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Abstract. We show that a relatively hyperbolic graph with uniformly hyper-

bolic peripheral subgraphs is hyperbolic. As an application, we show that the
disk graph and the electrified disk graph of a handlebody H of genus g ≥ 2

are hyperbolic, and we determine their Gromov boundaries.

1. Introduction

Consider a connected metric graph G in which a family H = {Hc | c ∈ C} of
complete connected subgraphs has been specified. Here C is a countable, finite or
empty index set. The graph G is hyperbolic relative to the family H if the following
properties are satisfied.

Define the H-electrification EG of G to be the graph which is obtained from G
by adding for every c ∈ C a new vertex vc which is connected to each vertex x ∈ Hc

by an edge and which is not connected to any other vertex. We require that the
graph EG is hyperbolic in the sense of Gromov and that moreover a property called
bounded penetration holds true (see [F98] for perhaps the first formulation of this
property). We refer to [Si12] for a consolidation of the various notions of relative
hyperbolicity found in the literature.

If G is a hyperbolic metric graph and ifH is a family of connected uniformly quasi-
convex subgraphs of G whose fixed size neighborhoods intersect in set of uniformly
bounded diameter then G is hyperbolic relative to H. This fact is probably folclore;
implicitly it was worked out in a slightly modified form in [KR14].

Vice versa, Farb showed in [F98] that if G is the Cayley graph of a finitely
generated group and if the graphs Hc are δ-hyperbolic for a number δ > 0 not
depending on c ∈ C then G is hyperbolic. In [BF06] it is noted that using a result
of Bowditch [Bw91], the argument in [F98] can be extended to arbitrary (possibly
locally infinite) relatively hyperbolic metric graphs.

Our first goal is to give a different and self-contained proof of this result which
gives effective estimates for the hyperbolicity constant as well as explicit control on
uniform quasi-geodesics. We show

Theorem 1. Let G be a metric graph which is hyperbolic relative to a family H =
{Hc | c ∈ C} of complete connected subgraphs. If there is a number δ > 0 such that
each of the graphs Hc is δ-hyperbolic then G is hyperbolic. Moreover, the subgraphs
Hc (c ∈ C) are uniformly quasi-convex.
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The control we obtain allows to use the result inductively. Moreover, the Gromov
boundary of G can easily be determined from the Gromov boundaries of the H-
electrification EG and the Gromov boundaries of the quasi-convex subgraphs Hc.

We next discuss applications of Theorem 1.
Let S be a closed surface of genus g ≥ 2. For a number k < g define the graph of

non-separating k-multicurves to be the following metric graph NC(k). Vertices are
k-tuples of simple closed curves on S which cut S into a single connected component.
Two such multicurves c1, c2 are connected by an edge if c1 ∪ c2 is a non-separating
multicurve with k + 1 components. In [H14] we used Theorem 1 to show

Theorem 2. For k < g/2 + 1 the graph NC(k) is hyperbolic.

We also observed that the bound k < g/2 + 1 is sharp. The same argument
applies to the graph of non-separating multicurves on a surface with punctures.

In this article we use Theorem 1 to investigate the geometry of graphs of disks
in a handlebody. A handlebody of genus g ≥ 1 is a compact three-dimensional
manifold H which can be realized as a closed regular neighborhood in R3 of an
embedded bouquet of g circles. Its boundary ∂H is an oriented surface of genus g.

An essential disk in H is a properly embedded disk (D, ∂D) ⊂ (H, ∂H) whose
boundary ∂D is an essential simple closed curve in ∂H.

A subsurface X of the compact surface ∂H is called essential if it is a comple-
mentary component of an embedded multicurve in ∂H. Note that the complement
of a non-separating simple closed curve in ∂H is essential in this sense, i.e. the
inclusion X → ∂H need not induce an injection on fundamental groups.

Define a connected essential subsurface X of the boundary ∂H of H to be thick
if the following properties hold true.

(1) Every disk intersects X.
(2) X is filled by boundaries of disks.

The boundary surface ∂H of H is thick. An example of a proper thick subsurface
of ∂H is the complement in ∂H of a suitably chosen simple closed curve which is
not diskbounding.

Definition. Let X ⊂ ∂H be a thick subsurface. The electrified disk graph of X is
the graph EDG(X) whose vertices are isotopy classes of essential disks in H with
boundary in X. Two vertices D1, D2 are connected by an edge of length one if
there is an essential simple closed curve in X which can be realized disjointly from
both ∂D1, ∂D2.

If X = ∂H then we call EDG(X) the electrified disk graph of H. Using Theorem
1 we show

Theorem 3. The electrified disk graph EDG(X) of a thick subsurface X ⊂ ∂H of
the boundary ∂H of a handlebody H of genus g ≥ 2 is hyperbolic.

The electrified disk graph of the thick subsurface X is moreover of infinite di-
ameter [H11].

For the investigation of the handlebody group, i.e. the group of isotopy classes
of homeomorphisms of H, a more natural graph to consider is the so-called disk
graph which is defined as follows.

Definition. The disk graph DG of H is the graph whose vertices are isotopy classes
of essential disks in H. Two such disks are connected by an edge of length one if
and only if they can be realized disjointly.
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Since for any two disjoint essential simple closed curves c, d on ∂H there is a
simple closed curve on ∂H which can be realized disjointly from c, d (e.g. one of
the curves c, d), the electrified disk graph is obtained from the disk graph by adding
some edges. This observation allows to apply Theorem 1 inductively to the graphs
EDG(X) where X passes through the thick subsurfaces of ∂H and deduce in a
bottom-up inductive procedure hyperbolicity of the disk graph from hyperbolicity
of the electrified disk graph. In this way we obtain a new, completely combinatorial
and significantly simpler proof of the following result which was first established by
Masur and Schleimer [MS13].

Theorem 4. The disk graph DG of a handlebody H of genus g ≥ 2 is hyperbolic.

We also determine the Gromov boundary of the disk graph. Namely, recall from
[K99, H06] that the Gromov boundary of the curve graph of an essential subsurface
X of ∂H can be identified with the space of minimal geodesic laminations λ in
X which fill X, i.e. are such that every essential simple closed curve in X has
non-trivial intersection with λ. The Gromov topology on this space of geodesic
laminations is the coarse Hausdorff topology which can be defined as follows. A
sequence λi converges to λ if and only if every limit in the usual Hausdorff topology
of a subsequence of λi contains λ as a sublamination. Notice that the coarse
Hausdorff topology is defined on the entire space L(∂H) of geodesic laminations on
∂H, however it is not Hausdorff.

We observe that for every thick subsurface X of ∂H the Gromov boundary
∂EDG(X) of the electrified disk graph EDG(X) can be identified with a subspace
of the space of geodesic laminations on X, equipped with the coarse Hausdorff
topology. Moreover we show

Theorem 5. The Gromov boundary ∂DG of the disk graph equals the subspace

∂DG = ∪X∂EDG(X) ⊂ L(∂H)

equipped with the coarse Hausdorff topology. The union is over all thick subsurfaces
X of ∂H.

There is no analog of this result for handlebodies with spots, i.e. with marked
points on the boundary. Indeed, we showed in [H13] that the disk graph of a
handlebody with one or two spots on the boundary is not hyperbolic. The electrified
disk graph is not hyperbolic for handlebodies with one spot on the boundary, and
the same holds true for sphere graphs.

The organization of this paper is as follows. In Section 2 we show Theorem 1.
Section 3 discusses some relative version of results from [H11]. In Section 4, we
show the Theorem 3. In Section 5 we construct a graph whose vertices are disks
and which is obtained from the electrified disk graph by removing some edges and
from the disk graph by adding edges. We show that this graph is hyperbolic. The
argument can be used inductively and yields the proof of Theorem 4 as well as of
Theorem 5 in Section 6.

Acknowledgement: I am grateful to the anonymous referee for a careful read-
ing of the manuscript and for many valuable suggestions which improved the read-
ability.
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2. Hyperbolic thinnings of hyperbolic graphs

In this section we show Theorem 1 from the introduction. Consider a (not
necessarily locally finite) metric graph G (i.e. edges have length one) and a family
H = {Hc | c ∈ C} of complete connected subgraphs, where C is any countable, finite
or empty index set.

Define theH-electrification of G to be the metric graph (EG, dE) which is obtained
from G by adding vertices and edges as follows. For each c ∈ C there is a unique
vertex vc ∈ EG − G. This vertex is connected with each of the vertices of Hc by a
single edge of length one, and it is not connected with any other vertex.

In the sequel all parametrized paths γ in G or EG are supposed to be simplicial.
This means that the image of every integer is a vertex, and the image of an integral
interval [k, k + 1] is an edge or a single vertex.

Call a simplicial path γ in EG efficient if for every c ∈ C we have γ(k) = vc for
at most one k. Note that if γ is an efficient simplicial path in EG which passes
through γ(k) = vc for some c ∈ C then γ(k − 1) ∈ Hc, γ(k + 1) ∈ Hc.

The following definition is an adaptation of a definition from [F98].

Definition 2.1. The family H has the bounded penetration property if for every
L > 1 there is a number p(L) > 0 with the following property. Let γ be an efficient
L-quasi-geodesic in EG, let c ∈ C and let k ∈ Z be such that γ(k) = vc. If the
distance in Hc between γ(k−1) and γ(k+ 1) is at least p(L) then every efficient L-
quasi-geodesic γ′ in EG with the same endpoints as γ passes through vc. Moreover,
if k′ ∈ Z is such that γ′(k′) = vc then the distance in Hc between γ(k−1), γ′(k′−1)
and between γ(k + 1), γ′(k′ + 1) is at most p(L).

The definition below of relative hyperbolicity for a graph is taken from [Si12]
where it is shown to be equivalent to other definitions of relative hyperbolicity
found in the literature.

Definition 2.2. Let H be a family of complete connected subgraphs of a metric
graph G. The graph G is hyperbolic relative to H if the H-electrification of G is
hyperbolic and if moreover H has the bounded penetration property.

From now on we always consider a metric graph G which is hyperbolic relative
to a family H = {Hc | c ∈ C} of complete connected subgraphs.

We say that the family H is r-bounded for a number r > 0 if diam(Hc ∩Hd) ≤ r
for c 6= d ∈ C where the diameter is taken with respect to the intrinsic path metric
on Hc and Hd. A family which is r-bounded for some r > 0 is simply called
bounded.

The following is a consequence of the main theorem of [Si12] (the equivalence of
definition RH0 and RH2).

Proposition 2.3. If G is hyperbolic relative to the family H then H is bounded.

Let H be as in Definition 2.1. Define an enlargement γ̂ of an efficient simplicial
L-quasi-geodesic γ : [0, n] → EG with endpoints γ(0), γ(n) ∈ G as follows. Let
0 < k1 < · · · < ks < n be those points such that γ(ki) = vci for some ci ∈ C. Then
γ(ki − 1), γ(ki + 1) ∈ Hci . For each i ≤ s replace γ[ki − 1, ki + 1] by a simplicial
geodesic in Hci with the same endpoints.

For a number k > 0 define a subset Z of the metric graph G to be k-quasi-convex
if any geodesic with both endpoints in Z is contained in the k-neighborhood of Z.
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In particular, up to perhaps increasing the number k, any two points in Z can be
connected in Z by a (not necessarily continuous) path which is a k-quasi-geodesic
in G. The goal of this section is to show

Theorem 2.4. Let G be a metric graph which is hyperbolic relative to a family
H = {Hc | c} of complete connected subgraphs. If there is a number δ > 0 such
that each of the graphs Hc is δ-hyperbolic then G is hyperbolic. Enlargements of
geodesics in EG are uniform quasi-geodesics in G. The subgraphs Hc are uniformly
quasi-convex.

By Proposition 2.3 there is some r > 0 so that the family H is r-bounded. In
the sequel we always assume that for L > 1 the constant p(L) as in definition 2.1
is bigger than 2r.

For a number R > 2r call c ∈ C R-wide for an efficient L-quasi-geodesic γ in
EG if the following holds true. There is some k ∈ Z such that γ(k) = vc, and
the distance between γ(k − 1), γ(k + 1) in Hc is at least R. Note that since H is
r-bounded, c is uniquely determined by γ(k − 1), γ(k + 1). If R = p(L) is as in
Definition 2.1 then we simply say that c is wide.

Lemma 2.5. Let L ≥ 1 and let γ1, γ2 be two efficient L-quasi-geodesics in EC with
the same endpoints. If c ∈ C is 3p(L)-wide for γ1 then c is wide for γ2.

Proof. By definition, if c is 3p(L)-wide for γ1 then there is some k so that γ1(k) = vc
and that the distance in Hc between γ1(k−1) and γ1(k+1) is at least 3p(L). Since
γ2 is an efficient L-quasi-geodesic with the same endpoints as γ1, by the bounded
penetration property there is some k′ so that γ2(k′) = vc, moreover the distance
in Hc between γ1(k − 1) and γ2(k′ − 1) and between γ1(k + 1) and γ2(k′ + 1) is at
most p(L). Thus by the triangle inequality, the distance in Hc between γ2(k′ − 1)
and γ2(k′ + 1) is at least p(L) which is what we wanted to show. �

Define the Hausdorff distance between two closed subsets A,B of a metric
space to be the infimum of the numbers b > 0 such that A is contained in the
b-neighborhood of B and B is contained in the b-neighborhood of A.

The following lemma was known before in the context of relatively hyperbolic
groups. We refer to [Hr10] (Corollary 8.14 and Corollary 8.15) and [O06] for such
versions and more.

Lemma 2.6. For every L > 0 there is a number κ(L) > 0 with the following
property. Let γ1, γ2 be two efficient simplicial L-quasi-geodesics in EG connecting
the same points in G, with enlargements γ̂1, γ̂2. Then the Hausdorff distance in G
between the images of γ̂1, γ̂2 is at most κ(L).

Proof. Let γ : [0, n]→ EG be an efficient simplicial L-quasi-geodesic with endpoints
γ(0), γ(n) ∈ G. Let R > p(L) and assume that c ∈ C is not R-wide for γ. If there is
some u ∈ {1, . . . , n−1} such that γ(u) = vc then γ(u−1), γ(u+ 1) ∈ Hc. Since c is
not R-wide for γ, γ(u− 1) can be connected to γ(u+ 1) by an arc in Hc of length
at most R. In particular, if no c ∈ C is R-wide for γ then an enlargement γ̂ of γ is
an L̂-quasi-geodesic in EG for a universal constant L̂ = L̂(L,R) > 0. Then γ̂ is a

L̂-quasi-geodesic in G as well (note that the inclusion G → EG is 1-Lipschitz).
Let γi : [0, ni] → EG be efficient L-quasi-geodesics (i = 1, 2) with the same

endpoints in G. Assume that no c ∈ C is wide for γ1. By Lemma 2.5, no c ∈ C is
R = 3p(L)-wide for γ2. Let γ̂i be an enlargement of γi. By the above discussion, the
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arcs γ̂i are L̂ = L̂(L, 3p(L))-quasi-geodesics in EG. In particular, by hyperbolicity
of EG, the Hausdorff distance in EG between the images of γ̂i is bounded from above
by a constant b− 1 > 0 only depending on L.

We have to show that the Hausdorff distance in G between these images is also
uniformly bounded. For this let x = γ̂1(u) be any vertex on γ̂1 and let y = γ̂2(w) be
a vertex on γ̂2 of minimal distance in EG to x. Then dE(x, y) ≤ b (here as before, dE
is the distance in EG, and we let d be the distance in G). Let ζ be a geodesic in EG
connecting x to y. Since y is a vertex on γ̂2 of minimal distance to x, ζ intersects
γ̂2 only at its endpoints.

We claim that there is a universal constant χ > 0 such that no c ∈ C is χ-wide
for ζ. Namely, since γ̂1 does not pass through any of the special vertices in EG, the
concatenation ξ = ζ ◦ γ̂1[0, u] is efficient (here γ̂1[0, u] is the restriction of the arc γ̂1
to its initial subsegment connecting γ̂1(0) = γ1(0) to γ̂1(u)). Thus ξ is an efficient

L′-quasi-geodesic in EG with the same endpoints as γ̂2[0, w] where L′ > L̂ > L only
depends on L. Hence by the bounded penetration property, if c ∈ C is p(L′)-wide

for ζ then the L̂-quasi-geodesic γ̂2[0, w] passes through the vertex vc which is a
contradiction.

As a consequence of the above discussion, the length of an enlargement of ζ is
bounded from above by a fixed multiple of dE(γ̂1(u), γ̂2(w)), i.e. it is uniformly
bounded. This shows that d(γ̂1(u), γ̂2(w)) is uniformly bounded. Thus the image
of γ̂1 is contained in a neighborhood of uniformly bounded diameter in G of the
image of γ̂2.

Now γ2 is such that no c ∈ C is 3p(L)-wide for γ2. Thus up to adjusting constants,
we can exchange γ1 and γ2 in the above argument. This shows that indeed the
Hausdorff distance in G between the images of the enlargements γ̂1, γ̂2 is bounded
by a number only depending on L.

Let γj : [0, nj ]→ EG be arbitrary efficient L-quasi-geodesics (j = 1, 2) connecting
the same points in G. Then there are numbers 0 < u1 < · · · < uk < n1 such that
for every i ≤ k, γ1(ui) = vci where ci ∈ C is wide for γ1, and there are no other
wide points for γ1. Put u0 = −1 and uk+1 = n1 + 1.

By the bounded penetration property, there are numbers wi ∈ {1, . . . , n2 − 1}
such that γ2(wi) = γ1(ui) = vci for all i. Moreover, the distance in Hci between
γ1(ui−1) and γ2(wi−1) and between γ1(ui+1) and γ2(wi+1) is at most p(L). Since
γ1, γ2 are L-quasi-geodesics by assumption, we may assume that the special vertices
vci appear along γ2 in the same order as along γ1, i.e. that 0 < w1 < · · · < wk < n2.
Namely, for each i the concatenation γ2[wi, n2]◦γ1[0, ui] is an L′-quasi-geodesic with
the same endpoints as γ1 for a number L′ > 0 only depending on L. If there is some
j > i so that wj < wi then this quasi-geodesic does not pass through vcj which
violates the bounded penetration property, once again up to adjusting constants.
Put w0 = −1 and wk+1 = n2 + 1.

For each i ≤ k, define a simplicial edge path ζi : [ai, ai+1] → EG connecting
ζi(ai) = γ1(ui + 1) ∈ Hci to ζi(ai+1) = γ1(ui+1 − 1) ∈ Hci+1

as the concatentation
of the following three arcs. A geodesic in Hci connecting γ1(ui + 1) to γ2(wi + 1)
(whose length is at most p(L)), the arc γ2[wi + 1, wi+1− 1] and a geodesic in Hci+1

connecting γ2(wi+1 − 1) to γ2(ui+1 − 1). Let moreover ηi = γ1|[ui + 1, ui+1 − 1]
(i ≥ 0). Then ηi, ζi are efficient uniform quasi-geodesics in EG with the same
endpoints, and ηi does not have wide points.



HYPERBOLICITY OF RELATIVELY HYPERBOLIC GRAPHS 7

For each i let ν̂i be an enlargement of the arc νi = γ2[wi + 1, wi+1 − 1]. By

construction, there is an enlargement ζ̂i of the efficient quasi-geodesic ζi which con-
tains ν̂i as a subarc and whose Hausdorff distance in G to ν̂i is uniformly bounded.

Let η̂i be an enlargement of ηi. Then ζ̂i, η̂i are enlargements of the efficient uni-
form quasi-geodesics ζi, ηi in EG with the same endpoints, and ηi does not have
wide points. Therefore by the first part of this proof, the Hausdorff distance in G
between η̂i and ζ̂i is uniformly bounded. Hence the Hausdorff distance between η̂i
and ν̂i is uniformly bounded as well.

There is an enlargement γ̂1 of γ1 which can be represented as

γ̂1 = η̂k ◦ σk ◦ · · · ◦ σ1 ◦ η̂0
where for each i, σi is a geodesic in Hci connecting γ1(ui−1) to γ1(ui+1). Similarly,
there is an enlargement γ̂2 of γ2 which can be represented as

γ̂2 = ν̂k ◦ τk ◦ · · · ◦ τ1 ◦ ν̂0
where for each i, τi is a geodesic in Hci connecting γ2(wi − 1) to γ2(wi + 1).

For each i the distance in Hci between γ1(ui − 1) and γ2(wi − 1) is at most
p(L), and the same holds true for the distance between γ1(ui + 1) and γ2(wi + 1).
Since Hci is δ-hyperbolic for a constant δ > 0 not depending on ci, the Hausdorff
distance in Hci between any two geodesics connecting γ1(ui − 1) to γ1(ui + 1) and
connecting γ2(wi−1) to γ2(wi+ 1) is uniformly bounded. Together with the above
discussion, this shows the lemma. �

Let for the moment X be an arbitrary geodesic metric space. Assume that for
every pair of points x, y ∈ X there is a fixed choice of a path ρx,y connecting x to
y. The thin triangle property for this family of paths states that there is a universal
number C > 0 so that for any triple x, y, z of points in X, the image of ρx,y is
contained in the C-neighborhood of the union of the images of ρy,z, ρz,x.

For two vertices x, y ∈ G let ρx,y be an enlargement of a geodesic in EG connecting
x to y. We have

Proposition 2.7. The thin triangle property holds true for the paths ρx,y.

Proof. Let x1, x2, x3 be three vertices in G and for i = 1, 2, 3 let γi : [0, ni] → EG
be a geodesic connecting xi to xi+1.

By hyperbolicity of EG there is a number L > 0 not depending on the points
xi, and there is a vertex y ∈ EG with the following property. For i = 1, 2, 3 let
βi : [0, pi]→ EG be a geodesic in EG connecting xi to y. Then for all i, αi = β−1i+1◦βi
is an L-quasi-geodesic connecting xi to xi+1.

We claim that without loss of generality we may assume that the quasi-geodesics
αi are efficient. Namely, since the arcs βi are geodesics, they do not backtrack.
Thus if α1 is not efficient then there is a common point y on β1 and β2. Let
s1 < p1 be the smallest number so that β1(s1) = β2(s2) for some s2 ∈ [0, p2].
Then the distance between y and βi(si) (i = 1, 2) is uniformly bounded, and α̃1 =
(β2[0, s2])−1 ◦β1[0, s1] is an efficient L-quasi-geodesic connecting x1 to x2. Replace

y by β1(s1), replace βi by β̃i = βi[0, si] (i = 1, 2) and replace β3 by a geodesic

β̃3 : [0, p̃3]→ EG connecting x3 to β1(s1). Thus up to increasing the number L by a
uniformly bounded amount we may assume that the quasi-geodesic α1 is efficient.

Assume from now on that β1, β2, β3 are such that the quasi-geodesic α1 = β−12 ◦β1
is efficient. Using the notation from the second paragraph of this proof, if there is
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some s < p3 such that β3(s) is contained in α1 then let s3 be the smallest number
with this property. Replace the point y = βi(pi) by β3(s3), replace β3 by β3[0, s3]
and for i = 1, 2 replace βi by the subarc of α1 connecting xi to β3(s3). With this
construction, up to increasing the number L by a uniformly bounded amount and
perhaps replacing β1, β2 by uniform quasi-geodesics rather than geodesics we may
assume that all three quasi-geodesics α̃i = β̃−1i+1 ◦ β̃i (i = 1, 2, 3) are efficient.

Resuming notation, assume from now on that the quasi-geodesics αi are efficient.
By Lemma 2.6, the Hausdorff distance between an enlargement of the geodesic γi
and any choice of an enlargement of the efficient uniform quasi-geodesic αi with
the same endpoints is uniformly bounded. Thus it suffices to show the thin triangle
property for enlargements of the quasi-geodesics αi.

If y ∈ G then an enlargement of the quasi-geodesic αi is the concatenation of an
enlargement of the quasi-geodesic βi and an enlargement of the quasi-geodesic β−1i+1

which have endpoints in G. Hence in this case the thin triangle property follows
once more from Lemma 2.6.

If y = vc for some c ∈ C then we distinguish two cases.
Case 1: c ∈ C is wide for each of the quasi-geodesics αi.
Recall that y = βi(pi). By hyperbolicity of Hc, there is a number R > 0 not

depending on c such that for all i ∈ {1, 2, 3} the image of any geodesic in Hc

connecting βi(pi − 1) to βi+1(pi+1 − 1) is contained in the R-neighborhood of the
union of the images of any two geodesics connecting βj(pj−1) to βj+1(pj+1−1) for
j 6= i and where indices are taken modulo three. In other words, the thin triangle
property holds true for such geodesics.

Now let α̂i be an enlargement of αi and let ζi be the subarc of α̂i which connects
βi(pi − 1) to βi+1(pi+1 − 1). By the definition of an enlargement, ζi is a geodesic
in Hc. Thus by the discussion in the previous paragraph and by the fact that we
may use the same enlargement of the arc βi+1[0, pi+1−1] for the construction of an
enlargement of αi and αi+1, the thin triangle property holds true for some suitable
choice of an enlargement of the quasi-geodesics αi. It then holds true for every
chocie which is what we wanted to show.

Case 2: For at least one i, c ∈ C is not wide for the quasi-geodesic αi.
Assume that this holds true for the quasi-geodesic α1. Then the distance in Hc

between β1(p1 − 1) and β2(p2 − 1) is uniformly bounded (depending on the quasi-
geodesic constant for α1). Replace the point y by β1(p1 − 1), replace the quasi-

geodesic β1 by β̃1 = β1[0, p1−1], replace the quasi-geodesic β2 by the concatentation

β̃2 of β2[0, p2 − 1] with a geodesic in Hc connecting β2(p2 − 1) to β1(p1 − 1), and

replace the geodesic β3 by the concatentation β̃3 of β3 with the edge connecting vc
to β1(p1−1). The resulting arcs β̃i are efficient uniform quasi-geodesics in EG, and

they connect the points xi to y ∈ G. Moreover, the quasi-geodesics β̃−1i+1 ◦ β̃i are
efficient as well and hence we are done by the above proof for the case y ∈ G. �

Now we are ready to show

Corollary 2.8. G is hyperbolic. Enlargements of geodesics in EG are uniform
quasi-geodesics in G.

Proof. For any pair (x, y) of vertices in G let ηx,y be a reparametrization on [0, 1]
of the path ρx,y. By Proposition 3.5 of [H07] and Theorem 3.15 of [MS13] (which
is essentially due to Bowditch), it suffices to show that there is some n > 0 such
that the paths ηx,y have the following properties (where d is the distance in G).
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(1) If d(x, y) ≤ 1 then the diameter of ηx,y[0, 1] is at most n.
(2) For all vertices x, y, z the set ηx,y[0, 1] is contained in the n-neighborhood

of ηx,y[0, 1] ∪ ηy,z[0, 1].

Property 1) above is immediate from Lemma 2.6. The thin triangle property 2)
follows from Proposition 2.7. �

The following corollary is an immediate consequence of Corollary 2.8.

Corollary 2.9. There is a number k > 0 such that each of the subgraphs Hc (c ∈ C)
is k-quasi-convex.

We complete this section with a description of the Gromov boundary of G.
Let as before EG be the H-electrification of G. Denote by ∂EG the Gromov

boundary of EG. For each c ∈ C let moreover ∂Hc be the Gromov boundary of Hc.
We equip

∂G = ∂EG ∪c ∂Hc

with a topology which is defined by describing for each point ξ ∈ ∂G a neighborhood
basis as follows.

Let first ξ ∈ ∂EG. Let L > 1 be such that every point x ∈ G can be connected
in EG to every point ζ ∈ ∂EG by an L-quasi-geodesic in EG. Let p(L) > 0 be as in
the definition of the bounded penetration property for L. Choose p > 0 sufficiently
large that L-quasi-geodesic triangles in EG are p-thin (i.e. any side is contained in
the p-neighborhood of the union of the other sides).

Let δE be a Gromov metric on ∂EG based at a fixed point x ∈ G. Let γ : [0,∞)→
EG be an L-quasi- geodesic ray connecting x = γ(0) to ξ. For ε > 0 let C(ξ, ε) be
the collection of all c ∈ C such that there exists a geodesic in EG connecting x to vc
which passes through the 2p-neighborhood of γ[− log ε,∞). Define Bε(ξ) ⊂ ∂G by

Bε(ξ) = {ζ ⊂ ∂EG, δE(ζ, ξ) < ε} ∪
⋃

c∈C(ξ,ε)

∂Hc.

Clearly we have ∩ε>0Bε(ξ) = {ξ}. Declare the family of sets Bε(ξ) to be a neigh-
borhood basis of ξ in ∂G. Note that changing the basepoint x yields an equivalent
neighborhood basis.

If c ∈ C and ξ ∈ ∂Hc then choose a basepoint x ∈ Hc . By enlarging L we may
assume that x can be connected to every point in ∂Hc by a quasi-geodesic in Hc

which is an L-quasi-geodesic in G. Choose such a quasi-geodesic γ : [0,∞) → Hc

connecting γ(0) = x to ξ.
For ε > 0 let C(ξ, ε) be the collection of all d ∈ C − {c} such that there exists

a geodesic in EG connecting x to vd which passes through the 2p-neighborhood of
γ[− log ε,∞) in Hc. By the bounded penetration property, this makes sense.

Let B̂ε(ξ) be the set of all ζ ∈ ∂EG such that an L-quasi-geodesic in EG connect-
ing x to ζ passes through the p-neighborhood of γ[− log ε,∞) in Hc. Let Dc(ξ, ε)
be the open ball of radius ε about ξ in the Gromov boundary of Hc with respect to
a Gromov metric based at x. Define

Bε(ξ) = Dc(ξ, ε) ∪ B̂ε(ξ) ∪
⋃

d∈C(ξ,ε)

∂Hd.

As before, we have
∩ε>0Bε(ξ) = {ξ}.

Declare the family of sets Bε(ξ) to be a neighborhood basis of ξ ∈ ∂G. We have
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Proposition 2.10. ∂G is the Gromov boundary of G.

Proof. For a number L > 1 define an unparametrized L-quasi-geodesic in the graph
EG to be a path η : [0,∞) → EG with the following property. There is some
n ∈ (0,∞], and there is an increasing homeomorphism ρ : [0, n)→ [0,∞) such that
η ◦ ρ is an L-quasi-geodesic in EG.

Let x ∈ G and let q > 1 be sufficiently large that x can be connected to every
point in the Gromov boundary of G by a q-quasi-geodesic ray in G. Let γ : [0,∞)→
G be such a simplicial q-quasi-geodesic ray. We claim that there is a number q′ > 1
such that γ viewed as a path in EG is an unparametrized q′-quasi-geodesic in EG.

Namely, for each i > 0 let ζi be an enlargement of a geodesic in EG with endpoints
γ(0), γ(i). Then there is a number L > 1 such that ζi is an L-quasi-geodesic in
G. By hyperbolicity, the Hausdorff distance in G between γ[0, i] and the image of
ζi is uniformly bounded. Hence the same holds true if this Hausdorff distance is
measured with respect to the distance in EG ⊃ G. Thus the Hausdorff distance
in EG between γ[0, i] and a geodesic in EG with the same endpoints is uniformly
bounded. Since i > 0 was arbitrary, this implies that indeed γ is an unparametrized
q′-quasi-geodesic in EG for a number q′ > 0 only depending on q.

As a consequence, if the diameter of γ[0,∞) in EG is infinite then up to paramet-
rization, γ[0,∞) is a q′-quasi-geodesic ray in EG and hence it converges as i → ∞
to a point ξ ∈ ∂EG ⊂ ∂G.

Now assume that the diameter of γ[0,∞) in EG is finite. By Corollary 2.9, there
is a number M > 0 not depending on γ or on c ∈ C with the following properties.

(1) If x, y ∈ G are any two vertices and if c ∈ C is such that the distance in
Hc of some shortest distance projections of x, y into Hc is at least M then
a geodesic in EG connecting x to y passes through the special vertex vc
defined by c.

(2) If there is some k > 0 and some c ∈ C such that the distance in Hc of
some shortest distance projections of γ(0), γ(k) into Hc is at least 2M then
for each ` > k the distance in Hc of any shortest distance projections of
γ(0), γ(`) into Hc is at least M .

For k > 0 let C1(k) (or C2(k)) be the set of all c ∈ C so that the distance in Hc

between some shortest distance projections of γ(0), γ(k) into Hc is at least M (or
2M). By property (2) above, for ` ≥ k we have C2(k) ⊂ C1(`).

The diameter of the image of any simplicial geodesic in EG equals the length of
the geodesic and hence it is bounded from below by the number of special vertices
it passes through. Since the diameter of γ[0,∞) in EG is finite by assumption,
by property (1) and (2) the set P = ∪k>0C2(k) is finite. Moreover, there is some
k0 > 0 such that

∪k>0C2(k) = ∪k≤k0C2(k).

As a consequence, if c ∈ C and ` > k0 are such that the distance in Hc of some
shortest distance projection of γ(0), γ(`) into Hc is at least 2M then the distance
of the shortest distance projection of γ(0), γ(k0) is at least M .

Now the diameter of γ[k0,∞) in EG is finite and therefore there is some c ∈ C
so that γ[k0,∞) is contained in a uniformly bounded neighborhood of Hc.

On the other hand, γ is a q-quasi-geodesic in G and the inclusion Hc → G is a
quasi-isometric embedding. by hyperbolicity there is a quasi-geodesic ray ζ in Hc

whose Hausdorff distance to γ[k0,∞) is bounded. As a consequence, γ determines
a point µ ∈ ∂Hc ⊂ ∂G.
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To summarize, there is a map Λ from the Gromov boundary of G into ∂G. It
is easily seen from the above discussion that the map Λ is injective. Corollary 2.9
then shows that Λ is in fact a bijection.

We claim that Λ is moreover continuous and open. To this end let again γ :
[0,∞) → G be a q-quasi-geodesic . By the above discussion, we may assume that
either γ has infinite diameter in EG or there is some k0 ≥ 0 and some c ∈ Hc so
that γ[k0,∞) ⊂ Hc.

A neighborhood basis for the endpoint of γ in the Gromov boundary of G consists
of the family D(m) (m ≥ 1) of sets where D(m) contains all endpoints of uniform
quasi-geodesics β in G which pass through a fixed size neighborhood of γ(m). Up
to replacing β by a quasi-geodesic of uniformly controlled Hausdorff distance to β,
we may assume that one of the following two possibilities is satisfied.

(1) β is an enlargement of a quasi-geodesic in EG of infinite diameter and hence
it defines a point in the set {δξ(ζ, ξ) < ε} where ε > 0 is determined by the
distance in EG between γ(m) and γ(0).

(2) There is some d ∈ C with the properties described in the definition of the
sets Bε(ξ) so that the tail of β is contained in Hd and hence defines a
boundary point of Hd as specified in the description of the neighboorhood
basis of γ(∞) in the definition of ∂G.

From this description is it immediate that the image under Λ of a neighborhood
basis of γ(∞) in the Gromov boundary of G equals a neighborhood basis of Λ(γ(∞))
in ∂G. �

3. Thick subsurfaces

In this section we consider a handlebody H of genus g ≥ 2. By a disk in H we
mean an essential disk in H.

Two disks D1, D2 ⊂ H are in normal position if their boundary circles intersect
in the minimal number of points and if every component of D1∩D2 is an embedded
arc in D1 ∩D2 with endpoints in ∂D1 ∩ ∂D2. In the sequel we always assume that
disks are in normal position; this can be achieved by modifying one of the two disks
with an isotopy.

As in the introduction, call a connected essential subsurface X of ∂H thick if
the following conditions are satisfied.

(1) Every disk intersects X.
(2) X is filled by boundaries of disks.

The first property says that no essential disk can be isotoped off X. The second
property implies that ∂H − X is not thick. An example of a thick subsurface
is the complement in ∂H of a suitably chosen simple closed curve which is not
diskbounding. The entire boundary surface ∂H is thick as well.

For a thick subsurface X of ∂H define EDG(X) to be the graph whose vertices
are disks with boundary contained in X. By property (1) in the definition of a thick
subsurface, the boundary of each such vertex is an essential simple closed curve in
X. Two such disks D,E are connected by an edge of length one if and only if there
is an essential simple closed curve γ in X which can be realized disjointly from both
D,E (e.g. the boundary of D if the disks D,E are disjoint).

Denote by dE,X the distance in EDG(X). The disk graph DG(X) of X is defined
in the obvious way, and we denote by dD,X its distance function.
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In the sequel we always assume that all curves and multicurves on X ⊂ ∂H are
essential. For two simple closed multicurves c, d on ∂H let ι(c, d) be the geometric
intersection number between c, d.

The following lemma [MM04] implies that for every thick subsurface X of ∂H the
graph DG(X) is connected. For its proof and later use, let D,E be disks in minimal
position. Define an outer component of E with respect to D to be a component
Ê of E −D which is a disk whose boundary consists of a single subarc of ∂E and
a single subarc α of D. The arc α intersects the boundary of D precisely at its
endpoints. Surgery of D at this outer component Ê replaces D by the union of Ê
with one of the two components of D − α (compare e.g. [MM04, H11]).

Lemma 3.1. Let X ⊂ ∂H be a thick subsurface. Let D,E ⊂ H be disks with
boundaries in X. Then D can be connected to a disk E′ which is disjoint from E
by at most ι(∂D, ∂E)/2 simple surgeries. In particular,

dD,X(D,E) ≤ ι(∂D, ∂E)/2 + 1.

Proof. Let D,E be two disks in normal position with boundary in X. Assume
that D,E are not disjoint. Then there is an outer component of E − D. A disk
D′ obtained by simple surgery of D at this component is essential in ∂H and its
boundary is contained in X, i.e. D′ ∈ EDG(X). Moreover, D′ is disjoint from D,
i.e. we have dD,X(D′, D) = 1, and

(1) ι(∂E, ∂D′) ≤ ι(∂D, ∂E)− 2.

The lemma now follows by induction on ι(∂D, ∂E). �

Remark 3.2. Lemma 3.1 implies that a thick subsurface X of ∂H can not be a
four-holed sphere or a one-holed torus. Namely, if X is a four-holed sphere or a
one-holed torus and if X contains the boundaries of two distinct disks D,E then
these disks intersect. Surgery of D at an outer component of E − D results in
an essential disk D′ which up to homotopy is disjoint from the disk D and whose
boundary is contained in X. Since any two essential simple closed curves in X
intersect, the boundary of D′ is peripheral in X which violates the assumption that
no boundary component of X is diskbounding.

A simple closed multicurve γ in a thick subsurface X of ∂H is called diskbusting
if γ intersects every disk with boundary in X.

Consider an oriented I-bundle J (F ) over a compact (not necessarily orientable)
surface F with (not necessarily connected) boundary ∂F . The boundary ∂J (F )
of J (F ) decomposes into the horizontal boundary and the vertical boundary. The
vertical boundary is the interior of the restriction of the I-bundle to ∂F and con-
sists of a collection of pairwise disjoint open incompressible annuli. The horizontal
boundary is the complement of the vertical boundary in ∂J (F ).

For a given boundary component α of F , the union of the horizontal boundary
of J (F ) with the I-bundle over α is a compact connected orientable surface Fα ⊂
∂J (F ). The boundary of Fα is empty if and only if the boundary of F is connected.
If the boundary of F is not connected then Fα is properly contained in the boundary
∂J (F ) of J (F ). The complement ∂J (F )−Fα is a union of incompressible annuli.

Definition 3.3. An I-bundle generator in a thick subsurface X ⊂ ∂H is an es-
sential simple closed curve γ ⊂ X with the following property. There is a compact
surface F with non-empty boundary ∂F , there is a boundary component α of ∂F ,
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and there is an orientation preserving embedding Ψ of the oriented I-bundle J (F )
over F into H which maps α to γ and which maps Fα onto the complement in X
of a tubular neighborhood of the boundary ∂X of X.

We call the surface F the base of the I-bundle generated by γ.

Example 3.4. 1) An orientable I-bundle over an orientable base is a trivial bundle.
Thus if ∂H admits an I-bundle generator γ with orientable base surface F then
the genus g of ∂H is even and equals twice the genus of F . The boundary of F is
connected. The I-bundle over every essential arc in F with endpoints in ∂F is an
embedded disk in H. There is an orientation reversing involution Φ : H → H whose
fixed point set intersects ∂H precisely in γ. This involution acts as a reflection in
the fiber. The union of any essential arc β in F with endpoints in ∂F with its image
under Φ is the boundary of a disk in H (there is a small abuse of notation here
since the fixed point set of Φ intersects ∂H in a subset of the fibre over ∂F ). This
disk is just the I-bundle over the arc β. We refer to [He76] for more information
on I-bundles.
2) Let F be an oriented surface of genus k ≥ 1 with two boundary components α, β.
The oriented I-bundle J (F ) = F × [0, 1] over F is homeomorphic to a handlebody
H of genus 2k + 1. The boundary component β of F is neither diskbounding
nor diskbusting in H. Namely, as in 1) above, the I-bundle over every essential
simple arc in F with both endpoints on α is an essential disk in H. The subsurface
X = ∂H − β ⊂ ∂H is thick. The boundary component α of F intersects every disk
with boundary in X and is an I-bundle generator for X whose base is the surface
F . The thick surface X is naturally homeomorphic to Fα, the complement of the
I-bundle over β in the boundary of J (F ). The image of F × [0, 1] = J (F ) under
the embedding J (F ) → H is the complement of a neighborhood of β in H which
is homeomorphic to a solid torus.
3) Let F be the connected sum of g copies of the real projective plane with a
disk. The orientable I-bundle over F is a handlebody H of genus g. The vertical
boundary of the I-bundle is an annulus whose core curve γ is non-separating. The
complement of the annulus is the two-sheeted orientation cover of F . The I-bundle
over any simple arc in F with both endpoints on the boundary of F is an embedded
disk in H.
4) Let γ be a non-separating I-bundle generator for a proper thick subsurface X
of ∂H, with base F . Then F is non-orientable. Up to isotopy, the thick subsurface
X of ∂H is the intersection of the boundary ∂J (F ) of the bundle J (F ) ⊂ H

with ∂H. It can be obtained from the orientation cover F̂ of F by glueing an
annulus to the two preimages of the preferred boundary component α of F with a
homeomorphism which reverses the boundary orientations. The I-bundle over every
essential embedded arc β in F with endpoints on α is a disk in H. Its boundary is
the preimage of β in Fα ⊂ ∂J (F ), viewed as the orientation cover of F (here we
use the same small abuse of terminology as before).

For a thick subsurface X of ∂H let SDG(X) be the graph whose vertices are
disks with boundaries contained in X and where two such disks D,E are connected
by an edge of length one if one of the following two possibilities is satisfied.

(1) There is an essential simple closed curve α ⊂ X (i.e. which is essential as a
curve in the subsurface X of ∂H) which is disjoint from D∪E (for example,
∂D if D,E are disjoint).
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(2) There is an I-bundle generator γ ⊂ X which intersects both D,E in pre-
cisely two points.

We denote by dS,X the distance in SDG(X). If X = ∂H then we simply write dS
instead of dS,∂H .

The following was proved in [H11] in the case X = ∂H. The proof of the result
carries over to an arbitrary thick subsurface without modification.

Proposition 3.5. Let X ⊂ ∂H be a thick subsurface. The vertex inclusion defines
a quasi-isometric embedding of SDG(X) into the curve graph of X. In particular,
SDG(X) is δ-hyperbolic for a number δ > 0 only depending on the genus of H.

4. Hyperbolicity of the electrified disk graph

As in Section 3, we consider a handlebody H of genus g ≥ 2, with boundary ∂H.
The goal of this section is to use Theorem 1 to show hyperbolicity of the electrified
disk graph EDG(X) of a thick subsurface X of ∂H. We also determine the Gromov
boundary of EDG(X).

In the sequel for a number L > 1 we call a map ϕ : X → Y between metric
spaces X,Y an L-quasi-isometry if for all x, y ∈ X we have

d(x, y)/L− L ≤ d(ϕ(x), ϕ(y)) ≤ Ld(x, y) + L

and if moreover for every y ∈ Y there is some x ∈ X with d(ϕ(x), y) ≤ L.
Let X ⊂ ∂H be a thick subsurface. Recall that X is connected, and by the

remark after Lemma 3.1, X is distinct from a sphere with at most four holes and
from a torus with a single hole. Denote by dCG,X the distance in the curve graph
CG(X) of X, by dS,X the distance in the graph SDG(X) and by dE,X the distance
in the electrified disk graph EDG(X) of X.

If X does not contain any I-bundle generator then EDG(X) = SDG(X) and
there is nothing to show. Thus assume that there is an I-bundle generator γ ⊂ X.
Let

E(γ) ⊂ EDG(X)

be the complete subgraph of EDG(X) whose vertices are disks intersecting γ in
precisely two points. Define

E = {E(γ) | γ}
where γ runs through all I-bundle generators in X. By definition, SDG(X) is
2-quasi-isometric to the E-electrification of EDG(X). Thus by Theorem 2.4, to
show hyperbolicity of EDG(X) it suffices to show that each of the graphs E(γ)
is δ-hyperbolic for a number δ > 0 not depending on γ and that the bounded
penetration property holds true.

We begin with establishing hyperbolicity of the graphs E(γ). To this end, for a
compact (not necessarily orientable) surface F with boundary ∂F and for a fixed
boundary component α of F , define the electrified arc graph C ′(F, α) as follows.
Vertices of C ′(F, α) are essential embedded arcs in F with both endpoints in α.
Two such arcs are connected by an edge of length one if either they are disjoint
or if they are disjoint from a common essential simple closed curve. If F is non-
orientable, then we require that an essential simple closed curve does not bound a
Möbius band in F .

The following statement is well known but hard to find in the literature. We
give a proof for completeness.
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Lemma 4.1. Let F be a compact surface with boundary ∂F . Assume that F is not
a sphere with at most three holes or a projective plane with at most three holes. Let
α be a boundary circle of F . Then C ′(F, α) is 4-quasi-isometric to the curve graph
of F .

Proof. Define the arc and curve graph A(F, α) of F to be the graph whose vertices
are arcs with endpoints on α or essential simple closed curves in F . Two such arcs
or curves are connected by an edge of length one if they can be realized disjointly.

Consider first the case that F either is a one-holed torus, a one-holed Klein
bottle, a four holed sphere or a four-holed projective plane. In this case two simple
closed curves in F are connected by an edge in the curve graph of F if they intersect
in the minimal number of points (one or two). Let β be an essential simple closed
curve in F . Cutting F open along β yields a three-holed sphere (if F is a one-holed
torus or a one-holed Klein bottle), the disjoint union of two three holed spheres (if
F is a four-holed sphere) or the disjoint union of a three holed sphere and a three
holed projective plane (if F is a four-holed projective plane).

Thus there is a unique essential arc Λ(β) ⊂ F with endpoints on α which is
disjoint from β. The distance between two essential simple closed curves β, γ in the
curve graph of F equals one if and only if the arcs Λ(β),Λ(γ) are disjoint. This
means that the map Λ which associates to a simple closed curve β in F the unique
arc Λ(β) with endpoints on α which is disjoint from β defines an isometry of the
curve graph of F onto the arc graph of (F, α). This arc graph is the complete sub-
graph of A(F, α) whose vertex set consists of arcs with endpoints on α. Moreover,
in the special case at hand, this arc graph is just the graph C ′(F, α). This yields
the statement of the lemma for one-holed tori, one-holed Klein bottles, four-holed
spheres and four-holed projective planes.

Now assume that the surface F is such that two vertices in the curve graph
of F are connected by an edge if they can be realized disjointly. Then for any
two disjoint essential simple closed curves β, γ in F there is an essential arc with
endpoints on α which is disjoint from both β, γ. In particular, for every simplicial
path c in the arc and curve graph A(F, α) connecting two vertices in A(F, α) which
are arcs with endpoints on α, there is a path of at most double length in C ′(F, α)
connecting the same endpoints. This path can be obtained from c as follows. If
c(i), c(i+1) are both simple closed curves then replace c[i, i+1] by a simplicial path
in A(F, α) of length 2 with the same endpoints whose midpoint is an arc disjoint
from c(i), c(i + 1). In the resulting path, a simple closed curve β ⊂ F is adjacent
to two arcs disjoint from β and hence we can view this path as a path in C ′(F, α).
Thus the vertex inclusion C ′(F, α)→ A(F, α) is a 2-quasi-isometry.

We are left with showing that the inclusion of the curve graph of F into A(F, α)
is a 2-quasi-isometry. However, this is well known, and in the case of an oriented
surface, it can be found in [MM00]. A sketch of a proof is as follows. Construct
from a simplical path in A(F, α) connecting two simple closed curves a new path
by replacing any edge connecting two arcs by a path of length two with the same
endpoints whose middle vertex is a disjoint simple closed curve. Then replace any
arc β by an essential simple closed curve which is composed of β and one of the
two components of α − β (at least one of the two choices of such curves will be
essential). �

A thick subsurface X of ∂H is not a four-holed sphere. Thus if γ is a separating I-
bundle generator for X then the base of the I-bundle (which is an oriented surface
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with boundary) either has positive genus or is a sphere with at least four holes.
Similarly, if γ is a non-separating I-bundle generator for X then we may assume
that the base F of the I-bundle is not a projective plane with three holes. Namely,
if F is a projective plane with three holes and if α is a distinguished boundary
component of F then there is up to homotopy a unique essential arc β in F with
boundary on α. The I-bundle over β is the unique disk in the oriented I-bundle
over F which intersects the curve α in precisely two points.

For the formulation of the following lemma, for an I-bundle generator γ in a
thick subsurface X of ∂H, with base surface F , denote again by γ the distinguished
boundary component of F . A disk D ⊂ H with boundary ∂D ⊂ X which intersects
γ in precisely two points is an I-bundle over a simple arc β ⊂ F with boundary on
γ. Namely, if F is oriented then the inclusion F → J (F ) induces an isomorphism
of fundamental groups. As the boundary of a disk defines the trivial element in the
fundamental group of J (F ), the two components of ∂D−γ define inverse elements
in the fundamental group of F relative to γ. A similar argument can be used in
the case that F is non-orientable. We call β the projection of ∂D to F . With these
notations we show.

Lemma 4.2. Let X ⊂ ∂H be a thick subsurface and let γ be an I-bundle generator
in X, with base surface F . Then the map which associates to a disk D ∈ E(γ) the
projection of ∂D to F extends to a 2-quasi-isometry of E(γ) onto the electrified arc
graph C′(F, γ) of F .

Proof. Let γ be an I-bundle generator in X and let F be the base surface of the
I-bundle generated by γ. Let J (F ) be the oriented I-bundle over F as in the
definition of an I-bundle generator and let Ψ : J (F ) → H be a corresponding
embedding. Up to isotopy, we have Ψ(∂J (F )) ∩ ∂H = X. There is an orientation
reversing bundle involution Φ of J (F ) which exchanges the endpoints of the fibres.
The involution preserves Ψ(X) ⊂ ∂J (F ) and the curve γ. The quotient of Ψ(X)
under this involution equals the base surface F of the I-bundle. The projection of
γ is the distinguished boundary component of F , again denoted by γ.

Up to isotopy, if the boundary ∂D of a disk D in H is contained in X and inter-
sects the curve γ in precisely two points then ∂D is invariant under the involution Φ
(see the comment preceding this lemma). Thus the map Θ : V(C ′(F, γ))→ V(E(γ))
which associates to an arc β in F with endpoints on γ the I-bundle over β is a bi-
jection. Here V(C ′(F, γ)) (or V(E(γ))) is the set of vertices of C ′(F, γ) (or E(γ)).

If α, β ∈ V(C ′(F, γ)) are connected by an edge then either α, β are disjoint and
so are Θ(α),Θ(β), or α, β are disjoint from an essential simple closed curve ρ in F
and therefore the disks Θ(α),Θ(β) are disjoint from Ψ(ρ) ⊂ X. Thus Θ extends to
a 1-Lipschitz map C ′(F, γ)→ E(γ).

We are left with showing that Θ−1 : V(E(γ)) → V(C ′(F, γ)) is 2-Lipschitz
where V(E(γ)) and V(C ′(F, γ)) are equipped with the restriction of the metric
on E(γ), C ′(F, γ). To this end let α, β ∈ V(C ′(F, γ)) be such that Θ(α),Θ(β) are
connected by an edge in E(γ). If Θ(α),Θ(β) are disjoint then the same holds true
for α, β and hence α, β are connected by an edge in C ′(F, γ). Otherwise Θ(α),Θ(β)
are disjoint from an essential simple closed curve ρ. We view ρ as a curve on ∂J (F ).

The boundaries ∂Θ(α), ∂Θ(β) of the disks Θ(α),Θ(β) are invariant under the
involution Φ and therefore ∂Θ(α) ∪ ∂Θ(β) is disjoint from ρ ∪ Φ(ρ). As a conse-
quence, the projection of ρ to the base surface F is a union of essential arcs with
endpoints on γ and closed curves (not necessarily simple) which are disjoint from
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α ∪ β. If there is a component which is a simple arc with endpoints on γ or if
there is a component which is a simple closed curve then the distance in C ′(F, γ)
between α and β is at most two as claimed (note that this always holds true if F
is orientable). Otherwise the projection ρ∪Θ(ρ) consists of arcs and closed curves
which are not simple. However, any simple closed loop which is embedded in the
graph defined by these arcs and curves is essential and disjoint from α ∪ β. Thus
the claim follows as before. The lemma is proven. �

From Lemma 4.2, Lemma 4.1 and hyperbolicity of the curve graph of X ([MM99],
and [BF07] for the curve graph of a non-orientable surface) we immediately obtain

Corollary 4.3. There is a number δ > 0 such that each of the graphs E(γ) is
δ-hyperbolic.

Note that the number δ > 0 in the statement of the corollary only depends on
H but not on X. In fact, the main result of [A13, Bw14, CRS13, HPW13] together
with Lemma 4.2 shows that it can even be chosen independent of H.

We are left with the verification of the bounded penetration property. To this
end recall from [MM00] the definition of a subsurface projection. Namely, let again
X ⊂ ∂H be a thick subsurface and let Y ⊂ X be an essential, open connected
subsurface which is distinct from X, a three-holed sphere and an annulus. We call
such a subsurface Y a proper subsurface of X. The arc and curve graph AC(Y )
of Y (here we do not specify a boundary component) is the graph whose vertices
are isotopy classes of arcs with endpoints on ∂Y or essential simple closed curves
in Y , and two such vertices are connected by an edge of length one if they can be
realized disjointly. The vertex inclusion of the curve graph of Y into the arc and
curve graph is a 2-quasi-isometry [MM00].

There is a projection πY of the curve graph CG(X) of X into the space of subsets
of AC(Y ) which associates to a simple closed curve in X the homotopy classes of
its intersection components with Y . For every simple closed multicurve c in X, the
diameter of πY (c) in AC(Y ) is at most one. If c can be realized disjointly from Y
then πY (c) = ∅.

As before, call a path ρ in a metric graph G simplicial if ρ maps each interval
[k, k + 1] (where k ∈ Z) isometrically onto an edge of G. The following lemma is a
version of Theorem 3.1 of [MM00].

Lemma 4.4. There is a number B > 0 with the following property. Let Y be a
proper subsurface of X and let ρ be a simplicial path in CG(X) which is an L-quasi-
geodesic for some L ≥ 1. If πY (v) 6= ∅ for every vertex v on ρ then

diamπY (ρ) < BL3.

Proof. By hyperbolicity, for every L > 1 there is a number n(L) > 0 so that for
every L-quasi-geodesic ρ in CG(X) of finite length, the Hausdorff distance between
the image of ρ and the image of a geodesic ρ′ with the same endpoints does not
exceed n(L). Indeed, there is a number k > 0 only depending on the hyperbolicity
constant for CG(X) such that we can choose n(L) = kL2 (Proposition III.H.1.7 in
[BH99]).

Now let Y ⊂ X be a proper subsurface. By Theorem 3.1 of [MM00], there is a
number M > 0 with the following property. If ζ is any simplicial geodesic in CG(X)
and if πY (ζ(s)) 6= ∅ for all s ∈ Z in the domain of ζ then

diam(πY (ζ)) ≤M.
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Let L > 1, let ρ : [0, k] → CG(X) be a simplicial path which is an L-quasi-
geodesic and assume that

diam(πY (ρ(0) ∪ ρ(k))) ≥ 2M + L(2n(L) + 4).

Our goal is to show that ρ passes through the set A ⊂ CG(X) of all essential simple
closed curves in X − Y . The diameter of A in CG(X) is at most two.

To this end let ρ′ be a simplicial geodesic in CG(X) with the same endpoints as
ρ. Theorem 3.1 of [MM00] shows that there is some u ∈ Z such that ρ′(u) ∈ A.
Then ρ passes through the n(L)-neighborhood of A.

Let s + 1 ≤ t − 1 be the smallest and the biggest number, respectively, so that
ρ(s + 1), ρ(t − 1) are contained in the n(L)-neighborhood of A. Then ρ[0, s] (or
ρ[t, k]) is contained in the complement of the n(L)-neighborhood of A. Since ρ is
an L-quasi-geodesic, a geodesic connecting ρ(0) to ρ(s) (or connecting ρ(t) to ρ(k))
is contained in the n(L)-neighborhood of ρ[0, s] (or of ρ[t, k]) and hence it does not
pass through A. In particular,

diam(πY (ρ(0) ∪ ρ(s))) ≤M and diam(πY (ρ(t) ∪ ρ(k))) ≤M.

As a consequence, we have

(2) diam(πY (ρ(s) ∪ ρ(t))) ≥ L(2n(L) + 4).

Since dCG,X(ρ(s + 1), A) ≤ n(L) and dCG,X(ρ(t − 1), A) ≤ n(L) and since the
diameter of A is at most 2, we obtain dCG,X(ρ(s), ρ(t)) ≤ 2n(L) + 2. Now ρ is
a simplicial L-quasi-geodesic in CG(X) and hence the length t − s of ρ[s, t] is at
most L(2n(L) + 2) + L = L(2n(L) + 3). For all ` ∈ Z the curves ρ(`), ρ(` + 1)
are disjoint and therefore if ρ(`), ρ(` + 1) both intersect Y then the diameter of
πY (ρ(`) ∪ ρ(`+ 1)) is at most one. Thus if ρ(`) intersects Y for all ` then

diam(πY (ρ(s) ∪ ρ(t))) ≤ L(2n(L) + 3).

This contradicts inequality (2) and completes the proof of the lemma. �

For simplicity of notation, in the remainder of this section we identify disks in
H with their boundaries. In other words, for a thick subsurface X of ∂H we view
the vertex sets of the graphs SDG(X), EDG(X) as subsets of the vertex set of the
curve graph CG(X) of X.

Let SDG0(X) be the E-electrification of EDG(X). For each I-bundle generator γ
in X, the graph SDG0(X) contains a special vertex vγ . The vertex set of SDG0(X)
is the union of the set of all diskbounding simple closed curves in X with the set
{vγ | γ}. In particular, there is a natural vertex inclusion V(SDG0(X)) → CG(X)
which maps the special vertex vγ to the simple closed curve γ. Since SDG(X) is
quasi-isometric to the E-electrification of EDG(X), Proposition 3.5 shows that this
vertex inclusion extends to a quasi-isometric embedding SDG0(X)→ CG(X).

We aim at replacing the special vertices on a geodesic in SDG0(X) by geodesic
segments in the peripheral graphs Eγ while keeping track of subsurface projections.
To this end we associate to an efficient L-quasi-geodesic ρ : [0, n] → SDG0(X) a
simplicial path ρ̃ in the curve graph CG(X) as follows.

A vertex ρ(j) in SDG0(X) which is not one of the special vertices vγ also defines
a vertex in CG(X). If ρ(j), ρ(j+1) are two vertices of this kind which are connected
in SDG0(X) by an edge then they are connected in EDG(X) ⊂ SDG0(X) by an
edge. By the definition of the electrified disk graph, this means that there is a
simple closed curve α in X which is disjoint from ρ(j) ∪ ρ(j + 1). Thus ρ(j) and



HYPERBOLICITY OF RELATIVELY HYPERBOLIC GRAPHS 19

ρ(j + 1) can be connected in CG(X) by an edge path of length at most two. We
replace the edge ρ[j, j + 1] by such a path.

Similarly, if ρ(j) = vγ for an I-bundle generator γ in X, then ρ(j − 1), ρ(j + 1)
are vertices in EDG(X), i.e. diskbounding simple closed curves, Moreover, ρ(j −
1), ρ(j+1) intersect γ in precisely two points. Replace ρ[j−1, j+1] by an edge path
in CG(X) with the same endpoints whose length is at most four and which passes
through γ. The arc ρ̃ constructed in this way from ρ is a uniform quasi-geodesic in
CG(X) which passes through any I-bundle generator γ at most once, and it passes
through γ if and only if it passes through a simple closed curve which is disjoint
from γ. We call ρ̃ a canonical modification of ρ. By Proposition 3.5, the canonical
modification of an efficient L-quasi-geodesic in SDG0(X) is an L′-quasi-geodesic in
CG(X) for a number L′ > 0 only depending on L.

Now we are ready to show

Lemma 4.5. For every thick subsurface X of ∂H the family E has the bounded
penetration property.

Proof. Let γ be a separating I-bundle generator in X. Then X−γ has two homeo-
morphic components X1, X2 with a distinguished boundary component γ. Denote
by dAC(Xi) the distance in the arc and curve graph AC(Xi) of Xi (i = 1, 2) for
this boundary component of Xi. Every simple closed curve α in X which has an
essential intersection with γ projects to a collection of arcs α1, α2 in X1, X2 which
define subsets of AC(Xi) (i = 1, 2). If β is another simple closed curve intersecting
γ then define

dAC(X−γ)(α, β) = max{dAC(X1)(α1, β1), dAC(X2)(α2, β2)}.
If πγ : CG(X) → AC(X − γ) = AC(X1) ∪ AC(X2) denotes the subsurface pro-

jection then by Proposition 3.5 and Lemma 4.4, there is a number M(L) > 0 with
the following property.

Let ρ : [0, n]→ SDG0(X) be an efficient simplicial L-quasi-geodesic, with canon-
ical modification ρ̃. If

dAC(X−γ)(π
γ(ρ(0)), πγ(ρ(n))) ≥M(L)

then there is some k0 ∈ Z such that ρ̃(k0) = γ. Equivalently, there is some k < n
such that ρ(k) = vγ . Moreover,

dAC(Xi)(π
γ(ρ(0)), πγ(ρ(k − 1))) ≤M(L) (i = 1, 2),

and similarly

dAC(Xi)(π
γ(ρ(k + 1)), πγ(ρ(n))) ≤M(L) (i = 1, 2).

As a consequence, if ρ′ : [0, n′]→ SDG0(X) is another efficient simplicial L-quasi-
geodesic with the same endpoints, then there is some k′ < n′ such that ρ′(k′) = vγ ,
and

dAC(X−γ)(π
γ(ρ(k − 1)), πγ(ρ′(k′ − 1))) ≤ 2M(L),

dAC(X−γ)(π
γ(ρ(k + 1)), πγ(ρ′(k′ + 1))) ≤ 2M(L).

Lemma 4.2 and Lemma 4.1 now show that the distance in E(γ) between ρ(k −
1), ρ′(k′ − 1) and between ρ(k + 1), ρ′(k′ + 1) is uniformly bounded. In particular,
the bounded penetration property holds true for the subgraph E(γ) and for quasi-
geodesics connecting two disks whose boundaries have projections of large diameter
into X − γ.
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On the other hand, if ρ : [0, n] → SDG0(X) is any efficient simplicial L-quasi-
geodesic and if ρ(k) = vγ for some I-bundle generator γ then using once more
Lemma 4.4, we conclude that

dAC(X−γ)(π
γ(ρ(0)), πγ(ρ(k − 1))) ≤M(L).

Therefore the reasoning in the previous paragraph shows that whenever the distance
in E(γ) between ρ(k − 1), ρ(k + 1) is sufficiently large then

dAC(X−γ)(π
γ(ρ(0)), πγ(ρ(n))) ≥M(L).

In other words, the conclusion in the previous paragraph holds true, and the
bounded penetration property for separating I-bundle generators follows.

Now assume that γ is non-separating. Let πγ : CG(X) → AC(X − γ) be the
subsurface projection. Using the notations from the beginning of this proof, if the
distance in AC(X − γ) between πγ(ρ(0)) and πγ(ρ(n)) is at least M(L) then there
is some k so that ρ(k) = vγ . Moreover, we have ρ(k − 1) ∈ E(γ), ρ(k + 1) ∈ E(γ).
As a consequence, the curves ρ(k − 1), ρ(k + 1) are invariant under the orientation
reversing involution ϕ of X which preserves γ and extends to an involution of the
I-bundle defined by γ.

Let F be the base of the I-bundle defined by γ and let α, β ∈ C ′(F, γ) be the
projections of ρ(k − 1), ρ(k + 1). By Lemma 4.2, the distance in E(γ) between
ρ(k − 1), ρ(k + 1) is uniformly equivalent to the distance in C ′(F, γ) between α, β.
Since ρ(k − 1), ρ(k + 1) are invariant under the involution Φ, the main result of
[RS09] shows that this distance is also uniformly equivalent to the distance between
πγ(ρ(k − 1)) and πγ(ρ(k + 1)) in AC(X − γ).

In particular, if ρ′ is any other efficient L-quasi-geodesic in SDG0(X) with the
same endpoints, then there is some k′ with ρ(k′) = vγ , and the distance in E(γ)
between ρ(k−1), ρ′(k′−1) and between ρ(k+1) and ρ′(k′+1) is uniformly bounded.
The bounded penetration property follows in this case.

Finally, as in the case of a separating I-bundle generator, this argument can be
inverted. Together this completes the proof of the lemma. �

We can now apply Theorem 2.4 to conclude

Corollary 4.6. For every thick subsurface X of ∂H, the graph EDG(X) is δ-
hyperbolic for a number δ > 0 not depending on X. Enlargements of geodesics
in SDG0(X) are uniform quasi-geodesics in EDG(X). There is a number k > 0
such that for every I-bundle generator γ in X, the subgraph E(γ) of EDG(X) is
k-quasi-convex.

Proof. By Proposition 3.5, the E-electrification of EDG(X) is hyperbolic. The
bounded penetration property holds true by Lemma 4.5 and hence EDG(X) is
hyperbolic relative to E . By Corollary 4.3, there is a number δ > 0 such that each
of the subgraphs E(γ) is δ-hyperbolic. Thus the conditions in Theorem 2.4 are
satisfied. �

In the remainder of this section, we specialize to the caseX = ∂H. We begin with
establishing a distance estimate for the electrified disk graph EDG = EDG(∂H).

If γ is an I-bundle generator in ∂H then let πγ be the subsurface projection of
a simple closed curve in ∂H into the arc and curve-graph of ∂H − γ.
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For a subset A of a metric space Y and a number C > 0 define diam(A)C to be
the diameter of A if this diameter is at least C and let diam(A)C = 0 otherwise.
The notation � means equality up to a universal multiplicative constant.

Corollary 4.7. Let H is a handlebody of genus g ≥ 2. Then there is a number
C > 0 such that for any two disks D,E in H we have

dE(D,E) � dCG(∂D, ∂E) +
∑
γ

diam(πγ(∂D ∪ ∂E))C

where γ passes through all I-bundle generators on ∂H.

Proof. Let SDG0 be the E-electrification of EDG. For an I-bundle generator γ in
∂H denote by vγ the special vertex in SDG0 defined by γ.

Let ρ : [0, k] → SDG0 be a geodesic. By Corollary 2.8 and Corollary 4.6, an
enlargement ρ̂ of ρ is a uniform quasi-geodesic in EDG. Thus it suffices to show
that the length of ρ̂ is uniformly comparable to the right hand side of the formula
in the corollary.

By Proposition 3.5, there is a number L > 1 such that a simplicial arc ρ̃ in
the curve graph CG of ∂H constructed from ρ as in the proof of Lemma 4.5 is an
L-quasi-geodesic in CG. Lemma 4.5 shows that if ρ̂ is an enlargement of ρ then the
diameter of the intersection of ρ̂ with E(γ) equals the diameter of πγ(ρ(0) ∪ ρ(k))
up to a universal multiplicative and additive constant. This is what we wanted to
show. �

We complete this section with determining the Gromov boundary of the electri-
fied disk graph of H. To this end let H be a handlebody of genus g ≥ 2. Let L
be the space of all geodesic laminations on ∂H equipped with the coarse Hausdorff
topology [H06]. In this topology, a sequence of laminations λi converges to λ if
every accumulation point of λi in the usual Hausdorff topology for compact subsets
of ∂H contains λ as a sublamination. This topology is not Hausdorff.

Let

H ⊂ L
be the subspace of all minimal laminations which fill up ∂H, i.e. such that com-
plementary components are simply connected, and which are limits in the coarse
Hausdorff topology of diskbounding simple closed curves. The restriction to H of
the coarse Hausdorff topology is Hausdorff (see [H06] for a discussion of this fact).

For an I-bundle generator γ let ∂E(γ) ⊂ L be the set of all geodesic laminations
which consist of two minimal components filling up ∂H − γ and which are limits
in the coarse Hausdorff topology of boundaries of disks contained in E(γ). Each
lamination µ ∈ ∂E(γ) is invariant under the orientation reversing involution Φγ of
∂H which fixes γ pointwise and exchanges the endpoints of the fibres of the defining
I-bundle.

Define

∂EDG = H ∪
⋃
γ

∂E(γ) ⊂ L

where the union is over all I-bundle generators γ ⊂ ∂H. The handlebody group
Map(H) acts on ∂EDG equipped with the coarse Hausdorff topology as a group of
homeomorphisms.

Proposition 2.10 can now be applied to show
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Theorem 4.8. The Gromov boundary of EDG is Map(H)-equivariantly homeo-
morphic to ∂EDG.

Proof. We show first that the subspace ∂EDG of L is Hausdorff.
A point λ ∈ ∂EDG either is a minimal geodesic lamination which fills up ∂H, or

it is a geodesic lamination with two minimal components which fill up ∂H − γ for
some I-bundle generator γ. Let ν 6= λ be another such lamination. We claim that
ν and λ intersect. This means that for some fixed hyperbolic metric on ∂H, the
geodesic representatives of ν, λ intersect transversely.

If either ν or λ fills up ∂H (i.e. if the complementary components of ν or λ are
simply connected) then this is obvious. Otherwise ν fills up the complement of an I-
bundle generator γ, and λ fills up the complement of an I-bundle generator γ′. Now
the simple closed curve γ is the only minimal geodesic lamination which does not
intersect ν and which is distinct from a component of ν. The lamination λ consists
of two minimal components which are not simple closed curves and therefore the
geodesic laminations ν, λ indeed intersect.

Since ν, λ ∈ ∂EDG intersect, by the definition of the coarse Hausdorff topology
there are neighborhoods U of λ, V of ν in L so that any two laminations λ′ ∈
U, ν′ ∈ V intersect. In particular, the neighborhoods U, V are disjoint. This shows
that ∂EDG is Hausdorff.

Proposition 2.10 shows that there is a natural bijection Λ between ∂EDG and the
Gromov boundary of EDG. That this bijection is in fact a homeomorphism follows
from the description the Gromov boundary of the curve graph of ∂H as discussed
in [K99, H06] and Proposition 2.10.

To be more precise, let γ be a separating I-bundle generator for ∂H. The
orientation reversing involution Φγ of the I-bundle determined by γ restricts to a
homeomorphism of ∂H − γ which exchanges the two components of ∂H − γ. By
Lemma 4.1 and Lemma 4.2, the graph E(γ) can be identified with the complete
subgraph of CG whose vertex set is the set of all simple closed curves α in ∂H
which intersect γ in precisely in two points and are invariant under Φγ . Using again
Lemma 4.1, Lemma 4.2 and the description of the Gromov boundary of the curve
graph of a component of X − γ in [K99, H06], the Gromov boundary of E(γ) has a
natural identification with the space ∂E(γ) of all Φγ-invariant geodesic laminations
which consist of two minimal components, each of which fills a component of ∂H−γ.
The topology on this space is the coarse Hausdorff topology. A similar description is
valid for the Gromov boundary of E(ζ) where ζ is an orientation reversing I-bundle
generator.

Proposition 2.10 shows that the Gromov boundaries of the subspaces E(γ) are
embedded subspaces of the Gromov boundary of EDG. The Gromov boundary H
of SDG is embedded in the Gromov boundary of EDG as well. For every ξ ∈ H, a
neighborhood basis of ξ in the Gromov boundary of EDG consists of sets which are
unions of a neighborhood of ξ inH with sets ∂E(γ) where the curves γ are contained
in some neighborhood of ξ in CG∪∂CG. By the description of neighborhood bases of
ξ in CG ∪∂CG as neighborhoods of ξ in the space of geodesic laminations, equipped
with the coarse Hausdorff topology [K99, H06], a neighborhood basis of ξ as a
point in the Gromov boundary of EDG maps to a neighborhood basis of Λ(ξ) in
lamination space equipped with the coarse Hausdorff topology. The same holds
true for ξ ∈ ∂E(γ) where γ is any I-bundle generator. �
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5. Intermediate hyperbolic graphs

In this section we construct a graph whose vertices are disks and which can be
obtained from the disk graph by adding edges and from the electrified disk graph
by deleting edges. We use Corollary 2.8 to show that this graph is hyperbolic. The
construction in this section can be iterated inductively and yields hyperbolicity of
the disk graph as explained in Section 6.

First we slightly weaken the definition of thick subsurface of ∂H as follows.
Namely, define a connected properly embedded subsurface Y of ∂H to be visible
if every disk intersects Y and if moreover Y contains the boundary of at least one
disk. Thus a thick subsurface is visible, but a visible subsurface may not be filled
by boundaries of disks and hence may not be thick. Note that if Y is visible then
the electrified disk graph EDG(Y ) of Y is defined. However, if Y is not thick then
its diameter equals one.

Let as before X be a thick subsurface of ∂H. Recall from Remark 3.2 that X
is not a four holed sphere or a one holed torus. Define EDG(2, X) to be the graph
whose vertices are isotopy classes of essential disks with boundary in X. Two such
disks D,E in EDG(2, X) are connected by an edge of length one if either D,E are
disjoint or if ∂D, ∂E are disjoint from an essential multicurve β ⊂ ∂X consisting
of two components which are not freely homotopic.

Call a simple closed curve γ in X admissible if γ has the following properties.

(1) γ is neither diskbounding nor diskbusting.
(2) Either γ is non-separating or γ decomposes X into a three-holed sphere X1

and a visible second component X2.

For an admissible simple closed curve γ in X write EDG(X − γ) to denote the
electrified disk graph of the component of X − γ which is not a three-holed sphere.
Define F(γ) to be the complete subgraph of EDG(2, X) whose vertex set consists
of all disks which are disjoint from γ. As γ is not diskbounding by assumption, the
boundary of such a disk is not freely homotopic to γ. A disk D ∈ F(γ) defines a
vertex in EDG(X − γ).

Lemma 5.1. The vertex inclusion defines an isometry of F(γ) onto EDG(X − γ).

Proof. By Remark 3.2, if X is a five-holed sphere or a two-holed torus then F(γ)
and EDG(X) − γ contain at most one vertex, so there is nothing to show. Thus
assume that X is different from a five holed sphere or a two holed torus.

Two disks D,E ∈ F(γ) are connected by an edge in EDG(2, X) if and only if
either they are disjoint or if there is a pair β1, β2 of disjoint not homotopic essential
simple closed curves in X which are disjoint from both D,E.

If D,E are disjoint then they are connected in EDG(X−γ) by an edge, so assume
that D,E are disjoint from two disjoint not homotopic curves β1, β2. If one of the
curves β1, β2, say the curve β1, is disjoint from γ, then one of the two curves β1
(if β1 is not homotopic to γ) or β2 (if β1 is homotopic to γ) is an essential simple

closed curve X − γ. This curve must be contained in the component X̂ of X − γ
which is not a three holed sphere (note that if γ is non-separating then X̂ = X−γ).
Thus by definition, D,E viewed as vertices in EDG(X − γ) are connected by an
edge.

Now assume that both β1, β2 intersect γ. We claim that there is an essential
simple closed curve contained in the intersection of a tubular neighborhood of γ∪β1
with X̂ which is disjoint from γ and not homotopic to γ. This curve is then essential
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in X̂ and disjoint from γ,D,E and once again, D,E are connected by an edge in
EDG(X − γ).

To show the claim let η be a component of β1−γ. In the case that γ is separating
we require that η is contained in X̂. As X̂ is not a three-holed sphere or a one-holed
torus, one of the boundary components of a tubular neighborhood of γ ∪ η is an
essential simple closed curve in X̂ disjoint from γ and not freely homotopic to γ.

As a consequence, the vertex inclusion F(γ) → EDG(X − γ) extends to a
1-Lipschitz embedding. By definition, this embedding is surjective on vertices.
Moreover, any two vertices which are connected in EDG(X − γ) by an edge are
also connected in F(γ) by an edge. In other words, the 1-Lipschitz embedding
F(γ)→ EDG(X − γ) is in fact an isometry. �

Lemma 5.1 and Corollary 4.6 imply

Corollary 5.2. There is a number δ > 0 so that each of the graphs F(γ) is δ-
hyperbolic.

Let F = {F(γ) | γ} be the family of all these subgraphs of EDG(2, X) where γ
passes through all admissible curves in X. Our goal is to apply Theorem 2.4 to F .

Lemma 5.3. EDG(X) is 2-quasi-isometric to the F-electrification of EDG(2, X).

Proof. Let G be the F-electrification of EDG(2, X). We show first that the vertex
inclusion EDG(X)→ G is 2-Lipschitz.

To this end let D,E be any two vertices in EDG(X) which are connected by an
edge. Then either D,E are disjoint, or they are disjoint from a common essential
simple closed curve γ in X.

If D,E are disjoint then D,E viewed as vertices in EDG(2, X) are connected by
an edge in EDG(2, X).

Now assume that D,E are disjoint from a common essential simple closed curve
γ in X. If γ is diskbounding then the distance between D,E in the disk graph
of X is at most two and hence the same holds true for the distance in G. If γ is
admissible then D,E ∈ F(γ) and hence by the definition of the F-electrification of
EDG(2, X), their distance in G is at most two.

On the other hand, if γ is neither admissible nor diskbounding, then γ is a
separating simple closed curve inX. The surfaceX−γ is a disjoint union of essential
surfacesX1, X2 which are distinct from three-holed spheres. The boundaries ofD,E
are contained in X1 ∪X2.

If ∂D, ∂E are contained in distinct components of X − γ then D,E are disjoint
and hence D,E are connected by an edge in EDG(2, X). If ∂D, ∂E are contained in
the same component of X − γ, say in X1, then the second component X2 contains
an essential simple closed curve η, and ∂D, ∂E are disjoint from the multi-curve
γ ∪ η with two components. Once more, this implies that D,E are connected in
EDG(2, X) by an edge. As a consequence, the vertex inclusion EDG(X) → G is
indeed 2-Lipschitz.

That this inclusion is in fact a 2-quasi-isometry is immediate from the definitions.
Namely, if γ ⊂ X is admissible then by the definition of EDG(X), any two vertices
in F(γ) are connected in EDG(X) by an edge. �

Our goal is to use Lemma 5.3 and Theorem 2.4 to show hyperbolicity of the
graph EDG(2, X). To verify the bounded penetration property using the strategy
from Section 4 we have to carefully keep track of subsurface projections. To make
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this control quantitative, for κ > 0 define a simplicial path ζ : [0, n]→ EDG(X) to
be κ-good if for every thick subsurface Y of X there is a number u = u(Y ) ∈ [0, n)
with the following properties.

(1) For every j ≤ u, diam(πY (ζ(0) ∪ ζ(j))) ≤ κ.
(2) For every j > u, diam(πY (ζ(j) ∪ ζ(n))) ≤ κ.

As before, let SDG0(X) be the E-electrification of EDG(X). By Corollary 2.8,
enlargements of geodesics in SDG0(X) are uniform quasi-geodesics in EDG(X).

Lemma 5.4. There is a number κ > 0 not depending on X such that an enlarge-
ment of a geodesic in SDG0(X) is κ-good.

Proof. By Proposition 3.5 and Lemma 4.4, a geodesic ζ in SDG0(X) is κ0-good for
a number κ0 not depending on X.

Let ζ̃ : [0,m]→ CG(X) be a canonical modification of ζ. Suppose that Y ⊂ X is

a thick subsurface such that diam(πY (ζ̃(0) ∪ ζ̃(m))) ≥ κ0. Since ζ is κ0-good and

Y is thick, there is a unique number k > 0 so that ζ̃(k) is disjoint from Y , and ζ̃(k)
is not a diskbounding curve.

Recall from Section 3 the definition of the family E = {E(γ) | γ} of complete
subgraphs of EDG(X). Let ρ be an enlargement of ζ, let γ be an I-bundle generator
in X and let ρ[s, t] be a maximal subarc of ρ contained in E(γ). By maximality and

the definition of a canonical modification, there is some ` ≥ 0 such that ρ(s) = ζ̃(`)

and ρ(t) = ζ̃(` + 4). It now suffices to show that k 6∈ [`, ` + 4] and that there is a
number κ1 > 0 such that the diameter of the projection πY (ρ[s, t]) is at most κ1.

Since Y is thick and hence contains the boundary of some disk and since γ is an
I-bundle generator we have Y 6⊂ X−γ. We use this fact to show that k 6∈ [`, `+ 4].

For this we argue by contradiction and we assume otherwise. Then up to ex-
changing the orientation of ζ and ρ we have k = ` + 1 and ζ̃(k) is a simple closed

curve which is disjoint from the thick subsurface Y , from γ and from ρ(s) = ζ̃(`).
Moreover, Y intersects both ρ(s) (since ρ(s) is diskbounding) and γ (by assump-
tion).

Now let us assume that there is some simple closed curve α which is disjoint
from ρ(s) and γ and which intersects Y . Then we can replace ζ̃(k) by α and obtain
another uniform quasi-geodesic in CG(X) with the same endpoints. Each of the
vertices of this new quasi-geodesic intersects Y . By Lemma 4.4, this is impossible if
the diameter of the subsurface projection of the endpoints of ζ̃ is sufficiently large.

As a consequence, any simple closed curve disjoint from both γ and ρ(s) is disjoint
from Y . Since γ and ρ(s) intersect in precisely two points, a tubular neighborhood
of γ∪ρ(s) is a four-holed sphere (if γ is separating) or a two-holed torus (if γ is non-
separating). This tubular neighborhood then must be the subsurface Y . However,
by Remark 3.2, a four-holed sphere can not be thick. If Y is a two-holed torus then
Y is the boundary of an I-bundle over a two-holed projective plane and once again,
Y can not be thick. This is a contradiction and shows that k 6∈ [`, `+ 4].

Thus assume without loss of generality that `+4 < k (the case k < ` is treated in

the same way). If u ∈ (s, t) is arbitrary then the path obtained from ζ̃ by replacing

ζ̃[`, ` + 4] by an edge path of length at most eight with the same endpoints which
contains ρ(u) as a vertex is a uniform quasi-geodesic in CG(X). The lemma now
follows from Lemma 4.4. �
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By Corollary 4.6, enlargements of geodesics in SDG0(X) are uniform quasi-
geodesics in EDG(X). Define an level-2 hierarchy path to be a simplicial path in
EDG(2, X) which is an enlargement of an enlargement of a geodesic in SDG0(X).

Theorem 5.5. EDG(2, X) is hyperbolic. Level-2 hierarchy paths of geodesics in
SDG0(X) are uniform quasi-geodesics in EDG(2, X).

Proof. By Lemma 5.3, Lemma 5.1, Corollary 4.6 and Theorem 2.4 it suffices to
show that the family F = {F(γ) | γ admissible} satisfies the bounded penetration
property.

To this end let γ be an admissible simple closed curve in X and let ρ be an
enlargement of a geodesic ζ in SDG0(X). By Lemma 5.4 and the definition of an
enlargement, ρ passes through two points of large distance in F(γ) if and only if the
diameter of the subsurface projections into X−γ of the endpoints of ρ is large, and
this can explicitly be made quantitative. In other words, enlargements of geodesics
in SDG0(X) satisfy the bounded penetration property.

We have to show that this property holds true for any L-quasi-geodesic with the
same endpoints, with quantitative control only depending on L. Thus let L > 1 be
arbitrary and let β : [0,m]→ EDG(X) be any L-quasi-geodesic in EDG(X) with the
same endpoints as ρ. As ρ is a uniform quasi-geodesic in EDG(X), by hyperbolicity
there is a number n(L) > 0 only depending on L so that the Hausdorff distance
between the image of ρ and the image of β is at most n(L).

Now if γ is an admissible simple closed curve and if the diameter of the subsurface
projection of the endpoints of ρ into X−γ (i.e. into the component of X−γ which
is different from a three-holed sphere if γ is separating) is large then by Lemma
5.4, ρ passes through F(γ) and hence the quasi-geodesic β passes through the
n(L)-neighborhood of F(γ).

Let s0 + 1 ≤ t0 − 1 be the smallest and biggest number, respectively, so that
β(s0 + 1), β(t0 − 1) are contained in the n(L)-neighborhood of F(γ). The distance
between β(s0) and β(t0) is at most 2n(L) + 2. An enlargement of a geodesic in
SDG0(X) with endpoints β(0), β(s0) and β(t0), β(m), respectively, does not pass
through F(γ). Thus the diameter of the subsurface projection of β(s0)∪β(t0) into
X − γ is large.

A canonical modification of β[s0, t0] is an edge path in the curve graph of X
of uniformly bounded length. As the diameter of the subsurface projection of
its endpoints into X − γ is large, by Lemma 4.4 this path passes through the
complement of F(γ). Then β[s0, t0] passes through F(γ). Moreover, by the same
argument, β[s0, t0] contains two points in F(γ) whose distance in the curve graph
of X − γ to the two points on ρ is uniformly bounded.

As a consequence, given any admissible curve γ, a large subsurface projection
into X − γ of the endpoints of a uniform quasi-geodesic β in EDG(X) implies that
β passes through F(γ), moreover entry and exit points are contained in a fixed
size neighborhood (only depending on L) of points determined by the subsurface
projections of the endpoints. We refer to the proof of Proposition 3.1 in [H14] for
a version of this argument with all estimates explicit.

On the other hand, the same argument with the roles of ρ and β exchanged
also shows that for an admissible curve γ, a uniform quasi-geodesic in EDG(X)
passes through two points in F(γ) of large distance if and only if this is true for the
enlargement of a geodesic in SDG0(X). However, the latter holds true if and only
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if the diameter of the subsurface projection of the endpoints is large. This shows
the bounded penetration property and completes the proof of the theorem. �

As an illustration of the method used to establish hyperbolicity we observe

Corollary 5.6. The disk graph of a handlebody of genus 2 is hyperbolic.

Proof. Let H be a handlebody of genus two. By Theorem 5.5, it suffices to show
that the vertex inclusion DG → EDG(2, ∂H) is a quasi-isometry.

To this end observe that a connected component of the complement in ∂H of
a simple multicurve c with two components which are not freely homotopic either
is a four-holed sphere or a one-holed torus or a three-holed disk. By Remark 3.2,
if both components of c are not diskbounding then X − c contains at most one
boundary of a disk. Thus two disks which are connected by an edge in EDG(2, ∂H)
are disjoint and hence connected by a disk in DG. The corollary now follows from
Theorem 5.5. �

6. Hyperbolicity of the disk graph

The goal of this section is to complete the proof of Theorem 4 using an argument
which is new and simpler than the argument of Masur and Schleimer [MS13].

The idea is to define a finite chain of intermediate graphs lying geometrically
between the electrified disk graph and the disk graph. This chain begins with the
electrified disk graph and ends with the disk graph. With an inductive application
of the construction in Section 5 we show that each of these graphs is hyperbolic.

We next introduce the chain of graphs. Namely, for a thick subsurface X of ∂H
and for k ≥ 1 define EDG(k,X) to be the graph whose vertex set is the set of all
disks with boundary in X and where two such disks are connected by an edge of
length one if and only if either they are disjoint or they are disjoint from an essential
multicurve in X with a least k components. Note that if k equals the cardinality
of a pants decomposition for X then EDG(k,X) is just the disk graph of X. The
graph EDG(1, X) is the electrified disc graph EDG(X) of X which is hyperbolic by
Corollary 4.6. The graph EDG(2, X) is hyperbolic by Theorem 5.5.

The strategy is to deduce by induction on k hyperbolicity of EDG(k+1, X) from
hyperbolicity of EDG(k, Y ) where Y runs through all (not necessarily proper) thick
subsurfaces of X.

To this end define inductively a hierarchy of connected subsurfaces of X as
follows. A level-one subsurface is the complementary component of an admissible
curve which is not a three holed sphere. By induction, a level-k subsurface is a
level-one subsurface of a level-(k − 1) subsurface.

Let F(k,X) = {EDG(Y ) | Y } where Y runs through all level-(k−1) subsurfaces
in X. Corollary 4.6 implies

Lemma 6.1. F(k,X) is a family of δ-hyperbolic graphs for a number δ = δ(k) > 0
only depending on k.

We now use the family F(k,X) and Lemma 6.1 to show

Theorem 6.2. The disk graph DG(X) of a thick subsurface X of ∂H is hyperbolic.

Proof. Define inductively a level-k hierarchy path in EDG(k,X) to be an enlarge-
ment of a level-(k − 1) hierarchy path in EDG(k − 1, X). Here a level-2 hierarchy
path was defined in Section 5.
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For a number κ > 0 call a quasi-geodesic ζ : [0, n]→ EDG(X, k) (κ, k)-good if the
following holds true. Let Y be a thick subsurface of X which is properly contained
in a level (k − 1)-subsurface. Then there is a number u = u(Y ) ∈ [0,m) with the
following properties.

(a) For every j ≤ u, diam(πY (ζ(0) ∪ ζ(j))) ≤ κ.
(b) For every j > u, diam(πY (ζ(j) ∪ ζ(n))) ≤ κ.

As in Section 5, we show by induction on k the following.

(1) The F(k−1, X)-electrification of EDG(k,X) is 2-quasi-isometric to EDG(k−
1, X).

(2) The graph EDG(k,X) is hyperbolic relative to the family F(k,X) of com-
plete subgraphs. Level-k hierarchy paths are uniform quasi-geodesics.

(3) There is a number κk > 0 such that level-k hierarchy paths are (κk, k)-good.

Properties (1) and (2) for k = 1 is just Corollary 4.6. Property (3) for k = 1 is
the Lemma 5.3. Properties (1) and (2) for the case k = 2 was shown in Corollary
5.5.

By induction, assume that Properties (1),(2),(3) hold true for k−1 ∈ [1, 3g−3).
Property (1) for k follows as in the proof of Lemma 5.3. Namely, let D,E be disks

with boundary in X which are connected in EDG(k − 1, X) by an edge. We may
assume that D,E are not disjoint. Then D,E are disjoint from a multicurve α with
k−1 components. Let Y be the smallest subsurface of X filled by ∂D∪∂E. If X−Y
contains a diskbounding curve then the distance between D,E in EDG(k,X) is at
most two. If Y is properly contained in a level-(k−1)-subsurface of X then there is
a multicurve in X with k components which is disjoint from D∪E and hence D,E
are connected by an edge in EDG(k,X). Otherwise Y is a level-(k − 1)-subsurface
and hence D,E have distance at most two in the F(k − 1, X)-electrification of
EDG(k,X). Thus the vertex inclusion of EDG(k − 1, X) into the F(k − 1, X)-
electrification of EDG(k,X) is two-Lipschitz and in fact a two-quasi-isometry.

To show the bounded penetration property required in (2) above, let D,E be
any two disks with boundary in X and let ρ be a level-(k − 1)-hierarchy path in
EDG(k− 1, X) connecting D to E. By induction hypothesis, this path is a uniform
quasi-geodesic, moreover it is (κk−1, k − 1)-good.

By the reasoning in the proof of Theorem 5.5, such a path has the bounded
penetration property for the subgraphs from the family F(k−1, X) with constants
only depending on k−1. By induction hypothesis, level-(k−1)-hierarchy paths are
uniform quasi-geodesics in EDG(k − 1, X) and therefore the bounded penetration
property for the family F(k − 1, X) follows from the argument in the proof of
Theorem 5.5 without modification.

The reasoning in the proof of Lemma 5.4 implies moreover Property (3) above
(see also [H14] where this argument is used in a more complicated situation).

As remarked earlier, if k is the number of simple closed curves in a pants de-
composition of X then EDG(k,X) = DG(X). This completes the proof of Theorem
6.2. �

For a thick subsurface Y of ∂H denote as before by πY the subsurface projection
of simple closed curves into the arc and curve graph of Y . If γ is an I-bundle
generator in a thick subsurface Y then let πγ be the subsurface projection into
Y − γ.
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The following corollary is now immediate from our construction. It was earlier
obtained by Masur and Schleimer (Theorem 19.9 of [MS13]).

Corollary 6.3. There is a number C > 0 such that

dD(D,E) �
∑
Y

diam(πY (E ∪D))C +
∑
γ

diam(πγ(E ∪D))C

where Y passes through all thick subsurfaces of ∂H, where γ passes through all I-
bundle generators in thick subsurfaces of ∂H, and the diameter is taken in the arc
and curve graph.

For a thick subsurface Y of ∂H let ∂EDG(Y ) be the Gromov boundary of
EDG(Y ). Define

∂DG = ∪Y ∂EDG(Y ) ⊂ L
where the union is over all thick subsurfaces of ∂H and where this union is viewed
as a subspace of L, i.e. it is equipped with the coarse Hausdorff topology. The proof
of the following statement is completely analogous to the proof of Proposition 4.8
and will be omitted.

Corollary 6.4. ∂DG is the Gromov boundary of DG.
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