ1, . . . , ζk be the components of the limit laminations βu which
either are distinct from simple closed curves or which are labeled simple closed
curves. We claim that k ≥ 1, that is, that there is at least one lamination with
this property. Namely, if c is an unlabeled simple closed curve, represented by a
closed geodesic for the base surface X, and if with respect to the Hausdorff topology
on compact subsets of X a limit of the sequence µ(Xi) contains c as a unlabeled
component, then no component of a limit of the sequence µ(Xi) in the Hausdorff
topology can spiral about c and hence c is a component of µ(Xi) for all but finitely
many i. If k = 0 then this holds true for any limit point of the sequence µ(Xi) in the
Hausdorff topology. But µ(Xi) is.a marking of S for all i and hence decomposes
S into disks and once punctured disks and consequently the sequence µ(Xi) is
bounded. But this contradicts the assumption that the sequence Xi ⊂ Tϵ(S) is an
unbounded sequence.

By what we showed so far, ζ̂ = ∪k
j=1ζk is a geodesic lamination. Furthermore, if

Sj is the subsurface of S filled by ζj , then dCG(Sj)(prSj
(µ(Xi)), xj) → ∞ where as

before, xj ∈ CG(Sj) is a fixed basepoint for CG(Sj).

If ζ̂ is minimal and fills S then Xi → ζ̂ ∈ T (S) and we are done. Otherwise we
use the induction hypothesis which yields the following. Let Sk+1 = S \∪jSj , then
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there is a topology on T (∪jS
∗
j ) ∪ X (∪jS

∗
j ) with the properties stated in Theorem

4.12, in particular T (∪jS
∗
j ) is compact and metrizable.

As a consequence, by passing to a subsequence we may assume that pr∪jS∗
j
(Xi)

converges to a point in T (∪iS
∗
i ). It follows from the above discussion that this

point ξ is contained in X (∪iS
∗
i ). But then by consistency, we have Xi → ξ ∈ T (S)

which completes the proof of the claim. ■

To summarize, we showed that T (S) is sequentially compact Hausdorff Lindelöf
space and hence it is compact.

We are left with showing that Mod(S) acts on T (S) as a group of transforma-
tions. However, as Mod(S) acts on Tϵ(S) and on X (S) as a group of transfor-
mations, and it maps subsurfaces of S to subsurfaces of the same topological type,
moreover the definition of convergence which determines the topology O0 is natural
with respect to the action of Mod(S) on subsurfaces and subsurface projections,
this is indeed the case. The proposition is proven. □

Theorem 4.16. X (S) is a small boundary for Mod(S). A pseudo-Anosov mapping
class acts on X (S) with north-south dynamics. In particular, the action of Mod(S)
on X (S) is strongly proximal.

Proof. We showed so far that X (S) defines a boundary of Tϵ(S) and hence of
Mod(S) since Mod(S) acts properly and cocompactly on Tϵ(S). Furthermore, a
pseudo-Anosov element acts on X (S) with north-south dynamics and hence the
action of Mod(S) on X (S) is strongly proximal.

We are left with showing that the right action of Mod(S) induces the identity.
However, this action just consists of a change of basepoint. As a sequence of points
of uniformly bounded distance from a convergent sequence converges to the same
point, this yields the statement of the theorem. □

5. Metrizability

The goal of this section is to show the following result.

Theorem 5.1. (T (S),O0) is metrizable.

The strategy for the proof consists in the construction of an explicit neighborhood
basis in T (S) for every point ξ ∈ X (S). The statement of the theorem then follows
with standard tools.

By [MM99], for any surface V of finite type there is a number p > 0 only depend-
ing on the complexity of V such that the image under the map Υ of a Teichmüller
geodesic γ : R → T (S) is an unparameterized p-quasi-geodesic in CG(V ). This
means the following. There is an increasing homeomorphism σ : (a, b) ⊂ R → R
such that the map Υ ◦ γ ◦ σ : (a, b) → CG(S) is a p-quasi-geodesic. This quasi-
geodesic may be bounded, one-sided infinite or two-sided infinite. A sufficient but
not necessary condition for being one-sided infinite in the positive direction is that
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the geodesic recurs in the positive direction to the thick part Tϵ(S) for arbitrarily
large times. Since the directions of Teichmüller geodesic rays with this property
are dense in the cotangent bundle of Teichmüller space, up to increasing p, any
geodesic segment α : [0, n] → CG(S) can be extended to a p-quasi-geodesic ray
α : [0,∞) → CG(S).

Consider first a point ξ ∈ ∂CG(S). Choose a basepoint X0 ∈ Tϵ(S) and let c be
a pants curve from µ(X0). For j ≥ 0 define

W (ξ, j) ⊂ Tϵ(S)

to be the set of all hyperbolic metrics X ∈ Tϵ(S) with the following properties.

(1) dCG(S)(µ(X), c) ≥ j.
(2) A geodesic in CG(S) connecting c to µ(X) can be extended to a p-quasi-

geodesic in CG(S) whose endpoint is contained in the ball of radius e−j

about ξ in ∂CG(S), where the metric on ∂CG(Si) is the Gromov distance
dc constructed from the basepoint c.

If ξ =
∑k

i=1 aiξi where the lamination ξi fills a proper subsurface Si of S then
put Sk+1 = S \ ∪iSi. Using the induction hypothesis and consistency, choose a
countable neighborhood basis Vj of ξ in T (∪iS

∗
i ) and define

W (ξ, j) = {X ∈ Tϵ(S) | pr∪iS∗
i
(X) ∈ Vj}.

Then we have

Proposition 5.2. For each ξ, j the closures of W (ξ, j) in T (S) define a neighbor-
hood basis of ξ in T (S).

Proof. We show first that for each ξ, j the closure of W (ξ, j) in T (S) is a neighbor-
hood of ξ. Since Tϵ(S) is dense in T (S) and by Proposition 4.15, T (S) is a compact
separable Hausdorff space, it suffices to show the following. Let (Xℓ) ⊂ Tϵ(S) be a
sequence converging in T (S) to ξ; then Xℓ ∈W (ξ, j) for all sufficiently large ℓ.

Now if ξ ∈ ∂CG(S) then by the definition of the topology of T (S), we know that
µ(Xℓ) → ξ in CG(S)∪ ∂CG(S). But this immediately implies that Xℓ ∈W (ξ, j) for
all sufficiently large ℓ.

Similarly, if ξ =
∑

i aiξi then pr∪iSi
(Xℓ) → ξ in T (∪iS

∗
i ) and hence by the

definition of the sets W (ξ, j) we also have Xℓ ∈W (ξ, j) for all sufficiently large ℓ.

A similar argument also shows that the sets W (ξ, j) define a neighborhood basis
of ξ. Namely, we may assume that the sets W (ξ, j) are nested : If m > j, then
W (ξ,m) ⊂ W (ξ, j). Thus since X (S) is a compact Hausdorff space, to show that

the closures W (ξ, j) in T (S) of the sets W (ξ, j) define a neighborhood basis of ξ in

T (S), it suffices to show that ∩j>0W (ξ, j) = {ξ}.

To see that this is indeed the case note first that ξ ∈W (ξ, j) for all j and hence
as these sets are compact, the point ξ also is contained in the intersection of these
sets. Furthermore, the following holds true.
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For each ℓ let Xℓ ∈ W (ξ, ℓ); if ξ ∈ ∂CG(S) then the distance of µ(Xℓ) to the
base curve c in CG(S) tends to infinity with ℓ. This implies that the sequence Xℓ

can not have a convergent subsequence in Tϵ(S). Thus by compactness of T (S),
up to passing to a subsequence, the sequence converges to a point in X (S). It then
follows from the definitions that this point equals ξ.

The case ξ =
∑

i aiξi follows in exactly the same way from the consistency and
will be omitted. □

We are now ready to show

Proposition 5.3. T (S) is metrizable.

Proof. By Uryson’s theorem, a second countable Hausdorff space is metrizable. As
by Proposition 4.15 the space T (S) is Hausdorff, it suffices to show that T (S) is
second countable. Since Tϵ(S) is second countable, this is the case if there exist
countably many open sets Ui ⊂ T (S) which contain a neighborhood basis for any
point x ∈ X (S).

Since the Hausdorff topology on geodesic laminations is metrizable, there exists
a countable dense subset {ξi | i} ⊂ ∂CG(S). For each i, j let W̊ (i, j) be the interior

of the set W (ξi, j) ⊂ T (S) and put

WS = {W̊ (i, j) | i, j}
which is a countable collection of open sets.

We claim that the sets from the collection WS contain a neighborhood basis
of every point in ∂CG(S) ⊂ X (S). To this end let U ⊂ T (S) be open and let
ξ ∈ ∂CG(S) ∩ U . By Proposition 5.2 there exists some j so that W (ξ, j) ⊂ U .
By the fact that the set {ξi | i} is dense in ∂CG(S) and standard consequences
of hyperbolicity of CG(S), there exists some i and some ℓ > 10j so that the set
W (ξi, ℓ) is a neighborhood of ξ contained in W (ξ, j) which is what we wanted to
show.

Second, for a proper essential subsurface S0 ∈ S choose a countable basis {Vj | j}
of the topology of T (S∗

0 ) which exists by the induction hypothesis. Then the sets
{X | prS∗

0
(X) ∈ Vi} defines a countable neighborhood basis of X (S∗

0 ) in T (S). Since

there are only countably many subsurfaces in S, and we have X (S) = ∂CG(S) ∪⋃
V X (V ∗), this shows that T (S) is indeed second countable and completes the

proof of the proposition. □

6. Dimensions and smallness

We showed so far that the pair (T (S),X (S)) is a pair of compact metrizable
spaces, with X (S) nowhere dense in T (S). In this section we show that these
spaces are finite dimensional and that the collection of all translates of a compact
set in X form a null sequence in T (S). Throughout we assume that S is connected,
of genus g ≥ 0 with m ≥ 0 punctures. The extension of the results in this section
to disconnected surfaces is straightforward.



30 URSULA HAMENSTÄDT

Recall that the covering dimension of a topological space X is the minimum of
the numbers n ≥ 0 so that the following holds true. Any open cover U of X has a
refinement V so that a point in X is contained in at most n+ 1 of the sets V ∈ V.
With this terminology, the covering dimension of Rn is n, and hence the covering
dimension of any subset of Rn equipped with the subspace topology is at most n.
In particular, the covering dimension of T (S) equals 6g − 6 + 2m.

The following result relies on work of Gabai [Ga14], see also [BB19].

Proposition 6.1. The covering dimension of X (S) is finite

Proof. We proceed by induction on the complexity of the surface S. If S is an
annulus, then its geometric boundary consists of two points and there is nothing to
show.

Consider next a four-holed sphere or a one-holed torus S. By Example 2.3 and
Example 3.3, the geometric boundary as a topological space is homeomorphic to the
Gromov boundary of the hyperbolic group PSL(2,Z). Since the group PSL(2,Z) is
virtually free, the boundary X (S) of S is a Cantor set, which has covering dimension
zero.

Let X and Y be compact spaces with covering dimensions m,n. We claim that
the covering dimension of the join X ∗ Y is at most m+ n+ 1. To see that this is
the case recall that X ∗ Y is the quotient of X × Y × [0, 1] under an equivalence
relation ∼ which is only nontrivial on X×Y ×{0} and X×Y ×{1}. The projection
X×Y ×[0, 1] → X×Y ×[0, 1]/ ∼mapsX×Y ×{0} toX×{0} and mapsX×Y ×{1}
to Y × {1}. Thus we have X ∗ Y = X ∪ Y ∪ C where X ⊂ X ∗ Y is the closed set
which is the quotient of X × Y × {0}, Y ⊂ X ∗ Y is the closed set which is the
quotient of X × Y × {1}, and the set C is homeomorphic to X × Y × (0, 1).

By Alexandrov’s definition of dimension (see Theorem 3.4 of [Dr18]), we have
dim(A × B) ≤ dim(A) + dim(B) and hence dim(C) ≤ dim(X) + dim(Y ) + 1.
The compact space X ∗ Y is the union of the closed subset X ∪ Y with C and
hence the theorem of Menger and Uryson (see Theorem 3.1 of [Dr18]) shows that
dim(X ∗ Y ) = dim(C) ≤ dim(X) + dim(Y ) + 1 = m+ n+ 1 as claimed.

Assume now that the proposition was established for all surfaces of complexity
at most k − 1. Let S be a surface of complexity k. We have X (S) = ∂CG(S) ∪ Y
(disjoint union) where Y = ∪X (S1) ∗ · · · ∗ X (Sp) and the union in the definition of
Y is over all disjoint collections of proper subsurfaces S1, . . . , Sp of S. The union
Y is not disjoint.

The number of disjoint surfaces in one of the joins appearing in the definition of Y
is uniformly bounded in terms of k. Thus by the induction hypothesis and the above
dimension estimate for joins, applied inductively, there exists a number n > 0 which
bounds from above the covering dimension of each of the sets X (S1) ∗ · · · ∗ X (Sp).
Example 3.2 shows that as subsets of X (S), the sets X (S1) ∗ · · · ∗ X (Sp) are closed
and hence compact. As a consequence, the subspace Y of X (S), equipped with
the induced topology, is a σ-compact Hausdorff space as it is a countable union of
compact spaces.
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If K ⊂ Y is compact, then K can be represented as a countable union of the
compact spacesK∩X (S1)∗· · ·∗X (Sp). Then the countable union theorem Theorem
3.2 of [Dr18] shows that dim(K) = sup{dim(K ∩ X (S1) ∗ · · · ∗ X (Sp))} where the
supremum is over all disjoint unions of proper subsurfaces of S. By the above
estimate for the dimension of the spaces X (S1) ∗ · · · ∗ X (Sp), we have

dim(K ∩ X (S1) ∗ · · · ∗ X (Sp)) ≤ n

for any such intersection. But then the dimension of Y is at most n (see p.316 of
[Mu14] for a sketch of a proof).

Following [Ga14], the covering dimension of ∂CG(S) is at most 4g−5+2m. Then
by the Uryson-Menger formula (see Theorem 3.3 of [Dr18]), the dimension of the
compactum X (S) is at most

dim(X (S)) = dim(∂CG(S)) + dim(Y) + 1

and hence it is finite. □

As a consequence, we obtain

Corollary 6.2. The pair (T (S),X (S)) is a pair of spaces of finite dimension.

Proof. By Proposition 6.1, the dimension of X (S) is finite. As the compactum
T (S) = Tϵ(S)∪X (S) is a union of two subspaces of finite dimension, with X (S) ⊂
T (S) closed, we have

dim(T (S)) = max{dim(Tϵ(S),dim(X (S))} <∞.

□

We now verify the requirement (4) in the definition of a Z-set.

Proposition 6.3. The action of Mod(S) on T (S) is U-small for every open cov-
ering U of T (S).

Proof. Let U be an open covering of T (S). By compactness, we may extract a
finite subcovering, so we may assume that U is in fact finite, that is, we have
U = ∪0≤i≤mUi for some open sets Ui ⊂ T (S). Assume without loss of generality
that Ui ∩ X (S) ̸= ∅ for all i ≥ 1.

We argue now by contradiction and we assume that there exists a compact set
K ⊂ T ϵ(S) and infinitely many elements φi ∈ Γ such that giK ̸⊂ Uj for all
j ≤ m. Since the action of Γ on Q is proper and cocompact, we may assume that
K = ∪ℓ

j=1ψjK0 where K0 is a compact fundamental domain for the action of Γ
and ψj ∈ Γ.

Let X ∈ K0. Since the action of Γ on Q is proper and T (S) is compact, we
conclude that up to passing to a subsequence, the sequence φiX converges in T (S)
to a point ξ ∈ X (S). Since the right action of Γ on itself extends to the trivial action
on X (S), we then have φi(ψjX) → ξ for all j ≤ ℓ. In particular, for sufficiently
large i, we have φi(ψjX) ∈ Up for some fixed p > 0. But then it follows from the

definition of the topology on T (S) that in fact φiK → ξ and hence φiK ⊂ Up for
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all sufficiently large p. This is a contradiction which completes the proof of the
proposition. □

7. Neighborhood bases

The main goal of this section is to construct for a point in X (S) ⊂ T (S) an
explicit neighborhood basis in T (S) consisting of small closures of open contractible

subsets of T̊ϵ(S). Note that the neighborhood basis we constructed in Section 5 does
not seem to consist of sets with this property. However, the neighborhoods from
that basis will be used in our construction. Here by a contractible subset of Tϵ(S) we
mean a subset V which is a contractible space with respect to the subspace topology.
This result then completes the proof of Theorem 4.12 and hence of Theorem 4. The
construction is the most involved part of the proof. It is carried out in three steps,
each of which is contained in a separate subsection. The first two steps do not rely
on an induction hypothesis and are used in the third subsection to complete the
inductive construction of a topology on T (S) with the properties stated in Theorem
4.12.

7.1. A neighborhood basis for minimal filling laminations. In this subsec-
tion we prove the following result.

Proposition 7.1. Every point ξ ∈ ∂CG(S) ⊂ X (S) has a countable neighborhood
basis in T (S) consisting of sets whose intersections with Tϵ(S) are small closures

of contractible open subsets of T̊ϵ(S).

The proof of Proposition 7.1 introduces the ideas used in the general case, but it
is technically easier. To set it up, note that any minimal filling geodesic lamination
ξ decomposes S into a union of ideal polygons. Each of these polygons which is not
an ideal triangle can be subdivided by adding isolated leaves which connect two
non-adjacent cusps of the polygon. The various ways to subdivide these polygons
determine a finite collection ξ0, . . . , ξk of distinct geodesic laminations which contain
ξ as a sublamination. Assume that ξ0 = ξ.

Let dH be the Hausdorff metric on the space of compact subsets of a fixed
hyperbolic surface X ∈ Tϵ(S). Denote as before by Min∪(L) the space of geodesic
laminations on X which are unions of disjoint minimal components. Equivalently,
the only isolated leaves of a geodesic lamination in Min∪(L) are simple closed
curves. As before, let supp : X (S) → Min∪(L) be the map which associates to a
point

∑
i aiξi (ai > 0) the support supp(ξ) = ∪iξi. We have

Lemma 7.2. For i > 0 let

Ui = ∪j{β ∈ Min∪(L) | dH(β, ξj) ≤ 1/i}

and write Vi = {ζ ∈ X (S) | supp(ζ) ∈ Ui}. Then the sets Vi form a neighborhood
basis of ξ ∈ ∂CG(S) ⊂ X (S) in X (S).
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Proof. Clearly ξ ∈ Vi for all i. We first show that for each i the set Vi is a
neighborhood of ξ. For this we argue by contradiction and we assume that there
exists some i such that this is not the case. Then there exists a sequence ζj ⊂ X (S)
such that ζj → ξ and such that ζj ̸∈ Vi for all j.

By the first requirement for convergence in the definition of the topology on
X (S), we know that supp(ζj) converges in the coarse Hausdorff topology to ξ0 =
supp(ξ). By compactness of the space of compact subsets of S with respect to the
Hausdorff topology, by passing to a subsequence we may assume that the sequence
supp(ζj) converges in the Hausdorff topology to a geodesic lamination ζ. Then ζ
contains ξ0 as a sublamination and hence ζ = ξs for some s ≤ k. By definition,
this implies that supp(ζj) ∈ Ui and hence ζj ∈ Vi for all sufficiently large j, a
contradiction. This shows that indeed, each of the sets Vi is a neighborhood of ξ.

To show that the sets Vi form a neighborhood basis for ξ, note that Vi+1 ⊂ Vi
and hence it suffices to show that ∩iVi = {ξ}. However, this is immediate from the
definitions and the fact that the preimage of supp(ξ) under the support map supp
which associates to ζ ∈ X (S) its support consists of the single point ξ. □

A measured geodesic lamination on the surface S is a geodesic lamination to-
gether with a transverse invariant measure. The space ML of measured geo-
desic laminations is equipped with the weak∗ topology. The quotient of ML un-
der the natural action of (0,∞) by scaling is the space PML of projective mea-
sured geodesic laminations. This space is homeomorphic to the sphere S6g−7+2m.
To put Lemma 7.2 into proper context and for later use, we relate the subset
∂CG(S) ⊂ X (S) ⊂ T (S) to the space PML.

To this end we use a more geometric view on PML. Fix again a pointX ∈ Tϵ(S).
The cotangent space T ∗

XT (S) of Teichmüller space at X can be identified with the
space of measured geodesic laminations on S. Or, equivalently, by the Hubbard
Masur theorem, every measured geodesic lamination ν on S is the vertical measured
geodesic lamination of a unique marked quadratic differential q(ν) for the complex
structure on S defined by X. With this identification, we can associate to ν ∈ ML
the point γν(1) where γν : [0,∞) → T (S) is the Teichmüller geodesic starting at X
whose initial (co)-velocity γ′ν(0) is the quadratic differential with vertical measured
geodesic lamination ν. This construction defines the Teichmüller exponential map
expX : ML∪ {0} → T (S) at X which is a homeomorphism.

The area area(q(ν)) of the flat metric defined by q(ν) defines a norm on ML
depending on X. Associating to [ν] ∈ PML the unique measured lamination
ρ([ν]) with the property that the area of q(ρ[ν]) equals one then defines a section
ρ : PML → ML. In this way we can identify PML with the sphere of unit
directions for the Teichmüller metric.

The support supp(ν) of a measured geodesic lamination ν is a point in the space
Min∪(L). Each of its components is equipped with a transverse invariant measure
and hence it is a measured geodesic lamination in its own right.

Let p > 1 be a control constant with the following properties.
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• The image under the map Υ of any Teichmüller geodesic is an unparame-
terized p-quasi-geodesic in CG(S) (see [MM99]).

• Every geodesic segment in CG(S) can be extended to a p-quasi-geodesic ray.

Consider as before a minimal filling geodesic lamination ξ ∈ ∂CG(S). Let
P (ξ) ⊂ PML be the set of all projective measured geodesic laminations which are
supported in ξ. This is a non-empty compact polytope of dimension ≤ 3g − 3 +m
whose extreme points are the ergodic projective transverse measures supported in
ξ. In particular, P (ξ) is compact and contractible. Since P (ξ) is contractible and
since PML is homeomorphic to a sphere of dimension 6g − 7 + 2m, we can find a
descending chain V1 ⊃ V2 ⊃ · · · of closed contractible neighborhoods of P (ξ), each

of which is homeomorphic to a closed ball, such that Vi+1 ⊂ V̊i and ∩jVj = P (ξ).

In the sequel we use the terminology small closure Āsmall in T (S) of a set A ⊂
Tϵ(S) to denote the union of the small closure of A in Tϵ(S) with the intersection
with X (S) of the closure Ā of A in T (S). Thus for any set A ⊂ Tϵ(S), Āsmall∩X (S)
is closed, but Āsmall ∩ Tϵ(S) may be open.

Lemma 7.3. Let V1 ⊃ V2 ⊃ · · · be a descending chain of closed contractible
neighborhoods of P (ξ) in PML, each of which is homeomorphic to a closed ball,

with ∩iVi = P (ξ). Let Λϵ : T (S) → T̊ϵ(S) be the homeomorphism from Proposition
4.4 and let expX : ML ∪ {0} → T (S) be the Teichmüller exponential map at X.

Then for each j > 0, the small closure Z(i, j)small in T (S) of the open set

Z(i, j) = Λϵ{expX(ν) | area(ρ[ν]) > j, [ν] ∈ V̊i}
is a neighborhood of ξ, and neighborhoods of this form define a neighborhood basis
of ξ.

Proof. We divide the proof of the lemma into two claims.

Claim 1: For all i, j, the small closure Z(i, j)small of Z(i, j) in T (S) is a neighbor-
hood of ξ.

Proof of Claim 1: By the definition of the topology on T (S) and the fact that T̊ϵ(S)
is dense in T (S), it suffices to show the following. Let Yℓ ⊂ T̊ϵ(S) be a sequence
converging to ξ; then for any fixed (i, j), we have Yℓ ∈ Z(i, j) for all sufficiently
large ℓ.

Let FML ⊂ PML be the subset of all projective measured geodesic laminations
whose support is a minimal geodesic lamination which fills up S. By Lemma 3.2 of
[H09], the support map F : FML → ∂C(S) which associates to a point in FML its

support is continuous and closed. Thus the image F (FML \ V̊i) is a closed subset
of ∂CG(S) which does not contain ξ. As a consequence, there exists a number
T (i) > 0 so that the ball of radius e−T (i) about ξ with respect to the Gromov

metric on ∂CG(S) based at Υ(X) ∈ CG(S) is disjoint from F (FML \ V̊i).

By the choice of the control constant p > 1 and hyperbolicity, there exists a
number τ(i) > T (i) with the following property. Let [ν] ∈ FML \ V̊i; then the
endpoint of a p-quasi-geodesic ray in CG(S) with starts at the basepoint Υ(X) and
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which passes through a point on the p-quasi-geodesic Υ{expX(tρ[ν]) | t ≥ 0} of
distance at least τ(i) to Υ(X) (provided that such a point exists) is not contained
in the ball of radius e−T (i)/2 about ξ.

Since the homeomorphism Λϵ : T (S) → T̊ϵ(S) is coarsely Υ-invariant, the map
expX : ML ∪ {0} → T (S) is a homeomorphism and FML ⊂ PML is dense, it
follows that for all i, j there exists ℓ so that the neighborhood W (ξ, ℓ) of ξ in T (S)
constructed in Proposition 5.2 is contained in the closure of the set Λϵ({expX(tρ[ν]) |
t ≥ j, [ν] ∈ V̊i}). Thus by Proposition 5.2, Z(i, j)small is a neighborhood of ξ in

T (S). ■

The proof of the lemma is completed once we established the following. In its
formulation, Z(i, j) is the closure of Z(i, j) in T (S).

Claim 2: Let W be a neighborhood of ξ in T (S); then there exists some i, j so

that Z(i, j) ⊂W .

Proof of Claim 2: By Claim 1, each of the sets Z(i, j) is a neighborhood of ξ and
hence contains ξ. Furthermore, these neighborhoods are nested: If i1 ≤ i2 and
j1 ≤ j2 then Z(i1, j1) ⊃ Z(i2, j2). Thus since the sets Z(i, j) are moreover closed

and hence compact, it suffices to show that ∩i,jZ(i, j) = {ξ}.

Since the Teichmüller exponential map expX at X is a homeomorphism, we

clearly have ∩i,jZ(i, j) ⊂ X (S). On the other hand, the map Υ : T (S) → CG(S)
is coarsely Lipschitz, and for ν ∈ P (ξ), the p-quasigeodesic t → Υ(exp(tρ[ν]))
has infinite diameter. This implies that for any k > 0 there are numbers i(k) >
0,m(k) > 0 so that for all [η] ∈ Vi(k), the diameter of the image under Υ of the
Teichmüller geodesic segment expX([0,m(k)]ρ[η]) is at least k. As a consequence, if

Xi ∈ Z(i, i) for each i, then by compactness of T (S), up to passing to a subsequence
the sequence Xi converges to a point ζ ∈ X (S) ∩ ∂CG(S). That this point has to
coincide with ξ is an immediate consequence of the discussion in the proof of Claim
1 above. This completes the proof of the claim. ■ □

Lemma 7.4. The sets Z(i, j)small ∩ Tϵ(S) are contractible.

Proof. Since for each i the set V̊i is a contractible subset of the set of projectivized
measured geodesic laminations, identified with the unit sphere in the cotangent
space of T (S) at X, the set

H(i, j) = ∪[ν]∈Vi
{expX(tρ[ν]) | t > j} ⊂ T (S)

is open and contractible since it is homeomorphic to V̊i× (j,∞). This uses the fact
that the Teichmüller exponential map at X is a homeomorphism of T ∗

XT (S) onto
T (S).

But Z(i, j) is the image of H(i, j) under the homeomorphism Λϵ : T (S) → T̊ϵ(S)
and hence Z(i, j) is contractible. Then by Lemma 4.6, the small closure of Z(i, j)
in T (S) is contractible as well. □
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Proof of Proposition 7.1. The small closure of Z(i, j)small of Z(i, j) in T (S) is a

neighborhood of ξ which is the small closure of a contractible open subset T̊ϵ(S) and
hence contractible. The countably many such sets define a countable neighborhood
basis of ξ in T (S) whence the proposition. □

7.2. Neighborhoods of minimal filling laminations for disconnected sur-
faces. In this section we consider a disjoint union S = ⊔k

i=1Si of finitely many
connected surfaces of finite type. Our goal is to construct for any point in

E = ∂CG(S1) ∗ · · · ∗ ∂CG(Sk) ⊂ X (S)

a neighborhood basis in T (S) consisting of sets whose intersections with Tϵ(S) are
small closures of open contractible subsets of T̊ϵ(S).

Remark 7.5. In [Ti11], it was shown that if two groups Γ1,Γ2 admit EZ-structures
(X1, Z1) and (X2, Z2), then the direct product Γ1 × Γ2 admits an EZ-structure
consisting of a compactification of the product (X1 \Z1)× (X2 \Z2) by adding the
join Z1 ∗ Z2. Unfortunately, we can not use this result directly as we need more
precise information for the proof of Theorem 4.12.

The set E is the set of sums
∑

i aiξi where ξi ∈ ∂CG(Si) and ai ≥ 0,
∑

i ai = 1,
Recall from Section 7.1 that for each i the choice of the basepoint Xi determines a
section ρi : PML(Si) → ML(Si). Let xi ∈ CG(Si) be a component of the pants
decomposition of µ(Xi). For simplicity of notation, call a function f : R → R
coarsely non-decreasing, with control constant q > 0, if we have f(t) ≥ f(s)− q for
all s ≤ t. Then for every projective measured geodesic lamination [νi] on Si the
function

t→ dCG(Si)(Υ(expXi
(tρi[νi])), xi)

is coarsely non-decreasing, with control constant only depending on the complexity
of Si [MM99]. The following was shown in [H09].

Lemma 7.6. There exists a continuous function

δxi
: T (Si) → [0,∞)

which is at uniformly bounded distance from the function Yi → dCG(Si)(Υ(Yi), xi).

To construct open contractible subsets of
∏

T̊ϵ(Si) whose closures define neigh-
borhoods of

∑
i aiξi in T (∪iSi), we shall control the speed of progress in the curve

graph of each of the surfaces Si. To this end note that by Lemma 7.6, for every
Teichmüller geodesic γ : R → T (Si) starting at the fixed basepoint Xi, the function
t → δxi(γ(t)) is coarsely non-decreasing and continuous. We use this to construct
a new parameterization of a Teichmüller geodesic starting from Xi which encapsu-
lates its progress in the curve graph. The construction is based on the following
elementary observation. Here the distance between two functions f, g : J ⊂ R → R
is defined as ∥f − g∥ = sup{|f(t)− g(t)| | t}.

Lemma 7.7. Let f : Rn → [0,∞) be a continuous function whose restriction to
each ray t → tx (x ∈ Sn−1 ⊂ Rn) is coarsely non-decreasing, with fixed control
constant q > 0. Then

u = inf{g | g ≥ f, g continuous, non-decreasing on rays}
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is non-decreasing on rays, continuous and at distance at most q from f .

Proof. For x ∈ Sn−1 and t ≥ 0 put

u(tx) = max{f(sx) | s ≤ t}.

This makes sense since f is continuous. By definition, u is non-decreasing on rays,
u ≥ f and u− f ≤ q as f is coarsely non-decreasing.

Since f is continuous, it is also immediate that u is continuous. This shows the
lemma. □

Let fi be the function on TXi
T (Si) ∼ Rmi constructed in Lemma 7.7 from the

function δxi◦expXi
. For each [ν] ∈ PML(Si) the restriction of the function fi to the

ray tρi[ν] (t ∈ (0,∞)) is non-decreasing, but it may be constant on arbitrarily large
intervals. However, by replacing fi by fi + αi where αi(tρi[ν]) = a(t) for a smooth
strictly increasing function [0,∞) → [0, 1), we may assume that the function fi has
the following properties.

(1) The function fi : TXiT (Si) → [0,∞) is continuous and strictly increasing
on rays starting at 0.

(2) sup |fi − δxi
◦ expXi

| ≤ q + 1.

In particular, if fi|{tρi[ν] | t ∈ (0,∞)} is unbounded, then fi|{tρi[ν] | t} is a
homeomorphism onto [0,∞).

Put τ [ν] = sup{fi(tρi[ν]) | t}. Note that τ [ν] = ∞ if the support of the geodesic
lamination [ν] on Si fills Si.

Since fi is continuous and its restriction to each ray {tρ[ν] | t ≥ 0} is a homeo-
morphism onto [0, τ [ν]), it can be inverted. We then can define a function g[ν] on
[0, τ [ν]) by

g[ν](t) = (fi|{tρ[ν] | t})−1.

Using this function, we obtain a parameterization t → γ̂[ν](t) of the Teichmüller
geodesic t→ expXi

(tρ[ν]) on the interval [0, τ [ν]) by defining

(3) γ̂[ν](t) = expXi
(g[ν](t)).

With this definition, we know that |dCG(Si)(xi, γ̂[ν](t)) − t| ≤ b where b > 0 is a
universal constant not depending on t or i.

Let ξ =
∑

i aiξi ∈ X (∪iSi) be such that ξi ∈ ∂CG(Si) for all i. Assume by
reordering that there exists a number ℓ ≤ k such that ai > 0 if and only if i ≤ ℓ.
For 1 ≤ i ≤ ℓ let V i

1 ⊃ V i
2 ⊃ · · · be a closed descending chain of contractible

neighborhoods of the polytope P (ξi) of projective measured geodesic laminations
supported in ξi in the sphere PML(Si) of projective measured geodesic laminations
on Si. If Si is an annulus, then by convention, PML(Si) consists of two points. We
assume that each of the sets V i

j is homeomorphic to a closed ball and that for each

j ≥ 1 there exists a deformation retraction Ri
j : V i

j → V i
j+1 which maps V i

j \ V i
j+1

into V i
j+1 \ V i

j+2. We also may assume that there exists an increasing sequence
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m(j) → ∞ so that for every i ≤ ℓ and every [ν] ∈ V i
j the following properties are

satisfied.

(1) τ [ν] ≥ 2m(j).
(2) If the support of ζ ∈ V i

j is minimal and fills, and if c is a shortest distance
projection of supp(ζ) into a p-quasi-geodesic connecting the basepoint xi
to ξi, then dCG(Si)(c, xi) ≥ 2m(j).

Recall to this end that τ [ν] = ∞ for every ν ∈ P (ξi) since ξi is minimal and
filling by assumption, and that a shortest distance projection of CG(Si) into any
p-quasigeodesic connecting xi to ξi extends to ∂CG(Si) \ ξi.

For a pair of points X,Y ∈ T (Si) define

d̂T (X,Y ) = max{dCG(V )(prV (µ(X)),prV (µ(Y ))) | V }

where the maximum is over all subsurfaces V of Si and µ(X), µ(Y ) are short mark-
ings.

Theorem 7.8 (Theorem B of [R14]). For any Teichmüller geodesic γ : [0,∞) →
T (Si), the function t→ d̂T (γ(0), γ(t)) is coarsely non-decreasing with control con-
stant not depending on γ.

Proof. By Theorem B of [R14], there is a number p > 0 only depending on the
complexity of S such that for every subsurface V of S, the image under the map
prV ◦ µ of a Teichmüller geodesic γ : R → T (S) is an unparameterized p-quasi-
geodesic in CG(V ). This means the following. There is an increasing homeomor-
phism σ : (a, b) ⊂ R → R such that the map prV ◦ µ ◦ γ ◦ σ : (a, b) → CG(V ) is
a p-quasi-geodesic. This quasi-geodesic may be bounded, one-sided infinite or two-
sided infinite. Since CG(V ) is a hyperbolic geodesic metric space, this implies that
the path t → prV ◦ µ ◦ γ(t) coarsely does not backtrack: There exists a universal
constant q > 0 not depending on the subsurface V such that for 0 ≤ s ≤ t, it holds

dCG(V )(prV (µ(γ(0))),prV (µ(γ(t)))) ≥ dCG(V )(prV (µ(γ(0))),prV (µ(γ(s))))− b.

As the projections prV (µ(X)) only coarsely determine a point in the curve graph
of V , the distances in this formula are only coarsely well defined, but this does not
affect the validity of the estimate.

As a consequence, for every subsurface V of Si and every Teichmüller geodesic
γ : [0,∞) → T (Si) the function

t→ dCG(V )(prV (µ(γ(0))),prV (µ(γ(t))))

is coarsely non-decreasing, with control constant q not depending on V . Then the

same holds true for d̂T . □

The following proposition is the technically most involved part of the proof of
our main theorem. In its formulation, we denote by Λi = Λϵ,i : T (Si) → T̊ϵ(Si) a
homeomorphism as constructed in Proposition 4.4. Then Λϵ =

∏
Λi,ϵ is a homeo-

morphism of
∏

T (Si) onto
∏

T̊ϵ(Si).
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Proposition 7.9. Assume that ξ =
∑k

i=1 aiξi is such that ξi ∈ ∂CG(Si) for all i.
For integers j, n ≥ 1 and for δ > 0 there is an open subset E(j, n, δ) of

∏
T (Si)

with the following property.

(1) E(j, n, δ) is contractible.
(2) E(j, n, δ) ⊂ E(j′, n′, δ′) for j ≥ j′, n ≥ n′, δ ≤ δ′.
(3) The small closures of the sets ΛϵE(j, n, δ) (j ≥ 1, n ≥ 1, δ > 0) in T (∪iSi)

define a neighborhood basis of ξ.

Proof. Assume by reordering that for some 1 ≤ ℓ ≤ k we have ai > 0 if and only if
i ≤ ℓ. For i ≤ ℓ let V i

j be as above. For each [νi] ∈ V i
j choose a parameterization

of the geodesic t→ expXi
(tσ[νi]) on [0, τ [νi]) as constructed in equation (3) above.

Note that by the choice of the constants m(j), the domain of definition of this pa-
rameterization contains the interval [0,m(j)], and the restriction of this parameter-
ization to [0,m(j)] depends continuously on [νi]. Denote by γ̂[νi] : [0, τ [νi]) → T (Si)
this parameterization.

Theorem 7.8 shows that for any Teichmüller geodesic γ : [0,∞) → T (Si), the

function t → d̂T (γ(0), γ(t)) is coarsely non-decreasing, with fixed control constant

q > 0. Put d̃T (γ(0), γ(t)) = sups≤t d̂T (γ(0), γ(s)). By uniqueness of Teichmüller
geodesics between any pair of points, this defines a function T (Si)×T (Si) → [0,∞)
which however may not be symmetric. For any Teichmüller geodesic γ, the function
t→ d̃T (γ(0), γ(t)) is non-decreasing.

For an ℓ-tuple (j1, . . . , jℓ) ∈ Nℓ put m(j1, . . . , jℓ) = min{m(ji) | i}. For i ≤ ℓ

and j ≥ 1 put V̂ i
j = V i

j \ V i
j+1. For ([ν1], . . . , [νℓ]) ∈ V̂ 1

j1
× · · · × V̂ ℓ

jℓ
and δ > 0,

n < m(j1 − 1, . . . , jℓ − 1)/2 define

F (n, δ, [ν1], . . . , [νℓ]) = {(γ̂[ν1](t1), γ̂[ν2](t2), . . . , γ̂[νℓ](tℓ), zℓ+1, . . . , zk) ∈
∏

T (Si) |
ti ≥ n, |ti/t1 − ai/a1| ≤ δ if ti < m(j1 − 1, . . . , jℓ − 1) for i ≤ ℓ,

d̃T (Si)(zi, Xi) < δt1 for i ≥ ℓ+ 1}.

Claim: The set Φ(j, n, δ) = ∪[νi]∈V i
j
F (n, δ, [ν1], . . . , [νℓ]) is contractible for every

n ≤ m(j1 − 1, . . . , jℓ − 1).

Proof of the claim. Note first that if (z1, . . . , zℓ, zℓ+1, . . . , zk) ∈ Φ(j, n, δ) then
the same holds true for (z1, . . . , zℓ, z

′
ℓ+1, . . . , z

′
k) for any z′i which is contained in

the Teichmüller geodesic connecting Xi to zi and all i ≥ ℓ + 1. Thus retracting
component wise the last k− ℓ components zi to the basepoint Xi (i ≥ ℓ+ 1) along
the unique Teichmüller geodesic connecting Xi to zi and keeping the remaining
components fixed defines a retraction of Φ(j, n, δ) to Φ(j, n, δ)∩{(z1, . . . , zk) | zi =
Xi for ℓ+1 ≤ i ≤ k}. In particular, in the remainder of the construction, it suffices
to assume that ℓ = k.

Next observe that Φ(j +1, n, δ) ⊂ Φ(j, n, δ) for all j, n, δ. We construct a homo-
topy of Φ(j, n, δ) into its subset Φ(j + 1, n, δ) as follows.
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The set

S(m(j − 1)) = {(t1, . . . , tk) ∈ [n,∞)k | |ti/t1 − ai/a1| ≤ δ if ti < m(j − 1)∀i}

admits a deformation retraction onto its subset

S(m(j)) = {(t1, . . . , tk) ∈ [n,∞)k | |ti/t1 − ai/a1| ≤ δ if ti < m(j)∀i}.

Namely, define a homotopy h : [0, 1]× [n,∞) → [n,∞) by

h(u, t) =

{
min{t(1− u+ u(m(j)/m(j − 1))),m(j)} if t < m(j)

t if t ≥ m(j).

Then for any t1, t2 ∈ [n,m(j − 1)) and u with h(u, t1) < m(j), h(u, t2) < m(j)
we have h(u, t1)/h(u, t2) = t1/t2. As a consequence, the map (u, (t1, . . . , tk)) →
(h(u, t1), . . . , h(u, tk)) preserves S(m(j−1)), and it defines a homotopy of S(m(j−
1)) into S(m(j)).

Composing this deformation of the domain S(m(j − 1)) into S(m(j)) with the
map

(t1, . . . , tk) → (γ̂[ν1](t1), . . . , γ̂[νk](tk))

defines a homotopy of Φ(j, n, δ) into its subset

Ξ = Φ(j, n, δ) ∩ {(γ̂[ν1](t1), . . . γ̂[νk](tk)) | |ti/t1 − ai/a1| ≤ δ if ti < m(j)∀i}.

The deformation retractions Ri
j : [0, 1[×V i

j → V i
j of V i

j onto Ri
j(V

i
j ×{1}) = V i

j+1

induce a deformation retraction

Rj : [0, 1]× V 1
j × · · · × V k

j → V 1
j × · · · × V k

j

onto V 1
j+1×· · ·×V k

j+1 by applying the deformation retractions Ri
j component wise.

Since for each i, the image of V i
j \ V i

j+1 is contained in V i
j+1 \ V i

j+2, we obtain a
deformation retraction of Ξ onto its subset Φ(j + 1, n, δ) by defining

(s, (γ[ν1](t1), . . . , γ[νk](tk))) → (γR1
j (s,[ν1])(t1), . . . , γRk

j (s,[νk])
(tk)).

The composition of these two homotopies yields a homotopy of Φ(j, n, δ) into Φ(j+
1, n, δ).

Now ∩jΦ(j, n, δ) = ∪[νi]∈P (ξi)F (n, δ, [ν1], . . . , [νk]), and since P (ξi) is contractible
for all i, this set is contractible as well. This completes the proof of the claim. ■

So far we constructed from a tuple of contractible neighborhoods V j
i (j =

1, . . . , k) and numbers j > 0, δ > 0 a contractible subset Φ(j, n, δ) of T (S) =∏
T (Si). We aim at using these sets to construct contractible neighborhoods of ξ

in T (∪iSi).

Claim: For fixed (j, n, δ), if Xℓ ⊂
∏

Tϵ(Si) is a sequence converging to ξ, then

Xℓ ∈ ΛϵΦ(j, n, δ) for large enough ℓ.

Proof of the claim: Let Xu = (Xu
1 , . . . , X

u
k ) ⊂

∏
Tϵ(Si) be a sequence converging

to ξ. We show first that Xu ∈ Φ(j, n, δ) for large enough u.
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For i ≤ ℓ let [νi] ∈ PML(Si) be such that supp([νi]) = ξi. Let γ̂i : [0,∞) →
CG(Si) be the p-quasi-geodesic constructed as a reparameterization of the Te-
ichmüller geodesic γi(t) = Υ(expXi

t[νi]) as before and let Πi : CG(Si) → γ̂i be
a shortest distance projection. We then have

(4) dCG(Si)(Πi(Υ(Xi)),Πi(Υ(Xu
i )))/dCG(S1)(Π1(Υ(X1)),Π1(Υ(Xu

1 ))) → ai/a1.

Furthermore, for i ≥ ℓ+ 1 it holds

(5) d̂T (Xi, X
u
i )/min

i≤ℓ
dCG(Si)(Πi(Υ(Xi)),Πi(Υ(Xu

1 ))) → 0.

Let [ηui ] ∈ PML(Si) and tui ≥ 0 be such that Xu
i = γ̂[ηu

i ]
(tui ). Then for all

i ≤ ℓ, we have tui → ∞ (u → ∞), moreover by Lemma 7.3 and its proof, it holds
[ηui ] → P (ξi) (u → ∞). Thus for large enough u and all i ≤ ℓ, there is some

j(i, u) ≥ 1 so that [ηui ] ∈ V̂ i
j(i,u). As tui → ∞ (u→ ∞) for all i, equation (5) shows

that for sufficiently large u and all i ≥ ℓ+1 we have d̂T (Xi, X
u
i ) < mini≤ℓ δt

u
i /2. By

the definition of the set Φ(j, n, δ), this implies that Xu ∈ Φ(j, n, δ) for large enough
u if and only if this holds true for (Xu

1 , . . . , X
u
ℓ , Xi+1, . . . , Xk) (here as before, Xi

is the basepoint). Consequently we obtain as in the beginning of this proof that it
suffices to assume that ai > 0 for all i ≤ k. Thus assume from now on that ℓ = k.

For large enough u put n(u) = m(j(1, u) − 1, . . . , j(k, u) − 1). If tui ≤ n(u) for
all u, then by the choice of the constants m(j), the shortest distance projections
of Υ(Xu

i ) into a p-quasi-geodesic γi connecting the basepoint xi to ξ is uniformly
close to Υ(Xu

i ). By perhaps increasing u, it then follows from (4) that the point
Xu = (Xu

1 , . . . , X
u
k ) is contained in the set Φ(j, n, δ). Otherwise Xu is contained

in Φ(j, n, δ) because there is no constraint on the distance ratios in the definition
of the sets F (n, δ, [ηu1 ], . . . , [η

u
k ]) provided that tui ≥ m(j) for at least one i. From

this we deduce that indeed, we have Xu ∈ Φ(j, n, δ) for large u.

We are left with deducing that in fact Xu ∈ Λϵ(Φ(j, n, δ)). However, the map
Λϵ = Λ1,ϵ × · · · ×Λk,ϵ is coarsely Υ-invariant for each i. As the defining properties
of the sets Φ(j, n, δ) only depend on distances in the curve graph of the surfaces Si,

we conclude that Xu ∈ Λϵ(Φ(j, n, δ)) for large u. ■

We are left with showing that the closures ΛϵΦ(j, n, δ) of the sets ΛϵΦ(j, n, δ)
form a neighborhood basis of ξ in T (∪iSi). Since by Proposition 4.15 and Theorem
5.1 the space T (∪iSi) is compact and metrizable, to this end it suffices to show

that the intersection ∩j,n,δΛϵΦ(j, n, δ) = {ξ}. As ξ clearly is contained in this
intersection, it suffices to show that it is unique with this property.

Following the reasoning in the proof of Lemma 7.3, note that

∩ΛϵΦ(j, n, δ) ∩
∏

T (Si) = ∅.

Namely, since the map Υ is coarsely Lipschitz, for all j this set only contains
points which project to tuples of points of Teichmüller distance at least an to the
basepoint (X1, . . . , Xk) where a > 0 is a universal constant. But this immediately
implies that the closures of the intersections of the sets Φ(j, n, δ) do not contain
points in

∏
T (Si).
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In the same way we see that ξ is the unique boundary point by letting j tend to
infinity and letting δ → 0. □

Corollary 7.10. Each ξ =
∑

i aiξi ∈ E admits a neighborhood basis in T (∪iSi)

consisting of small closures of open contractible subsets of
∏

T̊ϵ(Si).

Proof. Let E1 ⊃ E2 ⊃ . . . be a countable neighborhood basis of ξ ∈ X (∪iSu)

consisting of open sets whose intersections with
∏

T̊ϵ(Si) are contractible. Then
the small closure of Ej in T (S) is contractible, and it is the intersection with∏

Tϵ(Si) of a neighborhood of ξ in T (∪iSi). These sets form a neighborhood basis
of ξ with the properties stated in the corollary. □

Since a surface of complexity zero is a disjoint union of annuli, whose geomet-
ric boundary consists of two points, we obtain as an immediate consequence of
Corollary 7.10

Corollary 7.11. Theorem 4.12 holds for surfaces of complexity zero.

7.3. The induction step: Neighborhoods of arbitrary points. In this section
we complete the proof of Theorem 4.12. We proceed by induction on the complexity
κ(S) of the possibly disconnected surface S. Corollary 7.11 contains the case κ(S) =
0, so assume that Theorem 4.12 has been established for all surfaces of complexity
at most k − 1 for some k − 1 ≥ 0. Let S be a possibly disconnected surface of
complexity κ(S) = k. By Section 7.1 and Section 7.2, we are left with constructing

neighborhood bases for points ξ =
∑k

i=1 aiξi ∈ X (S) where each ξi fills a proper
subsurface Si of S (which may be a connected component of S) and that furthermore
there exists at least one i such that ξi does not fill a connected component of S.
In particular, supp(ξ) fills a subsurface of S with the property that there exists at
least one non-peripheral simple closed curve c ⊂ S contained in the boundary of
supp(ξ).

Let c be such a simple closed curve. Then Sc = S \ c is a (possibly disconnected)
surface of complexity k − 1 and (with a small abuse of notation) we can write
S = Sc ⊔ Ac where Ac is the annulus with core curve c. We then can view ξ as an
element in the geometric boundary of the disconnected surface S∗

c ⊔ Ac. Since the
complexity of Sc is at most k− 1, by the induction hypothesis, Theorem 4.12 holds
true for Sc ⊔Ac.

The infinite cyclic group generated by the left Dehn twist Tc about c equals the
mapping class group of Ac. The stabilizer Stab(c) of c in the mapping class group
Mod(S) fits into the exact sequence

(6) 1 → ⟨Tc⟩ → Stab(c) → Mod(S∗
c ) → 1,

however this sequence does not split in general. We will nevertheless use the EZ-
structure for Mod(S∗

c )×⟨Tc⟩, viewed as the mapping class group of T (S∗
c )×Ac, to

construct a neighborhood basis of ξ in T (S) as follows.

Consider the augmented Teichmüller space T aug(S) of S [Wo03, Ya04]. This is a
stratified space whose open stratum of maximal dimension equals the Teichmüller
space T (S). For each multi-curve β on S there exists a stratum S(β) which equals
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the Teichmüller space of the surface (S \ β)∗ obtained from S \ β by replacing each
boundary component by a puncture. This Teichmüller space is a direct product of
Teichmüller spaces, one for each component of S \ β. The strata in the boundary
of S(β) correspond to multi-curves containing β as a subset.

The set N(c) of points Y ∈ T (S) so that the Y -length of c is at most ϵ is a
tubular neighborhood of S(c) in the augmented Teichmüller space T aug(S). Its
boundary ∂N(c) is invariant under the action of the infinite cyclic group of Dehn
twists ⟨Tc⟩ about c.

The augmented Teichmüller space T aug(S), equipped with the completion of
the Weil-Petersson metric, is a (non-locally compact) CAT(0) space. The strata
are convex subspaces. In particular, there exists a shortest distance projection
Π : ∂N(c) → S(c). Since Dehn twists are isometries, this projection is invariant
under the action of the group ⟨Tc⟩. More precisely, the fibers of Π are homeomorphic
to R and invariant under ⟨Tc⟩ and hence via the map Π, the quotient ⟨Tc⟩\∂N(c)
obtains the structure of a circle bundle over S(c). As S(c) is contractible, this circle
bundle is trivial (however non-canonically).

Recall that the choice of a base marking of S coarsely determines for each Y ∈
T (S) a twist parameter τ(Y, c) ∈ Z about c, unique up to an error of ±1.

Lemma 7.12. There exists a continuous map σ : S(c) → ∂N(c) with the following
properties.

(1) Π(σ(x)) = x for all x.
(2) There exists a constant b > 0 so that τ(σ(Y ), c) ∈ [−b, b] for all Y ∈ S(c).

Proof. Since ∂N(c) is a fiber bundle over the smooth contractible manifold S(c)
with contractible fiber, for each point z ∈ S(c) we can find a neighborhood Uz of
z and a local section σz : S(c) → ∂N(c) for the projection Π so that τ(σz(y), c) ∈
[−4, 4] for all y ∈ Uz. Note that this makes sense in spite of the fact that τ(·, c) is
only coarsely well defined. Using a partition of unity and the fact that the fiber of
Π is contractible, these local sections can be patched together to a global section
with the properties in the lemma. □

A section σ as in Lemma 7.12 is an embedding of S(c) into ∂N(c). This embed-
ding can be used to construct a homeomorphism Σ : S(c) × R → ∂N(c) which is
equivariant with respect to the action of Z on R by translation and the action of
the infinite cyclic group of Dehn twists about c on ∂N(c). As S(c)× R is just the
product of the Teichmüller space T (S∗

c ) and the Teichmüller space of the annulus
with core curve c, the same holds true for ∂N(c).

Let [µ] be the projective measured geodesic lamination on the surface S whose
support equals the simple closed curve c. By the Hubbard Masur theorem, the
Teichmüller space T (S) of S is foliated by Teichmüller geodesics with horizontal
measured geodesic lamination in the class of [µ]. As Dehn twists about c act
as isometries for the Teichmüller metric and [µ] is Tc-invariant, the foliation is
invariant under the action of the infinite cyclic group generated by Tc and the
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action of the elements of Mod(S) which can be represented by homeomorphisms
fixing Sc pointwise.

If γ : R → T (S) is a Teichmüller geodesic with horizontal measured geodesic
lamination in the class of [µ], then as t→ ∞, the simple closed curve c is collapsed
to a node. As a consequence, by perhaps replacing ϵ by a smaller constant, we
may assume that these Teichmüller geodesics intersect ∂N(c) transversely, and two
Teichmüller geodesic passing through different points of ∂N(c) do not intersect.
In other words, each of these Teichmüller geodesics passes through a unique point
Y ∈ ∂N(c) and hence they can be parameterized by a map γY : R → T (S) in such
a way that γY (0) = Y and γY (−∞, 0) ⊂ N(c). Then the geodesic lines γY (−∞,∞)
foliate T (S).

The following lemma is a consequence of the article [R14].

Lemma 7.13. There exists a number D > 0 with the following property. Let
Y ∈ ∂N(c); then for any not necessarily proper subsurface V of Sc we have
diam(prV ∗(γY (−∞,∞)) ≤ D.

Proof. Let t → q(t) be the cotangent line of the geodesic γY . For each t, q(t) is
an area one quadratic differential over the surface γY (t). As [µ] is defined by a
single simple closed curve, each q(t) is a one cylinder Strebel differential with core
curve c. This means that the connected component S′ containing c of the surface
S, equipped with the singular flat metric defined by q(t), consists of a single flat
cylinder glued along its sides to the surface S′ by identifying subarcs of the boundary
of the same lengths in pairs. The image in S′ of the sides of this cylinder is the
critical graph of the flat metric, which is a finite graph G composed of horizontal
saddle connections.

In this flat metric, the surface S′
c = S′ \ c is degenerate, that is, the critical

graph is a deformation retraction of S′
c. The mass deposited on the edges of the

critical graph by the vertical measured geodesic lamination of q(t) equips G with
the structure of a metric graph. Any simple closed curve α in S′

c = S′ \ c is then
homotopic to a closed edge path in G, and a closed edge path of minimal length is
unique up to parameterization and is the geodesic representing the free homotopy
class of α for the locally CAT(0)-metric q(t).

The singular flat metric for q(t) is obtained from the singular flat metric on q(0)
by multiplying the horizontal length, that is, the circumference of the cylinder, with
et/2, and the vertical length, that is, the height, with e−t/2. As a consequence, if
for a subsurface V of S′

c we define the size sizeq(t)(V ) of V with respect to the
metric q(t) as the shortest q(t)-length of a closed q(t)-geodesic in V and if for a
non-peripheral simple closed curve α ⊂ S′

c we denote by ℓq(t)(α) the length of its
q(t)-geodesic representative, then

log
sizeq(t)(S

′
c)

ℓq(t)(α)

does not depend on t. From Theorem 3.1 of [R14], one deduces that the extremal
length of any non-peripheral simple closed curve in S′

c along the Teichmüller geo-
desic t→ γY (t) is bounded from below by a universal positive constant. The same
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holds true for the extremal length of c along the ray γY [0,∞), which is exponentially
increasing along the ray.

As a consequence of Section 5 of [R14], for any (not necessarily proper) subsurface
V of S′

c the active interval for V is empty along γY [0,∞). Theorem A of [R14]
then shows that for each such V , the diameter of the projection {prV (µ(γY (t))) |
t ∈ [0,∞)} is bounded from above by a universal constant. This is what we wanted
to show. □

Recall that the Teichmüller space of the annulus Ac is naturally identified with
the real line R. Start with a countable family V = {Vi | i} of open contractible

subsets of T̊ϵ(S∗
c ) × R whose small closures define a neighborhood basis of ξ in

T (S∗
c ⊔ Ac) = Tϵ(S∗

c ) × R ∪ X (S∗
c ) ∗ X (Ac). Such a neighborhood basis exists

since by the induction hypothesis, Theorem 4.12 holds true for Sc ⊔ Ac. Let Λϵ :
T (S∗

c ) → T̊ϵ(S∗
c ) be the Mod(Sc)-equivariant homeomorphism from Corollary 4.4

and for each i define Wi = (Λ−1
ϵ × Id)(Vi). Then Wi is an open and contractible

subset of T (S∗
c ) × R. Denote by Ei ⊂ ∂N(c) its image under the identification of

∂N(c) with T (S∗
c )× R using the section σ.

Proposition 7.14. Put Ai = {γY (−∞,∞) | Y ∈ Ei ⊂ ∂N(c)}; then the sets

Λϵ(Ai) ⊂ T̊ϵ(S) are open and contractible, and their small closures in T (S) define
a neighborhood basis of ξ in T (S).

Proof. Since the geodesics with horizontal projective measured lamination [µ] foli-
ate T (S) and ∂N(c) is transverse to these geodesics, the set Ai admits a deformation
retraction onto Ei. Thus since the sets Ei are contractible, the same holds true for
the sets Ai and for the sets Ui = Λϵ(Ai).

We have to show that the small closures of the sets Ui ⊂ T̊ϵ(S) in T (S) define a

neighborhood basis of ξ in T (S). This is the case if for any sequence Xu ⊂ T̊ϵ(S)
converging to ξ, all but finitely many Xu are contained in Ui.

By Lemma 7.13, for each Y ∈ ∂N(c) and any subsurface V of Sc, the diameter of
the subsurface projection prV (µ(γY (−∞,∞))) is uniformly bounded, independent
of Y . By the definition of the topology on T (S) and coarse Υ-invariance of the
projection Λϵ, this implies that for each i the small closure U i,small in T (S) of the
set Ui is indeed a neighborhood of ξ in T (S). The same discussion also shows that
∩iU i,small = {ξ} and hence the sets U i,small define a neighborhood basis of ξ in

T (S) as claimed in the proposition. □

Proof of Theorem 4.12. We proceed by induction on the complexity κ(S) of S. The
case κ(S) = 0 is contained in Corollary 7.11. Thus assume that the statement holds
true for all surfaces of complexity at most k − 1 for some k − 1 ≥ 0.

Let S be a surface of complexity k. By Proposition 4.14, there exists a consistent
topology on T (S) with properties (2) and (3) in the statement of Theorem 4.12.
By Theorem 5.1, this topology is metrizable, and Corollary 6.2 shows that the pair
(T (S),X (S)) is a pair of spaces of finite dimension. Furthermore, by Proposition
6.3, the action of Mod(S) on T (S) is U-small for every open covering U of T (S).
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As a consequence, to complete the proof of Theorem 4.12, it suffices to verify
that the topology on T (S) is nice. If S is connected, then this follows from Propo-
sition 7.1 and Proposition 7.14. If S is disconnected, then it is a consequence of
Proposition 7.9 and Proposition 7.14. □

As an application, we obtain.

Corollary 7.15. dim(∂CG(S)) ≤ vcd(Mod(S))− 1.

Proof. Since X (S) is a Z-set for a torsion free finite index subgroup Γ of Mod(S),
the cohomological dimension of X (S) equals vcd(Mod)(S)− 1 [B96]. Furthermore,
this dimension also equals the covering dimension of X (S) [B96].

Now as ∂CG(S) is embedded in X (S), it is equipped with the subspace topology.
This means that any open covering of ∂CG(S) is the restriction of an open covering
of X (S). Such a covering then has a vcd(Mod(S))− 1-finite refinement and hence
the same holds true for the refinement of the original cover of ∂CG(S). □

The following conjecture is taken from [BB19]. We believe that the results in
this work support this conjecture.

Conjecture. For any surface S of finite type, asdim(Mod(S)) = vcd(Mod(S)).

We are left with showing Corollary 6 and Corollary 7 from the introduction.

Proof of Corollary 6. By Theorem 4, Mod(S) admits an EZ-structure (X,Z) where
X = X \ Z is a manifold with boundary of dimension 6g − 6 + 2m. Assume that
6g − 6 + 2m ≥ 5. By Lemma 2.3 of [FL05], there exists a new EZ-structure
for Mod(S) obtained by doubling X along the boundary. By Proposition 2.1 of
[FL05], this structure is of the form (Y , Z) where Y is a manifold with boundary
of dimension 6g − 5 + 2m.

Proposition 2.2 of [FL05] then shows that another application of this construction
to the pair (Y , Z) results in an EZ-structure given by unit ball in R6g−4+2m and
a subset Z of its boundary, the sphere of dimension 6g − 5 + 2m. This is what we
wanted to show. □

Proof of Corollary 7. The corollary follows from the fact that ∂CG(S) is embed-
ded in X (S), and by Corollary 6 and its proof, X (S) embeds into a manifold of
dimension 6g − 6 + 2m and into the sphere S6g−5+2m. □

Question. What is the smallest dimension n so that Mod(S) admits an EZ struc-
ture on a pair (Dn,∆) where ∆ is a subset of Sn−1?
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[H06] U. Hamenstädt, Train tracks and the Gromov boundary of the complex of curves, in

“Spaces of Kleinian groups” (Y. Minsky, M. Sakuma, C. Series, eds.), London Math.
Soc. Lec. Notes 329 (2006), 187–207.
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