AN £Z-STRUCTURE FOR THE MAPPING CLASS GROUP

URSULA HAMENSTADT

ABSTRACT. We construct a boundary for the mapping class group Mod(S) of
a surface S of finite type. The action of Mod(S) on this boundary is minimal,
strongly proximal and topologically free. The boundary is the boundary of an
& Z-structure for Mod(S).

1. INTRODUCTION

The mapping class group Mod(S) of a closed oriented surface S of genus g > 0
from which m > 0 points have been removed and so that 3g—3+m > 1 is the group
of isotopy classes of diffeomorphisms of S. The mapping class group is well known
to be finitely presented, and it admits explicit torsion free finite index subgroups.

A torsion free finite index subgroup I" of Mod(S) admits a finite classifying space.
Such a classifying space can be constructed as follows.

Since the Euler characteristic of S is negative, the Teichmiiller space T(S) of
S of all marked finite area complete hyperbolic structures on S is defined. By
elementary hyperbolic geometry, there exists a number ¢y > 0 such that any two
closed geodesics on a hyperbolic surface of length at most €; are disjoint. The systole
systole(X) of a hyperbolic metric X is the length of a shortest closed geodesic. For
€ < ¢ define

Te(S) ={X € T(S) | systole(X) > e}.

The following is due to Ji and Wolpert [JW10], extending an earlier result of Ivanov
[Iv02], see Proposition 3.1 and Theorem 3.9 of [J14] for an explicit statement.

Theorem 1 (Ji-Wolpert). For sufficiently small € < €g, the set Tc(S) is a manifold
with corners which is a deformation retract of T(S). The mapping class group
Mod(S) acts on Tc(S) properly and cocompactly.

Since T(S) is homeomorphic to R%=672m  we obtain that T;(S) is contractible,
locally contractible and finite dimensional. As torsion free finite index subgroups I
of Mod(S) act freely on 7¢(.S), this implies that I'\ 7¢(5) is a finite classifying space
for I'. In particular, I' is of type F'.

Motivated by the construction of the Borel-Serre bordification of an arithmetic
group which can be used to compute its virtual cohomological dimension, that is,
the cohomological dimension of a torsion free finite index subgroup, Harer [Har86]
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initiated the construction of a bordification of T¢(S) which computes the virtual
cohomological dimension ved(Mod(.S)) of the mapping class group. This program
was completed by Ivanov [Iv02] and consists in attaching to T¢(S) the curve complex
as an analog of a spherical building. The bordification, which indeed computes the
virtual cohomological dimension of Mod(S), has the homotopy type of an infinite
wedge of spheres [IJ08] and does not compactify the space T¢(S5).

In the setting of hyperbolic groups I', it turns out that the Gromov boundary
of I' can be used to compute the virtual cohomological dimension [BM91]. This
Gromov boundary is the boundary of a compactification of I in the following sense.

Definition 2 (Small boundary). A boundary of a finitely generated group T is a
compact I'-space Z with the following properties.

e There exists a topology on I' U Z which restricts to the discrete topology
on I, to the given topology on Z and is such that I' U Z is compact.
e The left action of I on itself extends to the I'-action on Z.

The boundary is called small if the right action of I'" extends to the trivial action
of " on Z.

The Gromov boundary of a hyperbolic group has additional desirable properties.
One of these is captured in the following definition, which is Lemma 1.3 of [B96]
and Definition 1.1 of [FLO5].

Definition 3 (£ Z—structurei. An EZ-structure for a finitely generated torsion free
group I' consists of a pair 7(X , Z) of finite dimensional compact metrizable spaces,
with Z nowhere dense in X, and the following additional properties.

(1) X = X — Z is contractible and locally contractible.

(2) For every z € Z and every neighborhood U of z in X there exists a neighbor-
hood V' C U of z such that the inclusion V —Z — U — Z is null-homotopic.

(3) X admits a covering space action of I" with compact quotient.

(4) The collection of all translates of a compact set in X form a null sequence
in X: that is, for every open cover & of X, all but finitely many translates
are U-small.

(5) The action of T' on X extends to an action on X.

The significance of an £ Z-structure (X, Z) for a torsion free group I lies in the
fact that the Cech cohomology of the space Z computes the cohomological dimen-
sion cd(T") of the group, with a dimension shift of one (Theorem 1.7 of [B96]). Fur-
thermore, groups with an £ Z-structure admit an £ Z-structure of the form (D", A)
where A is a closed subset of 9D = S~ !, and the Novikov conjecture and the K-
theoretic Farell Jones conjecture hold for these groups (Theorem 1.1 and Theorem
1.2 of [FLO05)).

An action of a group G on a compact topological space Z is called minimal if
every G-orbit is dense. It is called topologically free if for every ¢ € G — {1} the
fixed point set of ¢ has empty interior. Furthermore, it is called strongly proximal
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if the action of G' on the space of Borel probability measures on Z is such that the
closure of any orbit contains some Dirac measure. The following is our main result.

Theorem 4. There exists a compactification T (S) of T(S) with the following
properties.

(1) X(S) =T(S)\ T<(S) is a small boundary for Mod(S).

(2) The action of Mod(S) on X(S) is minimal, strongly proximal and topolog-
ically free.

(3) The pair (T(S), X(S)) is a EZ-structure for Mod(S).

We call the space X(S) the geometric boundary of Mod(S).

By the main results of [FL05], Theorem 4 implies the following.

Corollary 5. Mod(S) satisfies the Novikov conjecture and the K -theoretic Farell-
Jones conjecture.

Both statements in the corollary are known and were earlier established with
different methods. Proofs of the Novikov conjecture can be found in [H09, K10,
BBF15, BaB19]. The full Farell Jones conjecture for mapping class groups is due
to Bartels and Bestvina [BaB19].

An alternative approach to the construction of an £ Z-structure for the mapping
class group, based on hierarchical hyperbolicity, is due to Durham, Minsky and
Sisto [DMS25]. Hierarchical hyperbolicity was also used by Durham, Hagen and
Sisto [DHS17] to construct a boundary for Mod(S). As a set, this boundary can
be identified with the boundary constructed in Theorem 4, however the topology is
different. There are open sets in the boundary of [DHS17] which do not contain any
open subset of the boundary we construct. Hierarchical hyperbolicity for Mod(S)
only appears indirectly in this article, but our construction shares with [DMS25]
the strategy to view the mapping class group as a CAT(0)-space on the large scale.

As the virtual cohomological dimension ved(Mod(S)) equals 4g — 5 if g > 2 and
m=0,4g—4+mif g > 1 and m — 3 if g = 0 [Har86], the covering dimension
of the space X(S) equals 49 —6if g > 2 and m = 0,49 -5+ m if g > 1 and
m > 0, and m — 4 if g = 0 [B96]. Note that for any torsion free finite index
subgroup I' of Mod(S), the cohomology group HvedMed(S))(T' 7T) identifies with
the 2g — 2 4+ m-th homology group of the curve complex. Since the curve complex
has the homotopy type of an infinite wedge of spheres of dimension 2g — 2 + m
(Theorem 1.4 of [IJO8]), this implies that the top dimensional Cech cohomology
group of X(S) is also infinite dimensional by Proposition 1.5 of [B96].

Theorem 4 can be viewed as giving some evidence that the asymptotic dimension
of Mod(S), which is known to be finite and at most quadratic in the virtual coho-
mological dimension, in fact equals the virtual cohomological dimension of Mod(SS).
We refer to [BB19] for a more detailed discussion on this and related questions and
results.

The following is an easy consequence of Theorem 4 and Theorem 1.1 and Theo-
rem 1.2 of [FLO5]. In its formulation we denote by D™ the standard ball in R™.
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Corollary 6. If 3g — 3 +m > 3 then there exists a closed subset A of S69—5+2m
such that Mod(S) admits an € Z-structure of the form (D%9—4+2m A).

The boundary of the curve graph can be obtained from the subset FML of
PML = S89=7+2m of measured geodesic laminations with minimal filling support
by an equivariant continuous surjective map F ML — 9CG(.S). This map is however
not injective and the following statement requires a proof.

Corollary 7. The boundary 0CG(S) of the curve graph of S admits an embedding
into a manifold of dimension 6g — 6 + 2m and into S69=5+2m,

We next describe the boundary X (.S) of Mod(S) as a set.

The curve complex CG(Sy) of a (not necessarily proper) essential subsurface S
of S different from a pair of pants or an annulus is the simplicial complex whose
vertices are isotopy classes of simple closed curves and where k such curves span a
k — 1-simplex if they can be realized disjointly. If Sy is a four-holed sphere or a one
holed torus, then this definition has to be modified by connecting two vertices by
an edge if they intersect in the minimal number of points.

The curve complex, equipped with the natural simplicial metric, is a hyperbolic
geodesic metric space of infinite diameter [MM99]. Its Gromov boundary 0CG(Sy)
is the space of minimal geodesic laminations on Sy which fill Sy, that is, which
intersect every essential simple closed curve on Sy transversely. The topology on
0CG(Sy) is the coarse Hausdorff topology. With respect to this topology, a sequence
A; of minimal filling laminations converges to the lamination A if and only if the
limit of any subsequence which converges in the Hausdorff topology on compact
subsets of Sy contains A as a sublamination [H06, K99]. The space dCG(Sp) is
separable and metrizable. Define the boundary of the curve complex of an essential
annulus A C S with core curve ¢ to consist of two points ¢, c™.

If Sq,...,85k is a collection of isotopy classes of pairwise disjoint subsurfaces of
S, then we can form the join

J(UE_1S;) = ACG(Sy) * -+ + ICG(Sk).

It can be viewed as the set of formal sums ) . a;\; where a; > 0, Zl a; = 1 and
where A; € 9CG(S;) for all . This join is a separable metrizable topological space.
Note that if S;,, ..., S, is a subset of the set of surfaces Si, ..., Sk, then J(szlSij)
is naturally a non-empty closed subset of J(U¥_,S;) corresponding to formal sums
> aihi with a; = 0 for i & {iy,...,i,}. Define

X(S) =UJ(UF,S)

where the union is over all collections of pairwise disjoint essential subsurfaces of .S
and we use the obvious identification of points which arise in more than one way in
this union. Here we view an essential annulus A as an essential subsurface which is
disjoint from any subsurface which can be moved off A by an isotopy. Thus X'(S)
is just the set of formal sums Zl a;\; where a; > 0, Zz a; = 1, where \q,..., \; are
pairwise disjoint minimal geodesic laminations on S and where each simple closed
curve component \; is equipped with an additional label 4+, —. The mapping class
group acts naturally on X'(S) as a set.
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The following theorem summarizes some more technical properties of the geomet-
ric boundary. For its formulation, let us invoke the Nielsen Thurston classification
which states that any nontrivial mapping class has a finite power ¢ with the follow-
ing property. There exists a decomposition S = S; U---U S of S into subsurfaces
that are preserved by ¢ and such that for all i < k, the surface S; is connected and
the restriction of ¢ to S; is pseudo-Anosov if S; is not an annulus, and it is a Dehn
twist if S; is an annulus. The restriction of ¢ to Sy is trivial. We call a mapping
class with this property a Nielsen Thurston mapping class.

Let ¢ be a Nielsen Thurston mapping class. For each ¢ < k such that .S; is not an
annulus, the restriction ¢; of ¢ to S; preserves precisely two geodesic laminations
f;t which are the attracting and repelling laminations of ;. Similarly, for any
component S; which is an annulus, the two labeled copies {ii of the core curve of
the annulus are preserved as well. Thus ¢ fixes any point of the form ), a;(; where
(; is one of the laminations fz-i if i« < k and where (j is an arbitrary point of the
geometric boundary of the (possibly disconnected) surface Si. We call points of
this form the obvious fixed point set.

An embedding of a topological space X into a topological space Y is an injective
map f : X — Y which is a homeomorphism onto its image, equipped with the
subspace topology.

Proposition 8. Let X'(S) be the geometric boundary of Mod(S).

(1) For any collection Si,...,Sk of pairwise disjoint subsurfaces of S, the in-
clusion J(UK_,S;) — X(S) is an embedding. In particular, the covering
dimension of CG(S) is at most ved(Mod(S)) — 1.

(2) The fized point set for the action of a Nielsen Thurston mapping class ¢
on X(S) is precisely the obvious fized point set of .

That the covering dimension of dCG(.S) is bounded from above by ved(Mod(S))
is due to Gabai (Proposition 16.3 of [Gal4]).

Our construction is valid for the mapping class group of a once punctured torus
or a four punctured sphere. In this case the mapping class group is virtually free
and, in particular, it is a hyperbolic group whose Gromov boundary is a Cantor
set. It is due to Bestvina and Mess [BM91] that a hyperbolic group admits a £Z-
structure whose boundary is its Gromov boundary. The boundary we find is the
Gromov boundary of the group as well.

The construction of the boundary X'(S) is motivated by the construction of the
visual boundary of a CAT(0)-space. Along the way we identify in Section 2 an
analog of the familiar Tits boundary of a symmetric space of higher rank.

The advantage of our construction is that the space X(S) and its topology as
well as the action of the group Mod(S) on X (S) is completely explicit and can be
used among others to study subgroups of Mod(S5).

Overview of the article: In the first part of the article, we define a topology
on the set X () and show that this topology extends to 7.(S) U X(S) and defines
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a compactification of T¢(S). This is carried out with an inductive construction set
up in Section 3 and Section 4. We also observe that the action of Mod(S) on X'(S)
is strongly proximal. In Section 2, we introduce the oriented curve compler and
show that it can be viewed as a Tits type boundary for the mapping class group.

In Section 5, we show that X(S) is metrizable. This result depends on the
construction of an explicit neighborhood basis of a given point in X(S) C T(S).
The neighborhood basis is used in Section 7 to construct another neighborhood basis
for points in X'(S) consisting of sets whose intersections with 7¢(.S) are contractible,
which is the most involved part of the article. We use the augmented Teichmiiller
space as a witness of CAT(0) properties to this end. Section 6 is devoted to showing
that the covering dimension of X(.S) is finite.

Acknowledgement: I am grateful to Alessandro Sisto for informing me about the
article [DMS25]. This work was partially supported by the Hausdorff Center Bonn
and completed while the author visited the Newton Institute in Cambridge during
the program Operators, Graphs, Groups in summer 2025.

2. THE TITS BOUNDARY OF Mod(.S)

The join X1 * X5 of two topological spaces X, X5 is defined to be the quotient
X1 x X5 x[0,1]/ ~ where the equivalence relation ~ collapses X7 x X5 x {0} to X3
and collapses X7 x X x {1} to X5. For example, the join S xS9 of two 0-spheres is
the circle S', thought of as a union of four intervals glued at the endpoints, where
each interval has one endpoint in Sy and the second endpoint in S9. The join of
two spaces X1, Xo contains an embedded copy of X7, Xs.

Example 2.1. The product of two hyperbolic planes H? x H? is a complete simply
connected Riemannian manifold of non-positive curvature. Its wvisual boundary is
the join S % S' of two circles that are the Gromov boundaries of the embedded
copies of H2. This corresponds to the fact that the projection of any geodesic in
H? x H? to each of the two factors is a geodesic. Note that the join of two circles
is homeomorphic to S3.

Define the oriented curve complex OG(S) of an oriented connected surface S of
genus g with m punctures and 3g —3+m > 2 to be the complex whose vertices are
isotopy classes of oriented simple closed curves in .S and whose one-skeleton consists
of edges (of length 1) connecting two vertices if they can be realized disjointly and
are not homotopic up to orientation. Thus any simple closed curve in S defines
two distinct vertices in OG(S), and these vertices are not connected by an edge.
Furthermore, we require that any collection of k > 2 oriented disjoint simple closed
curves which are distinct as unoriented curves span a simplex. The union of these
simplices defined by a fixed collection of k curves equipped with all combinations
of orientations is a sphere of dimension k& — 1. Note that a point in OG(S) can be
viewed as a formal linear combination Zle a;A\; where for some k > 1, A\q,..., \x
are pairwise disjoint oriented simple closed curves, where a; > 0 for all ¢ and
>-;a; = 1. In other words, a point in the oriented curve complex can be viewed
as a point in the join of a finite collection of oriented pairwise disjoint simple
closed curves. If S is a once punctured torus or a four punctured sphere, then the
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oriented curve complex is defined in the same way except that two oriented curves
are connected by an edge if they intersect in the minimal number of points (one for
the once punctured torus and two for the four punctured sphere).

Remark 2.2. If we choose the length of the edges of the oriented curve complex
to be 7/2, then this is consistent with the idea that the oriented curve complex can
be thought of as being contained in the Tits boundary of Mod(S), equipped with
the angular length metric which identifies each sphere with a sphere of constant
curvature one.

A simple closed curve c on S is the core curve of an embedded annulus A(c) C S.
The ”curve graph” CG(A(c)) of the annulus A(c) is a graph of isotopy classes of
arcs connecting the two boundary components and whose endpoints are allowed to
move freely in the complement of a fixed point on each of the two boundary circles.
The curve graph of A(c) is a simplicial line. If « is a given vertex of CG(A(c)), then
any other isotopy class of arcs can be represented by an arc which is the image of
a by a multipe of a Dehn twist about c¢. The distinction between a positive and a
negative Dehn twist about ¢ only depends on the orientation of S but not on the
orientation of ¢. The choice of an orientation of ¢ can be thought of as a spiraling
direction about ¢ for oriented arcs connecting the two boundary components of

A(e).

In the sequel we denote by ¢ the point in the Gromov boundary of CG(A(c))
(which consists of two points) which corresponds to an iteration of positive Dehn
twists about ¢, and we denote by ¢~ the point in the Gromov boundary of CG(A(c))
which corresponds to an iteration of negative Dehn twists about ¢. Write J(c) =
{c*,c¢™}. Tt will be convenient to think about J(c) as a set of two distinct points
in the oriented curve complex of S, with the same underlying curve.

If Sy is a subsurface of S different from a pair of pants or an annulus, then we
denote its (non-oriented) curve complex by CG(Sy). The vertices of this complex
are isotopy classes of non-peripheral simple closed curves. If Sy is different from
a one-holed torus or a four-holed sphere, then a collection of & > 2 such disjoint
simple closed curves span a simplex of dimension k — 1. If Sy is a one-holed torus or
a four-holed sphere then two simple closed curves are connected by an edge if they
intersect transversely in the minimal number of points. The curve complex of Sy
is hyperbolic and hence it has a Gromov boundary 0CG(Sg). As a set, the Gromov
boundary dCG(Sy) is the set of all minimal filling geodesic laminations on Sy. We
refer to [HO6] for an account on this result of Klarreich.

There is a natural metrizable topology on the union CG(Sy) of CG(Sy) with
its Gromov boundary, called the coarse Hausdorff topology. With respect to this
topology, the subspace CG(Sp), equipped with its simplicial topology, is an open
dense subset. To define this topology equip the surface Sy with a hyperbolic metric
with geodesic boundary. This choice defines a Hausdorff topology on the space of
compact subsets of Sp. A sequence \; C CG(Sp) C CG(Sp) UICG(Sy) of vertices in
CG(Sp) converges in the coarse Hausdorfl topology to A € 9CG(Sy) if and only if
the limit of any converging subsequence of A; in the Hausdorff topology on compact
subsets of Sy contains A as a sublamination [H06]. Define

J(So) = 9CG(So),
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equipped with the topology as a subset of CG(Sp). If Sy is a pair of pants, then we
define J(Sg) = 0.

If Sq,...,Sk are disjoint connected subsurfaces of S (we allow that they share
boundary components, and annuli about such boundary components may be in-
cluded in the list), then we define

(1) T(U;S;) = 9CG(Sy) * - - - + CG(Si)

to be the join of the spaces J(S;) = dCG(S;). For example, if S; C S is a subsurface
which is the complement of a non-separating simple closed curve ¢, then

J(S1UA(e)) = 0CG(Sy) * {ct, e}

A point in J(S; U---USk) can be viewed as a formal linear combination
=Y ai&
where & € 9CG(S;), a; > 0 for all i and, furthermore, ), a; = 1. The union

supp(§) = Uq,>0&:

is a geodesic lamination with minimal components &;, and £ can be viewed as a
weighted (and partially labeled if there are simple closed curve components of &
with positive weight) geodesic lamination. For all w < k there is an inclusion
J(S1U---US,) C J(S1U---USk) which is a topological embedding.

A collection Sy, ..., Sk of disjoint connected subsurfaces of S is called maximal if
S —U;S; = 0. By convention, this means that for any boundary component ¢ of one
of the surfaces S;, the annulus A(c) is contained in the collection. Any collection
S1,...,S¢ of disjoint connected subsurfaces of .S is contained in a maximal collection
of such subsurfaces, however this maximal collection is in general not unique. For
example, there is a canonical maximal collection containing Si,..., Sy which is
comprised of the surfaces S;, the annuli A(c) where ¢ runs through all boundary
components of U;S; which are not already contained in the list, and all connected
components of S — U;S;.

Define
(2) X(S)=UJ(S1U---US)/ ~

where the union is over all collections of disjoint subsurfaces Si,...,Sg of S. The
equivalence relation ~ identifies two points »_,; a;§; and }°; b;¢; if they coincide
as weighted labeled geodesic laminations. Thus a point in X'(S) is nothing else
but a formal sum Zle a;& where a; > 0,> ", a; = 1, where &;,...,§; are pairwise
disjoint minimal geodesic laminations on S and where every simple closed curve
component of this collection is in addition equipped with a label +. Note that the
oriented curve complex OG(S) of S can naturally be identified with the union of
the subsets J(A(c1) U---U A(cg)) of X(S), and its Gromov boundary (which is
just the Gromov boundary 9CG(S) of the non-oriented curve complex of S) also
is contained in X'(S). The mapping class group Mod(.S) naturally acts on the set
X(S).
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Example 2.3. The definition (2) also makes sense if S is a once punctured torus
or a four punctured sphere. In this case there are no non-peripheral subsurfaces of
S different form annuli and pairs of pants, and the set X'(S) is just the union of
the Gromov boundary of the curve graph CG(S) with a countable set, consisting of
all oriented non-peripheral simple closed curves on S. We discuss the case of the
once punctured torus in detail, the case of the four punctured sphere is completely
analogous.

The curve graph of S is the well-known Farey graph. It vertices can be repre-
sented by the rational points in the boundary OH? = R U {oc} of the hyperbolic
plane. If one represents the edges of the Farey graph by geodesics in HZ2, then one
obtains a tesselation of the hyperbolic plane by ideal triangles which is invariant
under the mapping class group PSL(2,Z) of S. The boundary 9T of the dual tree T
of this tesselation is a Cantor set which admits a surjective continuous map onto the
boundary OH? of the hyperbolic plane. Each irrational point in OH? corresponds
to a point in the Gromov boundary of CG(S) and has precisely one preimage, and
the rational points which correspond to the vertices of the curve graph have two
preimages.

The vertices of the Farey graph correspond to the fixed points of the parabolic
subgroups of PSL(2,Z). With this interpretation, the set X'(S) can be identified
with the Cantor set 9T obtained by replacing each rational point in R U {oo} by
a compact interval and removing the interior of the interval. This Cantor set in
turn has a natural identification with the Gromov boundary 0T of the virtually
free group PSL(2,Z). In particular, there is a natural invariant topology on X'(S)
so that with this topology, X'(.S) is a compact PSL(2,Z)-space which contains the
Gromov boundary dCG(S) of the curve graph of S as a dense embedded subset.
Furthermore, following [BM91], with this topology the set X'(.S) is the boundary of
an &Z-structure for PSL(2,Z).

Example 2.4. Let Sp,...,S; be a disjoint union of subsurfaces of S which are
different from pairs of pants. Then the join X'(S1) *---x X (Sk) is a subset of X'(5).

The oriented curve complex of S is connected, and any non-filling geodesic lam-
ination, that is, a geodesic lamination which is disjoint from some simple closed
curve, is disjoint from some vertex of OG(S). Thus if we equip X (S) \ 9CG(S)
with the topology of a simplicial complex whose edges are the joins of two disjoint
(perhaps labeled) geodesic laminations, then this complex is connected. As a con-
sequence, the set X(S) can be equipped with a topology which coincides with the
topology of a (non-locally finite) simplicial complex on X' (S) \ 9CG(S) and is such
that each point in 0CG(.9) is isolated. We write X7 (S) for X (S) equipped with this
topology and call X7 (S) the Tits boundary of Mod(S) (having the Tits boundary
of a CAT(0) space as guidance). From this description, we obtain

Lemma 2.5. The mapping class group Mod(S) of S acts on Xr(S) as a group of
simplicial automorphisms.

Proof. The mapping class group acts on the oriented curve complex of S as a group
of simplicial automorphisms, and this action extends to an action on the space of
formal sums of weighted disjoint minimal geodesic laminations preserving weight
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and disjointness. Furthermore, it acts on 9CG(S) as a group of transformations.
Since the topology on X7 (5) is the topology of a disconnected simplicial complex,
constructed from the curve complexes of subsurfaces, the lemma follows. O

Remark 2.6. The Tits boundary of a CAT(0) space X can be viewed as the
geometric boundary (that is, the CAT(0) boundary) of X, equipped with a topology
which in general is finer than the geometric topology. We shall see in Section 4 that
the same holds true for the Tits boundary and the geometric boundary of Mod(S).

3. A TOPOLOGY FOR X (S)

The goal of this section is to equip the set X (.S) with a topology which is coarser
than the Tits topology so that for this topology, X (S) becomes a compact Mod(.S)-
space.

Let & =Y al,&, be a sequence in X(S). We shall impose two requirements
for the sequence to converge to a point ( = Zle bi(; € X(S). Here as before, we
assume that a/, > 0,b; > 0,>.,b; =1 = al, for all j and that furthermore,
supp(&;), supp(¢) are disjoint unions of minimal components. The three steps
needed to construct the topology are contained in three different subsections.

3.1. Convergence to a minimal filling lamination. Recall that the space of
geodesic laminations on S is compact with respect to the Hausdorff topology.

Requirement 1: Convergence in the coarse Hausdorff topology

Let &7 be any subsequence of the sequence &/ such that the geodesic laminations
supp(£f) converge in the HausdorfF topology to a geodesic lamination 3. Then 3
contains supp(¢) as a sublamination.

Example 3.1. A geodesic lamination ¢ coarsely determines a point in CG(S) U
OCG(S). Namely, if ¢ is minimal filling, then ¢ € dCG(S). Otherwise ¢ is disjoint
from a simple closed curve ¢’ € CG(S).

By a result of Klarreich [K99] as reported in [H06], a sequence of non-filling
geodesic laminations ¢; converges in the coarse Hausdorff topology to a minimal
filling geodesic lamination 7 if and only if the simple closed curves ¢, € CG(S)
converge in CG(S) U ACG(S) to n € ICG(S).

Example 3.2. Let S,...,S5; C S be disjoint subsurfaces. Example 2.4 shows
that X(S) contains the join X(S7) * --- x X(Sg) as a subset. An element £ €
X (S1) * -+ % X(Sk) can be represented in the form

§= Zazfi

where & € X(S;), in particular, supp(§;) C S;, and ), a; = 1. Since the subset of
geodesic laminations on S which are supported in S; is closed with respect to the
Hausdorff topology, this implies that for any topology on X'(S) which fulfills the
first requirement above, the subspace X'(S1) * - - - * X(Sy) of X(S) is closed.



BOUNDARY 11

The examples show that the requirement (1) determines completely and geomet-
rically the convergence of a sequence & C X(S) to a point £ € ICG(S) C X(S).

Example 3.3. In the case that S is a once punctured torus or a four punctured
sphere, then any non-trivial subsurface of S different from a pair of pants is an annu-
lus. This easily implies that the topology of X'(.S) is determined by the requirement
(1). Furthermore, it follows from Example 2.3 and the discussion in Example 3.1
that the space X(S) is naturally homeomorphic to the Gromov boundary of the
hyperbolic group Mod(SS).

3.2. Product spaces. In this subsection we consider a collection S; (1 <1 < k) of
pairwise disjoint proper subsurfaces of S. This collection determines the subspace

Put
CG(U;S;) =CG(S1) x -+ x CG(Sk).

Our goal is to define a topology on the union

which will be used in the construction of a topology on X(.S).

Our main tool are complete markings of (not necessarily proper) essential sub-
surfaces Sy of the surface S. Such a marking consists of a pants decomposition P for
So together with a collection of spanning curves. For every component ¢ of P, there
exists such a spanning curve which intersects ¢ in the minimal number of points (one
or two) and is disjoint from all other pants curves. Two spanning curves may not
be disjoint, but we require that the number of their intersection points is bounded
from above by a universal constant. Since there are only finitely many topological
types of pants decompositions, this can clearly be achieved. There is a natural
way to equip the set of all markings on Sy with the structure of a locally finite
connected graph on which the mapping class group Mod(Sg) of Sy acts properly
and cocompactly. We refer to [MMO00] for more information on this construction.

Choose a marking g on S as a basepoint for the proper cocompact action of
Mod(S) on the marking graph. For every subsurface Sy of S which is distinct from
a pair of pants or an annulus, this marking can be used to construct a marking
prg, (1) of Sp as follows.

There is a coarsely well defined subsurface projection
prg, : CG(S) — CG(So)

which associates to a simple closed curve c its intersection prg, (c) = ¢N Sy with Sp
in the following sense. If ¢ C Sy then put prg (c) = ¢, and if ¢ is disjoint from Sp
then put prg, (c) = 0. In all other cases, c N Sy consists of a collection of pairwise
disjoint arcs with endpoints on the boundary of So. We then put prg (c) = u for a
simple closed curve u in Sy which is obtained from one of these intersection arcs by
choosing a component of the boundary of a tubular neighborhood of the union of
the arc with the boundary components of Sy containing its endpoints. Informally,
we say that the simple closed curve is obtained by surgery on the arc.
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Given a marking p for S, the union of the intersections of the marking curves with
Sp consists of a union of arcs and simple closed curves on Sy with pairwise uniformly
bounded intersection numbers which decompose Sy into simply connected regions.
Hence via deleting some of these arcs and modifying some arcs with a surgery to
simple closed curves as described in the previous paragraph, the projection of u
into Sy coarsely defines a marking prg, (1) of Sp (there is a small abuse of notation
here), called the subsurface projection of yu [MMO0]. Here a coarse definition means
that the construction depends on choices, but any two choices give rise to markings
which are uniformly close in the marking graph of Sy, independent of the subsurface
So.

If Sy is an annulus, then a similar construction applies. In this case a marking
consists of the choice of a marked point on each boundary component of Sy and
an embedded arc in Sy connecting the two distinct boundary components which
is disjoint from the marked points. With a bit of care, a subsurface projection is
defined for annuli as well. We refer to [MMOO] for more information.

By the above discussion, for every subsurface Sy of S the marking p coarsely
determines a basepoint for CG(Sp) by choosing one of the marking curves (or arcs if
S; is an annulus) of prg, (14). As the intersection number between any two curves (or
arcs) of prg, (1) is uniformly bounded, the distance in the curve graph of S; between
z; and any other curve from prg, () or any other marking of S; constructed in the
same fashion from g is uniformly bounded.

Let Miny (S) be the space of geodesic laminations on S which are disjoint unions
of minimal components. Using the basepoint zo for CG(Sy), we can extend the
subsurface projection prg, to all of Miny(S) as follows. Let v = Uji; € Miny(L).
Then there are three possibilities.

e If the lamination v is disjoint from Sy up to homotopy, define prg (v) = wo.

e If there exist components vq,...,, of v which are contained in Sy then
define prg, (v) = Ul_ ;.

e If yN Sy consists of a collection of disjoint simple arcs with endpoints on the
boundary of Sy which coarsely define a point in CG(Sp) then define prg, (v)
to be any one of these points.

Note that by the definition, prg, is contained in Miny(Sp), and if v is a disjoint
union of simple closed curves, then the same holds true for prg (v).

Let again S = UY_,S; be a collection of pairwise disjoint subsurfaces of S. It
then follows from the above discussion that a choice u of a marking of S coarsely
determines a basepoint x = (z1,...,xy) for the product space CG(U;S;) consisting
of the product of the coarsely well defined basepoints x; € CG(S;).

Recall from (1) the definition of the sets J(U;S;). Since the curve graph CG(S;)
is a hyperbolic geodesic metric space, for every p > 1 and every p-quasi-geodesic ray
v : [0,00) = CG(S;), there exists a coarsely well defined shortest distance projection
IL, : CG(S;) — ~ which extends to the complement of the endpoint y(c0) € ICG(S;)
in 9CG(S;).

Definition 3.4. Define a topology on Y(U;S;) by the following requirements.
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e The product space CG(U;S;) is equipped with the product topology and is
an open subset of Y(U;S;).
e The subspace J(U;S;) is equipped with the topology as a join of the Gromov
boundaries of the curve graphs of .S;.
o Let & =), a;& € 0CG(S1) * --- % OCG(S);) and after reordering, assume
that a; > 0 for all 7 < £ and a; = 0 for i > £. A sequence of points
(y1,---,yl); C CG(U;S;) converges to & if the following three conditions
are fulfilled. 4
(1) For each ¢ < ¢ the components y! € CG(S;) converge as j — oo to &
in the coarse Hausdorff topology (and hence they converge in CG(.S;)U
ACG(S;) to &;, see [HO6]). In particular, we have dcg(sj)(yg,xi) — 00
(j = o),

(2) For all 4 < ¢ denote by II; the shortest distance projection of CG(.S;)
onto a p-quasi-geodesic connecting the basepoint x; to &;; then

ng(SL)(H’L(yz)MTZ) N &
deg(sy) (i (yi),z1) @
(3) Let ¢ > £ and let V' C S; be any subsurface; then

degvy (pry (y]), pry (1))
deg(s,) (M1 (y1), 21)
Lemma 3.5. The notion of convergence in Definition 3.4 defines a topology on

Y(U;S;) which restricts to the given topology on OCG(Sy) * - - x ICG(Sk) and on
CG(US;). The subspace OCG(S1) * - -+ * OCG(Sy) 1is closed in Y (U;S;).

=0 (j— o0).

Proof. Define a subset A of Y(U;S;) to be closed if Ay = ANCG(U;S;) is closed,
Az = ANICG(Sy) * -+ x OCG(Sk) is closed and if furthermore the following holds
true. If y; C A; is a sequence which converges in the sense described above to a
point y € CG(S1) *---* ICG(Sk), then y € As. Note that by definition, the empty
set is closed, and the same holds true for the total space.

We have to show that complements of closed sets defined in this way fulfill the
axioms of a topology, that is, they are stable under arbitrary unions and finite
intersections. Equivalently, the family of closed sets is stable under arbitrary inter-
sections and finite unions. As this holds true for the closed subsets of CG(U;S;) and
for the closed subsets of J(U;S;) = 9CG(S1) - - - % OCG(Sk), all we need to observe
is that taking arbitrary intersections and finite unions is consistent with the notion
of convergence of points in CG(U;S;) to points in the join dCG(S1) * - - - x ICG(Sk)
in the sense of Definition 3.4.

Consistency with arbitrary intersections is straightforward. To show consistency
with taking finite unions let Bji,..., By C Y(U;S;) be closed in the above sense.
Let y; C Ur(BrNCG(U;S;)) be any sequence which converges to a point in J(U;S;)
according to the definition of convergence. By passing to a subsequence, we may
assume that y; € B,, for a fixed m < ¢ and all j. As B, is closed and the
subsequence also fulfills the requirements for convergence, its limit is contained in
B,, C UipByg. Hence indeed, the notion of a closed set is consistent with taking
finite unions. O
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3.3. Projections and a topology on X(S). For a disjoint union U¥_,S; of sub-
surfaces of S define now

Z(UiS;) = UrY(UierSi) * T (Ujequ, ... e1\157)

where I runs through all (possibly empty) subsets of the index set {1,...,k}. Note
that for every I, the space Y(Uie1S:i) * J(Ujeqa,....k3\1 U S;) contains J(UE_, Sy,
the join of the boundaries of the curve graphs of the surfaces S;. Furthermore,
Z(U;S;) contains Y(U;erS;) for all T C {1,...,k}.

Lemma 3.6. There exists a unique separable Hausdorff topology on Z(U;S;) so
that a set U C Z(U;S;) is open if and only if its intersection with each of the
subspaces Y(UierSi) * T (Ujequ,... ky\15;) is open.

Proof. For every I C {1,...,k}, the set J(U;S;) is a closed subspace of
V(UierSi) * I (Ujequ,... k0\155)

equipped with the topology of a join. Thus the topology described in the lemma
is just the quotient topology on the quotient of the disjoint union of the spaces
V(UierS:)* T (Ujequ,... s\ 15;) by the closed equivalence relation which identifies
the points in the subspaces J(U;S;). O

We next define a projection
Przus,) @ X(5) = Z(UiS;)

as follows. Let £ = Z;nzl a;&; € X(S) with a; > 0 and 3 a; = 1 and write as be-
fore supp(§) = U;&;. After perhaps a reordering of the components ¢;, assume that
for some u < min{k, m} the components &1, ...,&, fill the subsurfaces Sy, ..., Sy,
that is, they define points in CG(S;), with the convention of remembering labels
of simple closed curves, and that for no j > u, the component &; fills any of the
surfaces S;. As the components of supp(€) are disjoint, this implies that if s, > u,
ifi € {u+1,...,k} and if the subsurface projections prg, (&), prg, (§¢) of &, & into
S; are not empty, then they are of uniformly bounded distance in CG(S;). Recall
that this makes sense even if &, &, are different from simple closed curves.

Define

prawsy (O ai&) =D ai&i+ (1= a;)(Preg(us .y s (Uizuié)
j=1 j=1

j=1
€ CQ(U;“:U“SZ-) * J(Uis15)-

Here the term on the right hand side is understood in the following sense. First,
if one of the surfaces S; (¢ < w) is an annulus then the label of &; is remembered
in przy,s,)(22; a;&5)- Second, for some ¢ € {u+1,...,k} let us consider the
subsurface Sy. If there exists some s > u such that & intersects Sy, then the
component in Sy of the projection prcg(uizuﬂsi)(UJ—Zquj) is a point in CG(Sy).
Although this projection depends on choices, it is coarsely well defined, that is,
well defined up to a uniformly bounded error. If the lamination supp(§) = U;§; is
disjoint from the subsurface Sy, then the projection component is defined to be the
basepoint of CG(Sy) constructed from the base marking.
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Requirement 2: A sequence &/ =Y al & C X(S) converges to ( = Zle biC; €
X(9) if the following holds true. Put Sp41 = S\ UX_;; then

Pz it (67) = Cin Z(UAS) D T(UIAS:) D T (UickSh).-

Remark 3.7. It follows from the above description that for this notion of conver-
gence, the following holds true. Let £/ be a sequence in X'(.S) consisting of minimal
geodesic laminations which converges to a point { = >, byCy.

(a) The lamination supp({) is a sublamination of the limit in the Hausdorff
topology of any convergent subsequence of the sequence supp(¢7).

(b) For each j let  be a minimal geodesic lamination disjoint from &7 (we allow
7 = ¢7) and let s; € [0,1]. Then any limit of a convergent subsequence of
the sequence 17/ = 5;¢7 + (1 — s;)1)/ is of the form s¢ + (1 — s)n where 7 is
a limit of a subsequence of the sequence 77 and where s € [0, 1].

Definition 3.8. A subset A C X(S) is called closed for the geometric topology of
X (S) if the following holds true. Let & C A be any sequence which converges to a
point & € X(S) in the sense described by the requirements (1),(2); then & € A.

An embedding of a topological space X into a topological space Y is an injective
map f : X — Y which is a homeomorphism onto its image, equipped with the
subspace topology. Recall that for any collection S,..., Sy of pairwise disjoint
subsurfaces of S, the space J(UF_,S;) is equipped with a natural topology as a join
of the Gromov boundaries of the curve graphs of the subsurfaces S;. The following
statement is the first main step towards the proof of Theorem 4.

Proposition 3.9. (1) Closed subsets of X(S) in the sense of Definition 3.8
define a separable Hausdorff topology O on X(S5).
(2) For any collection Si,...,Sy of pairwise disjoint subsurfaces, the natural
inclusion J(UF_,S;) — (X(S),0) is an embedding.

Proof. Let O C X(S) be the family of all subsets of X'(S) whose complement is
closed in the above sense. Sets in O are called open. We have to show that O
defines a topology on X(S).

As the empty set and the entire space X'(S) are open, to show that O is indeed a
topology on X (.5) it suffices to show that arbitrary unions of open sets are open, and
that finite intersections of open sets are open as well. Or, equivalently, arbitrary
intersections of closed sets are closed, and finite unions of closed sets are closed.
This can be established using exactly the same reasoning as in the proof of Lemma
3.5.

Namely, that the collection of closed sets is stable under arbitrary intersections
is immediate from the definition. So let By, ..., By be closed sets and let B = U, B;.
Choose a sequence §; C B which converges in the sense of requirements (1)-(3) to
some point (. By passing to a subsequence, we may assume that & € By for some
¢ < k and all . But then ( € By C B as By is closed which completes the proof
that O is indeed a topology on O.
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We show next the second property claimed in the proposition. Thus let Sy, ..., Sk
be a collection of pairwise disjoint subsurfaces of S. Our goal is to show that the
inclusion J(UF_, S;) — (X(S), ) is an embedding. Since the inclusion is injective,
and J(UF_,S;) is a separable Hausdorff space, for this it suffices to show that
the inclusion is continuous and its image is locally closed. This is equivalent to
stating that a sequence & = Y al¢! C J(UF_|S;) converges in (X(S),0) to a
point ¢ € J(UF_,S;) if and only if & converges in J(UF_;S;) to (. However,
putting Si+1 = S\ U;S;, this is immediate from the definition of the topology on
Z(UMLS;) and the second requirement in the definition of convergence in X'(S)
and shows the second part of the proposition.

Since each of the spaces [J(U_,S;) is a finite join of separable metrizable spaces
(namely, the Gromov boundary of a curve graph of a subsurface of S) and hence
separable metrizable, the second part of the proposition implies that (X(.5), O) is a
countable union of (in general not disjoint) separable metrizable spaces and hence
is separable.

To show that the topology is Hausdorff let § = 3, a;& # ¢ = 32, b;¢; € X(9).
We have to show that £, ¢ have disjoint neighborhoods.

If this is not the case, then any neighborhoods U of £ and U¢ of ¢ intersect
nontrivially. Since X(.9) is separable, and since points in X'(S) are closed by con-
struction, we conclude that there is a sequence £/ C X(S) which converges both to
&, C. But for the notion of convergence used to define the topology O, the limit of
a converging sequence is unique. Thus O is indeed Hausdorff which completes the
proof the first part of the proposition. O

Example 3.10. i) Let ¢ € Mod(S) be a pseudo-Anosov element. Then ¢ acts as
a loxodromic isometry on the curve graph of S, with attracting and repelling fixed
points vy, v_ € 9CG(S). Let u € X(S) be any minimal geodesic lamination which
is distinct from the repelling fixed point v_ of ¢. Then ¢/ — vy (j — 00) in the
coarse Hausdorff topology and therefore ¢/ — vy in X(S).

ii) Now let us assume that Sy C S is a proper connected subsurface different from
an annulus and a pair of pants and that ¢ € Mod(S) restricts to a pseudo-Anosov
mapping class on Sy and to the trivial mapping class on S — Sy. Let vy € 9CG(Sy)
be the attracting geodesic lamination for the action of ¢ on Sy. Let furthermore
w# v_ € X(S) be any minimal geodesic lamination on S which is different from
the repelling fixed point v_ for the action of ¢ on CG(Sy). Then there are two
possibilities. In the first case, u is supported in S — Sg. Then we have 7 (u) = p
for all j. However, if p intersects Sp, then either y = vi or p intersects vy and we
have 7 (p) — vy (j — 00) in X(S).

Namely, if p intersects Sy then the subsurface projection of p into any subsurface
disjoint from Sy is a collection of arcs intersecting 95y. In particular, the subsurface
projection into any subsurface V of S — Sy is a point of CG(V). Since ¢ can be
represented by a diffeomorphism which fixes S — Sy pointwise, it acts trivially on
CG (V') which yields the above statement.

Corollary 3.11. (X(S5),0) is a Lindeldf space.
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Proof. We have to show that any open cover of X(S) has a countable subcover. To
this end let I be such an open cover. List the countably many spaces J(U;S;) as

J1, J2, . ... Since for each i, the space J; is separable and metrizable, the restriction
of U to J;, which is an open covering of J;, has a countable subcover, say by sets
UL,U?,.... The standard diagonal argument shows that the union V = U; ;U/

consists of countably many sets, and for each i, the sets from V cover [J;. Since
X(S) = U;J; (as a set), this shows that V is a countable subcover of the cover U.
In other words, X'(S) is a Lindelof space as claimed. O

Proposition 3.12. (X(S5),0) is compact.

Proof. As by Corollary 3.11, the space X (.5) is a separable Lindel6f space, moreover
it is Hausdorff by Proposition 3.9, to show that X'(S) is compact it suffices to show
that X'(.S) is sequentially compact.

Thus let & = 3, a{fg C X(S) be any sequence. We have to construct a con-
vergent subsequence. Since the space of geodesic laminations equipped with the
Hausdorff topology is compact, by passing to a subsequence we may assume that
the geodesic laminations supp(£7) = Uifg converge in the Hausdorff topology to a
geodesic lamination é with minimal components (1, ..., (k.

For each i < k let S; C S be the subsurface of S filled by (;. Assume by passing

to a subsequence that
u
) - o
&= E A&+ E :aifj
i=1 >u

for all 7 where for each ¢ < u, the component 5{ fills S; and that none of the com-
ponents & for s > u fills any of the surfaces S;. By passing to another subsequence,
we may assume that for ¢ < u, the labels £ of the components (; are constant along

the sequence, and that the weights a] € (0,1] of the components (; converge to

weights b; > 0. In particular, the sums 1 — 3", al converge to 1 — Dicu bi = K.

Since supp(¢&7) — CA in the Hausdorff topology, we know that for each i < u,
the laminations ff converge in the coarse Hausdorff topology to (; and hence fg
converges to ¢; in 9CG(.S;). Thus if k = 0 then by the definition of the topology on
X(9), we know that &/ — Y7 | b;¢; and we are done. Thus we are left with the
case K > 0. Moreover, viewing & = (3, al(;) + (Qisust al€l) as points in the
join of two subspaces of X'(S), using the above argument it now suffices to assume

that for no j there exists a component of supp(£7) which fills any of the subsurfaces
Si.

Then for each i, we can consider the subsurface projection prg, (supp(¢7)) of
supp(¢&?) into the surface S;. Furthermore, by passing to another subsequence, we
may assume that for all j and all i < k, this subsurface projection is non-empty
since the geodesic lamination (; which fills S; is contained in the limit with respect
to the Hausdorff topology of the sequence of laminations supp(¢7). Put differently,
we may assume that for each ¢ and all j, the subsurface projection prg, (supp(&7))
of the lamination supp(¢7) into the subsurface S; is a coarsely well defined point in
CG(S;). Furthermore, using once more that ¢; fills S; and that ¢; is contained in
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the Hausdorff limit of the sequence supp(&7), if we denote by z; the fixed basepoint
in CG(S;), then we know that deg(s,)(prs, (supp(£?)), z;) — oo (j — o0).

By passing to another subsequence and reordering indices, we may assume that

aj = deg(s,)(Prs, (supp(§’)), 1) = aj = deg(s,)(prs, (supp(¢’)), =:)
for all 4 > 2 and all j. Passing to another subsequence, we may assume furthermore
that a{/a{ — a; € [0,1] for all i > 2. Put a; = 1; then we have ) a, > 1 and
hence defining b; = a;/ >, ay > 0, we conclude that ), b, = 1. It now follows
from the definition of the topology on X (S) that &/ — 3. b;¢;. This completes the
proof that X'(S) is sequentially compact. O

Lemma 3.13. Mod(S) acts on X(S) as a group of transformations.

Proof. Observe first that by construction, Mod(S) acts on X(S) as a group of
bijections (equivalently, transformations for the discrete topology). Thus it suffices
to show that this action is continuous for the topology O.

By the definition of O, for this it suffices to show the following. Let ¢/ be a
sequence converging for the topology O to a point £&. Then for every ¢ € Mod(S),
the sequence p(£7) converges to ¢(€).

That the first defining requirement for convergence is passed on to the image
sequence follows from continuity of the action of ¢ on the space of geodesic lami-
nations, equipped with the Hausdorff topology.

For the second requirement, if S1,...,Sk is a partition of S into disjoint subsur-
faces, then the same holds true for ¢(S1),. .., ©(Sk), and for any geodesic lamination
v, we have pry,,(s,))(#(¥)) = @(pry(u,s,)(¥)) up to replacing the basepoints y;
of CG(p(S;)) by ¢(z;). Note that ¢ also naturally acts on orientations of simple
closed curves on S as no oriented simple closed curve on S is freely homotopic to
its inverse and hence ¢ acts on labelled simple closed curves. As for all i, we have
deg(o(5,)) (Pr(s,) (€7), (i) = deg(s,) (&7, x5) = 00 (j — 00) and the determina-
tion of the weights of the limit points are computed using ratios of distances to the
basepoint defined by subsurface projections, with the distances tending to infinity
along the sequence, we conclude that the second requirement in the definition of
convergence is fulfilled for (¢£%) if it is fulfilled for £°. The same reasoning also
applies to the third requirement. Thus indeed, Mod(S) acts on X(.S) as a group of
transformations and shows the lemma. (]

Definition 3.14. The space (X(S), O) is called the geometric boundary of Mod(S).

Let us note another naturality property of the geometric boundary of Mod(S).
Namely, if So C S is any essential subsuface, then we can construct a geometric
boundary X' (Sp) for the mapping class group Mod(Sy) of isotopy classes of home-
omorphisms of Sy fixing the boundary pointwise. As a set, this is a subset of the
geometric boundary of S which includes the Gromov boundary of the curve graph
for peripheral annuli. The above construction immediately yields

Corollary 3.15. If Sy C S is any subsurface of S, then the geometric boundary of
Mod(Sp) is a closed subspace of the geometric boundary of Mod(S).
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4. A SMALL BOUNDARY FOR Mod(S)

Define the complezity «(S) of a connected surface of genus g > 0 with m > 0
holes (which can be boundary components or punctures) as

k(S)=39g—-3+m

if S is not a sphere with two holes, e.g. an annulus. If S is an annulus then define
k(S) =0. If S = U™,S; is a disjoint union of connected surfaces S; then define

A(S) = X0, K(S3).

The purpose of this section is to set up an inductive procedure over the complex-
ity of the surface S to construct a topology on T (S) = T.(S)UX(S) which restricts
to the given topologies on 7.(S) and on X (S) and such that with respect to this
topology, T (S) is a compact Mod(S)-space. The construction of this topology is
carried out using Teichmiiller geometry.

Remark 4.1. In [DHS17], there is a construction of a topology on Mod(S)U X (S)
(where however the topology on X(.5) differs from the one we introduced) using the
combinatorics of hierarchical hyperbolic spaces and such that with respect to this
topology, Mod(S) U X(S) is compact. It is possible that the notion of consistence
we introduce below is related to the construction in [DHS17], but it is geared at
capturing features of Mod(S) which resemble properties of a CAT(0) group and is
not well adapted to hierarchical hyperbolicity, see however [DMS25].

4.1. The thick part of Teichmiiller space. By the collar lemma for hyperbolic
surfaces, there exists a number ¢y > 0 with the following property. For any closed
hyperbolic surface X, of genus g > 2, any two closed geodesics 1,72 on X4 of
length £(71), £(7y2) < €o are disjoint.

Let syst : T(S) — (0,00) be the systole function which associates to a point in
T(S) its systole, that is, the shortest length of a closed geodesic on S. For € < ¢
define the e-thick part Te(S) of the Teichmiiller space T (S) of marked hyperbolic
metrics on S by

T(S)={X €T(5) | syst(X) > e€}.
The following statement is well known. We refer to Proposition 1.1 of [JW10] for
an explicit account.

Theorem 4.2. For e < €y, the following holds.
(1) The subspace Tc(S) C T(S) is non-empty, closed, connected and stable
under Mod(S). Its quotient under the action of Mod(S) is compact.

(2) Te(S) is a real-analytic manifold with corners and hence admits a Mod(S)-
invariant triangulation such that Mod(S)\Tc(S) is a finite CW -complex.

As a consequence, 7.(S) is a topological manifold with boundary and interior

T(S) = {X | syst(X) > €} C T(S).

There is a coarsely well defined map

Y T(S) — CG(S)
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which maps a marked hyperbolic metric to a closed non-contractible curve of mini-
mal length. Coarsely well defined means that the map depends on choices, but the
images of a point X € T(S) for any two choices of such a map are of distance at
most two.

Call a map ¥ : T(S) — T(S) coarsely YT-invariant if d(T(¥ (X)), T(X)) < 2
for all X. The following is due to Ivanov [Iv02] if one replaces the mapping class
group by a torsion free subgroup. The full version is Theorem 1.2 of [JW10], see
also Theorem 3.9 of [J14].

Theorem 4.3 (Ji-Wolpert). For € < €y/3 there is a Mod(S)-equivariant coarsely
Y-invariant deformation retraction T (S) — Tc(S).

The deformation retraction is constructed as follows. First Ji and Wolpert con-
struct a Mod(S)-invariant continuous uniquely integrable vector field V' on T(S)
with the following properties (p.9 of [JW10]).

(1) V(syst) =1 on {syst < 2¢} and
(2) V vanishes on {syst > 3¢}.

The deformation retraction is then given by the time e-map of the flow defined by
V. Note however that the image of 7(S) under this map is the interior of T¢(S).
Since the time ¢ map of a continuous flow is a homeomorphism, we obtain the
following statement as an immediate consequence.

Corollary 4.4. For every e < €y/3 there is a Mod(S)-equivariant homeomorphism

Ac: T(S) = T(S).

For our purpose, the difficulty arises that we need to construct contractible
subsets of 7.(S) and not of its interior. But the closure of a contractible open set in
a smooth manifold may not be contractible. The following construction will allow
us to address this issue.

Define the small closure Agman of a subset A of ’7;(5) to be the union of A with
the set of all points z € 97.(S) so that z has a neighborhood U in T¢(S) with
UN(T(S)\ 07T:(S)) € A. Note that Agpan \ A is an open subset of 97(S). More
precisely, we have.

Lemma 4.5. (1) The small closure in T;(S) of an open subset of T(S) is open
in Te(S).
(2) If U C T(S) is open, then U C U NT.(S)

small*

Proof. fU C 7;(5) is open, then as ’72(5) C T<(8) is open, a point z € U C Ugpan
has a neighborhood in 7¢(S) which is contained in U.

On the other hand, if # € Ugpan \ U then it follows from the definition of Ugpan
that x has a neighborhood in 7.(S) entirely contained in Ugsman. This shows the
first part of the lemma.

The second part of the lemma is immediate from the definitions. O
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Lemma 4.6. The small closure of a contractible subset of Tc(S) is contractible.

Proof. Tt suffices to deformation retract the small closure Agman of a contractible
subset A of T¢(S) into A. The composition of this deformation retraction with a
deformation retraction of A to a point then shows that Agnan is contractible.

Since 7¢(S) C T(S) is a manifold with corners, for z € Agya1\ A there is a neigh-
borhood of z in Agyan which is homeomorphic to the set By = {(x1,...,7,) € R" |
>, 27 < 1,21 > 0}, with z corresponding to 0, and such that By N {z1 > 0} C A.
There is a deformation retraction of By into By\ V where V' is a small neighborhood
of 0 and such that the following two additional properties are satisfied. The time
one map of the deformation retraction is a homeomorphism onto its image, and the
support of this deformation retraction is contained in Y, 2? < 3. Thus for every
z € Agman \ A there is a deformation retraction of Agnan which moves a neighbor-
hood of z in Agpnan into A and such that the intersection of the resulting set with
OT(S) is contained in the complement of a neighborhood of z in the intersection
of Zsmall with 87;(5)

Each compact subset K of Agnan \ A C 97:(S) can be covered by finitely many
open sets in Agman which admit a deformation retraction into A. As the composition
of finitely many deformation retractions of Agya is a deformation retraction, there
is a deformation retraction o of Agyan with a(Agman) N (Asman \A) C Agman \ K. By
induction and using the fact that Agyan \ A is an open subset of 97:(S) and hence
has a countable basis, this implies that Agnai admits a deformation retraction into
A. From this the lemma follows. U

4.2. A topology on T.(S) U X(S). The construction of a topology on T(S) =
T(S) U X(S) uses induction on the complexity x(S) of the surface S. We begin
with having a short look at annuli, which are connected surfaces with x = 0. The
only other connected surface S with x(S) = 0 is the sphere with three holes which
plays no role for us as its mapping class group has a finite index subgroup which is
a direct product of the mapping class groups of its boundary annuli.

Example 4.7. In the case S is an annulus, then we have T(S) = R, X(S) =
{+,—}. If we equip T (S) with the topology of the compactification of R which is
homeomorphic to a compact interval and is obtained by attaching two points +oo,
then this construction defines an £Z-structure for the infinite cyclic group of Dehn
twists along the core curve of the annulus.

Assume now that x(S) > 1. Then the Teichmiiller space T (S) of S is of dimen-
sion at least two. There exists a constant p = p(S) > €, a so-called Bers constant,
such that any marked hyperbolic surface X € T(5) admits a pants decomposition
by simple closed curves of X-length at most p [Bu92]. If X € T.(S), then by possi-
bly enlarging p, we may in fact assume that X admits a marking p(X) consisting
of simple closed curves of length at most p. We call such a marking short for X.

By the collar lemma [Bu92], the geometric intersection number between any
two simple closed curves on S of X-length at most p is bounded from above by a
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universal constant. In particular, the marking p(X) defines a subset of uniformly
bounded diameter in CG(S) (see [MM99] for more information).

The marking curves from the marking p(X) decompose S into disks. Thus for
every proper essential not necessarily connected subsurface Sy of S, the subsurface
projections of the marking curves from p(X) decompose S into disks and hence they
coarsely define a marking prg, (1£(X)) of Sp. Here as before, the marking depends
on choices, but any two markings obtained in this way are of uniformly bounded
distance in the marking graph.

For a proper essential subsurface Sy of S denote by S§ the finite type surface
obtained from Sy by replacing each boundary component by a puncture.

Lemma 4.8. For every proper essential subsurface Sy of S there exists a natural
coarsely well defined projection prg. : Te(S) — Te(S55).

Proof. Choose for X € T.(S) a short marking u(X) of S. We saw above that p(X)
coarsely projects to a marking of Sy and hence of S§. On the other hand, by proper
discontinuity of the action of Mod(Sg) on 7c(S§) and cocompactness, given a point
prg: (X) C Te(S5) for which this marking is short, any other such point is contained
in a uniformly bounded neighborhood of prg.(X). This construction thus defines
a projection as claimed in the lemma. (I

The above lemma also is valid in the case that Sy is an annulus, where S5 = So
and as before, T(Sp) = Tc(S5) = R. Note that there is a natural identification
X(So) = X(S§) = T(0Sy) where J(9Sp) is a join of two element spaces, one for
each boundary component of Sy, so we can view X (S§) as a subspace of X(S).

Definition 4.9. Let Sy C S be a proper not necessarily connected subsurface which
may have components which are annuli. A topology on T (S) is called consistent
with a topology on T(Sg) if the following holds true. If ¢ € X(S5) C X(S) then
a sequence X; C Tc(5) converges to & if prg: (X;) — & in T(Sg). The topology is
called consistent if it is consistent with a family of topologies on T (Sg) for every
proper subsurface Sy of S.

Note that if Sy C S7 C S are nested essential subsurfaces, then by construction,
for every X € T(S) the identity prg. (X) = prg; (prg: (X)) coarsely holds. As a
consequence, if the topology on T (S) is consistent, then the same holds true for
the topologies of T(Sg) for every essential subsurface Sy of S.

The following definition is geared at overcoming some purely technical difficulties
in the construction of an £Z-structure for Mod(S).

Definition 4.10. A topology on T (.S) is called nice if every point & € X(S) has a
neighborhood basis consisting of sets Ug so that Ug NTc(S) is open and contractible.
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Example 4.11. If S is a once punctured torus or a four-holed sphere, then we saw
in Example 3.3 that X'(S) has a natural identification with the Gromov boundary
OMod(S) of the mapping class group of S. Recall that X(S) is a disjoint union of
the set CG(S) of minimal filling geodesic laminations with the set of all labeled
simple closed curves.

Since Mod(S) is a hyperbolic group which acts properly and cocompactly on
T.(9), the space 7 (S) has a natural topology which is inherited from the topology
of the union of Mod(S) with its Gromov boundary. The restrictions of this topology
to the subsets 7c(S) and X(S) are the given topologies.

Any proper essential subsurface of S is an annulus. Let A C S be such an
annulus. We claim that the topology of T (.S) is consistent with the topology of the
compactification R U {£o0} of the Teichmiiller space T (A).

Namely, let ¢ be the core curve of A and let c;. € X(S) be the curve ¢ equipped
with a label. Denote by (T¢) the infinite cyclic group of Dehn twists about ¢ and
assume that ¢, corresponds to the limit point of the sequence T* as k — co. Note
that (T¢) is a quasi-convex subgroup of Mod(S). Let X € 7.(S) be an arbitrary
point. With respect to the topology of Mod(S) U 0Mod(S) as the union of a
hyperbolic group with its Gromov boundary, a sequence of points X; = ¢;(X) C
Te(S) for p; € Mod(S) converges to ¢y € X(S) if the shortest distance projections
of the elements p; into the quasi-convex infinite cyclic subgroup (T.) converge to
c4. Translated into properties of the subsurface projections of points in the Farey
graph, this just means that the topology on 7 (S) is consistent.

We can also check that the topology is nice. Namely, recall that 7.(S) can be
identified with the complement in the hyperbolic plane H? of a Mod(S) invariant
countable collection of horoballs whose closures are pairwise disjoint. The horoballs
are based at the rational points of OH? and are fixed by an infinite cyclic subgroup
of Mod(S) of parabolic isometries.

Let H C H? be such a horoball, with boundary 0H, fixed by the parabolic
group G C Mod(S). Let n : R — 0H be a parameterization of OH by arc length.
The geodesics in H? which are asymptotic to the fixed point of G in OH? foliate
H? and determine a shortest distance projection P : H? \ H — OH. The set
U, = P~1(5(m, 00)) \ n(m, 00) is contractible and intersects 7¢(S) in a contractible
open set whose small closure is a neighborhood of the labeled point n(co) = c4.
These neighborhoods define a countable neighborhood basis of ¢y which are small
closures of contractible open subsets of TG(S ).

Alternatively, let V,,, D U,, be the union of all leaves of the foliation which pass
through n(m, co). Clearly V,, is contractible. The small closures of the images of the
sets V,,, under the homeomorphism 7(S) — T.(8 ) then define another neighborhood
basis of ¢, in the above topology of T (S) consisting of small closures of contractible
open subsets of 7¢(S).

As neighborhood bases of minimal filling laminations will be discussed in detail
in a more general context, we omit the discussion here.
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If S = Uk, S, is a disconnected surface of finite type, then a hyperbolic metric on
S is a hyperbolic metric on each component S; of S. In this vein, the Teichmiiller
space T(9) = Hle T(S;) is the product of the Teichmiiller spaces of the compo-
nents, and the mapping class group Mod(S) = Hle Mod(S;) is the direct product
of the mapping class groups of the surfaces S;. Put T(S) = [ 7:(S;) U X (U;S;)
where as before, X'(U;S;) is the join of the spaces X(S;).

The following is a more precise version of the third part of Theorem 4. In its
formulation, we do not require S to be connected.

Theorem 4.12. For a surface S of finite type there exists a topology on T (S) with
the following properties.

(1) The topology is nice and consistent.

(2) Let & = Zle a;& € X(S) and let Spy1 = S\ UF_|S;. A sequence X7 C
Te(S) converges to & if and only if (prg, (u(X7)),...,prg,,, (W(X7))) = &
mn y(ufifsi)'

(3) The pair (T(S), X(S)) is an EZ-structure for Mod(S).

Remark 4.13. Indirectly, consistency is a consequence of the second property in
the theorem. The formulation of the theorem was chosen to keep the technical
aspects of this article as simple as possible.

The remainder of this article is devoted to the proof of Theorem 4.12.

We proceed by induction on the complexity #(.5) of S. Example 4.7 and Example
4.11 cover the case of a connected surface of complexity x£(S) < 1. In Subsection 7.2
we shall establish Theorem 4.12 for all possibly disconnected surfaces of complexity
k(S) = 0, that is, for disjoint unions of annuli. This allows to use induction on
the complexity of the surface. For the remainder of this section, we assume that
Theorem 4.12 is known for all surfaces of complexity at most k—1 for some k—1 > 0,
and we use this assumption to set up the induction step. To this end consider a
connected surface S of finite type and complexity x(S) = k.

We show next that this notion of convergence gives indeed rise to a topology on

Te(S) L X(S).

Proposition 4.14. There exists a Hausdorff topology Oy on T (S) = T(S)UX(S)
with the property that a set A C T(S) is closed for Oy if and only if the following
holds true.

(1) ANT(S) is closed in Tc(S), and AN X(S) is closed in X(S5).
(2) If X; C ANT(S) is a sequence which converges to & € X(S) in the sense
of (2) of Theorem 4.12, then & € A.

Proof. The proof is analogous to the proof of Lemma 3.5. By the Hausdorff property
of 7¢(S) and Lemma 3.5, note first that any limit of a convergent sequence X; C
Te(S) is unique.
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To show that the notion of convergence defines a topology on 7T (S) with the
property that 7.(S) C T(S) is open and a set A C T(S) is closed if A N T(S)
and AN X(S) are closed and if A contains the limit of any sequence X; C T(S5)
which converges to a point in X'(S), it suffices to verify that the empty set and
the entire space are closed, and the same holds true for finite unions and arbitrary
intersections of closed sets. The verification that this is satisfied is identical to the
argument used in the proof of Lemma 3.5.

Finally we have to show that the topology thus constructed is Hausdorff. Since
X(S) C T(9) is a closed Hausdorff space and T.(S) C T(S) is an open Hausdorff
subspace of T(9), all we need to show is that two points & # n € X(S) have
disjoint neighborhoods. Now £, 7 have disjoint neighborhoods in X'(S) and hence
since T (S) is separable, it suffices to show that the limit of any sequence X; C T¢(S)
converging to a point in X (.S) is unique. But this was established in the beginning
of this proof. [

Assume from now on that 7 (S) is equipped with the topology defined in Propo-
sition 4.14. We have to verify that this topology satisfies the properties stated in
Theorem 4.12. The following proposition is the first step.

Proposition 4.15. The topological space (T (S),Op) has the following properties.

(1) T(S) is compact and separable.
(2) The mapping class group acts on T (S) as a group of transformations.

Proof. T(S) is clearly separable since this holds true for X(S) and 7.(S). By
Proposition 4.14, it is a Hausdorff space.

To show that 7 (S) is compact, note that since X' (S) is compact and T(S) is a
Lindeldf space, the space T (S) is Lindelof. Since T (.9) also is Hausdorff, it suffices
to show that T(S) is sequentially compact, and this follows if we can show that
any sequence X; C 7.(S) has a convergent subsequence in 7 (5).

If the sequence has a bounded subsequence in 7. (.S) with respect to a fixed base-
point X € T.(S), then as T.(S) is proper, we can extract a converging subsequence.
Thus it suffices to show the following

Claim: Any unbounded sequence in 7¢(S) admits a subsequence which converges
in 7(S) to a point £ € X(9).

Proof of the claim: The proof of the claim is essemtially identical with the proof of
Proposition 3.12.

Since the space of geodesic laminations on S equipped with the Hausdorff topol-
ogy is compact, by extracting a subsequence we may assume that the sets of all
simple closed curves contained in the marking p(X;) converge in the Hausdorff
topology to a finite union Ué’f:lﬁj of (not necessarily minimal) geodesic lamina-
tions. Note that as some of the curves in p(X;) may intersect, these laminations
are not necessarily disjoint, that is, U?zlﬁj may not be a lamination in its own
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right. However, since the number of components of p(X;) is uniformly bounded,
the same holds true for the number of limit laminations.

Let (1, ...,(s be the collection of all minimal components of the laminations 3,
which are distinct from simple closed curves. The number of such components is
finite. Each of the laminations (; fills a subsurface S; of S which is different from

an annulus or a pair of pants. Thus (; is a point in the Gromov boundary of the
curve graph CG(S;) of S;.

Now for j <'s, a sequence ¢/ of simple closed curves on the surface S; converges
to ¢; in CG(S;) UOCG(S;) if and only if their geodesic representatives ¢ for some
fixed hyperbolic metric on .S; converge to (; in the coarse Hausdorff topology. As
the diameter of the subsurface projection of p(X;) to S; is bounded independent of
i, hyperbolicity of CG(S;) implies that the subsurface projection to S; of any of the
curves in p(X;) which intersects S; converges in the coarse Hausdorff topology to
;. As a consequence, none of the limits in the Hausdorff topology of any sequence

of components of 11(X;) can intersect ;.

By a similar argument, if (; is a closed curve component, then we can consider the
subsurface projections of a component of ;1(X;) to an annulus A({;) with core curve
¢;- Up to passing to a further subsequence, we may assume that these projections
are either bounded along the sequence, or converge to one of the two boundary
components of the curve graph of A((;). In the first case call ¢; unlabeled. In the
second case, label (; with the corresponding point in the Gromov boundary of the
curve graph of A({;) and note by the reasoning used in the previous paragraph, no
labeled simple closed curve component (; can be intersected by another component

Ce-

By reordering, let (q, ..., (x be the components of the limit laminations 3,, which
either are distinct from simple closed curves or which are labeled simple closed
curves. We claim that &k > 1, that is, that there is at least one lamination with
this property. Namely, if ¢ is an unlabeled simple closed curve, represented by a
closed geodesic for the base surface X, and if with respect to the Hausdorff topology
on compact subsets of X a limit of the sequence u(X;) contains ¢ as a unlabeled
component, then no component of a limit of the sequence p(X;) in the Hausdorff
topology can spiral about ¢ and hence ¢ is a component of p(X;) for all but finitely
many ¢. If & = 0 then this holds true for any limit point of the sequence p(X;) in the
Hausdorff topology. But p(X;) is.a marking of S for all ¢ and hence decomposes
S into disks and once punctured disks and consequently the sequence u(X;) is
bounded. But this contradicts the assumption that the sequence X; C T¢(S) is an
unbounded sequence.

By what we showed so far, é = U?Zle is a geodesic lamination. Furthermore, if
S; is the subsurface of S filled by (;, then dcg(sj)(Prsj (1(X5)), zj) — oo where as
before, z; € CG(S;) is a fixed basepoint for CG(S;).

If ¢ is minimal and fills S then X; — CA € T(S) and we are done. Otherwise we
use the induction hypothesis which yields the following. Let Si41 = S\ U;S;, then
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there is a topology on T(Ujs;) U X'(U;57) with the properties stated in Theorem
4.12, in particular 7(UjSJ’-‘) is compact and metrizable.

As a consequence, by passing to a subsequence we may assume that pry;s: (X3)
J

converges to a point in 7 (U;SF). It follows from the above discussion that this
point £ is contained in X'(U;S;). But then by consistency, we have X; — £ € T(5)
which completes the proof of the claim. |

To summarize, we showed that 7 (S) is sequentially compact Hausdorff Lindel5f
space and hence it is compact.

We are left with showing that Mod(S) acts on T(S) as a group of transforma-
tions. However, as Mod(S) acts on T.(S) and on X(S) as a group of transfor-
mations, and it maps subsurfaces of S to subsurfaces of the same topological type,
moreover the definition of convergence which determines the topology Oy is natural
with respect to the action of Mod(S) on subsurfaces and subsurface projections,
this is indeed the case. The proposition is proven. (Il

Theorem 4.16. X(S) is a small boundary for Mod(S). A pseudo-Anosov mapping
class acts on X (S) with north-south dynamics. In particular, the action of Mod(S)
on X(S) is strongly proximal.

Proof. We showed so far that X'(S) defines a boundary of 7.(S) and hence of
Mod(S) since Mod(S) acts properly and cocompactly on 7.(S). Furthermore, a
pseudo-Anosov element acts on X' (S) with north-south dynamics and hence the
action of Mod(S) on X(S) is strongly proximal.

We are left with showing that the right action of Mod(S) induces the identity.
However, this action just consists of a change of basepoint. As a sequence of points
of uniformly bounded distance from a convergent sequence converges to the same
point, this yields the statement of the theorem. ([l

5. METRIZABILITY

The goal of this section is to show the following result.

Theorem 5.1. (7(S),Oy) is metrizable.

The strategy for the proof consists in the construction of an explicit neighborhood
basis in T (S) for every point £ € X(S). The statement of the theorem then follows
with standard tools.

By [MM99], for any surface V of finite type there is a number p > 0 only depend-
ing on the complexity of V' such that the image under the map Y of a Teichmiiller
geodesic v : R — T(S) is an unparameterized p-quasi-geodesic in CG(V'). This
means the following. There is an increasing homeomorphism o : (a,b) C R — R
such that the map YT o~oo : (a,b) — CG(S) is a p-quasi-geodesic. This quasi-
geodesic may be bounded, one-sided infinite or two-sided infinite. A sufficient but
not necessary condition for being one-sided infinite in the positive direction is that
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the geodesic recurs in the positive direction to the thick part 7:(S) for arbitrarily
large times. Since the directions of Teichmiiller geodesic rays with this property
are dense in the cotangent bundle of Teichmiiller space, up to increasing p, any
geodesic segment a : [0,n] — CG(S) can be extended to a p-quasi-geodesic ray
a:[0,00) = CG(S).

Consider first a point £ € ICG(S). Choose a basepoint Xy € 7.(S) and let ¢ be
a pants curve from pu(Xg). For j > 0 define

W(&,j) € Te(S)
to be the set of all hyperbolic metrics X € 7.(S) with the following properties.

(1) degs)(u(X),c) = j.

(2) A geodesic in CG(S) connecting ¢ to u(X) can be extended to a p-quasi-
geodesic in CG(S) whose endpoint is contained in the ball of radius e~/
about & in dCG(S), where the metric on 9CG(S;) is the Gromov distance
d. constructed from the basepoint c.

If &= Ele a;&; where the lamination &; fills a proper subsurface S; of S then
put Sgr1 = S\ U;S;. Using the induction hypothesis and consistency, choose a
countable neighborhood basis V; of £ in T (U;S}) and define

W(E,j) = {X € T(S) | pry, s (X) € V;}.
Then we have

Proposition 5.2. For each &, j the closures of W(&,j) in T(S) define a neighbor-
hood basis of £ in T(S).

Proof. We show first that for each &, j the closure of W (¢, 5) in T(S) is a neighbor-
hood of . Since T (S) is dense in 7 (S) and by Proposition 4.15, T (S) is a compact
separable Hausdorff space, it suffices to show the following. Let (X;) C 7¢(S) be a
sequence converging in 7 () to &; then X, € W(¢, j) for all sufficiently large £.

Now if &€ € ACG(S) then by the definition of the topology of T (S), we know that
w(Xe) = € in CG(S)UACG(S). But this immediately implies that X, € W(&, j) for
all sufficiently large /.

Similarly, if £ = >, a;& then pry g (X)) — & in T(U;S;) and hence by the
definition of the sets W (&, j) we also have X, € W (¢, j) for all sufficiently large £.

A similar argument also shows that the sets W (¢, 7) define a neighborhood basis
of £. Namely, we may assume that the sets W (¢, j) are nested: If m > j, then
W(&,m) C W(&, 7). Thus since X(5) is a compact Hausdorff space, to show that
the closures W (&, ) in T(S) of the sets W (€, j) define a neighborhood basis of ¢ in
T(9), it suffices to show that N;=oW (&, ) = {¢}.

To see that this is indeed the case note first that £ € W (€, ) for all j and hence
as these sets are compact, the point £ also is contained in the intersection of these
sets. Furthermore, the following holds true.
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For each ¢ let X, € W(,£); if £ € OCG(S) then the distance of u(X,) to the
base curve ¢ in CG(S) tends to infinity with ¢. This implies that the sequence X,
can not have a convergent subsequence in 7;(S). Thus by compactness of T (.9),
up to passing to a subsequence, the sequence converges to a point in X'(S). It then
follows from the definitions that this point equals &.

The case & = ), a;&; follows in exactly the same way from the consistency and
will be omitted. (]

We are now ready to show

Proposition 5.3. T(S) is metrizable.

Proof. By Uryson’s theorem, a second countable Hausdorff space is metrizable. As
by Proposition 4.15 the space T (S) is Hausdorff, it suffices to show that 7(S) is
second countable. Since T.(S) is second countable, this is the case if there exist
countably many open sets U; C T (S) which contain a neighborhood basis for any
point z € X(S).

Since the Hausdorff topology on geodesic laminations is metrizable, there exists
a countable dense subset {&; | i} C dCG(S). For each i,j let W (i, j) be the interior

of the set W (&;,5) C T(S) and put
Ws = {W(i,j) | i,j}
which is a countable collection of open sets.

We claim that the sets from the collection Ws contain a neighborhood basis
of every point in dCG(S) C X(S). To this end let U C T(S) be open and let
& € 0CG(S)NU. By Proposition 5.2 there exists some j so that W(¢,j) C U.
By the fact that the set {§ | i} is dense in dCG(S) and standard consequences
of hyperbolicity of CG(S), there exists some ¢ and some £ > 105 so that the set
W (&;,£) is a neighborhood of £ contained in W (¢, j) which is what we wanted to
show.

Second, for a proper essential subsurface Sy € S choose a countable basis {V; | j}
of the topology of T (Sg) which exists by the induction hypothesis. Then the sets
{X | prg; (X) € Vi} defines a countable neighborhood basis of X(57) in T(S). Since
there are only countably many subsurfaces in S, and we have X (S) = dCG(S) U
Uy X(V*), this shows that T(S) is indeed second countable and completes the
proof of the proposition. O

6. DIMENSIONS AND SMALLNESS

We showed so far that the pair (7(S),X(S)) is a pair of compact metrizable
spaces, with X'(S) nowhere dense in 7(S). In this section we show that these
spaces are finite dimensional and that the collection of all translates of a compact
set in X form a null sequence in 7 (S). Throughout we assume that S is connected,
of genus g > 0 with m > 0 punctures. The extension of the results in this section
to disconnected surfaces is straightforward.
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Recall that the covering dimension of a topological space X is the minimum of
the numbers n > 0 so that the following holds true. Any open cover U of X has a
refinement V so that a point in X is contained in at most n + 1 of the sets V € V.
With this terminology, the covering dimension of R™ is n, and hence the covering
dimension of any subset of R™ equipped with the subspace topology is at most n.
In particular, the covering dimension of 7 (5) equals 6g — 6 + 2m.

The following result relies on work of Gabai [Gal4], see also [BB19).
Proposition 6.1. The covering dimension of X(S) is finite

Proof. We proceed by induction on the complexity of the surface S. If S is an
annulus, then its geometric boundary consists of two points and there is nothing to
show.

Consider next a four-holed sphere or a one-holed torus S. By Example 2.3 and
Example 3.3, the geometric boundary as a topological space is homeomorphic to the
Gromov boundary of the hyperbolic group PSL(2,7Z). Since the group PSL(2,7Z) is
virtually free, the boundary X'(S) of S is a Cantor set, which has covering dimension
Zero.

Let X and Y be compact spaces with covering dimensions m,n. We claim that
the covering dimension of the join X %Y is at most m + n + 1. To see that this is
the case recall that X Y is the quotient of X x Y x [0,1] under an equivalence
relation ~ which is only nontrivial on X xY x {0} and X xY x {1}. The projection
X XY x[0,1] = XxY x[0,1]/ ~ maps X xY x{0} to X x{0} and maps X xY x {1}
to Y x {1}. Thus we have X *Y = X UY U C where X C X xY is the closed set
which is the quotient of X x Y x {0}, Y C X Y is the closed set which is the
quotient of X x Y x {1}, and the set C' is homeomorphic to X x Y x (0,1).

By Alexandrov’s definition of dimension (see Theorem 3.4 of [Drl18]), we have
dim(A x B) < dim(A) + dim(B) and hence dim(C) < dim(X) + dim(Y) + 1.
The compact space X %Y is the union of the closed subset X UY with C' and
hence the theorem of Menger and Uryson (see Theorem 3.1 of [Dr18]) shows that
dim(X % Y) = dim(C) < dim(X) +dim(Y) + 1 =m +n + 1 as claimed.

Assume now that the proposition was established for all surfaces of complexity
at most k — 1. Let S be a surface of complexity k. We have X (S) = 9CG(S)UY
(disjoint union) where ) = UX(S1) * - - - * X(S,) and the union in the definition of
Y is over all disjoint collections of proper subsurfaces Si,...,5, of §. The union
Y is not disjoint.

The number of disjoint surfaces in one of the joins appearing in the definition of )
is uniformly bounded in terms of k. Thus by the induction hypothesis and the above
dimension estimate for joins, applied inductively, there exists a number n > 0 which
bounds from above the covering dimension of each of the sets X'(S1) * -+ % X(S,).
Example 3.2 shows that as subsets of X(.5), the sets X(S7) *---* X(S,) are closed
and hence compact. As a consequence, the subspace Y of X(S), equipped with
the induced topology, is a o-compact Hausdorff space as it is a countable union of
compact spaces.
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If K C Y is compact, then K can be represented as a countable union of the
compact spaces KNX(S1)*---xX(Sp). Then the countable union theorem Theorem
3.2 of [Dr18] shows that dim(K) = sup{dim(K N X(Sy) *---* X(S,))} where the
supremum is over all disjoint unions of proper subsurfaces of S. By the above
estimate for the dimension of the spaces X'(S1) * - -- % X(S,), we have

dim(K NX(S1) *---xX(Sp)) <n

for any such intersection. But then the dimension of Y is at most n (see p.316 of
[Mu14] for a sketch of a proof).

Following [Gal4], the covering dimension of dCG(S) is at most 4g—5+2m. Then
by the Uryson-Menger formula (see Theorem 3.3 of [Dr18]), the dimension of the
compactum X (.5) is at most

dim(X(S)) = dim(9CG(S)) + dim(Y) + 1

and hence it is finite. O

As a consequence, we obtain

Corollary 6.2. The pair (T(S), X(S5)) is a pair of spaces of finite dimension.

Proof. By Proposition 6.1, the dimension of X(S) is finite. As the compactum
T(S) = T:(S)U X(9) is a union of two subspaces of finite dimension, with X'(S) C

T(S) closed, we have
dim(7(S)) = max{dim(7:(S), dim(X(S))} < oo.

We now verify the requirement (4) in the definition of a Z-set.

Proposition 6.3. The action of Mod(S) on T(S) is U-small for every open cov-
ering U of T(S).

Proof. Let U be an open covering of 7(S). By compactness, we may extract a
finite subcovering, so we may assume that U is in fact finite, that is, we have
U = Up<i<mU; for some open sets U; C T(S). Assume without loss of generality
that U; N X(S) # 0 for all ¢ > 1.

We argue now by contradiction and we assume that there exists a compact set
K C T(S) and infinitely many elements ¢; € I' such that ¢;K ¢ U; for all
7 < m. Since the action of I" on @ is proper and cocompact, we may assume that
K = U?lejKO where K is a compact fundamental domain for the action of T"
and ¥; € I.

Let X € K,. Since the action of I' on @ is proper and T (S) is compact, we
conclude that up to passing to a subsequence, the sequence ; X converges in 7 ()
to a point £ € X(S). Since the right action of T on itself extends to the trivial action
on X(S), we then have ¢;(¢;X) — & for all j < £. In particular, for sufficiently
large 4, we have ¢;(¢; X) € U, for some fixed p > 0. But then it follows from the
definition of the topology on 7 (S) that in fact ¢; K — ¢ and hence ¢; K C U, for
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all sufficiently large p. This is a contradiction which completes the proof of the
proposition. ([

7. NEIGHBORHOOD BASES

The main goal of this section is to construct for a point in X(S) C T(S) an
explicit neighborhood basis in 7 (S) consisting of small closures of open contractible
subsets of 7;(5 ). Note that the neighborhood basis we constructed in Section 5 does
not seem to consist of sets with this property. However, the neighborhoods from
that basis will be used in our construction. Here by a contractible subset of T¢(S) we
mean a subset V' which is a contractible space with respect to the subspace topology.
This result then completes the proof of Theorem 4.12 and hence of Theorem 4. The
construction is the most involved part of the proof. It is carried out in three steps,
each of which is contained in a separate subsection. The first two steps do not rely
on an induction hypothesis and are used in the third subsection to complete the
inductive construction of a topology on 7 (S) with the properties stated in Theorem
4.12.

7.1. A neighborhood basis for minimal filling laminations. In this subsec-
tion we prove the following result.

Proposition 7.1. Every point £ € OCG(S) C X(S) has a countable neighborhood
basis in T (S) consisting of sets whose intersections with T.(S) are small closures
of contractible open subsets of Tc(S).

The proof of Proposition 7.1 introduces the ideas used in the general case, but it
is technically easier. To set it up, note that any minimal filling geodesic lamination
& decomposes S into a union of ideal polygons. Each of these polygons which is not
an ideal triangle can be subdivided by adding isolated leaves which connect two
non-adjacent cusps of the polygon. The various ways to subdivide these polygons
determine a finite collection &, . . . , & of distinct geodesic laminations which contain
¢ as a sublamination. Assume that £, = &.

Let dg be the Hausdorfl metric on the space of compact subsets of a fixed
hyperbolic surface X € T.(S). Denote as before by Miny(£) the space of geodesic
laminations on X which are unions of disjoint minimal components. Equivalently,
the only isolated leaves of a geodesic lamination in Miny (L) are simple closed
curves. As before, let supp : X(S) — Miny(£) be the map which associates to a
point >, a;& (a; > 0) the support supp(§) = U;&;. We have

Lemma 7.2. Fori > 0 let
U, = Uj{ﬁ e Minu(ﬂ) | dH(B,fj) < 1/2}

and write V; = {¢ € X(S) | supp(¢) € U;}. Then the sets V; form a neighborhood
basis of £ € ICG(S) C X(S) in X(95).
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Proof. Clearly ¢ € V; for all i. We first show that for each i the set V; is a
neighborhood of £. For this we argue by contradiction and we assume that there

exists some 4 such that this is not the case. Then there exists a sequence ¢; C X'(5)
such that (; — £ and such that (; ¢ V; for all j.

By the first requirement for convergence in the definition of the topology on
X(S), we know that supp(¢;) converges in the coarse Hausdorff topology to &, =
supp(&). By compactness of the space of compact subsets of S with respect to the
Hausdorff topology, by passing to a subsequence we may assume that the sequence
supp((;) converges in the Hausdorff topology to a geodesic lamination ¢. Then ¢
contains £y as a sublamination and hence { = £, for some s < k. By definition,
this implies that supp(¢;) € U; and hence ¢; € V; for all sufficiently large j, a
contradiction. This shows that indeed, each of the sets V; is a neighborhood of &.

To show that the sets V; form a neighborhood basis for &, note that V;4; C V;
and hence it suffices to show that N;V; = {£}. However, this is immediate from the
definitions and the fact that the preimage of supp(£) under the support map supp
which associates to ¢ € X(.9) its support consists of the single point &. [l

A measured geodesic lamination on the surface S is a geodesic lamination to-
gether with a transverse invariant measure. The space ML of measured geo-
desic laminations is equipped with the weak® topology. The quotient of ML un-
der the natural action of (0,00) by scaling is the space PML of projective mea-
sured geodesic laminations. This space is homeomorphic to the sphere S%9—7+2m,
To put Lemma 7.2 into proper context and for later use, we relate the subset
ACG(S) C X(S) C T(S) to the space PML.

To this end we use a more geometric view on PML. Fix again a point X € T.(S).
The cotangent space T% 7T (S) of Teichmiiller space at X can be identified with the
space of measured geodesic laminations on S. Or, equivalently, by the Hubbard
Masur theorem, every measured geodesic lamination v on S is the vertical measured
geodesic lamination of a unique marked quadratic differential ¢(v) for the complex
structure on S defined by X. With this identification, we can associate to v € ML
the point 7, (1) where v, : [0,00) — T(S) is the Teichmiiller geodesic starting at X
whose initial (co)-velocity v,,(0) is the quadratic differential with vertical measured
geodesic lamination v. This construction defines the Teichmiiller exponential map
expy : MLU{0} — T(S) at X which is a homeomorphism.

The area area(q(v)) of the flat metric defined by ¢(v) defines a norm on ML
depending on X. Associating to [v] € PML the unique measured lamination
p([v]) with the property that the area of ¢(p[r]) equals one then defines a section
p: PML — ML. In this way we can identify PML with the sphere of unit
directions for the Teichmiiller metric.

The support supp(v) of a measured geodesic lamination v is a point in the space
Mingy(£). Each of its components is equipped with a transverse invariant measure

and hence it is a measured geodesic lamination in its own right.

Let p > 1 be a control constant with the following properties.
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e The image under the map T of any Teichmiiller geodesic is an unparame-
terized p-quasi-geodesic in CG(S) (see [MM99]).
e Every geodesic segment in CG(S) can be extended to a p-quasi-geodesic ray.

Consider as before a minimal filling geodesic lamination £ € 9CG(S). Let
P(§) € PML be the set of all projective measured geodesic laminations which are
supported in . This is a non-empty compact polytope of dimension < 3g — 3+ m
whose extreme points are the ergodic projective transverse measures supported in
¢. In particular, P(£) is compact and contractible. Since P () is contractible and
since PML is homeomorphic to a sphere of dimension 6g — 7 + 2m, we can find a
descending chain V3 D V, D - - of closed contractible neighborhoods of P(§), each
of which is homeomorphic to a closed ball, such that V;;1 C V; and N;V; = P(§).

In the sequel we use the terminology small closure Agman in T(S) of aset A C
Te(S) to denote the union of the small closure of A in 7¢(S) with the intersection
with X' (9) of the closure A of A in T (S). Thus for any set A C T¢(S), AgmanNX(S)
is closed, but Agman N 7:(S) may be open.

Lemma 7.3. Let Vi D Vo D --- be a descending chain of closed contractible
neighborhoods of P(§) in PMAL, each of which is homeomorphic to a closed ball,
with M;V; = P(€). Let A, : T(S) — T.(S) be the homeomorphism from Proposition
4.4 and let expx : MLU {0} — T(S) be the Teichmiiller exponential map at X.

Then for each j > 0, the small closure Z(i,5) . in T(S) of the open set

Z(i,j) = A{expx (v) | area(p[v]) > j, [v] € Vi}
is a neighborhood of £, and neighborhoods of this form define a neighborhood basis
of €.

Proof. We divide the proof of the lemma into two claims.
Claim 1: For all i, j, the small closure Z(i, ), . of Z(i,j) in T(S) is a neighbor-
hood of €.

Proof of Claim 1: By the definition of the topology on 7 () and the fact that 7 (S)
is dense in 7 (S), it suffices to show the following. Let Y; C 7:(S) be a sequence
converging to &; then for any fixed (i,j), we have Y, € Z(i,j) for all sufficiently
large /.

Let FML C PML be the subset of all projective measured geodesic laminations
whose support is a minimal geodesic lamination which fills up S. By Lemma 3.2 of
[H09], the support map F : FML — 9C(S) which associates to a point in FML its
support is continuous and closed. Thus the image F(FML\ V;) is a closed subset
of ACG(S) which does not contain £. As a consequence, there exists a number
T(i) > 0 so that the ball of radius e~7(?) about ¢ with respect to the Gromov
metric on ACG(S) based at Y(X) € CG(S) is disjoint from F(FML\ V).

By the choice of the control constant p > 1 and hyperbolicity, there exists a
number 7(7) > T'(i) with the following property. Let [v] € FML\ V;; then the
endpoint of a p-quasi-geodesic ray in CG(S) with starts at the basepoint T(X) and
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which passes through a point on the p-quasi-geodesic YT{expy (tp[v]) | t > 0} of
distance at least 7(i) to T(X) (provided that such a point exists) is not contained
in the ball of radius e~7()/2 about £.

Since the homeomorphism A, : 7(S) — ’7;(8) is coarsely T-invariant, the map
expy : MLU{0} — T(S) is a homeomorphism and FML C PML is dense, it
follows that for all 4, j there exists £ so that the neighborhood W (&, ¥¢) of € in T(S)
constructed in Proposition 5.2 is contained in the closure of the set A ({expx (tp[v]) |
t > j,[v] € V;}). Thus by Proposition 5.2, Z (15 J)qman i @ neighborhood of ¢ in
T(S). [ |

The proof of the lemma is completed once we established the following. In its
formulation, Z(i, j) is the closure of Z(i, ) in T (S).

Claim 2: Let W be a neighborhood of ¢ in T(S); then there exists some i, j so
that Z(i,j) C W.

Proof of Claim 2: By Claim 1, each of the sets Z(i,j) is a neighborhood of £ and
hence contains . Furthermore, these neighborhoods are nested: If iy < iy and
J1 < jo then Z(iy,j1) D Z(ia,j2). Thus since the sets Z(i,j) are moreover closed

and hence compact, it suffices to show that N; ;Z(4, j) = {£}.

Since the Teichmiiller exponential map expyx at X is a homeomorphism, we
clearly have N; ;Z(i,5) C X(S). On the other hand, the map Y : 7(S) — CG(S)
is coarsely Lipschitz, and for v € P(£), the p-quasigeodesic t — Y(exp(tp[v]))
has infinite diameter. This implies that for any k > 0 there are numbers (k) >
0,m(k) > 0 so that for all [§] € Vi), the diameter of the image under Y of the
Teichmiiller geodesic segment exp x ([0, m(k)]p[n]) is at least k. As a consequence, if
X; € Z(i,1) for each i, then by compactness of T(S), up to passing to a subsequence
the sequence X; converges to a point ¢ € X(S) NICG(S). That this point has to
coincide with £ is an immediate consequence of the discussion in the proof of Claim
1 above. This completes the proof of the claim. | ([l

Lemma 7.4. The sets Z (i, j) oy N Te(S) are contractible.

smal

Proof. Since for each i the set V; is a contractible subset of the set of projectivized
measured geodesic laminations, identified with the unit sphere in the cotangent
space of T(S) at X, the set

H(i,j) = Upjevi{expx (tpv]) | t > j} C T(S)

is open and contractible since it is homeomorphic to V; x (j, 00). This uses the fact
that the Teichmiiller exponential map at X is a homeomorphism of T% 7 (S) onto

T(S).

But Z(i, j) is the image of H (i, j) under the homeomorphism A, : 7(S) — 7<(5)
and hence Z (i, j) is contractible. Then by Lemma 4.6, the small closure of Z(i, j)
in 7(S) is contractible as well. O
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Proof of Proposition 7.1. The small closure of Z(i, ), ., of Z(i,7) in T(9) is a
neighborhood of £ which is the small closure of a contractible open subset 7¢(.S) and
hence contractible. The countably many such sets define a countable neighborhood
basis of £ in 7 (S) whence the proposition. a

7.2. Neighborhoods of minimal filling laminations for disconnected sur-
faces. In this section we consider a disjoint union S = U¥_;S; of finitely many
connected surfaces of finite type. Our goal is to construct for any point in

£ = CG(Sy) * -+ * ACG(Sy) C X (S)

a neighborhood basis in 7 (S) consisting of sets whose intersections with 7¢(S) are
small closures of open contractible subsets of T¢(.5).

Remark 7.5. In [Til1], it was shown that if two groups I'1, I's admit £ Z-structures
(X1,771) and (Xa, Zs), then the direct product I'y x I's admits an £Z-structure
consisting of a compactification of the product (X7 \ Z1) x (X2 \ Z2) by adding the
join Zy * Zy. Unfortunately, we can not use this result directly as we need more
precise information for the proof of Theorem 4.12.

The set £ is the set of sums ), a;& where § € 9CG(S;) and a; > 0,>,a;, =1,
Recall from Section 7.1 that for each ¢ the choice of the basepoint X; determines a
section p; : PML(S;) — ML(S;). Let z; € CG(S;) be a component of the pants
decomposition of u(X;). For simplicity of notation, call a function f : R — R
coarsely non-decreasing, with control constant ¢ > 0, if we have f(¢t) > f(s) — ¢ for
all s < t. Then for every projective measured geodesic lamination [v;] on S; the
function

t = degs,)(Y(expy, (tpi[vi])), i)
is coarsely non-decreasing, with control constant only depending on the complexity
of S; [MM99]. The following was shown in [HO09].

Lemma 7.6. There exists a continuous function
0z, : T(S;) — [0,00)
which is at uniformly bounded distance from the function Y; — degs,)(Y(Yi), ;).

To construct open contractible subsets of || 7;(51) whose closures define neigh-
borhoods of Y, a;&; in T (U;S;), we shall control the speed of progress in the curve
graph of each of the surfaces S;. To this end note that by Lemma 7.6, for every
Teichmiiller geodesic v : R — T (.5;) starting at the fixed basepoint X;, the function
t — 04, (v(t)) is coarsely non-decreasing and continuous. We use this to construct
a new parameterization of a Teichmiiller geodesic starting from X; which encapsu-
lates its progress in the curve graph. The construction is based on the following
elementary observation. Here the distance between two functions f,g: J C R — R

is defined as [|f — g|| = sup{[f(t) — g(¢)| | t}.

Lemma 7.7. Let f : R® — [0,00) be a continuous function whose restriction to
each ray t — tx (x € S"~1 C R") is coarsely non-decreasing, with fived control
constant ¢ > 0. Then

uw=1nf{g | g > f,g continuous, non-decreasing on rays}
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is mon-decreasing on rays, continuous and at distance at most q from f.

Proof. For x € S"~! and t > 0 put
u(tr) = max{ f(sx) | s <t}.

This makes sense since f is continuous. By definition, u is non-decreasing on rays,
u > fand u— f < q as f is coarsely non-decreasing.

Since f is continuous, it is also immediate that u is continuous. This shows the
lemma. |

Let f; be the function on Tx, T (S;) ~ R™i constructed in Lemma 7.7 from the
function 0., 0cexpy,. For each [v] € PML(S;) the restriction of the function f; to the
ray tp;[v] (t € (0,00)) is non-decreasing, but it may be constant on arbitrarily large
intervals. However, by replacing f; by f; + a; where «;(tp;[v]) = a(t) for a smooth
strictly increasing function [0, 00) — [0,1), we may assume that the function f; has
the following properties.

(1) The function f; : Tx,T(S;) — [0,00) is continuous and strictly increasing
on rays starting at 0.
(2) sup|fi — 8, o expy, | < g+ L.
In particular, if f;|{tp;[v] | t € (0,00)} is unbounded, then f;|[{tp;[v] | t} is a
homeomorphism onto [0, c0).

Put 7[v] = sup{ fi(tp:[v]) | t}. Note that 7[v] = oo if the support of the geodesic
lamination [v] on S; fills S;.

Since f; is continuous and its restriction to each ray {¢p[v] | t > 0} is a homeo-
morphism onto [0, 7[v]), it can be inverted. We then can define a function gj,) on
[0, 7[v]) by

g (t) = (fil{tplv] [t}
Using this function, we obtain a parameterization ¢ — 41,)(t) of the Teichmiiller
geodesic t — expy, (tp[v]) on the interval [0, 7[v]) by defining

(3) Yl (1) = expx, (g (1))-

With this definition, we know that |deg(s,)(®i,4})(t)) —t| < b where b > 0 is a
universal constant not depending on ¢ or <.

Let & = >, a;& € X(U;S;) be such that & € 9CG(S;) for all i. Assume by
reordering that there exists a number ¢ < k such that a; > 0 if and only if ¢ < /.
For 1 < i </ let Vf D V2i D --- be a closed descending chain of contractible
neighborhoods of the polytope P(&;) of projective measured geodesic laminations
supported in &; in the sphere PML(S;) of projective measured geodesic laminations
on S;. If S; is an annulus, then by convention, PML(S;) consists of two points. We
assume that each of the sets Vji is homeomorphic to a closed ball and that for each
j > 1 there exists a deformation retraction R} : V/ — V', which maps V}\ V/,
into Vji+1 \ Vjﬁr?. We also may assume that there exists an increasing sequence
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m(j) — oo so that for every i < £ and every [v] € V/ the following properties are
satisfied.

(1) 7lv] = 2m(j). ‘

(2) If the support of ¢ € V; is minimal and fills, and if ¢ is a shortest distance
projection of supp(¢) into a p-quasi-geodesic connecting the basepoint x;
to &;, then ng(Si)(Cy x;) > 2m(j).

Recall to this end that 7[v] = oo for every v € P(§;) since ; is minimal and
filling by assumption, and that a shortest distance projection of CG(S;) into any
p-quasigeodesic connecting x; to &; extends to dCG(S;) \ &.

For a pair of points X,Y € T(5;) define
d7(X,Y) = max{deg(v)(pry (X)), pry (u(Y))) | V'}

where the maximum is over all subsurfaces V' of S; and p(X), u(Y") are short mark-
ings.

Theorem 7.8 (Theorem B of [R14]). For any Teichmiiller geodesic « : [0,00) —
T(S;), the function t — d(v(0),~(t)) is coarsely non-decreasing with control con-
stant not depending on ~.

Proof. By Theorem B of [R14], there is a number p > 0 only depending on the
complexity of S such that for every subsurface V' of S, the image under the map
pry o u of a Teichmiiller geodesic v : R — T(S) is an unparameterized p-quasi-
geodesic in CG(V). This means the following. There is an increasing homeomor-
phism o : (a,b) C R — R such that the map pry, oppovyoo : (a,b) = CG(V) is
a p-quasi-geodesic. This quasi-geodesic may be bounded, one-sided infinite or two-
sided infinite. Since CG(V) is a hyperbolic geodesic metric space, this implies that
the path ¢ — pry, o po(t) coarsely does not backtrack: There exists a universal
constant g > 0 not depending on the subsurface V' such that for 0 < s < ¢, it holds

deg(vy(pry (1(7(0))), pry (u(7(#)))) = degv) (pry (1(7(0))), pry (1(7(s)))) — b.

As the projections pry, (u(X)) only coarsely determine a point in the curve graph
of V', the distances in this formula are only coarsely well defined, but this does not
affect the validity of the estimate.

As a consequence, for every subsurface V' of S; and every Teichmiiller geodesic
v :[0,00) — T(S;) the function

t = deg (v (pry (1(7(0))), pry (u(v(2))))

is coarsely non-decreasing, with control constant ¢ not depending on V. Then the
same holds true for d. O

The following proposition is the technically most involved part of the proof of
our main theorem. In its formulation, we denote by A; = A.; : T(S;) — Tc(S:) a
homeomorphism as constructed in Proposition 4.4. Then Ac = [[ A; ¢ is a homeo-

morphism of []7(S;) onto ] 7(S;).
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Proposition 7.9. Assume that £ = Zle a;&; is such that & € 9CG(S;) for all i.
For integers j,n > 1 and for § > 0 there is an open subset E(j,n,0) of [[T(S:)
with the following property.

(1) E(j,n,0) is contractible.

(2) E(4,n,0) C E(j',n',8") forj>j ,n>n',6 <4

(3) The small closures of the sets AcE(§,n,0) (7>1,n>1,6 >0) in T (U;S;)
define a neighborhood basis of &.

Proof. Assume by reordering that for some 1 < £ < k we have a; > 0 if and only if
i < L. For i < {let V be as above. For each [1;] € V} choose a parameterization
of the geodesic t — expx. (to[v;]) on [0, 7[v;]) as constructed in equation (3) above.
Note that by the choice of the constants m(j), the domain of definition of this pa-
rameterization contains the interval [0, m(j)], and the restriction of this parameter-
ization to [0,m(j)] depends continuously on [v;]. Denote by 4y, : [0, 7[v]) — T (5;)
this parameterization.

Theorem 7.8 shows that for any Teichmiiller geodesic v : [0,00) — T(S;), the
function ¢ — d7(7(0),~(t)) is coarsely non-decreasing, with fixed control constant
q > 0. Put dr(7(0),y(t)) = sup,<, d7(7(0),7(s)). By uniqueness of Teichmiiller
geodesics between any pair of points, this defines a function 7(S;) x 7(S;) — [0, 00)
which however may not be symmetric. For any Teichmiiller geodesic ~y, the function
t — d7(v(0),~(t)) is non-decreasing.

For an (-tuple (j1,...,5:) € N put m(j1,...,5,) = min{m(j;) | i}. Fori < ¢

and j > 1 put V/ = Vi \ V. For ([m],...,[v]) € V}\ x --- x VI and § > 0,
n<m(ji—1,...,j0 —1)/2 define
F(?’L,d, [Vl]a EERR [Vé]) = {(py[m](tl)a?y[l/z](tQ)v s 7:)/[14](”)724-1-17' . ~7Zk) € HT(Sz) |

ti > |ti/t —aijay| < S ift; <m(jy—1,...,50—1) fori <&,
CZT(Si)(Ziin) < 6ty fori >0+ 1}.

Claim: The set ®(j,n,6) = Up, ey F(n, 6, [11],. .., [v]) is contractible for every
’I’LSm(]l _laa][_l)

Proof of the claim. Note first that if (z1,...,2¢, 2041,...,2k) € ®(j,n,d) then
the same holds true for (z1,...,2¢,2y,1,...,2;,) for any z; which is contained in
the Teichmiiller geodesic connecting X; to z; and all ¢ > ¢+ 1. Thus retracting
component wise the last k — ¢ components z; to the basepoint X; (i > £+ 1) along
the unique Teichmiiller geodesic connecting X; to z; and keeping the remaining
components fixed defines a retraction of ®(j,n,d) to ®(j,n,6) N{(z1,...,2x) | z: =
X; for £+1 < ¢ < k}. In particular, in the remainder of the construction, it suffices
to assume that ¢ = k.

Next observe that ®(j+ 1,n,6) C ®(j,n,9) for all j,n,d. We construct a homo-
topy of ®(j,n,d) into its subset ®(j + 1,n, ) as follows.
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The set
S(m(j —1)) = {(t1,...,tx) € [n,00)F | |ti/t1 — a;/ar| < & if t; <m(j —1)Vi}
admits a deformation retraction onto its subset
S(m(5)) = {(t1,...,tr) € [n,00)" | |t:/t1 — a;/a1| < 6 if t; < m(j)Vi}.
Namely, define a homotopy & : [0, 1] x [n,00) — [n,00) by
b, §) = {??t{; 1”:(;; u(m(f)/m(j = 1)), m(j)} it t < m(j)

Then for any t1,t2 € [n,m(j — 1)) and v with h(u,t1) < m(j), h(u,t2) < m(j)
we have h(u,t1)/h(u,t2) = t1/t2. As a consequence, the map (u, (t1,...,tx))
(h(u,t1), ..., h(u,tx)) preserves S(m(j—1)), and it defines a homotopy of S(m(j—

1)) into S(m(j)).

Composing this deformation of the domain S(m(j — 1)) into S(m(j)) with the
map

(tl, . ,tk) — (’?[ul](tl)v ... ,’ﬁ/[,,k] (tk))
defines a homotopy of ®(j,n,d) into its subset

E= @(]7n7§) N {(’?[Vl](tl)7 B ;y[l/k](tk)) ‘ ‘tl/tl - a’i/a‘1| <dift; < m(j)VZ}

The deformation retractions R’ : [0,1[xV} — V' of V] onto R}(V/ x {1}) =

Vi
induce a deformation retraction
Rj:[0,1] x V! x-o- x VFE 5 Vs x VF
onto V! 1 X V; +1 by applying the deformatlon retractions Rl component wise.

Since for each i, the image of V' \ V/,, is contained in V},, \ V '+2, We obtain a
deformation retraction of = onto its subset ®(j + 1,n,0d) by deﬁning

(85 (Va1 (B1)s -+ 5 Y] (B1))) — (WR;(S,[Vl])(tl)a e 77R;‘7(5,[1/k})(tk))'

The composition of these two homotopies yields a homotopy of ®(j,n,d) into ®(j+
1,n,9).

Now N;®(j,n,6) = Up,jepe,) F(n, 6, [v1], ..., [vk]), and since P(§;) is contractible
for all 4, this set is contractible as well. This completes the proof of the claim. B

So far we constructed from a tuple of contractible neighborhoods Vij (j =
1,...,k) and numbers j > 0,5 > 0 a contractible subset ®(j,n,d) of T(S) =
[17(S;). We aim at using these sets to construct contractible neighborhoods of &
in 7(UzSz)

Claim: For fixed (j,n,6), if X* C [[7:(S;) is a sequence converging to £, then
Xt e A®(j,n,0) for large enough .

Proof of the claim: Let X" = (X{,..., X}) C [[7(S;) be a sequence converging
to £&. We show first that X“ € ®(j,n,d) for large enough w.
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For i < ¢ let [v;] € PML(S;) be such that supp([v;]) = &. Let 4; : [0,00) —
CG(S;) be the p-quasi-geodesic constructed as a reparameterization of the Te-
ichmiiller geodesic 7;(t) = Y(expy, t[v;]) as before and let II; : CG(S;) — 4 be
a shortest distance projection. We then have

(4)  deg(s,) (T (Y(X3)), (Y (X)) /degs,) (T (T(X1)), T (Y(XT))) — ai/as.

Furthermore, for ¢ > ¢+ 1 it holds
(5) dr(X;, i)/ mindeg (s, (ILi(T(Xq)), IL(T(X7))) — 0.

Let [n] € PML(S;) and t} > 0 be such that X' = 4p,«)(¢}'). Then for all
i < £, we have t!! — oo (u — 00), moreover by Lemma 7.3 and its proof, it holds
] — P(&) (u — o0). Thus for large enough w and all i < ¢, there is some
j(i,u) > 1 so that [n}] € Vji(i’u). As t¥ — oo (u — o0) for all 4, equation (5) shows
that for sufficiently large u and all i > £+1 we have dr(X;, X%) < min;<( 0t%/2. By
the definition of the set ®(j, n,d), this implies that X* € ®(j,n,d) for large enough
u if and only if this holds true for (X{,..., X}, Xiy1,..., Xk) (here as before, X;
is the basepoint). Consequently we obtain as in the beginning of this proof that it
suffices to assume that a; > 0 for all 4 < k. Thus assume from now on that ¢ = k.

For large enough w put n(u) = m(j(1,u) — 1,...,j(k,u) — 1). If t#* < n(u) for
all u, then by the choice of the constants m(j), the shortest distance projections
of T(X}) into a p-quasi-geodesic 7; connecting the basepoint z; to £ is uniformly
close to T(X?*). By perhaps increasing u, it then follows from (4) that the point
X* = (X, ..., X}}) is contained in the set ®(j,n,d). Otherwise X™ is contained
in ®(j,n,0) because there is no constraint on the distance ratios in the definition
of the sets F(n,d, [n}],...,[n}]) provided that t¥ > m(j) for at least one i. From
this we deduce that indeed, we have X* € ®(j,n,d) for large u.

We are left with deducing that in fact X" € A.(®(j,n,d)). However, the map
Ac = Ay e X -+ X Ap ¢ is coarsely T-invariant for each i. As the defining properties
of the sets ®(j,n,d) only depend on distances in the curve graph of the surfaces S;,
we conclude that X* € A (®(4,n,0)) for large w. [ |

We are left with showing that the closures A.®(j,n,d) of the sets A.P(j,n, )
form a neighborhood basis of ¢ in T(U;S;). Since by Proposition 4.15 and Theorem
5.1 the space T (U;S;) is compact and metrizable, to this end it suffices to show
that the intersection N;n, sA®(j,n,0) = {£{}. As £ clearly is contained in this
intersection, it suffices to show that it is unique with this property.

Following the reasoning in the proof of Lemma 7.3, note that
NAD(j,n,0) N[ T(S:) = 0.

Namely, since the map T is coarsely Lipschitz, for all j this set only contains
points which project to tuples of points of Teichmiiller distance at least an to the
basepoint (X7i,..., Xx) where a > 0 is a universal constant. But this immediately
implies that the closures of the intersections of the sets ®(j,n,d) do not contain

points in [[7(S;).
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In the same way we see that £ is the unique boundary point by letting j tend to
infinity and letting § — 0. (]

Corollary 7.10. Each £ = Y, a;&; € € admits a neighborhood basis in T (U;S;)
consisting of small closures of open contractible subsets ofH'i;(Si).

Proof. Let Ey D Es D ... be a countable neighborhood basis of £ € X(U;Sy)
consisting of open sets whose intersections with H'E(S’l) are contractible. Then
the small closure of E; in T(S) is contractible, and it is the intersection with
[T17:(S:) of a neighborhood of ¢ in T (U;S;). These sets form a neighborhood basis
of & with the properties stated in the corollary. O

Since a surface of complexity zero is a disjoint union of annuli, whose geomet-
ric boundary consists of two points, we obtain as an immediate consequence of
Corollary 7.10

Corollary 7.11. Theorem 4.12 holds for surfaces of complexity zero.

7.3. The induction step: Neighborhoods of arbitrary points. In this section
we complete the proof of Theorem 4.12. We proceed by induction on the complexity
k(S) of the possibly disconnected surface S. Corollary 7.11 contains the case k(S) =
0, so assume that Theorem 4.12 has been established for all surfaces of complexity
at most k — 1 for some k — 1 > 0. Let S be a possibly disconnected surface of
complexity k(S) = k. By Section 7.1 and Section 7.2, we are left with constructing
neighborhood bases for points £ = Ele a;&; € X(S) where each &; fills a proper
subsurface S; of S (which may be a connected component of S) and that furthermore
there exists at least one ¢ such that & does not fill a connected component of S.
In particular, supp(€) fills a subsurface of S with the property that there exists at
least one non-peripheral simple closed curve ¢ C S contained in the boundary of

supp(§).

Let ¢ be such a simple closed curve. Then S, = S\ ¢ is a (possibly disconnected)
surface of complexity k¥ — 1 and (with a small abuse of notation) we can write
S =S, A, where A, is the annulus with core curve ¢. We then can view £ as an
element in the geometric boundary of the disconnected surface S’ L A.. Since the
complexity of S, is at most k — 1, by the induction hypothesis, Theorem 4.12 holds
true for S, L A..

The infinite cyclic group generated by the left Dehn twist T, about ¢ equals the
mapping class group of A.. The stabilizer Stab(c) of ¢ in the mapping class group
Mod(S) fits into the exact sequence

(6) 1 — (T.) — Stab(c) — Mod(S}) — 1,

however this sequence does not split in general. We will nevertheless use the £Z2-
structure for Mod(S;) x (T¢), viewed as the mapping class group of 7(S7) x A, to
construct a neighborhood basis of £ in 7(S) as follows.

Consider the augmented Teichmiller space T*"8(S) of S [Wo03, Ya04]. This is a
stratified space whose open stratum of maximal dimension equals the Teichmiiller
space T (). For each multi-curve 5 on S there exists a stratum S(5) which equals
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the Teichmiiller space of the surface (S'\ 8)* obtained from S\ 8 by replacing each
boundary component by a puncture. This Teichmiiller space is a direct product of
Teichmiiller spaces, one for each component of S\ 5. The strata in the boundary
of §(B) correspond to multi-curves containing 3 as a subset.

The set N(c) of points Y € T(S) so that the Y-length of ¢ is at most € is a
tubular neighborhood of S(c¢) in the augmented Teichmiiller space 72"8(S). Its
boundary ON (c) is invariant under the action of the infinite cyclic group of Dehn
twists (T,) about c.

The augmented Teichmiiller space T2"¢(S), equipped with the completion of
the Weil-Petersson metric, is a (non-locally compact) CAT(0) space. The strata
are convex subspaces. In particular, there exists a shortest distance projection
IT : ON(c) — S(c). Since Dehn twists are isometries, this projection is invariant
under the action of the group (T.). More precisely, the fibers of II are homeomorphic
to R and invariant under (7.) and hence via the map II, the quotient (T.)\ON(c)
obtains the structure of a circle bundle over S(¢). As S(c) is contractible, this circle
bundle is trivial (however non-canonically).

Recall that the choice of a base marking of S coarsely determines for each Y €
T(S) a twist parameter 7(Y,c) € Z about ¢, unique up to an error of +1.

Lemma 7.12. There exists a continuous map o : S(¢) — ON(c) with the following
properties.

(1) U(o(x)) =z for all x.
(2) There exists a constant b > 0 so that T(c(Y),c) € [=b,b] for all Y € S(c).

Proof. Since ON(c) is a fiber bundle over the smooth contractible manifold S(c)
with contractible fiber, for each point z € S(c¢) we can find a neighborhood U, of
z and a local section o, : S(¢) — dN(c) for the projection II so that 7(o.(y),c) €
[—4,4] for all y € U,. Note that this makes sense in spite of the fact that 7(-, ¢) is
only coarsely well defined. Using a partition of unity and the fact that the fiber of
IT is contractible, these local sections can be patched together to a global section
with the properties in the lemma. ([l

A section o as in Lemma 7.12 is an embedding of S(c¢) into IN(¢). This embed-
ding can be used to construct a homeomorphism ¥ : S(¢) x R — 9ON(¢) which is
equivariant with respect to the action of Z on R by translation and the action of
the infinite cyclic group of Dehn twists about ¢ on ON(c). As S(¢) x R is just the
product of the Teichmiiller space 7 (S}) and the Teichmiiller space of the annulus
with core curve ¢, the same holds true for ON(c).

Let [u] be the projective measured geodesic lamination on the surface S whose
support equals the simple closed curve c¢. By the Hubbard Masur theorem, the
Teichmiiller space T(S) of S is foliated by Teichmiiller geodesics with horizontal
measured geodesic lamination in the class of [p]. As Dehn twists about ¢ act
as isometries for the Teichmiiller metric and [u] is T.-invariant, the foliation is
invariant under the action of the infinite cyclic group generated by T, and the
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action of the elements of Mod(S) which can be represented by homeomorphisms
fixing S, pointwise.

If v : R — T(9) is a Teichmiiller geodesic with horizontal measured geodesic
lamination in the class of [u], then as t — oo, the simple closed curve ¢ is collapsed
to a node. As a consequence, by perhaps replacing € by a smaller constant, we
may assume that these Teichmiiller geodesics intersect dN (c) transversely, and two
Teichmiiller geodesic passing through different points of ON(c) do not intersect.
In other words, each of these Teichmiiller geodesics passes through a unique point
Y € ON(c) and hence they can be parameterized by a map vy : R — 7(.S) in such
a way that vy (0) =Y and vy (—00,0) C N(c). Then the geodesic lines vy (—o0, 00)
foliate T(S).

The following lemma is a consequence of the article [R14].

Lemma 7.13. There exists a number D > 0 with the following property. Let
Y € ON(c); then for any not necessarily proper subsurface V of S. we have
diam(pry. (yy (—00,00)) < D.

Proof. Let t — ¢q(t) be the cotangent line of the geodesic vy . For each ¢, ¢(t) is
an area one quadratic differential over the surface vy (t). As [u] is defined by a
single simple closed curve, each ¢(t) is a one cylinder Strebel differential with core
curve ¢. This means that the connected component S’ containing ¢ of the surface
S, equipped with the singular flat metric defined by ¢(t), consists of a single flat
cylinder glued along its sides to the surface S’ by identifying subarcs of the boundary
of the same lengths in pairs. The image in S’ of the sides of this cylinder is the
critical graph of the flat metric, which is a finite graph G composed of horizontal
saddle connections.

In this flat metric, the surface S, = S’ \ ¢ is degenerate, that is, the critical
graph is a deformation retraction of S’.. The mass deposited on the edges of the
critical graph by the vertical measured geodesic lamination of ¢(¢) equips G with
the structure of a metric graph. Any simple closed curve v in S, = S’ \ ¢ is then
homotopic to a closed edge path in G, and a closed edge path of minimal length is
unique up to parameterization and is the geodesic representing the free homotopy
class of « for the locally CAT(0)-metric ¢(t).

The singular flat metric for ¢(¢) is obtained from the singular flat metric on ¢(0)
by multiplying the horizontal length, that is, the circumference of the cylinder, with
e!/2 and the vertical length, that is, the height, with e~*/2. As a consequence, if
for a subsurface V' of S/ we define the size sizeq) (V) of V' with respect to the
metric ¢(t) as the shortest g(t)-length of a closed ¢(t)-geodesic in V' and if for a
non-peripheral simple closed curve a C S}, we denote by £, () the length of its
q(t)-geodesic representative, then

sizeq(t)(SL)
gq(t) (Oé)
does not depend on t. From Theorem 3.1 of [R14], one deduces that the extremal

length of any non-peripheral simple closed curve in S’ along the Teichmiiller geo-
desic t — vy () is bounded from below by a universal positive constant. The same
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holds true for the extremal length of ¢ along the ray vy [0, 00), which is exponentially
increasing along the ray.

As a consequence of Section 5 of [R14], for any (not necessarily proper) subsurface
V of S/ the active interval for V is empty along vy [0,00). Theorem A of [R14]
then shows that for each such V, the diameter of the projection {pry (u(vy (¢))) |
t € [0,00)} is bounded from above by a universal constant. This is what we wanted
to show. (]

Recall that the Teichmiiller space of the annulus A, is naturally identified with
the real line R. Start with a countable family ¥V = {V; | i} of open contractible
subsets of 72(52‘) x R whose small closures define a neighborhood basis of £ in
T(Sr U A) = To(SH) x RUX(SF) * X(A.). Such a neighborhood basis exists
since by the induction hypothesis, Theorem 4.12 holds true for S, U A.. Let A :
T(S¥) — 7;(5’2) be the Mod(S,)-equivariant homeomorphism from Corollary 4.4
and for each i define W; = (AZ! x Id)(V;). Then W; is an open and contractible
subset of T(S%) x R. Denote by E; C ON(c) its image under the identification of
ON (c) with T(S¥) x R using the section o.

Proposition 7.14. Put A; = {yy(—00,0) | Y € E; C ON(c)}; then the sets
A (A;) C To(S) are open and contractible, and their small closures in T (S) define
a neighborhood basis of € in T(S).

Proof. Since the geodesics with horizontal projective measured lamination [y] foli-
ate T(S) and ON (c) is transverse to these geodesics, the set A; admits a deformation
retraction onto F;. Thus since the sets F; are contractible, the same holds true for
the sets A; and for the sets U; = A (A;).

We have to show that the small closures of the sets U; C 7¢(S) in T (S) define a
neighborhood basis of ¢ in 7(S). This is the case if for any sequence X, C T:(5)
converging to &, all but finitely many X, are contained in U;.

By Lemma 7.13, for each Y € ON(c) and any subsurface V of S., the diameter of
the subsurface projection pry, (u(yy (=00, 00))) is uniformly bounded, independent
of Y. By the definition of the topology on 7 (S) and coarse Y-invariance of the
projection A, this implies that for each ¢ the small closure Ui,small in 7(9) of the
set U; is indeed a neighborhood of ¢ in T(.S). The same discussion also shows that
ﬁiﬁi’small = {¢} and hence the sets Ui,small define a neighborhood basis of £ in
T(S) as claimed in the proposition. O

Proof of Theorem 4.12. We proceed by induction on the complexity «(S) of S. The
case k(S) = 0 is contained in Corollary 7.11. Thus assume that the statement holds
true for all surfaces of complexity at most k — 1 for some k — 1 > 0.

Let S be a surface of complexity k. By Proposition 4.14, there exists a consistent
topology on T (S) with properties (2) and (3) in the statement of Theorem 4.12.
By Theorem 5.1, this topology is metrizable, and Corollary 6.2 shows that the pair
(T(S),X(9)) is a pair of spaces of finite dimension. Furthermore, by Proposition
6.3, the action of Mod(S) on T(S) is U-small for every open covering U of T (S).
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As a consequence, to complete the proof of Theorem 4.12; it suffices to verify
that the topology on 7 (S) is nice. If S is connected, then this follows from Propo-
sition 7.1 and Proposition 7.14. If S is disconnected, then it is a consequence of
Proposition 7.9 and Proposition 7.14. [

As an application, we obtain.

Corollary 7.15. dim(9CG(S)) < ved(Mod(S)) — 1.

Proof. Since X(S) is a Z-set for a torsion free finite index subgroup I" of Mod(S),
the cohomological dimension of X' (S) equals ved(Mod)(S) — 1 [B96]. Furthermore,
this dimension also equals the covering dimension of X'(S) [B96].

Now as 9CG(S) is embedded in X'(S), it is equipped with the subspace topology.
This means that any open covering of dCG(.S) is the restriction of an open covering
of X(S). Such a covering then has a ved(Mod(S)) — 1-finite refinement and hence
the same holds true for the refinement of the original cover of 9CG(S). O

The following conjecture is taken from [BB19]. We believe that the results in
this work support this conjecture.

Conjecture. For any surface S of finite type, asdim(Mod(S)) = ved(Mod(5)).

We are left with showing Corollary 6 and Corollary 7 from the introduction.

Proof of Corollary 6. By Theorem 4, Mod(S) admits an £ Z-structure (X, Z) where
X = X\ Z is a manifold with boundary of dimension 6g — 6 + 2m. Assume that
6g — 6 +2m > 5. By Lemma 2.3 of [FLO05], there exists a new &Z-structure
for Mod(.S) obtained by doubling X along the boundary. By Proposition 2.1 of
[FLO5], this structure is of the form (Y, Z) where Y is a manifold with boundary
of dimension 6g — 5 + 2m.

Proposition 2.2 of [FLO05] then shows that another application of this construction
to the pair (Y, Z) results in an £ Z-structure given by unit ball in R69=4+2m and
a subset Z of its boundary, the sphere of dimension 6g — 5 + 2m. This is what we
wanted to show. g

Proof of Corollary 7. The corollary follows from the fact that dCG(S) is embed-
ded in X(S), and by Corollary 6 and its proof, X(S) embeds into a manifold of
dimension 6g — 6 + 2m and into the sphere S69—5+2m, O

Question. What is the smallest dimension n so that Mod(S) admits an £Z struc-
ture on a pair (D", A) where A is a subset of S"~1?
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