
A Z-STRUCTURE FOR THE MAPPING CLASS GROUP
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Abstract. We construct a boundary for the mapping class group Mod(S) of
a surface S of finite type. The action of Mod(S) on this boundary is minimal,

strongly proximal and topologically free. The boundary is the boundary of a

Z-structure for any torsion free finite index subgroup of Mod(S).

1. Introduction

The mapping class group Mod(S) of a closed oriented surface S of genus g ≥ 0
from whichm ≥ 0 points have been removed and so that 3g−3+m ≥ 1 is the group
of isotopy classes of diffeomorphisms of S. The mapping class group is well known
to be finitely presented, and it admits explicit torsion free finite index subgroups.

A torsion free finite index subgroup Γ of Mod(S) admits a finite classifying space.
Such a classifying space can be constructed as follows.

Since the Euler characteristic of S is negative, the Teichmüller space T (S) of
S of all marked finite area complete hyperbolic structures on S is defined. By
elementary hyperbolic geometry, there exists a number ϵ0 > 0 such that any two
closed geodesics on a hyperbolic surface of length at most ϵ0 are disjoint. The systole
systole(X) of a hyperbolic metric X is the length of a shortest closed geodesic. For
ϵ < ϵ0 define

Tϵ(S) = {X ∈ T (S) | systole(X) ≥ ϵ}.
The following is due to Ji and Wolpert [JW10, J14] as reported in Proposition 3.1
and Theorem 3.9 of [J14].

Theorem 1 (Ji-Wolpert). For sufficiently small ϵ < ϵ0, the set Tϵ(S) is a manifold
with corners which is a deformation retract of T (S). The mapping class group
Mod(S) acts on Tϵ(S) properly and cocompactly.

Since T (S) is homeomorphic to R6g−6+2m, we obtain that Tϵ(S) is contractible,
locally contractible and finite dimensional. As torsion free finite index subgroups
Γ of Mod(S) act freely on Tϵ(S), this implies that Γ\Tϵ(S) is a classifying space for
Γ.

The goal of this article to construct an explicit compactification T (S) of Tϵ(S)
with the property that X (S) = T (S) − Tϵ(S) is a boundary of Mod(S) in the
following sense.
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Definition 2 (Small boundary). A boundary of a finitely generated group Γ is a
compact Γ-space Z with the following properties.

• There exists a topology on Γ ∪ Z which restricts to the discrete topology
on Γ, to the given topology on Z and is such that Γ ∪ Z is compact.

• The left action of Γ on itself extends to the Γ-action on Z.

The boundary is called small if the right action of Γ extends to the trivial action
of Γ on Z.

The following definition is Lemma 1.3 of [B96].

Definition 3 (Z-structure). A Z-structure for a finitely generated torsion free
group Γ consists of a pair (X,Z) of finite dimensional compact metrizable spaces,
with Z nowhere dense in X, and the following additional properties.

(1) X = X − Z is contractible and locally contractible.
(2) For every z ∈ Z and every neighborhood U of z inX there exists a neighbor-

hood V ⊂ U of z such that the inclusion V −Z → U −Z is null-homotopic.
(3) X admits a covering space action of Γ with compact quotient.
(4) The collection of all translates of a compact set in X form a null sequence

in X: that is, for every open cover U of X, all but finitely many translates
are U-small.

An action of a group G on a compact topological space Z is called minimal if
every G-orbit is dense. It is called topologically free if for every φ ∈ G − {1} the
fixed point set of φ has empty interior. Furthermore, it is called strongly proximal
if the action of G on the Borel probability measures on Z is such that the closure
of any orbit contains some Dirac measure. The following is our main result.

Theorem 4. There exists a compactification T (S) of Tϵ(S) with the following
properties.

(1) X (S) = T (S) \ Tϵ(S) is a small boundary for Mod(S).
(2) The action of Mod(S) on X (S) is minimal, strongly proximal and topolog-

ically free.
(3) The pair (T (S),X (S)) is a Z-structure for every torsion free finite index

subgroup of Mod(S).

An alternative approach to this result, based on hierarchical hyperbolicity, is due
to Durham, Minsky and Sisto [DMS25]. Hierarchical hyperbolicity was also used
by Durham, Hagen and Sisto [DHS17] to construct a boundary for Mod(S). We
do not know the relation between these constructions and ours, and hierarchical
hyperbolicity for Mod(S) does not play any role in this article.

We call the space X (S) the geometric boundary of Mod(S). By work of Kalantar
and Kennedy [KK17], it follows from the second part of the above theorem that the
mapping class group is C∗-simple, a fact which is however known. For example, it is
not hard to see that the mapping class group acts on the compact space of complete
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geodesic laminations minimally, strongly proximally and topologically freely which
is sufficient to ensure C∗-simplicity.

The significance of a Z-structure for a torsion free group Γ lies in the fact that
the Cech cohomology of the boundary computes the cohomological dimension cd(Γ)
of the group, with a dimension shift of one (Theorem 1.7 of [B96]). The virtual
cohomological dimension vcd(Mod(S)) of Mod(S), that is, the cohomological di-
mension of a torsion free finite index subgroup was computed by Harer [Har86] to
equal 4g−5 ifm = 0 and 4g−4+m ifm > 0. Thus by [B96], the covering dimension
of the space X (S) equals 4g − 6 if m = 0 and 4g − 5 +m if m > 0. Theorem 4
can be viewed as giving some evidence that the asymptotic dimension of Mod(S),
which is known to be finite and at most quadratic in the virtual cohomological
dimension, equals the cohomological dimension of Mod(S). We refer to [BB19] for
a more detailed discussion on this and related questions and results.

We next describe the boundary X (S) of Mod(S) as a set.

The curve complex CG(S0) of a subsurface S0 of S different from a pair of pants
or an annulus is the simplicial complex whose vertices are isotopy classes of simple
closed curves and where k such curves span a k − 1-simplex if they can be realized
disjointly. If S0 is a four-holed sphere or a one holed torus, then this definition
has to be modified by connecting two vertices by an edge if they intersect in the
minimal number of points.

The curve complex is a hyperbolic geodesic graph of infinite diameter [MM99].
Its Gromov boundary ∂CG(S0) is the space of minimal geodesic laminations on S0

which fill S0, that is, which intersect every essential simple closed curve on S0

transversely. The topology on ∂CG(S0) is the coarse Hausdorff topology. With
respect to this topology, a sequence λi of minimal filling laminations converges to
the lamination λ if and only if the limit of any subsequence which converges in
the Hausdorff topology on compact subsets of S0 contains λ as a sublamination
[H06, K99]. The space ∂CG(S0) is separable and metrizable. Define the boundary
of the curve complex of an essential annulus A ⊂ S with core curve c to consist of
two points c+, c−.

If S1, . . . , Sk is a collection of isotopy classes of pairwise disjoint subsurfaces of
S, then we can form the join

J (∪k
i=1Si) = ∂CG(S1) ∗ · · · ∗ ∂CG(Sk).

It can be viewed as the set of formal sums
∑

i aiλi where ai > 0,
∑

i ai = 1 and
where λi ∈ ∂CG(Si) for all i. This join is a separable metrizable topological space.
Note that if Si1 , . . . , Sis is a subset of the set of surfaces S1, . . . , Sk, then J (∪s

j=1Sij )

is naturally a non-empty closed subset of J (∪k
i=1Si) corresponding to formal sums∑

i aiλi with ai = 0 for i ̸∈ {i1, . . . , is}. Define

X (S) = ∪J (∪k
i=1Si)

where the union is over all collections of pairwise disjoint essential subsurfaces of S
and we use the obvious identification of points which arise in more than one way in
this union. Here we view an essential annulus A as an essential subsurface which is
disjoint from any subsurface which can be moved off A by an isotopy. Thus X (S)
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is just the set of formal sums
∑

i aiλi where ai > 0,
∑

i ai = 1, where λ1, . . . , λk are
pairwise disjoint minimal geodesic laminations on S and where each simple closed
curve component λi is equipped with an additional label +,−. The mapping class
group acts naturally on X (S) as a set.

The following theorem summarizes some more technical properties of the geomet-
ric boundary. For its formulation, let us invoke the Nielsen Thurston classification
which states that any nontrivial mapping class has a finite power φ with the follow-
ing property. There exists a decomposition S = S1 ∪ · · · ∪ Sk of S into subsurfaces
which is preserved by φ and such that for all i < k, the restriction of φ to Si is
pseudo-Anosov if Si is not an annulus, and it is a Dehn twist if Si is an annulus.
The restriction of φ to Sk is trivial. We call a mapping class with this property a
Nielsen Thurston mapping class.

Let φ be a Nielsen Thurston mapping class. For each i < k such that Si is not an
annulus, the restriction φi of φ to Si preserves precisely two geodesic laminations
ξ±i which are the attracting and repelling laminations of φi. Similarly, for any
component Si which is an annulus, the two labeled copies ξ±i of the core curve of
the annulus are preserved as well. Thus φ fixes any point of the form

∑
i aiζi where

ζi is one of the laminations ξ±i if i < k and where ζk is an arbitrary point of the
geometric boundary of the (possibly disconnected) surface Sk. We call points of
this form the obvious fixed point set.

The Gromov boundary ∂CG(S0) of the curve graph of S0 equipped with the
Gromov metric is a complete metric space. An embedding of a topological space X
into a topological space Y is an injective map f : X → Y which is a homeomorphism
onto its image, equipped with the subspace topology.

Proposition 5. Let X (S) be the geometric boundary of Mod(S).

(1) For any collection S1, . . . , Sk of pairwise disjoint subsurfaces of S, the in-
clusion J (∪k

i=1Si) → X (S) is an embedding. In particular, the covering
dimension of ∂CG(S) is at most vcd(Mod(S))− 1.

(2) The fixed point set for the action of a Nielsen Thurston mapping class φ
on X (S) is precisely the obvious fixed point set of φ.

That the covering dimension of ∂CG(S) is bounded from above by vcd(Mod(S))
is due to Gabai (Proposition 16.3 of [Ga14]).

Our construction is valid for the mapping class group of a once punctured torus
or a four punctured sphere. In this case the mapping class group is virtually free
and, in particular, it is a hyperbolic group whose Gromov boundary is a Cantor
set. It is due to Bestvina and Mess [BM91] that a hyperbolic group admits a Z-
structure whose boundary is its Gromov boundary. The boundary we find is the
Gromov boundary of the group as well.

The construction of the boundary X (S) is motivated by the construction of the
visual boundary of a CAT(0)-space. Along the way we identify in Section 2 an
analog of the familiar Tits boundary of a symmetric space of higher rank.
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The advantage of our construction is that the space X (S) and its topology as
well as the action of the group Mod(S) on X (S) is completely explicit and can
be used to study subgroups of Mod(S), as for example in Koberda’s work [Kb12]
who constructed subgroups of Mod(S) which are isomorphic to right angled Artin
groups.

Overview of the article: A significant part of the article is devoted to define
a topology on the set X (S) and show that this topology extends to Tϵ(S) ∪ X (S)
and defines a compactification of Tϵ(S). This is carried out in Section 3. In Section
2, we introduce the oriented curve complex and show that it can be viewed as a
Tits type boundary for the mapping class group.

Section 4 is devoted to the proof that the space X (S) is indeed a small boundary
for Mod(S) and that the action of Mod(S) on X (S) is strongly proximal. In Section
5, we show that X (S) is metrizable. This result depends on the construction of an
explicit neighborhood basis of a given point in X (S) ⊂ T (S). This neighborhood
basis is used in Section 6 to construct another neighborhood basis in X (S) consisting
of sets whose intersections with Tϵ(S) are contractible. Finally in Section 7 the proof
of Theorem 4 is completed.

Acknowledgement: I am grateful to Alessandro Sisto for informing me about the
article [DMS25]. This work was partially supported by the Hausdorff Center Bonn.

2. The Tits boundary of Mod(S)

The join X1 ∗X2 of two topological spaces X1, X2 is defined to be the quotient
X1×X2× [0, 1]/ ∼ where the equivalence relation ∼ collapses X1×X2×{0} to X1

and collapses X1×X2×{1} to X2. For example, the join S0
1 ∗S0

2 of two 0-spheres is
the circle S1, thought of as a union of four intervals glued at the endpoints, where
each interval has one endpoint in S0

1 and the second endpoint in S0
2 . The join of

two spaces X1, X2 contains an embedded copy of X1, X2.

Example 2.1. The product of two hyperbolic planes H2×H2 is a complete simply
connected Riemannian manifold of non-positive curvature. Its visual boundary is
the join S1 ∗ S1 of two circles that are the Gromov boundaries of the embedded
copies of H2. This corresponds to the fact that the projection of any geodesic in
H2 × H2 to each of the two factors is a geodesic. Note that the join of two circles
is homeomorphic to S3.

From now on we assume that 3g−3+m ≥ 2 which rules out the once punctured
tori and four punctured sphere. Define the oriented curve complex OG(S) of the
oriented surface S of finite type to be the complex whose vertices are isotopy classes
of oriented simple closed curves in S and where two such vertices are connected by
an edge (of length 1) if they can be realized disjointly and are not homotopic up
to orientation. Thus any simple closed curve in S defines two distinct vertices
in OG(S), and these vertices are not connected by an edge. Furthermore, we
require that any collection of k ≥ 2 oriented disjoint simple closed curves which are
distinct as unoriented curves span a simplex. The union of these simplices defined
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by a fixed collection of k curves equipped with all combinations of orientations is a
sphere of dimension k − 1. Note that a point in OG(S) can be viewed as a formal

linear combination
∑k

i=1 aiλi where for some k ≥ 1, λ1, . . . , λk are pairwise disjoint
oriented simple closed curves, where ai > 0 for all i and

∑
i ai = 1. In other words,

a point in the oriented curve complex can be viewed as a point in the join of a finite
collection of oriented pairwise disjoint simple closed curves.

Remark 2.2. If we choose the length of the edges of the oriented curve complex
to be π/2, then this is consistent with the idea that the oriented curve complex can
be thought of as being contained in the Tits boundary of Mod(S), equipped with
the angular length metric which identifies each sphere with a sphere of constant
curvature one.

A simple closed curve c on S is the core curve of an embedded annulus A(c) ⊂ S.
The ”curve graph” CG(A(c)) of the annulus A(c) is a graph of isotopy classes of
arcs connecting the two boundary components and whose endpoints are allowed to
move freely in the complement of a fixed point on each of the two boundary circles.
The curve graph of A(c) is a simplicial line. If α is a given vertex of CG(A(c)), then
any other isotopy class of arcs can be represented by an arc which is the image of
α by a multipe of a Dehn twist about c. The distinction between a positive and a
negative Dehn twist about c only depends on the orientation of S but not on the
orientation of c. The choice of an orientation of c can be thought of as a spiraling
direction about c for oriented arcs connecting the two boundary components of
A(c).

In the sequel we denote by c+ the point in the Gromov boundary of CG(A(c))
(which consists of two points) which corresponds to an iteration of positive Dehn
twists about c, and we denote by c− the point in the Gromov boundary of CG(A(c))
which corresponds to iteration of negative Dehn twists about c. Write J (c) =
{c+, c−}. It will be convenient to think about J (c) as a set of two distinct points
in the oriented curve complex of S, with the same underlying curve.

If S0 is a subsurface of S different from a pair of pants or an annulus, then we
denote its (non-oriented) curve complex by CG(S0). The vertices of this complex
are isotopy classes of non-peripheral simple closed curves. If S0 is different from a
one-holed torus or a four punctured sphere, then a collection of k ≥ 2 such disjoint
simple closed curves span a simplex of dimension k−1. If S0 is a one-holed torus or
a two-holed sphere then two simple closed curves are connected by an edge if they
intersect transversely in the minimal number of points. The curve complex of S0

is hyperbolic and hence it has a Gromov boundary ∂CG(S0). As a set, the Gromov
boundary ∂CG(S0) is the set of all minimal filling geodesic laminations on S0. We
refer to [H06] for an account on this result of Klarreich.

There is a natural metrizable topology on the union CG(S0) of CG(S0) with
its Gromov boundary, called the coarse Hausdorff topology. With respect to this
topology, the subspace CG(S0), equipped with its simplicial topology, is an open
dense subset. To define this topology equip the surface with a hyperbolic metric
with geodesic boundary. This choice defines a Hausdorff topology on the space of
compact subsets of S0. A sequence λi ⊂ CG(S0) ⊂ CG(S0) ∪ ∂CG(S0) of vertices in
CG(S0) converges in the coarse Hausdorff topology to λ ∈ ∂CG(S0) if and only if
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the limit of any converging subsequence of λi in the Hausdorff topology on compact
subsets of S0 contains λ as a sublamination [H06]. Define

J (S0) = ∂CG(S0),

equipped with the topology as a subset of CG(S0). If S0 is a pair of pants, then we
define J (S0) = ∅.

If S1, . . . , Sk are disjoint connected subsurfaces of S (we allow that they share
boundary components, and annuli about such boundary components may be in-
cluded in the list), then we define

(1) J (∪iSi) = ∂CG(S1) ∗ · · · ∗ ∂CG(Sk)

to be the join of the spaces J (Si) = ∂CG(Si). For example, if S1 ⊂ S is a subsurface
which is the complement of a non-separating simple closed curve c, then

J (S1 ∪A(c)) = ∂CG(S1) ∗ {c+, c−}.

A point in J (S1 ∪ · · · ∪ Sk) can be viewed as a formal linear combination

ξ =
∑
i

aiξi

where ξi ∈ ∂CG(Si), ai ≥ 0 for all i and, furthermore,
∑

i ai = 1. The union

supp(ξ) = ∪ai>0ξi

is a geodesic lamination with minimal components ξi, and ξ can be viewed as a
weighted (and partially labeled if there are simple closed curve components of ξ
with positive weight) geodesic lamination. For all u ≤ k there is an inclusion
J (S1 ∪ · · · ∪ Su) ⊂ J (S1 ∪ · · · ∪ Sk) which is a topological embedding.

A collection S1, . . . , Sk of disjoint connected subsurfaces of S is called maximal if
S−∪iSi = ∅. By convention, this means that for any boundary component c of one
of the surfaces Si, the annulus A(c) is contained in the collection. Any collection
of disjoint connected subsurfaces of S is contained in a maximal collection of such
subsurfaces, however this maximal collection is in general not unique. Note that
for any collection S1, . . . , Sk of disjoint connected subsurfaces, there is a canonical
maximal collection containing S1, . . . , Sk which is comprised of the surfaces Si, the
annuli A(c) where c runs through all boundary components of ∪iSi which are not
already contained in the list, and all connected components of S − ∪iSi.

Define

(2) X (S) = ∪J (S1 ∪ · · · ∪ Sk)/ ∼

where the union is over all collections of disjoint subsurfaces S1, . . . , Sk of S. The
equivalence relation ∼ identifies two points

∑
i aiξi and

∑
j bjζj if they coincide

as weighted labeled geodesic laminations. Thus a point in X (S) is nothing else

but a formal sum
∑k

i=1 aiξi where ai > 0,
∑

i ai = 1, where ξ1, . . . , ξk are pairwise
disjoint minimal geodesic laminations on S and where every simple closed curve
component of this collection is in addition equipped with a label ±. Note that the
oriented curve complex OG(S) of S can naturally be identified with the union of
the subsets J (A(c1) ∪ · · · ∪ A(ck)) of X (S), and its Gromov boundary (which is
just the Gromov boundary ∂CG(S) of the non-oriented curve complex of S) also
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is contained in X (S). The mapping class group Mod(S) naturally acts on the set
X (S).

Example 2.3. The definition (2) also makes sense if S is a once punctured torus.
In this case there are no non-peripheral non-annular subsurfaces of S, and the set
X (S) is just the union of the Gromov boundary of the curve graph CG(S) with a
countable set, consisting of all oriented simple closed curves on S. This set has the
following interpretation.

The curve graph of S is the well-known Farey graph. It vertices can be repre-
sented by the rational points in the boundary ∂H2 = R ∪ {∞} of the hyperbolic
plane. If one represents the edges of the Farey graph by geodesics in H2, then one
obtains a tesselation of the hyperbolic plane by ideal triangles which is invariant
under the mapping class group PSL(2,Z) of S. The boundary ∂T of the dual tree
T of this tesselation is a Cantor set which admits a surjective continuous map onto
the boundary ∂H2 of the hyperbolic plane. Each irrational point in ∂H2 has pre-
cisely one preimage, and the rational points which correspond to the vertices of the
curve graph have two preimages.

The vertices of CG(S) correspond to the fixed points of the parabolic subgroups
of PSL(2,Z). With this interpretation, the set X (S) can be identified with the
Cantor set ∂T obtained by replacing each rational point in R ∪ {∞} by a compact
interval and removing the interior of the interval. This Cantor set in turn has a
natural identification with the Gromov boundary ∂T of the virtually free group
PSL(2,Z). In particular, there is a natural invariant topology on X (S) so that
with this topology, X (S) is a compact PSL(2,Z)-space which contains the Gromov
boundary ∂CG(S) of the curve graph of S as a dense embedded subset. Furthermore,
following [BM91], with this topology the set X (S) is the boundary of a Z-structure
for any torsion free finite index subgroup of PSL(2,Z).

Example 2.4. Let S1, . . . , Sk be a disjoint union of subsurfaces of S which are
different from pairs of pants. Then the join X (S1)∗ · · · ∗X (Sk) is a subset of X (S).

The oriented curve complex of S is connected, and any non-filling geodesic lam-
ination, that is, a geodesic lamination which is disjoint from some simple closed
curve, is disjoint from some vertex of OG(S). Thus if we equip X (S) \ ∂CG(S)
with the topology of a simplicial complex whose edges are the joins of two disjoint
(perhaps labeled) geodesic laminations, then this complex is connected. As a con-
sequence, the set X (S) can be equipped with a topology which coincides with the
topology of a (non-locally finite) simplicial complex on X (S) \ ∂CG(S) and is such
that each point in ∂CG(S) is isolated. We write XT (S) for X (S) equipped with this
topology and call XT (S) the Tits boundary of Mod(S) (having the Tits boundary
of a CAT(0) space as guidance). From this description, we obtain

Lemma 2.5. The mapping class group Mod(S) of S acts on XT (S) as a group of
simplicial automorphisms.

Proof. The mapping class group acts on the oriented curve complex of S as a group
of simplicial automorphisms, and this action extends to an action on the space of
formal sums of weighted disjoint minimal geodesic laminations preserving weight



BOUNDARY 9

and disjointness. Furthermore, it acts on ∂CG(S) as a group of transformations.
Since the topology on XT (S) is the topology of a disconnected simplicial complex,
constructed from the curve complexes of subsurfaces, the lemma follows. □

Remark 2.6. The Tits boundary of a CAT(0) space X can be viewed as the
geometric boundary (that is, the CAT(0) boundary) ofX, equipped with a topology
which in general is finer than the geometric topology. We shall see in Section 4 that
the same holds true for the Tits boundary and the geometric boundary of Mod(S).

3. A topology for X (S)

The goal of this section is to equip the set X (S) with a topology which is coarser
than the Tits topology so that for this topology, X (S) becomes a compact Mod(S)-
space.

To achieve this goal we use markings of (not necessarily proper) essential sub-
surfaces S0 of the surface S. Such a marking consists of a pants decomposition
P for S0 together with a collection of spanning curves. Each such spanning curve
intersects one of the pants curves from P in the minimal number of points (one
or two) and is disjoint from all other pants curves. Two spanning curves may not
be disjoint, but we require that the number of their intersection points is bounded
from above by a universal constant. Since there are only finitely many topological
types of pants decompositions, this can clearly be achieved. There is a natural
way to equip the set of all markings on S0 with the structure of a locally finite
connected graph on which the mapping class group Mod(S0) of S0 acts properly
and cocompactly. We refer to [MM00] for more information on this construction.

Choose a marking µ on S as a basepoint for the proper cocompact action of
Mod(S). For every subsurface S0 of S which is distinct from a pair of pants or an
annulus, this marking can be used to construct a marking µ(S0) of S0 as follows.

There is a coarsely well defined subsurface projection

prS0
: CG(S) → CG(S0)

which associates to a simple closed curve c its intersection c ∩ S0 with S0 in the
following sense. If c ⊂ S0 then put prS0

(c) = c, and if c is disjoint from S0 then put
prS0

(c) = ∅. In all other cases, c∩S0 consists of a collection of pairwise disjoint arcs
with endpoints on the boundary of S0. We then put prS0

(c) = u for a simple closed
curve u in S0 which is obtained from one of these intersection arcs by choosing a
component of the boundary of a tubular neighborhood of the union of the arc with
the boundary components of S0 containing its endpoints.

Given a marking µ for S, the union of the intersections of the marking curves with
S0 consists of a union of arcs and simple closed curves on S0 with pairwise uniformly
bounded intersection numbers which decompose S0 into simply connected regions.
Hence via deleting some of these arcs and modifying some arcs with a surgery to
simple closed curves as described in the previous paragraph, the projection prS0

(µ)
of µ coarsely defines a marking µ(S0) of S0, called the subsurface projection of µ
[MM00]. Here a coarse definition means that the construction depends on choices,
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but any two choices give rise to markings which are uniformly close in the marking
graph of S0, independent of the subsurface S0.

If S0 is an annulus, then a similar construction applies. In this case a marking
consist of the choice of a marked point on each boundary component of S0 and
an embedded arc in S0 connecting the two distinct boundary component which is
disjoint from the marked points. With a bit of care, a subsurface projection is
defined for annuli as well. We refer to [MM00] for more information.

Now let S = ∪k
i=1Si be a collection of pairwise disjoint subsurfaces of S. Fix as

before a marking µ for S. By the discussion in the previous paragraph, each of the
surfaces Si is equipped with a coarsely well defined marking µ(Si). Let xi be one of
the marking curves (or arcs if Si is an annulus) of µ(Si). As the intersection number
between any two curves (or arcs) of prSi

(µ) is uniformly bounded, the distance in
the curve graph of Si between xi and any other curve from µ(Si) or any other
marking of Si constructed in the same fashion from µ is uniformly bounded. Thus
this construction determines a based product space

(CG(∪iSi), x) = (CG(S1)× · · · × CG(Sk), x)

where the basepoint x = (x1, . . . , xk) is the product of the coarsely well defined
basepoints xi ∈ CG(Si).

Recall from (3.3) the definition of the sets J (∪iSi).

Definition 3.1. Define a topology on the union

Y(∪iSi) = CG(∪iSi) ∪ ∂CG(S1) ∗ · · · ∗ ∂CG(Sk) = CG(∪iSi) ∪ J (∪iSi)

by the following requirements.

• The product space CG(∪iSi) is equipped with the product topology.
• The subspace J (∪iSi) is equipped with the topology as a join of the Gromov
boundaries of the curve graphs of Si.

• A sequence of points (yj1, . . . , y
j
k)j ⊂ CG(∪iSi) converges to

∑
i aiξi ∈

∂CG(S1) ∗ · · · ∗ ∂CG(Sk) if the following two conditions are fulfilled.

(1) For each i with ai > 0, the components yji ∈ CG(Si) converge as
j → ∞ to ξi in the coarse Hausdorff topology to ξi (and hence they
converge in CG(Si) ∪ ∂CG(Si) to ξi, see [H06]). In particular, we have

dCG(Si)(y
j
i , xi) → ∞ (j → ∞).

(2) Assume without loss of generality that a1 > 0. Then for all i ≥ 2 we
have

dCG(Si)(y
j
i , xi)

dCG(S1)(y
j
1, x1)

→ ai
a1

(j → ∞).

Lemma 3.2. The notion of convergence in Definition 3.1 defines a topology on
Y(∪iSi) which restricts to the given topology on ∂CG(S1) ∗ · · · ∗ ∂CG(Sk) and on
CG(∪Si). The subspace ∂CG(S1) ∗ · · · ∗ ∂CG(Sk) is closed in Y(∪iSi).

Proof. Define a subset A of Y(∪iSi) to be closed if A1 = A ∩ CG(∪iSi) is closed,
A2 = A ∩ ∂CG(S1) ∗ · · · ∗ ∂CG(Sk) is closed and if furthermore the following holds
true. If yi ⊂ A1 is a sequence which converges in the sense described above to a
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point y ∈ ∂CG(S1) ∗ · · · ∗ ∂CG(Sk), then y ∈ A2. Note that by definition, the empty
set is closed, and the same holds true for the total space.

We have to show that complements of closed sets defined in this way fulfill the
axioms of a topology, that is, they are stable under arbitrary unions and finite
intersections. Equivalently, the family of closed sets is stable under arbitrary in-
tersections and finite unions. As this holds true for the closed subsets of CG(∪iSi)
and for the closed subsets of ∂CG(S1) ∗ · · · ∗ ∂CG(Sk), all we need to observe is
that taking arbitrary intersections and finite unions is consistent with the notion
of convergence of points in CG(∪iSi) to points in the join ∂CG(S1) ∗ · · · ∗ ∂CG(Sk)
in the sense of Definition 3.1.

Consistency with arbitrary intersections is straightforward. To show consistency
with taking finite unions let B1, . . . , Bℓ ⊂ Y(∪iSi) be closed in the above sense.
Let yj ⊂ ∪k(Bk∩CG(∪iSi)) be any sequence which converges to a point in J (∪iSi)
according to the definition of convergence. By passing to a subsequence, we may
assume that yj ∈ Bm for a fixed m ≤ ℓ and all j. As Bm is closed and the
subsequence also fulfills the requirements for convergence, its limit is contained in
Bm ⊂ ∪kBk. Hence indeed, the notion of a closed set is consistent with taking
finite unions. □

So far we have constructed a topology on the spaces Y(∪iSi) where S1, . . . , Sk

is a collection of disjoint subsurfaces of S. We now use these spaces to define con-
vergent sequences in X (S) and use this notion of convergent sequence to construct
a topology on X (S) which gives X (S) the structure of a compact Hausdorff space.

Let Min(L) be the set of all minimal geodesic laminations on S where as before, a
simple closed curve carries in addition a label ±. Let ξj =

∑
m ajmξ

j
m be a sequence

in X (S). We shall impose 3 requirements for the sequence to converge to a point∑k
i=1 biζi ∈ X (S) (here as before, we require that ajm > 0, bi > 0,

∑
i bi = 1 =∑

m ajm for all j and that furthermore, supp(
∑

i biζi) is a disjoint union of minimal
components.

Recall that the space of geodesic laminations on S is compact with respect to
the Hausdorff topology.

Requirement 1: Convergence in the coarse Hausdorff topology
Let ξℓn be any subsequence of the sequence ξj such that the geodesic laminations
supp(ξℓn) converge in the Hausdorff topology to a geodesic lamination β. Then β
contains supp(ζ) as a sublamination.

Example 3.3. Let S1, . . . , Sk ⊂ S be disjoint subsurfaces. Example 2.4 shows
that X (S) contains the join X (S1) ∗ · · · ∗ X (Sk) as a subset. An element ξ ∈
X (S1) ∗ · · · ∗ X (Sk) can be represented in the form

ξ =
∑
i

aiξi

where ξi ∈ X (Si), in particular, supp(ξi) ⊂ Si, and
∑

i ai = 1. Since the subset of
geodesic laminations on S which are supported in Si is closed with respect to the
Hausdorff topology, this implies that for any topology on X (S) which fulfills the
first requirement above, the subspace X (S1) ∗ · · · ∗ X (Sk) of X (S) is closed.
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We next introduce for each collection S1, . . . , Sk of pairwise disjoint subsurfaces
of S a coarsely well defined projection

(3) prY(∪iSi) : Min(L) → Y(∪iSi)

as follows.

Let ν ∈ Min(L). Then for i ≤ k there are three possibilities.

• The lamination ν is disjoint from Si up to homotopy.
• ν ⊂ Si.
• ν∩Si consists of a collection of simple arcs with endpoints on the boundary
of Si which coarsely define a point in CG(Si).

In the third case, the intersection arcs are pairwise disjoint and hence we can choose
one of these arcs and replace it by a simple closed curve via surgery as discussed
above. Any two choices of such curves are of distance at most two in the curve
graph of Si.

For the definition of prY(∪iSi), we distinguish three cases.

(1) If ν ∈ ∂CG(Si) for some i, that is, if ν ⊂ Si and if ν fills Si, then define

prY(∪iSi)(ν) = ν ∈ ∂CG(S1) ∗ · · · ∗ ∂CG(Sk).

(2) If ν ⊂ Si for some i but if ν is disjoint from an essential simple closed
curve c ⊂ Si then define prY(∪iSi)(ν) = (x1, . . . , c, . . . , xk) where xj is the

basepoint in CG(Sj).
(3) If ν ̸⊂ Si for any i, then the subsurface projections of ν into Si are either

coarsely well defined simple closed curves or empty. Let prY(∪iSi)(ν) =

(ν1, . . . , νk) where for each i, the component νi either is a subsurface projec-
tion of ν into Si if ν intersects Si, or νi = xi for the basepoint xi ∈ CG(Si).

Using the projections prY(∪iSi), we are now ready to define the convergence of a

sequence ξj ⊂ X of minimal geodesic laminations to a limit point ζ =
∑

i biζi.

Requirement 2: Assume that ξj is a minimal geodesic lamination for all j. Let
ξjℓ ⊂ ξj be any subsequence which converges in the Hausdorff topology to a lam-
ination β. By the first requirement, we have β ⊃ supp(ζ). Let β1, . . . , βs be the
minimal components of β, ordered in such a way that βi = ζi for i ≤ k. We may
have s > k. For each i ≤ s let Si be the subsurface of S filled by βi, that is,
βi ⊂ Si and Si − βi is a union of simply connected components and boundary
parallel annuli. We require that

prY(∪iSi)ξ
jℓ → ζ in Y(∪iSi).

Example 3.4. To illustrate the above construction, let S be a once punctured
torus. In Example 2.3, we identified X (S) with the Gromov boundary of the hy-
perbolic group PSL(2,Z) as a set.

Every geodesic lamination on S contains precisely one minimal component. As
the Gromov topology on the boundary of the curve graph of S is the coarse Haus-
dorff topology, an inspection of the construction of the Gromov boundary of the
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tree dual to the Farey tesselation in Example 2.3, which has a natural identifica-
tion of with X (S) as a set, fulfills the requirements (1) and (2). Thus by invariance
under the action of PSL(2,Z), we find that X (S), equipped with a topology which
satisfies these requirements, is indeed equivariantly homeomorphic to the Gromov
boundary of PSL(2,Z).

While requirements (1) and (2) are sufficient to describe convergent sequences
consisting of minimal geodesic laminations, the definition of convergence of a general

sequence ξj =
∑

i a
j
i ξ

j
i ⊂ X (S) to a limit point

∑k
i=1 biζi is more involved. To

obtain a better understanding of what it captures, for a collection ∪k
i=1Si of disjoint

subsurfaces of S define

Z(∪iSi) = {aζ1 + (1− a)ζ2 | a ∈ [0, 1], ζ1 ∈ J (∪j≤sSij ), ζ2 ∈ Y(∪u ̸∈{i1,...,is}Su)}

to be the union of the joins of the spaces X (∪j≤sSij ) and Y(∪u ̸∈{i1,...,is}Su) where
{i1, . . . , is} runs through all (possibly empty) subsets of the set {1, . . . , k}. Note
that Z(∪iSi) contains Y(∪iSi) as a subset. However, the union is not meant to
be a disjoint union as we identify points if they correspond to the same weighted
geodesic laminations.

Construct next a projection prZ(∪Si) : X (S) → Z(∪iSi) as follows. Let ξ =∑m
j=1 aiξj ∈ X (S) with aj > 0 and

∑
j aj = 1 and write as before supp(ξ) =

∪jξj . After perhaps a reordering of the components ξj , assume that for some
u ≤ min{k,m} the components ξ1, . . . , ξu fill the subsurfaces S1, . . . , Su, that is,
they define points in ∂CG(Si), and that for no j > u, the component ξj fills any
of the surfaces Si. As the components of supp(ξ) are disjoint, this implies that if
s, t > u, if i ∈ {u + 1, . . . , k} and if the subsurface projections prSi

(ξs),prSi
(ξt) of

ξs, ξt into Sj are not empty, then they are of uniformly bounded distance in CG(Si)
(where we adopt the convention to associate to any non-filling geodesic lamination
in Sj a disjoint essential simple closed curve).

Define

prZ(∪Si) =

u∑
j=1

aiξj + (1−
u∑

j=1

aj)(prY(∪i≥u+1Si) ∪j≥u+1 ξj).

Here the term on the right hand side is understood in the following sense. Let us
consider a subsurface Sℓ for some ℓ > u. If there exists some s > u such that ξs
intersects Sℓ, then the component in Sℓ of the projection prY(∪i≥u+1Si)(∪j≥u+1ξj)

is a point in CG(Sℓ). Although this projection depends on choices, it is coarsely
well defined, that is, well defined up to a uniformly bounded error. The above
remark shows that this projection coarsely does not depend on choices, nor on the
component ξs of ξ intersecting Sℓ. If the lamination supp(ξ) = ∪iξ

i is disjoint from
the subsurface Sℓ, then the projection component is defined to be the basepoint of
CG(Sℓ) constructed from the base marking.

Requirement 3: Let ξjs be any subsequence of the sequence ξj so that the lam-
inations supp(ξjs) converge as s → ∞ in the Hausdorff topology to a lamination
β with minimal components β1, . . . , βn for some n ≥ k. By the first require-
ment, we have β = ∪iβi ⊃ supp(ζ). Assume by reordering that βi = ζi for
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i ≤ k. For each i let Si be the subsurface filled by βi; then prZ(∪iSi)(ξ
js) → ζ

in Z(∪iSi) ⊃ Z(∪i≤kSi) ⊃ J (∪iSi).

Remark 3.5. It follows from the above description that for this notion of conver-
gence, the following holds true. Let ξj be a sequence in X consisting of minimal
geodesic laminations which converges to a point ζ =

∑
u buζu.

(a) The lamination ∪uζu is a sublamination of the limit in the coarse Hausdorff

topology of any convergent subsequence of the sequence supp(ξj) = ∪iξ
j
i .

(b) For each j let ηj be a minimal geodesic lamination disjoint from ξj (we allow
ηj = ξj) and let si ∈ [0, 1]. Then any limit of a convergent subsequence of
the sequence νj = siξ

j + (1− si)η
j is of the form sζ + (1− s)η where η is

a limit of a subsequence of the sequence ηj and where s ∈ [0, 1].

Definition 3.6. A subset A ⊂ X (S) is called closed for the geometric topology of
X (S) if the following holds true. Let ξi ⊂ A be any sequence which converges to a
point ξ ∈ X (S) in the sense described by the requirements (1),(2),(3); then ξ ∈ A.

An embedding of a topological space X into a topological space Y is an injective
map f : X → Y which is a homeomorphism onto its image, equipped with the
subspace topology. Recall that for any collection S1, . . . , Sk of pairwise disjoint
subsurfaces of S, the space J (∪k

i=1Si) is equipped with a natural topology as a join
of the Gromov boundaries of the curve graphs of the subsurfaces Si. The following
statement is the first main step towards the proof of Theorem 4.

Proposition 3.7. (1) Closed subsets of X (S) in the sense of Definition 3.6
define a topology O on X (S).

(2) For any collection S1, . . . , Sk of pairwise disjoint subsurfaces, the natural
inclusion J (∪k

i=1Si) → (X ,O) is an embedding.
(3) The group Mod(S) acts on X (S) as a group of transformations.

Proof. Let O ⊂ X (S) be the family of all subsets of X (S) whose complement is
closed in the above sense. Sets in O are called open. For the first statement in the
proposition, we have to show that O defines a topology on X (S).

As the empty set and the entire space X (S) are open, to show that O is indeed a
topology on X (S) it suffices to show that arbitrary unions of open sets are open, and
that finite intersections of open sets are open as well. Or, equivalently, arbitrary
intersections of closed sets are closed, and finite unions of closed sets are closed.
This can be established using exactly the same reasoning as in the proof of Lemma
3.2.

Namely, that the collection of closed sets is stable under arbitrary intersections
is immediate from the definition. So let B1, . . . , Bk be closed sets and let B = ∪iBi.
Choose a sequence ξi ⊂ B which converges in the sense of requirements (1)-(3) to
some point ζ. By passing to a subsequence, we may assume that ξi ∈ Bℓ for some
ℓ ≤ k. But then ζ ∈ Bℓ ⊂ B as Bℓ is closed which completes the proof that O is
indeed a topology on O.

We show next the second property claimed in the proposition. Thus let S1, . . . , Sk

be a collection of pairwise disjoint subsurfaces of S. Our goal is to show that the
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inclusion J (∪k
i=1Si) → (X (S),O) is an embedding. Since the inclusion is injective,

and J (∪k
i=1Si) is a separable Hausdorff space, for this it suffices to show that the

inclusion is continuous and its image is locally closed. This is equivalent to the
following

Claim: A sequence ξj =
∑

i a
j
i ξ

j
i ⊂ J (∪k

i=1Si) converges in (X ,O) to a point
ζ ∈ J (∪k

i=1Si) if and only if ξj converges in J (∪k
i=1Si) to ζ.

To prove the claim we begin with considering a sequence ξj =
∑

i a
j
i ξ

j
i ⊂

J (∪k
i=1Si) which converges in the space X (∪k

i=1Si) to ζ =
∑

i biζi. We aim at
showing that ξj converges to ζ in (X (S),O).

By reordering, assume that 1 ≤ m ≤ k is such that bi > 0 if and only if
i ≤ m. Let β be a limit in the coarse Hausdorff topology of a subsequence of the
sequence of laminations (supp(ξj) = ∪aj

i>0ξ
j
i . By the definition of convergence

in J (∪k
i=1Si), up to reordering, we may assume that for some m ≤ n ≤ k, we

have β = ∪i≤nβi where βi is a (not necessarily minimal and not necessarily filling)
geodesic lamination on the surface Si, and βi = ζi for 1 ≤ i ≤ m. The fact that
n may be strictly smaller than k arises from the possibility that the formal sum
describing ξj may not have a positive coefficient corresponding to a surface Sℓ for
ℓ > m.

Since ξj ∈ J (∪k
i=1Si) for all j, we know that the projection prZ(∪i≤mSi)ξ

j of

ξj to Z(∪i≤mSi) is contained in J (∪m
i=1Si). Now by definition of the topology

on J (∪k
i=1Si), the subset J (∪m

i=1Si) is an embedded subspace of J (∪k
i=1Si), and

the surfaces Si for i > m are precisely those surfaces with the property that the
coefficients aji of the components ξji of ξj in Si tend to zero as j → ∞. Furthermore,

for i ≤ m the coefficients aji converge to bi. Thus an application of the first and
third requirement in the definition of convergent sequences for O shows that indeed,
ξj → ζ ∈ X (S).

To complete the proof of the claim, we have to show that a sequence in J (∪k
i=1Si)

which converges in (X (S),O) to a limit point ζ =
∑

i biζi ∈ J (∪k
i=1Si) also con-

verges in X (∪k
i=1Si) to the same limit point. However, this can be established

with essentially the same argument and will be omitted. The second part of the
proposition follows.

That Mod(S) acts on X (S) as a group of transformations is immediate from the
definition and the fact that Mod(S) naturally acts on curves graphs and subsurfaces.

□

Example 3.8. i) Let φ ∈ Mod(S) be a pseudo-Anosov element. Then φ acts as
a loxodromic isometry on the curve graph of S, with attracting and repelling fixed
points ν+, ν− ∈ ∂CG(S). Let µ ∈ X (S) be any minimal geodesic lamination which
is distinct from the repelling fixed point ν− of φ. Then φjµ→ ν+ (j → ∞) in the
coarse Hausdorff topology and therefore φjµ→ ν+ in X (S).

ii) Now let us assume that S0 ⊂ S is a proper connected subsurface different from
an annulus and a pair of pants and that φ ∈ Mod(S) restricts to a pseudo-Anosov
mapping class on S0 and to the trivial mapping class on S−S0. Let ν+ ∈ ∂CG(S0)
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be the attracting geodesic lamination for the action of φ on S0. Let furthermore
µ ̸= ν− ∈ X (S) be any minimal geodesic lamination on S which is different from
the repelling fixed point ν− for the action of φ on CG(S0). Then there are two
possibilities. In the first case, µ is supported in S − S0. Then we have φj(µ) = µ
for all j. However, if µ intersects S0, then either µ = ν+ or µ intersects ν+ and we
have φj(µ) → ν+ (j → ∞) in X (S).

Namely, if µ intersects S0 then the subsurface projection of µ into any subsurface
disjoint from S0 is a collection of arcs intersecting ∂S0. In particular, the subsurface
projection into any subsurface V of S − S0 is a point of CG(V ). Since φ can be
represented by a diffeomorphism which fixes S − S0 pointwise, it acts trivially on
CG(V ) which yields the above statement.

Since each of the spaces J (∪k
i=1Si) is a finite join of separable metrizable spaces

(namely, the Gromov boundary of a curve graph of a subsurface of S) and hence
separable metrizable, the second part of Proposition 3.6 shows that (X (S),O) is a
countable union of (in general not disjoint) separable metrizable spaces and hence
is separable.

Corollary 3.9. (X (S),O) is a separable Lindelöf space.

Proof. We have to show that any open cover of X (S) has a countable subcover. To
this end let U be such an open cover. List the countably many spaces J (∪iSi) as
X1,X2, . . . . Since for each i, the space Xi is separable and metrizable, the restriction
of U to Xi, which is an open covering of Xi, has a countable subcover, say by sets
U1
i , U

2
i , . . . . Now the union V = ∪i,jU

j
i consists of countably many sets, and for

each i, the sets from V cover Xi. Since X (S) = ∪iXi (as a set), this shows that V
is a countable subcover of the cover U . In other words, X (S) is a Lindelöf space as
claimed. □

Proposition 3.10. (X (S),O) is a compact Hausdorff space.

Proof. Let us show that the topology O is Hausdorff. To this end let ξ =
∑

i aiξi ̸=
ζ =

∑
j bjζj ∈ X (S). We have to show that ξ, ζ have disjoint neighborhoods.

If this is not the case, then any neighborhoods Uξ of ξ and Uζ of ζ intersect
nontrivially. Since X (S) is separable, and since points in X (S) are closed by con-
struction, we conclude that there is a sequence ξj ⊂ X which converges both to
ξ, ζ. But for the notion of convergence used to define the topology O, the limit of
a converging sequence is unique. Thus O is Hausdorff as stated.

As by Corollary 3.9, the space X (S) is a separable Lindelöf space, moreover
it is Hausdorff, to show that X (S) is compact it suffices to show that X (S) is
sequentially compact.

Thus let ξj =
∑

i a
j
i ξ

j
i ⊂ X (S) be any sequence. We have to construct a con-

vergent subsequence. Since the space of geodesic laminations equipped with the
Hausdorff topology is compact, by passing to a subsequence we may assume that
the geodesic laminations supp(ξj) = ∪iξ

j
i converge in the Hausdorff topology to a

geodesic lamination ζ̂ with minimal components ζ1, . . . , ζk.
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For each i ≤ k let Si ⊂ S be the subsurface of S filled by ζi. Assume by passing

to another subsequence that for each component ζi of ζ̂, either this component also
is a component of supp(ξj) for all j, or it is not a component of supp(ξj) for all j.

By relabeling, assume that for some u ≤ k the laminations ζ1, . . . , ζu are those

components of ζ̂ which are also components of supp(ξj) for all j. By reordering,
we then can write

ξj =

u∑
i=1

aji ζ
±
i +

∑
ℓ>u

ajℓξ
j
ℓ .

By convention, the label ± is only relevant if ζi is a simple closed curve component.

By passing to another subsequence, we may assume that for i ≤ u, the labels
± of the components ζi are constant along the sequence, and that the weights
aji ∈ (0, 1] of the components ζi converge to weights bi ≥ 0. In particular, the

sums 1 −
∑

i≤u a
j
i converge to 1 −

∑
i≤u bi = κ. If κ = 0, then by the definition

of convergent sequences in X (S), the sequence ξj converges to
∑

i biζ
±
i and we are

done.

Now assume that κ ̸= 0 and hence
∑

i>u a
j
i > κ/2 > 0 for all sufficiently

large j. By passing to a subsequence, we may assume that this holds true for all
j. For all i > u and for all j, the subsurface of S filled by ξji is disjoint from
the subsurfaces S1, . . . , Su filled by the laminations ζ1, . . . , ζu. In other words,
if we denote by Σu+1, . . . ,Σn the components of S − ∪i≤uSi, with annuli about
boundary components of the surfaces Si (i ≤ u) included if they are not one of

the surfaces Si themselves, then for i ≥ u + 1, each of the laminations ξji , ζi is
supported in ∪i≥u+1Σi. Thus by the definition of the topology on X (S) and writing

ξj = (
∑

i≤u a
j
i ζi) + (

∑
i≥u+1 a

j
i ξ

j
i ), viewed as points in the join of two subspaces

of X (S), and similarly for ζ, we conclude that it suffices to construct a convergent
subsequence of a sequence ξj under the additional assumption that for all j, no

component ξji of supp(ξj) coincides with a component of the limit ζ̂ = ∪i≤kζi in
the coarse Hausdorff topology.

From now on we assume that the latter assumption holds true. Let as before
Si be the subsurface of S filled by ζi. Up to passing to a subsequence, we may
assume that there is a number u ≤ k such that for each i ≤ u and each j, the
geodesic lamination supp(ξj) has some component ξji which is supported in Si and

fills Si. This means that ξji defines a point in the Gromov boundary of CG(Si)
which is different from the point ζi. Since supp(ξj) converges as j → ∞ in the
Hausdorff topology to a geodesic lamination with minimal components ζ1, . . . , ζk,
we conclude that for i ≤ u, the laminations ξji converge as j → ∞ in the coarse
Hausdorff topology to ζi. By passing to another subsequence, we may assume that
for each i ≤ u, the coefficients aji of the components contained in Si converge as
j → ∞ to a coefficient bj . As above, if

∑
i≤u bi = 1, then by the definition of a

convergent sequence in X (S), we know that ξj →
∑

i biζi and hence once again, we
are done.

According to what we established so far, it now suffices to assume that for no j
there exists a component of supp(ξj) which fills any of the subsurfaces Si. Then for
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each i, we can consider the subsurface projection prSi
(supp(ξj)) of supp(ξj) into

the surface Si. Furthermore, by passing to another subsequence, we may assume
that for all j and all i ≤ k, this subsurface projection it is non-empty since the
geodesic lamination ζi which fills Si is contained in the limit with respect to the
Hausdorff topology of the sequence of laminations supp(ξj). Put differently, we
may assume that for each i and all j, the subsurface projection prSi

(supp(ξj)) of

the lamination supp(ξj) into the subsurface Si is a coarsely well defined point in
CG(Si). Furthermore, using once more that ζi fills Si and that ζi is contained in
the Hausdorff limit of the sequence supp(ξj), if we denote by xi the fixed basepoint
in CG(Si), then we know that dCG(Si)(prSi

(supp(ξj)), xi) → ∞ (j → ∞).

By passing to another subsequence and reordering indices, we may assume that

aj1 = dCG(S1)(prS1
(supp(ξj)), x1) ≥ aji = dCG(Si)(prSi

(supp(ξj)), xi)

for all i ≥ 2 and all j. Passing to another subsequence, we may assume furthermore
that aji/a

j
1 → ai ∈ [0, 1] for all i ≥ 2. Put a1 = 1; then we have

∑
u au ≥ 1 and

hence defining bi = ai/
∑

u au > 0, we conclude that
∑

u bu = 1. It now follows
from the definition of the topology on X (S) that ξj →

∑
i biζi. This completes the

proof that X (S) is sequentially compact.

We are left with showing that the mapping class group Mod(S) acts on X (S) as
a group of transformations. To this end observe first that by construction, Mod(S)
acts on X (S) as a group of bijections (equivalently, transformations for the discrete
topology). Thus it suffices to show that this action is continuous for the topology
O.

By the definition of O, for this it suffices to show the following. Let ξj be a
sequence converging for the topology O to a point ξ. Then for every φ ∈ Mod(S),
the sequence φ(ξj) converges to φ(ξ).

That the first defining requirement for convergence is passed on to the image
sequence follows from continuity of the action of φ on the space of geodesic lami-
nations, equipped with the Hausdorff topology.

For the second requirement, if S1, . . . , Sk is a partition of S into disjoint subsur-
faces, then the same holds true for φ(S1), . . . , φ(Sk), and for any geodesic lamina-
tion ν, we have prY(∪iφ(Si))(φ(ν)) = φ(prY(∪iSi)(ν)) up to replacing the basepoints

yi of CG(φ(Si)) by φ(xi). As for all i, we have dCG(φ(Si)(prφ(Si)(ξ
j), φ(xi)) =

dCG(Si)(ξ
j , xi) → ∞ (j → ∞) and the determination of the weights of the limit

points are computed using ratios of distances to the basepoint defined by sub-
surface projections, with the distances tending to infinity along the sequence, we
conclude that the second requirement in the definition of convergence is fulfilled
for φ(ξi) if it is fulfilled for ξi. The same reasoning also applies to the third re-
quirement. Thus indeed, Mod(S) acts on X (S) as a group of transformations. This
completes the proof of the proposition. □

Definition 3.11. The space (X (S),O) is called the geometric boundary of Mod(S).
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Let us note another naturality property of the geometric boundary of Mod(S).
Namely, if S0 ⊂ S is any essential subsuface, then we can construct a geometric
boundary X (S0) for Mod(S0). As a set, this is a subset of the geometric boundary
of S which includes the Gromov boundary of the curve graph for peripheral annuli.
The above construction immediately yields

Corollary 3.12. If S0 ⊂ S is any subsurface of S, then the geometric boundary of
Mod(S0) is a closed subspace of the geometric boundary of Mod(S).

4. A small boundary for Mod(S)

In this section we show that the geometric boundary X (S) is indeed a small
boundary for Mod(S). For this we have to find a topology on Mod(S) ∪ X (S)
which restricts to the given topology on X (S) and the discrete topology on Mod(S)
and is such that for this topology, the space Mod(S) ∪ X (S) is compact.

The construction of this topology is done with the use of Teichmüller geometry.
We begin with invoking the properties we need.

By the collar lemma for hyperbolic surfaces, there exists a number ϵ0 > 0 with
the following property. For any closed hyperbolic surface Σg of genus g ≥ 2, any
two closed geodesics γ1, γ2 on Σg of length ℓ(γ1), ℓ(γ2) ≤ ϵ0 are disjoint.

For ϵ ≤ ϵ0 define the ϵ-thick part Tϵ(S) of Teichmüller space T (S) by

Tϵ(S) = {X ∈ T (S) | systole(X) ≥ ϵ}

where the systole of a hyperbolic surface X is the shortest length of a non-contrac-
tible curve on X.

The following statement is well know. We refer to Proposition 1.1 of [JW10] for
an explicit statement.

Theorem 4.1. For ϵ < ϵ0, the following holds.

(1) The subspace Tϵ(S) ⊂ T (S) is non-empty, connected and stable under
Mod(S), and its quotient under the action of Mod(S) is compact.

(2) Tϵ(S) is a real-analytic manifold with corners and hence admits a Mod(S)-
invariant triangulation such that Mod(S)\Tϵ(S) is a finite CW -complex.

There is a coarsely well defined map

Υ : T (S) → CG(S)

which maps a hyperbolic surface to a systole, that is, a closed non-contractible
curve of minimal length. Coarsely well defined means that the map depends on
choices, but the images of a surface X for any two choices of such a map are of
distance at most two.

Call a map Ψ : T (S) → T (S) coarsely Υ-invariant if d(Υ(Ψ(X)),Υ(X)) ≤ 2 for
all X. The following is Theorem 1.2 of [JW10], see also Theorem 3.9 of [J14].
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Theorem 4.2 (Ji-Wolpert). For ϵ < ϵ0 there exists a Mod(S)-equivariant coarsely
Υ-invariant deformation retraction T (S) → Tϵ(S).

The following is a consequence of the proof of Theorem 4.2 and will be important
later on. For its formulation, choose a torsion free finite index subgroup Γ of
Mod(S). With more care, the result also holds for if we replace Γ by Mod(S),
however we do not need this in the sequel.

Proposition 4.3. For ϵ < ϵ0 there exists a number ν > 0 and there exists a
Γ-equivariant diffeomorphism Λ : T (S) → Λ(T (S)) ⊂ Tν(S) whose restriction to
Tϵ(S) is the identity. The set Λ(T (S)) is the interior of a Γ-invariant submanifold
with smooth boundary Q ⊂ Tν(S). The action of Γ on Q is free and cocompact.

Proof. The proof of Theorem 4.2 relies on the (non-canonical) construction of a
smooth vector field on T (S) \ Tϵ(S) which vanishes on Tϵ(S) and which vanishes
nowhere on T (S) \ Tϵ(S). Furthermore, this vector field is equivariant under the
action of Mod(S), and it defines a flow Φt which retracts T (S) into Tϵ(S).

Let Γ ⊂ Mod(S) be a torsion free subgroup of finite index. The flow Φt descends
to a flow on the smooth manifoldM = Γ\T (S). The quotient Γ\Tϵ(S) is a compact
submanifold of M with corners. The set Γ\Tϵ/2(S) is a compact neighborhood of
Γ\Tϵ(S) in M . By construction, the vector field V which generates the flow Φt

is transverse to the boundary Σ of Γ\Tϵ/2(S). Note that this makes sense on the
smooth part of the boundary of Γ\Tϵ/2(S), but it also makes sense at the singular
locus. We refer to [JW10] for more details on this construction.

Since Σ is a piecewise smooth compact codimension one topological submani-
fold of M , it can be approximated by a smooth commpact hypersurface Σ̂ which is
transverse to the vector field V . ThenM \Σ̂ =M0∪M1 consists of two components.
The component M0 contains Γ\Tϵ(S) and its closure M0 is compact. The compo-
nent M1 is invariant under each of the diffeomorphisms Φt for t ≤ 0. Furthermore,
we have

M1 = ∪t≤0Φ
t(Σ̂).

Let σ : (−∞, 0] → (−1, 0] be an orientation preserving diffeomorphism which
equals the identity in a small neighborhood of 0 and define

Λ(Φtx) = Φσ(t)x (x ∈ Σ̂, t < 0)

and Λ(y) = y for y ∈ M0. Then Λ is a diffeomorphism onto its image, which is a
relative compact subset ofM , and Λ is homotopic to the identity. Since the closure
of Λ(M) is compact, Λ(M) is contained in Γ\Tν(S) for some ν > 0.

Since Λ is homotopic to the identity, it lifts to a diffeomorphism Λ̃ : T (S) →
Λ̃(T (S)) with the properties stated in the proposition. □

For a fixed torsion free subgroup Γ of Mod(S) of finite index, the subset Λ(T (S))
constructed in Proposition 4.3 is Γ-invariant and contractible, and Γ acts cocom-
pactly on its closure, which is contractible as well. Thus when we talk about a
Z-structure for Γ, we shall replace the subset Tϵ(S) on which Γ acts properly and
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cocompactly by the closure Q of the set Λ(T (S)), which is a Γ-invariant smooth
manifold with boudnary. As this is a purely technical point and will be not be
important in this section, we continue to consider the action of the entire mapping
class group on Tϵ(S) for some ϵ < ϵ0.

Thus fix a number ϵ ≤ ϵ0. Since Mod(S) acts properly and cocompactly on Tϵ(S),
to show that X (S) is a boundary for Mod(S) it suffices to construct a topology O0

on T (S) = Tϵ(S) ∪ X (S) with the following property.

(1) O0 restricts to the standard topology on Tϵ(S) and to the topology O on
X (S).

(2) T (S) is compact.
(3) The group Mod(S) acts on T (S) as a group of transformations.

We define a topologyO0 on Tϵ(S)∪X (S) by defining what it means for a sequence
(Xi) ⊂ Tϵ(S) to converge to a point ζ =

∑
i biζi ∈ X (S).

There exists a constant ρ = ρ(S) > ϵ, a so-called Bers constant, such that any
surface X ∈ T (S) admits a pants decomposition by simple closed curves of X-
length at most ρ [Bu92]. If X ∈ Tϵ(S), then by possibly enlarging ρ, we may in fact
assume that X admits a marking µ(X) consisting of simple closed curves of length
at most ρ. We call such a marking short for X. By the collar lemma [Bu92], the
geometric intersection number between any two simple closed curves on S of X-
length at most ρ is bounded from above by a universal constant. In particular, the
diameter in CG(S) of the set V(X) of simple closed curves from the marking µ(X)
is bounded from above by a universal constant (see [MM99] for more information).

The marking curves from the marking µ(X) decompose S into disks. Thus
for every proper essential subsurface S0 of S, there exists a simple closed curve
c ∈ V(X) which has an essential intersection with S0. Moreover, the diameter of
the subsurface projections into CG(S0) of the set of all such curves is uniformly
bounded. We denote the subsurface projection into S0 of the set of simple closed
curves on S from the set V(X) by prS0

(X). We then view prS0
(X) as a non-empty

subset of CG(S0) whose cardinality is uniformly bounded and whose diameter in
the curve graph of S0 is uniformly bounded as well.

Fix now a hyperbolic metric X ∈ Tϵ(S). For a subsurface S0 of S let µ(S0) be a
marking of S0 obtained by projecting the short marking µ(X) to S0. This projected
marking coarsely defines a basepoint in CG(S0).

In the sequel, when we say that two geodesic laminations are disjoint then we
allow that they contain some common components. All geodesics or geodesic lami-
nations will be realized on a fixed hyperbolic surface X ∈ Tϵ(S), and the Hausdorff
topology for compact subsets of X is the Hausdorff topology defined by the metric
X.

Definition 4.4. A sequence Xj ⊂ Tϵ(S) converges to a point ξ =
∑

i aiξi ∈ X (S)
if the following holds.
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(1) Let vj ∈ V(Xj) be a simple closed curve of Xj-length at most ρ. Then
any limit in the Hausdorff topology of a subsequence of the sequence vj is
disjoint from supp(

∑
i ξi) = ∪iξi.

(2) Let Si be the subsurface of S filled by ξi. Then for each i, the projections
prSi

(Xj) converge in CG(Si) ∪ ∂CG(Si) to ξi. Furthermore, if ci is the
basepoint in CG(Si) then we have

dCG(Si)(prSi
(Xj), ci)/dCG(S1)(prS1

(Xj), c1) → ai/a1 for all i.

(3) Let U be any subsurface of S disjoint from the surfaces Si and let xU be
the basepoint of CG(U). Then we have

dCG(U)(prU (Xj), xU )/dCG(S1)(prS1
(Xj), x1) → 0.

We first observe that this notion of convergence gives indeed rise to a topology
on Tϵ(S) ∪ X (S).

Proposition 4.5. There exists a topology O0 on T (S) = Tϵ(S) ∪ X (S) with the
property that a set A ⊂ T (S) is closed for O0 if and only if the following holds true.

(1) A ∩ Tϵ(S) is closed in Tϵ(S), and A ∩ X (S) is closed in X (S).
(2) If Xj ⊂ A ∩ Tϵ(S) converges in the above sense to a point ξ ∈ X (S), then

ξ ∈ A.

Proof. The proof is completely analogous to the proof of Lemma 3.2 and will be
omitted. □

The following is the main remaining step towards a proof that X (S) is a small
boundary for Mod(S).

Proposition 4.6. The topological space (T (S),O0) has the following properties.

(1) T (S) is a compact separable Hausdorff space.
(2) The mapping class group acts on T (S) as a group of transformations.

Proof. T (S) is clearly separable since this holds true for X (S) and Tϵ(S). We show
next that T (S) is a Hausdorff space.

Since X (S) ⊂ T (S) is closed by construction and hence Tϵ(S) is open in T (S) and
is moreover a Hausdorff space, all we need to show is that two points ξ ̸= η ∈ X (S)
have disjoint neighborhoods. Now ξ, η have disjoint neighborhoods in X (S) and
hence since T (S) is separable, it suffices to show that the limit of any sequence
Xi ⊂ Tϵ(S) converging to a point in X (S) is unique. But this is clear from the
definitions.

We show next that T (S) is compact. Since X (S) is compact and Tϵ(S) is a
Lindelöf space, the space T (S) is Lindelöf. Since T (S) also is Hausdorff, it suffices
to show that T (S) is sequentially compact, and this follows if we can show that
any sequence Xi ⊂ Tϵ(S) has a convergent subsequence in T (S).
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If the sequence has a bounded subsequence in Tϵ(S), then as Tϵ(S) is proper, we
can extract a converging subsequence. Thus we may assume that the sequence is
unbounded.

Since the space of geodesic laminations on S equipped with the Hausdorff topol-
ogy is compact, by extracting a subsequence we may assume that the sets V(Xi)
converge in the Hausdorff topology to a finite union of geodesic laminations. Note
that as some of the curves in V(Xi) may intersect, these laminations are not nec-
essarily disjoint. However, since the number of components of V(Xi) is uniformly
bounded, the same holds true for the number of limit laminations.

Let ζ1, . . . , ζs be the set of all components of these limit laminations which are
distinct from simple closed curves. The number of such components is finite. Each
of the laminations ζj fills a subsurface Sj of S which is different from an annulus
or a pair of pants. Thus ζj is a point in the Gromov boundary of the curve graph
CG(Sj) of Sj .

Since a sequence cji of simple closed curves on the surface Sj converges to ζj
in CG(Sj) ∪ ∂CG(Sj) if and only if their geodesic representatives cji converge to
ζj in the coarse Hausdorff topology, for each j ≤ s the subsurface projections to
CG(Sj) of the sets V(Xi) converge as i→ ∞ in CG(Si)∪∂CG(Sj) to the lamination
ζj ∈ ∂CG(Sj). As the diameter of the subsurface projection of V (Xi) to Sj is
bounded independent of i, hyperbolicity of CG(Sj) implies that this convergence
holds true for the subsurface projection to Sj of any of the curves in V(Xi) which
intersects Sj . As a consequence, none of the limits in the Hausdorff topology of
any sequence of components of V(Xi) can intersect ζj .

By a similar argument, if ζj is a closed curve component, then we can consider the
subsurface projections of a component of V (Xi) to an annulus A(ζj) with core curve
ζj . Up to passing to a further subsequence, we may assume that these projections
are either bounded along the sequence, or converge to one of the two boundary
components of the curve graph of A(ζj). In the first case call ζj unlabeled. In the
second case, label ζj with the corresponding point in the Gromov boundary of the
curve graph of A(ζj) and note by the reasoning used in the previous paragraph, no
labeled simple closed curve component ζj can be intersected by another component
ζℓ.

By reordering, let ζ1, . . . , ζk be the components of the limit laminations which
either are distinct from simple closed curves or which are labeled simple closed
curves. We claim that k ≥ 1, that is, that there is at least one lamination with this
property. Namely, by Theorem 1.1 of [R07], as the Teichmüller distance between the
basepoint X and Xℓ tends to infinity with ℓ, there exists at least one subsurface V
so that the diameter of the subsurface projection prV (X)∪prV (Xℓ) tends to infinity
which guarantees that there exists at least one component of the limit lamination
of this form.

By what we showed so far, ζ̂ = ∪k
j=1ζk is a geodesic lamination. Furthermore,

if Sj is the subsurface of S filled by ζj , then dCG(prSj
(V(Xi)), xj) → ∞ where as

before, xj ∈ CG(Sj) is a fixed basepoint for CG(Sj).



24 URSULA HAMENSTÄDT

By passing to a subsequence and reordering, we may assume that

dCG(S1)(prS1
(V(Xi)), x1) ≥ dCG(Sj)(prSj

(V(Xi)), xj)− b

for all i, j where b is twice the maximal diameter of the subsurface projection of
any of the sets V(Xi). Then by passing to another subsequence, we may assume
that

dCG(Sj)(prSj
(V(Xi)), xj)/dCG(Si)(prS1

(V(Xi)), x1) → bi ≤ 1.

Define ai = bi/
∑

j bj and let ξ =
∑k

i=1 aiζi.

We claim that Xi → ξ ∈ (T (S),O0). To this end note that the first property in
the definition of a convergent sequence is fulfilled by the above discussion, and the
second holds true by the observation that if there exists a subsurface U different
from the surfaces Sj (j ≤ k) such that for some subsequence, the subsurface pro-
jections of V(Xi) to U are unbounded, then the subsurface projections prU (V(Xi))
converge up to passing to a subsequence in the Hausdorff topology to a lamination
which fills U , violating the choice of the laminations ζj . Thus T (S) is sequentially
compact Hausdorff Lindelöf space and hence it is compact.

We are left with showing that Mod(S) acts on T (S) as a group of transfor-
mations. However, as Mod(S) acts on Tϵ(S) and on X (S) as a group of trans-
formations, and as the definition of convergence which determines the topology
O0 is natural with respect to the action of Mod(S) on subsurfaces and subsurface
projections, this is indeed the case. The proposition is proven. □

Theorem 4.7. X (S) is a small boundary for Mod(S). A pseudo-Anosov mapping
class acts on X (S) with north-south dynamics. In particular, the action of Mod(S)
on X (S) is strongly proximal.

Proof. We showed so far that X (S) defines a boundary of Tϵ(S) and hence of
Mod(S) since Mod(S) acts properly and cocompactly on Tϵ(S). Furthermore, a
pseudo-Anosov element acts on X (S) with north-south dynamics and hence the
action of Mod(S) on X (S) is strongly proximal.

We are left with showing that the right action of Mod(S) induces the identity.
However, this action just consists of a change of basepoint. As a sequence of points
of uniformly bounded distance from a convergent sequence converges to the same
point, this yields the statement of the theorem. □

Example 4.8. Let ξ =
∑

i aiξi ∈ X (S) and let Si be the subsurface of S filled
by ξi. Assume that each ξi is uniquely ergodic and recurrent. By this we mean
that a Teichmüller geodesic for Si with vertical measured geodesic lamination ξi is
recurrent, that is, it returns to a fixed compact subset of moduli space for arbitrarily
large times.

Let µi be the marking of Si determined by the fixed marking µ of S. For each i
choose a mapping class gi which preserves the surfaces Si and such that giµi → ξi
and that the growth speed condition holds. Such a sequence of mapping classes
exists by the recurrence assumptions. Let U ⊂ X (S) be an open subset containing
ξ which is separated from the repelling fixed points of gi. Suppose furthermore that
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U does not contain any point in J (S1, . . . , Sk, Sk+1) where Sk+1 is disjoint from
Si. We claim that ∩igiU = {ξ}.

To this end note that the subsurface projections of any lamination β ∈ U to
V ⊂ S−∪iSi remains constant. The subsurface projections of β ∈ U to Si converges
to ξ and the speed condition is fulfilled as well.

5. Metrizability

The goal of this section is to show the following result.

Theorem 5.1. (T (S),O0) is metrizable.

The strategy for the proof consists in the construction of an explicit neighborhood
basis in T (S) for every point ξ ∈ X (S). The statement of the theorem then follows
with standard tools.

We begin with a general statement about the relation between distances in the
marking graph and in the curve graph of S together with all subsurface projections.
This statement is closely related to but not an immediate consequence of the dis-
tance formula of [MM00, Mi10] for the marking graph. For its formulation, define
the complexity χ(V ) of a surface V of genus g with s marked points or boundary
components as χ(V ) = 3g − 3 + s.

Lemma 5.2. There exists a number q = q(S) > 0 with the following property. Let
µ, ν be two markings of S. Assume that the distance between µ, ν in the marking
graph of S equals ℓ ≥ 0. Then there exists a (not necessarily proper) subsurface V
of S so that the diameter in the curve graph of V of the subsurface projection of
µ, ν into V is at least (ℓ/q)1/(χ(S)+1).

Proof. As this statement is a statement about markings, it is valid for surfaces with
cusps or boundary. Thus we may argue by induction on the complexity of S.

For the beginning of the induction, consider a surface V of complexity χ(V ) = 1.
Then V is either a four-holed sphere or a one-holed torus, and two curves in the
curve graph of V are connected by an edge if they intersect in the minimal number
of points (two in the case of a four-holed sphere and one in the case of a one-holed
torus).

For simplicity, we only consider the case of a four-holed sphere V , the case of
a one-holed torus is completely analogous. Then a marking µ of V consists of an

ordered pair (b, b̂) of simple closed curves which intersect in two points. We call
these curves components of the marking. Let µ, ν be two markings of V , written

as pairs (b, b̂) and (c, ĉ). Let η : [0, n] → CG(V ) be a geodesic connecting b to c.
Then we can construct a geodesic in the marking graph as follows (see Section 6 of
[MM00] for details, and, in particular, see Theorem 6.12 of [MM00]).

The curves b̂ and η(1) intersect η(0) = b in precisely two points. The curve η(0)
decomposes V into two pairs of pants P1, P2. Since there is a single non-trivial
homotopy class of an arc in P1 with endpoints on η(0) (and endpoints are allowed
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to move freely), η(1) can be obtained from b̂ by a power of a Dehn twist about

η(0). Let q(0) ≥ 0 be the number of twists needed to transform b̂ to η(1). Up
to perhaps an additive constant of ±1, this number equals the diameter of the

subsurface projection of the pair (b̂, η(1)) into the annulus about η(0). If q(0) = 0

then η(1) = b̂ and we replace the pair (b, b̂) by (b̂, b), which accounts for an edge in

the marking graph. We also replace η by the geodesic η[1, n] starting at b̂ = η(1).

Otherwise perform q(0) twists about η(0) to transform b̂ to η(1) and consecutively
replace the pair (η(0), η(1)) by the pair (η(1), η(0)). This defines an edge path in
the marking graph of length q(0) + 1. Proceed inductively.

The length of the resulting path in the marking graph equals n+
∑

i q(i) where

up to an error of ±1, q(i) is the diameter of the subsurface projection of b̂, ĉ into
the annulus with core curve η(i). Furthermore, the length of this path is bounded
from above by pdV (µ, ν) where dV denotes the distance in the marking graph of
the surface V and p ≥ 1 is a universal constant. We refer to Section 6 of [MM00]
for more details on these facts.

There are now two cases possible. In the first case, n = dCG(V )(b, c) ≥ dV (µ, ν)
1/2

and then as χ(V ) = 1 we are done. Otherwise we have dV (µ, ν) ≥ (dCG(V )(b, c))
2

and hence with the above notation, as the length of the above path is not smaller
than dV (µ, ν), there has to be at least one i so that q(i) + 1 ≥ dV (µ, ν)

1/2. If
i ̸= 0, n then this implies that the diameter of the subsurface projection of b, c into
the annulus A(η(i)) is at least q(i) − 2 ≥ dV (µ, ν)

1/2 − 1. If i = 0 (or i = n) then

the same argument applies to the subsurface projection of b̂, ĉ into the annulus with
core curve η(1) and we also obtain the statement we wanted to show.

Assume now that the statement of the lemma is known for all surfaces W of
complexity χ(W ) ≤ k − 1 for some k ≥ 2, perhaps with punctures and boundary,
with control constant q = q(k − 1) only depending on k − 1. We aim at extending
this statement to surfaces V with ξ(V ) = k.

By the definition of the marking graph (see also the distance formula from The-
orem 6.12 of [MM00]), the distance dV (µ, ν) of two markings µ, ν of the surface V
is not smaller than the smallest distance in CG(V ) between two pants curves c, d
from µ, ν.

Let η : [0, n] → CG(V ) be a geodesic in CG(V ) connecting a pants curve b of µ
to a pants curve c of ν. If its length is at least (dV (µ, ν)/q)

1/(χ(V )+1) then we are
done. Thus assume that its length does not exceed (dV (µ, ν)/q)

1/(χ(V )+1).

By the distance formula for the marking graph (Theorem 6.12 of [MM00]), there
exists at least one number i ∈ [0, n] such that the sum of the diameters of the
subsurface projections into subsurfaces which are disjoint from η(i) is not smaller
than (dV (µ, ν)/q)

χ(V )/(χ(V )+1) (up to perhaps replacing q by a bigger constant).
Here the endpoints η(0) = b and η(n) = c are included. If for example i = 0,
then the sum of the diameters of the subsurface projections into all subsurfaces
of V − b between η(1) and some marking curve of µ different from b is at least
(dV (µ, ν)/q)

χ(V )/(χ(V )+1).
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Now recall that the subsurface projection prW (c) of a simple closed curve c ⊂ V
into a subsurface W of V equals the collection of intersection components of c
with W . This implies that for nested subsurfaces W1 ⊂ W2 ⊂ V , the subsurface
projection of c into W1 equals the subsurface projection of prW2

(c) into W1. Thus
we can apply the induction hypothesis and conclude that there exists a subsurface
W of V − η(i) so that the diameter of the subsurface projection of b, c into W is at
least (dV (µ, ν)

((χ(V )/(χ(V )+1))/(χ(V ))q−χ(V )−1 = dV (µ, ν)
1/(χ(V )+1)q−χ(V )−1. But

this is what we wanted to show. □

By [MM99], for any surface V of finite type, there is a number p > 0 only depend-
ing on the complexity of V such that the image under the map Υ of a Teichmüller
geodesic γ : R → T (S) is an unparameterized p-quasi-geodesic in CG(V ). This
means the following. There is an increasing homeomorphism σ : (a, b) ⊂ R → R
such that the map Υ ◦ γ ◦ σ : (a, b) → CG(S) is a p-quasi-geodesic. This quasi-
geodesic may be bounded, one-sided infinite or two-sided infinite, and it is one-sided
infinite if the geodesic recurs to the thick part Tϵ(S) for arbitrarily large times. As
a consequence, up to increasing p, any geodesic segment α : [0, n| → CG(S) can be
extended to a p-quasi-geodesic ray α : [0,∞) → CG(S).

Let ξ =
∑k

i=1 aiξi ∈ J (∪iSi) ⊂ X (S), that is, we assume that for i ≤ k the
subsurface Si of S is filled by the geodesic laminations ξi. This means that Si

contains ξi, and Si− ξi is a union of simply connected regions and annuli about the
boundary circles of Si.

In the construction of the topology on X (S), we fixed a basepoint marking µ for
S and noted that this marking coarsely projects to a marking µV of any subsurface
V of S. If V = S −∪iSi (where by convention, the annulus about each component
of the boundary of one of the surfaces Si is contained in V if it is not already
contained in the set {Sj | j}) then the union of these projected markings µi = µSi

and µV determine a marking µ̂ of S whose pants decomposition P contains the
boundary components of the surfaces Si. Recall that the marking µ̂ depends on
choices, but any two distinct choices are uniformly close in the marking graph of S.

For i ≤ k let ci ⊂ CG(Si) be a component of P if Si is not an annulus, and
otherwise let ci ∈ CG(Si) be the arc representing a projection of the base mark-
ing. For any subsurface V of S let furthermore cV be a component of the pants
decomposition of V defined by the marking µV .

For X ∈ Tϵ(S) and an essential subsurface V ⊂ S, we write prV (X) to denote
a marking of V obtained by subsurface projection into V of a short marking µX

of X. Note as before that this is coarsely well defined. For a vertex c of the curve
graph of S we also denote as before by prV (c) the subsurface projection of c into
V .

For ξ =
∑k

i=1 aiξi as above and for j ≥ 0, δ ∈ (0, 1) define

W (ξ, j, δ) ⊂ Tϵ(S)
to be the set of all hyperbolic metrics X ∈ Tϵ(S) with the following property.

(1) For all i ≤ k, we have dCG(Si)(prSi
(Υ(X)), ci) ≥ j.
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(2)
dCG(Si)(prSi

(Υ(X)), ci)

dCG(S1)(prS1
(Υ(X)), c1)

∈ [(1− δ)ai/a1, (1 + δ)ai/a1]

for all i.
(3) Let V = S − ∪iSi; if we denote by dV the distance in the marking graph

of V then we have

dV (prV (X), µV ) < δdCG(S1)(prS1
(Υ(X)), c1).

(4) For each i ≤ k, a geodesic in CG(Si) connecting ci to prSi
(Υ(X)) can be

extended to a p-quasi-geodesic in CG(Si) whose endpoint is contained in
the ball of radius e−j about ξi in ∂CG(Si), where the metric on ∂CG(Si) is
the Gromov distance dci constructed from the basepoint ci.

Lemma 5.3. Let ξ =
∑

i aiξi and let j ≥ 1, δ > 0. Put a = min{ai | i} > 0.

(1) The closure of W (ξ, j, δ) in T (S) is a neighborhood of ξ in T (S).
(2) Let δ′ < δa2/4 and let ξ′ =

∑
i a

′
iξ

′
i be such that ξ′i ∈ ∂CG(Si), and

max{|ai−a′i| | i} ≤ δ′, and dci(ξi, ξ
′
i) < e−4j; thenW (ξ′, 2j, δ′) ⊂W (ξ, j, δ),

and the closure of W (ξ′, 2j, δ′) is a neighborhood of ξ ∈ T (S).

Proof. Let ξ =
∑

i aiξi ∈ X (S) and let j > 0, δ > 0. Since Tϵ(S) is dense in T (S)

and by Proposition 4.6, T (S) is a compact separable Hausdorff space, to show
that the closure in T (S) of W (ξ, j, δ) is a neighborhood of ξ in T (S) it suffices to
show the following. Let (Xℓ) ⊂ Tϵ(S) be a sequence converging in T (S) to ξ; then
Xℓ ∈W (ξ, j, δ) for all sufficiently large ℓ.

By the second requirement in the Definition 4.4 of convergence, the projections
prSi

(Υ(Xℓ)) converge as ℓ → ∞ to ξi in CG(Si) ∪ ∂CG(Si). Thus for sufficiently
large ℓ, we know that

dCG(Si)(ci,prSi
(Υ(Xℓ))) ≥ 2j for all i.

Moreover, by hyperbolicity of CG(Si) and extendibility of geodesics, since the
projections prSi

(Υ(Xℓ)) converge as ℓ → ∞ in CG(Si) ∪ ∂CG(Si) to the point
ξi ∈ ∂CG(Si), for large enough ℓ the points prSi

(Xℓ) are contained in a p-quasi-

geodesic connecting ci to a point in the e−j-ball about ξi. Thus for large enough ℓ,
the first and fourth requirements in the definition of W (ξ, j, δ) are fulfilled.

Moreover, it follows from Lemma 5.2 that the requirements (2) and (3) on the
relative distances in the curve graphs of Si and the marking graph of V are also
fulfilled provided that ℓ is sufficiently large. As a consequence, for large enough
ℓ we have Xℓ ∈ W (ξ, j, δ) which shows that the closure of W (ξ, j, δ) is indeed a
neighborhood of ξ in T (S). The first part of the lemma follows.

To show the second part, assume for simplicity that δ < mini ai = a (this is the
only case we need later on). Let δ′ < δa2 and let ξ′ =

∑
i a

′
iξ

′
i with maxi |ai−a′i| <

δ′/4 and dci(ξ
′
i, ξi) < e−4j . Then the ball of radius e−2j about ξ′i contains the

ball of radius e−4j about ξi for all i and hence it follows from the definitions that
W (ξ′, 2j, δ′) ⊂ W (ξ, j, δ) and that furthermore, W (ξ′, 2j, δ′) is a neighborhood of
ξ as it contains a set W (ξ, 4j, σ) for some σ > 0. This completes the proof of the
lemma. □
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Corollary 5.4. For each ξ =
∑

i aiξi ∈ X (S), the closures of the sets W (ξ, j, δ)

(j ≥ 1, δ > 0) define a neighborhood basis of ξ in T (S).

Proof. Observe first that the setsW (ξ, j, δ) are nested : Ifm > j, thenW (ξ,m, δ) ⊂
W (ξ, j, δ), and if σ < δ then W (ξ, j, σ) ⊂ W (ξ, j, δ). Thus by Lemma 5.3, to show

that the closures W (ξ, j, δ) in T (S) of the sets W (ξ, j, δ) define a neighborhood

basis of ξ in T (S), it suffices to show that ∩j>0 ∩δ>0 W (ξ, j, δ) = {ξ}.

To see that this is indeed the case note first that ξ ∈ W (ξ, j, δ) for all j, δ and
hence as these sets are compact, the point ξ also is contained in the intersection of
these sets. Furthermore, the following holds true. For each ℓ let Xℓ ∈W (ξ, ℓ, δ) for
some δ > 0; then the distance to the base curve ci in CG(Si) (i ≤ k) of the subsurface
projection of Υ(Xℓ) tends to infinity with ℓ. This implies that the sequence Xℓ can
not have a convergent subsequence in Tϵ(S).

Thus by compactness of T (S), up to passing to a subsequence, the sequence
converges to a point in X (S). It then follows that this point is contained in a set
of the form J (S1, . . . , Sk, V ) where V is a subsurface of S − ∪iSi. In other words,

for fixed δ > 0 we have ∩jW (ξ, j, δ) ⊂ X (∪iSi), moreover this set is contained in a
neighborhood of ξ in J (∪iSi) whose size is controlled by δ. Letting δ tend to zero
yields the corollary. □

We are now ready to show

Proposition 5.5. T (S) is metrizable.

Proof. By Uryson’s theorem, a second countable Hausdorff space is metrizable. As
by Proposition 4.6 the space T (S) is Hausdorff, it suffices to show that T (S) is
second countable. Since Tϵ(S) is second countable, this is the case if there exist
countably many open sets Ui ⊂ T (S) which contain a neighborhood basis for any
point x ∈ X (S).

To see that this is the case let S be the countable collection of all families of
pairwise disjoint subsurfaces (S1, . . . , Sk) of S. For each i ≤ k choose a countable
dense subset {ξi,ℓ | ℓ} of minimal filling geodesic laminations on Si with respect to
the coarse Hausdorff topology. Such a set exists since the Hausdorff topology on
geodesic laminations is metrizable. Put

B(∪iSi) = {
∑
i

aiξi,ℓ(i) | ai ∈ Q,
∑
i

ai = 1}.

Then B(∪iSi) is a dense subset of the joint J (∪iSi).

Now let U ⊂ T (S) be open and let ξ ∈ U ∩ X (S). Then there exists S =
(S1, . . . , Sk) ∈ S, and there are geodesic laminations ξi which fill Si and so that
ξ =

∑
i aiξi ∈ J (S1, . . . , Sk).

By Corollary 5.4, there exists j ≥ 1, δ > 0 so that W (ξ, j, δ) ⊂ U . By the choice
of the family B(∪iSi) and the second part of Lemma 5.3, there exists ξ′ ∈ B(∪iSi)
so that W (ξ′, j, 1/q) ⊂W (ξ, j′, δ) is a neighborhood of ξ contained in U . Together
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this implies that T (S) is indeed second countable and completes the proof of the
proposition. □

6. Neighborhood bases

The goal of this section is to construct for a point in X (S) ⊂ T (S) an explicit
neighborhood basis in T (S) consisting of sets whose intersections with Tϵ(S) are
contractible. Note that the neighborhood basis we constructed in Section 5 does
not seem to consist of sets with this property. However, the neighborhoods from
that basis will be used in our construction. Here by a contractible subset of Tϵ(S)
we mean a subset V which is a contractible space with respect to the subspace
topology.

To control contractibility of neighborhoods we now choose a torsion free finite
index subgroup Γ of Mod(S) and use this to construct a Γ-equivariant diffeomor-
phism Λ : T (S) → Λ(T (S)) as in Proposition 4.3. The group Γ acts properly and

cocompactly on the closure Q = Λ(T (S)), and Q is contractible. Throughout we
replace the space Tϵ(S) by the space Q ⊃ Tϵ(S).

6.1. A neighborhood basis for minimal filling laminations. In this subsec-
tion we prove the following result.

Proposition 6.1. Every point ξ ∈ ∂CG(S) ⊂ X (S) has a countable neighborhood
basis in T (S) consisting of sets whose intersections with Q are contractible.

To set up the proof, note that any minimal filling geodesic lamination ξ de-
composes S into a union of ideal polygons. Each of these polygons which is not
an ideal triangle can be subdivided by adding isolated leaves which connect two
non-adjacent cusps of the polygon. The various ways to subdivide these polygons
determine a finite collection ξ0, . . . , ξk of distinct geodesic laminations which contain
ξ as a sublamination. Assume that ξ0 = ξ.

Let dH be the Hausdorff metric on the space of compact subsets of a fixed
hyperbolic surfaceX ∈ Tϵ(S). Denote by Min∪(L) the space of geodesic laminations
on X which are unions of disjoint minimal components and let

supp : X (S) → Min∪(L)

be the map which associates to a point
∑

i aiξi (ai > 0) the support supp(ξ) = ∪iξi.
We have

Lemma 6.2. For i > 0 let

Ui = ∪j{β ∈ Min∪(L) | dH(β, ξj) ≤ 1/i}

and write Vi = {ζ ∈ X (S) | supp(ζ) ∈ Ui}. Then the sets Vi form a neighborhood
basis of ξ in X (S).
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Proof. Clearly ξ ∈ Vi for all i. We first show that for each i the set Vi is a
neighborhood of ξ. For this we argue by contradiction and we assume that there
exists some i such that this is not the case. Then there exists a sequence ζj ⊂ X (S)
such that ζj → ξ and such that ζj ̸∈ Vi for all j.

By the first requirement for convergence in the definition of the topology on
X (S), we know that supp(ζj) converges in the coarse Hausdorff topology to ξ0 =
supp(ξ). By compactness of the space of compact subsets of S with respect to the
Hausdorff topology, by passing to a subsequence we may assume that the sequence
supp(ζj) converges in the Hausdorff topology to a geodesic lamination ζ. Then ζ
contains ξ0 as a sublamination and hence ζ = ξs for some s ≤ k. By definition,
this implies that ζj ∈ Vi for all sufficiently large j, a contradiction. This shows that
indeed, each of the sets Vi is a neighborhood of ξ.

To show that the sets Vi form a neighborhood basis for ξ, note that Vi+1 ⊂ Vi
and hence it suffices to show that ∩iVi = {ξ}. However, this is immediate from the
definitions and the fact that the preimage of supp(ξ) under the support map supp
which associates to ζ ∈ X (S) its support consists of the single point ξ. □

As an immediate consequence of Lemma 6.2, we obtain an alternative proof of
a special case of Corollary 5.4.

Corollary 6.3. Each point ξ ∈ ∂CG(S) ⊂ X (S) has a countable neighborhood
basis.

A measured geodesic lamination on the hyperbolic surface X is a geodesic lam-
ination together with a transverse invariant measure. The space ML of measured
geodesic laminations is equipped with the weak∗ topology. The quotient of ML
under the natural action of (0,∞) by scaling is the space PML of projective mea-
sured geodesic laminations. This space is homeomorphic to the sphere S6g−7+2m.
To put Lemma 6.2 into proper context and for later use, we relate the subset
∂CG(S) ⊂ X (S) ⊂ T (S) to the space PML.

To this end we use a more geometric view on PML. Fix again a pointX ∈ Tϵ(S).
To each simple closed curve c on S, we can associate the length ℓX(c) of the geodesic
representative of c for the marked hyperbolic metric defining X. This length is just
the intersection number ι(X, c) of the geodesic current c with the Liouville current
λX of the metric X (see Section 8.2 of [Mar16] for a comprehensive account on this
result of Bonahon).

The intersection form ι is a continuous non-negative convex bi-linear function
on the space of geodesic currents for S, equipped with the weak∗-topology, which
is moreover homogeneous in both coordinates (Section 8.2 of [Mar16]). Since the
space of measured geodesic laminations on S is a closed subspace of the space of
geodesic currents and the Liouville current λX has positive intersection with every
current, the set

ML(X) = {ν ∈ ML | ι(ν, λX) = 1}
is the image of a section σ of the fibration ML → PML.
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The support supp(ν) of a measured geodesic lamination ν is a point in the
space Min∪(L). Each of its components is equipped with a transverse invariant
measure and hence it is a measured geodesic lamination in its own right. By
convex bilinearity of the intersection form, any ξ ∈ ML(X) can be represented in
the form ξ =

∑
i ξi where ξi ∈ ML are measured geodesic laminations with minimal

support, the supports of the laminations ξi are pairwise disjoint and
∑

i ι(ξi, λX) =
ι(ξ, λX) = 1. As a consequence, we can associate to a projective measured geodesic
lamination [ξ] ∈ PML whose support supp([ξ]) = ∪isupp(ξi) does not contain a
simple closed curve component a point FX(ξ) ∈ X (S) by writing σ([ξ]) =

∑
i ξi

and putting

FX(ξ) =
∑
i

ι(ξi, λX)supp(ξi).

This defines a map FX : A → X (S) where A ⊂ PML denotes the dense Gδ-
set of projective measured geodesic laminations without closed curve component.
Note that we have to exclude simple closed curve components in the support of a
projective measured geodesic lamination as simple closed curves appearing in the
support of a point in X (S) are oriented.

The cotangent space T ∗
XT (S) of Teichmüller space at X can be identified with

the space of measured geodesic laminations on S. Or, equivalently, by the Hubbard
Masur theorem, every measured geodesic lamination on S is the vertical measured
geodesic lamination for a unique quadratic differential at X. With this identifica-
tion, we can associate to ν ∈ ML the point γν(1) where γν : [0,∞) → T (S) is
the Teichmüller geodesic starting at X whose initial (co)-velocity γ′ν(0) is the qua-
dratic differential with vertical measured geodesic lamination ν. This construction
defines the Teichmüller exponential map expX : ML∪{0} → T (S) at X which is a
homeomorphism. Via identification of PML with the sphere of measured geodesic
laminations of X-length one, we can view PML as the space of unit directions at
X for the Teichmüller metric. We use these identifications freely in the sequel. Fur-
thermore, for a measured geodesic lamination µ denote by [µ] ∈ PML its projective
class.

Let p > 1 be a control constant with the following properties.

• The image under the map Υ of any Teichmüller geodesic is an unparame-
terized p-quasi-geodesic in CG(S) (see [MM99]).

• Every geodesic segment in CG(S) can be extended to a p-quasi-geodesic ray.

Let P (ξ) ⊂ PML be the set of all projective measured geodesic laminations
which are supported in ξ. This is a closed simplex of dimension ≤ 3g − 3 + m
whose extreme points are the ergodic projective transverse measures supported in
ξ. In particular, P (ξ) is compact and contractible. Since P (ξ) is contractible and
since PML is homeomorphic to a sphere of dimension 6g − 7 + 2m, we can find a
descending chain V1 ⊃ V2 ⊃ · · · of open contractible neighborhoods of P (ξ) such
that ∩jVj = P (ξ).

Lemma 6.4. Let V1 ⊃ V2 ⊃ · · · be a descending chain of closed contractible
neighborhoods of P (ξ) in PML, with ∩iVi = P (ξ), and let Λ : T (S) → Q be the
diffeomorphism from Proposition 4.3. Let moreover expX : ML → T (S) be the
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Teichmüller exponential map at X. Then for each j > 0, the closure in T (S) of
the set

Z(i, j) = Λ{expX(µ) | ι(λX , µ) > j, [µ] ∈ Vi}
is a neighborhood of ξ, and neighborhoods of this form define a neighborhood basis
of ξ.

Proof. We divide the proof of the lemma into two claims.

Claim 1: For all i, j, the closure Z(i, j) of Z(i, j) in T (S) is a neighborhood of ξ.

Proof of Claim 1: Recall that T (S) is a compact Hausdorff space. Thus by the
definition of the topology on T (S) and the fact that Q ⊃ Tϵ(S) is dense in T (S),
it suffices to show the following. Let Yℓ ⊂ Q be a sequence converging to ξ; then
for any fixed (i, j), we have Yℓ ∈ Z(i, j) for all sufficiently large ℓ.

Let FML ⊂ PML be the subset of all projective measured geodesic laminations
whose support is a minimal geodesic lamination which fills up S. By Lemma 3.2 of
[H09], the support map F : FML → ∂C(S) which associates to a point in FML its
support is continuous and closed. Thus the image F (FML \ Vi) is a closed subset
of ∂CG(S) which does not contain ξ. As a consequence, there exists a number
T = T (i) > 0 so that the ball of radius e−T (i) about ξ with respect to the Gromov
metric on ∂CG(S) based at Υ(X) is disjoint from F (FML \ Vi).

By the choice of the control constant p > 1 and hyperbolicity, there exists a
number τ(i) > T (i) with the following property. Let µ ∈ FML \ Vi; then the
endpoint of a p-quasi-geodesic ray in CG(S) with starts at the basepoint Υ(X) and
which passes through a point on Υ(γµ) of distance at least τ(i) to Υ(X) is not

contained in the ball of radius e−T (i)/2 about ξ. Since expX : ML ∪ {0} → T (S)
is a homeomorphism and FML ⊂ PML is dense, it follows that for every j there
exists ℓ, δ so that the neigbborhood W (ξ, ℓ, δ) of ξ in T (S) is contained in the
closure of the set {expX(γν(t)) | ι(λX , ν) > j, [µ] ∈ Vi}.

Since the retraction Λ : T (S) → Λ(T (S)) ⊂ Q is coarsely Υ-invariant and since
the conditions (2),(3) in the definition of the sets W (ξ, ℓ, δ) do not play a role if
ξ ∈ ∂CG(S), the discussion in the previous paragraph implies that there exists some

ℓ > 0 so that W (ξ, ℓ, δ) ⊂ Z(i, j). Thus by Corollary 5.4, Z(i, j) is a neighborhood
of ξ in T (S). ■

The proof of the lemma is completed once we established the following.

Claim 2: Let W be a neighborhood of ξ in T (S); then there exists some i, j so

that Z(i, j) ⊂W .

Proof of Claim 2: By Claim 1, each of the sets Z(i, j) is a neighborhood of ξ and
hence contains ξ. Furthermore, these neighborhoods are nested: If i1 ≤ i2 and
j1 ≤ j2 then Z(i1, j1) ⊃ Z(i2, j2). Thus since the sets Z(i, j) are moreover closed

and hence compact, it suffices to show that ∩i,jZ(i, j) = {ξ}.
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Since the Teichmüller exponential map expX at X is a homeomorphism, we

clearly have ∩i,jZ(i, j) ⊂ X (S). On the other hand, the map Υ : T (S) → CG(S) is
coarsely Lipschitz, and for ν ∈ P (ξ), the p-quasigeodesic t → Υ(γν(t)) has infinite
diameter. This implies that for any k > 0 there are numbers i(k) > 0,m(k) > 0 so
that for all η ∈ Vi(k), the diameter of the image under Υ of the Teichmüller geodesic
segment expX([0,m(k)]η) is at least k. As a consequence, if Xi ∈ Z(i, i) for each

i, then by compactness of T (S), up to passing to a subsequence the sequence Xi

converges to a point ζ ∈ X (S) ∩ ∂CG(S). That this point has to coincide with ξ
is an immediate consequence of the discussion in the proof of Claim 1 above. This
completes the proof of the claim. ■ □

The image of the diffeomorphism Λ : T (S) → Λ(T (S)) is the interior of the
submanifold Q of T (S) with smooth boundary ∂Q. Define the small closure Asmall

of a subset A of Q to be the union of Q with the set of all point z ∈ ∂Q so that z
has a neighborhood in ∂Q which is entirely contained in the set theoretic closure
of A.

Lemma 6.5. The small closure of a contractible subset of Q is contractible.

Proof. It suffices to deformation retract the small closure of a contractible subset
A of Q into A. In a second step, one composes this deformation retraction with a
deformation retraction of A to a point.

If z ∈ Asmall, then there is a neighborhood of z in Asmall which is diffeomorphic
to the set B0 = {(x1, . . . , xn) ∈ Rn |

∑
i x

2
i < 1, x1 ≥ 0}, with z corresponding to

0. There is a smooth deformation retraction of B0 into B0 \ V where V is a small
neighborhood of 0 and such that the time one map of the deformation retraction is a
diffeomorphism onto its image and so that the support of this deformation retraction
is contained in

∑
i x

2
i < 1

2 . Thus for every z ∈ Asmall there is a deformation

retraction of Asmall which moves a neighborhood of z in A into A \ ∂Q and such
that the intersection of the resulting set with ∂Q is properly contained in the
intersection of Asmall with ∂Q.

Each compact subset K of Asmall \ A can be covered by finitely many open
sets in Asmall which admit a deformation retraction into A. As the composition of
finitely many deformation retractions of Asmall is a deformation retraction, there is
a deformation retraction α of Asmall with α(Asmall) ∩Asmall \A ⊂ Asmall \K. The
lemma now follows from an inductive iteration of this procedure. □

Lemma 6.6. The small closures of the subsets Z(i, j) of Q are contractible.

Proof. By Lemma 6.5, it suffices to show that the sets Z(i, j) are contractible.

To this end recall that since the set Vi is a contractible subset of the set of
projectivized measured geodesic laminations, identified with the unit sphere in the
cotangent space of T (S) at X, the set

H(i, j) = ∪µ∈Vi
{γµ(t) | t ≥ j} ⊂ T (S)

is contractible since it is homeomorphic to Vi × [0,∞). This uses the fact that the
Teichmüller exponential map at X is a homeomorphism of T ∗

XT (S) onto T (S).
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But Z(i, j) is the image of H(i, j) under the diffeomorphism Λ : T (S) → Q and
hence Z(i, j) is contractible. Then by Lemma 6.5, the small closure of Z(i, j) in
T (S) is contractible as well. □

Since the cardinality of the family of sets Z(i, j) is countable, we conclude

Corollary 6.7. Each point ξ ∈ ∂CG(S) ⊂ T (S) has a countable neighborhood basis
consisting of sets whose intersections with Q are contractible.

Proof. The union of Z(i, j)small with Z(i, j) ∩ X (S) is a neighborhood of ξ whose
intersection with Q is contractible. The countably many such sets define a neigh-
borhood basis of ξ in T (S). □

6.2. Boundaries of products. In this section we consider surfaces of finite type
S1, . . . , Sk and the product of the Teichmüller spaces T (S1) × · · · × T (Sk). In
contrast to the setup in the previous sections, the surfaces Si may have punctures
but no boundary unless Si is an annulus, which is allowed in the construction. If
Si is an annulus, then by convention, the Teichmüller space of Si is the real line. If
Si is not an annulus, then we require that T (Si) is of dimension at least two. Let
as before X (Si) be the geometric boundary of the compactification T (Si) of Tϵ(Si)
and consider the join

X (∪iSi) = X (S1) ∗ · · · ∗ X (Sk).

Note that in general, this is a bigger space than J (∪iSi) = ∂CG(S1)∗ · · · ∗∂CG(Sk).

The following observation reflects the fact that the joint of the visual boundaries
to two CAT(0)-spaces X,Y is the visual boundary of the product X × Y .

Proposition 6.8. The space X (∪iSi) defines a compactification of
∏

Tϵ(Si) which
is a small boundary for the direct product

∏
Mod(Si).

Proof. We only sketch the proof as it is not properly needed in the sequel. The idea
is to mimic the construction from Section 4. Choose a basepoint (X1, . . . , Xk) ∈
Tϵ(S1) × · · · × Tϵ(Sk) and corresponding short markings µ(Xi) for Si. We define

what it means for a sequence (Xj
1 , . . . , X

j
k) (j ≥ 1) to converge to

∑
i aiξi ∈ X (∪iSi)

where ai ≥ 0,
∑

i ai = 1 and where ξi ∈ X (Si) for all i. Note that we allow that
some of the coefficients ai vanish.

To this end we use a variation of Definition 4.4 which is given by the follow-
ing requirements, expressed with the notations from that definition. Assume by
reordering that a1 ≥ ai for i ≥ 2 and that ai > 0 if and only if i ≤ ℓ for some ℓ ≤ k.

• For i ≤ ℓ, the points Xj
i converge in T (Si) to ξi.

• For each i ≤ ℓ write ξi =
∑

u b
u
i ξ

u
i with

∑
u b

u
i = 1, b1i ≥ bui for u ≥ 2. For

each i ≤ ℓ and each u let Σu
i be the subsurface of Si filled by ξui . If ci is

the basepoint in CG(Si) then we have

dCG(Σi)(prΣi
(Xj

i ), ci)/dCG(Σ1)(prΣ1
(Xj

1), c1) → aib
1
i /a1b

1
1 for all i.
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• Let V be any subsurface of Si disjoint from the surfaces Σu
i if i ≤ ℓ or any

subsurface of Si for i > ℓ and let xV be the basepoint of CG(V ). Then we
have

dCG(V )(prV (X
j
i ), xV )/dCG(Σ1

1)
(prΣ1

1
(Xj

i ), x1) → 0.

It now follows from the proof of Proposition 4.5 that this notion of convergence
indeed defines a topology on T (∪iSi) =

∏
Tϵ(Si) ∪ X (∪iSi) which coincides with

the given topology of X (∪iSi) and the product topology on
∏

Tϵ(Si) so that T (∪iSi)
is a compact metrizable space. □

To make the notations more uniform we now write a point ξ =
∑k

i=1 aiξi ∈
X (∪iSi) of the join X (∪iSi) in a formal way by summing over all surfaces Si and
allowing that ai = 0 for ℓ < i ≤ k and some ℓ ≥ 1. Assume by reordering that
a1 = max{ai | i}. For technical reason which will be apparent later, in this section
we exclusively work in the product of the Teichmüller spaces T (Si) without passing
to their thick parts. Let Xi ∈ Tϵ(Si) be a choice of a basepoint. Put ci = Υ(Xi).
For a measured geodesic lamination νi on Si let γνi

: R → T (Si) be the Teichmüller
geodesic starting at Xi which is determined by νi.

Recall from Section 6.1 that for each i and every measured geodesic lamination
νi on Si the function

t→ dCG(Si)(Υ(γνi(t)), ci)

is coarsely non-decreasing. By this we mean that there exists a number q > 0
such that f(y) ≥ f(x) − p for all x ≤ y. Namely, there exists a number p > 0 so
that the map t→ Υ(γνi

(t)) is an unparameterized p-quasi-geodesic in CG(Si), and
quasi-geodesics in a hyperbolic geodesic metric space do not coarsely backtrack.
The following was shown in [H09].

Lemma 6.9. There exists a continuous Mod(Si)-equivariant function

δci : T (Si) → [0,∞)

which is at uniformly bounded distance from the function Xi → d(ci,Υ(Xi)).

To construct contractible subsets of
∏

T (Si) whose closures define neighbor-
hoods of

∑
i aiξi in X (∪iSi), viewed as the join of the boundaries of the factors

T (Si), we have to control the speed of progress in the curve graph of each of the
surfaces Si. To this end note that for every Teichmüller geodesic γ : R → T (S) the
function t → δci(γ(t)) is coarsely non-decreasing and continuous. We use this to
construct a new parameterization of a Teichmüller geodesic starting from Xi which
encapsulates the progress in the curve graph based on the following elementary
observation. Here the distance between two functions f, g : R → R is defined as
sup{|f(t)− g(t)| | t}.

Lemma 6.10. Let f : [0,∞) → [0,∞) be a continuous coarsely non-decreasing
function. Then F = min{g | g ≥ f, g non-decreasing} is non-decreasing, continuous
and at distance at most q + 1 from f .
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Proof. Let F = {g | g non-decreasing continuous, g ≥ f}. We claim that if g1, g2 ∈
F then the same holds true for min{g1, g2}.

Note first that the minimum min{g1, g2} of two continuous functions is well
known to be continuous, furthermore min{g1, g1} ≥ f by assumption on g1, g2.

To see that u = min{g1, g2} is non-decreasing if this holds true for g1, g2, let
x < y and assume without loss of generality that u(y) = g1(y). Then we have
u(x) ≤ g1(x) ≤ g1(y) = u(y) which shows the claim.

Define u(x) = min{g(x) | g ∈ F}; then u ≥ f , furthermore the argument in the
previous paragraph shows that u is non-decreasing. To see that u also is continuous,
note that since u is non-decreasing, it has at most countably many discontinuities.
Assume to the contrary that x is a discontinuity of u. Since f is continuous, and
u ≥ f , we have

lim
s↗x

u(s) ≥ f(x)

and hence by the definition of u, we may assume that u(x) = lims↗x u(s). But if
there exists a number δ > 0 such that lims↘x u(s) = u(x) + δ, then by continuity
of f and the fact that f is non-decreasing, there exists a number ϵ > 0 so that
f(s) ≤ u(x)+δ/2 ≤ u(s)−δ/2 for all s ∈ [x, x+ϵ]. But then there exists a function
v ∈ F with v(s) = u(x)+δ/2 < u(s)−δ/2 for s ∈ (−∞, x]∪{x+ ϵ

4 ≤ s ≤ x+ ϵ
2} and

coincides with u on [x+ϵ,∞). Since v ∈ F , we have v ≥ u which is a contradiction.
We conclude that u is indeed continuous.

We are left with showing that for all x we have u(x) − f(x) ≤ q + 1 where
q > 0 is as in the definition of a coarsely increasing function. Namely, fix a point
x and let T = sup{t | f(t) ≤ f(x) + 1}. If T = ∞ then the constant function
s→ g(s) = f(x) + p+ 1 is non-decreasing and ≥ f and hence g ∈ F and g ≥ u, in
particular u(x) ≤ f(x) + q + 1.

Otherwise T ∈ (x,∞). Since f(s) ≤ f(x)+q+1 for all s ∈ [x, T ], we can connect
the constant function s→ f(x)+ q+1 on [−∞, x] to the restriction of the function
s→ u(s) + c on [T,∞) for some c ∈ [0, p] by a continuous non-decreasing function
defined on [x, T ] such that the resulting function g is continuous and contained in
F . But then min{g, u} ∈ F and hence u(x) ≤ g(x) = f(x)+ q+1 as claimed. This
completes the proof of the lemma. □

Let γi : [0,∞) → T (Si) be a Teichmüller geodesic starting at Xi. As the
projection Υ(γi) of γi to CG(Si) is a uniform unparameterized quasi-geodesic, the
function t → δci(γi(t)) is coarsely non-decreasing. If the unparameterized quasi-
geodesic Υ(γi[0,∞)) is of infinite diameter, then it is unbounded.

Let fγi
be the function constructed in Lemma 6.10 from the function δci |γi.

Since the function δci on T (Si) is continuous, and Teichmüller geodesics depend
continuously on their initial direction, this function depends continuously on the
initial velocity of γi.

The function fγi
is non-decreasing, but it may be constant on arbitrarily large

intervals. However, we can modify the function fγi
to a function f ′γi

in such a way
that f ′γi

has the following properties.
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(1) The function f ′γi
is continuous and strictly increasing on [0, T (γi)] where

T (γi) = inf{t | δci(Υ(γ(0)),Υ(γ(t))) = sup{δci(Υ(γ(0)),Υ(γ(t))) | t} − p.

(2) f ′γi
is constant for t ≥ T (γi).

(3) sup{fγi(t)− f ′γi
(t)|t} ≤ 1.

In particular, if fγi is unbounded then T (γi) = ∞ and f ′γi
is a homeomorphism. Let

τ(γi) = f ′γi
(T (γi)). Note that τ(γi) = ∞ if the support of the geodesic lamination

on Si which determines γi fills Si.

Since f ′γi
is continuous and strictly increasing on [0, T (γi)], with image [0, τ(γi)],

it can be inverted on this interval. We then can define a function gγi
by

(4) gγi(t) =

{
(f ′γi

)−1(t) for t ≤ τ(γi)

T (γi) + t− τ(γi) for t ≥ τ(γi).

For a point
∑

i aiξi ∈ X (∪iSi) with the property that ξi fills Si if ai > 0 we can

now use this construction to define a neighborhood basis in T (∪iSi) that consists
of sets whose intersection with

∏
Qi is contractible following the route laid out in

Section 6.1. To this end we define a subset W (ξ, j, δ) ⊂
∏

T (Si) as in Section 5.

For 1 ≤ i ≤ k let V i
1 ⊃ V i

2 ⊃ · · · be an open descending chain of contractible
neighborhoods of the set P (ξi) of projective measured geodesic laminations sup-
ported in ξi in the sphere PML(Si) of projective measured geodesic laminations
on Si.

Choose once and for all a marking µi for Si which is short for a hyperbolic metric
Xi ∈ Tϵ(Si). Let Zi(j, ℓ) be the open contractible subsets of T (Si) whose closures

Zi(j, ℓ) in T (Si) are a neighborhood basis of ξi in T (Si) that were constructed in
Subsection 6.1 from the sets V i

j and the pointsXi. Choose an essential simple closed
curve ci ∈ Si which is a pants curve for this marking. Each point (ν1, . . . , νk) ∈
V 1
j ×· · ·×V k

j determines a k-tuple (γν1 , . . . , γνk
) of geodesics γνi in the Teichmüller

space T (Si). We refer to Section 6.1 for more details. In the formulation of the
following proposition, we view X (∪iSi) as the boundary of the product

∏
T (Si).

Proposition 6.11. Assume that
∑ℓ

i=1 aiξi is such that 1 ≤ ℓ ≤ k and that ai > 0

for all i ≤ ℓ. For each j, δ there is a neighborhood V (δ, j) of ξ in T (∪jSj) with the
following property.

(1) V (δ, j) ∩
∏

T (Si) is contractible.

(2) The sets V (δ, j) define a neighborhood basis of
∑

i aiξi in
∏

T (Si)∩X (∪iSi).

Proof. For j ≤ ℓ let V i
j be as above. For each νj ∈ V i

j choose a parameterization of
γνj

as given in formula (4) and note that this depends coarsely continuously on νj .
Denote by γ̂ν1 this parameterization. Let also τ(νj) = τ(γνj ) > 0 be the parameter
defined above. Note that by the assumption on the laminations ξi, for all i and any
νi ∈ P (ξi) we have τ(νi) = ∞.
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For (ν1, . . . , νℓ) ∈ V i
1 × · · · × V i

ℓ and δ > 0 define

F (ν1, . . . , νℓ) = {(γ̂ν1(t1), γ̂ν2(t2), . . . , γ̂νℓ
(tℓ), zℓ+1, . . . , zk) ∈

∏
T (Si) |

|ti/ai − t1/a1| ≤ δ, dT (Si)(zi, Xi) < δt1}.

Claim: Φ(i, δ) = ∪νj∈V i
j
F (ν1, . . . , νℓ) is contractible.

Proof of the claim. Note first that if (z1, . . . , zℓ, zℓ+1, . . . , zk) ∈ Φ(i, δ) then the
same holds true for (z1, . . . , zℓ, z

′
ℓ+1, . . . , z

′
k) for any z

′
i which is contained in the Te-

ichmüller geodesic connecting Xi to zi and all i ≥ ℓ+1. Thus retracting component
wise the last k−ℓ components zi to the basepointXi (i ≥ ℓ+1) along the unique Te-
ichmüller geodesic connecting Xi to zi and keeping the remaining components fixed
defines a retraction of Φ(i, δ) to Φ(i, δ) ∩ {(z1, . . . , zk) | zi = Xi for ℓ+ 1 ≤ i ≤ k}.
In particular, in the remainder of the construction, it suffices to assume that ℓ = k.

Next consider the set F (ν1, . . . , νk). It is defined using a parameterization of
Teichmüller geodesics and a contractible domain {|ti/ai − t1/a1| ≤ δ} in the do-
main space of the parameterization. Since the Teichmüller exponential map is a
homeomorphism, the set is contractible.

For j ≤ k choose some νj ∈ P (ξj). We claim that the set Φ(i, δ) admits a
deformation retraction onto

Φ̂(i, δ) = Φ(i, δ) ∩ T (Si)× · · · × T (Sk−1)× γνk
[0,∞).

To show that this indeed holds true let Rk : [0, 1] × V i
k → V i

k be a deformation
retraction of V i

k onto {νk} = Rk(1, V
i
k ). Such a deformation retraction exists since

the sets V k
i are contractible neighborhoods of P (ξk) and P (ξk) is homeomorphic to

a finite dimensional simplex and hence is contractible.

Let (µ1, . . . , µk) ∈ V i
1 × · · · × V i

k and let (t1, . . . , tk) be such that

(γ̂µ1(t1), . . . , γ̂µk
(tk)) ∈ F (µ1, . . . , µk).

By construction, for each s ∈ [0, 1] the point (γ̂µ1(t1), . . . , γ̂µk−1
(tk−1), γ̂R(s,µk)(tk))

also is contained in Φ(j, δ). Thus the assignment s → (γ̂ν1
(t1), . . . , γ̂R(s,µk)(tk))

defines a path in Φ(j, δ), and the union of these paths define a deformation retraction
of Φ(j, δ) onto its intersection with T (S1)× · · · × T (Sk−1)× γνk

[0,∞).

This construction can successively be repeated. Namely, in a second step, we
construct in this way a retraction of Φ(i, j) ∩ T (S1) × · · · × T (Sk−1) × γνk

[0,∞)
onto

Φ(i, j) ∩ T (S1)× · · · × T (Sk−2)× γ̂νk−1
[0,∞)× γ̂νk

[0,∞).

In k steps we obtain a retraction of Φ(i, δ) onto the set

F (ν1, . . . , νk) = Φ(i, δ) ∩ γν1
[0,∞)× · · · × γνk

[0,∞)

Since F (ν1, . . . , νk) is contractible, this completes the proof of the claim. ■

For j > 0 define similarly a set Ψ(i, δ, j) ⊂ Φ(i, δ) by requiring that it only
contains points (γ̂1(t), . . . , γ̂k(t)) with t ≥ j, that is, whose projection to Υ(T (Si))
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in CG(Si) to the basepoint ci is roughly of distance at least j. The same argument
as before shows that this set is contractible as well.

So far we constructed from a tuple of contractible neighborhoods V j
i (j =

1, . . . , k) and numbers j > 0, δ > 0 a contractible subset Ψ(i, δ, j) of
∏

T (Si).

We claim that if Xℓ ⊂
∏

Tϵ(∪iSi) is a sequence converging to ξ; then Xℓ ∈
Ξ(i, δ, j) for large enough ℓ. This in turn follows if we can show that any point in

T (∪iSi) sufficiently close to ξ is contained on a geodesic (γν1
, . . . , γνk

) with νi ∈ V j
i .

However, this can be seen in exactly the same way as in the proof of Lemma 6.6.

Finally we have to show that the closures Ψ(i, δ, j) of the sets Ψ(i, δ, j)∩
∏

Tϵ(Si)
form a neighborhood basis of ξ in T (∪iSi). Since by Proposition 6.8 the space
T (∪iSi) is a compact metrizable space, to this end it suffices to show that the

intersection ∩j,i,δΨ(j, i, δ)∩
∏

Tϵ(Si) = {ξ}. As ξ clearly is contained in this inter-
section, it suffices to show that it is unique with this property.

Following the reasoning in the proof of Lemma 6.4, note that

∩Ψ(i, δ, j) ∩
∏

Tϵ(Si) = ∅.

Namely, since the map Υ is coarsely Lipschitz, for all j this set only contains
points which project to tuples of points of Teichmüller distance at least aj to the
basepoint (X1, . . . , Xk) where a > 0 is a universal constant. But this immediately
implies that the closures of the intersections of the sets Ψ(i, δ, j) do not contain
points in

∏
Tϵ(Si).

In the same way we see that ξ is the unique boundary point by letting i tend to
infinity and letting δ → 0. □

6.3. A neighborhood basis of an arbitrary point ξ ∈ X (S). In this subsection
we consider an arbitrary point ξ =

∑m
i=1 aiξi ∈ X (S) with ai > 0,

∑
i ai = 1. We

assume that for some k ≤ m and all i ≤ k the components ξi are minimal and fill a
subsurface Si ⊂ S of negative Euler characteristic, and for i ≥ k+1 the component
ξi is an oriented simple closed curve. Our goal is to use the results from Section
6.2 to construct for the point ξ ∈ X (S) a neighborhood basis in T (S) consisting of
sets whose intersections with Λ(T (S)) = Q are contractible where Q is constructed
as in Section 6.1.

The union of the boundary curves of the surfaces Si and the simple closed curves
ξj for k < j ≤ m is a multi-curve α in S which decomposes S into ℓ ≥ k subsurfaces.
Up to reordering, we may assume that the first k of these subsurfaces are just
the surfaces Si. We denote the remaining subsurfaces by Sk+1, . . . , Sℓ. For each
component c of the multi-curve α we add to the list of surfaces in the collection Si

an annulus with core curve c. Then each of the laminations ξi (i ≤ m) fills precisely
one of the surfaces Si. We retain the notation that for i ≤ ℓ the surface Si is not
an annulus.

Let Si (i ≤ ℓ) be one of the above non-annular surfaces with boundary and let
Mod(Si) be the pure mapping class group of isotopy classes of diffeomorphisms of
Si fixing the boundary pointwise. The center of Mod(Si) equals the free abelian
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subgroup generated by the Dehn twists about the boundary components of Si. If
s > 0 is the number of boundary components of Si then the quotient Mod(S∗

i ) of
Mod(Si) by its center fits into an exact sequence

(5) 1 → Zs → Mod(Si) → Mod(S∗
i ) → 1.

We can identify Mod(S∗
i ) with the pure mapping class group of the surface S∗

i ob-
tained by replacing each boundary component of Si by a marked point (puncture).

The subgroup Stab(∪i≤ℓSi) of the mapping class group Mod(S) of S which fixes
the multicurve α componentwise is a quotient of the direct product

∏
Mod(Si)

by the free abelian group generated by the Dehn twists about the boundary com-
ponents of the surfaces Si, embedded diagonally into the mapping class groups
Mod(Si). The mapping class group

∏
Mod(S∗

i ) of the product
∏

T (S∗
i ) is the quo-

tient of Stab(∪iSi) by the free abelian group Zp of Dehn twists about the boundary
components of the surfaces Si. Here p is the number of components of the multi-
curve α which decomposes S into the surfaces Si, that is, we have S \ α = ∪iSi.

Our strategy is to reduce the construction of neighborhoods of
∑

i aiξi to the re-
sults of Section 6.2. To this end consider the augmented Teichmüller space T aug(S)
of S [Wo03, Ya04]. This is a stratified space whose open stratum of maximal dimen-
sion equals the Teichmüller space T (S). For each multi-curve β on S there exists a
stratum S(β) which equals the Teichmüller space of the surface (S \ β)∗ obtained
from S \β by replacing each boundary component by a puncture. This Teichmüller
space is a direct product of Teichmüller spaces, one for each component of S \ β,
and where the Teichmüller space associated to each of these components is just the
Teichmüller space of the surface obtained by replacing each boundary circle by a
cusp. The strata in the boundary of S(β) correspond to multi-curves containing β
as a subset.

Start with a countable family V = {Vi | i} of contractible subsets of
∏

T (S∗
i ) as

in Section 6.2 whose retractions to
∏

Tϵ(S∗
i ) determine a neighborhood basis of ξ

in the compactification of
∏

Tϵ(S∗
i ) with boundary X (∪iSi) the join of the spaces

X (Si). Here the annular surfaces are contained in the list of factors of the product.
Choose a boundary curve c of one of the surfaces Si (i ≤ ℓ), that is, a curve c in S
which is contracted to a puncture in

∏
T (S∗

i ). Assume that this curve is the core
curve of the annulus Sℓ+1. The curve c determines a stratum S ′ in T aug(S) whose
closure contains S, and the compactification X (S ′) of this stratum is a compact
subspace of X (S) containing X (∪iSi) and hence ξ (in a formal sense as the simple
closed curve components ξi different from c are only formally contained in X (S ′)).
We use the sets from the family V to construct a countable collection of contractible
sets in S ′ whose retractions to the thick part of S ′ determine a neighborhood basis
of ξ in X (S ′). In finitely many such steps we successively replace the punctures of
the surfaces S∗

i by simple closed curves and recover the surface S, together with a
neighborhood basis of ξ in T (S) consisting sets whose intersections with T (S) are
contractible.

Let as before ϵ > 0 be a sufficiently small number. The set N(c) of points
Y ∈ S ′ so that the length of c is at most ϵ is a tubular neighborhood of S in the
augmentation of the Teichmüller space S ′, which is a closed subset of T aug(S). Its
boundary ∂N(c) is invariant under the action of the infinite cyclic group of Dehn
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twists about c. The quotient of ∂N(c) under this action is a circle bundle over the
stratum S.

Recall that the choice of a base marking for S determines for each surface X ∈
∂N(c) and for the simple closed curve c a twist parameter τ(X, c) ∈ Z, uniquely up
to an additive error of ±1. If Tc denotes the left Dehn twist about c, then for all k
and up to an additive error in [−2, 2], we have τ(T k

c X, c) = τ(X, c) + k.

Using for example a shortest distance projection Π : ∂N(c) → S for the metric
completion of the Weil-Petersson metric, which is a CAT(0)-metric on T aug(S)
with the property that each stratum is convex, we observe that the hypersurface
∂N(c) → S can be viewed as a fiber bundle over the contractible space S, with
fiber R. The fiber is invariant under the action of the infinite cyclic group of Dehn
twists about c.

The function which associates to Y ∈ ∂N(c) the twist parameter τ(Y, c) can
be modified to a continuous function of uniformly bounded distance and so that
the modified function, denoted again by τ(Y, c), satisfies τ(Tc(Y ), c) = τ(x, c) + 1.
Then the restriction of the function Y → τ(Y, c) to a fiber of the bundle ∂N(c) → S
is proper and hence using local sections of ∂N(c) → S so that the value of τ(·, c)
on the image is uniformly bounded in norm and gluing of the local sections with a
partition of unity, we obtain the following.

Lemma 6.12. There exists a continuous map σ : S → ∂N(c) with the following
properties.

(1) Π(σ(x)) = x for all x.
(2) There exists a constant b > 0 so that τ(σ(x), c) ∈ [−b, b] for all x ∈ S.

By invariance of the fibers of Π : ∂N(c) → S is invariant under the action of
the group Z of Dehn twists about c, using the section σ and another partition
of unity we can construct a continuous fiber preserving flow Ψt on ∂N(c) so that
Ψ1(x) = Tc(x) for all x. Using this flow and the section σ to define a basepoint,
this yields an identification of ∂Nχ(S) with the product space R×S in such a way
that the group generated by Tc acts as a group of integral translations on the factor
R.

A section σ as in Lemma 6.12 is an embedding of S into ∂N(c), This embedding
and the transverse flow ΨT determine a homeomorphism S × R → ∂N(c) which
maps (x, t) to Ψt(x). This map is equivariant with respect to the action of Z on R
by translation and the action of the infinite cyclic group of Dehn twists about c on
∂N(c). As S × R is naturally identified with the product of the Teichmüller space
S and the Teichmüller space of the annulus with core curve c, the same holds true
for ∂N(c). Using this identification, we obtain from the construction in Section 6.2
a countable collection V = {Vi | i} of ξ of contractible subsets of ∂N(c).

Let Sc be the component of (S \ α) ∪ c which contains c and write as before
S∗
c to denote the surface obtained from Sc by replacing each boundary component

by a puncture. The stratum S ′ is a product of Teichmüller spaces containing the
Teichmüller space T (Sc) of Sc as a factor. Thus if we denote by [µ] the projective
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measured geodesic lamination on the surface Sc whose support equals the simple
closed curve c, then by the Hubbard Masur theorem, for each Y ∈ ∂N(c) the
projective measured geodesic lamination [µ] determines a Teichmüller geodesic γY
through Y . These Teichmüller geodesics foliate the stratum S ′, and they project to
points by a factor projection onto a factor of S ′ different from T (Sc). By choosing
ϵ > 0 sufficiently small we may assume that these Teichmüller geodesics intersect
∂N(c) transversely, and two Teichmüller geodesic passing through different points
of ∂N(c) do not intersect. We parameterize these geodesics γY in such a way that
γY (0) = Y and γY (−∞, 0) ⊂ N(c). Then the geodesic lines γY (−∞,∞) foliate the
stratum S ′).

Proposition 6.13. Put Ui = {γY (−∞,∞) | Y ∈ Vi ⊂ ∂N(c)}; then the sets Ui

are contractible, and the closures of their intersections with the ϵ-thick part S ′
ϵ of

the stratum S ′ define a neighborhood basis of ξ in the compactification of S ′
ϵ.

Proof. Since the geodesics with horizontal projective measured lamination [µ] foli-
ate S ′ and ∂N(c) is transverse to these geodesics, the set Ui admits a deformation
retraction onto Vi. Thus since the sets Vi are contractible, the same holds true for
the sets Ui.

Denote by S′ the surface obtained from (S \ α) ∪ c by replacing each boundary
component by a puncture and adding for each boundary component a factor (R).

Write T (S′) to denote the compactification of the Teichmüller space of S′ by the
joint /calX(∪iSi). We have to show that the closures of the sets Ui in T (S′) define
a neighborhood basis of ξ in T (S′). To this end choose as basepoint the image
of the basepoint for

∏
T (S∗

i ) in ∂N(c). We have to show that for any sequence
Xu ⊂ S ′, all but finitely many Xu are contained in Ui.

Let Ω ⊂ ∂N(c) be a fundamental domain for the action of the stabilizer Stab(c)
of c in the mapping class group of S′ = (S \ α) ∪ c which contains the basepoint
X. We may assume that the closure Ω of Ω in T aug(S) is compact. Recall that
the length function for the hyperbolic metric X determines a section of the bundle
ML → PML. Let A ⊂ ML be the closure of the image of this section of the
set of vertical projective laminations for the geodesics γY , Y ∈ Ω, and denote by
ν the unique measured geodesic lamination of X-length one with support c. We
claim that there exists a number ρ > 0 so that ι(µ, ν) ≥ ρ for each µ ∈ A, where as
before, ι is the intersection form.

To this end note that for each Y ∈ Ω, the quadratic differential defining γY in
T (Sc) is a one cylinder area one Strebel differential, and the extremal length of the
core curve of the cylinder is contained in an interval [a, a−1] for a number a > 0 not
depending on Y . The singular flat metric on Sc defined by such a Strebel differential
is obtained by gluing an area one flat cylinder of uniformly bounded height and
circumference along the boundary to the surface Sc by identifying subarcs of the
boundary isometrically in pairs. Degeneration of simple closed curves disjoint from
c to nodes corresponds to degeneration of boundary arcs to points, resulting in the
convergence of the Strebel differential to a Strebel differential on a component of a
stratum in the closure of S ′ in T aug(S) which is obtained by shrinking some curves
disjoint from c to nodes. In other words, allowing to pass to boundary strata of
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S ′, the Strebel differentials defined by the points in Ω define a precompact family
of differentials, and the intersection at the basepoint X of the defining measured
laminations is uniformly bounded from above and below.

As a consequence, there exists a number R > 0 with the following property.
For Y ∈ Ω, the diameter of the subsurface projection of Υ(γY (t)),Υ(γY (0)) into
a component Si of S′ is bounded from above by R. Note that this subsurface
projection only depends on the component of Y in Sc. Thus the closure in X (S ′)
of the set {γY (t) | Y ∈ Ω, t ∈ R} does not contain ξ. Furthermore, by equivariance
of the geodesics γY under the action of Stab(c) ⊂ Mod(S′) and invariance of the
components Si under this action, the diameter of the subsurface projection of any
of the geodesics γY into Si is bounded from above by R.

Now the group Stab(c) acts properly on X (S ′) \ X (S), and it acts properly
on ∂N(c). As taking the accumulation points in X (S ′) of the geodesics γY is
equivariant with respect to this action, it follows from the previous paragraph that
the starting points xu ∈ ∂N(c) of the geodesics γxu

which contain u converge in
∂N(c) ∼

∏
T (Si)

∗ to ξ. This implies that indeed, for large enough u we have
xu ∈ Vi and hence Ui is a neighborhood of ξ in T (S ′).

Similarly, the same discussion also shows that ∩iUi = {ξ}. Together this shows
the proposition. □

Using this construction inductively, and using a torsion free finite index subgroup
and a diffeomorphism Λ : T (S) → Λ(T (S)) ⊂ Tϵ(S) completes the proof of the
existence of a neighborhood basis for an arbitrary point whose intersection with
⊔(S) is contractible.

Example 6.14. In the case that S is a once puncture torus, whose Teichmüller
space T (S) is the hyperbolic plane H2, a rational point x ∈ ∂H2 corresponds to
an essential simple closed curve c on S. Remove from H2 a horosphere H which
is small enough that its images under the group PSL(2,Z) are pairwise disjoint.
The boundary ∂H of this horosphere is invariant under the stabilizer of x. As
H ⊂ H2 is convex, there is a shortest distance projection P : H2 → H2 \H. Given
a parameterization α : R → ∂H, a neighborhood basis of the point in X (S) defined
by the curve c equipped with an orientation, denoted by c+, is then given by the sets
P−1(α(u,∞))\PSL(2,Z)(H) where u ∈ R (up to perhaps changing the orientation
of c). This amounts precisely to a neighborhood basis of the point defined by c+ in
the Cantor set which is the Gromov boundary of the hyperbolic group PSL(2,Z).

7. A Z-set for Mod(S)

In this section we complete the proof of Theorem 4. We begin with establishing
one more property of the geometric boundary X (S) of the surface S of finite type.
Recall that the covering dimension of a topological space X is the minimum of the
numbers n ≥ 0 so that the following holds true. Any open cover U of X has a
refinement V so that a point in X is contained in at most n+ 1 of the sets V ∈ V.
With this terminology, the covering dimension of Rn is n, and hence the covering
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dimension of any subset of Rn equipped with the subspace topology is at most n.
In particular, the covering dimension of T (S) equals 6g − 6 + 2m.

The following result relies on work of Gabai [Ga14], see also [BB19].

Proposition 7.1. The covering dimension of X (S) is finite

Proof. We proceed by induction on the complexity of the surface S. If S is an
annulus, then its geometric boundary consists of two points and there is nothing to
show.

Consider next a four-holed sphere or a one-holed torus S. Then the boundary
X (S) of S is a Cantor set, which has covering dimension zero (corresponding to the
fact that the mapping class group of S is virtually free).

Let X and Y be compact spaces with covering dimensions m,n. We claim that
the covering dimension of the join X ∗ Y is at most m+ n+ 1. To see that this is
the case recall that X ∗ Y is the quotient of X × Y × [0, 1] under the equivalence
relation which is only nontrivial on X × Y × {0} and X × Y × {1} and projects
X × Y × {0} to X × {0} and projects Y × Y × {1} to Y × {1}. Thus we have
X ∗ Y = X ∪ Y ∪ C where X ⊂ X ∗ Y is the closed subset which is identified with
the quotient of X×Y ×{0}, Y ⊂ X ∗Y is the closed subset which is identified with
the quotient of X × Y × {1}, and the set C is homeomorphic to X × Y × (0, 1).

By Alexandrov’s definition of dimension (see Theorem 3.4 of [Dr18]), we have
dim(A×B) ≤ dim(A) ∪ dim(B) and hence dim(C) ≤ dim(X) + dim(Y ) + 1. Now
the compact space X ∗ Y is the union of the closed subset X ∪ Y with C and
hence the theorem of Menger and Uryson (see Theorem 3.1 of [Dr18]) shows that
dim(X ∗ Y ) = dim(C) ≤ dim(X) + dim(Y ) + 1 as claimed.

Assume now that the proposition was established for all surfaces of complexity
at most k − 1. Let S be a surface of complexity k. We have X (S) = ∂CG(S) ∪ Y
(disjoint union) where Y = ∪X (S1) ∗ · · · ∗ X (Sp) and the union in the definition of
Y is over all disjoint collections of subsurfaces S1, . . . , Sp of S. The union Y is not
disjoint. Note that the number of disjoint surfaces in this join is uniformly bounded
in terms of k.

By induction hypothesis and the discussion of dimension for joins, there exists a
number n > 0 which bounds from above the covering dimension of each of the sets
X (S1) ∗ · · · ∗ X (Sp). Following Example 3.3, X (S1) ∗ · · · ∗ X (Sp) is a closed subset
of X (S) and hence it is compact. As a consequence, the subspace Y of X (S) is a
σ-compact Hausdorff space as it is a countable union of compact spaces. If K ⊂ Y
is compact, then K is a compact space which can be written as a countable union
of the compact spaces K ∩X (S1) ∗ · · · ∗ X (Sp). Then the countable union theorem
Theorem 3.2 of [Dr18] shows that dim(K) = sup{dim(K ∩ X (S1) ∗ · · · ∗ X (Sp)}
where the supremum is over all disjoint unions of subsurfaces of S. By the induction
hypothesis, this dimension is at most n.

To summarize, the space Y is a σ-compact Hausdorff space with the property
that the dimension of each compact subset K of Y is bounded from above by a
fixed number n ≥ 1. Then the dimension of Y is at most n (see p.316 of [Mu14]
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for a sketch of a proof). Following [Ga14], the covering dimension of ∂CG(S) is at
most 4g−5+2s. Then by the Uryson-Menger formula (see Theorem 3.3 of [Dr18]),
the dimension of the compactum X (S) is at most

dim(X (S)) = dim(∂CG(S)) + dim(Y) + 1

and hence it is finite. □

As a consequence, we obtain

Corollary 7.2. The pair (T (S),X (S)) is a pair of spaces of finite dimension.

Proof. By Proposition 7.1, the dimension of X (S) is finite. As the compactum
T (S) = Tϵ(S)∪X (S) is a union of two subspaces of finite dimension, with X (S) ⊂
T (S) closed, we have

dim(T (S)) = max{dim(Tϵ(S),dim(X (S))} <∞.

□

Let now Γ be a torsion free finite index subgroup of Mod(S). It acts freely
on Tϵ(S), with compact quotient (or on the Γ-invariant subspace Q of T (S) as
introduced in Proposition 4.3.

Theorem 7.3. The pair (T (S),X (S)) defines a Z-structure for Γ.

Proof. We have to verify the axioms for a Z-structure.

We showed so far that the Γ-invariant subspace Q is contractible, locally con-
tractible and of dimension 6g−6. The group Γ admits a covering space action on Q,
We also know that a point z ∈ X (S) has a neighborhood basis in T (S) consisting
of sets whose intersections with Q are contractible. Thus we are left with showing
that the action of Γ is U-small for every open covering U of T (S).

To this end let U be an open covering of T (S). By compactness, we may extract
a finite subcovering, so we may assume that U is in fact finite, that is, we have
U = ∪0≤i≤mUi for some open sets Ui ⊂ T (S). Assume without loss of generality
that Ui ∩ X (S) ̸= ∅ for all i ≥ 1.

We argue now by contradiction and we assume that there exists a compact set
K ⊂ T ϵ(S) and infinitely many elements φi ∈ Γ such that giK ̸⊂ Uj for all
j ≤ m. Since the action of Γ on Q is proper and cocompact, we may assume that
K = ∪ℓ

j=1ψjK0 where K0 is a compact fundamental domain for the action of Γ.

Let X ∈ K0. Since the action of Γ on Tϵ(S) is proper and T (S) is compact,
we conclude that up to passing to a subsequence, the sequence ψiX converges in
T (S) to a point ξ ∈ X (S). Since the right action of Γ on itself extends to the
trivial action on X (S), we then have ψi(φjX) → ξ for all j ≤ ℓ. In particular,
for sufficiently large i, we have ψi(φjX) ∈ Up for some fixed p > 0. But then it

follows from the definition of the topology on T (S) that in fact ψiK → ξ and hence
giK ⊂ Up for all sufficiently large p. This is a contradiction which completes the
proof of the theorem. □
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As an application, we obtain.

Corollary 7.4. dim(∂CG(S)) ≤ 4g − 6.

Proof. Since X (S) is a Z-set for Γ, the cohomological dimension of X (S) equals
vd(Mod)(S) − 1 [B96]. Furthermore, this dimension also equals the covering di-
mension of X .

Now as ∂CG(S) is embedded in X (S), it is equipped with the subspace topology.
This means that any open covering of ∂CG(S) is the restriction of an open covering
of X (S). Such a covering then has a 4g − 6-finite refinement and hence the same
holds true for the refinement of the original cover of ∂CG(S). □

The following conjecture is taken from [BB19]. We believe that the results in
this work support this conjecture.

Conjecture. asdim(Mod(S)) = vd(Mod(S)) = 4g − 5.

References

[BM91] M. Bestvina, and J. Mess, The boundary of negatively curved groups, J. Amer. Math.

Soc. 4 (1991), 469–481.

[B96] M. Bestvina, Local homology properties of boundaries of groups, Michigan Math. J. 1996,
123–141.

[BB19] M. Bestvina, K. Bromberg, On the asymptotic dimension of the curve complex, Geom-
etry & Topology 23 (2019), 2227–2276.

[Bu92] P. Buser, Geometry and spectra of compact Riemann surfaces, Birkhäuser, Boston 1992.
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