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Abstract

We give a geometric interpretation of Fock–Goncharov positivity and show that
bending deformations of Fuchsian representations stabilize a uniform Finsler quasi-
convex disk in the symmetric space PSLd(R)/PSO(d).
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Introduction

The Teichmüller space T (S) of a closed oriented surface S of genus g ≥ 2 is the space
of marked hyperbolic structures on S, homeomorphic to R6g−6. Equivalently, it can be
described as a distinguished component of the space of conjugacy classes of homomorphisms
π1(S) → PSL2(R), with target the group PSL2(R) of orientation preserving isometries
of the hyperbolic plane. It was discovered by Hitchin [Hit92] that an analog of the
Teichmüller space also exists for conjugacy classes of representations of π1(S) into simple
split real Lie groups of higher rank, which is also homeomorphic to a Euclidean space.

The so-called Hitchin component Hit(S) for the target group PSLd(R) (d ≥ 3) is the
component of the character variety containing conjugacy classes of so-called Fuchsian
representations, namely discrete representations which factor through an irreducible
embedding PSL2(R) → PSLd(R). Hitchin [Hit92] showed that the Hitchin component is
homeomorphic to Rm for m = (2g − 2)dim(PSLd(R)), and later Labourie [Lab06] and
Fock–Goncharov [FG06] independently proved that all representations in the Hitchin
component are faithful with discrete image. Thus each point in the Hitchin component
defines a locally symmetric manifold with fundamental group isomorphic to π1(S). The
mapping class group Mod(S) of S of isotopy classes of diffeomorphisms of S acts properly
by precomposition on the Hitchin component.

In this article we study the geometry of a distinguished class of these locally symmet-
ric manifolds, obtained by deforming Fuchsian representations via the famous bending
procedure described below, which is in our opinion the simplest kind of deformation. We
will see that the geometry of such manifolds is governed by the geometry of an explicit
piecewise totally geodesic embedded subsurface. This subsurface will be constructed by
grafting flat cylinders into a hyperbolic surface. In a sequel to this work [BHMM24], this
will be used to investigate the so-called pressure metric on the Hitchin component defined
by Bridgeman–Canary–Labourie–Sambarino [BCLS15].

Given a hyperbolic metric X on S and a simple closed geodesic γ ⊂ X, one can define
two types of deformations of X. The first consists in shrinking the length of γ (this
depends on the choice of a pair of pant in S on each side of γ). Another deformation
consists in shearing the metric along γ, that is, rotating along γ the two components
of A \ γ where A ⊂ S is an annulus containing γ as its core curve. This is the type of
deformation we study here, adapted to the higher rank setting. Beyond their simplicity,
shearing deformations have many interesting features: they are used to define the famous
Fenchel–Nielsen coordinates on the Teichmüller space; they define a symplectic flow on
the Teichmüller space; they can be generalised into earthquakes (shearing along measured
geodesic laminations), which give another coordinate system for the Teichmüller space.

There is a more group theoretic interpretation of shearing. Namely, if γ is separating,
then π1(S) splits into an amalgamated product and shearing can be thought of as a
partial conjugation (conjugate only one factor of the product) of the representation of
π1(S) into PSL2(R) defining X, under an element in the infinite cyclic centralizer of γ
in PSL2(R). If γ is non-separating, then π1(S) is an HNN-extension and there is an
analogous interpretation of shearing. This interpretation of shearing immediately extends
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to the Hitchin component, where now the (identity component of the) centralizer of
γ ∈ PSLd(R) is conjugate to the group of matrices exp(z) where z is a trace-free diagonal
matrix. The resulting deformations of Fuchsian representations are called bending or
bulging deformations, and we call bending parameter the matrix z used to perform the
bending. Such deformations have frequently been looked at in the literature, see for
example [Gol86; FK16; AZ23], and they correspond to the rational deformations of
Fock and Goncharov [FG06]. Bending can also be carried out along a simple geodesic
multicurve γ, and then the bending transformation consists of a k-tuple of transformations
where k is the number of components of γ. Bending techniques have been used in other
geometric contexts as well, for example to study Kleinian groups (see, e.g. [Thu97]),
pseudohyperbolic geometry [Mes07], or projective geometry [JM87].

Our geometric study involves, instead of the usual Riemannian metric, a PSLd(R)-
invariant Finsler metric F on the symmetric space X = PSLd(R)/PO(d). Consider the
convex cone a+ of trace-free diagonal matrices with entries x1 ≥ · · · ≥ xd in descending
order. It can be seen as a subset of the tangent bundle TX (in the tangent space of a
fixed basepoint), where it is a fundamental set for the action of PSLd(R). Then any
positive linear functional α0 on a+ satisfying symmetry and convexity assumptions (see
Notation 1), for instance

α0(x) = (d− 1)x1 + (d− 3)x2 + · · ·+ (1− d)xd, (1)

determines a PSLd(R)-invariant Finsler metric F on X. We denote by dF the distance
function induced by F; this function is bi-Lipschitz equivalent to the distance function of
the usual Riemannian metric.

Following Thurston (see [Tan97] for details), define the abstract grafing of a hyperbolic
surface X along a simple geodesic multi-curve γ∗ = γ1 ∪ · · · ∪ γk with grafting heights
L1, . . . , Lk to be the surface obtained from X by cutting X open along the geodesics
γi and inserting a flat cylinder of height Li. Thus the abstract grafted surface can be
thought of as a geometric structure on X which is piecewise flat or of constant curvature
−1. It will be convenient to allow that the flat metric on the cylinders is defined by a
non-eulidean norm on R2.

The following is our main result. It shows that in a very precise sense, abstract
grafted surfaces serve as geometric models for Hitchin representations obtained from
Fuchsian representations by bending. In its formulation, the cylinder height of a bending
representation at a component γi of the bending locus γ is the Finsler distance between
γi and its image under the bending transformation. The grafted surface mentioned below
is defined in Definition 2.1, and illustrated in Figure 1.

Theorem A. For every σ > 0, there exists Cσ > 0 such that the following holds.
Consider a closed hyperbolic surface S, a multicurve γ∗ ⊂ S whose components have

length at most σ, and a bending parameter z such that all cylinder heights of the resulting
bending representation are bounded from below by some number L > 0.

Then there exists an abstract grafted surface Sz, with universal covering S̃z, and a
π1(S)-equivariant embedding Q̃z : S̃z → (X, dF) which is quasi-isometric with multiplicative
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constant (1 + Cσ/(L+ 1)) and additive constant Cσ. Moreover, the image S̃ι
z = Q̃z(S̃z)

is Cσ-Finsler-quasiconvex in the sense that for all x, y ∈ Q̃z(S̃z), there is at least one
Finsler geodesic from x to y at distance at most Cσ from S̃ι

z.

The result motivates us to mostly use the term grafting representations instead of
talking about bending. Theorems 5.1 and 5.2 are more precise versions of this result.

In Section 12 of [KL18], Kapovich and Leeb proved that for any Hitchin representation,
all orbit maps are Finsler quasi-convex. The main point of our result is that constants
are independent of the representation, a result which cannot be obtained from Kapovich–
Leeb’s approach.

The results of Kapovich–Leeb rely on a version of a Morse lemma in higher rank
symmetric spaces (Theorem 1.3 of [KLP18], see also [KL18]). The proof of Theorem A
is independent of the results in [KLP18; KL18], but also embarks from a (different)
Morse-type lemma for Finsler metrics.

Theorem B. For every C > 0 there exists a number C ′ > 0 with the following property.
Let c : [a, b] → (X, dF) be a map such that

dF(c(s), c(u)) + dF(c(u), c(t)) ≤ dF(c(s), s(t)) + C

for all a ≤ s ≤ u ≤ t ≤ b. Then there exists a Finsler geodesic connecting c(a) to c(b) at
Hausdorff distance at most C ′ to c.

Theorem B does not hold for the Riemannian metric. We refer to Section 3 for more
information.

A key ingredient in the proof of Theorem A is the construction of paths, with the
properties stated in Theorem B for Hitchin representations obtained by bending a Fuchsian
representation. This construction relies on positivity in the sense of Fock–Goncharov
[FG06] and can be viewed as a geometric interpretation of positivity. It gives an alternative
approach towards the understanding of Hitchin representations via uniformly Morse paths
in the sense of [KLP18], with geometric control of a different nature.

Theorem A can be used to study the degeneration of a Hitchin grafting ray, letting
the grafting parameter go to infinity. For instance, one can study the limit in the
compactification of the Hitchin component introduced by Parreau [Par12; Par00]. A
representation is identified with the projectivization of its ā+-valued length function (the
Jordan projection), living in a compact infinite-dimensional projective space. A limit point
of this compactification can be seen, via a rescaling procedure, as the length function of
an action of π1(S) on an affine building, which is an asymptotic cone of X. In [BHMM24],
we examine other bordifications of the Hitchin component such as Loftin’s [Lof19].

The limit in Parreau’s compactification of certain representations obtained via bending
has already been studied by Parreau in her thesis (Section V.5 of [Par00]). More precisely,
Parreau assumes d = 3 and deforms a Fuchsian representation by pinching a curve and
bending along it. She obtains an explicit formula for the limit length function. Our
results can be used to reprove this, and also to get formulas in other cases, for instance
when no pinching is performed, and with d ≥ 3. This is the content Theorem C stated
below, after we mention a few other works.
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Note that Parreau also defined in her context the grafted surface studied here (see
Figure V.4 of [Par00]), although she did not prove quasi-convexity. In [Par22; LTW22;
Rei23], limits in Parreau’s compactification of other kinds of deformations are studied. In
the first two papers, the authors construct an explicit invariant Finsler-convex subset for
the limiting action on an affine building. (Finsler-convex means any two points of the
subset can be connected by at least one Finsler geodesic; Parreau uses the terminology
“weakly convex”.) Our results also give such a natural invariant convex set.

For simplicity, suppose γ∗ ⊂ S is an oriented simple closed curve and S0 is one of the
component of S−γ∗. Following Parreau, one can define positive and negative intersection
numbers ι±(γ, γ∗) of a closed oriented curve γ ⊂ S with γ∗.

Theorem C. Let ρt be a Hitchin grafting ray with grafting locus γ∗ and grafting parameter
tz, where z ∈ a with nonzero cylinder height. Then the following properties hold true.

1. (ρt)t converge, as t goes to infinity, to the point of Parreau’s compactification given
by the projectivization of the a+-valued length function

γ 7→ ι+(γ, γ∗)κ(z) + ι−(γ, γ∗)κ(−z),

where κ is the Cartan projection.

2. For the corresponding π1(S)-action on an asymptotic cone B of X, there is an
invariant Finsler-convex subset T ⊂ B isometric to the Bass–Serre tree of the graph
of groups decomposition defined by γ∗, with edges decorated with κ(z) or κ(−z).

3. For a suitable choice of basepoint, the quotient manifolds ρt(π1(S))\X converge in
the pointed Gromov–Hausdorff topology to the Fuchsian manifold defined by the
bordered hyperbolic surface S0.

Compare the formula for the length function with Proposition V.5.9 of [Par00].

Organization of the article and outline of the proofs. All main results in this
article build on the concept of admissible paths in the Lie group PSLd(R). Such a path
can be thought of as a (continuous) path which projects to a piecewise geodesic in the
symmetric space X. Each geodesic piece corresponds either to a geodesic arc in a totally
geodesic embedded H2, or to an arc in a maximal flat, and these two types can be read
off from the path in PSLd(R). Furthermore, the construction is done in such a way that
it encodes positivity properties of the path in the sense of [FG06]. This positivity then
guarantees quantitative non-backtracking.

Admissible paths in PSLd(R) and X and their analogs for abstract grafted surfaces are
introduced in Section 2.5. Their natural appearance for grafting deformations of Fuchsian
representations is via so-called characteristic surfaces, introduced in Section 2.4.

In Section 3, we introduce a very general class of invariant Finsler metrics on X defined
by polyhedral norms in a Cartan subalgebra. We study geometric properties of these
norms on Rd−1 in Section 3.2. The remainder of Section 3 is devoted to the proof of
Theorem B.
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In Section 4, the relation of admissible paths in PSLd(R) to positivity in the sense of
[FG06] is established. These results are applied in Section 5 to prove Theorem A and
Theorem C.

Acknowledgement: This project started as a working seminar in Fall 2021, during
the pandemic, held in person at the Max Planck Institute for Mathematics in Bonn. We
thank the MPI for the hospitality and financial support, and we thank Gianluca Faraco,
Elia Fioravanti, Frieder Jäckel, Yannick Krifka, Andrea Egidio Monti, Laura Monk and
Yongquan Zhang for many enjoyable discussions and good company. P.-L.B. is grateful
to Dick Canary, Fanny Kassel and Ralph Spatzier for helpful discussions, and U.H. and
P.-L.B. thank Andrés Sambarino for helpful discussions. All authors thank Beatrice
Pozzetti for pointing out an error in an earlier version of this article.

1 Lie groups and symmetric spaces

This section collects some basic facts on Lie groups and symmetric spaces and introduces
conventions and notations used later on.

Consider the simple Lie group G = PSLd(R) and a representation τ : PSL2(R) → G,
that is, a locally injective Lie group homomorphism. Many (but not all) of our results
work for other semisimple Lie groups, and their proofs are easier to write using the
abstract language of semisimple Lie groups, which we recall below.

Recall that the Lie algebra sl(2,R) of PSL2(R) is the Lie algebra of trace free real
(2, 2)-matrices. Denote by g = TidG the Lie algebra of G, by a ⊂ g a Cartan subalgebra
(maximal abelian subalgebra when G is split) that contains dτ

(
1 0
0 −1

)
and by a+ ⊂ a

an open Weyl cone whose closure a+ contains dτ
(
1 0
0 −1

)
(the definition of Weyl cone is

recalled later in this section).
We require the representation τ to be regular, that is, dτ

(
1 0
0 −1

)
belongs to the interior

a+ of the Weyl chamber, or equivalently, there is a unique Cartan subspace a containing
dτ
(
1 0
0 −1

)
.

Maximal compact subgroup and symmetric space
Let K ⊂ G be a maximal compact subgroup which contains τ(PSO(2)) and whose

Lie algebra k is orthogonal (for the Killing form) to a.
The symmetric space of G is X = G/K with basepoint x = [id] = K ∈ G/K . Denote

by πX : G → X the projection. The space X is endowed with a nonpositively curved
G-invariant Riemannian metric whose induced norm is denoted by ∥·∥, and whose distance
function is denoted by dX. The metric is normalised so that ∥dτ

(
1 0
0 −1

)
∥ = 2.

Maximal Flats
The subspace exp(a) · x is a totally geodesic embedded Euclidean subspace of X of

maximal dimension. This flat will often be identified with the abelian subgroup A = exp(a)
which acts simply transitively on it. Each maximal Euclidean subspace of X can be
represented as g · A for some g ∈ G. These maximal Euclidean subspaces are called
maximal flats.
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Root systems
Let R ⊂ a∗ be the set of restricted roots of G, that is, the set of non-zero linear

one-forms α on a such that

gα := {X ∈ g | [a,X] = α(a)X ∀a ∈ a} ≠ 0.

Recall that G being split means that

g = a⊕
⊕
α∈R

gα.

The kernels of the restricted roots are the walls of a, and the open Weyl cones are the
connected components of the complements of the walls. By our regularity assumption
on τ there is a unique open Weyl cone containing dτ

(
1 0
0 −1

)
.

Let R+ := {α ∈ R : α(dτ
(
1 0
0 −1

)
) > 0} be the set of positive roots, and R− = −R+

the set of negative roots. Let ∆ ⊂ R+ be the set of simple roots (the positive roots that
are not sums of several other positive roots).

Minimal parabolic subgroups and flag variety
The normalizer P := NG(

⊕
α∈R+ gα) ⊂ G for the adjoint representation is a minimal

parabolic subgroup. Its Lie algebra is p := a ⊕
⊕

α∈R+ gα. The opposite parabolic
subgroup is P− := NG(

⊕
α∈R− gα).

The flag variety F := G/P is compact. In fact, K acts transitively on it, with finite
point stabilizer.

A notable subgroup of P is U = exp
(⊕

α∈R+ gα
)
. The dynamics coming from the

geometry of the symmetric space and other homogeneous spaces of G has some contraction
properties that are recorded in the following algebraic fact: for any u = exp(

∑
α∈R+ Xα)

in U , for any sequence (an)n ⊂ a+ that diverges from the walls (i.e. α(an) → +∞ for
any α ∈ R+), we have

exp(−an) · u · exp(an) = exp

 ∑
α∈R+

e−α(an)Xα

 −→
n→∞

id . (2)

If (an)n does not diverge from all the walls but only some of them, then there is still a
more complicated weaker contraction property.

Maps induced by τ
Let T ⊂ PSL2(R) be the subgroup of upper triangular matrices. The ideal bound-

ary ∂∞H2 = PSL2(R)/T of the hyperbolic plane H2 = PSL2(R)/PSO(2) is natu-
rally homeomorphic to the circle R ∪ {∞} under the map t 7→ [( 1 t

0 1 ) · ( 1 0
1 1 )] and

∞ 7→ [id] = T ∈ PSL2(R)/T .
One can check that τ(T ) ⊂ P and that τ induces an embedding

∂τ : ∂∞H2 ↪→ F = G/P.

Transversality in the flag variety
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Two flags ξ, η ∈ F are said to be transverse if there exists g ∈ G such that gξ = ∂τ(0)
and gη = ∂τ(∞); in this case we write ξ ⋔ η. The set of transverse pairs of flags is an
open dense subset of F2.

The set of flags transverse to ∂τ(0) is

∂τ(0)⋔ := P− · ∂τ(∞) = exp

 ⊕
α∈R−

gα

 · ∂τ(∞). (3)

Similarly, for any flag ξ denote by ξ⋔ the set of flags transverse to ξ. It is an open dense
subset of F . Note that by our convention, P− equals the stabilizer of ∂τ(0) in F .

Any two transverse flags are contained in the boundary of a unique maximal flat. The
maximal flat asymptotic to the transverse flags ∂τ(0) and ∂τ(∞) equals A · x ⊂ X.

More generally, the flat between (that is, asymptotic to) any two transverse flags
(ξ, η) = g(∂τ(0), ∂τ(∞)) is

F (ξ, η) := gA · x = gA ⊂ X.

Jordan and Cartan projections, and loxodromic elements
For any g ∈ G, the Cartan projection is the unique element κ(g) ∈ a+ such that g ∈

K exp(κ(g))K. Putting A+ = exp(a+), it is characterized by the fact that exp(κ(g))x is
the unique intersection point of A+x with the K-orbit of gx. Note that d(x, gx) = ||κ(g)||
(here d is the distance of the symmetric metric on X).

Similarly, the G-orbit of any vector v ∈ TX intersects a+ ⊂ p in precisely one point
κ(v) which is called the Cartan projection of v.

For the Jordan projection λ(g) ∈ a+ we choose the following unnatural but convenient
definition (see Remark 5.31 of [BQ16])

λ(g) := lim
n→∞

1

n
κ(gn).

The element g ∈ G is called loxodromic if λ(g) is contained in the interior a+ of a+,
which is equivalent to saying that g has an attracting/repelling fixed pair of transverse
flags (g−, g+). Then g acts as a translation on the flat F (g−, g+).

That the representation τ is regular means that the image τ(g) of any loxodromic
g ∈ PSL2(R) is loxodromic in G.

Weyl Chambers and special directions
Since the symmetric space X is nonpositively curved, it admits a visual boundary ∂∞X,

which is naturally identified with the set of unit speed infinite geodesic rays starting at
the basepoint x.

By the normalization of the metric on X, the representation τ induces an isometric
embedding H2 ↪→ X. The isometric embeddings A ↪→ X, H2 ↪→ X extend to embeddings
of the visual boundaries ∂∞A ↪→ ∂∞X, ∂∞H2 ↪→ ∂∞X.
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For any g ∈ G, we identify ξ = g∂τ(∞) ∈ F with a compact subset of the visual
boundary ∂∞X, called a (closed) Weyl Chamber:

ξ = g∂∞A+ = g · { lim
t→∞

exp(tv)x : v ∈ a+} ⊂ g∂∞A ⊂ ∂∞X.

It is the boundary at infinity of the Weyl Cone gA+ based at gx. The facets of ξ =
g∂τ(∞) ∈ F are the subsets of the form

g · ∂∞

(
A+ ∩

⋂
α∈S

kerα

)
⊂ ξ,

where S is a subset of ∆; they are boundaries at infinity of facets of the Weyl Cone gA+.
Every G-orbit in ∂∞X intersects exactly once every Weyl Chamber. In particular, to

every Weyl Chamber ξ ∈ F and every point p in the standard Weyl Chamber ∂τ(∞) one
can associate a point of ξ, which is the intersection point of ξ with G · p. The embedding
∂∞H2 → ∂∞X determines a special point of ∂τ(∞). Its orbit under G determines a
special point in every Weyl Chamber.

The Weyl group
Let us recall the definition of the Weyl group, denoted by Weyl. It is the intersection

of the maximal compact subgroup K of G with the stabilizer of a, in restriction to a
(so quotiented out by the fixator of a in G). It can also be described as the group of
orthogonal transformations of a generated by the reflections along the walls (kerα)α∈∆+

of the closed Weyl Chamber a+. The Weyl group is finite, and any Weyl-orbit in a
intersects a+ exactly once.

A Finsler metric coming from a linear functional on a

Notation 1. We fix a linear functional α0 on a which is positive on a+ and such that
α0(gv) < α0(v) for all v ∈ a+ and g ∈ Weyl.

We assume that α0 is symmetric in the sense that if g is the transformation in the
Weyl group that maps a+ to its opposite −a+ then α0(gv) = −α0(v) for any v ∈ a.

Let us denote by α#
0 the vector in a such that α0(v) = ⟨v, α#

0⟩ for any v ∈ a, where ⟨·, ·⟩
is the inner product on a defined by the Riemannian metric on X. Then the assumption
above on α0 is equivalent to asking that α#

0 ∈ a+. We also denote by α#
0 ∈ ∂∞a+ the point

at infinity to which the ray spanned by α#
0 limits.

An example of a linear functional satisfying the above conditions is given in Equation 1.
Let k ⊂ g be the Lie algebra of the maximal compact subgroup K of G. The orthogonal

complement p of k with respect to the Killing form is naturally isomorphic to TxX, and it
contains a. For any vector v ∈ TX we set

F(v) = α0(κ(v)) (4)

where as before, κ(v) is the Cartan projection of v.

Proposition 1.1 (Lemmas 5.9-10 of [KL18]). The following hold.
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1. F defines a G-invariant Finsler metric on X.

2. The unparameterized Riemannian geodesics of X are also geodesics for F.

3. The translation length for F of any element g ∈ G acting on X is given by ℓF(g) :=
α0(λ(g)) where λ(g) ∈ a+ is the Jordan projection.

In the sequel we always normalize the functional α0 in such a way that the embedding
H2 → X which is isometric for the symmetric metric also is isometric for the Finsler
metric F.

Busemann functions
The Busemann functions, or horofunctions, are generalizations of distance functions

on X: they record relative distances to a point at infinity. Geometrically, their level sets,
called horospheres, are limits of spheres whose centers go to infinity. Since there are
several kinds of metrics on X, there are also several kinds of horofunctions.

Because of the contraction property of the subgroup U ⊂ G explained in (2), horo-
spheres centered at a point p in the interior of the Weyl chamber ∂τ(∞) will always be
U -invariant, since for any u ∈ U , for any (xn)n converging to p we have d(xn, uxn) → 0
for any G-invariant metric d. In fact, every distance sphere of X (for any G-invariant
metric) is foliated by orbits of the stabilizer of the center, and U -orbits can be described
as limits of these leaves when the center tends to a point in the interior of ∂τ(∞).

The leaves foliating the spheres centered at a given point can be parameterized by
vectors of a+, which one may think of as vector-valued distances. Namely, the G-orbit of
any pair (x, y) ∈ X2 intersects {x} × A+ exactly once, and the intersection is denoted
(x, exp(κ(x, y))), where κ(x, y) ∈ a+ is thought of as a vector-valued distance from x to y.
The orbits of the stabilizer of x are the level sets of κ(x, ·). The Riemannian distance
from x to y can be expressed as ||κ(x, y)||, and the Finsler distance as defined in (4) can
be expressed as

dF(x, y) = α0(κ(x, y)). (5)

Using the U -orbits one can define a vector-valued Busemann function centered at
∂τ(∞): for any x ∈ X, the U -orbit U · x intersects the standard flat A ⊂ X in exactly
one point, and taking the logarithm we get a vector ba∂τ(∞)(x, x) ∈ a, that records the
relative distance from x to ∂τ(∞) compared to the basepoint x. One can check using the
contraction property of U that if (yn)n ⊂ A+ converge to a point in the interior of the
Weyl Chamber ∂τ(∞) then the Stab(yn)-orbits converge to level sets of ba∂τ(∞)(x, ·).

Using the action of K, one can extend these vector-valued Busemann functions to
Weyl chambers other than ∂τ(∞). For any Weyl Chamber ξ = k∂τ(∞) ∈ F = G/P ,
the vector-valued Busemann function or horofunction centered at ξ between x and x is
baξ(x, x) = ba∂τ(∞)(x, k

−1x), and more generally for x, y ∈ X we have:

baξ(x, y) = −baξ(x, x) + baξ(x, y) = lim
n→∞

κ(zn, x)− κ(zn, y) ∈ a,

where (zn)n ⊂ X is any sequence converging to a point of the visual boundary in the
interior of ξ. One way to check the above formula is to find kn ∈ K such that knzn ∈ A+,
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use that κ(zn, x) = κ(knzn, knx), and pass to a subsequence to make kn converge to some
k ∈ K.

A horosphere in X based at a point in the visual boundary ∂∞A of A = A · x equals
the U -obit of a horosphere in A. Given a sequence (zn)n in A going to a point p in
the visual boundary of A, in the interior of the Weyl chamber ∂∞A+, the sequence of
Riemannian spheres in A which are centered at zn and pass through the origin 0 converges
to the hyperplane in A containing 0 and perpendicular to the ray from 0 to p. One can
check that on the other hand, the sequence of Finsler spheres, that is, the level sets of dF,
converges to the kernel of α0, which does not depend on p and which, in the notation 1,
is the hyperplane perpendicular to α#

0 ∈ ∂∞A+.
The R-valued Busemann function bp(x, y) associated to the Riemannian metric on X

and centered at a point p in the interior of some Weyl chamber ξ ⊂ ∂∞X is the limit
limn→∞ d(x, zn)− d(y, zn) where zn → p. If q is the intersection point of ∂τ(∞) with the
G-orbit of p then we have bp(x, y) = ⟨baξ(x, y), v⟩ where v ∈ a is the unit vector pointing
at q and ⟨·, ·⟩ is the inner product on a.

The Busemann function associated to our choice of Finsler metric is given by

bFξ (x, y) = α0(b
a
ξ(x, y)) = lim

n→∞
dF(x, zn)− dF(y, zn) ∈ R. (6)

Here the last equality in the identity (6) is valid since F is defined by a linear functional
on a+. Moreover, for any loxodromic element g ∈ G with attracting fixed point ξ ∈ F ,
the translation length of g acting on X endowed with the Finsler metric dF equals the
quantity |bFξ (x, gx)|.

Note that using Notation 1 we have the following link between the Finsler and
Riemannian Busemann functions: if p ∈ ∂∞X is the intersection point of ξ ∈ F with the
G-orbit of the point in ξ ⊂ ∂∞X corresponding to α#

0 ∈ a+ then

bFξ (x, y) = ⟨baξ(x, y), α#
0⟩ = bp(x, y), (7)

in other words, Finsler horospheres are Riemannian horospheres.
When zn converges to a point of the visual boundary which is not regular, that is,

not in the interior of a Weyl Chamber, then the Riemannian Busemann functions are
still well defined, the limit limn→∞ d(x, zn)− d(y, zn) still exists. For the Finsler metric
the situation is more complicated: up to passing to a subsequence of (zn)n, the limit
limn→∞ dF(x, zn)− dF(y, zn) is still well defined for all x, y ∈ X (we say that zn converge
in the horoboundary), but it will give a more complicated, less algebraic, function of x
and y. This was described by Kapovich–Leeb in Lemma 5.18 of [KL18], and will be used
in Section 3.3.

Before we state the result let us analyze geometrically the limits of spheres in the
flat A. A Finsler ball is a convex polyhedron whose faces are contained in hyperplanes
parallel to ker(α0) and their images under the action of the Weyl group by reflections. If
the centers of a sequence of such convex polyhedra tend to infinity away from the walls of
the Weyl chambers, then the convex polyhedra converge to a halfspace bounded by the
image of ker(α0) under an element of the Weyl group. If the centers of such a sequence
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tend to infinity away from all walls but one, then the convex polyhedra converge to the
intersection of two such halfspaces. For example, they could be {x : bFξ (x, 0) ≤ 0} and
{x : bFη(x, 0) ≤ 0} determined by two Weyl chambers ξ and η that share a codimension 1
face. So the associated Busemann function associated to this intersection should be
f(x) = max(bFξ (x, 0), b

F
η(x, 0)).

The precise statement is as follows. Let (zn)n ⊂ X be a sequence converging to a point
p ∈ ∂∞X. The point p is contained in possibly infinitely many closed Weyl chambers, let
B′ ⊂ F be the set of such Weyl Chambers. Let ξ ∈ F and let C be the Weyl cone based at
x and asymptotic to ξ. If ξ ̸∈ B then d(zn, C) → ∞. It could happen that d(zn, C) → ∞
even if ξ ∈ {ξ1, . . . , ξℓ}. Let B′ ⊂ B be the set of ξ such that d(zn, C) remains bounded.
In this case let pξ be the intersection point of ξ with G · α#

0 where we view α#
0 as a point

in ∂∞A+. Up to passing to a subsequence, there exists x0 ∈ X such that for any x ∈ X
we have

dF(x, zn)− dF(x0, zn) →
n→∞

max
ξ∈B′

bFξ (x, x0) = max
ξ∈B′

bpξ(x, x0). (8)

In other words, the Finsler balls centered at zn whose boundary contain x0 converge to
the intersections of the Riemannian horoballs centered at pξ for ξ ∈ B′ whose boundary
contains x0.

Concrete description of the above objects for G = PSLd(R)
The Lie algebra g is the algebra of trace free (d, d)-matrices. As Cartan subspace a

we choose the linear subspace of diagonal (d, d)-matrices with vanishing trace, and the
open Weyl chamber a+ is the open cone of diagonal matrices whose entries (λ1, . . . , λd)
fulfill λ1 > λ2 > · · · > λd.

The subgroup K ⊂ PSLd(R) is chosen as the group PSOd(R), and P ⊂ PSLd(R) is
taken as the image in PSLd(R) of the set of upper triangular matrices with positive entries
on the diagonal and determinant one.

The flag variety F has the following explicit description. Namely, a full flag in Rd is
a sequence

ξ = (ξ1 ⊂ ξ2 ⊂ · · · ⊂ ξd = Rd)

where ξi is a linear subspace of Rd of dimension i for each i ≤ d. Clearly PSLd(R)
acts transitively on the space of all full flags, with point stabilizer a minimal parabolic
subgroup. Thus F is just the space of full flags in Rd.

The Busemann functions also have a concrete description, using the identification
between X and the set of inner products on Rd that induce the standard volume form.
Namely, given x, y ∈ X, let ||·||x and ||·||y denote the norms of the associated inner products
on Rd and on the exterior products ΛkRd (1 ≤ k ≤ d). Let ξ = (ξ1 ⊂ ξ2 ⊂ · · · ⊂ ξd) be a
full flag in Rd. Let v = (v1, . . . , vd) = baξ(x, y) ∈ a with v1 + · · ·+ vd = 0. Then for all
k ≤ d, we have

v1 + · · ·+ vk = log
||X||x
||X||y

where X ∈ ΛkRd is any representative of the k-plane ξk.
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The homomorphism τ is obtained as follows. For d ≥ 3 there exists up to conjugation
a unique irreducible representation of SL2(R) on Rd. This representation determines
the following embedding τ : PSL2(R) → PSLd(R). Let Rh

d−1[X,Y ] be the set of degree
d − 1 homogeneous polynomials with real coefficients. A matrix M = ( a b

c e ) ∈ SL2(R)
acts on the vector space R[X,Y ] of polynomials in two variables by M ·X = aX + cY
and M · Y = bX + eY . This action SL2(R) ↷ R[X,Y ] preserves the d-dimensional
linear subspace Rh

d−1[X,Y ], with determinant one elements. So it induces an embedding
PSL2(R) → PSLd(R) which is just the representation τ .

Using a suitable basis we have τ(SO(2)) ⊂ K, the representation τ induces an isometric
embedding H2 = PSL2(R)/PSO(2) ↪→ X. Denote by Ĥ2 = πX ◦ τ(PSL2(R)) the image
of H2 inside X.

The following statement is a consequence of the fact that dτ(T 1H2) consists of regular
vectors contained in a single G-orbit, and each such vector is tangent to a unique maximal
flat. It is well known and immediate from the above discussion.

Fact 1.2. 1. Every geodesic in Ĥ2 lies in a unique maximal flat.

2. For any hyperbolic element g ∈ PSL2(R), the centraliser of τ(g) in G acts by
translations on the unique flat containing the image under πX of the axis of g in H2.

2 Hitchin grafting representations

The Hitchin component Hit(S) for conjugacy classes of representations π1(S) → PSLd(R)
is the connected component of the set of conjugacy classes of representations which factor
through an irreducible representation PSL2(R) → PSLd(R). In the sequel we always work
with explicit representations rather than with conjugacy classes.

The Hitchin representations we are interested in are the familiar bending or bulging
deformations of Fuchsian representations, that is, representations which factor through
the embedding τ : PSL2(R) → PSLd(R). We refer to [Gol86; AZ23] for an account on the
bending construction. The goal of this section is to introduce these representations as well
as an abstract geometric model for them, and we establish some first geometric properties
of the representations and the model. The precise relation between the geometry of
bending representations and the geometry of the model will be established in Section 5
and constitutes the main result of this article.

The material in Subsections 2.1 – 2.3 is well known, and the purpose is to summarize
the properties and the viewpoint we are going to pursue.

2.1 Abstract grafting

In this subsection we introduce abstract grafting of a hyperbolic surface as initiated by
Thurston. We refer to [Tan97] for an early account on this construction. Contrary to the
common definition in the literature, our grafting contains a twist which is needed for our
purpose.
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Consider a closed oriented surface S of genus g ≥ 2 endowed with a hyperbolic metric.
A simple (geodesic) multi-curve γ∗ is the union of pairwise disjoint essential mutually not
freely homotopic simple closed curves (geodesics) on S. We fix moreover an orientation
on each component of γ∗.

Consider the special direction u = dτ
(
1 0
0 −1

)
∈ a given by τ . For any z ∈ a and ℓ > 0,

let Cyl(ℓ, z) ⊂ a/ℓu be the cylinder obtained by quotienting the strip {tu+sz : t ∈ R, s ∈
[0, 1]} ⊂ a under the translation by ℓu. The (Finsler) height of such cylinder is defined as

height = min{F(tu+ z) : t ∈ R}. (9)

We fix for every γ ∈ γ∗ a vector zγ ∈ a; the collection z = (zγ)γ∈γ∗ is interpreted as a
grafting parameter.

Definition 2.1. The abstract grafting of S along the geodesic multi-curve γ∗ is the
surface Sz obtained by cutting S open along each of the components γ of γ∗, inserting
flat cylinders Cγ = Cyl(ℓS(γ), zγ) and gluing the surface back with the translation by zγ .

If zγ is not parallel to u for any γ ∈ γ∗, then this grafting comes with a natural
homotopy equivalence πz : Sz → S projecting the flat cylinders onto γ∗, which allow us
to identify π1(Sz) and π1(S).

More precisely, for each γ ∈ γ∗, the metric completion of S − γ is a surface whose
boundary consists of two geodesics γ1, γ2 of the same length ℓS(γ). The choice of a
parameterisation γ(t) defines parameterisations γ1(t), γ2(t). Attach the flat cylinder Cγ

to γ1 and γ2 by identifying [tu] ∈ Cγ with γ1(t) and [tu+ zγ ] with γ2(t).
Let C =

⋃
γ∈γ∗ Cγ ⊂ Sz and S′ be the metric completion of S − γ∗, so that Sz =

(S′ ⊔ C)/ ∼ where ∼ is the gluing procedure explained above. The projection map
πz : Sz → S satisfies the following. Its restriction S′ → S is the continuous extension of
the inclusion S − γ∗ ↪→ S. It projects each [tu+ szγ ] ∈ Cγ to γ(t) ∈ S.

We call this operation abstract grafting to distinguish it from the Hitchin grafting that
we will introduce for Hitchin representations. We shall refer to Sz as a grafted surface.

Note that if zγ = 0 for every γ in γ∗, then the grafting is trivial and Sz = S. If all zγ
are parallel to u, then the grafted surface is hyperbolic and obtained from S by shearing
along γ∗ with shearing length given by the size of the parameters zγ .

More generally, Sz is an orientable surface which admits a canonical piecewise smooth
structure as well as a natural conformal structure which in turn induces a global C1-
structure on S. Any norm on a which coincides with the norm induced by the hyperbolic
metric on the distinguished direction u induces a Finsler metric on Sz which coincides
with the hyperbolic metric on S′ and whose restriction to the cylinders Cγ is flat.

In particular, the norm defined by the Riemannian metric of X can be used to endow
the C1-surface Sz with a C0 Riemannian metric which is smooth everywhere except at
the gluing locus, has constant curvature −1 in Sz − ∪γCγ and has constant curvature
0 in the interior of the cylinders Cγ . Since the curvature of this metric is non-positive
whereever it is defined and the gluing is performed along geodesics, Sz is non-positively
curved in the sense of Alexandrov and hence its universal covering S̃z is a CAT(0)-space.
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Thus in this case every free homotopy class has a Riemannian geodesic representative
whose length is minimal in the free homotopy class. Such a Riemannian geodesic is unique
unless it is a core curve of a flat cylinder. If all the zγ are orthogonal to the special
direction u, then the natural homotopy equivalence πz : Sz → S is 1-Lipschitz and hence
in this case, free homotopy classes have bigger lengths in Sz than in S. Moreover, the
unit tangent bundle T 1Sz of Sz is well defined, and there is a geodesic flow which is
topologically mixing and admits a unique measure of maximal entropy [Kni98].

As we are interested in Finsler metrics on X using α0 (see (4)) rather than the
Riemannian one, we also endow Sz with a Finsler metric by equipping each cylinder Cγ

with the quotient of the non-Euclidean norm F on a. Observe that in general, for a given
C1-structure on Sz as constructed above, this metric is discontinuous at the gluing locus
between the flat cylinders and the hyperbolic part. Additionally the metric on the flat
part is sensitive in the direction of z, and does not depend only on the height of the
grafting (contrarily to the Riemannian metric). Nevertheless it induces a well defined
path metric on Sz.

The following observation will be useful later on when estimating lengths.

Lemma 2.2. If all ze are in ker(α0), then the natural projection πz : Sz → S is 1-Lipschitz
for the Finsler metric on Sz. In particular, all free homotopy classes of curves have bigger
Finsler lengths in Sz than in S.

Proof. By definition, the restriction of our projection map πz : Sz → S to each flat
cylinder Cγ = {tu + szγ}/ℓS(γ)u comes from the linear projection of a onto the line
spanned by u, parallel to the direction zγ ∈ ker(α0). To conclude it suffices to note
that this projection is 1-Lipschitz for the non-Euclidean norm on a, which was defined
using α0 (see (4)).

2.2 Particular case of an amalgamated product

In this section we explain briefly the construction of the following two Sections 2.3 and 2.4
in the special case where γ∗ has only one component and is separating.

Let Σ be a closed orientable smooth surface of genus at least 2 and let γ∗ ⊂ Σ be
a separating simple closed curve. Then γ∗ splits Σ into two subsurfaces Σ1 and Σ2,
and π1(Σ) can be written as an amalgamated product π1(Σ1) ∗

γ∗
π2(Σ2).

Consider a discrete and faithful representation ρ : π1(S) → PSL2(R)
τ→ G such that

ρ(γ∗) = exp(ℓρ(γ
∗)u) where u = dτ

(
1 0
0 −1

)
is the special direction of a. Let z ∈ a be a

grafting parameter. The Hitchin grafting representation ρz : π1(S) → G is defined by
requiring that ρz(γ) = ρ(γ) for any γ ∈ π1(Σ1) and ρz(γ) = exp(z) · ρ(γ) · exp(−z) for
any γ ∈ π1(Σ2).

One can then define an immersion Qz : Sz → ρz\X whose restriction to any
of the hyperbolic pieces of Sz and to the flat cylinder is totally geodesic. Indeed,
ρz(π1(Σ1)) = ρ(π1(Σ1)) preserves Σ̃1 ⊂ H2 ⊂ X, inducing a totally geodesic embedding
Σ1 = ρz(π1(Σ1))\Σ̃1 ↪→ ρz\X. Similarly, if one identifies Σ2 with ρ(π1(Σ2))\Σ̃2 where
Σ̃2 ⊂ H2 ⊂ X, then ρz(π1(Σ2)) = exp(z) · ρ(π1(Σ2)) · exp(−z) preserves exp(z)Σ̃2 and
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hence induces a totally geodesic embedding Σ2 ↪→ ρz\X. In general the image of the bound-
ary components ∂Σ1 and ∂Σ2 in ρz\X are disjoint. However they can be connected by the
natural totally geodesic embedding of the cylinder C = {tu+sz : t ∈ R, s ∈ [0, 1]}/ρz(γ∗)
into ρz\X. Gluing these three embeddings yield a piecewise totally geodesic embedding
of Sz = (Σ1 ∪ C ∪ Σ2)/ ∼ into ρz\X.

2.3 Graphs of groups decomposition and bending

A classical reference for the theory of graph of groups is [Ser77]. We collect some facts we
need. Let Σ be a closed orientable smooth surface and let γ∗ ⊂ Σ be a simple multi-curve.
The multi-curve determines the following graph of groups decomposition of π1(Σ), which
will be used to define a family of Hitchin representations.

Let Gγ∗ be the oriented graph such that each vertex v ∈ V corresponds to a component
Σv of Σ− γ∗, and each edge e ∈ E corresponds to an oriented component γ⃗e of γ∗. Given
an edge e ∈ E, we denote by ē the opposite edge of e, for which γ⃗ē corresponds to the
curve γ⃗e with the reverse orientation. The oriented edge e is adjacent to the two (not
necessarily distinct) components Σo(e),Σt(e) of Σ− γ∗ which contain γ⃗e in their boundary.
One can embed Gγ∗ into the surface Σ such that each vertex v lies in the interior of Σv

and each edge e connects o(e) to t(e), crossing transversally γ⃗e once. Since we assume
that Σ is oriented, choosing an orientation on γ∗ is the same as choosing for each pair
of opposite edges e, ē ∈ E a preferred one by declaring that the ordered pair (u1, u2)
consisting of the oriented tangent u1 of the oriented edge e at xe and the oriented tangent
of the oriented geodesic γ∗ defines the orientation of Σ.

The graph of groups decomposition of π1(S) defined by this datum associates to each
vertex v ∈ V the fundamental group Av := π1(Σv, v) where v is seen as a point in the
interior of Σv. To each edge e is associated the fundamental group Ae := π1(γ⃗e, xe) ≃ Z
of γ⃗e, where xe is the intersection point of γ⃗e with e (which is seen as an arc in Σ transverse
to γ⃗e). The inclusions γ⃗e ↪→ Σo(e), γ⃗e ↪→ Σt(e) determine the following monomorphisms,
by connecting xe to respectively o(e) and t(e) via e.

αo(e) : Ae = π1(γ⃗e, xe) ↪→ Ao(e) = π1(Σo(e), o(e)) and αt(e) : Ae ↪→ At(e).

Note that αo(e)(γ⃗e) = αt(ē)(γ⃗ē)
−1.

That this construction indeed defines a decomposition of π1(Σ) as graph of groups
with cyclic edge groups is well known. More precisely, choose a spanning tree T ⊂ Gγ∗
of Gγ∗ , with edge set ET ⊂ E invariant under the orientation reversing map e 7→ ē. For a
vertex v ∈ V put Av, and for an edge e ∈ E put Ae. Denote by γ⃗e the oriented geodesic
defined by the oriented edge e.

Let π1(Gγ∗ , T ) be the quotient group

π1(Gγ∗ , T ) = (∗vAv) ∗ FE⧸R

where ∗ denote the free product, FE is the free group generated by the edge set E, and R
is the normal subgroup of (∗vAv) ∗ FE generated by the union of the sets
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• e · ē for all e ∈ E,

• e for all e ∈ ET ,

• eαo(e)(g)e
−1αt(e)(g)

−1 for all e ∈ E and g ∈ Ae, which we think of as eαo(e)(g)e
−1 ≡

αt(e)(g).

Thus π1(Σ) is obtained from simultaneous HNN-extension of the tree of groups defined
by the spanning tree T .

Recall that the isomorphism between π1(Gγ∗ , T ) and π1(S) is constructed by choosing
a basepoint v0 ∈ V , embedding each vertex group Av into π1(S, v0) by connecting v to v0
via the spanning tree T , and mapping FE into π1(S, v0) by connecting the endpoints o(e)
and t(e) of each e to v0 via the tree T .

Take a discrete and faithful representation ρ : π1(Gγ∗ , T ) → PSL2(R)
τ−→ G which

factors through the embedding τ : PSL2(R) → PSLd(R). We use the graphs of groups
decomposition of π1(Σ) to perform a bending of the representation in G with parameter
z = (zγ)γ∈γ∗ ∈ aγ

∗ . This construction can be thought of as bending the surface S along
the geodesic multicurve γ∗ in the space of representations into G.

Let ρ̃ : (∗vAv) ∗ FE → G be the composition of ρ with the projection

(∗vAv) ∗ FE → π1(Gγ∗ , T ). (10)

Fix an orientation on γ∗, so that for every γ ∈ γ∗, we get a preferred edge e ∈ E.
Then there exists B ∈ PSLd(R) such that ρ̃(αo(e)(γ⃗e)) = B exp(ℓρ(γ)u)B

−1, where
u = dτ

(
1 0
0 −1

)
is the special direction of a (note that the ℓρ-length of γ does not depend

on the orientation of γ since α0 was taken symmetric).
Set ζe = B exp(zγ)B

−1, so that ζe commutes with ρ̃(αo(e)(γ⃗e)). Note that by definition
of our relations R and αo(ē)(γ⃗ē) = αt(e)(γ⃗e)

−1 we have

ρ̃(αo(ē)(γ⃗ē)) = ρ̃(e)ρ̃(αo(e)(γ⃗e))
−1ρ̃(e)−1 = ρ̃(e)B exp(−ℓρ(γ)u)B

−1ρ̃(e)−1.

Set ζē = ρ̃(e)B exp(−zγ)B
−1ρ̃(e)−1 = ρ̃(e)ζ−1

e ρ̃(e)−1, that commutes with ρ̃(αo(ē)(γ⃗ē))
and satisfies ρ̃(ē)ζēρ̃(e)ζe = 1.

Geometrically, the group Ae acts on H2 as a translation on a geodesic γ̃. By Fact 1.2,
the image of γ̃ ⊂ H2 in X is contained in a unique maximal flat, and ζe preserves this flat
and acts on it as a translation.

A Hitchin grafting representation is obtained by performing a partial conjugation of
π1(Gγ∗ , T ) by the elements ζ = (ζe)e∈E . Fix a basepoint v0 ∈ V . For any v ∈ V , we
denote by

ωv = ζe1 · · · ζen
where (e1 · · · en) is an oriented path in the tree T from v0 to v. Since ζē = ζ−1

e when e is
in ET and T is a tree, the value of ωv does not depend on the chosen path.

Then define the representation ρ̃z : (∗vAv) ∗ FE → G by

i) ρ̃z(g) = ωvρ̃(g)ω
−1
v for all v ∈ V and g ∈ Av = π1(Σv),
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ii) ρ̃z(e) = ωo(e)ρ̃(e)ζeω
−1
t(e) for all e ∈ E.

Lemma 2.3. The representation ρ̃z contains R in its kernel.

Proof. For all e ∈ E, we have

ρ̃z(eē) =
(
ωo(e)ρ̃(e)ζeω

−1
t(ē)

)(
ωo(e)ρ̃(ē)ζēω

−1
t(ē)

)
= 1

since ωt(ē) = ωo(e) and ρ̃(ē)ζēρ(e)ζe = 1.
For all e ∈ ET , we have ρ̃(e) = 1 and ωt(e) = ωo(e)ζe, so

ρ̃z(e) = ωo(e)ρ̃(e)ζeω
−1
t(e) = 1

Take e ∈ E and g ∈ Ae. Then

ρ̃z(eαe(g)e
−1) =

(
ωo(e)ρ̃(e)ζeω

−1
t(e)

)(
ωt(e)ρ̃(αe(g))ω

−1
t(e)

)(
ωt(e)ζ

−1
e ρ̃(e)−1ω−1

o(e)

)
= ωo(e)ρ̃(e)ζeρ̃(αe(g))ζ

−1
e ρ(e)−1ω−1

o(e)

= ωo(e)ρ̃(e)ρ̃(αe(g))ρ̃(e)
−1ω−1

o(e) since ζe and ρ̃(αe(g)) commute

= ωo(e)ρ̃(eαe(g)ē)ω
−1
o(e)

= ωt(ē)ρ̃(αē(g))ω
−1
t(ē) = ρ̃z(αē(g))

Definition 2.4. We denote by Grγ
∗

z ρ : π1(Gγ∗ , T ) → G the representation induced by ρ̃z,
and sometimes just ρz if there is only one hyperbolic structure involved. We call it the
Hitchin grafting representation with data z along γ∗.

Up to conjugation, the representation ρz does not depend the choices made for the
graph of group decomposition.

2.4 The characteristic surface for Hitchin grafting representations

Consider a Fuchsian representation ρ : π1(S) → PSL2(R) → G and denote by S the
hyperbolic surface defined by this representation. Choose some grafting datum z and let ρz
be the Hithin grafted representation defined by ρ and z. As this representation is contained
in the Hitchin component, it follows from Labourie [Lab06] and Fock–Goncharov [FG06]
that ρz is faithful, with discrete image. In particular, the quotient manifold ρz\X is
homotopy equivalent to S; in fact ρ induces a natural homotopy class of homotopy
equivalences between ρz\X and S.

The goal of this subsection is to construct a geometrically controlled homotopy
equivalence from an abstract grafted surface into ρz\X. The following proposition is the
main result of this subsection.

Proposition 2.5. Consider a Hitchin grafting representation ρz obtained from ρ and with
grafting datum z. Recall that Sz denotes the abstract grafting of S from Definition 2.1,
with universal covering S̃z. Then there exists a piecewise totally geodesic immersed surface
S̃ι
z ⊂ X and a ρz-equivariant immersion Q̃z : S̃z → S̃ι

z ⊂ X.
The map Q̃z is a path isometry for the Riemannian (resp. Finsler) metric on S̃z and

the induced path metric on S̃ι
z from the Riemannian (resp. Finsler) metric on X.
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Before we prove the proposition, note that the surface S̃ι
z is ρz-invariant and hence

descends to compact piecewise smooth immersed surface Sι
z ⊂ ρz\X. We call this

surface characteristic. We shall show in Proposition 4.6 that the corresponding map
Sz → Sι

z ⊂ ρz\X is actually an embedding, and hence that Sι
z is not only an immersed

surface but an embedded one.
Recall that the Riemannian (resp. Finsler) cylinder height of the Hitchin grafting

representation ρz is the minimum of all d(zγ ,Ru) (resp. dF(zγ ,Ru)) for all γ ∈ γ∗, where
u = dτ

(
1 0
0 −1

)
is the special direction in a.

Proof of Proposition 2.5. Denote by S̃ and γ̃∗, respectively, the universal cover of S and
the pre-image of γ∗ in S̃. Using the hyperbolic metric, we can fix an identification
S = π1(S)\H2 so that S̃ = H2.

Let S̃z be the universal cover of the abstract grafted surface Sz. This surface consists
of a countable union Shyp

z of simply connected hyperbolic surfaces with geodesic boundary,
called hyperbolic pieces in the sequel, and a countable union of flat strips separating these
hyperbolic pieces. Let T ⊂ S̃ be an embedded graph with one vertex v in the interior
of each of the hyperbolic pieces Σ̃v of S̃ − γ̃∗ and where two such points are connected
by an edge e if the pieces containing them are separated by a single component γ̃e of γ̃∗.
To each vertex v of T is also associated a hyperbolic piece Σ̃z

v ⊂ S̃z which is naturally
isometric to Σ̃v.

By construction, for any vertex v of T the stabilizer Av := Stabπ1(S)(Σ̃v) is mapped
by ρz onto a conjugate gvρ(Av)g

−1
v of ρ(Av) in G and hence it stabilises a unique totally

geodesic embedded bordered surface Σ̂z
v = gvΣ̃v ⊂ X which is naturally isometric to Σ̃v

and Σ̃z
v. Define (Q̃z)|Σ̃s

v
: Σ̃v → Σ̂z

v to be this natural isometry. By the construction of ρz,

the thus defined map Q̃z : S̃hyp
z → X is equivariant with respect to the representation ρz.

Consider an edge e of T between two vertices v = o(e) and w = t(e) that projects onto
a component γ ⊂ γ∗ matching the fixed orientation on γ∗. We also call e ∈ π1(S) the
preferred generator of the stabilizer of γ̃e = Σ̃v ∩ Σ̃w. Its holonomy ρz(e) acts cocompactly
by translation on boundary components c̃1 and c̃2 of Σ̂z

v and Σ̂z
w, respectively.

Let as before u = dτ
(
1 0
0 −1

)
be the special direction of a. By construction, there exists

a unique h ∈ PSLd(R) such that

• hρz(Av)h
−1 ⊂ PSL2(R) ⊂ PSLd(R);

• hΣ̂z
v ⊂ H2 ⊂ X;

• hρz(e)h
−1 = exp(ℓρ(e)u);

• hc̃1 ⊂ H2 ∩ a ⊂ X is an axis of exp(u), that is, it is invariant under exp(u) and
exp(u) acts on it as a translation.

Recall that hρz(Av)h
−1 = hgvρ(Av)g

−1
v h−1 and hgv ∈ PSL2(R). One can then check

the following formula for the holonomy of the adjacent stabilizer Aw:

hρz(Aw)h
−1 = exp(zγ)hgvρ(Aw)g

−1
v h−1 exp(−zγ),
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X

H2

π(γ̃∗)

Figure 1: Geometric description of the Hitchin representation: the hyperbolic part in
green, the flat part in yellow and an admissible path in red. The choices of directions of
the flat parts (up or down) are arbitrary; recall that γ∗ is a multicurve.

Figure 2: Admissible path in the closed surface obtained as an abstract grafting.

and hence hΣ̂z
w ⊂ exp(zγ)H2 and c̃2 = exp(zγ)c̃1 ⊂ a is another axis of exp(u). Thus the

flat strip h−1{tu+ szγ} is ρz(e)-invariant, connects Σ̂z
v to Σ̂z

w, is the only such flat strip,
and is naturally isometric to the flat strip between Σ̃z

v and Σ̃z
w in S̃z.

Doing this for all flat strips in S̃z yields an extended map Q̃z : S̃z → X, which is an
isometry on each hyperbolic and flat piece. Furthermore, by construction, the map Q̃z is
continuous and ρz-equivariant.

2.5 Admissible paths

In Section 5 we shall show that the characteristic surface not only is embedded, but it
also can be used effectively to compare the large scale geometry of the locally symmetric
manifold ρz\X to the large scale geometry of the grafted surface. This comparison relies
on the analysis of some specific paths which we introduce now.

2.5.1 Admissible paths in abstract grafted surfaces

We begin with introducing a family of paths in grafted surfaces, called admissible paths,
which are from a technical point of view easier to handle than geodesics.
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Let Sz be an abstract grafted surface with hyperbolic part Shyp and cylinder part C. In
a nutshell, an admissible path c is a continuous path of Sz which is a geodesic everywhere
except possibly at Shyp ∩ C, where it might have a singularity. Moreover, we require that
the "hyperbolic part” c ∩ Shyp of the path c is orthogonal to Shyp ∩ C where it meets it.

It is clear that lifts of admissible paths to the universal cover are quasi-geodesics
(although we will not need it). Our goal will be to show that the images of admissible
paths under the map constructed in Proposition 2.5 are quasi-geodesics of the symmetric
space, with control on the multiplicative constant.

Definition 2.6. Consider a closed hyperbolic surface S, a multicurve γ∗ ⊂ S and a
grafting parameter z. Then Sz is the abstract grafted surface with hyperbolic part
Shyp ⊂ Sz and flat (cylindrical) part C ⊂ Sz. An admissible path in Sz is a continuous
path c ⊂ Sz such that

• c is geodesic outside µ = Shyp ∩ C;

• the hyperbolic part c ∩ Shyp intersects γ∗ orthogonally;

• a component of the flat part c ∩ C connects the two distinct boundary components
of the flat cylinder containing it.

Similarly one can define admissible loops.

Note that if z is trivial then Sz = S and the above definition still makes sense. The
flat part C is just γ∗, and the path is allowed to contain arcs in γ∗ separating two geodesic
arcs which emanate to the two distinct sides of γ∗ in a tubular neighborhood of γ∗.

An admissible path in the universal cover S̃z is the lift of an admissible path in Sz.
Note that any two points of S̃z are connected by a unique admissible path; in other

words, any path of Sz is homotopic (with fixed endpoints) to a unique admissible path.
Similarly, any loop in Sz not homotopic to a component of γ∗ is freely homotopic to a

unique admissible loop.

Observation 2.7. The image under πz : Sz → S (or the lift S̃z → S̃) of admissible paths
in Sz are admissible paths in S.

In fact, this induces a correspondence in the sense that any admissible path in S is
the image under πz of a unique admissible path in Sz.

2.5.2 Admissible paths in the symmetric space: geometric description

There are complete analogs of admissible paths in grafted surfaces for the symmetric
space X of G, which are also called admissible paths. Such paths include the image of all
admissible paths in S̃z under a path isometry Qζ : S̃z → X constructed in Proposition 2.5.

Roughly speaking, admissible paths are piecewise geodesics that alternate between
following a geodesic of the same type as the geodesics in the embedded H2 ↪→ X, and
then following a geodesic in a flat, orthogonal to the previous geodesic, and then following
a H2-type geodesic orthogonal to the previous flat... etc, see Figure 2.
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The above description is not quite correct, in particular because it does not encapsulate
the positivity assumption which is crucial in our proofs. There are several ways to define
rigorously admissible paths. We are going to start with a geometric definition, which is
easier to picture, and then in the next section we will give an algebraic definition. In
the sequel the geometric definition will never be used, instead all the proofs will use the
algebraic one, in particular because the positivity property of admissible paths is more
naturally encoded in the algebraic definition.

Recall that H2 embeds isometrically into X. In fact there are many isometric embed-
dings, and PGLd(R) acts transitively on the set of all isometric embeddings. Let us call
an H2-frame the datum of a point x ∈ X and a pair of orthogonal unit tangent vectors
(v, w) which are tangent to a common embedded H2. Let Y be the space of H2-frames, on
which PGLd(R) also acts transitively. This action is even simply transitive since PGLd(R)
is real split.

On Y there is a natural geodesic flow (geodt)t∈R: given (x, v, w) ∈ Y one can follow
the geodesic ray spanned by v and parallel transport v and w along it. In other words,
this action is the action of the one-parameter group of transvections on X along the
geodesic ray spanned by v.

There is also a natural action of a, which we shall call the “orthogonal sliding action”
and denote (slidez)z∈a: given (x, v, w) ∈ Y there is a unique maximal flat F containing w,
and a unique identification of the tangent space of F with a such that w is sent into a+.
Thus given z ∈ a one can follow the geodesic ray spanned by the associated vector in F
and parallel transport v and w along it. Note that the image of the vector v under this
sliding action remains orthogonal to the flat F .

We define an (ω,L)-admissible path in X to be a path obtained by choosing an H2-
frame and pushing it via the geodesic flow for some time at least ω, and then sliding
orthogonally via (sildetz)t for some time at least L using some direction z ∈ a, and then
pushing along the geodesic flow again for time at least ω... etc.

In particular, an admissible path does not backtrack in any obvious way because it
remembers directions along which the path can be continued. This is the property which
can be thought of as a geometric interpretation of positivity in the sense of [FG06]. In
fact we get quantitative positivity properties from the lower bound ω on the times we
push along the geodesic flow.

2.5.3 Admissible paths in the symmetric space: algebraic definition

Let us now give an algebraic definition of admissible paths in X. For this we will first
define admissible paths in G. The description of these paths uses a basepoint for the
action of G which is determined by the Fuchsian representation τ .

Notation 2. We set

• at := τ
(

et 0
0 e−t

)
∈ G;

• rθ := τ
(

cos(θ/2) sin(θ/2)
− sin(θ/2) cos(θ/2)

)
∈ G;
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• a′t := rπ/2 · at · r−1
π/2 ∈ G;

• for every t ∈ R ∪ {∞} = ∂H2 we write ξt = ∂∞τ(t).

The group G = PSLd(R) identifies with one component of the space of H2-frames
Y introduced in the previous section via the orbit map G → Y ; g 7→ g · Fo, where
Fo = (o, vo, wo) is a fixed H2-frame, so that o is fixed by rθ, and vo = d

dt |t=0
a′t · o and

wo =
d
dt |t=0

at · o are tangent to the axes of a′t and at, respectively.
Under this identification, the geodesic flow on Y corresponds to the multiplication

on the right by a′t: i.e. geodt(gFo) = (ga′t)Fo. On the other hand, the orthogonal sliding
flow corresponds to the multiplication on the right by exp(z): that is, slidez(gFo) =
(g · exp(z))Fo for any z ∈ a. This leads us to the following definition of admissible path.

Definition 2.8. A path c : [0, T ] → G or c : [0,∞) → G is said to be of

• flat type if c(t) = g · exp(tz) for some g ∈ G and z ∈ a of norm 1 for the Finsler
metric F;

• hyperbolic type if c(t) = ga′t for some g ∈ G.

An admissible path of G is a continuous (possibly infinite) concatenation of paths of
flat and hyperbolic type.

It is moreover called (ω,L)-admissible for some parameters ω,L > 0 if all hyperbolic
(resp. flat) pieces, except maybe the first and last pieces, have length at least ω (resp. L).

A (ω,L)-admissible path in X is a path of the form t 7→ c(t) · x where c is a (ω,L)-
admissible path of G; note that it is piecewise geodesic.

Remark . Another way to describe admissible paths in G is the following: a path c :
[0, T ] → G is admissible, starting with a hyperbolic piece, if there exist t0 = 0 < t1 < t2 <
· · · < tn−1 < tn = T and z1, z3, . . . , zk ∈ a of norm 1 (where k is the biggest odd integer
< n) such that for any 0 ≤ i < n, for any t ∈ [0, ti+1 − ti],

• if i is even then c(ti + t) = c(ti) · a′t,

• if i is odd then c(ti + t) = c(ti) · exp(tzi).

The following is fairly immediate from the definition of the construction of the
characteristic surface of a Hitchin grafting representation ρz and the map Q̃z from
Proposition 2.5. In its formulation, the collar size of a simple closed multi-geodesic
γ∗ ⊂ S is the supremum of all numbers r > 0 such that the tubular neighborhood
of radius r about γ∗ is a union of annuli about the components of γ∗. By hyperbolic
geometry, an upper bound on the length of the components of γ∗ yields a lower bound on
the collar size of γ∗.

Observation 2.9. Consider a closed hyperbolic surface S, a multicurve γ∗ ⊂ S with
collar size ω and a grafting parameter z such that all cylinder heights are at least L. Then
the image under the grafting map Q̃z of any admissible path of S̃z is a (ω,L)-admissible
path of X.
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Remark 2.10. We define admissible loops of a quotient of X as quotients of periodic
infinite admissible paths.

In Section 4 we recall the notion of positivity in G in the language of Lusztig [Lus94]
and some basic results, and see that admissible paths have interesting positivity properties,
coming from the fact that (a′t)t>0 are totally positive matrices, and (exp(z))z∈a are totally
nonnegative matrices.

3 A Morse-type lemma in the symmetric space

The goal of this section is to establish a Morse-type lemma in the symmetric space. Recall
that in δ-hyperbolic geodesic metric spaces, the Morse lemma says that any (λ,C)-quasi-
geodesic is at distance at most C ′ from a geodesic, where C ′ depends on δ, λ, C. In R2,
equipped with any norm, this lemma does not hold true anymore for all quasi-geodesics,
and the same can be said for the higher-rank symmetric spaces endowed with a Finsler
or Riemannian metric, since they contain totally geodesic copies of R2. Recall that a
path c(t) in a metric space is a (λ,C)-quasi-geodesic if for all times t, s we have

λ−1|t− s| − C ≤ d(c(t), c(s)) ≤ λ|t− s|+ C.

Kapovich–Leeb–Porti [KLP18] (see also Section 12.1 of [KL18]) proved a Morse lemma
for certain families of well-behaved quasi-geodesics in symmetric spaces of arbitrary
rank, equipped with the standard Riemannian metric, and in Euclidean buildings, see
also Section 7 of [BPS19]. There is also a version of the Morse Lemma for quasi-flats
instead of quasi-geodesics, see [KL97; EF97]. We propose here a different approach to
a generalization of the Morse lemma: we prove that nearby every Finsler (1, C)-quasi-
geodesic, so with multiplicative error term of 1, there is at least one Finsler geodesic.
Other Finsler geodesics could be far, as in (X, dF) there are Finsler geodesics with the
same endpoints and arbitrarily large Hausdorff distance.

We first present our result using the notion of quasi-ruled paths as in [BHM11], and
then translate it in terms of (1, C)-quasi-geodesics. A C-quasi-ruled path in a metric
space (X, dX) is a map c : [0, T ] → X such that for any 0 ≤ t ≤ s ≤ u ≤ T ,

dX(c(t), c(s)) + dX(c(s), c(u)) ≤ dX(c(t), c(u)) + C.

Note that any reparameterization of a quasi-ruled path is quasi-ruled.

Theorem 3.1. For any C > 0 there exists C ′ > 0 such that any Finsler C-quasi-ruled
continuous path c : [0, T ] → X is at Hausdorff distance at most C ′ from a Finsler geodesic
in (X, dF) connecting c(0) to c(T ).

One can translate the above theorem in terms of (1, C)-quasi-geodesic paths, using
the following lemma, which is probably well-known to experts. We provide a proof in
Subsection 3.1.

24



Lemma 3.2. Let (X, d) be a geodesic metric space and C ≥ 0. Any (1, C)-quasi-geodesic
in X is 3C-quasi-ruled and is at Hausdorff distance at most 1 + C from a continuous
(1, 2(1 + C))-quasi-geodesic with the same endpoints.

Conversely, any continuous C-quasi-ruled path is at Hausdorff distance at most 3C
from a (1, 3C)-quasi-geodesic.

Note that for C = 0 this lemma says that any (1, 0)-quasi-geodesic is a (continuous,
0-quasi-ruled) geodesic, and that for any continuous 0-quasi-ruled path c : [0, T ] → X
from x to y there exists a geodesic c′ : [0, d(x, y)] → X from x to y whose image is exactly
the same as that of c.

Remark . Theorem 3.1 is false for the Euclidean metric on Rd (d ≥ 2), and for the
Riemannian metric on X, as can be seen as follows.

Let ℓ : R → Rd be a line through ℓ(0) = 0 parameterized by arc length for the Euclidean
metric. For n ≥ 1 put xn = ℓ(−n), yn = ℓ(n). Consider the balls B−

n , B
+
n of radius n

about xn, yn. As n → ∞, the boundaries ∂B±
n of the balls B±

n converge in the pointed
Gromov Hausdorff topology of (Rd, 0) to the hyperplane through 0 orthogonal to ℓ. Thus
for any m > 0 and sufficiently large n, there are points z±n on ∂B±

n of distance m to ℓ with
d(z−n , z

+
n ) ≤ 1 (here d is the euclidean distance). Since the subsegment of ℓ connecting

xn to yn is the unique euclidean geodesic between these points, the piecewise geodesics
connecting xn to yn with breakpoints at z−n , z+n violate the conclusion of Theorem 3.1.

This section is subdivided into four subsections. The first subsection is very short and
provides a proof of Lemma 3.2 for the reader’s convenience. In the second subsection,
which is the longest, we establish Theorem 3.1 for polyhedral norms on Rd, that is,
norms whose norm one ball is a finite sided symmetric convex polyhedron. In the third
subsection, we prove that any quasi-ruled continuous path in the symmetric space lies
near a flat, using a description of Finsler horoballs of Kapovich–Leeb [KL18]. Finally the
last section, which is very brief, contains the proof of Theorem 3.1.

3.1 Proof of Lemma 3.2

Let (X, d) be a geodesic metric space. Then for any (1, C)-quasi-geodesic c : [0, T ] → X
the following holds true.

• c is 3C-quasi-ruled.

• c is at Hausdorff distance at most 1+C from a continuous (1, 2+2C)-quasi-geodesic
with the same endpoints.

The first property is an elementary computation which is left to the reader, and the
second property is Lemma 1.11 in Chapter III.H of [BH99]. The two properties together
yields the first part of the lemma.

Let us prove the second part of the lemma. For an arbitrary C ≥ 0 consider a
continuous C-quasi-ruled path c : [0, T ] → X from x to y.
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We now use an idea we found in the arXiv version of [BHM11], Lemma A.2. Observe
that the map

f : c[0, T ] → [0, d(x, y) + C]; z 7→ d(x, z)

is continuous and is a (1, C)-quasi-isometry. Indeed, if 0 ≤ t ≤ s ≤ T then

|f(c(t))− f(c(s))| = |d(x, c(t))− d(x, c(s))| ≤ d(c(t), c(s)),

and
d(c(t), c(s)) ≤ d(x, c(s))− d(x, c(t)) + C ≤ |f(c(t))− f(c(s))|+ C.

Moreover, since c[0, T ] is path-connected, and f is continuous and attains the values 0
and d(x, y), by the Intermediate Value Theorem f attains all values in [0, d(x, y)] and
hence f is C-quasi-surjective. By a classical result from coarse geometry f admits a
(1, 3C)-quasi-inverse g : [0, d(x, y)] → c[0, T ] ⊂ X.

3.2 A Morse-type lemma for normed vector spaces

This subsection is entirely devoted to the study of the geometry of Rd, equipped with a
Finsler metric defined by a translation invariant norm on TRd. We begin with defining
the Finsler metrics we are interested in. To this end call a cone in Rd properly convex if
it is convex and its closure does not contain any affine subspace of Rd of dimension at
least 1.

A (symmetric) polyhedral norm | · | on Rd is a norm of the form

|v| = max{α(v) : α ∈ A},

where A is a finite set of nonzero linear forms which spans (Rd)∗, and which is symmetric
in the sense that −A = A. This norm induces a metric d(x, y) = |x− y| on Rd that is
invariant under translations. The goal of this section is to show.

Proposition 3.3. For any polyhedral norm | · | on Rd, there exists µ > 0 such that for
any C ≥ 1, any C-quasi-ruled continuous path c : [0, T ] → Rd is at Hausdorff distance at
most µC from a geodesic in (Rd, | · |) connecting c(0) to c(T ).

Note that this statement is false for a Euclidean norm on Rd.
Proposition 3.3 has the following reformulation in terms of (1, C)-quasi-geodesics,

thanks to Lemma 3.2.

Corollary 3.4. For any polyhedral norm | · | on Rd, there exists µ > 0 such that for any
C ≥ 1, any (1, C)-quasi-geodesic c : [0, T ] → Rd is at Hausdorff distance at most µC from
a geodesic in (Rd, | · |) from c(0) to c(T ).
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3.2.1 Diamonds

In this section we introduce several geometric objects relative to our polyhedral norm,
including diamonds. We prove that (1, C)-quasi-geodesics stay at bounded distance from
diamonds, which is the main technical step towards the proof of Proposition 3.3.

For any α ∈ A, the set Cα = {v ∈ Rd : |v| = α(v)} is a polyhedral convex cone based
at 0. Note that C−α = −Cα. Up to removing unnecessary elements of A, we may assume
that Cα has nonempty interior. We call special cones (based at x ∈ Rd) the cones of Rd

that are translates of a cone Cα (by the translation y 7→ y + x).
The unit closed ball B̄(0, 1), and more generally any closed ball B̄(x, r) for such a

norm, is a polyhedral convex set, that is, a finite intersection of (affine) half-spaces of Rd.
More precisely,

B̄(x, r) =
⋂
α∈A

{y ∈ Rd : α(y − x) ≤ r} = x+ r · B̄(0, 1).

The codimension-1 faces of B̄(x, r) are the intersections of its boundary ∂B(x, r) with
the special cones based at x.

Definition 3.5. Denote by C(x → y) the intersection of all special cones based at x that
contain y. We define the diamond of the pair x, y to be D(x, y) = C(x → y) ∩ C(y → x)
(see Figures 3 and 4 for illustrations).

Note that C(y → x) = y − x − C(x → y). This follows from the fact that for any
α ∈ A, the special cone x+Cα based at x contains y if and only if the special cone y+C−α

based at y contains x.

Lemma 3.6. For any x, y ∈ Rd, we have

D(x, y) = {z ∈ Rd | d(x, z) + d(z, y) = d(x, y)}
= ∪{geodesics from x to y}

In particular, for any z ∈ D(x, y), the concatenation of a geodesic from x to z with a
geodesic from z to y is a geodesic from x to y.

Given a cone C = C(0 → y), set αC to be the mean of all α ∈ A for which Cα contains C.
It follows from the definition that |z| ≥ αC(z) holds for all z ∈ Rd, with equality exactly
on C.

Proof. For a cone C = C(x → y), consider the form αC defined above. The point z
belongs to D(x, y) if and only if |z − x| = αC(x→y)(z − x) and |z − y| = αC(y→x)(z − y) =
−αC(x→y)(z − y). This implies

d(x, y) ≤ d(x, z) + d(z, y) = αC(x→y)(z − x) + αC(x→y)(y − z) = αC(x→y)(y − x) = d(x, y)

and so d(x, y) = d(z, x) + d(z, y).
Conversely if |z − x| > αC(x→y)(z − x) or |z − y| > −αC(x→y)(y − z), then the above

inequality yields d(z, x) + d(z, y) > d(x, y).
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It is clear that if z lies on a geodesic from x to y, then d(x, z) + d(z, y) = d(x, y).
Reciprocally, if d(x, z) + d(z, y) = d(x, y) then the concatenation of any geodesic from x
to z and any geodesic from z to y is a geodesic from x to y.

From the previous lemma and the triangle inequality we infer that for any point z not
too far from a diamond D(x, y) we almost have the triangle equality d(x, z) + d(z, y) ≃
d(x, y). The following lemma is the key technical result towards the proof of Proposiion 3.3;
it says that the converse also holds.

Lemma 3.7. There is λ1 > 0 such that for all x, y, z ∈ Rd it holds

d(z,D(x, y)) ≤ λ1(d(x, z) + d(z, y)− d(x, y)).

The two terms are equal to zero when z belongs to D(x, y). One can think of the
lemma in the following way: z 7→ fx,y(z) = d(x, z) + d(z, y) − d(x, y) is convex, non-
negative, and piecewise affine. Take a point z ∈ ∂D(x, y) and follow a ray {z + tv, t ≥ 0}
for a unit vector v for | · | at z whose euclidean angle (for some fixed euclidean inner
product) to D(x, y) is at least π/2. By this we mean the angle between v and any line
segment in D(x, y) starting at z. The restriction of fx,y to the ray is convex, piecewise
affine and is equal to zero exactly at z. It follows that it grows at least linearly in t,
the slope being given by the derivative at t = 0. And so for z′ = z + tv, one has
fx,y(z

′) ≥ t · f ′
x,y(0) ≥ Cstf ′

x,y(0) · d(z′, D(x, y)).
The issue is that the slope does not vary continuously in z, not even lower semi-

continuously, so one can not hope to use a compactness argument to obtain a uniform
bound on the union of the rays. One might study carefully the combinatorics of the map f
to obtain a uniform bound on the slope. We instead take a slightly different approach,
which requires one intermediate lemma.

Let us fix a Euclidean inner product ⟨, ⟩ defining the Euclidean metric deucl on Rd. By
"orthogonal projection" to a closed convex set C we will mean closest-point projection for
deucl to C, which is well defined by convexity of deucl.

Given a cone C ⊂ Rd based at 0, define the dual cone of C to be the set

C′ = {x ∈ Rd, ⟨x, C⟩ ≤ 0} = {x ∈ Rd whose orthogonal projection to C is 0}.

Lemma 3.8. Let C be a polyhedral convex cone of Rd based at 0, that is, the intersection
of finitely many closed half-spaces H1, . . . ,Hn containing 0 in their boundary. Let C′ ⊂ Rd

be the polyhedral convex dual cone to C. Then there exists λ > 0 such that for any x ∈ C′,

deucl(x, C) ≤ λmax (deucl(x,H1), . . . , deucl(x,Hn)) .

The results holds true for all x ∈ Rd (for a bigger constant λ), but the special case
x ∈ C′ is shorter to prove.

Proof. This is an immediate consequence of the fact that the function

f(x) = max (deucl(x,H1), . . . , deucl(x,Hn))

is homogeneous, continuous, and positive on C′ − {0}.
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Note that in the previous lemma we allow C to have empty interior, or be reduced
to {0}, or to be the entire space Rd (but this last case is not very interesting since then
the dual C′ is just {0}).

Proof of Lemma 3.7. Denote by {Hα, α ∈ A} the finite family of closed half spaces given
by Hα = {w ∈ Rd, α(w) ≤ 0}.

For any subset S of A, the intersection

CS = ∩α∈SHα

is a polyhedral convex cone. Let KS be the dual cone to CS . We can apply Lemma 3.8
to KS , and get a number λS > 0. Let λ = max{λS | S ⊂ A}.

We now prove the inequality for x, y, z ∈ Rd fixed. When z belongs to D(x, y), we
have d(x, z) + d(z, y)− d(x, y) = 0 = d(z,D(x, y)) by Lemma 3.6 and so the inequality
holds.

Suppose that z ̸∈ D(x, y). If d(x, z) ≥ d(x, y) holds, then one has

d(x, z) + d(z, y)− d(x, y) ≥ d(z, y) ≥ d(z,D(x, y))

since y ∈ D(x, y). So by symmetry in x, y we may assume that r := d(x, z) is smaller
than R := d(x, y).

Let Bx = B̄(x, r) and By = B̄(y,R− r) be closed balls for the polyhedral norm | · |,
illustrated in Figure 3. They are polyhedral convex sets, i.e. finite intersections of affine
half-spaces. More precisely

Bx = H1 ∩ · · · ∩Hn and By = H ′
1 ∩ · · · ∩H ′

n

where Hi = {w ∈ Rd, αi(w − x) ≤ r} and H ′
j = {w ∈ Rd, α′

j(w − y) ≤ R − r} for
some orderings A = {α1, . . . , αn} = {α′

1, . . . , α
′
n} (it will be convenient later to have two

different orderings).
The intersection

Bx ∩By = H1 ∩ · · · ∩Hn ∩H ′
1 ∩ · · · ∩H ′

n

is a closed polyhedral convex subset of the diamond D(x, y) by Lemma 3.6, with empty
interior, and it is not empty (one can verify that Bx ∩By contains the point r

Ry +
R−r
R x).

Let p be the Euclidean closest-point projection of z to Bx ∩ By. Up to translation,
we may assume that p = 0 to be able to use Lemma 3.8. Up to reordering we may
also assume that the half-spaces containing p in their boundary are H1, . . . ,Hk and
H ′

1, . . . ,H
′
ℓ; note that k and ℓ are both positive since p ∈ ∂Bx ∩ ∂By. Since p = 0

we have Hi = {w : αi(w) ≤ 0} for i ≤ k and H ′
j = {w : α′

j(w) ≤ 0} for j ≤ l. Let
S = {αi, i ≤ k} ∪ {α′

j , j ≤ ℓ} ⊂ A. Then using the notation introduced at the beginning
of the proof we have

Bx ∩By ⊂ H1 ∩ · · · ∩Hk ∩H ′
1 ∩ · · · ∩H ′

ℓ = CS .
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D(x, y)
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z

r

R− r

Bx ∩By

Figure 3: Illustration of the proof of Lemma 3.7. Three points x, y, z and a fourth point
p ∈ D(x, y) with d(z, p) ≤ λ(d(x, z) + d(y, z)− d(x, y)).

Observe that p is also the Euclidean closest-point projection of z to CS . Indeed if by
contradiction there was p′ ∈ CS closer to z, then by convexity of the euclidean distance
function, any point of the line segment (p, p′] would be closer to z. But any point of (p, p′]
close enough to p is contained in each Hk+1, . . . ,Hn and H ′

ℓ+1, . . . ,H
′
n (since p is in their

interior), and hence is in Bx ∩By, which contradicts that p is the Euclidean closest-point
projection of z on Bx ∩By. In particular, z is contained in the dual cone KS to CS .

By Lemma 3.8, the distance d(z, p) is comparable to the distance between z and one
of the half spaces H1, . . . ,Hk, H

′
1, . . . ,H

′
ℓ. But since z ∈ Bx, it must be contained in every

Hi, so Lemma 3.8 implies that there exists a half space H ′
j , j ∈ {1, . . . , ℓ}, for which

deucl(z,D(x, y)) ≤ deucl(z, p)

≤ λSdeucl(z,H
′
j)

≤ λdeucl(z,By).

Let us translate what this means for the polyhedral norm, using a constant ν such
that ν−1d ≤ deucl ≤ νd. The previous equation yields

d(z,D(x, y)) ≤ ν2λd(z,By).

Let q be the intersection point of [y, z] with ∂By, which satisfies d(z, q) = d(z,By).
Indeed for any q′ ∈ ∂By we have d(q′, y) = d(q, y), and so

d(z, q′) = d(z, q′) + d(q′, y)− d(q′, y) ≥ d(z, y)− d(q, y) = d(z, q) = R− r
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since [y, z] is a geodesic for d. Then

d(x, z) + d(z, y)− d(x, y) = r + d(z, y)−R

= d(z, q) + d(q, y) + r −R

= d(z, q) = d(z,By)

≥ ν−2λ−1d(z,D(x, y)).

3.2.2 Proof of Proposition 3.3

In addition to diamonds we shall consider two other geometric objects: crowns and cores
of diamonds. We refer to [KLP18] for closely related constructions and to Figure 4 for an
illustration.

• x, y ∈ Rd are called generic if the diamond between them has nonempty interior,
that is, if there is only one α ∈ A such that |x− y| = α(x− y).

• The Crown Cr(x, y) is ∂C(x → y) ∩ ∂C(y → x) if x, y are generic, and otherwise it
is just D(x, y). Note that if z ∈ Cr(x, y) then the pair (x, z) is not generic.

• The Core Co(x, y) is the convex hull of the crown, which is just D(x, y) if x and y
are not generic.

Note that for generic x, y, the core Co(x, y) separates x from y in D(x, y), in the sense
that x and y are in different connected components of D(x, y)∖ Co(x, y).

Note also that for generic x, y the intersection of the core Co(x, y) with the boundary
∂D(x, y) of the diamond is exactly the crown Cr(x, y).

We will need the following elementary result on properly convex cones, which implies
that if a tip of a diamond is not too close to the crown then it is not too close to the core.

Given a set K ⊂ Rd, denote by Conv(K) the convex hull of K.

Lemma 3.9. Let C ⊂ Rr be a closed properly convex cone with vertex 0. Then there
exists λ2 > 0 such that for any compact set K ⊂ C, we have

d(0,K) ≤ λ2d(0,Conv(K)).

Proof. Since C is properly convex, 0 is an extremal point of it and does not belong to the
convex hull Conv(C−B(0, 1)) where B(0, 1) is the open ball of radius one around 0 for the
metric d. Let λ−1 = d(0,Conv(C −B(0, 1))) be the distance from 0 to Conv(C −B(0, 1)).

Let K ⊂ C be a compact subset. If 0 ∈ K then d(0,K) = 0 ≤ λd(0,Conv(K)).
Suppose 0 ̸∈ K and and put a = d(0,K)−1. Then the compact a ·K is included in

C−B(0, 1) and so Conv(a ·K) ⊂ Conv(C−B(0, 1)), which yields d(0,Conv(a ·K)) ≥ λ−1.
As Conv(a ·K) = a · Conv(K), one has

d(0,Conv(K)) = d(0,K) · d(0, a · Conv(K)) ≥ λ−1d(0,K).

Finally we will need the following observation about quasi-ruled paths, whose proof is
a simple calculation.
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x

y

D(x, y) Cr(x, y) Co(x, y)

Figure 4: Illustration of the diamond, crown and core of two points x, y ∈ Rd in generic
position.

Observation 3.10. Let a, b : [0, T ] → X and c : [T, T ′] → X be paths in a metric space.

1. If a is C-quasi-ruled and d(a(t), b(t)) ≤ C ′ for all t then b is C + 6C ′-quasi-ruled.

2. If a is C-quasi-ruled and if d(c(t), a(T )) ≤ C ′ for all t then the concatenation of the
path a with c is C + 2C ′-quasi-ruled.

Proof of Proposition 3.3. We proceed by induction on the dimension d. In the case d = 1
there is nothing to show, so assume that for some d ≥ 2, the claim holds true for all
dimensions < d, with a constant depending on the dimension and on the polyhedral norm.

Let | · | be a polyhedral norm on Rd. Note that the restriction of | · | to any linear
subspace is polyhedral. Thus by the induction assumption, there exists a constant µ > 1 so
that the proposition is valid with this constant for paths contained in the linear subspaces
{αi1 = · · · = αik | αij ∈ A} which are the linear spans of the faces of the special cones Cα
for α ∈ A.

Let λ1 > 0 be as in Lemma 3.7, ν > 1 be such that ν−1d ≤ deucl ≤ νd where
d(x, y) = |x− y|, and λ′

1 = ν2λ1. Then for all x, y ∈ Rd, if

Πxy : Rd → D(x, y)

is the Euclidean closest-point projection onto D(x, y) (which is well defined continuous
since D(x, y) is compact and convex, contrarily to the closest-point projection for d), then
by Lemma 3.7 we get

d(z,Πxy(z)) ≤ νdeucl(z,Πxy(z)) = νdeucl(z,D(x, y)) ≤ λ′
1(d(x, z) + d(z, y)− d(x, y)).

(11)
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Let λ2 > 0 be the maximum of the constants from Lemma 3.9, applied to the special
cones Cα, α ∈ A. Then for all x, y ∈ Rd we have

d(x,Cr(x, y)) ≤ λ2d(x,Co(x, y)). (12)

We claim that the statement of the proposition holds true for (Rd, | · |) with the
constant µ′ = (1 + 2λ)(µ(1 + 6λ′

1) + λ′
1), where λ = max(λ′

1, λ2).
To this end we proceed by induction on k where d(x, y) ∈ (k − 1, k].
Let C ≥ 1, k = 1 and let c be a C-quasi-ruled continuous path from x to y such that

d(x, y) ≤ 1. Then the segment [x, y] is at distance at most C + 1 from c and hence the
claim holds true in this case.

Let k ≥ 2 and assume that the claim holds true for all continuous C-quasi-ruled paths
from x to y such that d(x, y) ≤ k − 1. Let c be a C-quasi-ruled continuous path from x
to y such that d(x, y) ∈ (k − 1, k].

There are two possible cases. In the first case, c stays Cλ-far from the crown Cr(x, y).
Fix a point z ∈ Co(x, y) which is in the interior of the diamond D(x, y). Let Z ⊂

Co(x, y) be the union of segments [z, p] where p ∈ Cr(x, y). Then Z ∩∂D(x, y) = Cr(x, y)
and Z separates x from y in D(x, y): if a(t) ∈ D(x, y) is a continuous path from x to
y then it must cross Z. If it crosses z there is nothing to prove. Otherwise, for each t
the ray from z passing through a(t) must cross ∂D(x, y) at some point b(t) that depends
continuously on t, and at some time t we have b(t) ∈ Cr(x, y) hence a(t) ∈ [b(t), z] ⊂ Z.

The projection Πxy ◦ c is a continuous path from x to y in D(x, y), so it must cross Z
at some time t.

Note that we have Πxy(c(t)) = c(t). Namely, otherwise Πxy(c(t)) is contained in the
boundary ∂D(x, y), and hence contained in the crown. But since Πxy(c(t)) is Cλ′

1-close
to c(t) by Inequality (11), then c(t) is Cλ′

1-close and hence Cλ-close to the crown, which
contradicts our assumption.

Moreover, we must also have the inequalities

d(x, c(t)) ≥ d(x,Co(x, y)) ≥ 1 and d(y, c(t)) ≥ 1.

Otherwise by Equation (12), it holds d(x,Cr(x, y)) ≤ λ2 ≤ λ ≤ Cλ, which contradicts
our assumption that c stays Cλ-away from the crown. Lemma 3.6 yields that

d(x, c(t)) = d(x, y)− d(y, c(t)) ≤ k − 1

and similarly d(y, c(t)) ≤ k − 1. We can apply the induction hypothesis (on k) to
the path c[0, t] and the path c[t, T ]. As the concatenation of a geodesic connecting x
to c(t) ∈ D(x, y) and c(t) to y is a geodesic, this suffices for the induction step.

In the second case, c passes at some time t at distance less than Cλ from the crown.
Let p ∈ Cr(x, y) be such that d(p, c(t)) ≤ Cλ. Recall that this means the pairs (x, p)
and (y, p) are not generic.

Concatenate c1 = c[0, t] with a geodesic from c(t) to p, to get a continuous (1 + 2λ)C-
quasi-ruled path c′1 from x to p by Observation 3.10. By Inequality (11), the projection
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Πxp ◦ c′1 is at distance at most λ′
1(1 + 2λ)C from c1. Using again Observation 3.10, it is a

continuous (1 + 2λ)C(1 + 6λ′
1)-quasi-ruled path in D(x, p) from x to p.

As the pair (x, p) is not generic, we can apply our induction on the dimension and
deduce that there is a geodesic c′′1 ⊂ D(x, p) at distance at most µC(1 + 2λ)(1 + 6λ′

1)
from Πxp ◦ c′1, which is then at distance at most C(1 + 2λ)(µ(1 + 6λ′

1) + λ′
1) from the

original path c.
With a similar construction for c2 = c[t, T ], one obtains a geodesic c′′2 from p to y

which is at distance at most C(1 + 2λ)(µ(1 + 6λ′
1) + λ′

1) from c.
The concatenation of c′′1 and c′′2 is by Lemma 3.6 a geodesic from x to y at distance at

most C(1 + 2λ)(µ(1 + 6λ′
1) + λ′

1) from c, which concludes the proof.

3.3 Projecting to a flat

In this subsection we extend Proposition 3.3 to the symmetric space X = PSLd(R)/PSO(d)
equipped with the Finsler metric dF. We begin with extending the geometric notions
from Section 3.2 to X.

Recall, for instance from [KL18], that the diamond between two points x, y ∈ X is
defined as follows. A Weyl cone of a flat of X is the translation under an element of
PSLd(R) of the standard Weyl cone exp a+ ⊂ exp a based at the basepoint x of the
standard flat exp a. Consider a flat F containing x and y, a Weyl cone W ⊂ F based
at x and containing y, and the opposite Weyl cone W ′ based at y (which automatically
contains x). Then the diamond D(x, y) is defined as

D(x, y) = W ∩W ′.

It does not depend on choices, and as an intersection of convex subsets of X, it is convex.
The analog of Lemma 3.6 holds true.

Proposition 3.11 (Lemma 5.10 of [KL18]). For all x, y ∈ X, the diamond D(x, y) is the
set of points z ∈ X such that dF(x, z) + dF(z, y) = dF(x, y).

The following non-uniform version of Lemma 3.7 for (X, dF) is used to reduce Theo-
rem 3.1 to Proposition 3.3.

Proposition 3.12. For any C ≥ 1 there exists C ′ > 0 such that for all x, y ∈ X, any
z ∈ X such that dF(x, z) + dF(z, y) ≤ dF(x, y) +C is at distance at most C ′ from D(x, y).

Proof. For the purpose of this proof, let us simplify notations by writing d instead of dFX.
Suppose for a contradiction that there exists sequences (xn)n, (yn)n and (zn)n such

that d(xn, zn) + d(zn, yn) ≤ d(xn, yn) + C for all n but the distance from zn to D(xn, yn)
tend to infinity as n → ∞.

First note that d(xn, zn) ≥ d(zn, D(xn, yn)) → ∞, and similarly d(zn, yn) → ∞. Since
d(xn, yn) ≥ d(xn, zn) + d(zn, yn)− C we have d(xn, yn) > d(xn, zn) for large enough n.

Let wn ∈ D(xn, yn) be at distance exactly d(xn, zn) from xn. Such a point exists by
compactness of D(xn, yn). Up to translating everything, we can assume that wn equals
the basepoint x of the symmetric space for all n, and that xn, yn are contained in the
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standard flat A ⊂ X. It follows from the explicit construction of the diamond D(xn, yn)
that the points xn, yn are contained in antipodal Weyl cones with vertex x, that is, we may
assume that yn is contained in the standard (closed) Weyl cone A+, and xn is contained
in the opposite (closed) Weyl cone A−.

Consider a Riemannian geodesic ray (wn(t))t≥0 (with unit Finsler speed) starting at
x and passing through zn, say at time Rn = d(x, zn).

We claim that for any 0 ≤ t ≤ Rn,

d(xn, wn(t)) + d(wn(t), yn)− d(xn, yn) ≤ C (13)

Namely, since by [KL18, Eq. (5.4)] Finsler balls of fixed radius are convex, the segment
t → wn(t) (t ∈ [0, R]) stays in the Finsler balls around xn and yn of respective radius
d(xn, zn) and d(yn, zn).

Up to extracting a subsequence, we can assume that the sequence of rays wn(t)
converge to a ray w(t) starting at x and ending at some w(∞) ∈ ∂∞X. We now claim
that

w(t) is contained in the flat A. (14)

Let us prove it. The ball of radius d(yn, zn) around yn contains wn(t) for any t ≤ Rn, and
this ball converges as n → ∞ to a Finsler horoball, which hence contains w(t) for all t. By
the paragraph about Busemann functions in Section 1, this Finsler horoball is contained
in a Riemannian horoball B+ around the point ξ+ = α#

0 ∈ ∂∞A+ (see Notation 1).
Similarly, w(t) is contained in a Riemannian horoball B− around ξ− ∈ ∂∞A− ∩G ·α#

0,
which is antipodal to ξ+ as α0 was chosen symmetric with respect to the Cartan involution.

By Lemma 3.13 below, the Tits distance between ξ± and w(∞) is at most π
2 . Recall

that the Tits distance between a, b ∈ ∂∞X is the angle between two geodesic rays going
to respectively a and b and that are contained in the same flat (see for instance [BH99,
Part II, Ch. 9] for an account on the Tits metric).

Since ξ− and ξ+ are antipodal, their Tits distance is exactly π. It follows from
Lemma 3.14 that the limit point w(∞) lies on the boundary at infinity of the unique flat
which contains ξ− and ξ+ in its boundary, that is the standard flat A. Since w(0) is also
in that flat, the whole geodesic ray (w(t))t remains in the same flat A, and this ends the
proof of the claim (14).

Now we combine (13), (14) and Lemma 3.7 to conclude. Fix λ > 0 such that for all
x, y, z ∈ A we have

d(z,D(x, y)) ≤ λ(d(x, z) + d(z, y)− d(x, y)).

Then for any t, taking n large enough we have d(xn, w(t))+d(w(t), yn)−d(xn, yn) ≤ C+1
and hence

d(w(t), D(xn, yn)) ≤ λ(C + 1),

since w(t) ∈ A. Coming back to wn(t) we deduce, for n large enough, that

d(wn(t), D(xn, yn)) ≤ λ(C + 1) + 1.
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But this should be a contradiction, as wn(t) is a ray going to zn which is very far from
D(xn, yn). To get a true contradiction, one must be careful in the choice of wn we made at
the beginning: one must choose a point of the compact set ∂B(xn, d(xn, zn)) ∩D(xn, yn)
which is closest to zn for the Finsler metric. Then for any t ≤ Rn it holds

d(wn(t), ∂B(xn, d(xn, zn)) ∩D(xn, yn)) = t,

from which one easily deduces, using d(xn, zn)− C ≤ d(xn, wn(t)) ≤ d(xn, zn), that

d(wn(t), D(xn, yn)) ≥
t

2
− C,

whence a contradiction.

Lemma 3.13. If a Riemannian geodesic ray (w(t))t≥0 is contained in a Riemannian
horoball centered at ξ ∈ ∂∞X, then the Tits distance between ξ and the limit of (w(t))t
inside ∂∞X is at most π

2 .

Proof. Denote by bξ the Riemannian Busemann function. The derivative at time t of
bξ(w(t),x) is − cos of the Riemannian angle at w(t) between the ray w and the ray from
w(t) to p (see for instance [KL18, §3.1]). When t → ∞, this angle converges to the Tits
distance between the endpoint w(∞) ∈ ∂∞X of the ray and ξ (see for instance [BH99,
Part II, Prop. 9.8]). If we want bξ(w(t),x) to remain bounded from above, its derivative
cannot converge to a positive number. As a consequence, the Tits distance between w(∞)
and ξ is at most π

2 .

Denote by dTits the Tits distance on ∂∞X.

Lemma 3.14. Let ξ1, ξ2, ζ ∈ ∂∞X be three points whose Tits distance satisfy the following

dTits(ξ1, ζ) + dTits(ζ, ξ2) = dTits(ξ1, ξ2) = π

Suppose that ξ1 (and equivalently ξ2) is a regular point and let F be the unique flat that
contains ξ1 and ξ2 in its boundary at infinity ∂∞F .

Then ζ belongs to ∂∞F .

Proof. Assume that ζ is distinct from ξ1 and ξ2, otherwise it is trivial. The Tits metric is
CAT(1) (see [BH99, Part II, Th. 9.13]). It implies that each pair of points at distance
d < π are joined by a unique geodesic of length d.

Let γi : [0,
π
2 ] → ∂∞X be the unique geodesic between ξi and ζ. Since for the triple

ξ1, ζ, ξ2, equality holds in the triangle inequality, the concatenation of γ1 and γ2 (traveled
backward) is a geodesic γ : [0, π] → ∂∞X from ξ1 to ξ2. Since ξ1 is regular, it lies in the
interior of a Weyl chamber of ∂∞F . The definition of Tits distance forces γ(t) to remains
in the same Weyl chamber for small values of t > 0. In particular γ(t) belongs to ∂∞F
for small t.

The points γ(t) and ξ2 are at distance π − t < π, and so there is a unique geodesic
from γ(t) to ξ2. The boundary at infinity ∂∞F is totally geodesic for the Tits metric. So
by uniqueness, the geodesic (γ([t, π])) remains in the boundary of ∂∞F . It follows that
ζ = γ(dTits(ξ1, ζ)) lies in ∂∞F .
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3.4 Proof of Theorem 3.1

We are now ready for the proof of Theorem 3.1.
Consider a continuous path c : [0, T ] → X such that for any 0 ≤ t ≤ s ≤ u ≤ T , we

have dF(c(t), c(s)) + dF(c(s), c(u)) ≤ dF(c(t), c(u)) + C.
Let F be a flat containing c(0) and c(T ), so that it also contains the diamond

D(c(0), c(T )). By Proposition 3.12 there exists C ′ > 0 only depending on C such that
for any 0 ≤ t ≤ T , there exists a(t) ∈ D(c(0), c(T )) at distance at most C ′ from c(t),
with a(0) = c(0) and a(T ) = c(T ). By the triangle inequality, the path t → a(t) is
C + 6C ′ quasi-ruled. By Lemma 3.2, up to enlarging C + 6C ′ to a constant which also
only depends on C, we may assume that t → a(t) is continuous.

Thus we can apply Proposition 3.3 to a, to find a geodesic b : [0, T ] → F such that
dF(a(t), b(t)) ≤ C ′′ for some C ′′ > 0 which depends only on C. Recall that geodesics for
the restricted metric on F are also geodesics for the metric on X.

We conclude that dF(c(t), b(t)) ≤ C ′′ + C ′ for any t where C ′′ + C ′ depends on C but
not on the path c.

4 Fock–Goncharov positivity

This section is devoted to a geometric interpretation of positivity as introduced by
Lusztig [Lus94] and imported into the context of Hitchin representations by Fock and
Goncharov [FG06]. We collect the relevant algebraic results and relate them to admissible
paths on the characteristic surface of a Hitchin grafting representation. Throughout this
section, we put G = SLd(R) although most of the discussion is valid for all split real simple
Lie groups and although ultimately we are interested in PSLd(R). For completeness, note
that for G = SLd(R), most of Lusztig’s results and concepts were already known (see for
instance [And87]), but we still use Lusztig’s notation and formalism. In particular, we
will use Lusztig’s work to introduce the subsets

G>0 ⊂ G≥0 ⊂ G and F>0 ⊂ F≥0 ⊂ F

and some of their basic properties.
As G = SLd(R), the subset G>0 ⊂ G is the set of totally positive matrices, which

are the matrices A ∈ SLd(R) such that for any 1 ≤ k ≤ d − 1 the exterior product
ΛkA ∈ SL(ΛkR) = SLdk(R) is positive, i.e. all its entries are positive. For general split
Lie groups the definition of G>0 is more complicated, see Sections 2.2, 2.12, 5.10 and 8.8
of [Lus94].

One can check that τ : PSL2(R) → PSLd(R) is positive in the sense that it maps
projectivizations of positive matrices to projectivizations of totally positive matrices. Note
also that Lusztig did not introduce the concept of positive representation from PSL2(R)
into G: this is due to Fock–Goncharov [FG06], who used it to prove among other things
that all Hitchin representations are discrete. Many ideas in this section are inspired by
the work of Fock–Goncharov.
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Finally, the concept of positivity also exists in certain nonsplit real Lie group:
see [BH12; GW18]. However in these settings the positive cone lies in a partial flag
manifold instead of the full flag manifold, which is not enough for our purposes.

4.1 Reminders on positivity

The following summarizes the results from [Lus94] we are going to use. As before, F
denotes the variety of full flags in Rd.

Theorem 4.1 ([Lus94]). There exist semigroups G>0 ⊂ G≥0 ⊂ G and a subset F>0 ⊂ F
with the following properties.

1. [By definition, see §2.2] exp(a) ⊂ G≥0, in particular 1 ∈ G≥0.

2. [Th. 4.8] For the standard embedding τ : SL2(R) → SLd(R), the set G>0 is an (open)
connected component of

{g ∈ G : g∂τ(∞) ⋔ ∂τ(∞) and g∂τ(0) ⋔ ∂τ(0)}.

3. [Th. 5.6] Every element of G>0 is loxodromic, and in particular does not fix any
point of X.

4. [Th. 4.3 & Rem. 4.4] G≥0 is the closure of G>0.

5. [before Prop. 2.13] G>0G≥0 ⊂ G>0 and G≥0G>0 ⊂ G>0.

6. [Prop. 8.14] F>0 is an (open) connected component of ∂τ(∞)⋔ ∩ ∂τ(0)⋔.

7. [Prop. 8.12] G≥0F>0 ⊂ F>0.

8. [By (7) above and by definition, see Th. 8.7] F>0 = G>0 · ∂τ(∞).

Example . In the special case G = SL3(R), one can visualise F>0: namely, recall that
in this case, the flag variety F is identified with the set of pairs (p, ℓ) where p is a point
of RP2 and ℓ is a line containing p.

Let x, y and z ∈ RP2 be the image of the canonical basis of R3, let [x, y], [y, z] and
[z, x] ⊂ RP2 be the image of the segments between the vectors of the canonical basis, and
let T ⊂ RP2 be the triangle enclosed by these segments. Then F>0 is the set of pairs (p, ℓ)
such that p is contained in the interior of T and ℓ intersects the (relative) interior of the
segments [x, y] and [y, z]. Then

G>0 = {g ∈ SL3(R) | gF>0 ⊂ F>0}.

One can see that g ∈ G>0 maps T into its interior (this corresponds to the fact that the
entries of g, i.e. the minors of size 1, are positive), and hence g has an attracting fixed
point in T . In general it is true that any totally positive matrix is diagonalisable with
distinct positive eigenvalues.
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We will also use the following, which should be well-known to the experts, but for
which we did not find a reference.

Lemma 4.2. 9. F>0 is the interior of its closure, denoted by F≥0.

10. G>0F≥0 ⊂ F>0.

11. Let us denote G<0 := (G>0)
−1 and F<0 = G<0 · ∂τ(∞), and G≤0 and F≤0 their

respective closures. Then any pair in F<0 ×F≥0 is transverse.

Remark . It is clear that F≥0 contains G≥0 · ∂τ(∞) but they are not equal in general. For
instance consider the case SL3(R). Denote the usual basis of R3 by (e1, e2, e3). Consider
the flags ∂τ(∞) = (span(e3), span(e2, e3)) and F = (span(e2), span(e2, e3 − e1)).

Then F lies in F≥0 but not in G≥0 · ∂τ(∞). Indeed one can check F ∈ F≥0 by

computing that F = limλ→0+ Aλ∂τ(∞) where Aλ =
(

1 3λ λ
λ 2 1
λ3 λ λ

)
is totally positive for small

positive values of λ. (One can renormalize Aλ to make it determinant 1.)
But if a matrix B ∈ G≥0 sends ∂τ(∞) to the flag F , then it sends e2 to a point

B · e2 in span(e2, e3 − e1) \ span(e2). Thus one can write B · e2 = ae2 + b(e3 − e1) with
b ̸= 0. Then one of the coefficients of B, in position (3, 1) or (3, 3), has a negative
entry. It contradicts the fact that B ∈ G≥0, and that matrices in G≥0 have non-negative
entries. The flag F may be thought as corresponding to a point at infinity of G≥0 (for the
compactification SL3(R) ↪→ PGL3(R)).

Proof of Lemma 4.2. Proof of (9). Put ξ∞ = ∂τ(∞) and ξ0 = ∂τ(0). By definition,
the sets ξ⋔∞ and ξ⋔0 are open Bruhat cells in F and hence Z = ξ⋔∞ ∩ ξ⋔0 is open. The
complements of the Bruhat cells ξ⋔∞ and ξ⋔0 are (real) connected projective varieties all of
whose irreducible components are of codimension one. Then every point of the boundary
of ξ⋔∞ ∩ ξ⋔0 is contained in an irreducible subvariety of codimension one. Thus by property
(6), the statement(9) is equivalent to the following. Let V be a component of Z. Denoting
by U the closure of a set U , it holds

V = F − F − V . (15)

As for any two open sets U1, U2 we have U1 ∪ U2 = U1 ∪ U2, it suffices to write V
as a finite intersection V = ∩d−1

j=1Uj where each of the sets Uj has property (15). To
construct such sets note that if ξι = (ξ1ι ⊂ · · · ⊂ ξd−1

ι ) (ι = ∞, 0) then the linear
hyperplanes ξd−1

∞ , ξd−1
0 are transverse and hence they decomposes Rd into four connected

components which are paired be the reflection x → −x, say the components A,−A,B,−B.
The closures of the components A,−A and B,−B intersect in a linear subspace of
codimension 2. A component V of Z = ξ⋔∞ ∩ ξ⋔0 consists of flags ζ = ζ1 ⊂ · · · ⊂ ζd−1 with
the property that ζ1 is transverse to both ξd−1

∞ , ξd−1
0 . But this means that for either A or

B, say for A, any nonzero point on the line ζ1 is contained in A ∪−A. As a consequence,
up to exchanging A and B, if we define U1 to be the set of all flags ζ = ζ1 ⊂ · · · ⊂ ζd−1

such that ζ1 − {0} ⊂ A ∪ −A then V ⊂ U1, and U1 is an open set with property (15).
Now note that U1 can also be described as follows. Choose a generator ωι of ∧d−1ξd−1

ι

(ι = 0,∞) and define U1 to be the set of all flags ζ with the property that for some basis
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element e of ζ1, the wedge products e ∧ ω0, e ∧ ω∞ define the same (or the opposite)
orientation of Rd. Then U1 is one of the sets described in the previous paragraph.

For j ≤ d− 1 define the set Uj as the set of all flags ζ so that for some generator e

of Λjζj and some generators ωd−j
0 , ωd−j

∞ of Λd−jξd−j
0 ,Λd−jξj∞ the orientations defined by

e ∧ ωd−j
0 , e ∧ ωd−j

∞ coincide (or are opposite). For suitably choices of the sets Uj , we then
have V = ∩jUj . Together with the first paragraph of this proof, (9) follows.

Proof of (10). Since G>0 is open (by (2)), every G>0-orbit in F is open. Being a
union of such orbits, G>0F≥0 is also open. Moreover it is contained in F≥0 (by (7)) and
hence it is contained in its interior, which is precisely F>0 by (9).

Proof of (11). Consider (ξ, η) ∈ F<0 ×F≥0. Since F>0 is open, G>0 contains 1 in its
closure, and G>0F≥0 ⊂ F>0, there exists g ∈ G>0 such that gξ ∈ F<0 and gη ∈ F>0.

By definition, there exists h ∈ G>0 such that gξ = h−1ξ∞. Then hgξ = ξ∞ and
hgη ∈ hF>0 ⊂ F>0 ⊂ ξ⋔∞ by (6). Therefore hgξ and hgη are transverse, and so are ξ
and η.

4.2 Positivity and injectivity of admissible paths

We now explain the assumption that the representation τ : SL2(R) → SLd(R) is positive:
it means that τ maps every 2 × 2 matrix with positive entries into G>0. It has the
following consequences, which should be well-known to experts.

Lemma 4.3. We have the following.

1. a′t ∈ G>0 for any t > 0.

2. G<0 = rπG>0rπ (see Notation 2).

Proof. Proof of (1). This is an immediate consequence of the fact that( √
2
2

√
2
2

−
√
2
2

√
2
2

)(
et 0
0 e−t

)(√
2
2 −

√
2
2√

2
2

√
2
2

)
has positive entries.

Proof of (2). Let us prove that rπG
−1
>0rπ = G>0. The maps g 7→ g−1 and g 7→ rπgrπ

both preserve
{g ∈ G : g∂τ(∞) ⋔ ∂τ(∞) and g∂τ(0) ⋔ ∂τ(0)},

and hence permute the connected components, and consequently so does g 7→ rπg
−1rπ.

To prove that this map preserves the connected component G>0 (see Theorem 4.1 (2)),
it suffices to show that it fixes a point of G>0. It is clear that it fixes for instance
a′1 ∈ G>0.

A first important consequence of all the facts about positivity that we have listed is
the following.

Corollary 4.4. For any admissible path c : [0, T ] → G, for all 0 ≤ s < t ≤ T we have
c(s)−1c(t) ∈ G≥0.
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Proof. By definition, c(s)−1c(t) is a product of elements of G of the form a′r for some
r > 0 or exp(v) for some v ∈ a. All these elements belong to G≥0 by Theorem 4.1 and
Lemma 4.3, and so does their product since G≥0 is a semigroup.

The previous result, combined with the fact that totally positive matrices are not the
identity, tells us that admissible paths are injective, as explained below.

Proposition 4.5. Any admissible path in X is injective.

Proof. Let c : [0, T ] → G be an admissible path and let x ∈ X be an arbitrarily fixed point.
Consider 0 ≤ s < t ≤ T , and let us prove that c(s)x ̸= c(t)x, i.e. that c(s)−1c(t)x ̸= x.
By definition, c(s)−1c(t) is a product of elements of G of the form a′r for some r > 0 or
exp(v) for some v ∈ a. There are two cases.

Case 1: c(s)−1c(t) = exp(v) for some nonzero v ∈ a, then it is clear that exp(v)x ̸= x.
Case 2: c(s)−1c(t) is a product of elements of G of the form a′r for some r > 0 or exp(v)

for some v ∈ a, with at least one element of the form a′r. All the exp(v)’s belong to G≥0

by Theorem 4.1.1, and all the a′r’s belong to G>0 by Lemma 4.3.1, and so c(s)−1c(t)
belongs to G>0 by Theorem 4.1.5. Therefore c(s)−1c(t) does not fix any point of X by
Theorem 4.1.3, and c(s)−1c(t)x ̸= x.

This implies that the characteristic surface we have constructed in Section 2.4 is
embedded.

Corollary 4.6. The map Qz : Sz → ρz\X constructed in Proposition 2.5 is injective.

Proof. Consider x, y ∈ Sz such that Qz(x) = Qz(y), and let us prove that x = y.
Consider two lifts x̃ and ỹ ∈ S̃z of respectively x and y. Then Q̃z(x̃) and Q̃z(ỹ) have

the same projection in ρz\X, which means that there exists γ ∈ π1(S) such that

Q̃z(x̃) = ρz(γ)Q̃z(ỹ) = Q̃z(γỹ).

Consider an admissible path c : [0, T ] → S̃z from x̃ to γỹ. Then by Observation 2.9
Q̃z ◦ c : [0, T ] → X is an admissible path from Q̃z(x̃) to itself.

Since admissible paths of X are injective by Proposition 4.5, this means that T = 0
and x̃ = γỹ, and hence that x = y.

4.3 Positivity gives a control on default of the triangle inequality

The goal of this section is to prove the following result about totally positive transforma-
tions. We then use it to prove that admissible paths are (Finsler) quasi-ruled, quasi-convex
and quasi-geodesics, which implies that the characteristic surface in the symmetric space
associated to a Hitchin grafting representation is Finsler quasi-convex.

As before, we write G = SLd(R), and we choose a basepoint x ∈ X = G/K, thought
of as the projection of the identity in G.

Lemma 4.7. For any ω > 0, there exists Cω > 0 such that for all g+ ∈ G≥0 and
g− ∈ a′−ωG≤0, we have

dF(g−x,x) + dF(x, g+x) ≤ dF(g−x, g+x) + Cω.
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To prove it we will need the following technical result. In its formulation, we use
a K-invariant metric dF on the flag variety F . Furthermore, we denote by ξ0 ∈ F the
simplex ∂τ(∞) = exp(a+) ∈ F . Distances are taken with respect to the distance function
d defined by the symmetric Riemannian metric.

Lemma 4.8. For every ϵ > 0 there exists a number Cϵ > 0 only depending on ϵ with the
following property. Consider g ∈ G decomposed as g = k exp(κ(g))ℓ with k, ℓ ∈ K (the
maximal compact subgroup) and κ(g) ∈ a+. Let ξ ∈ F be at dF -distance at least ϵ > 0

from kξ ̸⋔0 . Then x is at distance at most Cϵ from the Weyl cone with vertex at gx and
boundary at infinity the simplex in ∂∞X corresponding to ξ.

Proof. Since dF(ξ, kξ
̸⋔
0 ) ≥ ϵ, the simplices ξ, kξ0 are transverse and hence they are

contained in a unique maximal flat F . We claim that there is x ∈ F at distance at most
Cϵ > 0 from x, where Cϵ only depends on ϵ. Indeed, this follows from the compactness
of the set {(ξ, η) ∈ F2, dF(ξ, η) ≥ ϵ} and continuity of the map which associates to
two transverse flags the unique maximal flat whose visual boundary contains the Weyl
chambers that corresponds to the two flags.

Note that gx is contained in the Weyl cone connecting x to kξ0 (because kx = x, ℓx = x
and exp(κ(g))x is contained in the Weyl Cone connecting x to ξ0). Thus as Weyl cones
are convex cones, the endpoint p ∈ ∂∞X of the geodesic ray [x, p) starting at x and
passing through gx is contained in the Weyl Chamber kξ0. The ray [x, p) is contained in
the Weyl Cone from x to kξ0.

We now apply the CAT(0)-property for the Riemannian symmetric metric to the
asymptotic rays [x, p) and [x, p). It yields that the point y ∈ [x, p) at distance exactly
d(x, gx) from x is of distance at most d(x, x) ≤ Cϵ from gx.

By construction, the geodesic ray [x, p) is contained in the flat F , and its endpoint
is contained in the Weyl chamber kξ0. The unique geodesic line η extending [x, p) is
contained in F and is backward asymptotic to a point q in the unique Weyl chamber ξ in
the visual boundary of F which is transverse to kξ0. Recall that η passes through the
Cϵ-neighborhood of x.

Using once more the CAT(0)-property, this time applied to the subray of η which
connects y to q and the geodesic ray ζ connecting gx to q, we conclude that ζ passes
through the Cϵ-neighborhood of x and hence through the 2Cϵ-neighborhood of x. On the
other hand, by construction, this ray is contained in the Weyl cone connecting gx to ξ.
Together this is what we wanted to show.

Proof of Lemma 4.7. Decompose g± = k±e
κ(g±)ℓ± with k±, ℓ± ∈ K (the maximal com-

pact subgroup) and κ(g±) ∈ a+. The plan is to use positivity and Lemma 4.8 to find
Weyl Chambers ξ± such that their images g±ξ± are transverse, the flat F through them
passes near x, and the Weyl Cone from x to g±ξ± passes near g±x.

Recall the definition of the set F≥0, and for ω > 0 the element a′ω. Since a′ωF≥0 has
nonempty interior and ξ ̸⋔0 is a closed set with empty interior, there exists ϵ = ϵω > 0 such
that for every k ∈ K there is ξ ∈ a′ωF≥0 at dF -distance at least ϵ from kξ ̸⋔0 . Similarly, for
every k ∈ K there is ξ ∈ a′−ωF≤0 at dF -distance at least ϵ from kξ ̸⋔0 .
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Let ξ+ ∈ a′ωF≥0 be at dF -distance at least ϵ from ℓ−1
+ ξ ̸⋔0 and ξ− ∈ a′−ωF≤0 be at

dF -distance at least ϵ from ℓ−1
− ξ ̸⋔0 .

We know ξ+ ∈ F≥0 and g+ ∈ G≥0, so by Theorem 4.1.7 we have g+ξ+ ∈ F≥0, and
similarly g−ξ− ∈ a′−ωF≤0. In particular, by Lemma 4.2.11 g+ξ+ and g−ξ− are transverse.
More precisely, if we denote as before by d the distance function of the symmetric metric,
then the flat F = F (g−ξ−, g+ξ+) through them contains a point x with d(x,x) ≤ qω
for some qω > 0 only depending on ω, because every pair in the set a′−ωF≤0 × F≥0 is
transverse and this set is compact.

Since dF(ξ±, ℓ
−1
± ξ ̸⋔0 ) ≥ ϵ, Lemma 4.8 implies that g±x is at Riemannian distance at

most Cϵ to the Weyl Cone connecting x to g±ξ±. By the CAT(0) property of (X, d),
applied to the geodesics connecting x and x to all points in g±ξ±, the Hausdorff distance
(for d) between this Weyl cone and the Weyl cone W± ⊂ F connecting x to g±ξ± is at
most d(x, x) ≤ qω. As a consequence, there is x± ∈ W± with

d(x±, g±x) ≤ qω + Cϵ.

Since W+ and W− are two opposite Weyl Cones in F based at x, and since x± ∈ W±,
we deduce from Proposition 3.11 that

dF(x−, x) + dF(x, x+) = dF(x−, x+).

To conclude, recall that the Riemannian and Finsler metrics are comparable; that is,
there exists λ > 0 such that λ−1d ≤ dF ≤ λd. Then by the triangle inequality

dF(g−x,x) + dF(x, g+x)− dF(g−x, g+x)

≤ dF(x−, x) + dF(x, x+)− dF(x−, x+) + 6λ(qω + Cϵ)

≤ 6λ(qω + Cϵ).

We now use the previous result to prove that admissible paths are quasi-ruled. For
this we will need the following general fact about quasi-ruled paths.

Lemma 4.9. Let (X, d) be a metric space and x1, . . . , xn ∈ X be such that for some
constant C > 0 we have d(xi, xj) + d(xj , xk) ≤ d(xi, xk) + C for all i < j < k. Then any
concatenation of geodesics [x1, x2], [x2, x3], . . . , [xn−1, xn] is 4C-quasi-ruled.

Proof. Let x, y, z be three points on such a concatenation, in this order, and let us check
that d(x, y) + d(y, z) ≤ d(x, z) + 4C. Let [xi, xi+1], [xj , xj+1] and [xk, xk+1] be three
geodesic pieces of the concatenation containing respectively x, y, z, such that i ≤ j ≤ k.
Let us assume for the rest of the proof that i < j < k; if instead we have i = j < k or
i < j = k then the proof is similar (in fact easier), and the case i = j = k is obvious.

Using the triangle inequality and our assumption, and denoting (a, b) = d(a, b) to
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lighten our estimates on distances, we have the following, which concludes the proof.

(x, y) + (y, z) ≤ (x, xi+1) + (xi+1, xj) + (xj , y) + (y, xj+1) + (xj+1, xk) + (xk, z)

≤ −(xi, x) + (xi, xi+1) + (xi+1, xj) + (xj , xj+1) + (xj+1, xk) + (xk, xk+1)− (z, xk+1)

≤ −(xi, x) + (xi, xj) + C + (xj , xk) + C + (xk, xk+1)− (z, xk+1)

≤ 2C − (xi, x) + (xi, xk) + C + (xk, xk+1)− (z, xk+1)

≤ 3C − (xi, x) + (xi, xk+1) + C − (z, xk+1)

≤ 4C + (x, z).

We now prove that admissible paths are quasi-ruled.

Proposition 4.10. For any ω > 0 there exists Cω such that any (ω, 0)-admissible path c
in X is Finsler Cω-quasi-ruled, and hence is at Hausdorff distance at most C ′

ω from some
Finsler geodesic by Theorem 3.1, where C ′

ω only depends on Cω.

Proof. By definition c(r) = a(r)x for any r, where a(r) is an admissible path in G.
Take 0 ≤ t < s < u ≤ T , and let us show d(c(t), c(s))+d(c(s), c(u)) ≤ d(c(t), c(u))+Cω

for a well-chosen Cω. By Lemma 4.9 above we may assume that each of the points
a(t), a(s), a(u) is at the junctions of two pieces of the admissible path a, one of hyperbolic
type, and the other of flat type (see Definition 2.8).

By Corollary 4.4, a(s)−1a(u) ∈ G≥0 and a(s)−1a(t) ∈ G≤0.
Note that a(s) is adjacent to a hyperbolic-type piece of a, which has length at least ω,

unless this piece is the first or last piece of a. If this hyperbolic-type piece is first or last
and has length less than ω, then c(s) is ω-close to either c(t) or c(u), and one conclude
easily with the triangle inequality (taking Cω ≥ ω). Let us assume this hyperbolic-type
piece has length at least ω.

If this piece is after a(s) then a(s)−1a(u) ∈ a′ωG≥0. If on the contrary this piece is
before a(s) then a(s)−1a(t) ∈ a′−ωG≤0.

In any case, by Lemma 4.7, we can conclude:

dF(c(t), c(s)) + dF(c(s), c(u)) ≤ dF(c(t), c(u)) + Cω.

Finally, we deduce that the characteristic surface associated to a Hitchin grafting
representation is quasi-convex.

Corollary 4.11. Consider the map Q̃z : S̃z → S̃ι
z ⊂ X constructed in Proposition 2.5,

such that the grafting locus γ∗ ⊂ S has collar size at least ω > 0. Then S̃ι
z is Finsler

Cω-quasi-convex for some Cω depending on ω, in the sense that any two points of S̃ι
z can

be connected by a Finsler geodesic that stays at distance at most Cω from S̃ι
z.

Proof. This is an immediate consequence of Proposition 4.10 and Observation 2.9.
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4.4 Estimates on eigenvalues of products of totally positive matrices

We will also need a quantitative version of the classical result that all elements of G>0

are loxodromic. This quantitative result is probably well known to experts; since we did
not find a precise reference for what we need, we give a proof (in the case G = SLd(R)).
We will not need in the present paper the estimates on angles presented below, but they
will be useful in the companion paper [BHMM24].

Recall that for any matrix g and 1 ≤ k ≤ d, we denote by λk(g) the logarithm of the
norm of the k-th eigenvalue of g, such that λ1(g) ≥ λ2(g) ≥ · · · ≥ λd(g). Recall that g is
loxodromic if we have strict inequalities; in this case this gives a natural ordering on the
eigenspaces of g (which are eigenlines).

Proposition 4.12. For any g ∈ G>0 there exists ω, θ > 0 such that the following holds.

• for any h ∈ G≥0, for any 1 ≤ k < d, we have λk(gh) ≥ λk+1(gh) + ω (so gh is
loxodromic) and the angle between the sum of the k first eigenlines of gh and the
sum of remaining eigenlines is at least θ.

• for all h1, . . . , hn ∈ G≥0, denoting h = gh1gh2 · · · ghn we have λk(h) ≥ λk+1(h)+nω
for any 1 ≤ k ≤ d− 1.

In particular, dF(x, hx) ≥ nω′ for some constant ω′ that only depends on ω.

• for all h, h′ ∈ gG≥0, for any k, the angle between the sum of the k first eigenlines
of h and the sum of last d− k eigenlines of h′ is at least θ.

To prove Proposition 4.12, we first establish an intermediate result about positive
matrices and use the fact that a matrix of size d is totally positive if and only if all its
exterior products, seen as matrices of size dk = dim(ΛkRd) where 1 ≤ k ≤ d − 1, are
positive, i.e. with positive entries.

Lemma 4.13. For any positive matrix g of size d, there exists ω > 0 such that the
following holds.

• for any nonegative h, we have λ1(gh) ≥ λ2(gh) + ω and the angle between the
attracting eigenline of gh and the repelling hyperplane is at least θ.

• for all A1, . . . , An nonnegative, if A = gA1 · · · gAn then λ1(A) ≥ λ2(A) + nω.

• for all h, h′ nonnegative, for any k, the angle between the sum of the attracting
eigenline of gh and the repelling hyperplane of gh′ is at least θ.

Proof. We will prove all three points at the same time. By density of positive matrices it
suffices to prove the lemma for A1, . . . , An positive.

Let C ⊂ Rd be the open convex cone of positive vectors, and Ω ⊂ RPd−1 its projec-
tivisation, which is a properly convex domain in the sense that there is an affine chart
of RPd−1 containing Ω and in which Ω is bounded and convex.

Note that AC ⊂ C ∪ {0} for any positive matrix A, so AΩ ⊂ Ω.
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Any properly convex domain Ω′ ⊂ RPd−1 can be endowed with a classical Finsler
metric dΩ′ called the Hilbert metric, locally equivalent to the usual Riemannian metric of
RPd−1, such that (see [Bir57], or see [PT14] for a broad introduction to Hilbert geometry)

1. it is projectively equivariant: dhΩ′ ◦ h = dΩ′ for any projective transformation h;

2. it is monotone with respect to inclusion: dΩ′ ≤ dΩ′′ (on Ω′′) for any Ω′′ ⊂ Ω′;

3. if Ω′′ ⊂ Ω′ then there is r < 1 such that dΩ′ ≤ rdΩ′′ (on Ω′′).

Let g be a positive matrix: As gΩ ⊂ Ω there is r < 1 such that dΩ ≤ rdgΩ. Then
g : Ω → Ω is r-Lipschitz for dΩ — hence it is a contraction — by equivariance of the
Hilbert metric. In fact, gA : Ω → Ω also is an r-dΩ-Lipschitz map for any positive matrix
A since gAΩ ⊂ gΩ.

By the Banach fixed-point theorem, gA has a fixed point p ∈ Ω such that (gA)nx → p
for any x ∈ Ω. In particular, gA is proximal with attracting line p ∈ gΩ, and the repelling
hyperplane does not intersect Ω.

This implies the existence of a positive lower bound θ on the angle (for the standard
Euclidean metric) between the attracting line of gA and the repelling hyperplane of gA′

for all positive matrices A,A′.
This settles our claims about angles in the statement of the lemma. It remains to

prove the estimates on the gaps between the first two eigenvalues. This will be done by
reinterpreting this gap as a contraction rate for the action of proximal transformations at
their attracting eigenline and using our observation above that positive matrices contract
the cone of positive vectors.

One can observe that for any proximal matrix h such that the angle between the
attracting line and the repelling hyperplane is at least θ, the number eλ2(h)−λ1(h) is
comparable to the contraction rate of h at its attracting fixed point in RPd−1 for the
usual Riemannian metric, where the comparison error only depends on θ. In other words,
if h is R-Lipschitz (for the Riemannian metric) at its attracting eigenline then

eλ2(h)−λ1(h) ≤ C1R

for some constant C1 depending on θ.
Moreove, as we already mentioned, the restriction of the Hilbert metric dΩ to the

compact subset gΩ is uniformly comparable to the standard Riemannian metric on RPd−1.
Thus for any transformation h : Ω → gΩ, if h is R-dΩ-Lipschitz on gΩ then it is RC2-
Riemannian-Lipschitz for some constant C2 that depends on gΩ and Ω. In particular it is
RC2-Lipschitz at its attracting eigenline, and hence

eλ2(h)−λ1(h) ≤ CR

where C = C1C2.
In particular, for all A1, . . . , An positive, A = gA1 · · · gAn is rn-dΩ-Lipschitz so

λ1(A)− λ2(A) ≥ − log(Crn).
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In fact, for any k, the transformation Ak is rnk-dΩ-Lipschitz so

λ1(A)− λ2(A) =
1

k
(λ1(A

k)− λ2(A
k)) ≥ − logC

k
+ n log

(
1

r

)
,

and letting k → ∞ we get

λ1(A)− λ2(A) ≥ n log

(
1

r

)
.

Hence ω = log 1
r is the positive number we were looking for.

Proof of Proposition 4.12. This is an immediate consequence of the previous lemma, the
fact that a matrix g ∈ GLd(R) is totally positive if and only if Λkg ∈ GLdk(R) is positive
for any 1 ≤ k ≤ d, and the fact that

λk(g)− λk+1(g) = λ1(Λ
kg)− λ2(Λ

kg).

We also used that the Λd−kRd is naturally the dual to ΛkRd, and that given a k-plane
spanned by v1, . . . , vk ∈ Rd and a transverse d− k-plane spanned by w1, . . . , wd−k, the
angle between these two subspaces is equal to the angle in ΛkRd between the vector
v1 ∧ · · · ∧ vk and the hyperplane kernel of w1 ∧ · · · ∧wd−k ∈ Λd−kRd seen as a linear form
on ΛkRd.

That it holds dF(x, hx) ≥ n
C′ comes from the fact that dF(x, hx) is bounded from below

by the Finsler translation length of h acting on X, which is given by α0(λ1(h), . . . , λd(h)).
Furthermore, the restriction of α0 to the set of diagonal matrices with ordered diagonal
entries (v1, . . . , vd) such that vk ≥ vk+1 for each k is uniformly comparable to the
maximums norm on the diagonal entries.

Proposition 4.12 has the following consequence in terms of admissible paths.

Proposition 4.14. For any ω > 0 there exists Cω > 0 such that for any (ω, 0)-admissible
path c : [0, T ] → G, we have

dF(c(0) · x, c(T ) · x) ≥ k − 2

Cω
,

where k is the number of singularities (i.e. k + 1 is the number of geodesic pieces of c).

Observe that we need the −2 term in (k − 2)/Cω because we allow the first and last
pieces of c to have length less than ω.

Proof. Without loss of generality we can assume k ≥ 3, so that c contains at least one
piece of hyperbolic type of length at least ω, and that c(0) = 1. Let r be the number of
hyperbolic pieces of c of length at least ω; note that

k − 2

2
≤ r ≤ k + 2

2
.
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Then by definition of admissible (Definition 2.8) and Theorem 4.1, we can write
c(T ) ∈ G>0 as the following product:

c(T ) = g0a
′
ωg1a

′
ωg2 · · · gr−1a

′
ωgr,

where g0, . . . , gr ∈ G≥0.
By Proposition 4.12, there is C > 0 only depending on ω such that

dF(c(0)x, c(T )x) ≥ r

C
≥ k − 2

2C
.

5 Geometric control: Uniform quasi-isometry

This section contains the main geometric results of this article. Recall that S is a
hyperbolic closed surface, let G = PSLd(R) and τ : PSL2(R) → G be the usual irreducible
representation. In Section 2.3, given a collection of disjoint closed curves on S and
an element of the Cartan subspace of G for each of these curves, we have recalled the
definition of bending τ(π1(S)) inside G along these closed curves via the elements of the
Cartan subspace. Moreover, in Section 2.4, we associated to such a bending an abstract
grafting Sz of S (where z is the grafting parameter) and an equivariant, 1-Lipschitz, and
piecewise totally geodesic map

Q̃z : S̃z → X

from its universal covering S̃z to the symmetric space X of G which projects to a map
Qz : Sz → ρz\X.

Note that G is real split and τ is a regular and positive representation in the sense
that it maps (projectivizations of) positive matrices in PSL2(R) to (projectivizations of)
totally positive matrices in G (see Section 4). Then the bent representation of π1(S)
is Hitchin, which implies by independent (and different) work of Labourie [Lab06] and
Fock–Goncharov [FG06] that our equivariant map S̃z → X is a quasi-isometric embedding.

In this section we give an upper bound for the multiplicative error of this quasi-
isometric embedding and establish a more precise version of Theorem A. Our proof does
not rely directly on the work of Labourie and Fock–Goncharov, but follows from the
results on totally positive matrices proved in Section 4, which were greatly inspired by
Fock–Goncharov’s use of positivity.

Theorem 5.1. For every σ > 0, there exists Cσ > 0 such that the following holds.
Consider a closed hyperbolic surface S, a multicurve γ∗ ⊂ S whose components have

length at most σ, and a grafting parameter z such that all cylinder heights of the abstract
grafting Sz are bounded from below by some number L > 0.

Let us endow X with the G-invariant admissible Finsler metric F and Sz with the
pullback of this metric under Qz, denoted by dF

S̃z
. Then the grafting map Q̃z : S̃z → X is

an injective quasi-isometric embedding with multiplicative constant (1 + Cσ/(L+ 1)) and
additive constant Cσ; more precisely, for all x, y ∈ S̃z we have(

1 +
Cσ

L+ 1

)−1

dF
S̃z
(x, y)− Cσ ≤ dF(Q̃z(x), Q̃z(y)) ≤ dF

S̃z
(x, y).
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Moreover, the image S̃ι
z = Q̃z(S̃z) is Cσ-Finsler-quasiconvex in the sense that for all

x, y ∈ Q̃z(S̃z), there is a Finsler geodesic from x to y at distance at most Cσ from S̃ι
z.

The facts that Q̃z is injective and S̃ι
z is quasi-convex have already been established in

Corollaries 4.6 and 4.11.
Note that the upper bound for dF(Q̃z(x), Q̃z(y)) is an immediate consequence of the

definition of dF
S̃z

as the pullback of dF.
The remaining estimate will be obtained as a consequence of Observation 2.9 and

an intermediate proposition stating that the images of admissible paths in X are quasi-
geodesics, with control on the multiplicative error term. This intermediate result will be
proved using Proposition 4.10 (that admissible paths are quasi-ruled) and Proposition 4.14
(a lower bound on the displacement of admissible paths).

The collar lemma for hyperbolic surfaces states that for any σ > 0, if

ω = sinh−1

(
1

sinh(σ/2)

)
then any simple closed geodesic γ∗ ⊂ S of length at most σ will have a collar size bounded
from below by ω, in the sense that Nω(γ

∗) = {z | d(z, γ∗) ≤ ω} is an annulus. Then
Observation 2.9 says that for any multicurve γ∗ ⊂ S with components of length at most σ,
for any grafting parameter z, the image of an admissible path of S̃z under Q̃z : S̃z → X
will be a (ω, 0)-admissible path of X.

We will also prove the following coarse estimates on lengths.

Theorem 5.2. In the setting of Theorem 5.1, let (ρz)z be the associated family grafted
Hitchin representations. Then there is C ′

σ only depending on σ such that for any γ ∈ π1(S),

ℓF(ρz(γ)) ≥
L+ 1

C ′
σ

ι(γ, γ∗).

Moreover, recalling that z is the datum of a vector ze ∈ a for each component e ⊂ γ∗,
then C ′

σ may be chosen so that if ze ∈ ker(α0) for any e then

ℓF(ρz(γ)) ≥
(
1 +

C ′
σ

L+ 1

)−1

ℓS(γ),

where ℓS(γ) is the length of γ in S.

5.1 Elementary observations

The triangle inequality easily yields the following.

Observation 5.3. For any piecewise geodesic curve c : [0, T ] → (X, dF) with m ≥ 1
geodesic pieces, that is additionally C-quasi-ruled, we have

dF(c(0), c(T )) ≥ LenF(c)− (m− 1)C.

We will also need the following technical estimates.
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Lemma 5.4. Consider a, b, k, L ≥ 0 and C ≥ 1, such that

a ≥ b− kC and b ≥ (k − 2)L and a ≥ k − 2

C
.

Then

a ≥
(
1 +

4(C + 1)3

L+ 1

)−1

b− 2C.

Proof. We can assume L > 0. Use the second equation to get

k ≤ b
L + 2

Consider first the case that L ≥ 2C ≥ 2. We By the first equation, we have

a ≥ b(1− C
L )− 2C

with the additional inequality

1− C
L ≥

(
1 + 2C

L

)−1 ≥
(
1 + 4(C+1)3

L+1

)−1

(indeed one can check that 0 ≤ x ≤ 1
2 implies (1− x)(1 + 2x) ≥ 1).

If L < 2C then use the third equation to obtain

a ≥ b− 2C

1 + C2
≥ b

1 + C2
− 2C

and insert (
1 + C2

)−1 ≥
(
1 + 4(C+1)3

L+1

)−1
.

5.2 Admissible paths are uniform quasi-geodesics

To prove that the embedding Q̃z : S̃z → X is quasi-isometric, by Observation 2.9 it
suffices to show that admissible paths in X are quasi-geodesics. We prove this now with
uniform constants using the consequences of positivity established in Section 4 and the
elementary observations of the previous section.

Proposition 5.5. For all ω > 0, there exist Cω > 0 such that for every L ≥ 0, all (ω,L)-
admissible paths are

(
1 + Cω

(L+1) , Cω

)
-quasi-Finsler-geodesics (where the first constant is

the multiplicative constant).

Proof. Let c : [0, T ] → X be an (ω,L)-admissible path. It is clear that dF(c(0), c(T )) ≤
LenF(c), so we only need to obtain a converse inequality.

By Proposition 4.10, c is Cω-quasi-ruled, for some constant Cω depending on ω. By
Observation 5.3 we get

dF(c(0), c(T )) ≥ LenF(c)− kCω,

where k is the number of singularities of c (i.e. k + 1 is the number of geodesic pieces).
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Since c contains at least (k − 2)/2 geodesic pieces of flat type and length at least L,
we also know that

LenF(c) ≥ (k − 2)L2 .

Finally by Proposition 4.14 we also have

dF(c(0), c(T )) ≥ k − 2

C ′
ω

for some constant C ′
ω depending on ω.

We conclude thanks to Lemma 5.4.

5.3 Proof of Theorem 5.1

It is an immediate consequence of Observation 2.9, Corollary 4.6, Corollary 4.11 and
Proposition 5.5. More precisely, by compactness of S, Corollary 4.6 ensures that the
natural map Sz

Qz−−→ ρz\X is an embedding.
Consider an equivariant lift Q̃z : S̃z → X of Qz. By Corollary 4.11, any two points in

Q̃z(S̃z) can be connected by a Finsler geodesic in X which remains at distance at most Cω

from Qz(Sz). This establishes the last statement in Theorem 5.1. Note that these Finsler
geodesics then project to Finsler geodesics in the quotient ρz\X in the Cω-neighborhood
of Qz(Sz).

To show the distance-length control, note that any admissible path in Sz is sent
by Qz to an (ω,L)-admissible path inside ρz\X (Observation 2.9), which is therefore a
quasi-geodesic (Proposition 5.5).

5.4 Proof of Theorem 5.2

Fix [γ] ∈ [π1(S)] transverse to γ∗ and recall that it corresponds to a free homotopy class
in the characteristic surface Sι

z ⊂ ρz\X. Let c ⊂ Sι
z ⊂ ρz\X be the unique admissible

loop in this free homotopy class. It has a ρz(γ)-invariant lift c̃ : R → X such that 0 is a
singularity and the geodesic piece of c̃ starting at time 0 is of hyperbolic type.

Denote by T the period of c, so that c̃(t+T ) = ρz(γ)c̃(t) for any t. By Proposition 5.5,
for any n ≥ 1 we have

dF(c̃(0), ρz(γ)
nc̃(0)) = dF(c̃(0), c̃(nT )) ≥

(
1 +

Cσ

L+ 1

)−1

nLenF(c)− Cσ.

Dividing by n and letting n → ∞ we get

ℓF(ρz(γ)) ≥
(
1 +

Cσ

L+ 1

)−1

LenF(c). (16)

We may assume that ι(γ, γ∗) ≥ 1 (the case ι(γ, γ∗) = 0 is trivial). The number
2ι(γ, γ∗) of singularities of c is even and bounded from below by 2, and the same is true
for the number of geodesic pieces, half of which are of flat type and have length at least L,
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and the other half are of hyperbolic type and have length at least ω = sinh−1(sinh(σ/2)−1).
Consequently,

ℓF(ρz(γ)) ≥
(
1 +

Cσ

L+ 1

)−1 L+ ω

2
ι(γ, γ∗) ≥ L+ ω

2 + 2C ′
σ

ι(γ, γ∗).

Finally, if for each component e ⊂ γ∗ the vector ze is taken in ker(α0) then we can
apply Lemma 2.2, which says that LenF(c) is bounded from below by the length of the
image of c under the projection maps Sz → S, which is itself greater than or equal
to ℓS(γ), and this means Equation 16 implies the desired inequality.

5.5 Proof of Theorem C

We begin with the proof of the third part of Theorem C. Thus let S be a closed surface
with hyperbolic metric h and let S0 ⊂ S be an essential subsurface, bounded by simple
closed geodesics ∂S0 = {γ1, . . . , γk}. Consider a one-parameter family ρt of Hitchin
grafting representations with grafting datum tz for a tuple z = (z1, . . . , zk) ∈ ak whose
components are linearly independent from the direction of a tangent vector of H ⊂ X.
Then for each t, the bordered hyperbolic surface S0 is totally geodesic embedded in ρt\X.

Choose once and for all a basepoint x ∈ S0 and view this as a basepoint in ρt\X
for all t. By Theorem 5.2 and equivalence of the Riemannian and the Finsler metric,
for each R > 0 there exists a number t = t(R) > 0 so that the shortest closed geodesic
in ρt\X which is not contained in S0 intersects the complement of the R-ball about S0.
Thus for t > t(R), the normal injectivity radius of S0 in ρt\X for the locally symmetric
Riemannian metric is at least R, and the ball B(S0, R) ⊂ ρt\X of radius R about S0 is
homotopy equivalent to S0.

By passing to a subsequence, we may assume that the pointed manifolds (ρt\X,x)
converge in the pointed Gromov Hausdorff topology to a locally symmetric pointed
manifold (N,x). This manifold contains S0 as a totally geodesic embedded surface of
infinite normal injectivity radius. But this just means that N equals the manifold defined
by the Fuchsian representation ρ|S0. This is precisely the statement of the last part of
Theorem C.

To show the second part of Theorem C, choose a non-principal ultrafilter ω on R
converging to +∞ and a basepoint x in X, viewed as the projection of the identity in
PSLd(R). Let ρt be a Hitchin grafting ray determined by a grafting parameter z ∈ a and
a simple closed geodesic γ∗ ⊂ S. Consider the pointed metric spaces Xt = (X,x, 1t d

F).
We will see that for any γ ∈ π1(S), the distance in Xt between x and ρt(γ) · x is bounded
independently of t. Thus by passing to an ω-ultralimit, we obtain an action ρ∞ of π1(S)
on the ultralimit X∞ of the metric spaces Xt defined by ω. This ultralimit is well known
to be a Euclidean building whose apartments correspond to the maximal flats in X, and
it is equipped with a Finsler metric.

We first make some choice that will allow us to embed the Bass–Serre tree T of the
graph of groups defined by γ∗ ⊂ S in Xt. This embedding will not be ρt-equivariant, but
its limit as t → ∞ will be natural (independent of the choices made) and equivariant.
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Let S̃ ≃ H2 be the universal cover of S, and γ̃∗ the preimage of γ∗. Let Σ be the
surface with boundaries obtained by cutting S̃ along γ̃∗. In each component Y ⊂ Σ
we pick a point p(Y ), and in each boundary component B ⊂ ∂Y ⊂ ∂Σ we denote by
p(B) ∈ B the shortest distance projection of p(Y ).

For each t we have an abstract grafted surface S̃t, in which Σ embeds isometrically,
and we have a quasi-isometric embedding Qt : S̃t → S̃ι

t ⊂ X that maps p(Y0) (where Y0 is
our preferred component of Σ) to the basepoint x ∈ X. For all t, Y ⊂ Σ and B ⊂ ∂Y we
denote pt(Y ) = Qt(p(Y )) and pt(B) = Qt(p(B)). Let Tt ⊂ S̃ι

t be the union of segments
of the form [pt(Y ), pt(B)] if B ⊂ ∂Y and [pt(B1), pt(B2)] if B1, B2 ⊂ ∂Σ project to the
same component of γ̃∗ in S̃. Note that Tt is a tree isomorphic to the Basse–Serre tree T .

The length of [pt(Y ), pt(B)] in X is independent of t, hence its length in Xt tends
to zero as t → ∞. The segment [pt(B1), pt(B2)] is conjugate to a segment of the form
[0, v + tz] ⊂ a where v depends on B1, B2, so its length in Xt is bounded by a constant
independent of t. As a consequence, every pt(Y ), resp. pt(B), converge as t → ∞ to a
points p∞(Y ), resp. p∞(B), in the building X∞. In fact if B ⊂ ∂Y then p∞(B) = p∞(Y ).
Moreover, the whole tree Tt converges to a tree T∞ ⊂ X∞ whose vertices are (p∞(Y ))Y⊂Σ,
whose edges are straight segments conjugate to [0, z] ⊂ a, and which is also isometric to
T .

Now observe that T∞ is invariant under the action of any γ ∈ π1(S): for any Y ⊂ Σ
and t, the distance in X between ρt(γ)pt(Y ) and pt(γY ) is independent of t, and hence
the distance in Xt tends to zero, leading to ρ∞(γ)p∞(Y ) = p∞(γY ) (and this also proves
ρ∞ is well defined).

Finally, note that T∞ is Finsler-convex. Indeed for all Y,Z ⊂ Σ and t, the path in Tt
from pt(Y ) to pt(Z) and the admissible path connecting the same two points are within
bounded distance independent of t. By Proposition 4.10, the path in Tt is at distance
≤ K from an actual Finsler geodesic, where K does not depend on t. Hence in Xt it is
at distance ≤ K/t from a Finsler geodesic, and at the limit the path in T∞ is a Finsler
geodesic itself. This yields the statement of the second part of Theorem C.

The first part of Theorem C follows immediately.
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