HARMONIC MEASURES ARE PRODUCT MEASURES

URSULA HAMENSTADT

ABSTRACT. Let M be a closed negatively curved manifold with unit tangent
bundle T M. Denote by X the geodesic spray on T1 M, i.e. the generator of
the geodesic flow ®t. Let A® be the stable Laplacian of a smooth Riemannian
metric g on 7'M and let Y be a Holder-continuous leafwise smooth section
of the tangent bundle TW* of the stable foliation which is g-dual to a leaf-
wise closed one-form. We show that if the pressure of the function g(X,Y")
is negative, then there is a continuous bijection from the space of ergodic
harmonic measures for the differential operator A% + Y, equipped with the
weak* -topology, onto a space of ergodic ®f-invariant Borel probability mea-
sures of positive entropy on T? M which contains all Gibbs equilibrium states
of Hélder continuous functions.

1. INTRODUCTION

Let M be a closed n-dimensional Riemannian manifold of negative sectional cur-
vature. The geodesic flow ®* is a smooth dynamical system on the unit tangent bun-
dle T*M of M, generated by the geodesic spray X. There is a Holder-continuous,
dt-invariant decomposition

TT'M =RX @ TW** & TW**

where TW** and TW?*® are the tangent bundles of the strong unstable and the
strong stable foliation W** and W**, respectively. The bundle RX @ TW?** = TW?
is the tangent bundle of the stable foliation W*. For every v € T'M the leaf
W#(v) through v of the stable foliation is a smoothly immersed submanifold of
T'M which is locally diffeomorphic to M. The stable foliation itself is in general
not differentiable, but all its jet bundles are Holder-continuous subbundles of the
corresponding jet bundles of T M.

Given a > 0, let g be a nonnegative bilinear form of class C1*® on T'M with
the property that the restriction of g to the bundle TW? is positive definite and
hence defines a Riemannian metric. The restriction of this Riemannian metric to
every leaf of W? is of class C' and therefore g induces for every v € T' M a Laplace
operator on W#(v). Since g is of class C1:%, these leafwise Laplacians group together
to form a differential operator A on T' M with Holder-continuous coefficients.

For a > 0, call a section Y of TW? over T'M of class C12 if the restriction of
Y to every leaf of W? is of class C!, with its leafwise differential depending Holder-
continuously on the leaf. Let Y be a section of TW* of class C1® with the additional
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property that Y is g-dual to a section of T*W?® over T' M whose restriction to every
stable manifold is a closed 1-form. Then A + Y is a second-order leafwise elliptic
differential operator on T M with Holder-continuous coefficients.

Let M be the compact convex space of all ®*-invariant Borel-probability mea-
sures on T'M, equipped with the weak*-topology. Denote by h, the entropy of
v € M. For a continuous function f: T'M — R the pressure pr(f) is defined by
pr(f) = sup {hy, — [ fdv | v € M}. As in [H97a] we call the operator A +Y of
positive escape if the pressure of the function g(X,Y) is positive, and of negative
escape if the pressure of the function g(X,Y) is negative. The operators for which
the pressure of the function g(X,Y’) vanishes are called self-adjoint. We refer to
[H97a] for an explanation and justification of this terminology.

Extending earlier results of Ledrappier [L95a], we showed in [H97a] that an
operator of positive escape shares many properties with an elliptic operator on a
closed manifold. As an example, if A+Y is of positive escape then there is a unique
Borel probability measure o on T*M which is harmonic for A + Y, i.e. such that

/(A+Y)(f) do =0

for every smooth function f on T'M. Unlike in the case of an elliptic operator
on a closed manifold, this measure is in general not contained in the Lebesgue
measure class. Moreover, for every Holder continuous function f on T'M with
J fdo = 0 there is a Holder continuous leafwise-C? function h on T' M, unique up
to a constant, such that (A +Y)h = f. The function h is Holder continuous.

The purpose of this paper is to investigate dynamical properties of the leafwise
diffusion of an operator of negative escape. We show that these properties corre-
spond precisely to dynamical properties of the geodesic flow. For an exact statement
of our main result, recall first that for every Hélder function f on T'M there is a
unique measure vy € M such that pr(f) = h,, — [ fdvy, and this measure is called
the Gibbs equilibrium state of f. In Section 3 we define a class of ®t-invariant Borel
probability measures on T'M which we call the measures of quasi-product type.
This class contains all Gibbs equilibrium states of all Hélder continuous functions
as well as all measures supported on a single closed orbit for the geodesic flow.

By the results of Garnett [G83], the space Hay of harmonic measures for A+Y
is a nonempty compact convex subset of the space of all Borel probability measures
on T'M equipped with the weak*-topology. Every harmonic measure o for A +Y
is absolutely continuous with respect to the stable and strong unstable foliation,
with conditional measures on stable manifolds in the Lebesgue measure class. The
conditional measures on strong unstable manifolds define a measure class mc(o, 00)
on the ideal boundary M of the universal covering M of M which is invariant
under the natural action of the fundamental group (M) of M on @M. Call the
harmonic measure o ergodic if mc(o,00) is ergodic under the action of 1 (M).
Ergodic harmonic measures are just the extremal points of the set of all harmonic
measures [H97a].

Now we can formulate the main result of this paper.
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Theorem: Let A +Y be as above with pr(g(X,Y)) < 0. Then there is a
continuous bijection W(A+Y") of the space of ergodic harmonic measures for A+Y
onto the space of ®-invariant ergodic Borel probability measures on T*M of quasi-
product type.

The map ¥(A +Y) simply assigns to an ergodic harmonic measure o for A +Y
a weak limit of the sequence of measures - Z;l_ol godt

By convex combination, the map ¥(A +Y") extends to an injective map from the
compact space Hay into the space of ®!-invariant measures on Tt M. However,
this map is not continuous. In other words, via the map ¥(A +Y) we obtain a new
topology on the space of ®t-invariant probability measures of quasi-product type
so that the space equipped with this topology is compact.

The organization of the paper is as follows. In Section 2 we introduce a class of
measures on T' M containing the space Hayy. We show that equipped with the
weak*-topology, this space is compact. In Section 3 we define the measures of quasi-
product type and derive some first properties. Section 4 contains the proof that the
space of measures of quasi-product type contains all Gibbs equilibrium states of a
class of functions including all Holder continuous functions. In Section 5 we use
the measures of quasi-product type to construct measurable solutions of suitable
leafwise differential operators with prescribed asymptotic behavior at infinity. The
results from Section 6 are used in Section 6 to construct an injective map from the
space of ergodic measures of quasi-product type into the space of ergodic harmonic
measures of for A +Y. In Section 7 we complete the proof our theorem.

As a notational convention, throughout the paper we often denote functions,
measures and vector fields on 7'M and their 7 (M )-equivariant lifts to the unit
tangent bundle TM M of M by the same symbols.

2. k-FAMILIES

The purpose of this chapter is to define a class of measures containing all har-
monic measures for a differential operator as in the introduction and to discuss
some of their basic properties.

Let M be a simply connected manifold of bounded negative sectional curvature
—00 < —=b? < K < —1. Denote by dist the distance function on M and by T'M
the unit tangent bundle of M. There is a natural projection 7 : T'M — OM of
T M onto the ideal boundary M of M which maps a unit tangent vector to the
equivalence class of the geodesic ray it defines. The restriction m, of the map = to
a fibre TI}M of the fibration P : T*M — M is a homeomorphism. Denote by A the

Lebesgue measure on M defined by the metric.

Let T be a discrete torsion free cocompact group of isometries of M. Then
M /T = M is a compact smooth manifold of bounded negative curvature. We
denote by T' M the unit tangent bundle of M and by P : T*M — M the canonical
projection. We are interested in Borel measure classes on M which are invariant
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under the action of I' and with some additional regularity properties which we
define as follows.

Definition: For k > 0, a T-k-family on M is a family {#*} (z € M) of finite
Borel measures on M with the following properties.

(1) (Invariance) The measures {#”} are equivariant under the action of I" on
OM x M and define all the same measure class me(vy).

(2) (Regularity) For mc(vy)-almost every & € M and all z,y € M the Radon
Nikodym derivative Q(z,y, &) of 7¥ with respect to v® exists at &, and the
function y — log Q(z,y,£) is k-Lipschitz continuous. The function @ on
M x M x dM is called the Radon Nikodym kernel of the k-family {#%}.

The k-family is called ergodic if the measure class mc(vy) is ergodic under the
action of T'.

In the sequel we always denote by {#°} a T-k-family on dM.

Lemma 2.1: There is a number k > 0 with the following property. Let mc be a
T-invariant measure class on OM ; then there is a T'-k-family {v*} (x € M) which
defines mc.

Proof: The critical exponent §(T') of T' is the infimum of all numbers s > 0
such that the Poincaré series 3 gcp e *95W¥?) converges for z,y € M. Since
the curvature of M is bounded from above and below by a negative constant, the
critical exponent is finite and positive and there is a number s > §(I") such that
for fixed z € M the value of the (convergent) series 3" g €% 45t ¥2) is bounded
independent of y € M (this follows directly from the arguments of Sullivan [S79]).

Let mc be a I'-invariant measure class on oM and let p be a Borel probability
measure on OM defining mec. Choose some x € M and define u* = p and p¥® =
po¥~1for ¥el.

Let r > §(T) be such that the Poincaré series Y g e "4¥¥2) is bounded
independent of y. For y € M define #¥ = Ywer e dist(y,¥2) ¥z Then ¥ is a

Borel-measure on M which defines the measure class me and whose total mass is
bounded from above independent of y.

We claim that the measures #¥ (y € M) are equivariant under the action of T
To see this let ( € I'. Then

(1) ﬁCy — Z e " dist({y,\llw)u\lla: — Z e " dist((y,g(g—l\ll)z)u ° W71<C71

vel vel
:(Z e—rdist(y,(c_l\ll)z)u ° (C_I\I’)_l) ° C_l — o C_l-
vel

To show that {#¥} is indeed a I'-k-family on &M for some k > 0 not depending
on mec it is enough to show that for mc-almost every £ € OM and all y,z € M the
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Radon Nikodym derivative of 7* with respect to 7 exists at £ and is contained in
[e~rdist(y,2) erdist(y,2)], For this let y,2 € M and let ¥ € T. Then |dist(z, ¥z) —
dist(y, ¥z)| < dist(z,y) and therefore the measures 7Y, 7" are absolutely contin-
uous, with Radon Nikodym derivative contained in [e="91st(¥:2) erdist(v:2)] Now
let £ € M be such that for every ¥ € T the Radon Nikodym derivative %’%

exists at £&. Then for every ¥ € I' the Radon Nikodym derivative of the measure
e T dist(y,97) |, Yo with respect to 7Y exists at &, and the sum of these Radon Nikodym

derivatives is finite. But this just means that the Radon Nikodym derivative %
exists at £. This shows the lemma. a

For a [-k-family {#”} on OM the measures v* = #* o m, (x € M) on the fibres
of the fibration T*M — M are equivariant under the action of the group I' and
hence they project to a family of measures on the fibres of the fibration 7'M — M.
Define a k-family on M to be a family {v?} (p € M) of measures on the fibres of
the fibration T'M — M which are obtained from a T-k-family {#*} on &M in this
way.

Recall from [GH90] that for = € M and &,¢ € M the Gromov product (£ | (),
of £ and ( as seen from z is defined by

) €10. = lim  (dist(z,y) + dist(z, z) — dist(y, 2)).
y—€,z—¢ 2

For z € M and v # w € TIM define (v | w) = (m(v) | m(w))s. We then have
(v] -v) =0and (v | w) >0 for w € T)M — {v,—v}. There are numbers
a>0,p>0 and for every z € M there is a distance d, on TlM which satisfies
ae ~p(ulw) < Gp(v,w) < e P for all v,w € T}M. Since the curvature of M
is bounded from above by —1 by assumption we can choose p = 1 (compare e.g.
[H89]). This means that there is a constant ¢ > 0 with the following property.
Let v,w € T'M with §,(v,w) = e~* for some ¢t > 0. Let  be the geodesic in M
connecting 7(v) to w(w); then t — ¢ < dist(y,z) <t +c.

The distances §, can be chosen to be invariant under the action of I" and therefore
they project to a family of distances on the fibres of the fibration T'M — M which
we denote again by {d,} (z € M). For v € T'M and r > 0 we denote by B(v,r)
the open ball of radius r about v in (TH, M, 8py). The next lemma estimates the
mass of these balls with respect to any k-family.

Lemma 2.2: Let {v?P} be a k-family on M. Then for every e > 0 the function
v €T'M — vP¥(B(v,€)) on T'M is bounded from above and below by a positive
constant.

Proof: Choose a number € > 0. Let {v?} be a k-family on M and for v € T'M
define B(v) = vF?(B(v,€)). Since the measure class on M defined by the k-family
{v?} is invariant under the action of T and every [-orbit on OM is dense, the
measures v on the fibres of the fibration 7'M — M have full support. Thus 3 is
a positive measurable function on T' M.
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Let {v;}; C T'M be a sequence such that 8(v;) — inf{B(w) | w € T'M}. By
passing to a subsequence we may assume that the vectors v; converge in T'M to a
vector v. Write p = vF?(B(v,€/2)) > 0. Let @ be a lift of v to T*M and let {#;};
be a sequence of lifts of {v;}; which converges to . Denote by {#*} the I'-k-family
on &M which corresponds to {v*}. By definition of a T-k-family, there is a number
¢ > 0 such that for every sufficiently large ¢ > 0 the Radon Nikodym derivative
of #F¥% with respect to #F? is bounded from below on 7B(#,€/2) by ¢. On the
other hand, for sufficiently large i the set 7B(7, €/2) is contained in 7B(¥;,€). This
means that "% B(?;,€) > cp and therefore § is bounded from below on T'M by
a positive constant. In the same way we obtain that § is uniformly bounded from
above as well. O

Lemma 2.2 and its proof means that the measures v? of a k-family {v?} are locally
uniformly bounded on the fibres of the bundle 7'M — M. Moreover, for every k-
family {v?} and every p € M the total mass of the measure v* on T M is bounded
from above and below by a positive constant only depending on k. In particular, we
obtain a finite Borel measure vz, on T" M by defining v,(4) = [v?(ANT, M)dA(p)
where A is the Lebesgue measure on M defined by the metric. We call v the
Lebesgue extension of the k-family. The k-family is called normalized if its Lebesgue

extension is a probability measure on T M.

For v € T'M we denote by W**(v) the inner normal field of the horosphere at
7(v) € M which passes through Pv € M. Since M admits a cocompact isometry
group by assumption, W**(v) is a C*°-submanifold of 7" M. The manifolds W**(v)
(v € T'M) define a Holder continuous foliation W** of T'M which is called the
strong stable foliation. The strong stable foliation is invariant under the action of
the isometry group of M and under the geodesic flow ®*. Its tangent bundle TW**
is a ®‘-invariant Holder continuous subbundle of TT*M.

For every v € T*M the disjoint union |J,cp ®‘W**(v) = W*(v) of the images of
W% (v) under the geodesic flow is a smooth submanifold W (v) of T M which is just
the preimage 7! (7(v)) under 7 of the point m(v) € M. The canonical projection
P : T'M — M maps W#*(v) diffeomorphically onto M. The manifolds W*(v)
(v € T' M) define a Holder continuous foliation W* of T M which is called the stable
foliation. The stable foliation is invariant under the action of the isometry group
of M and under the geodesic flow. The foliations W** and W* on T M project to
the strong stable foliation W** and the stable foliation W?* for the geodesic flow on
TM.

Denote by Dy, the set of all normalized k-families on M. Via the map which
associates to a k-family {v?} € Dy, its Lebesgue extension the weak*-topology on
the space of Borel probability measures on T' M induces a topology on Dy. With
respect to this topology, a sequence {v}}; C Dy, converges to a k-family {v*} if
and only if the Lebesgue extensions [ v¥d\(p) of the families {¥!} converge in the
weak*-topology to the Lebesgue extension [ vPdA(p) of {v?}. With this notion of
convergence we have.

Lemma 2.3:



HARMONIC MEASURES ARE PRODUCT MEASURES 7

(1) The space Dy, of all k-families is compact.

(2) A sequence {v}}; of k-families converges in Dy, to a k-family {v*} if and
only if for every p € M the finite Borel measures {v'} on TI}M converge
weakly to the measure VP.

Proof: For z,y € M and some p > 0 call two subsets A of Ty M, B of Ty M
p—equivalent if for every v € A there is a curve of length at most p in W#(v) whose
endpoint is contained in B and if every point in B can be connected to a point
in A in this way. By definition, for every k-family {v?}, for every § > 0 and all
log(1 + ) /k—equivalent nontrivial open subsets A of TyM, B of T, M we have
v®(A)/vY(B) € [(1+6)71,1 + §]. In particular, there is a constant c¢(k) > 0 only
depending on k such that v?(T) M) € [c(k)™",c(k)] for every p € M (compare
Lemma 2.2).

Following Margulis [M70] we denote by T the family of functions on 7' M which
are supported on a fibre TZ}M of the fibration T'M — M and whose restriction to
this fibre is continuous. Let {v/} be a sequence of k-families. For i > 0 define a
linear functional I; on T by 1;(f) = [ f dv! where p € M is such that f is supported
on Ty M. By the above the functionals I; on T (i > 0) satisfy properties R1 - R3 of
[M70] and hence they form a precompact subset of the product space L = I yer Xy
where each of the spaces X; can naturally be identified with R.

For m € N denote by Ly, the closure in L of the set {/; | i € [m,00)}. Then L,,
is compact, Ly, D L4 and clearly Ly, # 0 for all m > 1. Thus Ly = Ny>1Lm
is a nonempty compact subset of L. Every [y € Lg is a functional on 7" which
again satisfies properties R1 - R3 of [M70]; hence there is a family v§ (p € M)
of Borel-probability measures on the fibres T) M of the fibration T'M — M such
that lo(f) = [ fdv§ for every f € T which is supported in Ty M. This family
of measures lifts to a T-invariant family of measures on the fibres of the fibration
T'M — M, and these measures project to a family of measures 7¥ (z € M) on
OM. The measures 7° define all the same measures class, and the Radon Nikodym
derivative of v§ with respect to vy at a point ¢ € M is bounded from above by
ek dist(=.¥)  Tn particular, the measures {v}} define again a k-family on M. Choose
a family {A,,}m>0 of compact neighborhoods of Iy in Ly such that Ny, A, = {lo}.
For m > 1 choose i(m) € [m,o0) such that [;(,) € Ap; then the sequence {l;(m)}m
converges in L to lo.

For every p € M the measures Vﬁm) on T} M converge weakly to 1§ as m — co.
This follows from the fact that the measures v, ) converge as m — oo to v with
respect to the weak topology if and only if for every continuous functions ¢ on
TyM we have [ godl/ﬁm) = [dvl (m — oo). But this is just a consequence of

Let now v; be the Lebesgue extension of the k-family {v} and let v be the
Lebesgue extension of the k-family {v§}. Choose any subsequence {m;}; of the
sequence {i(m)}, such that the measures v,,; converge as j — oo weakly to a
Borel-probability measure p on T*M. We have to show that p = v.
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Recall that the map F : T'M — M x &M which is defined by F(v) = (Pv, 7(v))
is a Holder continuous homeomorphism. For i > 0 let v} be the lift of v; to T*M

and let p' be the lift of p. Since the sets F~1(V x W) with V C M open, W C M
open form a basis for the topology of T*M it suffices to show that p' coincides
with the lift »’ of v to T*M on sets of this form. Let § > 0; by the definition of
a k-family, there is a number 3(§) > 0 only depending on k,d such that for every
open subset V of M of diameter smaller than 3(J), every open subset W of &M,
every i > 0 and every ¢ € V we have

3) vi NV x W) /ANV)ZF (W) € [(1+6) 1,1+ 6]
where ) is the Lebesgue measure on M and {#%} is the T-k-family on M defined
by {v}.

Let now V. C M,W C &M be arbitrary open sets. Then there are countably
many pairwise disjoint open sets V; C V(£ > 1) of diameter smaller than 3(§) such
that

0 AV) = AT

For ¢ > 1 choose zy € Vp; then -

6) SE X W) < (1+6) S ATIW)
and hence -

©) Jim v, (F 1V x W) <1 M)gmw ow)

<A+ 0 °u(FH(V x W)).

Since § > 0 was arbitrary this shows that p < v. The same argument also shows
that p > v, i.e. indeed equality holds. This finishes the proof of the lemma. |

Define the Hausdorff dimension of a k-family {¢?} to be the Hausdorff dimension
of the measure v? with respect to the metric d, for some point p € M. Recall that
this is defined as follows. For a subset Z of M and a number a > 0 let

mp(Z,a) = ll_I}(l)lIglf Z(dmm U«
u€eG

where the infimum is taken over all finite or countable coverings G of Z by open
sets U of §,-diameter diam U at most €. The d,-Hausdorff dimension of Z is the
infimum of all number a > 0 such that mg(Z,a) = 0. It easily follows from the
definition of the metrics d, and the fact that the curvature of M is bounded that
the d,-Hausdorff dimension of any subset Z of AM is independent of p and finite; we
call this number the Hausdorff dimension of Z. The Hausdor(f dimension dimg (v?)
of the measure v is defined to be the infimum of the Hausdorff dimensions of a
subset of M of full vP-measure; as before, this does not depend on p.

It will also be useful to introduce the upper box dimension of v? which is given
as follows. For € € (0,b), p > 0 let g(e, p) be the minimal number of §,-balls of
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radius at most p which are needed to cover a subset of TI}M of vP-mass at least
vP(TEM) — € then

(7) dimp(v?) = sup lim sup(—log q(e, p) / log p).
e>0 p—0

It follows from the definitions that dimg (v?) < dimp(v?).

Recall that a k-family {v?} is ergodic if it induces an ergodic I'-invariant measure
class on @M. The ergodic k-families form a measurable, but not closed subset
of Dy. Let {vP} be a k-family on M with Radon Nikodym kernel Q, i.e. @ :
M x M x dM — R is the Radon Nikodym kernel of the corresponding I-k-family
{#P} on M. Then for mec(v,)-almost every & € OM and every v € () the
value f(v) = Q(Puv, P®'v,¢) is well defined. The function v — f(v) is bounded
and invariant under the action of I' and hence it projects to a bounded function f
on T'M which we call the Radon Nikodym function of {v?}. By the definition of
the Lebesgue extension v, of {vP}, the function f is vz-measurable.

Lemma 2.4: Let {v?} be an ergodic k-family with Radon Nikodym function f
and Lebesgue extension vy,. Then for v-almost every v € T*M we have

t
lim inf l/ f(®%v)ds < dimy (vP) < dimp(vP) < lim sup —logv"?(B(v,e™t))/t.
0

t—oo § t—00

Proof: Let {v?P} be an ergodic k-family with Lebesgue extension vz, and Radon
Nikodym function f. Define a function p_ on T'M by

¢
(8) p—(v) =lim inf 1/0 f(®%v)ds;

t—oo t

then p_ is vp-measurable. By the definition of a k-family, p_ is constant along the
leaves of the stable foliation and hence it defines a I'-invariant bounded mc(vy)-
measurable function on @M. This function is constant almost everywhere by er-
godicity. Let a— be its constant value; we claim that a— < dimg (v?).

To see this let € > 0. Fix a point p € M and write k = v?(Ty M). There is a
closed subset B C TyM with v?(B) > k — € and there is a number T' > 0 such

that for every p € B and every ¢t > T we have fg’ f(®%(v))ds > t(a— —€). Since
the v%-masses of the balls B(w,1) C Tp,, M are bounded from above by a universal
constant ¢ > 0, any ball of radius r < e~T with respect to our distance function §,
whose center is contained in B intersects B in a subset of vP-mass at most cr®-—°.
This implies that every measurable subset of TI}M of diameter at most r < e~ T
intersects B in a set of vP-mass at most cr®-—¢. Now if A C TI}M is a set of
vP-measure at least k — e then the vP-mass of AN B is at least k — 2¢ and therefore
for every r < e~ T, for every covering G of A by sets of diameter at most r < e~ 7
we have
Kk —2e< Z vP(U) <c Z(diam(U))“—_e.
Ueg Ueg

By the definition of the Hausdorff dimension this shows that dimg(v?) > a_ —e.
Since € > 0 was arbitrary we conclude that dimg(v) > a_.
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Now for v € T*M let py (v) = limsup,_, ., + —logv?(B(v,e"")). By the definition
of a k-family, p; is constant along stable manifolds and hence constant almost
everywhere by ergodicity; we denote its constant value by p;. Our goal is to show
that p4 is not smaller than the box dimension of vP. For this let p be the lift of
pto M. For R>0and v € Ti}]\Z/ let By(v,e™F) C Ti}]\;[ be the set of all initial

tangents of geodesic rays in M which intersect the ball of radius 1 about P®%v.
By the definition of the distance function d,, there is a universal constant x > 0
such that Bo(v,x~!r) C B(v,r) C Bo(v,xr) for all r < 1/2. As a consequence, it
is enough to show that dimp(v?) < limsup,_,, + logv?(Bo(v,e?)) = p4..

For € > 0 there is a closed subset B of TI}M of vP-mass at least k—e and a number
ro > 0 such that v?(By(v,r)) > rP+1¢ whenever r < py and v € B. Let r < ro; by
the Besicovich covering theorem, applied to a covering of P®~18" B c M by balls
of radius 1 in M centered at points in the distance sphere of radius — logr about
P, there is a universal constant ¢ > 0 only depending on the dimension n of M and
the curvature bounds and for every r < ry there is a covering of B by a family
C = UL ,C; of balls By(v;,r) (i > 0) with v; € B such that the balls in the family
C; are pairwise disjoint. Now we may assume that the vP-mass of a ball from C
is at least r2+*€ and therefore in each of the families C; there are at most r—2+—¢
elements. Thus for every p < po the set B can be covered by at most gr—+~¢ balls
Bo(w,r) (w € B). Since € > 0 was arbitrary we conclude that dimp(v?) < py. O

3. MEASURES OF QUASI-PRODUCT TYPE

In this section we investigate k-families induced from Borel probability measures
on T'M which are invariant under the geodesic flow. For this recall that the space
of geodesics on M is the quotient of TP M under the action of the geodesic flow.
Since every flow line on T'M is a properly embedded submanifold, the smooth
structure on T' M induces a smooth structure on the space of geodesics which is
invariant under the action of T'. The ideal boundary M of M admits a natural
T-invariant Holder structure. Let F : v — —v be the flip on T'M and T'M. The
map 7 x w o F of T'M into dM x dM factors through a Holder homeomorphism
of the space of geodesics onto the complement of the diagonal A in M x dM.
This homeomorphism is equivariant under the action of I'. Every ®¢-invariant finite
Borel measure y on T M lifts to a locally finite ®*-invariant Borel measure on T" M,
and this measure projects to a locally finite Borel measure i on OM x OM — A
which is invariant under the product action of the fundamental group I' of M.
The measure y is ergodic under the action of the geodesic flow if and only if the
measure i is ergodic under the action of I'. Vice versa, every locally finite Borel
measure on OM x M — A which is invariant under the product action of T induces
a ®t-invariant finite Borel measure on T' M.

Among the T-invariant measures on M x M — A there is a subclass which are of
particularly simple form with respect to the product decomposition of 9M x M — A.
We describe this class in the next definition.
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Definition. A ®!-invariant Borel probability measure v on T'M is called of
quasi-product type if there are finite Borel measures v, v_ on M whose measure
classes are invariant under the action of I’ and such that the lift # of v to T*M has
the following properties.

(1) For every Borel-set B C &M we have v, (B) = 0 if and only if o(7~'(B)) =
0 and v_ (B) = 0 if and only if (F o #)(7~(B)) = 0.

(2) The projection 7 of v to the space of geodesics is contained in the measure
class of the product v} x v_.

The measure classes mec(vy),me(v_) of vy, v_ are called positive and negative
disintegration classes of v. The quasi-product type of v is defined to be me(vy) %
mc(v_). The measure v of quasi-product type mc(vy) x me(v_) is called non-
degenerate if its projection ¥ to the space of geodesics defines the measure class of
me(vy) x me(v_), i.e. if 7(A) = 0 implies vy x v_(A) = 0 for every Borel subset
A of OM x OM — A.

Property 2) means that if v is a measure of quasi-product type me(vy) X me(v_)
then for every choice v ,v_ of finite Borel measures on OM defining the measure
classes me(vy.), me(v_) there is a measurable non-negative function ¢ on M x dM
such that # = ¢y x v_. Property 1) implies that if » is ergodic, i.e. if ¥ is ergodic
under the product action of I', then the measure classes mc(vy.), me(v—) are ergodic
under the action of T

The flip F : v = —v on T* M preserves the ®¢-invariant measures on T' M. The
image under F of a measure v of quasi-product type me(vy) x me(v_) is a measure
of product type me(v_) x me(vy).

First we look at ergodic measures of quasi-product type whose positive disinte-
gration class has an atom.

Lemma 3.1: For a ®*-invariant probability measure v on T'M the following
are equivalent.

(1) v is an ergodic measure of quasi-product type whose positive disintegration
class has an atom.
(2) v is supported on a single closed orbit of ®¢.

Proof: We show first that a ®!-invariant measure v supported on a single closed
orbit of ®! is of quasi-product type. For this define me(v,) and mec(v_) to be the
measure class of the sum of the (countably many) Dirac masses on the forward
endpoints and backward endpoints, respectively, of all lifts of the support of v to
T'M. Since a product of two Dirac masses is again a Dirac mass, v is of quasi-
product type me(vy) X me(v_), but clearly v is degenerate.

Let for the moment 7 be any ®!-invariant Borel probability measure on 7'M
with lift 7 to T'M. Assume that there is a finite Borel measure 7o, on M with
the property that 7.,(B) = 0 if and only if 7j(7~1(B)) = 0 for every Borel subset
B of M. Then the measure class of 7o is invariant under the action of T' on &M.
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We claim that every atom of 7)o, is necessarily supported on a fixed point for
the action of a nontrivial element of I'. To see this assume that 7., has an atom
at a point & € dM. By property 1) above we have (7" (£)) # 0 and hence
there is a compact subset B of 7=!(£) such that n(B) > 0. The projection B of
B to T'M is a compact subset of a stable manifold W#(v) for some v € T*M.
If £ is not a fixed point for a nontrivial element of the fundamental group I' of
M, then W#(v) is an immersed submanifold of 7'M which is diffeomorphic to
W*$(v) x R. In particular, there are infinitely many numbers ¢; > 0 such that the
sets ®i(B) C T'M are pairwise disjoint. Since 7(B) > 0 by assumption and since
n is finite and ®*-invariant this is impossible.

Now let v be a ®!-invariant ergodic measure of quasi-product type. Assume
that the positive disintegration class me(v4.) of v has an atom at a point £ € M.
By the above, ¢ is the attracting fixed point for a nontrivial element ¥ € . By
ergodicity, me(vy) is purely atomic and its atoms are precisely the points on the
I'-orbit of &.

Let © be the projection of v to a [-invariant measure on &M x 8M — A. There
is a compact neighborhood B of the repelling fixed point ¢ of ¥ in M — {¢} such
that #({¢} x B) > 0. We can choose B in such a way that ¥~*B C U *+1B for all
k > 0. Then Ng>o¥ *(B) = {¢} and therefore by invariance of # under the action
of T, the restriction of the negative disintegration class mc(v_) to B has an atom
at (. Since me(v_) is T-invariant and ergodic we conclude that v is supported on
the closed orbit of ® which defines the conjugacy class of the isometry ¥ in the
fundamental group of M. a

The foliation W** = FW** on T'M and T'M is invariant under ® and is
called the strong unstable foliation. The tangent bundle TT'M of T'M admits a
dt-invariant direct decomposition TT'M = RX & TW?** @ TW** into the tangent
bundles TW? of the foliations W (i = ss, su) and the line bundle spanned by the
generator X of the geodesic flow.

Let d*“,d*® be the distance functions on the leaves of W*% W?*° induced by the
lift of the Riemannian metric on M. For v € T*M and t € R define B¥*(v,e~t) to
be the image under ®~* of the d**-ball of radius 1 in W**(®*v). Similarly, define
B?%%(v,e~?) to be the image under ®* of the d**-ball of radius 1 in W**(®~tv). Call
a family {v*} of Borel measures on the leaves of the foliation W (i = ss, su) locally
uniformly bounded if for every v € T*M the vi-mass of the ball Bi(v,1) about v in
W(v) is bounded from above by a constant not depending on v.

Let {#*} (z € M) be a T-k-family on M. For v € T'M the restriction of
the projection 7 is a homeomorphism of W**(v) onto dM — {m(—v)} and hence
we can project 7% to a finite nontrivial Borel measure 7¥ on the strong unstable
manifold W#*(v). The measure class of 7” does not depend on v. More precisely, if
@ is the Radon Nikodym kernel of the k-family {#*}, then for w € W*¥(v) we have
‘fi,'j;: (w) = Q(Pv, Pw,m(w)). Thus by Lemma 2.2 we obtain a family {v**} of locally
uniformly bounded measures on the leaves of the foliation W% C T M by defining

‘f;;: (w) = Q(Pv, Pw,m(w)). The measures v** only depend on the I'-k-family {7}
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and they transform under the geodesic flow via d";:s‘ifl’i (v) = Q(Pv, P®tv, m(v)).
Moreover they are equivariant under the action of I and therefore they project to a
family of locally uniformly bounded Borel measures on the leaves of W5* C T1 M.
We call the collection {v*"} of these measures the strong unstable family induced

by the T-k-family {#*} on OM.

Let dt be the 1-dimensional Lebesgue measure on the flow lines of the geodesic
flow. Let v be a measure of quasi-product type and let {#"} be a I-k-family on
OM whose measure class me(vy) on dM is the positive disintegration class of v.
By Lemma 2.1, such a I'-k-family exists always; we call the corresponding k-family
on M a k-family for v. The I'-k-family {#”} defines the strong unstable family
{v**}. There is a family {v°*} of Borel measures on the leaves of W** such that
dv = dv®* x dv®® x dt. The image of the measures v*® under the restriction of the
map 7 o F are contained in the measure class mc(v_), but the y not necessarily
define this measure class.

The next lemma gives a more intrinsic description of measures of quasi-product
type which are ergodic, i.e. ergodic under the action of the geodesic flow.

Lemma 3.2: Let {v*“} be the strong unstable family induced by an ergodic I'-
k-family {7%} on OM. Assume that there is a family {v**} of Borel measures on
strong stable manifolds such that the measure v defined by dv = dv* x dv®® x dt is
& -invariant and finite. Then v s an ergodic measure of quasi-product type.

Proof: Let v be a finite ®'-invariant measure on T" M as stated in the lemma.
We have to show that the projections to M of the measures v*¢ on strong stable
manifolds are all contained in the same I'-invariant ergodic measure class.

For this consider first the case that the measures v** have atoms. By ergodicity,
the measures v*% are completely atomic. By Lemma 3.1 and its proof the measure
v is necessarily supported on a single closed orbit of ® and hence it is of degenerate
quasi-product type. Thus we may assume that the measures v** do not have atoms.

Since the measures v*" are quasi-invariant under the action of the geodesic flow
®t, the same is true for the measures v**. Let © be the projection of v to a I'-
invariant measure on M x OM — A. Then » can locally be written in the form
dv = dv®* x dv®® where the measures 0% are simply projections of the measures v**
and hence define all the same measure class, and the measures 2°® are projections of
the measures v*°. By our assumption on the measures v** we may assume that the
measure %% is defined on every leaf of the first factor foliation and that moreover
for every fixed £,¢ € OM the Jacobian of the canonical map M — {£,¢} x {¢} —
OM — {&,¢} x {¢} for these measures is locally uniformly Hélder continuous.

Choose countably many pairwise disjoint relative compact product sets C; =
A; x B; with dense interior which define a partition of M x &M — A. Let P be
the partition of M x M — A into the relative compact sets {w} x B; (w € A;)
which are contained in the leaves of the second factor foliation. By construction,
the partition P is v-measurable, i.e. up to a set of measure zero the quotient
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OM x OM — A/P is separated by a countable number of measurable sets. Write
P&, C) for the set of the partition containing the point (£,¢) € OM x OM — A.

For p-almost every (§, () the conditional measure D¢ ) of # with respect to P is
well defined. We claim that ¢ ¢) is contained in the measure class of 7°°|P(¢, ().
To see this let for the moment C' = A x B be any relative compact product set in
OM x OM — A with dense interior. Fix a point ¢ € B. By the definition of the
measures %" there is a function f on C' which is bounded from above and below
by a positive constant and Holder continuous along the leaves of the second factor
foliation and such that the Jacobians of the holonomy maps of the measures fr**
on the leaves of the first factor foliation of C' = A x B are constant. If we denote
the measures fv®%, f ~1v% again by v°%, % then for every Borel subset D of C' we
have

(D) =/ v (DN{E}x B)dir™ (§) :/(’7”(170{6}XB)/ﬁ“({E}XB))dﬁ(&C)-
Ax{c}

Since conditional measures for a partition are unique almost everywhere we conclude
that for 7**-almost every £ € A with the additional property that 7%*({{} x B) > 0
the measure 9°°/0%°({{} x B) is the conditional measure of 7 on {£} x B with
respect to the partition of C into the leaves of the second factor foliation. Since
this consideration is valid for each of our product sets C; which defines our initial
partition we conclude that the measure classes of the conditional measures for P
are contained in the measure classes of the measures v°° and do not depend on the
particular choice of our partition.

Choose countably many pairwise disjoint relative compact product sets C; =
A; x B; with dense interior which define a partition of 9M x OM — A.

For 7 > 0 choose a point (; € B;. There is a measurable nonnegative function h
on A; such that for every Borel-subset D of A; we have o(D x B;) = hi**(D x {(;}).
Since by assumption the measure class mc(vy) of the measures #°* is invariant and
ergodic under the action of T' we obtain that for me(vy)-almost every £ € M
the D*5-mass of {£} x (OM — {£} is positive. This shows that me(vy) is uniquely
determined by # and the product structure of dM x M — A. In particular, for
¥ € T there is a measurable nonnegative function 8 such that 7 o (¥, ¥) = p5% x
B(0°° o ®) = p°* x $°°. Thus for £ € IM we have 0**|{¥E} x OM — {¥E} =
55| ({€} x OM — {€} o @1, Via multiplying #** with a suitable positive function
we may assume that the total mass of 7*° is finite.

Choose a point 2 € M and a number r > 0 such that 3 g e WU < oo,
For a density point £ for me(vy) write u(€) = 3y €77 WU YD) o5 ({TE} x OM —
{®¢}). By construction, we have pu(¥¢) = u(€) o ¥1 for all ¥ € T. In other
words, the assignment & — (¥ — u(¥¢) is a me(vy)-measurable -invariant map
from OM into the space of T-equivariant maps from T into the space of finite Borel
measures on M.

Since by our assumption the measure class of 7°* is ergodic under the action of T’
we conclude that the map £ — (¥ — p(¥¢)) is ¥**-almost everywhere constant. In
particular, for #°-almost every £ € OM the measure class of the measure p(€) equals
a fixed class me(v_). Then for v-almost every v € T'M the projection to M of
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the measure v** on W*¥(v) is contained in the class me(v_). In other words, v is
a (possibly degenerate) measure of product type. Moreover v is ergodic provided
that the measure class me(v_) is ergodic under the action of I' and this in turn is
equivalent to saying that the measure ¥ is ergodic under the action of T x T'.

To see that this is indeed the case let ¢ be any continuous function on T'M. By
the Birkhoff ergodic theorem, for v-almost every v € T'M the limit
1 [t

lim — P° = p*

Am g ) (®°v)ds = ¢*(v)
exists. The function ¢* is constant along the flow lines of the geodesic flow. If for
every continuous function ¢ the function ¢* is constant v-almost everywhere on
T'M then v is ergodic.

Now ¢* is constant along the stable manifolds and therefore it projects to a
function @ on &M which is measurable and invariant under the action of . Since v
is absolutely continuous with respect to the stable foliation and since the projections
to M of the conditional measures v** define a measure class mc(vy) on OM
which is ergodic under the action of T' the function ¢ is constant mc(v, )-almost
everywhere on &M and the measure v is ergodic under the geodesic flow. This
finishes the proof of our lemma. O

Let again v be a ®*-invariant ergodic Borel probability measure of quasi-product
type on T'M. We denote by h, the entropy of v. Let {v?} be a k-family for v
with Radon Nikodym kernel Q and let f(v) = log Q(Pv, P®'v,n(v)); the function
f projects to the Radon Nikodym function f on T'M. As in Section 2 we use the
function f to calculate the entropy h, of v.

Lemma 3.3: Let v be an ergodic measure of quasi-product type with entropy
hy. If {vP} is a regular k-family for v with Radon Nikodym function f then h, =
dimp (v?) = [ fdv.

Proof: Let v be an ergodic measure of quasi-product type and let {v?} be a
k-family for v. Let f be the Radon Nikodym function of this k-family. By the
Birkhoff ergodic theorem, for v-almost every v € T M the limit

1t
lim —/ F(@°v)ds
t Jo

t—o0

exists and equals [ fdv.

For almost every v € T'M there is a Borel measure v** on W*%(v) such that
dv = dv®* x dv®® x dt at v. By Lemma 3.2 and its proof, the measures v** are
absolutely continuous with respect to a family of conditional measures for the strong
stable foliation defined by a partition of T'M subordinate to W?. Moreover, they
are quasi-invariant under the geodesic flow. Let € > 0 and for v € T' M define

1
9) p—(v) =lim inf —-logv**B%**(v, e—t) and
t—soo T

1
py+(v) =lim sup —= logv** B** (v,e ).
t—o0 t
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From the definition of the balls B%*(v,e~?) and by quasi-invariance of v** under
the geodesic flow the functions p_, p; are v-measurable and invariant under ®¢ and
hence they are constant almost everywhere on T M. Let p_, p; be these constants.
We first claim that p_ = [ fdv.

To see this recall that the restriction of the Radon Nikodym kernel of the mea-
sures {vP} to stable manifolds is uniformly Lipschitz continuous. By the definition
of the measures v** this means that there is a number ¢ > 0 such that for almost
every v € T'M and all t > 0 we have

(10) I/SS(BSS(’U,e_t))efOt f(<1>8v)cl3/yss(Bss(<I>15U7 1) e [C_I,C].

For € > 0 define A, = {w € T*M | v**(B**(w,1)) > €}. Choose € > 0 sufficiently
small that v(A.) > 0. By ergodicity, for v-almost every v € T* M we have ®tiv €
A, for a sequence of number t; converging to infinity. Then v**(B® (v,e~%)) >

e o f@s”)dse/c for all i and hence p_ < [ fdv. From Lemma 2.4 we then conclude
that p_ < [ fdv < dimpg(vP) < py.

Let ¢ be a v-measurable partition of T'M with the additional property that
for v-almost every v € T'M the set £(v) of the partition containing v is an open
neighborhood of v in W?®(v). Such a partition was for example constructed by
Ledrappier and Young in [LY85a]. Then for v-almost every v there is a probability
measure v, on £(v) so that the family of these measures has the following property.
If B¢ denotes the o-subalgebra whose elements are unions of elements of { and if
A C T'M is a measurable set then the function v — v,(AN&(v)) is Be-measurable
and

v(4) = / vo(A N E(w))du(v).

By the definition of a measure of quasi-product type, v can locally be written in
the form dv = ¢dv*® x dv®® x dt for a function . Thus for every v the measure v,
can be written in the form v, = k,v*® for a v**-measurable function «,. Moreover,
at any density point v for v the value of k, at v is positive. In particular, for every
density point v for v we have

T . 1 88 —1
(11) p_(v)—hmtglgo—¥loguv3 (v,e™") and

1
p+(v) =lim sup —- log v, B**(v,e™').
t—o0 t

Thus the results of Ledrappier and Young [LY85b] applied to the map ®~! show
that h, = p_ = p4 This completes the proof of the lemma. |

Remark: The above lemma gives a uniform interpretation of the results of
Ledrappier and Young in our particular situation.
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4. EXAMPLES OF MEASURES OF QUASI-PRODUCT TYPE

In this section we look at examples of measures of quasi-product type. For this
let M = M/T as before be a closed Riemannian manifold of negative sectional
curvature with unit tangent bundle 7' M. Then the geodesic flow ®¢ of M is an
Anosov flow and therefore a Holder continuous function f on 7'M induces a unique
Gibbs equilibrium state which is a ®¢-invariant Borel probability measure on T M.

There is a more general class of functions on 7'M which admit a unique Gibbs
equilibrium state. To define these functions, let d,, (m > 0) be the family of metrics
on T'*M defined by dp(v,w) = supg<;<,, dist(®‘v, ®‘w). We call a continuous
function f on T'M ®%-regular if there are numbers € > 0,C > 0 such that

|/0m f(®%v)ds — /Om f(@°w)ds| < C

for all v,w € T'M with d,,(v,w) < € and all m > 0. Our ®*-regular functions are
just the continuous functions on 7'M which are admissible in the sense of [HK95].
We do not require here that the constant C can be chosen arbitrarily small provided
that € > 0 is small enough, i.e. that the function satisfies Walters’ condition. We
refer to the paper of Bousch [Bo01] for more about functions with this stronger

property.

The set C3 (T M) of all ®!-regular functions on T M is a vector subspace of the
space of all continuous functions which contains all Holder continuous functions.
Moreover if F : v — —v denotes again the flip on 7'M then C$(T! M) is invariant
under the action of F on the space of continuous functions on T M. This follows
from the fact that F o ®* = &% o F and that therefore d,,, (v, w) < € if and only if
dpn(F®™v, F®™w) < € and moreover [;"(f o F)(®*v)ds = [ f(®*(F®™v))ds.

Let f € C3(T*M) be a ®'-regular function on N. Recall that the topological
pressure pr(f) of f is defined to be the supremum of the numbers h, — [ fdu where
p ranges through all ®-invariant Borel probability measures on 7'M and h, is the
entropy of u. Notice that the pressure of f coincides with the pressure of f o F.

A Gibbs equilibrium state for a continuous function f on T'M is a ®*-invariant
Borel probability measure vy on T'M which satisfies pr(f) = h,, — [ fdvs. A
®l-regular function f € C3(T*M) admits a unique Gibbs equilibrium state (this
result can be found in Section 20.3 of [HK]). The following proposition is the main
result of this section.

Proposition 4.1: The unique Gibbs equilibrium state of a ®-reqular function
is a nondegenerate measure of quasi-product type.

We begin with an alternative characterization of the pressure of a ®!-regular
function f. For z € M define a function (, on M as follows. For every z € M —{x}
there is a unique v € T)M and a number ¢ > 0 such that P®'v = z; define
Co(P®Ly) = elo /(®0)ds By the definition of a ®'-regular function there is for
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every R > 0 a number 8 > 0 depending on R and f such that ,(y)/Cu(z) <
whenever dist(y, z) < R and dist(z,u) < R.

Define the critical exponent of f to be the infimum of all numbers m € R such
that the Poincaré series > g cp (51 (¥z)e~™d4(¥2:2) converges. We have.

Lemma 4.2: The critical exponent of a ®-regular function f equals its topo-
logical pressure.

Proof: For a ®'-regular function f € C3(T*M), a finite subset E of T'M and
t > 0 define Sy(E) =) .pe” Jo £(®*v)ds Recall that a subset E of T2 M is (6, m)-
separated if for v # w € E we have d,,,(v,w) > §. If 6 > 0 is arbitrarily fixed
and if {E,,},, is a family of (§, m)-separated subsets of T'M where m — oo then
lim sup,, o0 = 10g S (En) < pr(f) (Section 20.3 of [HK]).

Fix a point € M. There is a number p > 0 such that dist(y, z) > p for all y #
zeTz. Ifv,w e T'M and s,t € [kp/4, (k + 1)p/4] are such that P®*v =y € T'z,
P®'w = z € Tz then dist(P®*/4v, P&¥¢/4w) > p/2 and therefore dy,/4 (v, w) >
p/2. In particular, for every € > 0 and sufficiently large k > 0 we have

Z{é;l(lllw) | U €T, kp/4 < dist(z, Ux) < (k+ 1)p/4} < ekelrri)+a/1,

This implies that for every e > 0 the series 3" g ¢ (Tz)e (Prif)Fadist(¥a.2) con
verges. Thus the critical exponent of f is not bigger than pr(f).

To show the reverse inequality recall that a subset E of T'M is (§,m)- spanning
if the d,,,-balls of radius § centered at points in E cover T' M. Since f is ®!-regular
there is a number 6 > 0 such that for every sequence {E,},, of (J,m)-spanning
sets with m — 0o we have liminf,,_, % log) cp, € Js f(@°v)ds > pr(f) (Section
20.3 of [HK]).

For a small enough number o € (0,0) let now A be a finite subset of M with
the property that the balls of radius o centered at points of A cover M. Choose a
large number R > 0 which is larger than three times the diameter of M. Let K be
a compact fundamental domain for the action of ' on M whose diameter coincides
with the diameter of M.

Fix a point x € AN K and for m > 2R let E,, be the set of all unit vectors
which are tangent to geodesics connecting a point y € AN K to a point z € A
with m < dist(z,z) < m + R. For sufficiently small o and sufficiently large m
the set E,, projects to a (§,m)- spanning subset for 7M. Since f is ®!-regular

there is a number £ > 0 not depending on m such that Y, e~ Jo' /(®*v)ds <
K D wer m<dist(We,z)<m+R (;*(¥z). From this we obtain immediately that the crit-
ical exponent of f is not smaller than pr(f). O

The next proposition shows that the Gibbs equilibrium state of every ®!-regular
function on T' M admits a k-family as a family of positive disintegration measures.
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Proposition 4.3: Let f € C2(T'M) be ®t-regular with pr(f) = 0. Then there
is a family {03} (z € M) of Borel measures on M with the following properties.

(1) The measures v} are finite and positive on open sets.

(2) 7§® = 0§ 0¥~ for every p € M and every ¥ € my (M).

(3) The measure class me(f) of U5 is independent of z € M and T-invariant.

(4) There is a subset A of OM of full measure such that for every £ € A and

all z,y € M the Radon Nikodym derivative Z;’; &) = Q(x,y,&) exists and
7

its logarithm depends uniformly Lipschitz continuously on x,y independent

of €. Moreover there is a constant ¢ > 0 such that

Q(Pv, P&tv, w(v))/edo F(®°0)ds ¢ [c1 (]
for allv e n 1 (A) and all t > 0.

Proof: Let f be ®!-regular with vanishing pressure. By Lemma 4.2 the critical
exponent of f equals 0. Fix a point z € M and assume for the moment that the
Poincaré series ) g (5 ' (¥x) diverges.

For small € > 0 and y € M write

ﬁy,e — Z Cy—l(q,w)e—edist(\llz,y)a\h
vel

where d, is the Dirac mass at z € M. Then 4j, . is a finite Borel measure on M.

Define 1, . = 7jy.¢ /7.« (M). Since f is ®*-regular the total mass of 7, . is bounded
from above and below by a positive constant only depending on dist(z,y) and not
on € > 0. Moreover we have gz e = 7,0 ¥ 1.

Choose a sequence €; — 0 such that the measures 7, ¢, converge as i — oo weakly
on the compact space M U &M to a Borel measure 7,. Since the Poincaré series
diverges the measure 7, is supported on dM. By ®!-regularity the measure class
of n, does not depend on the choice of . The measures 7y, converge to the
measure 7, o ! = g, (¥ € T) and 7, and 7y, are absolutely continuous. There
is a universal constant ¢ > 0 such that the Radon Nikodym derivative of ng, with
respect to 7, is bounded from above by e¢ dist(z,¥z)

Since T is countable there is a Borel subset A of M of full 7,-measure such
that for every ¥ € T and every £ € A the Radon Nikodym derivative of ng, with
respect to 7, exists at £&. Moreover there is a constant ¢ > 0 such that whenever
v € T} M and w € T M are such that 7(v) = m(w) = £ € A and whenever 7 € R
is such that ®"w € W**(v) then

< dnw. (€)/ lim sup JT T H@ w)ds— [} f(@*0)ds < .
o d'rh: t—00 o

The lemma now follows from the arguments in the proof of Lemma 2.1. We
can also proceed as follows. Choose a number p > 0 which is smaller than the
injectivity radius of M. Let {B; | i = 1,...,r} be a finite covering of M by open
balls of the same radius p. Let x; be the midpoint of B; and choose a smooth
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partition of unity {¢; | j = 1,...,r} subordinate to the covering {B;}. Let K be
a compact fundamental domain for the action of T’ on M which contains z in its
interior and such that the boundary of K does not meet the pre-image of the set
{z; | j <r}. Let &; be the lift of z; which is contained in K. Define 1z, =17, and
for ¥ € I write nwz, = Nwz.

Let {¢;}; be the lift of the partition of unity 9; on M to M. Then ; is an
infinite locally finite partition of unity for M, indexed by the union J of all points
in the T-orbit of the set {Z1,...,%,}.

For y € M define 7= e ¥u(y)7u. Then 7} is a Borel probability measure

on A C M depending on y, 17}” = 7§ o =" and moreover the measures 7} are

absolutely continuous with respect to ;. By construction, for every £ € A and all
z,y € M the Radon Nikodym derivative of 17]3{ with respect to v} exists at £ and
its logarithm depends smoothly and uniformly Lipschitz continuously on z and y.
The estimate in 4) above for this Radon Nikodym derivative is immediate from the
construction.

This finishes the proof of the proposition in the case that the Poincaré series
diverges. If the Poincaré series converges then we add a fast decaying exponent as
in the construction of Patterson [P76] to obtain our statement. |

Remark: 1) The measures 7§ (z € M) on M which we constructed in the
above proof from a ®!-regular function f are not uniquely determined by f. How-
ever, if we make a different choice in our above construction, then we find a new
family of measures which coincide with the old ones up to a function which is mea-
surable and bounded from above and below by a positive constant. Note that our
construction was made in such a way that all the measures 7§ are normalized, i.e.
their total mass is one.

2) If the function f is Holder continuous, then the measures v§ which we obtain
from the construction in the proof of Proposition 4.3 have the additional property

that the Radon Nikodym derivative Q(z,y,£) = Z;é (€) exists for all £ € OM
and all z,y,€ M. The function Q : M x M x M — R defined in this way is
locally Holder continuous. Moreover for every &€ € OM and z € M the function
y — logQ(z,y,&) is smooth and the norm of its derivative of an arbitrary fixed
order is uniformly bounded. With the notations from the introduction, this shows
that every Hélder continuous section of T*W?* over T'M is cohomologous to a
Holder continuous section whose restriction to every stable manifold is smooth, with
uniformly bounded differential. That this is always possible has to our knowledge
first been observed by Ledrappier [L95a].

Let again {?} be a k-family for a nondegenerate measure v of quasi-product type
and let v*® be the induced regular family of stable measures. We lift these measure
as before to measures on 7' M. For v € T'M the measure v** on W**(v) projects
to a locally finite Borel measure 75° on &M — {m(v)} which defines the measure
class me(v_). In particular, for w € T' M sufficiently close to v the measures $®
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and 7% are absolutely continuous and finite on a neighborhood of m(—v) in M.
We call the regular family {v?} wuniformly regular if there is a number r > 0 such
that for all v,w € T*M with dist(v,w) < r the Radon Nikodym derivative of 73
with respect to 75° is bounded on m o FB**(v,r) U o FB®*(w,r) by a uniform
constant, only depending on r but not on v, w.

With this notation we can now formulate an improved version of Proposition
4.1.

Corollary 4.4: The unique Gibbs state vy of a ®'-regular function f on T'M
is a measure of nondegenerate quasi-product type. If pr(f) = 0 then there is a uni-
formly regular family {1/?} of positive disintegration measures for vy whose Radon
Nikodym kernel Q) satisfies

Q(Pv, P&, m(v)) [elo 1(#*0)ds € [~ (]

for a universal constant ¢ > 0.

Proof: Let f € C2(N) with pr(f) = 0. By Proposition 3.3 there is some k > 0
and a k-family {v}} on T'M whose Radon Nikodym kernel Q satisfies

Q(Pv, PP, 1(v))/edo F(@0)ds ¢ [o=1 ]

for all v € T*M,t € R and for a universal constant ¢ > 0. The same construction
for the ®!-regular function f o F of pressure zero gives a k-family {1/?0 #} whose

Radon Nikodym kernel F@Q satisfies FQ(Pv, Py, w(v))/els F(=®v)ds ¢ [c=1 (]
whenever v € 771A C T' M.

The k-families {v}}, {v},+} induce uniformly locally bounded measures v°*,v**
on the leaves of W** FW** = W?**. The measure ¥ on T'M defined by di =
dv®* x dv®® x dt transforms under the geodesic flow via

di o ®t

dv

This means that the measures % Zle 7o ®? are absolutely continuous with respect
to 7, with Radon Nikodym derivative in [c=2,c?]. In particular, there is a mea-
surable function 8 with values in [¢~2,¢?] and such that the measure 37 is flow
invariant. The measures Sv*® are just the stable measures induced by the regular
family {1/}’}. They are locally uniformly finite on the intersection of the strong
stable manifolds with the invariant set N since this is true for the measures v*s.
Moreover, the Radon Nikodym derivatives of the projections of the measures v*°
to A are locally uniformly bounded by construction. This shows that the measure
U = B0 admits a uniformly regular family {u}’ } of positive disintegration measures.
Thus by Lemma 3.2 the measure is nondegenerate of quasi-product type.

(v) = Q(Pv, P®'v, n(v)) FQ(Pv, P®'v, m(—v)) € [¢2,?].

We show next that 0 = ¥ is the Gibbs equilibrium state v; of the function f.
For this recall the definition of the distances d,, (m > 1) on T'M. Observe from
the explicit construction of the measure 7 that there is for every € > 0 a number
¢(€) > 0 such that for v € T'M and m > 1 we have

Hw | dpy(v,w) < e}efom F@)ds ¢ 1e(e) 7L, ¢(e)).
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But this just means that 7 is the unique Gibbs equilibrim state for f (see [HK]).
As a consequence, 7 is ergodic. This finishes the proof of our corollary. |

5. SOLUTIONS OF LEAFWISE ELLIPTIC EQUATIONS

In this section we consider a differential operator A+Y of class C'*® on T' M asin
the introduction and of negative escape. We use a measure v of quasi-product type
to construct -equivariant mc(v, )-measurable solutions of the equation A+Y =0
on T1M. We continue to use the assumptions and notations from Sections 1-4.

Let v be a ® t-invariant Borel probability measure on T'M of quasi-product
type. Choose a I'-k-family {#”} of positive disintegration measures for v on oM,
induced strong unstable family {v**} and strong stable family {v**}. The measures
v*% are well defined on every strong unstable manifold, but this may not be true
for the measures v**. However there is a subset A of M of full me(vy)-mass
such that for every w € m~!(A4) the measure v** is defined on W**(w). Let Q :
M x M x &M — R be the Radon Nikodym kernel of the I'-k-family {#*} on dM
defined by the k-family {v”}.

For every v € T' M the projection 7o F maps the strong stable manifold W *(v)
onto M — w(v). Let again d** be the distance function on the leaves of the
strong stable foliation. Recall also the definition of the balls B**(v,r) (r > 0)
on strong stable manifolds. For v € T'M and w € W?**(v) define p(v,w) =
inf{t > 0| we & tB*(d'v,1)} = inf{t > 0| w € B*(v,e')}. Choose a number
x > 0 and for v € 771(A) define a locally finite Borel measure ° on W*(v) by
7Y (w) = min{e~XP@2)Q(Pw, P&y, 7(w)) =", 1}dv** (w). We have.

Lemma 5.1: For v-almost every v € T*M the measure n° on W?(v) is finite.

Proof: We showed in the proof of Lemma 3.1 that for v-almost every v €
T'M and every lift & of v to T'M we have limsup,_,,, + — logv**B**(v,”!) =
lim;_,o0 §l0g Q(P0, P®'0,m(7)). Now let v € T'M be such a point. By leaf-
wise Lipschitz continuity of @) and the transformation rule for the measures v*°
under the geodesic flow there is a number T' > 0 depending on v such that
v*8(B*(®tv,1) < eXt/2 for all t > T. In other words, for k > T the v’-mass
of the set ®~*B*5(®kv,1) — d~k+1 B35($*F~1y, 1) is bounded from above by a uni-
versal constant times e X*/2 and therefore the total mass of the measure v? is
finite. |

The measure v* projects via the map woF to a measure 7 on OM . The measures
¥ are invariant under the action of I' on T'M x OM.

For v € n~'(A) the measure 77* is defined on M. For t € R the measures 7°
and 7% define the same measure class. For £ € OM — {m(v)} denote by L(v,t,§&)
the Radon Nikodym derivative of the measure ﬁ‘bt” with respect to the measure
7Y at £. The function L(v,-, &) satisfies the cocycle identity log L(v,s + t,£) =
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log L(v,t,&) + log L(®tv, s,£). By construction of our measures, for all ¢ > 0, for
every v € - !(A) and every w € W?*%(v), all t > 0 we have

(12) Q(Pw, P¥'w,m(v))™" < L(v,t,7(~w)) < Q(Pw, P®'w, (v))'eX".

The function log L(v, 1,-) is uniformly Holder continuous on &M with a Holder
constant only depending on k but not on v. Now for v € T'M and w € W**(v)
the distance between ®'v and ®'w goes to zero exponentially fast as t — oo and
therefore from this and the cocycle identity we infer that for every v € 7=1(4) and
every w € W#(v) the limit

(13) tligloL('U,t,ﬂ(—’LU))/L('U,t,ﬂ'(—'U)) = U(an)

exists. The function o (v, -) is locally Holder continuous on W*¥(v). Moreover there
is a universal constant ¢ > 0 such that for all v € 771(A), all w € W*(v) and all
t > 0 we have o(v,w)L(v,t,7(—v))/L(v,t,7(—w)) > ¢! and < ¢ if w € B**(v,1)
where again ¢ > 0 only depends on k.

Let again A be the stable Laplacian of an arbitrary metric g on TW?® C TT'M
which satisfies the regularity assumptions stated in the introduction. Let Y be a
section of TW? of class C}:® which is g-dual to a leafwise closed section of T*W?
and such that pr(g(X,Y)) < 0 where the pressure of the function g(X,Y") is defined
as in Section 4. Denote the lift of A+Y to an operator on T' M by the same symbol.
For every v € T'M the restriction of A +Y to W*(v) projects to a second order
uniformly elliptic operator A, +Y, on M. By Theorem A of [H97a], our assumption
on Y implies that A, + Y, is weakly coercive.

Write
(14) k= —div(Y/2) — g(Y/2,Y/2)

where div means divergence with respect to the metric g on the leaves of W#. Then
A + k is a second order leafwise elliptic operator on 7'M with Hélder continuous
coefficients whose restriction to every stable manifold is self-adjoint with respect to
g. We denote its lift to T*M by the same symbol. Let A, + k, be the projection
to M of the restriction of A + k to W*(v).

Since the function g(X,Y") is Holder continuous it defines a unique Holder con-
tinuous kernel K on M x M x M. This kernel is determined by the requirement
that for v € T'M and t > 0 we have K(Pv, P®'v,n(v)) = fotg(X, Y)(®%v)ds.
For every v € T'M and every A, + Y,-harmonic function f on M the function
fK(Pv,-,w(v))*/? is A, + k,-harmonic. This implies in particular that the op-
erator A, + k, is weakly coercive and therefore its Martin kernel K, is defined
and is a Holder continuous function on M x M x @M. Since the constant func-
tion 1 is the unique minimal positive A, + Y,-harmonic function on M with pole
at 7(v) (see [H97a)), the function K (Pv,-,m(v))'/? is the unique minimal positive
A, + ky-harmonic function on M with pole at 7(v). In other words, we have
Ky(z,y,7(v)) = K(z,y,n(v))"/? for all v € T'M and all (z,y) € M x M.

Let v be a measure of quasi-product type. Choose a regular k-family {v?} of
positive disintegration measures for v with Radon Nikodym kernel ). For v € T*M
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write @, = Q(K,) 1. Let {v**} be the stable family for v induced by the regular
family {v?} and for v € 771(A) we define a finite measure 7° on M as above.

For v € 7 1(4), t € R and £ € M — {n(v)} denote by L,(Pv, P®'v,¢) =
L(v,t,£) the Radon Nikodym derivative of the measure 7% with respect to 77

at & By the results of [Al] and our assumption on the measures 7%, for every
ven (A) and w € W*¥(v) the limit
Jim (Ly K, ) (Pv, PO, m(—w))/ (LK, *)(Pv, P® v, m(=v)) = 0y (w)
o
exists and is finite and positive. The following Lemma gives an estimate for the
functions a, . As before denote by K the kernel of the function g(X,Y) on Tt M.

Lemma 5.2: There is a constant ¢ > 0 with the following properties: Let
veTIM,w € W*(v) and let 7 = inf{t > 0 | w € "t B*(dlv,1)}; then

ay,p (W)K (Pv, P®™v, 71(v)) Ly (v, @70, 7(—w))/Q(Pv, P®"v,m(v)) € [c},c].

Proof: Let v € T"M,w € W**(v) and let 7 = inf{t > 0 | w € ®~¢B**(d'v,1)} >
0. We first claim that there is a universal constant ¢g > 0 such that
(15) K, (Pv, P®'v, 7(—v)) - Ky(Pv, P®'v, n(w)) /K (Pv, P®"v,7(v)) € [cy ', o]
for all t > 7.

For this let u € Th, M —{v}, x > 0 be such that the geodesic 7 joining y(—00) =
7(—w) to y(0o) = m(v) meets the geodesic t — P®'u orthogonally at P®Xu.
By the definition of the balls B**(v,r) the distance between P®Xy and P®"w is
bounded from above by a universal constant. Since the kernel K is uniformly Hélder
continuous we conclude that there is a universal constant ¢; > 0 such that

(16) K(Pv, P®u, 7 (u))/K(Pv, P® v, 7(v)) € [¢]*,c1]-
Thus we may replace K (Pv, P®v, 7(v)) in our claim (15) by K (Pu, P®Xu,w(u)).
Since the operators A, + k, are self - adjoint there is a constant ca > 0 such

that K,(Pv, P®tv, 7(—v)) - Ky(Pv, P, 7(v)) € [c;*, ] for all v € T* M and all
t > 0 (see [H97a]).

Moreover the function log K, is locally uniformly Holder continuous and there-
fore we have
(17) K,(Pv, P®*u, n(—v)) - K(Pu, P®u,n(u))"/? € [¢;',¢3] and
K (Pu, P®Xu, (u))*/?/ K, (Pv, P®Xu,n(w)) € [c5!, 3]
for a universal constant ¢z > 0.
From the Harnack inequality at infinity of Ancona [A1], applied to the A, + Ky~

harmonic functions K,(P®"u,-,m(w)) and K,(P® u,-,7(—v)) on a cone in M
about the geodesic joining P®"u to w(v) we deduce that

(18) K, (P®*u, P®'v, n(w))/K,(P®Xu, P®'v, 7(—v)) € [c; ", c4]
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for all sufficiently large ¢t > 7. Since
(19)  K,(Pv, P®'v,7(w)) = K,(P®*u, Pv,m(w)) ' K,(P®Xu, P®'v, 7(w))
our claim follows.

On the other hand, for ¢ > 7 we have

(20)
L(®"v,t — 7, 7(—w)) = Lo (P® v, P, 7(—w)) = Q(P®"w, Pd'w, 7(v)) ™"

and since the function log Q(:,-,7(v)) is k-Lipschitz in both variables and since
L,(Pv, Pbtv, 7(—w)) = L,(Pv,P® v, n(—w))L,(P® v, Pdtv, 7(—w)) we obtain
that

(21) L,(Pv, P®"v, n(—w))L,(Pv, P® v, 7(-v))/
L,(Pv, P®'v, n(—v))L,(Pv, P®™v, n(—w))

is bounded from above and below by a universal constant. From this and the
definition of the function L, the lemma follows. O

Corollary 5.3: If
1
Jim inf n log(K (Pv, P®'v, 7(v))Q(Pv, P®'v,7(v)) 1) =a >0
then [ oy, (¢)di*(¢) < oo.

Proof: Recall from the definition that the measure 7° on OM coincides on 7 o
FB*%(v,1) with the projection to dM of the stable measure v** on W?*°(v) induced
by the k-family {#}. Moreover, the total mass of 77" is finite.

By Lemma 5.2, for every positive integer k£ > 0 and every point
w € B**(v,eft!) — B*3(v,e*) the ratio
(22)  a,, (7(—w))K(Pv, P®*v, 7(v)) L, (Pv, P®*v, m(—w)) /Q(Pv, P®*v, 71 (v))
is bounded from above and below by a positive constant. Since
Ly(Pv, P®*v, m(—w))~! is the Radon Nikodym derivative of the measure 72" with

respect to the measure 7V at m(w), this just means that there is a number 8 > 0
such that

(23) /a  auu(m(—u))d” (x(w)
< 3" BQ(Pv, PB* v, 7(v))/ K (Pv, PB*v, m(v))n® " (B* (®*0, 1)).
k=0

By our assumption on v and the fact that limsup,_,., —1 logv**(B**(®%v,1)) =
0, we conclude that the series on the right hand side of the above inequality is
convergent. O

For every v € 7 '(A) we can define a function u,,: M x M — (0,00) by
Uy (2,y) = [ Ky(z,y,()di"(¢). For any fixed x € M the assignment y — u,,, (2, y)
is a positive A, + k,-harmonic function on M. The functions u, , are invariant
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under the action of T on T'M x M x M and wu,,(Pv, Pv) = 7°(dM) for all
venL(A).

Lemma 5.4: For every v € n~1(A) the functions
Uty (PP, ) [ugty, o (PR 0, Pv)

converge as t — o0 uniforn}ly on compact subsets of M to a positive Ay + Ky-
harmonic function @,, on M. The assignment v — Uy, is equivariant under the
action of the fundamental group m (M) of M. If

Jim inf % log(K (Pv, P&k, (1))Q(Pv, Py, 7(1))~1) > 0
then iy, (y) = [ Ky(Pv,y,{)aw,. () di*(C)/ [ v ({)di® (C)-

Proof: Let x € M and v € T;M . For t > 0 define a positive A,, + k,-harmonic
function a} ; on M by

al (y) = UQtv,V(Pq)tvay)/FU(PvaP(itvﬂr(_v))

v,V
where F, = L,K,!. The Radon-Nikodym derivative of the measure 72 with
respect to 7V at ¢ equals K,(Pv, P®'v,()F,(Pv, P®'v,() and consequently

(24) at (y) :udﬁv,u(P@tvay)/Fv(PUaPQtUaW(_U))

v,V

(25) =E (P PO [P0 (0

(26) = | Ky(Pv,y,Q)F,(Pv, P%%,7(~v)) " F, (Pv, P®'v, ()dii" (¢)
oM

for all y € M. Thus if we write af ,(¢) = F,(Pv, P®%,()/F,(Pv, P®'v,(-v))
then

i) = [ KoPo,y. 0t (00
forally € M,v € T'M and t > 0.

We distinguish two cases:

(1) [ (Qdn®(¢) = oo.

We claim that then the functions ugt,, , (P®v,)/ugt,, , (P®v, Pv) converge as
t — oo uniformly on compact subsets of M to the minimal positive Ay, + ky-
harmonic function y — K, (z,y,w(v)). For this it is enough to show the following:
For t > 0 write @’ , = of ,/ [ ot ,({)di” (C); then for every § > 0 there is a number
7(8) > 0 such that

[ atodr©<s
N —C(v,5)

for all ¢ > 7(J), where C(v,6) = {m(w) | £(v,w) < d§}. To see this simply
recall that the functions af}’,, converge as t — oo uniformly on compact sub-
sets of OM — {m(v)} to a,,. Since a,, is bounded on M — C(v,d) the inte-
grals faM—C(v,é) ol ,(¢)di? (¢) are bounded on OM — C(v,0) as well and hence

Jo(o.5) @0, (Q)d* (€) = 00 (t = 00).
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As a consequence, for every fixed § > 0 the functions df,’,, converge to zero on
OM — C(v,6) as t — co. From this the above claim is immediate.

Now assume that

2) fav,u(é_)dﬁv(g) < 00.

We claim that [ of ,(¢)d7*({) = [ o, (¢)di* (¢)(t = 00). To see this, recall from
(*) above that for every v € T"M and k > 0, all ¢ > k the ratio o, , /a,,, is bounded
on M —7B(v,re~*) from above and below by a universal positive constant, where
r > 0 is as in the beginning of this section. On the other hand, by Hélder continuity
of the kernel K, there is a universal constant a > 0 such that

[ ek QKL (P, PR om0 (B (@ 0,r) €
wB(v,re—*)

By the choice of the measures 7%, the 7% v-mass of the set 7(B(v,re™*) —
B(v,re~*1)) is not smaller than a constant multiple of 72"* B(v, re—*). Together
with the above estimates we conclude from this that there is a universal constant
@ > 0 such that [ af ,(¢)di’(¢) < @ [ 0y, (¢)dif* (¢) for all t > 0. Since o, , = ay
uniformly on compact subsets of M — {r(v)} the above claim now follows from
Lebesgue’s theorem of dominated convergence.

Now if we write again &, , = of ,/ [af, ,(¢) di*(¢) and
Q= W/ [ auu(C) dif®(C), then &l , — @, , in the space of 7j’-integrable func-
tions on M. Since

Uo,u (P80, y) [ty (PP, Pv) = /Kv(way,C)@f,,y(C)dﬁ“(C)

this means that these functions converge as ¢ — oo uniformly on compact subsets
of M to y = Gy, (y) = [ Ku(z,y,{) @, (¢)dif* (¢) as claimed in the lemma. O

Let f be a Holder continuous function on T'M and denote its lift to T*M by
the same symbol. Recall that M admits a natural Holder structure and hence
the same is true for M x M x M. There is a unique locally uniformly Holder
continuous function F : M x M x OM — (0,00) such that for every v € T*M we
have F(Pv, Pdtv, w(v)) = elo F(®°v)ds e call the function F the kernel of f. The
kernel F of f satisfies F(x,y,()F(y,2,¢) = F(x,2,¢) for all z,y,2 € M, € dM.
For example, the kernel C' of the constant function 1 on T'M is given as follows:
For £ € OM let 0¢ be a Busemann function at £&. Then C(z,y,£) = efs(®)—fe®)
(compare [H97a]). If F : T*M — T'M is again the flip v - —v = Fv on T M,
then the function f o F is Holder continuous and induces a kernel FF'.

~ Choose a point z € M and for v € T} M and t > 0 write
(o (P®'v) = F(z, P®'v,7(v)). Let A be the Lebesgue measure on M and define the
pressure pr(f) of f to be the infimum of all numbers m € R such that

/Cz—l(y)e—mdist(w,y)d)\(y) < 0.
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Note first that this does not depend on the choice of z € M. Note also that the
so-defined pressure coincides with the usual topological pressure of f.

Consider again the kernel F' of the Hélder continuous function f. The function
F is invariant under the action of I'. Since for v € T*M and w € W?*%(v) the

distance in M between ~P<I>tv and P®'w converges to zero exponentially fast, for
v€T'M and w € TH, M — {v} the limit

(27) af(v,w) = [log F(Pv, P®'v, n(w)) — log F(Pv, P®'v, n(—v))]

1.

— lim
2 t—oo
exists (compare [H97a] for the definition of a¢) and is a Holder continuous function
on the complement of the diagonal in T, M x T}, M.

Lemma 5.5: Let p € M, v,w € TI}M and let v be a geodesic in M joining
v(—00) = 7(w) to y(c0) = w(v). Then we have

(28) af(v,w) =af.r(w,v) and
0y (0,) =3[1og F(Po,(t), w(w)) + og FF(Pv, (1), 7(0))]
for allt € R

Proof: Let v € T'"M, w € Th,M — {v} and let v be as in the lemma. By the
definition of FF we have

t—s

t
(29) log FF(v(s),(t), (v)) =/ foF(y(r))dr = | f(=27'(s))dr

- /0 —s F(®7(=+'(t)))dr =log F(v(t),(s), 7(w)) = —log F((s),y(t), 7(w))
for all s,t € R

Assume now that ~y is parametrized in such a way that 7'(0) € W*¥(v); then
dist(P®%v,y(t)) — 0. This means that if we denote by z(t), 22(t) the unit vectors
with foot point P®%v,~(t) and which are contained in the stable manifold W*(w)
through w then lim;_, o, dist(21(t), 22(¢)) = 0 as well.

For t € R let now 71 (t) be such that z;(t) € W**(® (1)), By construction we
have

s—711(t) s
log F(Pv, P®'v, n(w)) = lim ( F(®72(t))do —/ f(®7w)do).
s o 0 0
Similarly, if 75(t) € R is such that z(t) € W**(®™®w) then
s—Ta(t) s
(30)  log F(Pv,y(t),7(w)) = lim ( F(3725(t))do — / £(@w)do).
8 oo 0 0

Since f is Holder continuous and since the distance between z1 (t), 22(t) € W*(w)
converges with ¢ — 0o exponentially fast to 0 we obtain that

s—T11(t) s—Ta(t)
lim sup lim sup | F(®72.(t))do — / f(®%25(t))do| = 0.
0

t—o0 s§—00 0
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This then shows that
Jim log F(Pv, P®'v, m(w)) — log F(Pv,y(t), n(w)) =0,
o

tli}m log F(Pv, P®'v, n(—v)) — log FF(Puv,~(t),m(v)) = 0.
and yields the lemma. 0.

Lemma 5.5 shows in particular that for the constant function 1 on T'M and
vy,w € C, ay(v,w) is just the Gromov product

(v|w) = (7 (v)[7(w)) Py

of m(v), m(w) € AM as seen from Puv (see [GH90] for the definition of the Gromov
product and compare [H97al).

Let as before {v?} be a regular family of positive disintegration measures for
a measure v of quasi-product type. Denote by n¥ (v € T'M) the family of finite
Borel measures on the strong stable manifolds as above. Since via the projection
7 for every € M the bundle {(v,w) | v € T M,w € W**(v)} naturally embeds
into TXM x T} M we can view 7V as a measure on T M. Define a measure 77 on
TIM x TM by nP(A) = [v*(ANTEM x {v})dvP(v). The next proposition is an
important ingredience for the proof of our theorem in the introduction.

Proposition 5.6: If f : T*M — R is Hélder continuous and pr(—f— foF) <0
then the function p — [[ €2%r (VW) g (v, w)dnE (v, w) on M is locally bounded.

Proof: Choose a number x > 0 such that for every v € T'M the balls B(v, x)
and B(—wv,x) are disjoint. Let § > 0 be smaller than the constant » > 0 which
appears in the definition of the measures 7*.

For a unit tangent vector v € T'M define a compact subset C'(v) of the comple-
ment of the diagonal in OM x OM by

(31) Cv) = {(n(2), m(w)) |
z € B(v,6/4) — B(v,de" " /4),w € B(—v,3/4) — B(—v,e"'/4)}.

Clearly the set C'(v) has nonempty interior and depends continuously on v. More-
over for every isometry ¥ € w1 (M) we have C(d¥(v)) = ¥ x ¥(C(v)).

Fix now a point # € M and for R > 0 let S(z, R) and B(z, R) be the distance
sphere of radius R and the closed ball of radius R about z in M. Let N be the unit
vector field on M — {z} whose restriction to S(x, R) just equals the outer normal
field of S(z, R). For y € M — {z} define C(y) = C(N(y)) C M x dM.

Write Q = {(v,w) € T'M x T*M | v # w}. Then Q is an open subset of
TYM x T!M whose complement has measure zero with respect to nZ.

Let (v,w) € Q and let v be a geodesic joining v(—oc) = w(w) to v(oc0) = 7(v).
Then the function ¢t — dist(z,~(t)) is strictly convex and hence it assumes its
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minimum in a unique point. Denote by 7, the unique reparametrization of ~y
with the property that

(32) dist(70,w(0), 2) = min{dist(yv,u(t),z) | t € R}.

For R > 0 define Q(R) = {(v,w) € Q | dist(z,Vv,0w(R)) = R}. Then Qis a
disjoint union of the sets Q(R) and for each fixed r > 0 the subset |Jp,. Q(R)
of ) is compact. Moreover Q(R) is naturally homeomorphic to the unit tangent
bundle T*S(z, R) of the distance sphere S(z, R) by mapping (v,w) € Q(R) to
Vouw(0) € T*S(w, R).

From the definition of the sets C(y) (y € M) we also see that there is a universal
constant 7 > 0 such that

(33) U{C(y) | dist(e,y) > 1+ 7} C Uper QR) C U{C(y) | dist(z,y) > 7 — 7}

Denote by @ the Radon Nikodym kernel of the k-family {7} and recall that for
& € OM and y € M the Radon-Nikodym derivative of 7¥ with respect to 7* at £
equals N(z,y, ).

Let v € T'M be such that w(v) = £ € A. For t € R and ¢ € OM — {¢} define
L¢(z, P30, () = L(v,t,() to be the Radon Nikodym derivative of the measure 7o'
with respect to 7V at {. By definition,

L(z,y,¢,¢) = Q(z,y,&) Le (2,9, C)
is the Radon Nikodym derivative of n¥ with respect to 5% at (&, (). Since

L(v,t,m(—v)) ! = Q(Pv, P®v, n(v))

we conclude from 4) in our above list of properties of the measures n¥ that for
sufficiently large T > 0, v € TAM and w € B(v,e~T) — B(v,e~T~7) the value of
the function ¢ at (v, w) roughly coincides with the Radon Nikodym derivative of
772" with respect to 7% at (w(v), 7(w)). This together with the fact that the total
mass of the measures 72 is uniformly bounded then implies that for all v € T*M
and all sufficiently large ¢ > 0 the integral

/ o (w, 2)dng (w, 2)
{(w,2)ETLM x T M|(n(w),n(z))EC(PPtv)}

is bounded from above by a universal constant.

Let now f : T'M — R be Holder continuous and let F' be the kernel of f, FF
be the kernel of f o F. Write G = F - FF. Since the kernels log F,log FF' are
uniformly Holder continuous there is a universal constant ¢z > 0 such that

F(z,y,m(v))FF(z,y,7(w))/G(z,y,7(N(y))) € [c3",cs]
whenever y € M and (7(v), 7(w)) € C(y).

Thus if we define a function p on M by p(y) = G(z,y,7(N(y)))~" and denote by
A7 the Lebesgue measure on M, then we conclude from Lemma 2.8 and the above
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consideration that there is a constant ¢4 > 0 such that for every y € M- B(z, Ryp)
we have

(34)

/ o €210 (5, )l (0, w) |
{(w,2) ETI M XTEM|(7(w),n(v))€C(y)}

[ @i < e
B(y,1)

In other words, if [ pdAy; < oo then the integral [e?*/odn? is finite. By
definition of the pressure, this then holds whenever pr(—f — f o F) < 0 which
proves the proposition. a

Remark: With slightly more careful estimates in our above proof we can also
show that for convex cocompact groups and every Holder continuous function f on
T*M with pr(—f — f o F) > 0 the integral [ [ €2/("%) g (v, w)dnE (v, w) is infinite.
However we do not need this in the sequel.

6. HARMONIC MEASURES FOR THE OPERATOR A +Y

In this section we continue the investigation of an operator A + Y of negative
escape. Let again A be the Lebesgue measure on M. For a measure v of quasi-
product type with regular family {v?} of positive disintegration measures we denote
by vz, the Lebesgue extension of {v*} defined by vr,(4) = [vP(ANT, M)d\(p). We
show that the measure class of every such measure vy, contains a unique harmonic
measure for A +Y and we relate its entropy to the entropy of v.

We use the results and notations of Sections 1-5. Let again v be a measure of
quasi-product type, with a regular k-family {v?} of positive disintegration mea-
sures, induced family {v*?} of stable measures and Radon Nikodym kernel @) which
defines the Radon Nikodym function f on T'M. Recall that for v-almost ev-
ery v € T'M we obtain f(v) by choosing a lift © of v to T'M and by defining
f(v) = Q(Pv, P®'%,n(v)). For a subset A of M of full mec(v, )-mass and every
v € 7 1(A) define a finite Borel measure 77 on M as in Section 5.

By Lemma 3.3 and the Birkhoff ergodic theorem, for v-almost every v € T' M the
limit lim;_, o % fot f(®%v)ds exists and equals the entropy of v. Since the pressure
of the function g(X,Y") is negative by assumption, Proposition 5.6 shows that via
replacing A by a subset of full mec(vy)-mass and which we denote again by A we
may assume that for every v € m~1(A) we have

Blo) = /8 a (Qd*(Q) < oo

M
and the function 4, , from Section 5 is defined by

o () = (B(v)" / aun (OKo(Po,y, ) di* (0).
oM
Note that @, (Pv) =1 for all v.
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Recall that the function a,, is continuous on M — m(v), non-negative and
satisfies a,,, (7(—v)) = 1. The function 3 projects to a function on 7'M which is
measurable with respect to the Lebesgue extension vy of v. We have.

Lemma 6.1: [ Bdvy < .

Proof: By the definition of 3, for p € M we have

/ Bav® = / / (O ()d® (v).

Since pr(g(X,Y)) < O this is locally uniformly bounded from above on M by
Lemma 5.3 and Proposition 4.3. From this the lemma follows. |

Define a family o®¢ of locally finite Borel measures on the leaves of the stable
foliation by do®*(v) = B(v)dv®*(v). Using the notations from Section 5, for v €
T'M and y € M write

Lemma 6.2: The measures o3° transform under the geodesic flow via
do®® o ®t(v) = K,(Pv, P®'v, m(—v))L(Pv, P®'v, 7 (v)) 'do® (v).
Proof: Forv € T'M and t > 0,y € M we have

(35)  L(Pv,y,m(v)) = B(v)"" / K, (Pv,y, Qe (i (0)

= ()" / K, (P&, y, () K, (Pv, PB4, )., (O)di (C).

This simply means the following: Represent the function L(Pv,-,7(v)) on M as a
Poisson integral based at P®!v and based at Pv. The Radon Nikodym derivative at
7(—v) of the measures defined by these representations is just K, (Pv, P®'v, 7(—v)).

Now the measure o°* on W**(®!v) is determined at w(—v) by the Poisson formula
for L(Pv, P®'v, n(v)) 1 L(Pv,-,n(v)) from which the lemma follows. O

Recall from [H97a] that there is a Holder continuous function 7 on T*M such
that
() LK, (Pv, P8v, m(—v))(8'0) = K, (Pv, P8, 7(v))™"
for all v € T'M and all t > 0 and consequently the measures ¥o°® = 81w
transform under the geodesic flow via

d(¢o*®) o ®(v) = K, (Pv, P®'v, 7(v)) "' L(Pv, P®'v, w(v)) ' d(va®®) (v).

Let {v*“} be the projection of the k-family {v?} to strong unstable manifolds.
Then dv = dt x dv®® x dv®* and the measures o°* = S~ 1v** on the leaves of the
strong unstable foliation of T'M transform under ®? via

do®¥ o &t (v) = K, (Pv, P®'v, 7(v))L(Pv, P®tv, 7(v))do® (v).
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Let A® be the family of Lebesgue measures on stable manifolds defined by the
lift <,> of the Riemannian metric on M. In [H3] it is shown that the Lebesgue
extension vy, of {v?} coincides with the measure on 7' M which is given with respect
to a local product structure by the formula dv = dA\® x dv".

Let n® be the family of Lebesgue measures on the leaves of W* induced by the
metric g. Since ®* = xA® for a Hélder continuous function x we obtain from Lemma
6.1 that the Borel-measure p(A +Y)(v) = o on T'M defined by o = p¢p 1x¥ is
locally finite; moreover do = dn® x do**. Recall from [H97a] the definition of the g-
gradient of a Borel measure p on T' M which is absolutely continuous with respect
to the stable and strong unstable foliation, with conditionals on stable manifolds
in the Lebesgue measure class. Namely, let § be the lift of p to T*M and let
p(o0) be a Borel-probability measure on OM which defines the measure class of the
projections of the conditionals of j on strong unstable manifolds. For v € T'M we
can represent j near v in the form dj = adn® x dp(co) where a : T'M — (0, 00)
is a Borel function and we identify §(oco) with its projections to the leaves of W*%
via the map 7. For (v,w) € D = {(u,2) € T'M x T*M | z € W?*(u)} define
l(v,w) = a(w)/a(v). Then the function [ : D — (0, o) is independent of the choice
of p(co). If for p-almost every v € T'M the function I, : W*(v) — (0,00),w —
l,(w) = I(v,w) is differentiable, then we obtain a measurable section Z of TW*®
over T*M by assigning to v € T*M the gradient at v of log I, with respect to the
Riemannian metric g on W*(v). This section of TW# over T M is equivariant under
the action of m; (M) and hence it projects to a measurable section Z of TW? over
T'M which we call the g-gradient of p. We then have [(div(Q) + g(Z,Q))dp =0
for every leafwise differentiable section @ of TW* (see [H97a]). Write again k =
—div(Y/2) — g(Y/2mY/2). The above discussion then shows:

Proposition 6.3: The g-gradient of o equals Y/2 + E where Y/2 # E and
div(E) + g(E, E) + k = 0.

On the other hand we have the following (see [H97a]):

Lemma 6.4: A Borel-probability measure p on T*M is harmonic for the oper-
ator A +Y if and only if p has the following properties:

(1) p is absolutely continuous with respect to the stable and strong unstable
foliation, with conditionals on stable manifolds in the Lebesgue measure
class.

(2) The g-gradient Z of p is defined p-almost everywhere on T* M and satisfies

dv(Z -Y)+9(Z,Z-Y) =0.

Now if Z is the g-gradient of o then Z —Y = E — Y/2 and therefore div(Z —Y) +
9(Z,7 - Y) = div(E) — div(Y/2) + g(E + Y/2, E — Y/2) = div(E) + g(E, E) + k.
From Proposition 6.3 and Lemma 6.4 we thus obtain:

Corollary 6.5: o is a harmonic measure for A +Y.
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A harmonic measure o for A +Y induces an invariant measure for the leafwise
diffusion process of the operator A+Y. Namely, for every v € T' M the restriction of
A+Y to the smooth manifold W*(v) is a second order elliptic operator without zero
order terms and hence it induces a probability measure P on the space 2 of paths
w : [0,00) = T M such that P’{w | w(0) = v and w(t) € W*(v) for all t > 0} = 1.
Recall that the semigroup {T% | t > 0} of shift transformations acts on Qy via
T'w(s) = w(t + 5). Since o is harmonic for A + Y, the measure P on Q4 which is
defined by P(A) = [ PY(A)do(v) is invariant under the shift. Moreover ergodicity
of me(o, 00) under the action of w1 (M) is equivalent to ergodicity of the measure
P under the shift (Lemma 2.1 of [H97a]). This immediately implies.

Corollary 6.6: There is an injective map p(A +Y) from the space of ergodic
measures of quasi-product type on T' M into the space of ergodic harmonic measures
for A +Y which maps a measure v to the unique harmonic measure for A +Y in
the measure class of the Lebesgue extension of v.

Proof: Let vy, be the Lebesgue extension of a k-family {v?} for an ergodic mea-
sure of regular product type. We constructed above a harmonic measure u for
A +Y in the measure class of vr. Since v is ergodic by assumption, the measure
class me(v4) on OM defined by the k-family {v#} is ergodic under the action of T.
Then p is an ergodic harmonic measure for A +Y [H97a] and hence unique in its
measure class. Thus every harmonic measure for A +Y [H97a] which is absolutely
continuous with respect to u coincides with g up to a constant and therefore there
is a well defined map p(A +Y) which associates to an ergodic measure v of quasi-
product type the unique harmonic measure for A + Y in the measure class of the
Lebesgue extension of v.

The map p(A+Y) is injective if and only if for every ergodic k-family {¢?} on M
there is at most one measure v of quasi-product type whose positive disintegration
class coincides with mc(vy). However this is immediate from Lemma 3.2. O

Given an ergodic harmonic measure ¢ for A +Y we can reverse the time of the
diffusion to obtain a new leafwise diffusion process on T'M. The next lemma is a
direct application of Lemma 2.12 of [H97a] to our situation:

Lemma 6.7: Let Y/2 + E be the g-gradient of the harmonic measure o for
A +Y. Then the reversal of time of the diffusion induced by A +Y and o is the
diffusion induced by A + 2F and o.

Assume now again that ¢ is an ergodic harmonic measure for A + Y, with g-
gradient Y/2+ E. Then o is an invariant measure for the diffusion on 7'M induced
by A+ 2FE and hence the Kaimanovich entropy h, of this diffusion is well defined.
We call h, simply the entropy of 0. We have h, = 0 if and only if for o-almost
every v € T'M the space of bounded A + 2E-harmonic functions on W¥(v) is
1-dimensional (see [K2]).

The entropy h, of o can be computed as follows.
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Lemma 6.8: The entropy of an ergodic harmonic measure o for A +Y equals
he = [(9(Y/2,Y/2) — g(B, E)) do > 0.

Proof: Let v € T'M be the lift of a typical point for the harmonic measure ¢ on
T'M. Write again k = —div(Y/2) — g(Y/2,Y/2) and let A, +2E, and A, + &, be
the operator on M which is the projection of the restriction of A + 2F and A + k
to W4 (v).

Let ¢ be the function on M which is normalized to be 1 at Pv and such that
the g-gradient of its logarithm equals F,. Define similarly a function 1 from the
vector field (Y/2),. Denote as before by K the kernel of g(X,Y).

By construction, if « is any positive A, 4+ 2E,-harmonic function on M then ap
is a positive A, + ky-harmonic function. Since A, + k, is self-adjoint with respect
to the metric g and its Martin kernel K, satisfies K, (z,y,7(v)) = K (z,y,w(v))~'/?
we obtain from the appendix of [H97a] that for every z € T}, M — {v} the product

K,(Pv, P®'z,7(2)) K (Pv, P&z, 7(v))/?

is bounded from above and below by a positive constant depending on z but not on
t > 0. In other words, the unique minimal positive A, + 2E,-harmonic function on
M with pole at 7(z) # m(v) and which is normalized to be 1 at Pv coincides along
the geodesic t — P®'z up to a bounded factor with the restriction of the function

P lph
Let now w be a typical path for the diffusion induced by A, + 2E,, with initial
point w(0) = Pv. Then w converges to a point £ € OM — {w(v)}. By the Birkhoff

ergodic theorem and the above considerations, the Kaimanovich entropy h of the
diffusion induced by A + 2E and o on T*M equals

Jim +(~ log o og ) (w())

From Ito’s formula and the Birkhoff ergodic theorem we conclude that
hy = / div(—E — Y/2) + 29(E, —E — Y/2)do = / o(Y/2 = B,Y/2 + B)do.

O

As in the introduction let now X be the section of TW?* over T'M which is
g-dual to the section a of T*W? defined by a(X) = 1 and a|TW?® = 0. Recall
from the introduction that the signed escape rate £, = £;(A +Y) of the diffusion
induced by A +Y and o equals — [ div(X) + g(Y,X) do. Note that the absolute
value of this signed escape rate is bounded from above by a universal constant. As
a corollary from Lemma 5.8 we obtain.

Corollary 6.9: Let v be an ergodic measure of quasi-product type on T M ; then
hy = =hpaty)w)/ bpaty) -

Proof: Let v be a measure of quasi-product type and write o = p(A + Y)(v).
The g-gradient of ¢ is of the form Y/2 + E for a section E of TW?*.
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Let w be a typical path for the diffusion induced by A +Y and o and let & be
a lift of w to T'M. By Ito’s formula, the entropy

hy = / div(Y/2+ E) + g(Y,Y/2 + E)do = / g(Y/2 — E,Y/2 + E)do

can be computed as follows: Choose a function f on W?*(@(0)) whose g-gradient
equals Y/2 + E; then

ho = Jim +F(5(0).

On the other hand, the lift of X to W#(v) ~ M is the negative of the g-gradient
of a Busemann function on W*(@(0)) ~ M at 7(@(0)) € M. If dist denotes the
distance on W#(v) defined by the lift of the Riemannian metric of M, then the
(non-signed) escape rate lim;_, o + dist(@(t),&(0)) is defined and equals —¢, (see
[H97a]). Thus h, /£, is the average growth of the function f along geodesics in M
which converge to a typical point for the positive disintegration class of v [H97a].
Together with Lemma 3.3 and its proof and the Birkhoff ergodic theorem this shows
that the entropy of v equals h, /¢;. a

Corollary 7.10: The entropy of an ergodic measure of quasi-product type which
is not supported on a closed orbit of ®t is positive.

Proof: Let v be an ergodic measure of quasi-product type which is not supported
on a single closed geodesic. By Lemma 3.1, the positive and negative disintegration
classes of v do not have atoms. Let Y/2 4+ E be the g-gradient of the harmonic
measure ¢ = p(A + Y)(v). The Kaimanovich entropy h, of the diffusion on Tt M
induced by A 4+ 2E and p(A + Y)(v) vanishes if and only if for o-almost every
v € T'M there are no nonconstant bounded positive A + 2E-harmonic function
on W*(v). By the explicit construction of o the defining measure on dM for the
vector field F has no atoms. This means that the entropy h, of o is necessarily
positive and therefore by Lemma 5.8 and Lemma 5.9 the entropy of v is positive as
well.

7. PROOF OF THE THEOREM

Consider again a closed Riemannian manifold M = M /T of negative sectional
curvature. Let as before A +Y be an operator of negative escape. We showed in
Section 5 that there is an injective map p(A +Y) of the space of ergodic measures
of quasi-product type into the space of ergodic harmonic measures for A + Y. The
first goal of this section is to show that this map is surjective, i.e. that it is in fact
a bijection.

We continue to use the assumptions and notations from the previous sections.
Recall in particular from Section 2 the definition of a k-family {7} for T*M and
its Lebesgue extension vy. Every harmonic measure o for A + Y is the Lebesgue
extension of a k-family {vP}. The signed escape rate £,(A +Y") for the harmonic
measure o for A +Y is well defined. We know from [H97a] that this escape rate
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is bounded from above by a negative constant —b < 0 not depending on o. This
observation is used to show.

Lemma 7.1: Let o be an ergodic harmonic measure for A +Y. Then there
exists a measure v of quasi-product type such that o = p(A +Y)(v).

Proof: Let o be an ergodic harmonic measure for A+Y with g-gradient Y/2+E.
Then o is a harmonic measure for A + 2E. The (non-signed) escape rate of the
A + 2 FE—diffusion coincides with the escape rate of the diffusion induced by A +Y
and ¢ [H97a] and therefore this escape rate is positive. This implies that for o—
almost every v € T'M the exit boundary of the diffusion on W*(v) induced by the
restriction of A + 2E to W#(v) is well defined and does not have an atom at 7(v)
(see [H9Ta]).

We show next that the exit boundary of this diffusion can only have an atom if
the entropy h, of o vanishes. For this we assume that there is a subset A of T' M
of positive o-mass such that for every v € A the exit measure 5, for the diffusion
on W*(v) has an atom. Let v € T'M be a lift of some point in A. Consider the
diffusion on M induced by the projection A, +2E, to M of the restriction of A+2FE
to W*(v). Let £ € OM be an atom for the exit measure of this diffusion. By the
Poisson formula, if ¢ denotes the minimal A, + 2FE,-harmonic function on M with
pole at &, then the function % is bounded along a geodesic which is asymptotic to
£. But this means that for every path w which is typical for the diffusion induced
by A, + 2E, and initial probability the Dirac mass at Pv and which converges to
€ the limit limg_,o +log ¢ (w(t)) is equal to 0. By ergodicity and the definition of
the Kaimanovich entropy we conclude from this that the entropy h, of o indeed
vanishes.

The measures 7, are well defined for o-almost every v and equivariant under the
action of ' on T'M x OM. For w € W#(v) the measures 7, and 7,, on OM define
the same measure class.

Let v € T'M be a typical point for 0. We can project the measures 1, (w €
W#2(v)) to a Borel probability measure n§* on W?°(v). As before, let ¢ be a Holder
continuous function on T'M such that log defines an equivalence between the
cocycle of g(X,Y/2) and the cocycle of the function £ K, (Pv, P&, (—v))™" |io.
The arguments in the proof of Lemma 5.2 then show that the measures 7®° = ¢n§*
transform under the geodesic flow via %n” o ®t|;9 = —g(X,Y/2+ E).

Let v? be the k-family whose Lebesgue extension equals o and denote by v** the
induced family of measures on strong unstable manifolds. Fix a number r > 0 and
look at balls of radius 7 in the leaves of W** with respect to the restriction of g.
From the infinitesimal Harnack inequality for positive A, + k,~harmonic functions
on M and the definition of the measures n§® we conclude that the n*—mass of any
such ball is bounded from above by a universal constant. Thus we obtain a finite
®’-invariant measure 5 on T*M by defining dv = dt x dn*® x dv®*. We may assume
that v is normalized in such a way that v(T'M) = 1. Lemma 3.2 then shows that
the measure v is of quasi-product type. |
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We showed so far that for every operator A + Y of negative escape there is a
bijective map ¥(A +Y) of the space of ergodic harmonic measures for A +Y onto
the space of ®-invariant Borel probability measures on T*M of regular product
type. We can now complete the proof of our theorem from the introduction by
showing that this map is continuous.

Let now again A+Y be a differential operator of negative escape, where as in the
introduction A is the leafwise Laplacian of a Riemannian metric g on TW?. By the
infinitesimal Harnack inequality, there is some k& > 0 only depending on A +Y such
that every harmonic measure v for A + Y is the Lebesgue extension of a k-family
{vP}. Moreover v is ergodic if and only if the k-family {v?} is ergodic. We equip
the space Ha4y of harmonic measures for A + Y with the weak*-topology. With
this topology, Ha+y is a compact space.

Lemma 7.2: There is a constant b > 0 with the following property: Let o be
a harmonic measure for A +Y, with g-gradient Y/2+ E°. Then [ g(Y/2,Y/2 —
E%)do > b.

Proof: As in the lemma, for a harmonic measure ¢ for A + Y let E? be the
section of TW* such that Y/2 + E7 is the g-gradient of . We have to show that

b= inf{/g(Y/Z,Y/Z _E%)do |0 € Hary} > 0.

For this recall that by assumption the pressure of the Holder continuous function
9(X,Y) is negative and therefore there is a number a > 0 such that [ g(X,Y)du > a
for all p € M. On the other hand, by Lemma 3.13 of [H97a] the signed escape rate
of the diffusion on T'M induced by A +Y and any harmonic measure for A +Y
is bounded from above by a number —¢ < 0. This together with Ito’s formula and
the Birkhoff ergodic theorem implies that [ div(Y)+g(Y,Y)do > a/f > 0 for every
0 € Hayy. Since [div(Y) + ¢g(Y,Y/2 + E°)do = 0 the lemma follows. O

Let again o be an ergodic harmonic measure for A + Y. For o-almost every
v € T'M the g-gradient Y/2 + E° is defined on W?(v). We showed in Section 5
that the restriction EZ of E? to W?®(v) ~ M is the gradient of the logarithm of a
positive A, + k,-harmonic function f, on W#(v) which we assume to be normalized
in such a way that f,(v) = 1. Since the operator A, + k, is weakly coercive there
is a unique Borel probability measure 77” on M such that f, can be represented as
a Poisson integral with respect to this measure. Using the notations from Section
2 we have.

Lemma 7.3: There is a number § > 0 such that [ 7°(0M — 7B(v,8))do(v) > &
forallo € Haty.

Proof: Let again K be the kernel of the function g(X,Y), and for € M and
r > 0let B(z,r) be the ball of radius r about = with respect to the distance induced
by the Riemannian metric. Let R > 0 be the diameter of M.



HARMONIC MEASURES ARE PRODUCT MEASURES 39

Recall that the coefficients of the operators A, + £, depend Hélder continuously
onv € T' M. Moreover A, + K, is uniformly elliptic and uniformly weakly coercive,
and its Martin kernel K, satisfies K,(z,y,7(v))? = K(z,y,7(v)).

The function log K, is locally uniformly Holder continuous on M x M x OM,
and for z € M the gradient of the A, + ,-harmonic function y — log K, (z,y, £)
depends uniformly Holder continuously on ¢ € M. This means that for every
€ > 0 there is a number p(e) > 0 only depending on € and A + Y such that the
following holds: Let v € T*M and let 77 be any Borel probability measure on M
such that ﬁ(wB(v p(€))) > 1—p(e). Denote by h the positive solution of A, +£K, =0
defined by h(y) = [ K,(z,y,£)dn(¢), and let h be the lift of A to W*(v). Then for
every w € WS( )N P~1B(Pu, R) we have |g(Y/2,Y/2 — V9 (logh))(w)| < €, where
V¥4 (log h) denotes the gradient of log h with respect to the restriction of g to W*(v).

Let now {v?} be a k-family whose Lebesgue extension o is harmonic for A +Y.
Choose a point z € M. Let 2 C M be a compact fundamental domain for the
action of I' which is contained in the ball in M of radius R about z.

Let E” be such that Y/2+E” is the g-gradient of 6. By the infinitesimal Harnack
inequality, g(Y/2,Y/2 — E?) is pointwise uniformly bounded in absolute value by a
constant ¢ > 0 only depending on A + Y. For v € T'M denote by 7Y the defining
measure for the A, + &,-harmonic function f, on W#(v) ~ M which is normalized
by fu(v) =1 and such that V9 (log f,) = E7|W*(v).

For € > 0 let p(e) > 0 be as above and define A, = {v € T} M | 7*(xB(v, p(€))) >

—p(e)}. For v € A, and w € W?#(v) N P~1Q we have |g(Y/2,Y/2 — E°)(w)| < €.

Recall moreover that 7¥(m(A)) < kefo®(n(A)) for every Borel subset A of T} M
and every y € . This implies that

(36) / g(Y/2,Y/2 - E°)do

(37)

< / o(Y/2,Y/2 — B%)do+ / (V/2,Y/2 - E°)do
P-1QNm—1(mwA.) P-1QNa—1(OM—mA.)

(38)

<e+qo(PANTHOM — 7A.)) < e+ keRghy (M)v™(TLM — A,).

On the other hand, by Lemma 7.2 the integral on the left hand side of this inequality
is bounded from below by a universal constant b > 0 not depending on o. From
this we conclude that for € < b/2 the v*-mass of T;' M — A, is bounded from below
by b/2kRApr(M). This shows the lemma. O

Every ergodic k-family whose Lebesgue extension ¢ is harmonic for A +Y and
of positive Kaimanovich entropy is a family of positive disintegration measures for
a unique ®!-invariant Borel probability measure ¥(A + Y) of quasi-product type.
Thus we obtain an injective map ¥(A +Y) of the set of ergodic harmonic measure
for A +Y into the set of ergodic ®¢-invariant Borel probability measures on T M.
Since every harmonic measure ¢ for A +Y admits a unique integral decomposition
into ergodic components, we can extend ¥(A+Y") by convex linearity to an injective
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map of the convex space Hayty of harmonic measures for A +Y into the convex
space M of ®!-invariant Borel probability measures on T' M. Now we can show.

Lemma 7.4: The restriction of the map U(A +Y) to the set of extreme points
of Haty 1s continuous.

Proof: Let o; be a sequence of ergodic harmonic measures for A + Y converging
weakly to an ergodic harmonic measure o. Denote by {vf*} the family of measure
on strong unstable manifolds induced by the unique k-family whose Lebesgue ex-
tension is 0;. By Lemma 6.2 we may assume that the measures v]* converge weakly
to a family {v**} of uniformly locally finite Borel measures on the leaves of W*%.
Moreover {v*“} is the projection to strong unstable manifolds of a regular family of
positive disintegration measures for the measure ¥(A+Y) (o) = v of quasi-product
type. By the Birkhoff ergodic theorem, for every continuous function f on T'M,
every v € T*M and v*“-almost every w € W*¥(v) the integral [ fdv just coincides

with the limit limy_oo * [ f(®%w)ds.

For i > 0 denote by p; the measure on T' M which can be written locally in the
form p; = dt x dvf* x duf® where {p$*} is a family of measures on strong stable
manifolds which define as in Section 5 via the Poisson formula and renormalization
the g-gradient of o;. The measures p$* are locally uniformly bounded independent
of 4, in particular the total mass of the measures yu; is bounded by a universal
constant. Moreover there is a measurable nonnegative function v; on T'M not
depending on 4 such that 1pu; is ®*-invariant and a positive multiple of v; = ¥ (A +

Y)(04)-

By Lemma 7.3 the total mass of the measures pu; is bounded from below by
a universal positive constant as well. Thus by passing to a subsequence we may
assume that the measures 1;u; converge weakly to a nonzero measure u.

The measure fi is ®'-invariant and satisfies i(U,caW*(v)) = 0 for every Borel
subset A C W*%(v) of vanishing v®“-mass. By our assumption the measures v*%
are quasiinvariant and ergodic under canonical maps and therefore [i is absolutely
continuous with respect to the stable foliation, with conditional measures in the
measure class of v*“. But this means that for v*“-almost every v € T'M and
every continuous function f : T'M — R the integral of f with respect to ji equals
lim; o %fotf(@%)ds. In other words, i = ¥(A + Y)(o). This shows that the
restriction of (A +Y') to the set of extreme points of Ha4y is continuous. d

The map (A +Y) : Hary — M however is not continuous. To see this
choose a ®'-invariant ergodic measure 7 € M which is not supported on a single
closed orbit of ®¢ and whose entropy vanishes. Such a measure can for example
be constructed using symbolic dynamics. Lemma 7.1 then shows that 7 is not of
quasi-product type. Since the set of all measures supported on single closed orbits
is dense in M, the measure 7 can be approximated in the weak*-topology by a
sequence of measures ((;) of quasi-product type. Thus if o; = ¥(A +Y)~1(¢;) then
no accumulation point of (0;) can be ergodic.
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Recall that for every measure 1§ € Hay the g-gradient Y/2 4+ E" is well defined
and is a measurable bounded section of the bundle TW* — T' M. For a sequence of
measures (1;) C Hayy converging to a measure 7 and a sequence of 7;-measurable
bounded sections (V;) of TW?® — T'M we say that (V;) converges weakly to an
n-measurable bounded section V' of TW? if for every continuous section Z of TW*
we have [ g(V;, Z)dn; — [ g(V, Z)dn. We have.

Lemma 7.5: Let (n;) C Ha+y be a sequence converging to some 1 € Haty.
Then the g-gradients V; of n; converge weakly to the g-gradient V' of 7.

Proof: Let (n;) C Ha+y be a sequence converging to some 1 € Hatry. By
assumption, for every section Z of TW* of class C}»® and every i > 0 we have

= /din +9(Z,V;)dn; = /din +9(Z,V)dn.

Since on the other hand the function div(Z) on T'M is continuous the sequence
[ div(Z)dn; converges to [ div(Z)dn by the definition of the topology on Haty.
Then necessarily also [ ¢(Z,V;) dnz — [ 9(Z,V)dn which shows the lemma. |

Let (n;) C Ha+y be a sequence converging to some n and let (V;) be a sequence
of bounded n;-measurable sections of TTW?#. We say that the sequence (V;) converges
strongly to a bounded n-measurable section V' of TW?# if the sequence converges
weakly to V and if in addition we have [ ||[V;Vert*dn; — [||V||?dn. We have.

Corollary 7.6: Let (1;) C Hary be a sequence of ergodic measures converging
to some ergodic measure 7. Then the sequence (V;) of g-gradients of n; converges
strongly to the g-gradient of n if and only if hy(aty)n, = hw(a+y)n-

Proof: Let n; be a sequence as in the lemma. By Lemma 7.5 we have £,, — £, and
hence Lemma 6.9 shows that hy(a+y)n — hw(a+y)y if and only if the g-gradients
of the measures 7; converge strongly to the g-gradient of g. |

We conclude this section with a few final remarks about the duality between
cohomology classes of Holder continuous 1-forms on 7'M and Gibbs measures.
For this recall that a Holder continuous cocycle for ®* is a Holder continuous map
¢:T'M x R — R such that ((v,t + s) = ((v,s) + ((®°v,t). Two such cocycles
¢, are cohomologous if there is a Holder continuous function 8 on T'M such
that ((v,t) = B(®*w) + ¥(v,t) — B(v). For every Hélder cocycle there is a Holder
continuous function f on T*M such that ¢ is cohomologous to the cocycle (¢ defined
by (¢ (v,t) fo f(®°v)ds. If p € M is a ®-invariant Borel probability measure,
and if the cocycle ¢ is cohomologous to ¢y for some continuous function f then
we can define [ (dp = [ fdu; this does not depend on the choice of f (compare
e.g. [H4]). In other words, the space of cohomology classes of Holder continuous
cocycles can be viewed as a linear subspace of the dual M* of M.

There is a natural open cone in the space of cohomology classes of Hélder con-
tinuous cocycles. Namely, define a class to be positive if it can be represented
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by a positive function. The next lemma gives a description of the set of positive
cohomology classes.

Lemma 7.6: A cohomology class ¢ is positive if and only if ((u) > 0 for every
uweE M.

Proof: Clearly ¢(u) > 0 for all u € M if { is positive. Thus let ¢ be a cohomology
class such that ¢(u) > 0 for all 4 € M. Since ¢ is continuous and M is compact
this means that there is a number ¢ > 0 such that {(u) > € for all u. Let f
be any function representing (. For ¢ > 0 define a new function f; on T'M by

frlv) = 1 fot f(®°v)ds. Clearly the cocycle induced by f; is cohomologous to (.

Thus it is enough to show that f; > 0 for all sufficiently large ¢.

For this we argue by contradiction and we assume that there is for every £ > 0
some v € T'M such that fi(vg) < 0. Define a Borel probability measure puy
on T'M by up(A) = %fok xA(®%vk)ds; then fr(vg) = [ fdug. By passing to a
subsequence we may assume that the measures pj converge weakly to a measure pu.
Then [ fdu < 0 by continuity of f, on the other hand p is necessarily ®‘-invariant.
This is a contradiction and shows the lemma. |

If we equip M* with the dual topology, i.e. the weakest topology for which the
map ¢ X u — ((u) is continuous, then the pressure is a continuous function on the
space CH C M™* of all cohomology classes of Holder cocycles. We call a class whose
pressure vanishes normalized. A normalized class [(] is positive. Namely, by the
definition of the pressure the class is necessarily nonegative (i.e. we have ((u) >0
for all u € M). However, since the entropy of a Gibbs equilibrium state of every
Holder continuous function is positive, the class is in fact positive. The cone over
the space of normalized Holder cohomology classes then just equals the set of all
positive classes.

There is a natural map from the space N of normalized Hélder classes into the
space M of ®'-invariant Borel probability measures which assigns to a normalized
positive Holder cohomology class [¢] the unique Gibbs equilibrium state of [¢]. Our
main theorem implies that this duality can be expressed in terms of solutions of
differential equations. Namely, if A 4+ Z is an operator of positive escape, then its
formal adjoint A + Y with respect to the unique harmonic measure o for A + Z
is an operator of negative escape. The correspondence between normalized Hélder
classes and Gibbs states (which however is not a convex linear map) can be viewed
as a bijection between a subspace of the space of A + Z-harmonic 1-forms and a
subspace of the space of A +Y-harmonic measures. It would be interesting to know
whether this bijection can be extended to a bijection of the space of all harmonic
1-forms for A + Z onto the space of all harmonic measures for A + Y.
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