TYPICAL PROPERTIES OF PERIODIC TEICHMÜLLER GEODESICS: LYAPUNOV EXPONENTS

URSULA HAMENSTÄDT

Abstract. Consider a component \(Q \) of a stratum in the moduli space of area one abelian differentials on a surface of genus \(g \). Call a property \(\mathcal{P} \) for periodic orbits of the Teichmüller flow on \(Q \) typical if the growth rate of orbits with property \(\mathcal{P} \) is maximal. We show that the following property is typical. Given a continuous integrable cocycle over the Teichmüller flow with values in a vector bundle \(V \to Q \), the logarithms of the eigenvalues of the matrix defined by the orbit are arbitrarily close to the Lyapunov exponents of the cocycle for the Masur Veech measure.

1. Introduction

The mapping class group \(\text{Mod}(S) \) of a closed surface \(S \) of genus \(g \geq 0 \) with \(m \geq 0 \) punctures and \(3g - 3 + m \geq 2 \) acts by precomposition of marking on the Teichmüller space \(\mathcal{T}(S) \) of marked complex structures on \(S \). The action is properly discontinuous, with quotient the moduli space \(\mathcal{M} \) of complex structures on \(S \).

If \(m = 0 \) then the Hodge bundle \(\mathcal{H} \to \mathcal{M} \) over moduli space is the bundle whose fibre over a Riemann surface \(x \) equals the vector space of holomorphic one-forms on \(x \). This is a holomorphic vector bundle (in the orbifold sense) of complex dimension \(g \) which decomposes into strata of differentials with zeros of given number and multiplicities. Strata need not be connected, but their components are classified [KZ03]. The sphere subbundle for the natural norm obtained by integration of a holomorphic one-form over the base surface is the moduli space of area one abelian differentials on \(S \). There is a natural \(SL(2, \mathbb{R}) \)-action on this sphere bundle preserving every component \(Q \) of a stratum. The action of the diagonal subgroup is called the Teichmüller flow \(\Phi^t \).

Similarly, for arbitrary \((g, m) \) the sphere bundle in the cotangent bundle of \(\mathcal{M} \) can be identified with the (orbifold) bundle of area one quadratic differentials over \(\mathcal{M} \). It decomposes into strata of differentials with fixed number and multiplicities of zeros and simple poles. Strata need not be connected, but connected components are classified [L08]. Each connected component of such a stratum is invariant under a natural \(SL(2, \mathbb{R}) \)-action whose diagonal subgroup acts as the Teichmüller flow \(\Phi^t \).

Date: April 24, 2018.
Keywords: Abelian differentials, Teichmüller flow, periodic orbits, Lyapunov exponents, equidistribution
AMS subject classification: 37C40, 37C27, 30F60
Research supported by ERC grant “Moduli”.

1
Let now Q be such a component of area one abelian or quadratic differentials. Let $k \geq 1$ be the total number of zeros and poles of the differentials in Q and let $h = 2g - 1 + k$ in case Q is a component of abelian differentials, and $h = 2g - 2 + k$ otherwise. Let Γ be the set of all periodic orbits for Φ^t in Q. The length of a periodic orbit $\gamma \in \Gamma$ is denoted by $\ell(\gamma)$.

As an application of [EMR12] (see also [EM11]) we showed in [H 13] that

$$\sharp\{\gamma \in \Gamma \mid \ell(\gamma) \leq R\} \cdot \frac{hR}{e^{\pi R}} \to 1 \quad (R \to \infty).$$

Call a subset A of Γ typical if

$$\sharp\{\gamma \in A \mid \ell(\gamma) \leq R\} \cdot \frac{hR}{e^{\pi R}} \to 1 \quad (R \to \infty).$$

Thus a subset of Γ is typical if its growth rate is maximal. The intersection of two typical subsets of Γ is typical.

Now let as assume we are given a finite dimensional real or complex vector space V and a representation $\Psi : \text{Mod}(S) \to GL(V)$. Using this representation, we can form the flat vector bundle $N_0 = T(S) \times_{\text{Mod}(S)} V \to M$ where $\text{Mod}(S)$ acts on V via the representation Ψ. This bundle is equipped with a natural flat connection. For each component Q of a stratum of area one abelian or quadratic differentials, we can consider the pull-back $\Pi^*N_0 = N$ of N_0 to Q where $\Pi : Q \to M$ is the natural projection. The pullback bundle is equipped with the flat pullback connection.

An important example for $m = 0$ arises from the representation

$$\Psi : \text{Mod}(S) \to Sp(2g, \mathbb{Z})$$

defined by the action of $\text{Mod}(S)$ on the first real cohomology group $H^1(S, \mathbb{R})$ of S which preserves the intersection form ι on $H^1(S, \mathbb{Z})$. The corresponding flat bundle over moduli space is just the Hodge bundle, and the flat connection obtained in this way is called the Gauss-Manin connection.

Given a flat vector bundle $N \to Q$, we can parallel transport the fibres of N along the flow lines of the Teichmüller flow Φ^t. This defines a continuous cocycle over Φ^t.

A periodic orbit $\gamma \in \Gamma$ for Φ^t determines a holonomy map for N which is the first return map of the parallel transport along γ for a fixed choice of a basepoint in γ. Different basepoints give rise to conjugate maps. Thus a periodic orbit $\gamma \in \Gamma$ determines the conjugacy class $[A(\gamma)]$ of a matrix $A(\gamma) \in GL(V)$ which is just the image under the representation Ψ of the conjugacy class of a pseudo-Anosov mapping class φ which defines the periodic orbit γ.

The $SL(2, \mathbb{R})$-action on Q preserves a Borel probability measure λ in the Lebesgue measure class, the so-called Masur-Veech measure [M82, V86]. If the cocycle defined by the flat bundle N is integrable for the action of the Teichmüller flow with respect to this measure, then we can apply the Oseledets multiplicative ergodic theorem [O68] to obtain Lyapunov exponents of the cocycle with respect to λ. These Lyapunov exponents

$$\kappa_1 \geq \cdots \geq \kappa_n.$$
LYAPUNOV EXPONENTS

listed in descending order describe the asymptotic growth rate of vectors in subcones
determined by the Lyapunov filtration of \(\mathcal{N} \) as described by Oseledec’s theorem.
As an example, the flat bundle defined by the standard representation \(\text{Mod}(S) \rightarrow \text{Sp}(2g, \mathbb{Z}) \) is integrable in this sense.

For \(\gamma \in \Gamma \) let \(\alpha_i(\gamma) \) be the logarithm of the absolute value of the \(i \)-th eigenvalue
of the matrix \(A(\gamma) \), ordered in decreasing order, and write \(\alpha_i(\gamma) = \hat{\alpha}_i(\gamma)/\ell(\gamma) \).
Since eigenvalues of matrices are invariant under conjugation, this does not depend
on the choice of a representative in the class \([A(\gamma)]\), and for \(i \leq n \) we obtain in this
way a function \(\alpha_i : \Gamma \rightarrow \mathbb{R} \). We show

Theorem 1. For each \(\epsilon > 0 \), the set \(\{ \gamma \in \Gamma \mid |\alpha_i(\gamma) - \kappa_i| < \epsilon \} \ (1 \leq i \leq n) \) is
typical.

The main technical tool towards this result is a hyperbolicity property for the
action of the Teichmüller flow on a component \(Q \) of a stratum of abelian or quadratic
differentials. For its formulation, recall [M82, V86] that for every \(q \in Q \), the set
of differentials in \(Q \) with the same vertical (or horizontal) measured foliation as \(q \)
is a local suborbifold \(W^s_{ss}(q) \) (or \(W^s_{su}(q) \)) of \(Q \). These local suborbifolds can be
equipped with a natural distance function \(d_H \) obtained from the
modified Hodge norm [ABEM12]. For \(r > 0 \) we denote by \(B^s_{Q}(q,r) \subset W^s_{Q}(q) \) (i.e. \(ss, su \)) the ball
of radius \(r \) about \(q \) for the distance function \(d_H \).

Denote the set of manifold points in \(Q \) by \(Q_{\text{good}} \). Then \(Q_{\text{good}} \) is an open dense
\(\Phi^t \)-invariant subset of \(Q \) (see the discussion in Section 3 for more details). Call
a point \(q \in Q \) recurrent if it is contained in its own \(\alpha \)- and \(\omega \)-limit set for the
action of \(\Phi^t \). This means that there are sequences \(s_i, t_i \to \infty \) so that \(\Phi^t q \to q \)
and \(\Phi^{-s_i} q \to q \ (i \to \infty) \). We show in Section 4 the following strengthening of
contraction results which can be found in [H13] and [ABEM12].

Theorem 2. Let \(q \in Q_{\text{good}} \) be a recurrent point. Then there is a number \(r_0 = r_0(q) > 0 \), and there is a neighborhood \(U \) of \(q \) in \(Q_{\text{good}} \) with the following property.
Let \(z \in U \) be recurrent; then for every \(a > 0 \) there is a number \(T(z,a) > 0 \) so
that for all \(T > T(z,a) \), we have \(\Phi^T B^s_{Q}(z,r_0) \subset B^s_{Q}(\Phi^T(z),a) \) and \(\Phi^T B^u_{Q}(z,a) \supset B^u_{Q}(\Phi^T(z),r_0) \).

The structure of this article is as follows. In Section 2 we recall some properties
of flat bundles needed later on. Section 3 introduces the basic tools used in the
 proofs and explains some technical results from [H13]. This section was included to
make the article essentially self-contained. Section 4 is devoted to a study of some
specific properties of the Teichmüller flow which resemble properties of a hyperbolic
flow, extending the results of [H13]. We also prove Theorem 2 which is the main
technical tool for the proof of Theorem 1. In Section 5 we establish a local criterion
for a property to be typical which is applied in Section 6 to show Theorem 1.

2. Flat Bundles

Let \(S \) be an oriented surface of finite type, i.e. \(S \) is a closed surface of genus
\(g \geq 0 \) from which \(m \geq 0 \) points, so-called punctures, have been deleted. We assume
that $3g - 3 + m \geq 2$, i.e. that S is not a sphere with at most four punctures or a torus with at most one puncture.

The Teichmüller space $T(S)$ of S is the quotient of the space of all complete finite volume hyperbolic metrics on S under the action of the group of diffeomorphisms of S which are isotopic to the identity. The fibre bundle $\mathcal{Q}(S)$ over $T(S)$ of all marked holomorphic quadratic differentials of area one can be viewed as the unit cotangent bundle of $T(S)$ for the Teichmüller metric d_T. Each such differential is holomorphic on the complement of the punctures and has at most a simple pole at each puncture. The Teichmüller flow Φ^t on $\mathcal{Q}(S)$ commutes with the action of the mapping class group $\text{Mod}(S)$ of all isotopy classes of orientation preserving self-homeomorphisms of S. Therefore this flow descends to a flow on the quotient orbifold $\mathcal{Q}(S) = \mathcal{Q}(S)/\text{Mod}(S)$, again denoted by Φ^t.

Let V be a finite dimensional real or complex vector space, and let $\Psi : \text{Mod}(S) \to GL(V)$ be an irreducible representation. Then we obtain a flat bundle

$$\mathcal{N}_0 = T(S) \times_{\text{Mod}(S)} V \to \mathcal{M}$$

where $\text{Mod}(S)$ acts on $T(S) \times V$ by $(\varphi, x, Z) \to (\varphi^{-1}(x), \varphi^{-1}(Z))$. The pull-back of \mathcal{N}_0 to a component \mathcal{Q} of a stratum of abelian or quadratic differentials is again a flat vector bundle $\mathcal{N} \to \mathcal{Q}$, equipped with the pull-back connection.

The Teichmüller flow Φ^t acts on \mathcal{N} as a one-parameter group of bundle automorphisms by associating to (t, v, Z) the image of Z under parallel transport along the flow line of the Teichmüller flow through v.

The holonomy group of the bundle $\mathcal{N} = T(S) \times_{\text{Mod}(S)} V$ is the image of $\text{Mod}(S)$ under the homomorphism Ψ. As the action of the mapping class group on $T(S)$ is not free, we have to be slightly careful when computing the holonomy about a closed loop. The following discussion is geared at circumventing this difficulty.

Let $\text{Sing} \subset T(S)$ be the $\text{Mod}(S)$-invariant subvariety of surfaces with nontrivial automorphisms. The complex codimension of Sing is at least two. We will not need this fact in the sequel; all we need is that this set is closed and nowhere dense. Let $\hat{\alpha} : [0, 1] \to T(S)$ be any smooth path with $\hat{\alpha}(0), \hat{\alpha}(1) \in T(S) - \text{Sing}$. Assume that there is an element $\varphi \in \text{Mod}(S)$ so that $\varphi(\hat{\alpha}(0)) = \hat{\alpha}(1)$. Then φ is unique. Furthermore, $\hat{\alpha}$ projects to a closed path α in \mathcal{M}. Up to conjugation, the holonomy along α for the flat connection on \mathcal{N} equals the map $\Psi \circ \varphi^{-1}$ which maps the fibre of \mathcal{N} over $\hat{\alpha}(1)$ to the fibre of \mathcal{N} over $\hat{\alpha}(0)$. It only depends on the endpoints of $\hat{\alpha}$. In particular, it is well defined even if the path $\hat{\alpha}$ is not entirely contained in $T(S) - \text{Sing}$.

As $\text{Sing} \subset T(S)$ is closed and nowhere dense, there exists a contractible neighborhood U of $\hat{\alpha}(0)$ which is entirely contained in $T(S) - \text{Sing}$ and such that $\eta(U) \cap U = \emptyset$ for all $\eta \neq \eta \in \text{Mod}(S)$. Let $\gamma : [0, 1] \to T(S) - \text{Sing}$ be any smooth path which connects a point $\gamma(0) \in U$ to a point $\gamma(1) = \varphi(\gamma(0))$ in $\varphi(U)$. The discussion in the previous paragraph shows that the holonomy of the parallel transport of \mathcal{N} along the projection of γ to \mathcal{M} is conjugate to the holonomy for parallel transport along α. In particular, the absolute values of the eigenvalues of these holonomy maps
coincide. The same consideration is also valid for the holonomy of the pullback bundle $\mathcal{N} \to \mathcal{Q}$ with respect to the flat pullback connection.

We use this fact as follows. Define the good subset $\mathcal{Q}_{\text{good}}$ of \mathcal{Q} to be the set of all points $q \in \mathcal{Q}$ with the following property. Let $\overline{\mathcal{Q}}$ be a component of the preimage of \mathcal{Q} in the Teichmüller space of marked abelian or quadratic differentials and let $\overline{q} \in \mathcal{Q}$ be a lift of q; then an element of $\text{Mod}(S)$ which fixes \overline{q} acts as the identity on $\overline{\mathcal{Q}}$ (compare [H13] for more information on this technical condition). Then $\mathcal{Q}_{\text{good}}$ is precisely the subset of \mathcal{Q} of manifold points. Lemma 4.5 of [H13] shows that the good subset $\mathcal{Q}_{\text{good}}$ of \mathcal{Q} is open, dense and Φ^t-invariant.

Definition 2.1. A closed curve $\eta : [0, a] \to \mathcal{Q}_{\text{good}}$ defines the conjugacy class of a pseudo-Anosov mapping class $\varphi \in \text{Mod}(S)$ if the following holds true. Let $\overline{\eta}$ be a lift of η to an arc in the Teichmüller space of abelian differentials. Then $\psi \overline{\eta}(0) = \overline{\eta}(a)$ for some $\psi \in \text{Mod}(S)$, and we require that ψ is conjugate to φ.

Consider a smooth closed curve $\alpha : [0, 1] \to \mathcal{Q}_{\text{good}}$. As before, the parallel transport along α of the bundle $\mathcal{N} = \Pi^*\mathcal{N} \to \mathcal{Q}$ with respect to the flat pull-back connection is defined.

Using Definition 2.1, the following is now immediate from the above discussion.

Lemma 2.2. Let $\eta \subset \mathcal{Q}_{\text{good}}$ be a closed curve which defines the conjugacy class of a pseudo-Anosov mapping class $\varphi \in \text{Mod}(S)$. Then the eigenvalues of the holonomy map obtained by parallel transport of the bundle \mathcal{N} along η coincide with the eigenvalues of the map $\Psi \circ \varphi^{-1}$.

Proof. As discussed above, if $\eta : [0, a] \to \mathcal{Q}_{\text{good}}$ is a closed curve and if $\overline{\eta}$ is a lift of η to the Teichmüller space of marked abelian differentials, then there is a unique element $\psi \in \text{Mod}(S)$ with $\psi(\overline{\eta}(0)) = \overline{\eta}(a)$. The absolute values of the eigenvalues of ψ^{-1} are precisely the absolute values of the eigenvalues of the holonomy map for parallel transport of \mathcal{N} along η. The lemma now follows from the definition of a curve which defines the conjugacy class of φ. \qed

3. **Laminations and the Curve Graph**

The goal of this section is to summarize some results from [H13] used later on. It was included here to make the article self-contained.

3.1. **Geodesic laminations.** A geodesic lamination for a complete hyperbolic structure on S of finite volume is a compact subset of S which is foliated into simple geodesics. A geodesic lamination ν is called minimal if each of its half-leaves is dense in ν. Thus a simple closed geodesic is a minimal geodesic lamination. A minimal geodesic lamination with more than one leaf has uncountably many leaves and is called minimal arational.

Every geodesic lamination ν consists of a disjoint union of finitely many minimal components and a finite number of isolated leaves. Each of the isolated leaves of ν either is an isolated closed geodesic and hence a minimal component, or it
spirals about one or two minimal components. A geodesic lamination \(\nu \) tightly fills up \(S \) if its complementary components are topological discs or once punctured mongons, i.e. once punctured discs bounded by a single leaf of \(\nu \). Note that this definition deviates from the standard definition of filling which only requires that a geodesic lamination decomposes \(S \) into discs and once punctured discs. A geodesic lamination which tightly fills a surface with punctures is not orientable.

The set \(\mathcal{L} \) of all geodesic laminations on \(S \) can be equipped with the restriction of the Hausdorff topology for compact subsets of \(S \). With respect to this topology, the space \(\mathcal{L} \) is compact.

A measured geodesic lamination is a geodesic lamination \(\nu \) equipped with a translation invariant transverse measure \(\xi \) such that the \(\xi \)-weight of every compact arc in \(S \) with endpoints in \(S - \nu \) which intersects \(\nu \) nontrivially and transversely is positive. We say that \(\nu \) is the support of the measured geodesic lamination. The geodesic lamination \(\nu \) is uniquely ergodic if up to scale, \(\xi \) is the only transverse measure with support \(\nu \).

The space \(\mathcal{ML} \) of measured geodesic laminations equipped with the weak* topology admits a natural continuous action of the multiplicative group \((0, \infty)\). The quotient under this action is the space \(\mathcal{PML} \) of projective measured geodesic laminations which is homeomorphic to the sphere \(S^{6g-7+2m} \).

Every simple closed geodesic \(c \) on \(S \) defines a measured geodesic lamination. The geometric intersection number between simple closed curves on \(S \) extends to a continuous function \(\iota \) on \(\mathcal{ML} \times \mathcal{ML} \), the intersection form. We say that a pair \((\xi, \mu) \in \mathcal{ML} \times \mathcal{ML} \) of measured geodesic laminations jointly fills up \(S \) if for every measured geodesic lamination \(\eta \in \mathcal{ML} \) we have \(\iota(\eta, \xi) + \iota(\eta, \mu) > 0 \). This is equivalent to stating that every complete simple (possibly infinite) geodesic on \(S \) intersects either the support of \(\xi \) or the support of \(\mu \) transversely.

3.2. The curve graph

The curve graph \(\mathcal{C}(S) \) of \(S \) is the locally infinite metric graph whose vertices are the free homotopy classes of essential simple closed curves on \(S \), i.e. curves which are neither contractible nor freely homotopic into a puncture. Two such curves are connected by an edge of length one if and only if they can be realized disjointly. The mapping class group \(\text{Mod}(S) \) of \(S \) acts on \(\mathcal{C}(S) \) as a group of simplicial isometries.

The curve graph \(\mathcal{C}(S) \) is a hyperbolic geodesic metric space [MM99] and hence it admits a Gromov boundary \(\partial \mathcal{C}(S) \). For \(c \in \mathcal{C}(S) \) there is a complete distance function \(\delta_c \) on \(\partial \mathcal{C}(S) \) of uniformly bounded diameter, and there is a number \(\rho > 0 \) such that

\[
\delta_c \leq e^{\rho d(c, a)} \delta_a \text{ for all } c, a \in \mathcal{C}(S).
\]

The group \(\text{Mod}(S) \) acts on \(\partial \mathcal{C}(S) \) as a group of homeomorphisms.

Let \(\kappa_0 > 0 \) be a Bers constant for \(S \), i.e. \(\kappa_0 \) is such that for every complete hyperbolic metric on \(S \) of finite volume there is a pants decomposition of \(S \) consisting of pants curves of length at most \(\kappa_0 \). Define a map

\[
\Upsilon_T : T(S) \rightarrow \mathcal{C}(S)
\]
by associating to \(x \in T(S) \) a simple closed curve of \(x \)-length at most \(\kappa_0 \). Then there is a number \(c > 0 \) such that
\[
(2) \quad d_{T}(x, y) \geq d(\Upsilon_{T}(x), \Upsilon_{T}(y))/c - c
\]
for all \(x, y \in T(S) \) ([MM99] and see the discussion in [H10]).

For a number \(L > 1 \), a map \(\gamma : [0, s) \to \mathcal{C}(S) \ (s \in (0, \infty)) \) is an \(L \)-quasi-geodesic if for all \(t_1, t_2 \in [0, s) \) we have
\[
|t_1 - t_2|/L - L \leq d(\gamma(t_1), \gamma(t_2)) \leq L|t_1 - t_2| + L.
\]
A map \(\gamma : [0, \infty) \to \mathcal{C}(S) \) is called an unparametrized \(L \)-quasi-geodesic if there is an increasing homeomorphism \(\varphi : [0, s) \to [0, \infty) \ (s \in (0, \infty)) \) such that \(\gamma \circ \varphi \) is an \(L \)-quasi-geodesic. We say that an unparametrized quasi-geodesic is infinite if its image set has infinite diameter. The following important result was established in [MM99].

Theorem 3.1. There is a number \(p > 1 \) such that the image under \(\Upsilon_{T} \) of every Teichmüller geodesic is an unparametrized \(p \)-quasi-geodesic.

Choose a smooth function \(\sigma : [0, \infty) \to [0, 1] \) with \(\sigma[0, \kappa_0] \equiv 1 \) and \(\sigma[2\kappa_0, \infty) \equiv 0 \). For each \(x \in T(S) \), the number of essential simple closed curves \(c \) on \(S \) whose \(x \)-length \(\ell_x(c) \) (i.e. the length of a geodesic representative in its free homotopy class) does not exceed \(2\kappa_0 \) is bounded from above by a constant not depending on \(x \), and the diameter of the subset of \(\mathcal{C}(S) \) containing these curves is uniformly bounded as well. Thus we obtain for every \(x \in T(S) \) a finite Borel measure \(\mu_x \) on \(\mathcal{C}(S) \) by defining
\[
\mu_x = \sum_{c \in \mathcal{C}(S)} \sigma(\ell_x(c)) \Delta_c
\]
where \(\Delta_c \) denotes the Dirac mass at \(c \). The total mass of \(\mu_x \) is bounded from above and below by a universal positive constant, and the diameter of the support of \(\mu_x \) in \(\mathcal{C}(S) \) is uniformly bounded as well. Moreover, the measures \(\mu_x \) depend continuously on \(x \in T(S) \) in the weak*-topology. This means that for every bounded function \(f : \mathcal{C}(S) \to \mathbb{R} \) the function \(x \mapsto \int f d\mu_x \) is continuous.

For \(x \in T(S) \) define a distance \(\delta_x \) on \(\partial \mathcal{C}(S) \) by
\[
(3) \quad \delta_x(\xi, \zeta) = \int \delta_{\xi}(\xi, \zeta)d\mu_x(c)/\mu_x(\mathcal{C}(S)).
\]
The distances \(\delta_x \) are equivariant with respect to the action of \(\text{Mod}(S) \) on \(T(S) \) and \(\partial \mathcal{C}(S) \). Moreover, there is a constant \(\kappa > 0 \) such that
\[
(4) \quad \delta_x \leq e^{\kappa d_{T}(x, y)} \delta_y \quad \text{and} \quad \kappa^{-1} \delta_y \leq \delta_{T_{\Upsilon}(y)} \leq \kappa \delta_y
\]
for all \(x, y \in T(S) \) (see p.230 and p.231 of [H09]).

An area one quadratic differential \(z \in \mathcal{Q}(S) \) is determined by a pair \((\mu, \nu)\) of measured geodesic laminations which jointly fill up \(S \) and such that \(\iota(\mu, \nu) = 1 \). The laminations \(\mu, \nu \) are called vertical and horizontal, respectively. Namely, Levitt [L83] constructed from a measured foliation on \(S \) a measured geodesic lamination, and the measured geodesic lamination determines the measured foliation up to Whitehead moves. On the other hand, a pair \((\mu, \nu)\) of measured foliations is the pair consisting of the horizontal and the vertical measured foliation for a quadratic
differential \(z \) on \(S \) if and only if the corresponding measured geodesic laminations jointly fill up \(S \).

For \(z \in \hat{Q}(S) \) let \(W^u(z) \subset \hat{Q}(S) \) be the set of all quadratic differentials whose horizontal projective measured geodesic laminations coincide with the horizontal projective measured geodesic lamination of \(z \). The space \(W^u(z) \) is called the unstable manifold of \(z \), and these unstable manifolds define the unstable foliation \(W^u \) of \(\hat{Q}(S) \). The strong unstable manifold \(W^{su}(z) \subset W^u(z) \) is the set of all quadratic differentials whose horizontal measured geodesic laminations coincide with the horizontal measured geodesic lamination of \(z \). These sets define the strong unstable foliation \(W^{su} \) of \(\hat{Q}(S) \). The flip \(F : z \to F(z) = -z \) exchanges the vertical and the horizontal measured lamination of a quadratic differential \(z \). The image of the unstable (or the strong unstable) foliation of \(\hat{Q}(S) \) under the flip \(F \) is the stable foliation \(W^s \) (or the strong stable foliation \(W^{ss} \)).

By the Hubbard-Masur theorem [HM79], for each \(z \in \hat{Q}(S) \) the restriction to \(W^u(z) \) of the canonical projection \(P : \hat{Q}(S) \to T(S) \) is a homeomorphism. Thus the Teichmüller metric lifts to a complete path metric \(d^u \) on \(W^u(z) \) (i.e. a distance function so that any two points can be connected by a minimal geodesic). Denote by \(d^{su} \) the restriction of this distance function to \(W^{su}(z) \). Then \(d^s = d^u \circ F, d^{su} = d^{su} \circ F \) are distance functions on the leaves of the stable and strong stable foliation, respectively. For \(z \in \hat{Q}(S) \) and \(r > 0 \) let \(B^i(z, r) \subset W^i(z) \) be the closed ball of radius \(r \) about \(z \) with respect to \(d^i \) (\(i = u, su, s, ss \)).

Let
\[
\tilde{A} \subset \hat{Q}(S)
\]
be the set of all marked quadratic differentials \(z \) such that the unparametrized quasi-geodesic \(t \to \Upsilon_t(P\Phi^t z) \) (\(t \in [0, \infty) \)) is infinite. Then \(\tilde{A} \) is the set of all quadratic differentials whose vertical measured geodesic lamination fills up \(S \) (i.e. its support decomposes \(S \) into ideal polygons and once punctured polygons, see [H06] for a comprehensive discussion of this result of Klarreich [Kl99]). There is a natural \(\operatorname{Mod}(S) \)-equivariant surjective map
\[
F : \tilde{A} \to \partial C(S)
\]
which associates to a point \(z \in \tilde{A} \) the endpoint of the infinite unparametrized quasi-geodesic \(t \to \Upsilon_t(P\Phi^t z) \) (\(t \in [0, \infty) \)). The map \(F : \tilde{A} \to \partial C(S) \) defined in Section 2 is equivariant for the action of the mapping class group on \(\tilde{A} \subset \hat{Q}(S) \) and on \(\partial C(S) \).

Call a marked quadratic differential \(z \in \hat{Q}(S) \) uniquely ergodic if the support of its vertical measured geodesic lamination is uniquely ergodic and fills up \(S \). A uniquely ergodic quadratic differential is contained in the set \(\tilde{A} \). The following is Lemma 2.3 of [H13].

Lemma 3.2. (1) The map \(F : \tilde{A} \to \partial C(S) \) is continuous and closed.
(2) If \(z \in \tilde{Q}(S) \) is uniquely ergodic then the sets \(F(B^u(z, r) \cap \tilde{A}) \) \((r > 0) \) form a neighborhood basis for \(F(z) \) in \(\partial \mathcal{C}(S) \).

For \(z \in \tilde{A} \) and \(r > 0 \) let
\[
D(z, r)
\]
be the closed ball of radius \(r \) about \(F(z) \) with respect to the distance function \(\delta_{F,z} \).

As a consequence of Lemma 3.2, if \(z \in \tilde{Q}(S) \) is uniquely ergodic then for every \(r > 0 \) there are numbers \(r_0 < r \) and \(\beta > 0 \) such that
\[
F(B^u(z, r_0) \cap \tilde{A}) \subset D(z, \beta) \subset F(B^u(z, r) \cap \tilde{A}).
\]

3.3. Strata. A tuple \((m_1, \ldots, m_\ell; -m)\) of positive integers \(1 \leq m_1 \leq \cdots \leq m_\ell \) with \(\sum_i m_i = 4g - 4 + m \) defines a stratum \(\tilde{Q}(m_1, \ldots, m_\ell; -m) \) in \(\tilde{Q}(S) \). This stratum consists of all marked area one quadratic differentials with \(m \) simple poles and \(\ell \) zeros of order \(m_1, \ldots, m_\ell \) which are not squares of holomorphic one-forms. The stratum is a real hypersurface in a complex manifold of dimension \(2g - 2 + m + \ell \).

The closure in \(\tilde{Q}(S) \) of a stratum is a union of components of strata. Strata are invariant under the action of the mapping class group \(\text{Mod}(S) \) of \(S \) and hence they project to strata in the moduli space \(Q(S) = \tilde{Q}(S)/\text{Mod}(S) \) of quadratic differentials on \(S \) with at most simple poles at the punctures. We denote the projection of the stratum \(\tilde{Q}(m_1, \ldots, m_\ell; -m) \) by \(Q(m_1, \ldots, m_\ell; -m) \).

The strata in moduli space need not be connected, but their connected components have been identified by Lanneau [L08]. A stratum in \(Q(S) \) has at most three connected components. The entropy \(h \) of the invariant Lebesgue measure on a component \(Q \) of a stratum \(Q(m_1, \ldots, m_\ell; -m) \) just equals the dimension \(2g - 2 + m + \ell \) [M82, V86], i.e. we have
\[
h = 2g - 2 + m + \ell.
\]

Similarly, if \(m = 0 \) then we let \(\hat{H}(S) \) be the bundle of marked area one holomorphic one-forms over Teichmüller space \(\mathcal{T}(S) \) of \(S \). For a tuple \(k_1 \leq \cdots \leq k_\ell \) of positive integers with \(\sum_i k_i = 2g - 2 \), the stratum \(\hat{H}(k_1, \ldots, k_\ell) \) of marked area one holomorphic one-forms on \(S \) with \(\ell \) zeros of order \(k_i \) \((i = 1, \ldots, \ell) \) is a real hypersurface in a complex manifold of dimension \(2g - 1 + \ell \). It projects to a stratum \(\mathcal{H}(k_1, \ldots, k_\ell) \) in the moduli space \(H(S) \) of area one holomorphic one-forms on \(S \). Strata of holomorphic one-forms in moduli space need not be connected, but the number of connected components of a stratum is at most three [KZ03]. Moreover, as before, the entropy of the invariant Lebesgue measure on a component of a stratum \(\mathcal{H}(k_1, \ldots, k_\ell) \) coincides with the dimension \(2g - 1 + \ell \), i.e. we have
\[
h = 2g - 1 + \ell.
\]

Let \(\hat{Q} \) be a component of a stratum \(\hat{Q}(m_1, \ldots, m_\ell; -m) \) of marked quadratic differentials or of a stratum \(\hat{H}(m_1/2, \ldots, m_\ell/2) \) of marked abelian differentials. Using period coordinates, one sees that every \(q \in \hat{Q} \) has a connected neighborhood \(U \) in \(\hat{Q} \) with the following properties [H13]. For \(u \in U \) let \([u^v]\) (or \([u^h]\)) be the vertical (or the horizontal) projection measured geodesic lamination of \(u \). Then
\{[u^v] \mid u \in U\} is homeomorphic to an open ball in \(\mathbb{R}^{h-1}\) (where \(h > 0\) is as in equation (7,8)). Moreover, for \(q \in U\) the set
\[\{u \in U \mid [u^v] = [q^v]\} = W^u_{\mathcal{Q}_{\text{loc}}}(q) \subset W^u(q)\]
is a smooth connected local submanifold of \(U\) of (real) dimension \(h\) which is called the local stable manifold of \(q\) in \(\mathcal{Q}\). Similarly we define the local unstable manifold \(W^u_{\mathcal{Q}_{\text{loc}}}(q)\) of \(q\) in \(\mathcal{Q}\). If two such local stable (or unstable) manifolds intersect then their union is again a local stable (or unstable) manifold. The maximal connected set containing \(q\) which is a union of intersecting local stable (or unstable) manifolds is the stable manifold \(W^s_{\mathcal{Q}}(q)\) (or the unstable manifold \(W^u_{\mathcal{Q}}(q)\)) of \(q\) in \(\mathcal{Q}\). Note that \(W^s_{\mathcal{Q}}(q) \subset W^s(q)\) (\(i = s, u\)). A stable (or unstable) manifold is invariant under the action of the Teichmüller flow \(\Phi^t\).

The stable and unstable manifolds define smooth foliations \(W^s_{\mathcal{Q}}, W^u_{\mathcal{Q}}\) of \(\mathcal{Q}\) which are called the stable and unstable foliations of \(\mathcal{Q}\), respectively. Define the strong stable foliation \(W^s_{\mathcal{Q}}\) (or the strong unstable foliation \(W^u_{\mathcal{Q}}\)) of \(\mathcal{Q}\) by requiring that the leaf \(W^s_{\mathcal{Q}}(q)\) (or \(W^u_{\mathcal{Q}}(q)\)) through \(q\) is the subset of \(W^s_{\mathcal{Q}}(q)\) (or \(W^u_{\mathcal{Q}}(q)\)) of all marked quadratic differentials whose vertical (or horizontal) measured geodesic lamination equals the vertical (or horizontal) measured geodesic lamination of \(q\). The strong stable foliation of \(\mathcal{Q}\) is transverse to the unstable foliation of \(\mathcal{Q}\).

The foliations \(W^i_{\mathcal{Q}}\) \((i = ss, s, su, u)\) are invariant under the action of the stabilizer \(\text{Stab}(\mathcal{Q})\) of \(\mathcal{Q}\) in \(\text{Mod}(S)\), and they project to \(\Phi^t\)-invariant singular foliations \(W^i_{\mathcal{Q}}\) of \(\mathcal{Q} = \mathcal{Q}/\text{Stab}(\mathcal{Q})\).

Let now \(\mathcal{Q}_{\text{good}}\) be the subset of \(\mathcal{Q}\) of all points \(\tilde{q}\) so that the stabilizer of \(\tilde{q}\) in \(\text{Mod}(S)\) is contained in the subgroup of all elements which stabilize the component \(\mathcal{Q}\) pointwise. The set \(\mathcal{Q}_{\text{good}}\) is open and \(\Phi^t\)-invariant, and it projects to an open \(\Phi^t\)-invariant subset \(\mathcal{Q}_{\text{good}}\) of \(\mathcal{Q}\) (Lemma 4.5 of [H13]).

For \(\tilde{q} \in \mathcal{Q}_{\text{good}}\) and \(z \in W^u_{\mathcal{Q}}(\tilde{q})\) there is a neighborhood \(V\) of \(\tilde{q}\) in \(W^u_{\mathcal{Q}}(\tilde{q})\), and there is a homeomorphism
\[(9) \quad \Xi_z : V \rightarrow \Xi_z(V) \subset W^u_{\mathcal{Q}}(z)\]
with \(\Xi_z(\tilde{q}) = z\) which is determined by the requirement that \(\Xi_z(u) \in W^u_{\mathcal{Q}}(u)\). We call \(\Xi_z\) a holonomy map for the strong unstable foliation along the stable foliation.

To be more precise, since \(z \in W^u_{\mathcal{Q}}(\tilde{q})\), the vertical measured geodesic lamination \(\tilde{q}^v\) of \(\tilde{q}\) and the horizontal measured lamination \(z^h\) of \(z\) jointly fill up \(S\). Since jointly filling up \(S\) is an open condition for pairs of measured laminations, there is a neighborhood \(Z\) of \([\tilde{q}^v]\) in \(\mathcal{PML}\) such that for every \([\nu] \in Z\) and every representative \(\nu\) of the projective class \([\nu]\) the laminations \(\nu\) and \(z^h\) jointly fill up \(S\). But this just means that there is a point in \(W^u_{\mathcal{Q}}(z)\) whose projective vertical measured lamination equals \([\nu]\).
Similarly, for \(\tilde{q} \in \tilde{Q} \) and \(z \in W_{Q}^{\nu}(\tilde{q}) \) there is a neighborhood \(Y \) of \(z \) in \(W_{Q}^{ss}(\tilde{q}) \), and there is a homeomorphism

\[
\Theta_{z} : Y \to \Theta_{z}(Y) \subset W_{Q}^{ss}(z)
\]

with \(\Theta_{z}(\tilde{q}) = z \) which is determined by the requirement that \(\Theta_{z}(u) \in W_{Q}^{nu}(u) \). We call \(\Theta_{z} \) a holonomy map for the strong stable foliation along the unstable foliation. The holonomy maps are equivariant under the action of the mapping class group and hence they project to locally defined holonomy maps in \(Q \) which are denoted by the same symbols.

The tangent bundle of the strong stable and strong unstable foliation of the component \(Q \) can be equipped with the so-called modified Hodge norm which induces a Hodge distance \(d_{H} \) on the leaves of the foliation. This distance is locally uniformly equivalent to any other distance defined by a continuous norm on that tangent bundle.

Let

\[
\Pi : \tilde{Q}(S) \to Q(S)
\]

be the canonical projection. For \(q \in Q_{\text{good}} \) and \(r > 0 \) let

\[
B_{Q}(q, r)
\]

be the closed ball of radius \(r \) about \(q \) in \(W_{Q}^{i}(q) \) \((i = ss, su) \) with respect to the metric \(d_{H} \). Call such a ball \(B_{Q}^{i}(q, r) \) admissible if the following holds true. Let \(\tilde{q} \in \tilde{Q} \) be a preimage of \(q \); then the restriction of \(\Pi \) to the component \(B_{Q}^{i}(\tilde{q}, r) \) containing \(\tilde{q} \) of the preimage of \(B_{Q}^{i}(q, r) \) is a diffeomorphism.

For every point \(q \in Q_{\text{good}} \) there is a number

\[
a_{Q}(q) > 0
\]

such that the balls \(B_{Q}^{i}(q, a_{Q}(q)) \) are admissible \((i = ss, su) \) and that for any preimage \(\tilde{q} \) of \(q \) in \(\tilde{Q} \) and any \(z \in B_{Q}^{ss}(\tilde{q}, a_{Q}(q)) \) \(\left(\text{or } z \in B_{Q}^{su}(\tilde{q}, a_{Q}(q)) \right) \), the holonomy map \(\Xi_{z} \) \(\left(\text{or } \Theta_{z} \right) \) is defined on \(B_{Q}^{ss}(\tilde{q}, a_{Q}(q)) \) \(\left(\text{or } B_{Q}^{su}(\tilde{q}, a_{Q}(q)) \right) \).

Now let

\[
W_{1} \subset B_{Q}^{ss}(q, a(q)), W_{2} \subset B_{Q}^{su}(q, a(q))
\]

be Borel sets and let \(\tilde{W}_{1} \subset B_{Q}^{ss}(\tilde{q}, a_{Q}(q)), \tilde{W}_{2} \subset B_{Q}^{ss}(\tilde{q}, a_{Q}(q)) \) be the preimages of \(W_{1}, W_{2} \) in \(B_{Q}^{ss}(\tilde{q}, a_{Q}(q)), B_{Q}^{su}(\tilde{q}, a_{Q}(q)) \). Define

\[
V(\tilde{W}_{1}, \tilde{W}_{2}) = \cup_{z \in \tilde{W}_{1}} \Xi_{z}(\tilde{W}_{2}) \text{ and } V(W_{1}, W_{2}) = \Pi V(\tilde{W}_{1}, \tilde{W}_{2}).
\]

Note that the map \(\Omega : \tilde{W}_{1} \times \tilde{W}_{2} \to V(\tilde{W}_{1}, \tilde{W}_{2}) \) defined by \(\Omega(z, u) = \Xi_{z}(u) \) is a homeomorphism. If \(W_{1}, W_{2} \) are path connected and contain the point \(q \) then the set \(V(\tilde{W}_{1}, \tilde{W}_{2}) \) is path connected, and \(V(W_{1}, W_{2}) \) is path connected as well.

Similarly, define

\[
Y(\tilde{W}_{1}, \tilde{W}_{2}) = \cup_{u \in \tilde{W}_{2}} \Theta_{u} \tilde{W}_{1} \text{ and } Y(W_{1}, W_{2}) = \Pi Y(\tilde{W}_{1}, \tilde{W}_{2}).
\]

Then there is a continuous function

\[
\sigma : V(B_{Q}^{ss}(\tilde{q}, a_{Q}(q)), B_{Q}^{su}(\tilde{q}, a_{Q}(q))) \to \mathbb{R}
\]
which vanishes on $B_Q^s(\tilde{q}, a(q)) \cup B_Q^u(\tilde{q}, a(q))$ and such that
$$Y(\tilde{W}_1, \tilde{W}_2) = \{\Phi^s(z) | z \in V(\tilde{W}_1, \tilde{W}_2)\}.$$
In particular, for every number $\kappa > 0$ there is a number $r(q, \kappa) > 0$ such that the restriction of the function σ to $V(B_Q^s(\tilde{q}, r(q, \kappa)), B_Q^s(\tilde{q}, r(q, \kappa)))$ assumes values in $[-\kappa, \kappa]$.

For $t_0 > 0$ define
$$V(\tilde{W}_1, \tilde{W}_2, t_0) = \cup_{-t_0 \leq s \leq t_0} \Phi^s V(\tilde{W}_1, \tilde{W}_2)$$
and $V(W_1, W_2, t_0) = \Pi V(\tilde{W}_1, \tilde{W}_2, t_0)$.

Then for sufficiently small t_0, say for all $t_0 \leq t_Q(q)$, the following properties are satisfied.

a) $V(W_1, W_2, t_0)$ is homeomorphic to $V(\tilde{W}_1, \tilde{W}_2) \times [-t_0, t_0]$.

b) Every connected component of the intersection of an orbit of Φ^t with $V(W_1, W_2, t_0)$ is an arc of length $2t_0$.

We call a set $V(W_1, W_2, t_0)$ as in (12) which satisfies the assumptions a),b) a set with a local product structure. Note that every point $q \in Q_{\text{good}}$ has a neighborhood in Q with a local product structure, e.g. the set $V(B_Q^s(q, r), B_Q^u(q, r), t)$ for $r \in (0, a(q))$ and $t \in (0, t(q))$. Moreover, the neighborhoods of q with a local product structure form a basis of neighborhoods.

Period coordinates can be used to pull the standard Lebesgue measure on \mathbb{C}^k back to a Φ^t-invariant Borel probability measure λ on Q in the Lebesgue measure class ([M82, V86]- the point is here that this measure is finite). The measure λ admits a natural family of conditional measures λ^s, λ^u on strong stable and strong unstable manifolds. The conditional measures λ^s are well defined up to a universal constant, and they transform under the Teichmüller geodesic flow Φ^t via
$$d\lambda^s \circ \Phi^t = e^{-ht} d\lambda^s \quad \text{and} \quad d\lambda^u \circ \Phi^t = e^{ht} d\lambda^u.$$
Let $F : Q(S) \to Q(S)$ be the flip $q \to F(q) = -q$ and let dt be the Lebesgue measure on the flow lines of the Teichmüller flow. Any given choice of conditional measures λ^u on the strong unstable manifolds determines a choice of conditional measures λ^s on the strong stable manifolds by the requirement that $F_* \lambda^u = \lambda^s$. The measure which can be written with respect to a local product structure in the form
$$d\lambda^s \times d\lambda^u \times dt$$
is invariant under the Teichmüller flow and contained in the Lebesgue measure class. This implies that there is a unique choice of conditionals λ^u such that
$$d\lambda = d\lambda^s \times d\lambda^u \times dt,$$
i.e. that the measure on the right hand side of the equation is a probability measure. The measures λ^u on unstable manifolds defined by $d\lambda^u = d\lambda^s \times dt$ are invariant under holonomy along strong stable manifolds.

The following is Lemma 3.2 of [H13].
Lemma 3.3. Let $q \in \mathcal{Q}$ be a smooth point. For every $\epsilon > 0$ there is a number $a(q, \epsilon) \in (0, a_Q(q))$ with the following property. For every $a \leq a(q, \epsilon)$ the holonomy maps define a homeomorphism

$$\Psi : B_Q^{ss}(q,a) \times B_Q^{su}(q,a) \times [-t_Q(q), t_Q(q)] \to V(B_Q^{ss}(q,a), B_Q^{su}(q,a), t_Q(q))$$

whose Jacobian with respect to the measure $\lambda^{ss} \times \lambda^{su} \times dt$ and the measure λ is contained in the interval $[(1 + \epsilon)^{-1}, 1 + \epsilon]$.

4. Contraction and recurrence control

In this section we establish a contraction property for the modified Hodge distances d_H and use this to obtain some quantitative recurrence properties for the Teichmüller flow using the tools from the previous sections.

The following is the first part of Theorem 8.12 of [ABEM12].

Theorem 4.1. There exists a number $c_H > 0$ not depending on choices such that for any $q \in V$, any $q' \in W^{ss}_{loc}(q)$ and all $t > 0$ we have

$$d_H(\Phi^t q, \Phi^t q') \leq c_H d_H(q, q').$$

Theorem 4.1 is in general not sufficient to obtain contraction of distances on strong stable manifolds. We aim at a contraction result which is more general than what can be extracted from [ABEM12].

A point $q \in \mathcal{Q}$ is called forward recurrent (or backward recurrent) if it is contained in its own ω-limit set (or in its own α-limit set) under the action of Φ^t. A point $q \in \mathcal{Q}$ is recurrent if it is forward and backward recurrent. The set $\mathcal{R} \subset \mathcal{Q}$ of recurrent points is a Φ^t-invariant Borel subset of \mathcal{Q}. It follows from the work of Masur [M82] that a recurrent point $q \in \mathcal{R}$ has uniquely ergodic vertical and horizontal measured geodesic laminations whose supports fill up S. As a consequence, the preimage $\tilde{\mathcal{R}}$ of \mathcal{R} in $\tilde{\mathcal{Q}}(S)$ is contained in the set $\tilde{\mathcal{A}}$ defined in (5) of Section 3.

Using the notations from Section 3, by Theorem 3.1 there is a number $p > 1$ such that for every $q \in \tilde{\mathcal{Q}}(S)$ the map $t \to \Upsilon_T(P\Phi^t q)$ is an unparametrized p-quasi-geodesic in the curve graph $\mathcal{C}(S)$. If q is a lift of a recurrent point in $\mathcal{Q}(S)$ then this unparametrized quasi-geodesic is of infinite diameter (see [H13] for more and references).

Recall from (3) of Section 2 the definition of the distances $\delta_x (x \in \mathcal{T}(S))$ on $\partial \mathcal{C}(S)$ and of the sets $D(q, r) \subset \partial \mathcal{C}(S)$ ($q \in \tilde{\mathcal{A}}, r > 0$). The following lemma is Lemma 4.2 of [H13] which is going to be used as a substitute for hyperbolicity.

Lemma 4.2. There are numbers $c_0 > 0, \ell > 0, b > 0$ with the following property. Let $q \in \tilde{\mathcal{R}}$ and for $s > 0$ write $\sigma(s) = d(\Upsilon_T(Pq), \Upsilon_T(P\Phi^s q))$; then

$$\ell e^{-b\sigma(s)} \delta_{P\Phi^s q} \leq \delta_{Pq} \leq \ell^{-1} e^{-b\sigma(s)} \delta_{P\Phi^s q}$$

on $D(\Phi^s q, c_0)$.

Let \(\tilde{Q} \subset \tilde{Q}(S) \) be a component of the preimage of \(Q \) and let \(\text{Stab}(\tilde{Q}) < \text{Mod}(S) \) be the stabilizer of \(\tilde{Q} \) in \(\text{Mod}(S) \). The \(\Phi^t \)-invariant Borel probability measure \(\lambda \) on \(Q \) in the Lebesgue measure class (i.e., the normalized Masur Veech measure) lifts to a \(\text{Stab}(\tilde{Q}) \)-invariant locally finite measure on \(\tilde{Q} \) which we denote again by \(\lambda \). The conditional measures \(\lambda^s, \lambda^u \) of \(\lambda \) on the leaves of the strong stable and strong unstable foliation of \(Q \) lift to a family of locally finite Borel measures on the leaves of the strong stable and strong unstable foliation \(W^s_Q, W^u_Q \) of \(Q \), respectively, which we denote again by \(\lambda^s, \lambda^u \) (see the discussion in Section 3.1).

The following observation is Lemma 4.3 of [H13]. In its formulation, the number \(c_0 > 0 \) is the constant from Lemma 4.2.

Lemma 4.3. For every \(\varepsilon > 0 \), for every \(\hat{q} \in \tilde{Q}_\text{good} \cap \tilde{R} \) and for all compact neighborhoods \(W_1 \subset W_2 \) of \(\hat{q} \) in \(W^u_\tilde{Q}(\hat{q}) \) there are compact neighborhoods \(K \subset C \subset W_1 \) of \(\hat{q} \) in \(W^u_\tilde{Q}(\hat{q}) \) with the following properties.

1. There are numbers \(0 < r_1 < r_2 < c_0/2 \) such that
 \[
 K = \overline{W_1 \cap F^{-1}D(q,r_1)}, \quad C = \overline{W_1 \cap F^{-1}D(q,r_2)}.
 \]
2. \(\lambda^u(K)(1 + \varepsilon) \geq \lambda^u(C) \).
3. If \(z \in K \cap \tilde{A} \) then \(F^{-1}D(z,(r_2 - r_1)/2) \cap W_2 \subset C \).

We next show Theorem 2 from the introduction. It translates some structural results on non-uniform hyperbolicity of the Teichmüller flow which are described in [H13] using the curve graph into a property for the modified Hodge distance. To this end denote as before by \(B^u_\tilde{Q}(q,r) \) the \(d_H \)-ball of radius \(r \) about \(q \) in \(W^u_\tilde{Q}(q) \).

The main point of the theorem is that the local strong stable and strong unstable manifolds which appear in the statement do not depend on the constant \(a > 0 \).

Theorem 4.4. Let \(q \in Q_\text{good} \) be a recurrent point. Then there is a number \(r_0 = r_0(q) > 0 \), and there is a neighborhood \(U \) of \(q \) in \(Q_\text{good} \) with the following property. Let \(z \in U \) be recurrent; then for every \(a > 0 \) there is a number \(T(z,a) > 0 \) so that for all \(T > T(z,a) \) we have \(\Phi^t B^u_{\tilde{Q}}(z,r_0) \subset B^u_{\tilde{Q}}(\Phi^t(z),a) \) and \(\Phi^t B^s_{\tilde{Q}}(z,a) \subset B^s_{\tilde{Q}}(\Phi^t(z),r_0) \).

Proof. Let \(q \in Q \) be recurrent, and let \(\hat{q} \in \tilde{Q} \) be a lift of \(q \). By the second part of Lemma 3.2, there is a number \(r_0 > 0 \) such that
 \[
 B^u_{\tilde{Q}}(\hat{q},2c_Hr_0) \subset \overline{F^{-1}D(\hat{q},c_0/2)}
 \]
where \(c_0 > 0 \) is as in Lemma 4.2. Namely, \(\hat{q} \) is uniquely ergodic, and the balls \(D(\hat{q},\varepsilon) (\varepsilon > 0 \) form a neighborhood basis of \(F(\hat{q}) \) in the Gromov boundary of the curve graph of \(S \).

By continuity of the Hodge distance on the leaves of the strong stable foliation and by continuity of the dependence of the distances \(\delta_{PZ} \) on \(\tilde{z} \in \tilde{Q} \) as made precise in inequality (4), there is a neighborhood \(\tilde{U} \) of \(\hat{q} \) in \(\tilde{Q} \) such that the following holds true. Let \(\tilde{z} \in \tilde{U} \) be a lift of a recurrent point \(z \in Q \); then
\[
B^u_{\tilde{Q}}(\hat{z},c_Hr_0) \subset \overline{F^{-1}D(\tilde{z},c_0)}.
\]
Denote by U the projection of \tilde{U} to Q. Let $z \in U$ be recurrent, and let $a \in (0, c_H r_0)$. Consider the preimage \tilde{z} of z in \tilde{U}. Since $B^s_Q(\tilde{z}, a/2)$ is a neighborhood of \tilde{z} in $W^s_Q(\tilde{z})$, by Lemma 4.3 there exists a number $c_1 = c_1(z, a) > 0$ such that

$$B^s_Q(\tilde{z}, a/2) \supset F^{-1}D(\tilde{z}, 2c_1) \cap B^s_Q(\tilde{z}, 2c_H r_0).$$

Using once more continuity as in the beginning of this proof, we then can find a neighborhood $\tilde{V} \subset \tilde{U}$ of \tilde{z} so that

$$B^s_Q(\tilde{u}, a) \supset F^{-1}D(\tilde{u}, c_1) \cap B^s_Q(\tilde{u}, c_H r_0)$$

for all $\tilde{u} \in \tilde{V}$ which project to recurrent points in U.

Let $V \subset U$ be the projection of \tilde{V} and let $u \in V$ be recurrent, with lift \tilde{u} to \tilde{V}. Then Lemma 4.2 shows that there exists a number $T(u, a) > 0$ so that for all $T > T(u, a)$ we have

$$\Phi^{-T}D(\Phi^T \tilde{u}, c_0) \subset D(\tilde{u}, c_1)$$

where $c_1 > 0$ is as in (14). As u is recurrent, there exists furthermore a number $R > T(u, a)$ so that $\Phi^R u \in V$.

By equivariance under the action of the mapping class group and the estimate (13), we have $B^s_Q(\Phi^R \tilde{u}, c_H r_0) \subset F^{-1}D(\Phi^R \tilde{u}, c_0)$, and together with (15) we conclude that

$$\Phi^{-R}B^s_Q(\Phi^R \tilde{u}, c_H r_0) \subset F^{-1}D(\tilde{u}, c_1).$$

On the other hand, as $\tilde{u} \in \tilde{V}$, the estimate (14) holds true. But $a < c_H r_0$ and consequently (14) and (16) together yield

$$\Phi^{-R}B^s_Q(\Phi^R u, c_H r_0) \subset B^s_Q(u, a),$$

or, equivalently,

$$B^s_Q(\Phi^R u, c_H r_0) \subset \Phi^R B^s_Q(u, a).$$

By Theorem 4.1, this implies that $\Phi^T B^s_Q(u, a) \supset B^s_Q(\Phi^T u, r_0)$ for all $T > R$. This is what we wanted to show.

The argument for the statement that $\Phi^T B^s_Q(z, r_0) \supset B^s_Q(\Phi^T z, a)$ for all sufficiently large $T > 0$ is completely analogous and will be omitted. □

Definition 4.5. The flow Φ^t on an orbifold X admits a uniformly hyperbolic localization near a point $p \in X$ if there exists a neighborhood U of q in X with the properties stated in Theorem 4.4.

To summarize, Theorem 4.4 shows that the Teichmüller flow on a component of a stratum of abelian or quadratic differentials admits a uniformly hyperbolic localization near every recurrent point.

Let as before λ be the Masur Veech measure on Q. A version of the following technical result was established in [H13]. As it is not explicitly formulated in [H13] in the form we need, we provide a proof. Its proof is a variation of the arguments of Margulis [Ma04], adapted to our situation.
Before we can proceed we introduce the notion of a characteristic curve. To this end let $U \subset Q_{\text{good}}$ be an open contractible set, let $u \in U$ and let $T \gg 0$ be such that $\Phi^T u \in U$. Connect $\Phi^T u$ to u by a path in U and let ζ be the resulting closed curve. We call ζ a characteristic curve of the pseudo-orbit $(u, \Phi^T u)$.

As $U \subset Q_{\text{good}}$ is contractible, there exists an open subset \tilde{U} of Q_{good} so that the canonical projection $\Pi : \tilde{Q} \to Q$ maps \tilde{U} diffeomorphically onto U. Furthermore, there exists a unique mapping class $\varphi \in \text{Mod}(S)$ so that for the lift $\tilde{u} \in \tilde{U}$ of u, we have $\Phi^T \tilde{u} \in \varphi(\tilde{U})$. The curve ζ then lifts to a curve in \tilde{Q} which connects \tilde{u} to $\varphi(\tilde{u})$, in particular, the conjugacy class of the element φ only depends on u and T and not on the particular choice of the curve ζ. In other words, a characteristic curve of a pseudo-orbit with endpoints in U determines uniquely the conjugacy class of an element in $\text{Mod}(S)$.

Lemma 5.1 of [H13] shows that even more is true. By perhaps decreasing U and increasing T, the conjugacy class of the element $\varphi \in \text{Mod}(S)$ is pseudo-Anosov, and it defines a periodic orbit γ contained in \tilde{Q} which passes through a neighborhood of U of controlled size. We use these facts for the following strengthening of the main technical result in [H13].

Proposition 4.6. Let Q be a component of a stratum and let $q \in Q_{\text{good}}$ be a good recurrent point. Then for every neighborhood U of q and for all $\delta > 0, \eta > 0$ there are contractible closed neighborhoods $Z_1 \subset Z_2 \subset U$ of q with local product structures, with Z_1 contained in the interior of Z_2, there is a Borel set $Z_0 \subset Z_1$ and a number $R_0 > 0$ with the following properties.

1. $\lambda(Z_0) \leq (1 - \delta)^{-1} \lambda(Z_0)$.
2. For some $m > 1/\delta$, a Φ^t-orbit intersects Z_1, Z_2 in arcs of length $2t_0 < \eta/m$.
3. The set $Z_4 = \cup_{-t_0 \leq t \leq t_0} \Phi^t Z_2 \subset U$ has a product structure, and the same holds true for $Z_3 = \cup_{-t_0 \leq t \leq t_0} \Phi^t Z_1 \subset Z_4$.
4. Let $z \in Z_0$ and let $T > R_0$ be such that $\Phi^T z \in Z_3$. Then there exists a path connected set $B(z) \subset Z_2$ with $\Phi^T B(z) \subset Z_4$ and $\lambda(B(z)) \in [(1 - \delta)^2 e^{-hT} \lambda(Z_1), (1 - \delta)^{-2} e^{-hT} \lambda(Z_1)]$. For each $u \in B(z)$, the characteristic curve of the periodic pseudo-orbit (u, T) determines the same component $\gamma(z, T)$ of the intersection with Z_4 of a periodic orbit γ for Φ^t. The length of γ is contained in $[T - mt_0, T + mt_0]$.

Proof. Recall [M82, V86] that there is a family of conditional measures $\lambda^{ss}, \lambda^{su}$ for the Masur Veech measure λ on strong stable and strong unstable manifolds in the Lebesgue measure class, uniquely determined by λ and equivariance under the flip $z \to -z$. We have $d\lambda = d\lambda^{su} \times d\lambda^{ss} \times dt$, and $\frac{d\Phi^t \circ \lambda^{ss}}{d\lambda^{ss}} = e^{ht}, \frac{d\Phi^t \circ \lambda^{su}}{d\lambda^{su}} = e^{-ht}$.

Let $q \in Q_{\text{good}}$ be a recurrent point and let $U \subset Q_{\text{good}}$ be an open neighborhood of q. By perhaps making U smaller we may assume that U satisfies the assumptions in Theorem 4.4. By making U even smaller we may assume that U has a product structure. More precisely, for the number $r_0 = r_0(q)$ as in Theorem 4.4, we may assume that there is some $r_1 < r_0$ and some $s_0 > 0$ so that

$$U = V(B^{ss}_{Q}(q, r_1), B^{su}_{Q}(q, r_1), s_0).$$
Let $\delta > 0$, $\eta > 0$ and let $\kappa < 1$ be sufficiently small that $(1 + \kappa)^5 < (1 - \delta)^{-1}$. Choose furthermore an integer $m > 1/\delta$. Recall from Section 3 the definition of the holonomy maps Ξ_u, Θ_2. By the equation (11), for $u \in B^{ss}_Q(q, r_1)$ and $z \in B^{su}_Q(q, r_1)$ we have
\[
\Theta_2(u) = \Phi^{\sigma(u, z)} \Xi_u(z)
\]
for a number $\sigma(u, z)$ which depends continuously on u, z, and $\sigma(q, q) = 0$.

As the Hodge distance is defined by a continuous norm on the tangent bundle of strong stable and strong unstable manifolds and as holonomy maps are smooth, we can find numbers $\epsilon < \min\{\kappa, s_0, 1/4\}$, $r_2 < r_1/4(1 + 2\epsilon)$ and $s_1 < \min\{s_0, \eta\}$ with the following properties.

(a) If $r \leq r_2$ then $(1 + \kappa)^i \lambda^i B^s_\Phi(q, r(1 + 2\epsilon)) \leq (1 + \kappa)\lambda^i B^s_\Phi(q, r)$ ($i = ss, su$).

(b) If $u \in B^{ss}_Q(q, r_2)$ and $t \in (-s_1, s_1]$ then the restriction of the map $\Phi^t \circ \Xi_u$ to $B^{su}_Q(q, r_2)$ is a $(1 + \epsilon)$-bilipschitz diffeomorphism of $B^{su}_Q(q, r_2)$ into $B^{ss}_Q(\Phi^t u, r_1)$. Its Jacobian for the measures λ^{ss} is contained in the interval $[1 + \kappa]^{-1}, 1 + \kappa]$.

(c) The map $\Lambda : B^{ss}_Q(q, r_2) \times B^{su}_Q(q, r_2) \times (-s_1, s_1) \rightarrow U$ defined by $\Lambda(u, z, t) = \Phi^t \Xi_u(z)$ is a diffeomorphism onto its image, and its Jacobian with respect to the product measure $\lambda^{ss} \times \lambda^{su} \times (-s_1, s_1)$ on $B^{ss}_Q(q, r_2) \times B^{su}_Q(q, r_2) \times (-s_0, s_0)$ and the Masur Veech measure λ on U is contained in the interval $[1 + \kappa]^{-1}, 1 + \kappa]$.

(d) $|\sigma(u, z)| \leq s_1/m$ for all $(u, z) \in B^{ss}_Q(q, r_2) \times B^{su}_Q(q, r_2)$.

For $r_2 < r_1/4(1 + 2\epsilon)$ as above and for any $\rho \in (0, s_1)$ define
\[
Z_1(\rho) = V(B^{ss}_Q(q, r_2), B^{su}_Q(q, r_2), \rho) \quad \text{and} \quad Z_2(\rho) = V(B^{ss}_Q(q, (1 + 2\epsilon)r_2), B^{su}_Q(q, (1 + 2\epsilon)r_2), \rho).
\]

It follows from properties (a)-(c) that
\[
\lambda(Z_2(\rho)) \leq (1 + \kappa)^4 \lambda(Z_1(\rho)) \leq (1 - \delta)^{-1} \lambda(Z_1(\rho))
\]
for all ρ. Furthermore, if $u \in Z_2(s_1)$ then the local strong unstable manifold $W_{loc, Z_2(s_1)}^{su}(u)$ of u in $Z_2(s_1)$ is contained in the ball $B^{su}_Q(u, r_1)$, and if $u \in Z_1(s_1)$, then
\[
B^{su}_Q(u, \epsilon r_2) \subset W_{loc, Z_2(s_1)}^{su}(u).
\]

By property (d) above, we also conclude that for all $u \in Z_1(s_1(1 - 1/m))$, we have
\[
B^{su}_Q(u, \epsilon r_2) \subset W_{loc, Z_2(s_1)}^{su}(u)
\]
where $m > 1/\delta$ is as above. Let $t_0 = s_1/2m$.

By Theorem 4.4 and the choice of $Z_1(s_1)$, there is a number $R > 0$ and a Borel subset $Z_0(s_1) \subset Z_1(s_1)$ with the following property. For $\rho < s_1$ write $Z_0(\rho) = Z_0(s_1) \cap Z_1(\rho)$; then $\lambda(Z_0(\rho)) > (1 + \kappa)^{-5} \lambda(Z_2(\rho)) > (1 - \delta) \lambda(Z_2(\rho))$. If $z \in Z_0(\rho)$ and if $T > R$, then the d_H-diameter of $\Phi^{-T} B^{su}_Q(\Phi^T z, r_1)$ is at most ϵr_2, and the d_H-diameter of $\Phi^T B^{su}_Q(u, r_1)$ is at most ϵr_2.

By property (b) above and the definitions, for $v \in Z_1(s_1)$ the Hodge distance of a point in $W_{loc, Z_1(\rho)}^{su}(v)$ to the boundary of $W_{loc, Z_2(\rho)}^{su}(v)$ is at least ϵr_2, and the
diameter of $W^{su}_{loc,Z_2(s_1)}(z)$ is at most $4r_2(1+2\epsilon) < r_1$ (recall to this end that we chose $\epsilon < 1/4$ and hence $1 + \epsilon < 5/4$). Thus if $z \in Z_0(s_1) \subset Z_1(s)$ and $T > R$ are such that $\Phi^T z \in Z_1(s(1 - 1/m))$, then by the estimate (17), property (d) above and the estimate (18) we have
\[
\Phi^{-T}W^{su}_{loc,Z_2(s_1)}(\Phi^T z) \subset W^{su}_{loc,Z_2(s_1)}(z) \quad \text{and} \quad \Phi^T W^{ss}_{loc,Z_2(s_1)}(z) \subset W^{ss}_{loc,Z_2(s_1)}(\Phi^T z).
\]
As a consequence, for $t_0 = s_1/m$ the sets
\[
Z_0 = Z_0(t_0), Z_1 = Z_1(t_0), Z_2 = Z_2(t_0), Z_3 = Z_1(s(1 - 1/m)), Z_4 = Z_2(s_1)
\]
have properties (1), (2), (3) stated in the proposition.

We claim that the sets Z_i also have the properties stated in part (4) of the proposition. However, this follows from the following fact. Assume that $z \in Z_0$ and $T > R$ are such that $\Phi^T z \in Z_3$. Connect $\Phi^T z$ to z by an arc contained in Z_3 and let ζ be the resulting based loop. Note that $\zeta \subset \mathcal{Q}_{\text{good}}$ by construction. In particular, ζ determines an element $\varphi \in \text{Mod}(S)$ as explained in Section 2.

By Lemma 5.1 of [H13], φ is pseudo-Anosov. Furthermore, the proof of Proposition 5.4 of [H13] shows that the periodic orbit for Φ^t determined by the conjugacy class of φ passes through Z_4. The period of γ is contained in the interval $[T - mt_0, T + mt_0]$. The choice of the basepoint $z \in Z_0$ for the loop ζ determines a component $\gamma(z,T)$ of the intersection of γ with Z_4.

By the choice of Z_0, R and the fact that the Teichm"uller flow commutes with holonomy maps, there exists a topological ball $A \subset B^{su}_{\mathcal{Q}}(q, r_2)$ so that the connected component of z in $Z_2 \cap \Phi^{-T}(Z_4)$ equals the set
\[
B(z) = \bigcup_{t_0 \leq t \leq t_0} \bigcup_{u \in W^{ss}_{loc,Z_4}(q)} \Xi_u(A).
\]
Furthermore, for every $u \in B(z)$ we have $\Phi^T B(z) \cap W^{su}_{loc,Z_2} = W^{su}_{loc,Z_4}(\Phi^T u)$.

Property (b) above and the contraction properties of the measures λ^{ss} then yield that $\lambda(B(z)) \leq (1 + \kappa) e^{-hT} \lambda(Z_2) \leq e^{-hT}(1 - \delta)^{-2} \lambda(Z_1)$. The lower volume estimate follows in exactly the same way.

The same argument also shows that if $u \in Z_0 - B(z)$ and if $\Phi^T u \in Z_3$ then the orbit segment $\gamma(u,T)$ is disjoint from $\gamma(z,T)$. This completes the proof of the proposition.

5. Counting periodic orbits

This section is devoted to a discussion of counting results for period orbits of the Teichm"uller flow in a component Q of a stratum of area one abelian or quadratic differentials on S. Recall from the introduction that the Teichm"uller flow Φ^t acts on Q preserving a Borel probability measure λ in the Lebesgue measure class, the so-called Masur-Veech measure. Let $k \geq 1$ be the number of zeros of a differential in Q and let $h = 2g - 2 + k$ be the entropy of Φ^t with respect to the measure λ.

The only properties we use from the Teichm"uller flow Φ^t on Q are as follows. The Masur-Veech measure λ is ergodic, and it is obtained from Bowen’s construction as formulated in Theorem 5.1 below.
Let
\[\Gamma \subset Q \]
be the countable collection of all periodic orbits for \(\Phi^t \) contained in \(Q \). Denote by \(\ell(\gamma) \) the period of \(\gamma \in \Gamma \), and let \(\delta_\gamma \) be the standard \(\Phi^t \)-invariant Lebesgue measure on \(\gamma \) of total mass \(\ell(\gamma) \).

Using an approach by Margulis [Ma04], the asymptotic growth rate of the number of these periodic orbits can explicitly be determined. In fact, these orbits determine the Masur Veech measure \(\lambda \) on \(Q \) via a construction due to Bowen [Bw73]. The following is the main result of [H13].

Theorem 5.1. The measures
\[\mu_R = h e^{-hR} \sum_{\gamma \in \Gamma, \ell(\gamma) \leq R} \delta_\gamma \]
converge as \(R \to \infty \) weakly to the Masur Veech measure on \(Q \).

Note that in the formula in [H13], the factor \(h \) is erroneously missing.

As \(Q \) is not compact, this does not immediately imply that \(\lim_{R \to \infty} \mu_R(Q) = 1 \), nor does it determine the asymptotic growth rate of the number of periodic orbits on \(Q \). However, a formula for this asymptotic growth rate follows from Theorem 5.1 and the main result of [EMR12] (which rules out escape of mass) as formulated in the corollary in the introduction of [H13].

Theorem 5.2. \(\sharp \{ \gamma \in \Gamma \mid \ell(\gamma) \leq R \} h e^{-hR} \to 1 \) as \(R \to \infty \).

Corollary 5.3. \(\lim_{R \to \infty} \mu_R(Q) = 1 \).

Proof. That the statement in the corollary follows from Theorem 5.2 (and, under the assumption of Theorem 5.1 is in fact equivalent to Theorem 5.2) has been used many times in the literature, see e.g. [Ma04, EM11, EMR12]. Differentiate the function \(f(t) = \frac{e^{ht}}{ht} \) to find \(f'(t) = e^{ht} - \frac{e^{ht}}{ht} \). Then note that under the assumption that the asymptotic formula in Theorem 5.2 holds true, as \(R \to \infty \) the value \(\mu_R(Q) \) is close to
\[h e^{-hR} \int_0^R f'(t) dt = h e^{-hR} \int_0^R e^{ht} (1 - 1/ht) dt \]
which converges to one as \(R \to \infty \). \(\square \)

For \(R_1 < R_2 \) let \(\Gamma(R_1, R_2) \subset \Gamma \) be the set of all periodic orbits for \(\Phi^t \) of prime period contained in the interval \((R_1, R_2] \) (asking for prime period means that we do not consider multiply covered orbits). For \(R > 0, 0 < \sigma < R \) define a measure
\[\nu_{R, \sigma} = h e^{-hR} (1 - e^{-h\sigma})^{-1} \sum_{\gamma \in \Gamma(R-\sigma, R)} \delta_\gamma. \]

As an immediate consequence of Corollary 5.3 we observe

Corollary 5.4. For every \(\sigma > 0 \), the measures \(\nu_{R, \sigma} \) converge as \(R \to \infty \) weakly to the Masur Veech measure on \(Q \), and \(\lim_{R \to \infty} \nu_{R, \sigma}(Q) = 1 \).
Proof. By definition, we have
\[
(1 - e^{-h\sigma})\mu_{R,\sigma} = \mu_R - e^{-h\sigma}\mu_{R-\sigma}.
\]
Thus the corollary follows from Theorem 5.1 and Corollary 5.3. \(
\square
\)

Let \(\mathcal{P}\) be a property for periodic orbits \(\gamma \in \Gamma\). For a period orbit \(\gamma \in \Gamma\) write \(\chi_P(\gamma) = 1\) if \(\gamma \in \mathcal{P}\), and write \(\chi_P(\gamma) = 0\) otherwise. We call \(\mathcal{P}\) typical if as \(R \to \infty\), the number of all \(\gamma \in \Gamma\) with \(\ell(\gamma) \leq R\) and \(\chi_P(\gamma) = 1\) is asymptotic to \(e^{hR}/hR\).

For two finite Borel measures \(\nu_1, \nu_2\) on \(\mathcal{Q}\) write \(\nu_1 \leq \nu_2\) if \(\nu_1(A) \leq \nu_2(A)\) for all Borel subsets \(A\) of \(\mathcal{Q}\). For \(R > 0\), \(0 < \sigma < R\) let
\[
\nu_{R,\sigma,\mathcal{P}} = he^{-hR}(1 - e^{-h\sigma})^{-1} \sum_{\gamma \in \Gamma(R-\sigma, R)} \chi_P(\gamma)\delta_{\gamma}.
\]
Clearly \(\nu_{R,\sigma,\mathcal{P}} \leq \nu_{R,\sigma}\) for all \(R, \sigma\).

The next proposition is our main tool for showing that a property \(\mathcal{P}\) for periodic orbits in \(\mathcal{Q}\) is typical.

Proposition 5.5. A property \(\mathcal{P}\) for \(\Gamma\) is typical if for all \(\delta > 0\), there exists a number \(\sigma > 0\) such that
\[
\lim \inf_{R \to \infty} \nu_{R,\sigma,\mathcal{P}}(\mathcal{Q}) \geq 1 - \delta.
\]

Proof. Assume that the condition in the proposition is fulfilled. It suffices to show that for every \(\alpha > 0\) there exists a number \(R = R(\alpha) > 0\) such that for all \(R \geq R(\alpha)\), the number of periodic orbits \(\gamma \in \mathcal{P}\) with \(\ell(\gamma) \leq R\) is at least \((1 - \alpha)e^{hR}/hR\).

To this end let \(\delta > 0\) be sufficiently small that \((1 - \delta)^2 \geq 1 - \alpha\). For this number \(\delta\) let \(\sigma > 0\) be such that the condition in the proposition holds true. By Corollary 5.4, there exists a number \(R_0 = R_0(\sigma, \delta) > 0\) such that \(\nu_{R,\sigma}(\mathcal{Q}) \leq (1 - \delta)^{-1}\) for all \(R \geq R_0\). By perhaps increasing \(R_0\) we may assume that \(\sigma/R \leq \delta\) for all \(R \geq R_0\).

Since \(\lim \inf_{R \to \infty} \nu_{R,\sigma,\mathcal{P}}(\mathcal{Q}) \geq 1 - \delta\), for sufficiently large \(R\), say for all \(R \geq R_1 \geq R_0\), we have \(\nu_{R,\sigma,\mathcal{P}}(\mathcal{Q}) \geq (1 - \delta)^2\). Let \(R \geq R_1\). As each orbit \(\gamma \in \mathcal{P}\) with \(R - \sigma \leq \ell(\gamma) \leq R\) contributes to the total mass of \(\nu_{R,\sigma,\mathcal{P}}\) with a weight contained in the interval
\[
[h e^{-h(1 - e^{-h\sigma})^{-1}} R - \sigma, h e^{-h(1 - e^{-h\sigma})^{-1}} R],
\]
there are at least \((1 - \delta)^2 e^{hR}/hR\) periodic orbits \(\gamma \in \mathcal{P}\) of period in \((R - \sigma, R)\).

Similarly, each orbit \(\gamma \in \Gamma(R - \sigma, R)\) contributes at least \(R - \sigma\) to the total mass of \(\nu_{R,\sigma}\). Now \(\nu_{R,\sigma}(\mathcal{Q}) \leq (1 - \delta)^{-1}\) and therefore there are at most \((1 - \delta)^{-1} e^{hR}(1 - e^{-h\sigma})/h(R - \sigma)\) periodic orbits \(\gamma \in \Gamma(R - \sigma, R)\). Since \((R - \sigma)/R \geq 1 - \delta\) by assumption, we conclude that the proportion of the number of periodic orbits in \(\Gamma(R - \sigma, R)\) which are contained in \(\mathcal{P}\) is at least \((1 - \delta)^4\).

As the number of periodic orbits in \(\Gamma\) of length \(R\) grows exponentially with \(R\), we can choose \(m_0 > 0\) sufficiently large that the number of periodic orbits in \(\Gamma\) of length at most \(R_1\) is smaller than \(\delta\) times the number of periodic orbits in
for \(\Gamma(R_1, R_1 + m_0 \sigma) \). For \(m \geq m_0 \), summing the above estimate for the proportion of \(P \) in \(\Gamma(R_1 + (j-1)\sigma, R_1 + j\sigma) \) \((j = 1, \ldots, m)\) and for \(\Gamma(R_1 + (j-1)\sigma, R_1 + j\sigma) \) \((j = 1, \ldots, m)\) yields that the proportion of periodic orbits in \(P \) of period at most \(R_1 + m\sigma \) among all periodic orbits is at least \((1 - \delta)^n \geq 1 - \alpha\). As \(m \geq m_0 \) was arbitrary, this shows the required estimate. \(\square \)

Remark 5.6. Although we did not check this, we believe that the condition in Proposition 5.5 is not necessary for a property \(P \) to be typical.

Corollary 5.7. Suppose that for every \(\delta > 0 \) there exists an open relative compact subset \(U \) of \(Q \) with \(\lambda(\partial U) = 0 \) and a number \(\sigma > 0 \) such that

\[
\liminf_{R \to \infty} \nu_{R, \sigma, \mathcal{P}}(U) \geq (1 - \delta)\lambda(U).
\]

Then \(\mathcal{P} \) is typical.

Proof. By Proposition 5.5, it suffices to show that under the assumption of the corollary, for every \(\delta > 0 \) there exists some \(\sigma > 0 \) such that

\[
\liminf_{R \to \infty} \nu_{R, \sigma, \mathcal{P}}(Q) \geq 1 - \delta.
\]

To this end choose an open set \(U \subset Q \) and a number \(\sigma > 0 \) with the properties stated in the proposition, that is, such that \(\lambda(\partial U) = 0 \) and \(\liminf_{R \to \infty} \nu_{R, \sigma, \mathcal{P}}(U) \geq (1 - \delta)\lambda(U) \).

Note that for all \(R > 0 \) the measure \(\nu_{R, \sigma, \mathcal{P}} \) is invariant under the Teichmüller flow \(\Phi^t \), and we have \(\nu_{R, \sigma, \mathcal{P}} \leq \nu_{R, \sigma} \). As \(\nu_{R, \sigma} \to \lambda \) weakly as \(R \to \infty \), we conclude that any weak limit \(\nu \) of a sequence of measures \(\nu_{R_i, \sigma, \mathcal{P}} \) with \(R_i \to \infty \) \((i \to \infty)\) is \(\Phi^t \)-invariant and satisfies \(\nu \leq \lambda \). Then \(\nu = f \lambda \) for a \(\Phi^t \)-invariant Borel function \(f : Q \to [0, 1] \). As \(\lambda \) is ergodic [M82, V86], the function \(f \) is constant almost everywhere, and \(\nu = c\lambda \) for a number \(c \in [0, 1] \). But \(\nu(U) \geq (1 - \delta)\lambda(U) \) by assumption, and \(\lambda(U) > 0 \) as \(\lambda \) is of full support. This shows that \(c \geq 1 - \delta \) and hence \(\liminf_{R \to \infty} \nu_{R, \sigma, \mathcal{P}}(Q) \geq 1 - \delta \). The corollary follows. \(\square \)

6. **Lyapunov exponents**

In this section we apply the criterion established in Corollary 5.7 to prove the main Theorem from the introduction. The only tools we are going to use are Proposition 4.6, Corollary 5.7 and mixing of the Teichmüller flow. As these tools are available for Anosov flows on compact manifolds and the unique measure of maximal entropy, the main result Theorem 6.1 is valid for cocycles over such flows as well.

Let as before \(Q \) be a component of a stratum of abelian of quadratic differentials. Consider a smooth flat rank \(n \geq 1 \) vector bundle \(\mathcal{N} \to Q \) in the orbifold sense. Note that this implies that the restriction of \(\mathcal{N} \) to \(Q_{\text{good}} \) is a smooth vector bundle in the usual sense. Parallel transport for the flat connection then defines a cocycle \(\Theta^t \) over the Teichmüller flow \(\Phi^t \). We assume that the bundle \(\mathcal{N} \) is equipped with a continuous norm \(\| \| \) and that with respect to this norm, this cocycle is integrable with respect to the Masur Veech measure \(\lambda \) on \(Q \). Then its *Lyapunov exponents*
are defined. These exponents measure the asymptotic growth rate of vectors along orbits of Φ^t which are generic for λ. Let

$$\kappa_1 \geq \cdots \geq \kappa_n$$

be the n Lyapunov exponents.

Let $\gamma \in \Gamma$ be a periodic orbit for Φ^t contained in Q_{good}. Then parallel transport of N along γ determines a holonomy transformation whose conjugacy class does not depend on choices. If we define

$$\alpha_1(\gamma) \geq \cdots \geq \alpha_n(\gamma) \geq 0$$

to be the quotients by the length $\ell(\gamma)$ of γ of the logarithms of the n absolute values of the eigenvalues of the holonomy transformation along γ, ordered in decreasing order and counted with multiplicities, then the numbers $\alpha_i(\gamma)$ only depend on γ but not on any choices made.

Let $\epsilon > 0$. For $\gamma \in \Gamma$ define $\chi_\epsilon(\gamma) = 1$ if $|\alpha_i(\gamma) - \kappa_i| < \epsilon$ for every $i \in \{1, \ldots, n\}$, and define $\chi_\epsilon(\gamma) = 0$ otherwise. Thus for a periodic orbit γ with $\chi_\epsilon(\gamma) = 1$, the vector of absolute values of the normalized eigenvalues for the return map $A(\gamma)$ of the holonomy along γ at any choice of a point $p \in \gamma$ ordered in descending order, is ϵ-close to the vector given by the Lyapunov exponents for the sup metric. Recall that this property is independent of the choice of the point p on γ. We refer to Section 2 for more details. Our goal is to show that periodic orbits $\gamma \in \Gamma$ with $\chi_\epsilon(\gamma) = 1$ are typical in the sense described in the introduction. The strategy is to find for every $\delta > 0$ an open relatively compact subset U of Q and a number $\sigma > 0$ with the property stated in Corollary 5.7, where $\mathcal{P} = \{ \gamma \in \Gamma \mid \chi_\epsilon(\gamma) = 1 \}$.

Theorem 6.1. For every $\epsilon > 0$, the set

$$\{ \gamma \in \Gamma \mid |\alpha_i(\gamma) - \kappa_i| \leq \epsilon \}$$

is typical.

Proof. Let $V \subset Q_{\text{good}}$ be an open relatively compact contractible neighborhood of a recurrent point $q \in Q_{\text{good}}$.

Let $\|\|$ be a continuous Riemannian norm on the vector bundle $N \to Q$ so that the cocycle defined by parallel transport is integrable for this norm and the Masur Veech measure λ on Q. Let $\epsilon > 0$.

Adjust the Riemannian norm $\|\|$ on V so that it is invariant under parallel transport along curves in V, and it is unchanged outside a small contractible compact neighborhood V' of V. As V' is compact and since every orbit which intersects V' also exits V', this does not change Lyapunov exponents.

Let Θ^t be the lift of the Teichmüller flow on Q_{good} to a flow on N defined by parallel transport for the flat connection. For $z \in Q_{\text{good}}$ let N_z be the fibre of N at z. For $1 \leq i \leq n$ and for $t > 0$ let

$$\zeta_i(t, z)$$
be the infimum of the operator norms for \(|| \) of the restriction of \(\Theta^t(z) \) to a subspace of \(N_z \) of codimension \(i - 1 \). Define
\[
\kappa_i(t, z) = \frac{1}{t} \log \zeta_i(t, z).
\]

As the Teichmüller flow is ergodic for the Masur-Veech measure \(\lambda \) [M82, V86], the Oseledets multiplicative ergodic theorem [O68] states that for \(\lambda \)-almost every point \(z \in \mathbb{Q} \), the numbers \(\kappa_i(R, z) \) converge as \(R \to \infty \) to the \(i \)-th positive Lyapunov exponent \(\kappa_i \) of the cocycle defined by the flow \(\Theta^t \).

Let \(\delta > 0 \) and let \(m > 1/\delta \) be sufficiently large that \(\frac{m-2}{m} > 1 - \delta \). As \(\lim_{\sigma \to 0} h(1 - e^{-h\sigma})^{-1} \to 1 \), for sufficiently small \(\sigma > 0 \), say for all \(\sigma < \sigma_0 \), we have \(h(1 - e^{-h\sigma})^{-1} \in [\sigma^{-1}(1-\delta), \sigma^{-1}(1-\delta)^{-1}] \); furthermore, we may assume that \(e^{-\sigma} \leq (1-\delta)^{-1} \). For a number \(\sigma < \sigma_0/2 \) to be determined below let \(t_0 = \sigma/m \).

Using the notations from Section 5, for \(\mathcal{P} = \{ \gamma \mid \chi_\epsilon(\gamma) = 1 \} \) define \(\nu_{R,\sigma,\epsilon} = \nu_{R,\sigma,\mathcal{P}} \).

Our goal is to find an open set \(U \subset V \) in \(\mathbb{Q}_{\text{good}} \) such that
\[
\liminf_{R \to \infty} \nu_{R,\sigma,\epsilon}(U) \geq \lambda(U)(1-\delta)^7.
\]

By Corollary 5.7, this is sufficient for the proof of the theorem.

To this end consider neighborhoods \(Z_1 \subset Z_2 \) and \(Z_3 \subset Z_4 \subset V \) as in Proposition 4.6 for this number \(\delta \), and for \(\sigma < \sigma_0/2 \) as above, and \(t_0 = \sigma/m \). Let \(Z_0 \subset Z_1 \) and \(R_0 > 0 \) be as in Proposition 4.6. Then there is a number \(R(\epsilon) > R_0 \) and a Borel subset \(E \subset Z_0 \) of measure
\[
\lambda(E) > \lambda(Z_0)(1-\delta) \geq (1-\delta)^2 \lambda(Z_2)
\]
with the following property. Let \(u \in E \) and let \(R > R(\epsilon) \); then \(|\kappa_i(R, u) - \kappa_i| \leq \epsilon/2 \).

Let \(R \geq R(\epsilon) \) and let \(z \in E \) be such that \(\Phi^R z \in Z_3 \). By Proposition 4.6, the periodic pseudo-orbit \((z, T) \) determines a subarc \(\gamma(z, R) \) of a periodic orbit \(\gamma \) for \(\Phi^t \) passing through \(Z_4 \). The period of \(\gamma \) is contained in \([R - \sigma, R + \sigma] \). Moreover, there exists a set \(B(z) \subset Z_2 \) with \(\Phi^R B(z) \subset Z_4 \) and
\[
\lambda(B(z)) \subset [e^{-hR}\lambda(Z_1)(1-\delta)^2, e^{-hR}\lambda(Z_1)(1-\delta)^{-2}]
\]
consisting of points with the same characteristic curve as the pseudo-orbit \((z, R) \). By the definition of the set \(E \) and the choice of the number \(R(\epsilon) \), we have \(\chi_\epsilon(\gamma) = 1 \). Note that the small shift in length, i.e. the fact that the period of \(\gamma \) may differ from the return time \(R(\epsilon) \) by a number of absolute value up to \(\sigma \), is taken care of by an adjustment of constants, using the flexibility obtained by assuming that the numbers \(\kappa_i(R, z) \) are \(\epsilon/2 \)-close to the Lyapunov exponents \(\kappa_i \) which is a better estimate than required. Recall that furthermore that if \(u \in E - B(z) \) and if \(\Phi^R u \in Z_3 \) then the set \(B(u) \) is disjoint from \(B(z) \), and the intersection arc \(\eta(u, R) \) with \(Z_4 \) of the corresponding periodic orbit \(\eta \) is distinct from \(\gamma(z, R) \). intersection arc of a periodic orbit arising from the pseudo-orbit \((u, R) \).

Now the Teichmüller flow is mixing for \(\lambda \) [M82, V86] and consequently there is a number \(R_1 > R(\epsilon) \) such that
\[
\lambda(\Phi^R E \cap Z_3) \geq \lambda(E) \lambda(Z_3)(1 - \delta) \geq \lambda(Z_4) \lambda(Z_3)(1 - \delta)^3
\]
for all \(R \geq R_1 \). Let \(R_2 = R_1 + mt_0 \).
By (21) and the estimate (20), for large enough $R > R_1$ the number of components of the intersection of the set Z_4 with periodic orbits of period in the interval $[R − σ, R + σ]$ which are induced by the characteristic curve of a point $z ∈ E$ recurring to Z_3 after time eR is at least $λ(E)λ(Z_4)(1 − δ)^2 e^{hR} λ(Z_1)^{−1}(1 − δ)^2 ≥ e^{hR} (1 − δ)^5 λ(Z_3) ≥ e^{hR} (1 − δ)^6 λ(Z_4)$.

Each of these intersection components is an arc of length $2σ$ and hence it deposits the mass $2σ$ on Z_4.

Now $h(1 − e^{−h2σ}) ∈ [(2σ)^{−1}(1 − δ), (2σ)^{−1}(1 − δ)^{−1}]$ and therefore multiplying the above estimate with $h(1 − e^{−h2σ})$ yields that for $R > R_2$ we have $ν_{R + σ, 2σ, ǫ}(Z_4) ≥ (1 − δ)^7 λ(Z_4)$.

In other words, the set Z_4 fulfills the estimate in Corollary 5.7 for the constant $(1 − δ)^7$. Since $δ > 0$ was arbitrary, the theorem follows. □

References

