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Abstract. We study the smallest positive eigenvalue λ1(M) of the
Laplace-Beltrami operator on a closed hyperbolic 3-manifold M which
fibers over the circle, with fiber a closed surface of genus g ≥ 2. We
show the existence of a constant C > 0 only depending on g so that

λ1(M) ∈ [C−1/vol(M)2, C log vol(M)/vol(M)2
2g−2/(22g−2−1)] and that

this estimate is essentially sharp. We show that if M is typical or ran-
dom, then we have λ1(M) ∈ [C−1/vol(M)2, C/vol(M)2]. This rests on
a result of independent interest about reccurence properties of axes of
random pseudo-Anosov elements.
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1. Introduction

The smallest positive eigenvalue λ1(M) of the Laplace-Beltrami operator
on a closed Riemannian manifold M equals the infimum of the Rayleigh
quotients

λ1(M) = inf
f∈C∞m (M)

∫
M ||∇f ||

2dM∫
M f2dM

,

where C∞m (M) denotes the vector space of smooth functions f on M with∫
M fdM = 0.

For closed hyperbolic surfaces S of fixed genus g ≥ 2 and hence of fixed
volume, this eigenvalue can be arbitrarily close to zero if there is a separat-
ing short geodesic on S. In fact, λ2g−3(S) can be arbitrarily small (Theorem
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8.1.3 of [6]). But for a closed hyperbolic 3-manifold M , Schoen [31] estab-
lished the existence of a universal and explicit constant b1 > 0 such that

(1) λ1(M) ≥ b1
vol(M)2

.

The same lower bound holds true for hyperbolic 3-manifolds of finite volume
[8].

On the other hand, Buser [5] showed that the so-called Cheeger constant
h(M) of M can be used to give an upper estimate for λ1(M) by

λ1(M) ≤ b2(h(M) + h2(M))

where b2 > 0 is a universal constant (which in a more general setting depends
on the dimension and a lower bound on the Ricci curvature).

Lackenby [17] related the Cheeger constant h(M) to the Heegaard Euler
characteristic χH(M) of M . He showed that

h(M) ≤ 4π|χH(M)|
vol(M)

.

If we denote by genus(M) the more familiar Heegaard genus of M , then we
have χH(M) = 2− 2genus(M).

Since there is a positive lower bound for the volume of a hyperbolic 3-
manifold, these results can be summarized as follows. For every g > 0 there
exists a constant b3(g) > 0 with the following property. Let M be a closed
hyperbolic 3-manifold of Heegaard genus at most g; then

b1
vol(M)2

≤ λ1(M) ≤ b3(g)

vol(M)
.

For manifolds M with a given lower bound of the injectivity radius, there
is more precise information. Namely, White [33] proved that there exists a
number b4 = b4(g, ε) > 0 such that

λ1(M) ≤ b4(g, ε)

vol(M)2

for all closed hyperbolic 3-manifolds of Heegaard genus at most g and in-
jectivity radius at least ε. The existence of expander families yield that the
dependence of b4(g, ε) on g is necessary. We refer to [13] for a more complete
discussion.

In this work we are interested in λ1(M) for a closed hyperbolic three-
manifold M which fibers over the circle, with fiber a closed surface S of
genus g ≥ 2. Such a manifold can be described as a mapping torus of a
pseudo-Anosov diffeomorphism of S, in particular, there are infinitely many
such mapping tori. The Heegaard genus of a mapping torus of genus g is
not bigger than 2g + 1 (see [17] for references).

Our first goal is to give an essentially sharp upper bound for λ1(M) for
hyperbolic mapping tori M of fibre genus g. We prove.
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Theorem 1. (Corollary 4.3) For every g ≥ 2 there exists a constant C1 =
C1(g) > 0 with the following property.

(1) Let M be a hyperbolic mapping torus of genus g; then

λ1(M) ≤ C1 log vol(M)

vol(M)22g−2/(22g−2−1)
.

(2) There exists a sequence Mi of hyperbolic mapping tori of genus g
with vol(Mi)→∞ such that

λ1(Mi) ≥
C−1

1

vol(Mi)22g−2/(22g−2−1)
.

We suspect that Theorem 1 generalizes to hyperbolic mapping tori of
non-exceptional surfaces of finite type with punctures, but we did not check
the details. By the work of White [33], the injectivity radius of the examples
in the second part of the above theorem tends to zero with i.

The estimates in part (1) and (2) of the theorem differ by a factor
log vol(M). This deviation arises as follows. Any closed hyperbolic 3-
manifold M admits a thick-thin decomposition M = Mthick∪Mthin where for
some small but fixed number ε > 0, Mthin consists of all points of injectivity
radius smaller than ε, and Mthick = M −Mthin.

We estimate effectively the smallest eigenvalue λ1(Mthick) of Mthick with
Neumann boundary conditions as a function of the volume. We then use a
result of [13]: There exists a universal constant b > 0 such that

b−1λ1(Mthick) ≤ λ1(M) ≤ b log vol(Mthin)λ1(Mthick)

for every closed hyperbolic 3-manifoldM . The factor log vol(M) in the state-
ment of the first part of Theorem 1 arises from the ratio λ1(M)/λ1(Mthick).

Most mapping tori M , however, have λ1(M) proportional to 1/vol(M)2.
We make this precise in the following result. Let from now on S be a closed
surface of genus g ≥ 2.

A hyperbolic mapping torus is determined up to isometry by the conju-
gacy class in the mapping class group Mod(S) of a defining pseudo-Anosov
element. Conjugacy classes in Mod(S) can be listed according to their trans-
lation length. Call a property P for hyperbolic mapping tori typical if the
proportion of the number of conjugacy classes of pseudo-Anosov elements
of translation length at most L which give rise to a 3-manifold with this
property tends to one as L→∞. We refer to Section 5 for a more detailed
discussion. We then say that a typical mapping torus has property P.

Similarly, we say that a random mapping torus has property P if a statis-
tical point for a random walk on Mod(S) induced by a probability measure
on Mod(S) whose finite support generates all of Mod(S) defines a mapping
torus with this property. Answering a question of Rivin [30] we show

Theorem 2. (Combination of Corollary 5.5, Proposition 4.4, and Theorem
3) For every g ≥ 2 there is a constant C2 = C2(g) > 0 so that the following
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holds true. Let M be a typical or random mapping torus of genus g; then

λ1(M) ≤ C2

vol(M)2
.

The proof of Theorem 2 for random mapping tori uses the groundbreak-
ing work of Minsky [27] and Brock, Canary and Minsky [4] and recurrence
properties of random walks on the mapping class group Mod(S) acting on
Teichmüller space T (S) which are of independent interest. In the formula-
tion of our main result on random walks, we use the following notation. For
a measure µ let µ∗n be its n-fold convolution. For a pseudo-Anosov mapping
class φ, we denote by `(φ) the translation length of φ for its action on T (S)
(which coincides with the translation length on its axis γφ). For a number
ζ > 0 and a subset U of T (S) let moreover Nζ(U) be the ζ-neighborhood of
U with respect to the Teichmüller distance. We prove

Theorem 3. (Theorem 6.8) There exists a number ζ = ζ(g) with the follow-
ing property. Let µ be a nonelementary finitely supported probability measure
on the mapping class group. Let U ⊂ T (S) be an Mod(S) invariant open
subset which contains the axis of at least one pseudo-Anosov element. Then
for each p > 0, there exists c = c(U, p) > 0 such that

µ∗n{φ ∈ Mod(S) | φ is p-A and

l(φ)−1|{t ∈ [0, l(φ)) : γφ(t− p, t+ p) ⊂ NζU}| > c} → 1 (n→∞)

Different but related recurrence properties for axes of random pseudo-
Anosov elements have been obtained independently at the same time by
Gadre and Maher in [9].

The proof of this result rests on a technical tool (Proposition 6.11) which
states that for typical trajectories of the random walk, axes of pseudo-
Anosov elements in Teichmüller space stay close to rays from a basepoint.
We refer to [7] to closely related earlier work.

The organization of the paper is as follows. In Section 2 we use the work
[27, 4] of Minsky and Brock, Canary and Minsky to determine a collection
of graphs with the property that the thick part of every hyperbolic mapping
torus of genus g is uniformly quasi-isometric to a graph in the collection.

Section 3 is devoted to estimating the first eigenvalues of these graphs as
a function of their volume. By the main result of [21], the smallest positive
eigenvalue of the thick part of a mapping torus with Neumann boundary
conditions can be estimated in the same way. Theorem 1 follows from this
fact and [13] as explained in Section 4. The proof of Theorem 2 for typical
mapping tori is contained in Section 5. Section 6 is devoted to studying
geometric properties of random walks on the mapping class group, with the
proof of Theorem 3 as the main goal.

Acknowledgement: We are all very grateful to Juan Souto for helpful
discussions. A version of Theorem 1 is due independently to Anna Lenzhen
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and Juan Souto [18]. We are also grateful to Samuel Taylor for pointing out
a gap in the proof of Proposition 5.1 of a previous version of the paper.

2. The thick part of a mapping torus

A closed hyperbolic 3-manifold M admits a thick-thin decomposition

M = Mthin ∪Mthick.

The thin part Mthin is the set of all points x with injectivity radius inj(x) ≤ ε
where ε > 0 is sufficiently small but fixed, and Mthick = {x | inj(x) ≥ ε}. For
an appropriate choice of ε, Mthick is not empty and connected, and Mthin is
a union of (at most) finitely many Margulis tubes. Such a Margulis tube is
diffeomorphic to a solid torus, and it is a tubular neighborhood of a closed
geodesic of length at most 2ε. This geodesic is called the core curve of the
tube.

The goal of this section is to establish an understanding of the geometric
shape of the thick part of a hyperbolic mapping torus M of genus g. To such
a mapping torus M , Minsky [27] associates a combinatorial model which is
quasi-isometric to M . We use this model to construct a graph which is L-
quasi-isometric to Mthick for a number L > 1 only depending on g. These
graphs will be used in Section 3 and Section 4 for the proof of Theorem 1.

Furthermore, under some additional assumption on M , we construct geo-
metrically controlled submanifolds in Mthick with boundary. These subman-
ifolds will be used to estimate the smallest positive eigenvalue of random
mapping tori.

The results in this section heavily depend on the results in [27, 4] of
Minsky and Brock, Canary and Minsky. The reader who is not familiar with
the ideas developed in [27, 4] will however have no difficulty to understand
the statement of Proposition 2.2 which is all what is needed for the proof of
Theorem 1.

We begin with introducing the class of graphs we are interested in. By
a graph we always mean a finite connected graph G. We equip G with a
metric so that each edge of G has length one. An arc in a graph G is a
connected subgraph of G which is homeomorphic to an interval. The length
of the arc is the number of its edges. The length of an arc is at least one. If
a is an arc of length k then a contains k− 1 vertices of valence two and two
endpoints which are vertices of valence one. A circle is a finite connected
graph L with all vertices of valence two. Then L is homeomorphic to S1. Its
length equals the number of its edges. We always assume that the length of
a circle is at least two. We say that a subgraph G1 of a graph G is attached
to a subgraph G2 of G at a vertex v if G1 ∩G2 = {v}.

Definition 2.1. For h ≥ 1, an array of circles of depth at most h is a finite
connected graph G of the following form. G contains a subgraph L which is
a circle called a base circle. If h = 1 then G = L. Otherwise G is obtained
from L by attaching to each vertex of L an array of circles of depth at most
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h−1. The depth of an array of circles G is defined to be the smallest number
h so that G is of depth at most h.

Note that a bouquet of two circles is an array of circles of depth two,
but both circles may be used as the base circle, so the base circle may not
be uniquely determined and hence a given graph may admit more than one
description as an array of circles. In the sequel, whenever we speak of an
array of circles, we assume that one choice of such a description has been
made.

Closely related to arrays of circles is a more general class of graphs which
we call generalized arrays of circles. These are finite connected graphs whose
construction is by induction on a notion of depth h as follows.

If h = 1 then G is simply a circle. In the case h ≥ 2 we begin as before
with a circle L. Given a vertex v of L, we allow to either attach to v a
generalized array of circles of depth at most h − 1, or we allow to replace
v by a graph consisting of 2 ≤ s ≤ h arcs a1, . . . , as of possibly distinct
length with disjoint interior and with the same pair of distinct endpoints. If
v1 6= v2 are these endpoints, then the graph obtained by identifying v1 and
v2 is just the base circle L with s circles attached at v. We call the arcs
a1, . . . , as vertex arcs, and we call the vertex v of L which was replaced by
a1, . . . , as in this way a blown-up vertex.

We require furthermore that for each blown-up vertex with corresponding
set a1, . . . , as of vertex arcs, there is a decomposition h =

∑s
i=1mi where

mi ≥ 1. By induction, we allow to attach to each interior vertex of an arc
ai a generalized array of circles of depth at most mi − 1. This also includes
the possibility that this interior vertex is blown up to u ≤ mi arcs with the
same endpoints as described above.

As an example, if the depth of the generalized array of circles G equals two
then G is obtained from the base circle L by either attaching to a vertex of
L a (possibly trivial) circle or by replacing the vertex by two arcs of possibly
different length, and these possibilities are mutually exclusive.

Proposition 2.2. There is a number L = L(g, ε) > 0 with the following
property. Let M be a hyperbolic mapping torus of genus g. Then Mthick is
L-quasi-isometric to a generalized array of circles of depth at most 2g − 2.

Proof. Let M̂ be the infinite cyclic cover of M defined by the fibration
M → S1. Its deck group is generated by a pseudo-Anosov diffeomorphism
φ : S → S whose mapping torus is M . Fix a homotopy equivalence S → M̂ .

Part of the main result of [27, 4] can be summarized as follows.

There exists a model manifold N for M̂ which is homeomorphic to S×R
and is composed of combinatorial pieces called blocks. This model manifold
admits an infinite cyclic group of homeomorphisms compatible with the
block decomposition which is generated by a homeomorphism ψ : N → N .
The quotient N/ < ψ > is homeomorphic to M .

Within N there is a ψ-invariant subset U which consists of open solid
tori of the form U = A × J , where A is an annulus in S and J is an
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interval in R. The manifold N is equipped with a ψ-invariant piecewise
smooth Riemannian metric. The induced metric on the boundary ∂U of
each U ∈ U is flat. The geometry of the flat torus ∂U is described by a
coefficient ωN (U) ∈ H2, where H2 is thought of as the Teichmüller space of
the two-torus (i.e., the space of marked flat metrics on the two-torus). For
k ≥ 1 let U [k] denote the union of the components of U with |ωN | ≥ k and
let N [k] = N − U [k].

The following statement is a combination of the Lipschitz Model Theorem
and the Short Curve Theorem as stated in the introduction of [27], and the
Bilipschitz Model Theorem from Section 8 of [4].

There exist numbers K, k > 0 only depending on the genus of S but not
on the mapping torus M , and there is a ψ−φ-equivariant K-Lipschitz map
F : N → M̂ with the following properties.

(1) F induces a marked isomorphism π1(N) = π1(S)→ π1(M̂), is proper
and has degree one.

(2) F is K-bilipschitz on N [k] with respect to the induced path metric.
(3) F maps each component of U [k] to a Margulis tube, and each Mar-

gulis tube with sufficiently short core curve is contained in the image
of a component of U [k].

Thus all we need to show is that for the number k in the above statement,
N [k] is L-quasi-isometric to a generalized array of circles for a universal
number L > 0. This statement in turn follows from the construction of the
model manifold which we outline next (we refer to [27] for all details).

A clean marking of the surface S consists of a pants decomposition P of
S, the so-called base of the marking, and a set of so-called spanning curves.
For each pants curve c ∈ P , there exists a unique spanning curve. This
spanning curve is contained in S − (P − c), and it intersects c transversely
in one or two points depending on whether the component of S − (P − c)
containing c is a one-holed torus or a four-holed sphere.

A pants decomposition P of S is short in M̂ if there is a map F : S → M̂
in the given homotopy class which maps each component of P to a geodesic
in M of uniformly bounded length.

To build the model manifold, start with a pants decomposition P which
is short in M̂ . Since each point in M̂ is uniformly near a pleated surface
f : (S, σ) → M̂ (see Theorem 3.5 of [25] for this result of Thurston), short
pants decompositions exist. Namely, such a pleated surface f is a path
isometry for a hyperbolic metric σ on S. Furthermore, for every hyperbolic
metric on S there is a pants decomposition of uniformly bounded length.

A pants decomposition of S can be viewed as a maximal simplex in the
curve complex C(S) of S. By Theorem 6.1 and Theorem 7.1 of [27], we
may assume that a short pants decomposition in M is a simplex in C(S)
which is uniformly near (for the distance in C(S)) to a curve in any choice

of a hierarchy constructed from the ending laminations of M̂ . These ending
laminations are just the supports of the horizontal and vertical measured
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geodesic laminations on S which determine the axis of the pseudo-Anosov
mapping class φ.

The vertical measured geodesic lamination λ of the axis of φ determines
an essentially unique clean marking µ of S with base the given pants decom-
position P . The spanning curves are determined by the subsurface projection
of λ into the collars of P . We refer to [24, 27] for details of this construction.

Let φ(µ) be the image of µ under φ. To µ and φ(µ) we can associate a
hierarchy H and a resolution of H. This hierarchy consists of a collection
of so-called tight geodesics in the curve complex of connected subsurfaces
of S different from three-holed spheres. The hierarchy is required to be
four-complete. This means the following.

Define the complexity ξ(Y ) of a connected subsurface Y of S of genus
h ≥ 0 with b ≥ 0 boundary components by ξ(Y ) = 3h + b. Suppose that
Y ⊂ S is a complementary component of a vertex in a geodesic h from the
hierarchy H whose domain is a surface Y ′ ⊃ Y . If ξ(Y ) ≥ 4 then Y is the
domain of a geodesic in H.

Choose such a four-complete hierarchy H associated to µ and φ(µ) as well
as a resolution of H. Each edge e in a geodesic from the hierarchy H whose
domain D(e) satisfies ξ(D(e)) = 4 (i.e. D(e) either is a four-holed sphere or
a one-holed torus) defines a block B(e) for the component domain D(e). The
backward endpoint e− of e and the forward endpoint e+ can be identified
with a simple closed curve in the component domain D(e) of distance one
in the curve graph of D(e).

The block B(e) for the edge e is then defined as

B(e) = (D(e)× [−1, 1])− (collar(e−)× [−1,−1/2) ∪ collar(e+)× (1/2, 1]).

The gluing boundary of the block B(e) is defined to be

∂±B(e) = (D(e)− collar(e±))× {±1}.

This gluing boundary is a union of three-holed spheres.
There are only two combinatorial types of blocks [27]. Each block can be

equipped with a standard Riemannian metric with totally geodesic boundary
so that combinatorially equivalent blocks are isometric. The blocks are
glued along the components of their gluing boundaries as prescribed by
the resolution of the hierarchy H and such that the metrics on the gluing
boundaries of the blocks match up. Let N [0] be these glued blocks (compare
[27] for notation). Then N [0] is a Riemannian manifold whose boundary is
a union of two-dimensional tori.

Each boundary torus ∂U contains a distinguished free homotopy class of
simple closed geodesics, the predicted meridians. Such a predicted meridian
is given as follows. There is a simple closed curve v on S so that for any
simple arc a on S connecting the boundary components of a collar neighbor-
hood of v, the predicted meridian equals ∂(a× [s, t]) where the parameters
s < t can be read off from the hierarchy (we refer to p.80 of [27] for details).
This predicted meridian and the simple closed curve v of length t = ε (here
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as before, ε > 0 is a fixed Margulis constant) determine ∂U as a marked
flat torus. Following Section 3.2 of [27], these data also determine uniquely
a meridian coefficient ωN (∂U) ∈ H2. The length of the predicted meridian
of the torus equals ε|ωN (∂U)|, and the imaginary part =ω equals 1/ε times
the sum of the heights of the annuli that make up ∂U (see p.80 of [27]).

Glue solid tori to those boundary tori ∂U with coefficient |ωN (U)| ≤ k.
Up to isotopy, there is a unique way of such a gluing which maps the meridian
of the solid torus to the predicted meridian of the boundary torus (compare
again [27] for details). The resulting manifold N [k] is the model for Mthick.
Thus we have to verify that indeed, N [k] is L-quasi-isometric to a generalized
array of circles of depth at most 2g−2 for some L > 0 only depending on g.
Since the diameters of the tubes in N [k]−N [0] are uniformly bounded, for
this it suffices to show that N [0] is uniformly quasi-isometric to a generalized
array of circles of depth at most 2g − 2.

The pseudo-Anosov map φ maps the marked surface (S, µ) to (S, φ(µ)).
By equivariance, there is a distinguished main tight geodesic gH in the hi-
erarchy whose domain is the surface S and which connects the marking µ
to φ(µ). This tight geodesic consists of a sequence of simplices (vi) in the
curve complex C(S) of S so that for any vertices wi of vi, wj of vj we have
dC1(S)(wi, wj) = |i−j| (here dC1(S) is the distance function of the one-skeleton
of C(S)). Moreover, for all i, vi represents the boundary of the subsurface
of S filled by vi−1 ∪ vi+1.

Glue the two ends of the tight geodesic gH using the map φ and view it
as the base circle L of a generalized array of circles. The length of L equals
the length of the tight geodesic gH .

We use the resolution of the hierarchy to construct from L a generalized
array of circles as follows. A vertex vi of gH decomposes S into complemen-
tary regions. Such a region Y is a component domain of the hierarchy. If
Y is a component of S − vi different from a three-holed sphere then vi−1|Y
and vi+1|Y are either markings of Y or empty since vi is the boundary of
the subsurface filled by vi−1 ∪ vi+1 (we ignore here the modification needed
for the first and last simplex). In the case that vi−1|Y and vi+1|Y are both
markings of Y , the hierarchy contains a tight geodesic with domain Y con-
necting these markings.

As an example, if Y is a connected subsurface of S and if the subsurface
projection [24] of µ∪φ(µ) into Y (which is never empty since µ and φ(µ) are
markings of S) has large diameter, then Y arises as a component domain
in the hierarchy. If vi is the simplex in the hierarchy with Y as component
domain, then the adjacent simplices vi−1 and vi+1 in the geodesic of the
hierarchy containing vi fill Y [24]. Thus there is a geodesic in the hierarchy
with domain Y , and the length of this geodesic coincides with the diameter
of this subsurface projection up to a universal additive constant (Lemma
5.9 of [27] summarizes this result from [24]). Even if vi−1 and vi+1 do not
intersect the component Y of S − vi, if Y is different from a three holed
sphere then there is a geodesic in the hierarchy whose domain equals Y . As
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this will not be important for our purpose, we refer to [27] for a discussion
of these technicalities.

For each i let ui be the vertex of the circle L corresponding to the simplex
vi. Let Y1, . . . , Ys be the complementary regions of vi in S. Let ai be the
length of the tight geodesic in the hierarchy with domain Yi. If Yi is a three-
holed sphere then we define ai = 1. Blow up the vertex ui and replace it by s
arcs of length ai. Moreover, associate to the arc ai the absolute value −χ(Yi)
of the Euler characteristic of Yi. Note that −

∑
χ(Yi) = −χ(S) = 2g − 2.

Each arc ai corresponds to a tight geodesic in a surface Yi of Euler char-
acteristic χ(Yi). Repeat the above construction with these arcs, successively
blowing up vertices. Inductively, this defines a generalized array of circles
of depth at most 2g − 2.

To summarize, from the mapping torus we obtain (non-uniquely) a hi-
erarchy H and a resolution of H. The resolution is used to construct a
generalized array of circles G of depth at most 2g− 2. There is natural map
Ψ : N [0]→ G which maps a block in N [0] to an edge of G.

We are left with showing that this generalized array of circles indeed is
uniformly quasi-isometric to N [0]. To this end simply recall that in the
situation at hand, there are only two types of blocks [27]. The first type of
blocks is obtained from a component domain D which is a one-holed torus.
In the construction of the generalized array G, a geodesic η in the hierarchy
H with a one-holed torus as component domain gives rise to an outmost
arc, i.e. an arc of biggest depth. In the model manifold, it corresponds to a
chain of blocks whose length equals the length of η.

In the natural order of blocks in the chain given by an orientation of the
Teichmüller geodesic which defines the mapping torus, the top component
of the gluing boundary of the last block in the chain consists of one three-
holed sphere. This sphere is glued to the gluing boundary of a block B
which arises from a different geodesic of the hierarchy. The block B is of
the second type, obtained from a component domain which is a four-holed
sphere. Then the second three-holed sphere in the gluing boundary of the
block B lying on the same “side” is glued to a block arising from a different
geodesic in the hierarchy. This three-holed sphere may already be present
at the initial point of the geodesic.

In the generalized array of circles, this corresponds precisely to gluing the
endpoints of the arc representing the geodesic to the endpoints of another
arc. The discussion of geodesics in H whose component domains are four-
holed spheres is completely analogous and will be omitted.

As a consequence, the map which associates to a block in N [0] the edge
of the generalized array of circles G corresponding to it is essentially the
map which associates to the decomposition of N [0] into blocks the dual
graph. The deviation from this precise picture comes from the addition of
some additional edges in G, one for each ”reassembling point”, to meet the
requirement of a generalized array of circles which we found most useful for
our purpose. The proposition is proven. �
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Remark 2.3. The above construction also yields the following. Assume
that for some δ > 0, M is a mapping torus defined by a pseudo-Anosov
mapping class whose axis is entirely contained in the δ-thick part of Te-
ichmüller space. Then M is L(δ)-quasi-isometric to a circle where L(δ) > 0
only depends on δ.

More generally, let M be a hyperbolic mapping torus of genus g which
is defined by a pseudo-Anosov mapping class φ of translation length ` in
Teichmüller space. Let us assume that for some fixed number c1 ∈ (0, 1),
the translation length for the action of φ on the curve graph of the surface
of genus g is at least c1`. Then the length of the base circle of the array
of circles constructed from M in the proof of Proposition 2.2 is at least
c2vol(Mthick) = c3vol(M) where c2, c3 > 0 only depend on c and g (compare
the discussion in [13] for a comparison between vol(Mthick) and vol(M)).

Remark 2.4. From the model and the construction of a generalized array
of circles G, we obtain some information of the size of the Margulis tubes
in the mapping torus M . Namely, blown-up vertices in the construction of
G with at least one long vertex arc detect Margulis tubes with boundary of
large volume.

However, large subsurface projections into the complement of a non-
separating simple closed curve on S give rise to Margulis tubes which can
not be detected in the generalized array of circles. Thus the thick-thin de-
composition of M can not be read off from the generalized array of circles.

As a consequence, if the length of the base circle of the generalized array
of circles is proportional to vol(M), then the translation length for the action
of the corresponding pseudo-Anosov element on the curve graph need not
be proportional to its translation length on Teichmüller space.

For the proof of the second part of Theorem 1 we construct collections
of mapping tori with fibre genus g which are uniformly quasi-isometric to
specific generalized arrays of circles.

We first introduce the arrays of circles we are interested in. Namely, let
G be an array of circles with base circle L and depth h. Define the depth of
a circle C in G as the minimal depth of an array of circles G′ ⊂ G with base
circle L which contains C. Thus each circle in an array of circles of depth h
has depth at most h, and the base circle is the unique circle of depth one.

Call an array of circles G step-homogeneous if all circles in G of the same
depth are non-degenerate and of the same length. A special example of a
step-homogeneous array of circles is an array where for some k ≥ 2, the

circles of depth ` have length k2`−1
. We call this array optimal. Note that

an optimal array of circles is uniquely determined by the length k of its base
circle and by its depth.

Proposition 2.5. For each g > 0 there is a number c1(g) > 0 with the
following properties. For k ≥ 2 let G be an optimal step-homogeneous array
of circles of depth 2g − 2, with base circle of length k. Then there is a
mapping torus M of genus g so that Mthick is c1(g)-quasi-isometric to G.
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Proof. Choose a decomposition of S as a descending sequence of connected
subsurfaces S = S0 ⊃ S1 ⊃ · · · ⊃ S2g−3 with the following properties.

(1) χ(Si) = 2− 2g + i.
(2) S2g−3 is a one-holed torus.

Such a chain can for example be constructed as follows. Choose a simple
closed curve α1 which decomposes S into a one-holed torus and a surface S1

of genus g − 1 with connected boundary. Choose a pair (α2, α
′
2) of simple

closed curves which decompose S1 into a three-holed sphere and a surface
S2 of genus g−2 with two boundary components. One proceeds inductively
by decomposing Si into a three-holed sphere and a surface Si+1 until Si+1

becomes a one-holed torus. Since a one-holed torus has Euler characteristic
-1, the chain ends with the index 2g− 3. Let C(Si) be the curve complex of
Si.

The union of the boundary circles of the surfaces Si is a pants decom-
position P of S. Let τ be a train track in standard form for P . We can
choose τ in such a way that it restricts to a train track in standard form on
each of the subsurfaces Si (here we have to be a bit careful what this means
as Si has boundary). For terminologies regarding train tracks, we refer the
readers to [28]. In particular, one can find the definition of train track in
standard form for a pants decomposition of S and the proof of its existence
in Sections 2.6 and 2.7 of [28].

For a subsurface Y of S, recall that the mapping class group Mod(Y ) of
Y consists of isotopy classes of diffeomorphisms of Y which fix the boundary
of Y pointwise. For each of the subsurfaces Si (0 ≤ i ≤ 2g − 3) choose once
and for all a pseudo-Anosov mapping class φi ∈ Mod(Si) with the following
properties.

(1) φi admits τ |Si as a train track expansion.
(2) dC1(Si)(c, φi(c)) ≥ 5 for every simple closed curve c on Si.

Here as before, dC1(Si) is the distance in the one-skeleton of the curve complex
of the subsurface Si.

The existence of φi satisfying (1) is a consequence of the fact that τ |Si is
maximal birecurrent which follows from the requirement that τ |Si is in the
standard form (as shown in [28]). (2) can be easily satisfied by first taking
some φi satisfying (1) and replacing it by some positive power. Namely, by
[23], for any pseudo-Anosov map f on a non-exceptional surface Σ and for

any simple closed curve α on the surface, the limit limn→∞
dC1(Σ)(f

n(α), α)

n
exists and positive, and it is independent of the choice of α.

Fix a number k > 1. We define inductively a pseudo-Anosov mapping

class Ψk ∈ Mod(S) as follows. For m ≥ 1 write `(m) = k22g−2−m
. Define

η1 = φ2g−3 and inductively let

ηm = φ2g−2−m ◦ η`(m−1)
m−1 .
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Then for each m, ηm is a pseudo-Anosov diffeomorphism of S2g−2−m. The
mapping class Ψk = η2g−2 is pseudo-Anosov, with train track expansion τ .
We refer to Section 6 of [12] for details of this construction.

Now consider the mapping torus Mk of Ψk. As a hierarchy for Mk is
defined by singling out subsurfaces Y of S so that the subsurface projections
of the vertical and horizontal measured geodesic laminations of the axis of
Ψk is large, it follows from Proposition 2.2 (and its proof) that (Mk)thick is
L-quasi-isometric to an optimal step-homogeneous array of circles of base
length k for a constant L > 1 not depending on k.

To give a more detailed account on this fact, the main geodesic of the
hierarchy corresponds to a fundamental domain in a quasi-axis in C(S) for
the pseudo-Anosov mapping class φk0. This main geodesic determines the
base circle L of the generalized array of circles in the construction from
the proof of Proposition 2.2. The length of this base circle is uniformly
equivalent to k.

In a second step, the hierarchy contains geodesics in the curve graph of
copies of the surface S1 whose length is equivalent to k2. In the construction
of the generalized array of circles, this amounts to blowing up each vertex
v of L and replacing it by a single edge and an arc of length equivalent to
k2 with the same endpoints. Let G1 be the resulting graph. Contraction of
each vertex arc in G1 which consists of a single edge yields an array of circles
which is uniformly quasi-isometric to G1. This array of circles is uniformly
quasi-isometric to an optimal array of circles of depth two. By induction,
we conclude that indeed, the thick part of Mk is uniformly quasi-isometric
to an optimal array of circles of depth 2g − 2. The proposition follows. �

We use Proposition 2.2 and its proof to obtain some additional geometric
information on doubly degenerate hyperbolic 3-manifolds which are used in
the proof of Theorem 2.

Let γ ⊂ T (S) be a bi-infinite Teichmüller geodesic which defines a dou-
bly degenerate hyperbolic 3-manifold M with filling end invariants. Suppose
that for some ε > 0 the geodesic contains a subarc γ[a, b] entirely contained
in the ε-thick part T (S)ε of T (S) of all marked hyperbolic surfaces of in-
jectivity radius at least ε. By [23] (see [10] for an explicit statement), there
is a number χ = χ(ε) > 0 so that the map which associates to t ∈ [a, b] a
closed geodesic of smallest length on the hyperbolic surface γ(t) is a χ-quasi-
geodesic in the curve complex C(S) of S. Therefore the endpoints γ(a), γ(b)
define (non-uniquely) a hierarchy H all of whose geodesics different from
the main geodesic have uniformly bounded length [24]. Moreover, if b − a
is sufficiently large then the length of the main geodesic is larger than any
prescribed threshold.

Let v be any vertex in the main geodesic associated to γ[a, b]. We are
only interested in vertices not too close to the endpoints of the hierarchy H.
Such a vertex is a multicurve in S whose length becomes short along γ[a, b],
say at γ(s). By Lemma 7.9 of [27], the lengths of the closed geodesics in M
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in the free homotopy classes of the components of v is uniformly bounded.
There is a pleated surface f : S →M which maps the curves from a maximal
simplex ∆ ⊂ C(S) with v ⊂ ∆ to geodesics in M , and these geodesics all
have moderate length in M . Moreover, the set of simple closed curves on
the pleated surface which have uniformly bounded length in M is contained
in the d′-neighborhood of v in C(S) for some universal number d′ > 0.

By the tube penetration Lemma 7.7 of [27], there is a number r > 0 only
depending on ε and g with the following property. Let s ∈ [a+ r, b− r] and
let v ∈ H be a vertex corresponding to a multicurve which becomes short
for γ(s); then the diameter of a pleated surface mapping v geodesically is
uniformly bounded.

Theorem 6.2 of [4] now shows that up to enlarging r, such a pleated
surface f : (S, σ)→M can be deformed with a homotopy to an embedding
F : (S, σ)→M with the following properties.

(1) F (S) is contained in the r-neighborhood of f(S).
(2) The second derivatives of F are uniformly bounded.

We use this to show

Proposition 2.6. For every ε > 0 there exists a constant c2 = c2(g, ε) > 0

with the following property. Let M̂ be a doubly degenerate hyperbolic 3-
manifold which is an infinite cyclic cover of a mapping torus M of genus
g. Suppose that the Teichmüller geodesic γ defining M contains a segment
γ[a, b] ⊂ T (S)ε of length b− a ≥ 2c2. Then M̂ contains a smooth embedded
3-manifold N0 with boundary ∂N0 with the following properties.

(1) ∂N0 = Σa ∪Σb, and there are diffeomorphisms f1 : (S, γ(a+ c2))→
Σa, f2 : (S, γ(b−c2))→ Σb whose derivatives are uniformly bounded.

(2) There is a smooth surjective map N0 → [a, b] of uniformly bounded
derivatives which maps Σa to a and Σb to b.

If γ[a′, b′] ⊂ T (S)ε is another such segment so that [a, b] ∩ [a′, b′] = ∅ then
the corresponding 3-manifolds N0, N

′
0 are disjoint.

Proof. Let ε > 0 and let r = r(ε, g) be a constant as in the discussion
preceding this proposition. If γ[a, b] ⊂ T (S)ε then the above discussion

implies that there are embeddings Fa : (S, σa) → M̂ and Fb : (S, σb) → M̂

homotopic to pleated surfaces fa : (S, σa) → M̂, fb : (S, σb) → M̂ whose
images are contained in the r-neighborhood of the images of fa, fb and whose
diameters are uniformly bounded.

Since the maps Fa, Fb are homotopic by construction and define a homo-
topy equivalence between S and M̂ , if b−a−2r is sufficiently large then the
embedded surfaces Σa = Fa(S, σa) and Σb = Fb(S, σb) bound a submanifold

N0 of M̂ which is diffeomorphic to S × [0, 1]. Namely, by the choice of the
pleated surfaces fa, fb, for sufficiently large b − a the distance between the
surfaces Σa,Σb is uniformly proportional to b − a. Furthermore, we may
assume that the pleated surfaces fa(S, σa) and fb(S, σb) are disjoint from

N0 and contained in distinct components of M̂ −N0. This guarantees that
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if γ[a′, b′] ⊂ T (S)ε is another such segment so that [a, b] ∩ [a′, b′] = ∅, then
the corresponding 3-manifolds N0, N

′
0 are disjoint.

As N0 is diffeomorphic to S × [a, b], there exists a smooth surjective map
N0 → [a, b] which maps Σa to a and maps Σb to b. We are left with show-
ing that we can find such a map whose derivatives are uniformly bounded.
However, the second fundamental forms of the surfaces Σa,Σb is uniformly
bounded and therefore the one-Lipschitz function which associates to a point
x ∈ N0 the distance between x and Σa can be modified to a function
N0 → [a, b] with the desired property. �

3. Arrays of circles

The main result of [21] states the following. LetM be a closed Riemannian
manifold of bounded geometry whose injectivity radius is bounded from
below by a fixed positive constant. If M is uniformly quasi-isometric to
a finite graph G then the smallest positive eigenvalue of M is uniformly
equivalent to the smallest positive eigenvalue of G. This statement is also
valid without modification for compact manifolds M with boundary and
Neumann boundary conditions (see [13] for a more precise statement).

Let us consider as before a hyperbolic mapping torus M of genus g ≥
2. We showed in Section 2 that the thick part Mthick of M is L = L(g)-
quasi-isometric to a generalized array of circles of depth at most 2g − 2.
Thus to estimate the smallest eigenvalue of Mthick with Neumann boundary
conditions it suffices to estimate the smallest eigenvalue of a generalized
array of circles of a given depth. The purpose of this section is to establish
such an estimate.

Let for the moment G be any finite connected graph with vertex set V(G)
and edge set E(G). Denote by F0(G) the vector space of functions

f : V(G)→ R

with the property that
∑

v f(v) = 0. We equip F0(G) with the usual `2-inner
product

(f, h) =
∑
v

f(v)g(v).

For each such function f , the Rayleigh quotient R(f) is defined by

R(f) =

∑
v

∑
w∼v(f(w)− f(v))2/p(v)∑

v f
2(v)

where p(v) is the degree of the vertex v, and v ∼ w means that v and w are
connected by an edge. The first eigenvalue of G is defined as

λ1(G) = inf{R(f) | 0 6= f ∈ F0(G)}.

In the sequel we adopt analytic notations, and we write

(2)

∫
(f ′)2 =

∑
v

∑
w∼v

(f(w)− f(v))2/p(v)
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and
∫
f2 =

∑
v f

2(v).
Throughout the rest of this section we view a graph G as a metric space

with edges of length one. Thus the length of a subarc of G equals its com-
binatorial length, i.e. the number of its edges.

Our first goal is to establish an upper bound for the first eigenvalue of an
array of circles. In a second step, we then extend the bound to a generalized
array.

We will make use of the Minmax-principle which is equally valid for the
Laplacian on manifolds as well as for the Laplacian on graphs. For a finite
graph G it states the following.

Let ρ0, ρ1 : V(G) → R be any two nontrivial functions with disjoint
support; then

λ1(G) ≤ max
i=0,1

R(ρi).

Proposition 3.1. Let G be an array of circles of depth h; then

λ1(G) ≤ 64π2/vol(G)2h/(2h−1).

Proof. We show by induction on h the following. Let G be an array of circles
of depth h; then for every vertex v of the base circle of G there is a function

f ∈ F0(G) with f(v) = 0 so that R(f) ≤ 64π2/vol(G)2h/(2h−1).
In the case h = 1, G is a circle and the claim is straighforward. Thus

assume that the claim holds true for h − 1. Let G be an array of circles of
depth h, with base circle L. Assume first that there is a vertex v of L so
that the volume of the descendant Gv of L at v (i.e. the array of circles of

depth at most h− 1 attached to L at v) is at least vol(G)(2h−2)/(2h−1).
By the induction hypothesis, there is a function f ∈ F0(Gv) with f(v) = 0

and such that
R(f) ≤ 64π2/vol(Gv)

2h−1/(2h−1−1).

Extend f by zero to G. The extended function F vanishes on the base circle
L of G, and it is contained in F0(G). Moreover,

R(F ) ≤ 64π2/(vol(G)(2h−2)/(2h−1))2h−1/(2h−1−1)

= 64π2/vol(G)2h/(2h−1).

Thus the function F satisfies all the requirements in the above claim, for
every vertex of the base circle.

The second case is that the volume of every descendant of L is strictly
smaller than

vol(G)(2h−2)/(2h−1) = E.

Let ` ≥ 2 be the length of the base circle L, let v ∈ L be any vertex and
let α : [0, `] → L be a simplicial parametrization of L by arc length with
α(0) = v which maps the integral points in [0, `] to the vertices of L. For
1 ≤ k ≤ ` and t ∈ [k−1/2, k+1/2), let η(t) be one plus the volume vol(Gα(k))
of the descendant Gα(k) of L at α(k) (with the obvious interpretation for
k = `). Note that 1 ≤ η(t) ≤ E for all t.
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Define

β(t) =

∫ t

0

1

E
η(s)ds;

then β is differentiable outside the points k + 1
2 for k ∈ Z, and moreover

0 < β′(t) ≤ 1 for all t. More precisely, β is a piecewise-linear continuous
function which is strictly increasing, and

β(`) = (`+ vol(G))/E = `/E + E1/(2h−2) = E′.

Let m ∈ (0, `) be such that β(m) = E′/2. For t ∈ [0, `] define a function
f1 supported in [0,m] by

(3) f1(t) =

{
sin(4πβ(t)/E′) if 0 ≤ t ≤ m,

0 otherwise.

and define similarly a function f2 supported in [m, `].
By the mean value theorem, for each k there exists some tk ∈ [k− 1

2 , k+ 1
2 ]

such that fi(tk) satisfies

fi(tk)
2 =

∫ k+ 1
2

k− 1
2

f2
i (s)ds.

Define

Fi(α(k)) = fi(tk)

and extend Fi to a function on G which is constant on each of the arrays
of circles Gα(i) which are attached to the vertices of the circle L. Since the

function η is constant on each of the intervals [k − 1
2 , k + 1

2 ], we conclude
that

(4)

∫ `

0
f2
i (t)η(t)dt =

∑
v

F 2
i (v).

Our strategy now is to show that R(Fi) is close to the quotient

R(fi) =

∫ `

0
(f ′i)

2dt/

∫ `

0
f2
i (t)η(t)dt

and furthermore estimate R(fi). The above claim then follows from the
Minmax theorem, applied to the functions F1 and F2 (whose mean may not
be zero). Namely, with a small modification of the initial functions fi we may
assure that F1(v) = F2(v) = 0, and we can find a function in F0(G) which
vanishes at v, with controlled Rayleigh quotient, as a linear combination of
F1 and F2.

To show thatR(Fi) is close toR(fi), by equation (4) it suffices to compare∑
v

∑
w∼v(Fi(w)− Fi(v))2/p(v) to

∫ `
0 (f ′i)

2(t)dt. We carry this estimate out
for f = f1 and F = F1, the calculation for f2 and F2 is identical.
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By the definition of an array of circles, the valency p(v) of every vertex v
of the base circle equals 2 or 4. For each vj = α(j) we have∑

w∼vj

(F (w)− F (vj))
2 = (F (vj−1)− F (vj))

2 + (F (vj+1)− F (vj))
2.

Thus ∑
v

∑
w∼v

(F (v)− F (w))2/p(v)

≤1

2

∑̀
k=1

((F (vk−1)− F (vk))
2 + (F (vk+1)− F (vk))

2)

=
∑̀
k=1

(F (vk)− F (vk−1))2.

Recall that there is some tj ∈ [j − 1/2, j + 1/2] so that F (vj) = f(tj).
Since |tj+1 − tj | ≤ 2, the Cauchy Schwarz inequality yields

(5) (F (vj+1)− F (vj))
2 = (

∫ tj

tj−1

f ′(t)dt)2 ≤ 4

∫ tj

tj−1

(f ′(t))2dt.

Together this implies the estimate∑
v

∑
w∼v

(F (w)− F (v))2/p(v) ≤ 2

∫ `

0
(f ′(t))2dt.

As a consequence, we obtain R(F ) ≤ 4R(f) as desired.
For the estimate of R(f) (here as before, f = f1) recall that 0 < β′(t) ≤ 1

and f ′(t) = 4π cos(4πβ(t)/E′)β′(t)/E′. Therefore

(f ′(t))2 =
16π2

(E′)2
cos(4πβ(t)/E′)2(β′(t))2 ≤ 16π2

(E′)2
cos(4πβ(t)/E′)2β′(t).

This implies∫ `

0
(f ′(t))2dt ≤ 16π2

(E′)2

∫ m

0
cos(4πβ(t)/E′)2β′(t)dt

=
16π2

(E′)2

∫ E′/2

0
cos(4πs/E′)2ds.(6)

With the same argument, using η(t) = Eβ′(t), we obtain∫ m

0
f2(t)η(t)dt = E

∫ E′/2

0
sin(4πs/E′)2ds.

Since
∫ E′/2

0 cos(4πs/E′)2ds =
∫ E′/2

0 sin(4πs/E′)2ds and E′ ≥ E1/(2h−2), we
deduce

R(f) ≤ 16π2E−1(E′)−2 ≤ 16π2/E2h/(2h−2) = 16π2/vol(G)2h/(2h−1).

This is what we wanted to show. �
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Our next goal is to extend Proposition 3.1 to generalized arrays of circles.

Proposition 3.2. Let G be a generalized array of circles of depth at most
h; then

λ1(G) ≤ 256π2h2h−2/3(vol(G)2h/(2h−1)).

Proof. We prove the proposition by constructing for every generalized array
of circles G of depth h an array of circles H of depth at most h, and a
continuous simplicial surjective map Ψ : G→ H. This construction is done
in such a way that

• λ1(G) ≤ 4
3λ1(H),

• vol(H) ≥ h−h+1vol(G).

Then from Proposition 3.1 we have

λ1(G) ≤ 4

3
λ1(H) ≤ 4

3
64π2/vol(H)2h/(2h−1)

≤ 256π2

3
/(h−h+1vol(G))2h/(2h−1)

which is what we wanted to show.
For the construction of H, note that by the inductive definition, a gen-

eralized array of circles of depth at most h differs from an array of circles
by allowing the blow-up of vertices. Recall that this means that we start
with a base circle L, and for each vertex v of L, we allow to either attach
to v a generalized array of circles of depth at most h− 1, or to replace v by
s ≤ h arcs a1, . . . , as. In the second case, to each such arc ai is associated
a positive weight mi ≥ 1 so that h ≥

∑
imi. To each interior vertex of

the arc ai there is attached a (possibly trivial) generalized array of circles
of depth at most mi − 1, allowing blow-ups of vertices as before. Let v1, v2

be the common endpoints of the arcs ai. Define the mass of ai to be the
total volume of the connected component E(ai) of G − {v1, v2} containing
the interior of the arc ai.

The construction of the array of circles H is carried out inductively with
the following algorithm. Begin with the base circle L of G. If no vertex of L
is blown up in G in the inductive build-up of G then repeat the construction
with all circles in G of depth two. Otherwise let v1, . . . , vs be the vertices of
L which are blown-up in G. For each i ≤ s, choose a vertex arc ai for the
vertex vi with the largest mass. Define G1 to be the graph obtained from
G by collapsing each of the graphs E(bj) for all vertex arcs bj 6= ai for the
vertex vi to a point. This modification identifies the endpoints of the arc ai.
Or, equivalently, in G1, the arc ai is replaced by a circle of the same length.

Since the sum of the masses of the vertex arcs for the vertex vi is not
bigger than h times the mass of ai, the volume of G1 is not smaller than
vol(G)/h. Moreover, G1 is a generalized array of circles with no blown-up
vertex on the base circle. Note that there is a natural surjective simplicial
map Ψ1 : G → G1 which for each i maps the graph E(ai) isomorphically,
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and it maps the blown-up base circle in the construction of G to the base
circle in G1.

Repeat this construction with G1 and the blown-up circles of depth two.
Since no vertex of the circles of depth h is blown up, in at most h − 1
such steps we construct in this way an array of circles H with vol(H) ≥
h−h+1vol(G). There is a natural simplicial surjection Ψ : G→ H.

Let now f ∈ F0(H) be any function. We show next that
∫

((Ψ ◦ f)′)2 ≤
4
3

∫
(f ′)2. By definition,∫

((f ◦Ψ)′)2 =
∑
v

1

p(v)

∑
w∼v

(f ◦Ψ(v)− f ◦Ψ(w))2.

Note that
∑

w∼v(f ◦ Ψ(v) − f ◦ Ψ(w))2 = 0 if v is an interior vertex of
an arc collapsed by Ψ. If v1, v2 are the two endpoints of such an arc, and if
v = Ψ(v1) = Ψ(v2) then∑

w∼v1∈G
(f ◦Ψ(v1)− f ◦Ψ(w))2 +

∑
w∼v2∈G

(f ◦Ψ(v2)− f ◦Ψ(w))2

=
∑

w∼v∈H
(f(v)− f(w))2.

Also note that p(v1) = p(v2) ≥ 3 while p(v) = 4. Hence,∑
i=1,2

∑
w∼vi∈G

(f ◦Ψ(vi)− f ◦Ψ(w))2/p(vi) ≤
4

3

∑
w∼v∈H

(f(v)− f(w))2/p(v).

For all other vertices, both denominator and numerator coincide when we
switch from f ◦Ψ to f . Thus we have

(7)

∫
G

((f ◦Ψ)′)2 ≤ 4

3

∫
H

(f ′)2

as claimed.
The function f ◦Ψ need not be contained in F0(G). Let m =

∫
f ◦Ψ and

let f̂ = f ◦Ψ−m. Then f̂ ∈ F0(G), and
∫

(f̂ ′)2 =
∫

((f ◦Ψ)′)2. Hence using
the estimate (7), for the purpose of the proposition it suffices to show that∫
f̂2 ≥

∫
f2.

To this end note that there is a subset of the set of vertices of G, say the
set V1, which is mapped by Ψ bijectively onto the set of vertices of H: For
vertex arcs a1, . . . , as of a blown-up vertex v, with endpoints v1, v2, choose
either v1 or v2 to be in V1 and declare the second endpoint as well as all
interior vertices of any erased arc a and all vertices of any of the subgraphs
of G which are attached to interior points of a to be in V(G)−V1. Proceed
by induction.

Now f ∈ F0(H) and therefore
∫
H fm = 0. This implies that∫

G
f̂2 ≥

∑
v∈V1

(f ◦Ψ−m)(v)2 =

∫
H

(f −m)2 =

∫
H

(f2 +m2) ≥
∫
H
f2

which is what we wanted to show. �
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We are left with finding examples of graphs which realize the bounds in
Proposition 3.1 up to a universal constant. To this end we say that the
support supp(f ′) of the derivative of f consists of all edges e in G so that
the values of f at the endpoints of e do not coincide.

We begin with the following elementary

Lemma 3.3. Let G be any finite connected graph. Assume that there is a
decomposition F0(G) = A⊕B which is orthogonal for the `2-inner product.
Assume furthermore that the supports of the derivatives of functions in A,B
are disjoint; then

λ1(G) = min{λ1(A), λ1(B)}
where λ1(A) (or λ1(B)) is the infimum of the Rayleigh quotients over all
functions of the space A (or B).

Proof. Under the assumption of the lemma, if φ ∈ F0(G) is arbitrary then
φ = α + β for some α ∈ A, β ∈ B. Since the supports of the derivatives of
functions in A,B are disjoint, formula (2) implies that∫

(φ′)2 =

∫
(α′)2 +

∫
(β′)2.

Now if s = min{λ1(A), λ1(B)} then∫
(α′)2 ≥ s

∫
α2,

∫
(β′)2 ≥ s

∫
β2

and consequently∫
(φ′)2 =

∫
(α′)2 + (β′)2 ≥ s

∫
(α2 + β2) = s

∫
(α+ β)2 = s

∫
φ2

where the second last equality follows from the assumption that α, β are
orthogonal for the `2-inner product. This shows the lemma. �

Recall from Section 2 the definition of a step-homogeneous array of circles.
Such an array G is characterized by the property that all circles of depth
j have the same length `(j). The array of circles is called optimal if there

exists a number k ≥ 3 so that `(j) = k2j−1
.

Proposition 3.4. For every h ≥ 1 there is a number q = q(h) > 0 with the
following property. Let G be an optimal step-homogeneous array of circles
of depth h; then

λ1(G) ≥ q/vol(G)2h/(2h−1).

Proof. Let for the moment G be an arbitrary step homogeneous array of
circles of depth h. Then for every m ≤ h, the union Gm of all circles in G of
depth at most m is a step homogeneous array of circles of depth m. However,
if 1 ≤ m ≤ h−2 then the closure in G of a component of G−Gm is an array
of circles which is not step homogeneous. Namely, its base circle contains
a distinguished vertex (the attaching vertex) of valency two. Deleting this
vertex results in a step homogeneous array of circles.
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Write A � B if n−1B ≤ A ≤ nB for a universal constant n > 0, and
write A � B if A ≤ nB for a universal constant n > 0.

Let as before `(j) ≥ 3 be the length of a circle in G of depth j. The
volume of G can recursively be computed by

vol(Gm) = `(m)χ(m− 1)vol(Gm−1)

where χ(m − 1) is the number of bivalent vertices in Gm−1 (which is just

|V(Gm−1)| − |V(Gm−2)|). This implies the estimate vol(G) �
∏h
j=1 `(j).

Thus if G is optimal, with base circle of length k ≥ 3, then vol(G) � k2h−1.
Our goal is to show that

(8) λ1(G) � 1/k2h .

When h = 1, G is a circle of length k, and the estimate λ1(G) ≥ 4/k2 is
an easy consequence of the following. Any function F on the vertex set of
G can be extended by convex combination to a continuous piecewise affine
function f on all of G. If

∑
v F (v) = 0 then

∫
G f = 0 where integration

is with respect to the standard Lebesgue measure which gives an edge the
volume one. The Rayleigh quotients can be compared by R(F ) ≥ 1

2R(f).
Now the smallest non-zero eigenvalue of a smooth circle of length R equals
4π2/R2 which yields the required estimate for λ1(G).

Furthermore, let f be any function on V(G) which either vanishes at a
vertex v or changes signs at v (by this we mean that f assumes a value of
opposite sign at a neighbor of v). Cut G open at v, glue two copies of the cut

open arc to a circle Ĝ of double length and extend f to a function F on V(Ĝ)

by reflection at the two copies of v in Ĝ (with the obvious interpretation if f
changes signs at v). Then

∑
w F (w) = 0, and the Rayleigh quotients R(F )

and R(f) can be compared as follows.
If f(v) = 0 then for the two copies v1, v2 of v in G, we have∑

i

∑
w∼vi

(F (w)− F (vi))
2 = 2

∑
w∼v

(f(w)− f(v))2

and similarly for the other vertices of G and their two preimages in Ĝ, and
consequently R(F ) = R(f).

Now assume that f changes sign at v. Let w1, w2 be the two neighbors of v
and assume that the signs of f(v) and f(w1) are opposite. The contribution

of the two preimages v1, v2 of v in Ĝ in the expression for
∫

(F ′)2 equals

(−f(w1)− f(v))2 + (f(w1)− f(v))2 + (−f(w2)− f(v))2 + (f(w2)− f(v))2.

Now if the signs of f(w1) and f(w2) coincide then (−f(wi) − f(v))2 ≤
(f(wi)− f(v))2 for i = 1, 2 and hence R(F ) ≤ R(f). Otherwise note that

(−f(w2)− f(v))2 ≤ 2((−f(w2)− f(w1))2 + (f(w1)− f(v))2)

≤ 4(f(w2)− f(v))2 + 6(f(w1)− f(v))2

which implies that R(F ) ≤ 3R(f). Thus the Rayleigh quotient of the func-

tion f is not smaller than 1
3λ1(Ĝ) ≥ 1/3k2.
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We now proceed by induction on h; then case h = 1 was treated above.
Thus assume that the estimate (8) holds true for optimal step-homogeneous
arrays of depth at most h−1 ≥ 1 and let G be an optimal step homogeneous
array of depth h, with base circle of length k.

Our strategy is to apply Lemma 3.3 to the subspace of F0(G) of func-
tions which are constant on each of the circles of depth h and compare
their Rayleigh quotients to λ1(Gh−1). The following construction is used to
circumvent the difficulty that a circle of depth h in G is attached to the ver-
tices of Gh−1 of valence two but not to every vertex. We construct from G
a graph H of uniformly bounded valency which is uniformly quasi-isometric
to G and which does not have this problem. We then use Theorem 2.1 of
[21] to compare λ1(G) to λ1(H).

The graph H is constructed successively as follows. If h ≤ 2 then put
H = G. Otherwise for each vertex v ∈ Gh−2 − Gh−3, collapse one of the

two edges in Gh−1 −Gh−2 which are incident on v to a point. Let Ĝ be the
resulting graph. It arises from a graph of valency four by merging pairs of
vertices, with any vertex involved in at most one such process. Thus the
valency of Ĝ is at most 7, and the collapsing map Ψ̂ : G → Ĝ is a one-
Lipschitz 2-quasi-isometry which maps Gh−3 isomorphically. Note that Ĝ is

obtained from Ψ̂(Gh−1) by attaching to each vertex of Ψ̂(Gh−1 − Gh−3) a

circle of length k2h−1
.

Repeat this construction with the subgraph Ψ̂(Gh−3) of Ĝ, now collapsing

edges in Ψ̂(Gh−2 − Gh−3). In h − 2 such steps we obtain a graph H and a
surjective simplicial projection Ψ : G→ H with the following properties.

(1) The valency of H is at most 4h.
(2) Ψ is an m-quasi-isometry for a number m = m(h) ≥ 2 only depend-

ing on h but not on k.
(3) Q = Ψ(Gh−1) is m-quasi-isometric to Gh−1.
(4) H is obtained from Q by attaching to each vertex v of Q a circle Hv

of length k2h−1
.

By Theorem 2.1 of [21] (note that Mantuano uses the notion rough isom-
etry for our more standard terminology quasi-isometry) and properties (1)
and (2) above, it now suffices to show the existence of a number q = q(h) > 0

so that λ1(H) ≥ q/k2h . By property (3) above, by the induction hypothesis
and by Theorem 2.1 of [21], applied to Gh−1 and its image Q under the

map Ψ, we may assume that λ1(Q) ≥ q′/k2h−1
for a number q′ > 0 only

depending on h− 1 but not on k.
Let D ⊂ F0(H) be the linear subspace of all functions on V(H) which

are constant on the circles Hv for all vertices v of Q. Let E ⊂ F0(H) be
the linear subspace of functions which are constant on Q. By definition, the
supports of the derivatives of any two functions d ∈ D, e ∈ E are disjoint.

We claim that F0(H) = D ⊕ E. To this end let f ∈ F0(H) and let f̂
be the unique function on V(H) which coincides with f on Q ⊂ H and is
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constant on each graph Hv ⊂ H for every v ∈ V(Q). Let a =
∑

w∈H f̂(w)
and define

Π(f) = f̂ − a/|V(H)|.
Then Π : f ∈ F0(H) → Π(f) ∈ D is a linear projection, i.e. Π is linear,
maps F0(H) into D and equals the identity on the subspace D of F0(H).
Similarly, Id−Π : F0(H)→ E is a linear projection as well.

The subspaces D,E of F0(H) are not orthogonal for the `2-inner product,
but as

∫
(α2 + β2) ≥ 1

2

∫
(α + β)2 for any two functions α, β on H, Lemma

3.3 and its proof implies that

λ1(H) ≥ 1

2
min{λ1(D), λ1(E)}.

Our strategy now is to estimate λ1(D) and λ1(E) separately. We begin
with estimating λ1(D).

Thus let d ∈ D and let dQ be the restriction of d to Q. By the definition
of D, we have supp(d′) ⊂ Q. The degree of a vertex v ∈ Q ⊂ H viewed as
a vertex in H is at most twice its degree as a vertex in Q and therefore

(9)

∫
(d′Q)2 ≤ 2

∫
(d′)2.

Since for every vertex v ∈ Q the function d is constant on the circle Hv

and such a circle has precisely k2h−1
vertices, we conclude that∑

w∈Hv

d2(w) = k2h−1
d2
Q(v)

and hence

(10) k2h−1

∫
d2
Q =

∫
d2.

The estimates (9,10) imply that

R(d) ≥ R(dQ)/2k2h−1
.

On the other hand, we also have∫
d = k2h−1

∫
dQ

and therefore dQ ∈ F0(Q) and hence R(dQ) ≥ λ1(Q). Thus by the induction
hypothesis, we obtain

(11) λ1(D) ≥ q′/2k2h−1
k2h−1

= q/k2h

where q = q′/2 only depends on h.
We are left with estimating λ1(E). To this end define another graph

W as follows. The graph W contains a distinguished vertex w. There are
n = |V(Q)| edges incident on w. Let e be such an edge; one endpoint of e

equals w. Attached to the second endpoint is a circle with k2h−1
vertices.

Note that W admits a group of automorphisms which fix w and permute
the edges of W incident on w. Each permutation of the edges incident on
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w is the restriction of such an automorphism. Any labeling of the edges of
W incident on w gives rise to a bijection V(H)→ V(W )− {w} which maps
the vertices in Q to endpoints of the edges incident on w. Fix once and for
all such a bijection Θ.

Via the map Θ, each function f ∈ E naturally induces a function f∗ on
V(W ). This function may not be of zero mean, but as f is of zero mean and
the map Θ is a bijection of set of the vertices of H onto the set of vertices
of W distinct from w, the square norm of the normalization g of f∗ is not
smaller than

∑
v∈H f

2(v) (compare the proof of Proposition 3.2).
As f ∈ E, as Θ maps vertices of degree contained in [2, 4h] to vertices of

degree in [2, 3], and as the special vertex w does not contribute to
∫

(g′)2,
we have

∫
(g′)2 ≤ 4h

∫
(f ′)2. Together this shows

R(f) ≥ 1

4h
R(g).

As a consequence, for the desired estimate of λ1(E) it suffices to show that

λ1(W ) ≥ m/k2h for a universal constant m > 0.
To this end let f be an eigenfunction on W for the smallest eigenvalue

λ1(W ). If we define

(12) Lf(u) =
1√
p(v)

∑
w∼v

(
f(v)√
p(v)

− f(w)√
p(w)

)

then Lf(u) = λ1(W )f(u).
We distinguish now two cases. In the first case, f(w) = 0. Then equation

(12) shows that the restriction fU of f to the closure of each component
U of W − {w} is an eigenfunction on U for the eigenvalue λ1(W ). Such a

component U is a circle of length k2h−1
with a single edge attached at one

vertex. As fU assumes the value zero, its Rayleigh quotient R(f |U) can be
estimated by

R(f |U) � (k2h−1
)2 = k2h

by the discussion in the beginning of this proof which is equally valid for a
circle with a single edge attached at one vertex instead of a circle.

Together this yields∫
(f ′)2 ≥

∑
U

∑
v∈V(U)−{w}

1

p(v)

∑
z∼v

(f(z)− f(v))2

� (
∑
U

∑
v∈V(U)−{w}

f2(v))/k2h

and therefore R(f) = λ1(W ) � 1/k2h as desired.
Now assume that f(w) 6= 0. Let A be an automorphism of W ; then f ◦A

is an eigenfunction for the eigenvalue λ1(W ). If f ◦ A 6= f , then f − f ◦ A
is an eigenfunction on W for the eigenvalue λ1(W ) which vanishes at w.
The desired estimate now follows from the above discussion provided that
f ◦A 6= A for at least one automorphism A of W .
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Finally suppose that f ◦ A = f for all automorphisms A of W . Then f

descends to an eigenfunction f̂ on a circle U of length k2h−1
with a single

edge attached at one vertex, and of zero mean. Here the value of f̂ at the
unique vertex of U of degree one equals f(w)/|V(Q)|. The eigenvalue of f̂
equals λ1(W ). Then λ1(W ) ≥ λ1(U) and hence as before, we conclude that

λ1(W ) � 1/k2h for a universal constant q. Together this shows that indeed

λ1(E) � 1/k2h as claimed.

Since we have established that λ1(D) � 1/k2h and λ1(E) � 1/k2h , we get

λ1(G) � λ1(H) � 1/k2h . This shows the proposition. �

Remark 3.5. The constant q(h) in Proposition 3.4 can be made effective.
However, this would require a considerable effort in bookkeeping. Moreover,
our proof would yield an exponential decay of q(h) in h.

4. The smallest eigenvalue of mapping tori

In this section we use the results from Section 3 and Section 2 to prove
Theorem 1 from the introduction.

As explained in Section 2, a hyperbolic 3-manifold M can be decomposed
as M = Mthick∪Mthin where Mthick,Mthin are smooth manifolds with bound-
ary ∂Mthick, ∂Mthin. Each component of Mthin is a Margulis tube. Such a
tube T is a tubular neighborhood of a geodesic γ in M of length less than 2ε
where ε > 0 is a Margulis constant for hyperbolic 3-manifolds. The geodesic
γ is called the core geodesic of the tube.

The thick part Mthick of M is a smooth submanifold of M with bound-
ary. Thus the spectrum of Mthick with Neumann boundary conditions is
defined. This spectrum is discrete, with finite multiplicities. Constant func-
tions are eigenfunctions corresponding to the smallest eigenvalue λ0 = 0.
Let λ1(Mthick) be the smallest non-zero eigenvalue with Neumann boundary
conditions. We now evoke the main result of [21] to show

Proposition 4.1. For every g ≥ 2 there is a number c3 = c3(g) > 0 with
the following property. Let M be a hyperbolic mapping torus of genus g;
then

λ1(Mthick) ≤ c3/vol(M)22g−2/(22g−2−1).

Proof. By Proposition 2.2, Mthick is L-quasi-isometric to a generalized array
G of circles of depth at most 2g − 2 for a number L = L(g) > 0 only
depending on g. The main result of [21] applies to the Laplacian on manifolds
with boundary and Neumann boundary condition (see [13] for a more precise
statement along these lines) and shows that there is a number b > 0 only
depending on g so that λ1(Mthick) ≤ bλ1(G).

Proposition 3.2 yields that

λ1(G) ≤ 256π2(2g − 2)2g−3/vol(G)22g−2/(22g−2−1).

The proposition now follows from the fact that vol(G) ∼ vol(Mthick) (by
uniform quasi-isometry) and vol(Mthick) ≥ 2

3vol(M) for a suitable choice of
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a Margulis constant (by the explicit description of the metric in a Margulis
tube, see [13] for a more comprehensive discussion). �

The following is shown in [13].

Proposition 4.2. There exists a number d > 0 and a suitable choice of a
Margulis constant such that

1

3
λ1(Mthick) ≤ λ1(M) ≤ d log(vol(Mthin + 2)λ1(Mthick)

for every hyperbolic 3-manifold M .

We are now ready to show Theorem 1 from the introduction.

Corollary 4.3. For every g ≥ 2 there is a number C1 = C1(g) > 0 with the
following properties.

(1)

λ1(M) ≤ C1 log(vol(Mthin) + 2)/vol(M)22g−2/(22g−2−1).

for every hyperbolic mapping torus M of genus g.
(2) There exists a sequence Mi of hyperbolic mapping tori of genus g

with vol(Mi)→∞ and such that

λ1(Mi) ≥ C−1
1 /vol(Mi)

22g−2/(22g−2−1).

Proof. The first part of the corollary is immediate from Proposition 4.1 and
from Proposition 4.2.

To show the second part, let g ≥ 2 be arbitrary. By Proposition 2.5,
there exists a sequence Mi of mapping tori of genus g so that vol(Mi)→∞
and that for each i, (Mi)thick is uniformly quasi-isometric to an optimal step
homogeneous array of circles Gi of depth 2g − 2.

By Proposition 3.4, the first eigenvalue of the array Gi is not smaller than

q̂/vol(Gi)
22g−2/22g−2−1 where q̂ = q̂(2g − 2) is a universal constant.

Using once more the main result of [21] and the volume comparison

vol(Gi) � vol((Mi)thick) ≥ 2

3
vol(Mi)

for a suitable choice of a Margulis constant, we conclude that there is a
universal constant c′ > 0 so that

λ1((Mi)thick) ≥ c′/vol(Mi)
22g−2/(22g−2−1).

The second part of the corollary now follows from the first inequality of
Proposition 4.2. �

We complete this section by estimating the smallest eigenvalue of mapping
tori defined by periodic Teichmüller geodesics in moduli spaceM(S) which
spend a definite proportion of time in the ε-thick part M(S)ε of surfaces
with injectivity radius bigger than ε. Note that M(S)ε is the quotient of
the ε-thick part of Teichmüller space under the action of the mapping class
group.
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Proposition 4.4. For sufficiently small ε > 0 there exists a number b =
b(g, ε) > 0 with the following property. Let S1

R be the circle of length R > 0
and let γ : S1

R → M(S) be a periodic Teichmüller geodesic of length R.
Let p = 3c2(g, ε) > 0 be as in Proposition 2.6 and let Q = {t ∈ S1

R |
γ(t − p, t + p) ⊂ M(S)ε}; if the Lebesgue measure of Q is at least ζR for
some ζ ∈ (0, 1) then

λ1(M) ≤ b

ζ2vol(M)2
.

Proof. Let c2 = c2(g, ε) > 0 be as in Proposition 2.6, let p = 3c2 and let
ζ ∈ (0, 1). Let γ : S1

R → M(S) be a periodic Teichmüller geodesic as in
the proposition for this number ζ. By continuity, the set Q ⊂ S1

R is open
and hence it is a union of at most countably many open intervals. By the
definition of Q, the p-neighborhoods of these intervals are pairwise disjoint.
By assumption, the Lebesgue measure of Q is at least ζR. Choose finitely
many connected components I1, . . . , Is ⊂ Q of Lebesgue measure at least
ζR/2. Assume that these intervals are linearly ordered along [0, R]. Let uj
be the length of Ij .

By Proposition 2.6, for each j ≤ s there exists a submanifold Nj of M
with smooth boundary which is diffeomorphic to S × [0, 1]. This diffeomor-
phism is chosen to be compatible with the orientation of S1

R defined by the
parametrization of γ. Thus the two boundary components of Nj are natu-
rally ordered. We denote by ∂N−j the component which is smaller for this

order, and by ∂N+
j the bigger component. The submanifolds Nj are pair-

wise disjoint, and M − ∪iNi consists of s connected components P1, . . . , Ps
diffeomorphic to S × [0, 1]. We have ∂Pi = ∂N+

i ∪ ∂N
−
i+1.

For each j there exists a smooth surjective map

fj : Nj → [
∑
i<j

ui,
∑
i≤j

ui]

of uniformly bounded derivative which maps the two distinct boundary com-
ponents ofNj to the two distinct boundary components of the image interval.
Write u =

∑
i ui ≥ ζR/2 and define a function f : M → [0, u] by f |Ni = fi

and by the requirement that f is constant on each of the manifolds Pj . We
can modify f so that its derivative is uniformly bounded. Define functions
α, β on [0, u] as

α(s) =

{
sin(πs/u), if 0 ≤ s ≤ u/2;

0 if u/2 ≤ s ≤ u.

and

β(s) =

{
0, if 0 ≤ s ≤ u/2;

sin(π(s− u/2)/u) if u/2 ≤ s ≤ u.

Then α ◦ f, β ◦ f are smooth, with supports intersecting in a zero volume
set, and their Rayleigh quotients are uniformly equivalent to 1/u2. To this
end note that the Rayleigh quotients of α, β are π2/u2, and since f has
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uniformly bounded derivative, the Rayleigh quotients of α, β are uniformly
equivalent to the Rayleigh quotients of α ◦ f, β ◦ f .

By the Minmax-theorem for the spectrum of the Laplacian, we know that
for any set of functions ρ0, . . . , ρk : M → R whose supports pairwise intersect
on zero-volume sets, we have λk ≤ max{R(ρi) | 0 ≤ i ≤ k} (compare [33])
and therefore λ1(M) ≤ max{R(α◦f),R(β ◦f)}. As a result, λ1(M) ≤ d/u2

where d > 0 is a constant only depending on g, ε.
We are left with showing that for fixed ζ, the volume of M is uniformly

equivalent to u. To this end we evoke from [2, 3, 16] that the volume of M
is equivalent to the translation length for the Weil-Petersson metric of the
pseudo-Anosov element defining γ, and this translation length is bounded
from above by the length of γ for the Teichmüller metric up to a factor
which only depends on g (see e.g. [16]). Thus the volume of M is bounded
from above by χR where χ > 0 only depends on ζ, g, ε and is linear in ζ.
Since u ≥ ζR/2, the proposition follows. �

5. Typical mapping tori

The goal of this section is to show that for any g ≥ 2 there exists a number
ε > 0 and a number ζ > 0 such that a typical mapping torus of genus g
satisfies the hypothesis in Proposition 4.4 for these numbers ε > 0, ζ > 0.
We then evoke Proposition 4.4 to conclude the proof of Theorem 2 for typical
mapping tori.

Let G(L) be the set of all conjugacy classes of pseudo-Anosov mapping
classes (in short: p-A mapping classes) on S whose translation length on
Teichmüller space T (S) is less than L. It is known that G(L) is finite for
any fixed L > 0. Up to isometry, a hyperbolic mapping torus only depends
on the conjugacy class of the defining pseudo-Anosov element. We say a
typical mapping torus (or a typical p-A conjugacy class) satisfies a property
(∗) if

|{φ ∈ G(L) : φ satisfies property (∗)}|
|G(L)|

→ 1

as L→∞. In this section we prove the following.

Proposition 5.1. Let U ⊂ T (S) be an open Mod(S)-invariant set which
contains the axis of at least one pseudo-Anosov element. For each p > 0,
there exists δ = δ(U, p) > 0 with the following property. The proportion of
time along an axis γ of a typical pseudo-Anosov element consisting of points
γ(t) so that the segment γ[t− p, t+ p] is entirely contained in U is at least
δ.

To prove this proposition, we will use the equidistribution of closed or-
bits of the Teichmüller geodesic flow in the space of unit area quadratic

differentials, obtained in [11]. Let Q̃1(S) → T (S) be the bundle of unit
area quadratic differentials, which can be identified with the unit cotangent

bundle of T (S), and let Q1(S) = Q̃1(S)/Mod(S).
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The Teichmüller flow Φt : Q1(S) → Q1(S) acts on Q1(S) preserving a
Borel probability measure λ in the Lebesgue measure class, the Masur-Veech
measure. The measure λ has full support.

We can identify conjugacy classes of pseudo-Anosov elements with closed
orbits of the Teichmüller geodesic flow.

For a closed orbit γ let l(γ) denote its length. Let moreover δγ be the
standard flow-invariant Lebesgue measure on γ of total mass l(γ).

For a Borel subset A of Q1(S) let l(A) = δγ(A).
For each L > 0 we may define a measure on Q1(S) by

λL =
1

L|G(L)|
∑

γ∈G(L)

δγ .

The main result of [11] shows:

Lemma 5.2. The measures

λL =
1

L|G(L)|
∑

γ∈G(L)

δγ

weakly converge to λ as L→∞.

By the classical Portmanteau theorem, Lemma 5.2 can be rephrased as
follows.

Lemma 5.3. For any Borel set V ⊂ Q1(S) whose boundary has measure
zero, we have

lim
L→∞

1

L|G(L)|
∑

γ∈G(L)

l(γ ∩ V ) = λ(V )

We will use Lemma 5.2 together with the ergodicity of the Teichmüller
geodesic flow to prove the following.

Proposition 5.4. Let U ⊂ Q1(S) be a Borel subset whose boundary has
Lebesgue measure zero. Then for any ε > 0, a typical Teichmüller geodesic
spends a proportion of time between (1− ε)λ(U) and (1 + ε)λ(U) in U .

Proof. It suffices to prove that for each ε > 0, a typical closed orbit spends a
proportion at least (1−ε)µ(U) in U (the upper bound can then be obtained
by replacing U with its complement). Fix ε > 0. For each L > 0 let
A(L) ⊂ G(L) denote the set corresponding to closed orbits of length at most
L that spend a proportion at most (1− ε)λ(U) in U . Define for each L > 0
a finite measure

κL =
1

L|G(L)|
∑

γ∈A(L)

δγ .

To prove Proposition 5.4 it suffices to prove that the measures κL weakly
converge to zero.
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Now note that κL ≤ λL, so by Lemma 5.2, any subsequence of the se-
quence κL has a weak accumulation point, which is a finite measure on
Q1(S). This measure is absolutely continuous with respect to λ.

Let κ be the weak limit of κLi for some sequence Li → ∞. Since the
measures κL are Φt invariant, so is κ. Thus, by ergodicity of the Teichmüller
flow with respect to λ, we have κ = cλ for some c = κ(Q1(S)) ≥ 0.

On the other hand, by construction and the fact that the measure of
the boundary of U vanishes, we have κL(U) ≤ (1− ε)λ(U)κ(Q1(S)). Since
κ = cλ, this is only possible if c = 0, completing the proof. �

We now conclude the proof of Proposition 5.1.

Proof of Proposition 5.1. Let U ⊂ T (S) be a nonempty open set containing
an axis of a pseudo-Anosov element. Let W be the preimage of U in the

Teichmüller space Q̃1(S) of area one quadratic differentials, and let V be
the image of W in Q1(S). For T > 0, let VT ⊂ Q1(S) be the subset of V
such that Φtq ∈ V for all t ∈ (−T, T ). By finiteness of λ, we know that
λ(∂VT ) = 0 for all but countable many T , so for given p > 0 we may find
a number T > p with this property. Then by Proposition 5.4, for any
ε > 0 a typical closed orbit of the Teichmüller flow spends a proportion at
least (1 − ε)µ(VT ) in V . Thus, the proportion of time along an axis γ of a
typical pseudo-Anosov element consisting of points γ(t) so that the segment
γ[t− p, t+ p] is entirely contained in U is at least µ(VT ). Since U is open so
is VT , and since U contains an axis of a pseudo-Anosov element and hence
V contains a periodic orbit for the Teichmüller flow, we know that VT is
nonempty for all T and hence µ(VT ) > 0. This completes the proof with
δ(p) = λ(VT )/2 > 0. �

As a result, we obtain Theorem 2 for typical mapping tori.

Corollary 5.5. For every g ≥ 2 there exists a number κ = κ(g) > 0 so that

λ1(M) ∈ [
1

κ(g)vol(M)2
,

κ(g)

vol(M)2
]

for a typical mapping torus of genus g.

Proof. Choose ε > 0 sufficiently small that the open Mod(S)-invariant sub-
set T (S)ε ⊂ T (S) of all surfaces whose systole is bigger ε contains the axis
of a pseudo-Anosov element. Let p = 3c2(g, ε) > 0 as in Proposition 2.6.
Proposition 5.1 shows there exists a number ζ > 0 such that for a typical
periodic Teichmüller geodesic γ, the proportion of time t so that the segment
γ(t−p, t+p) is entirely contained inM(S)ε is at least ζ. The corollary now
follows from Proposition 4.4. �

6. Random mapping tori

The main goal of this section is to prove Theorem 3 from the introduction.
The part of Theorem 2 concerning radom mapping tori follows from this and
Proposition 4.4.
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We begin with reviewing some background on random walks on groups.
This is a vast subject, see for example [15] [7] [20] for more details.

Let G be a countable finitely generated group. Let µ be a symmetric
probability measure on G and let µZ be the product measure on GZ.

Let T : GZ → GZ be the following invertible transformation: T takes
the two-sided sequence (hi)i∈Z to the sequence (gi)i∈Z with g0 = e and
gn = gn−1hn for n 6= 0. Explicitly, this means

gn = h1 · · ·hn for n > 0

and
gn = h−1

0 h−1
−1 · · ·h

−1
−n+1 for n < 0.

Similarly, let µN be the product measure on GN. Let T+ : GN → GN be
the transformation that takes the one-sided infinite sequence (hi)i∈N to the
sequence (gi)i∈N with g0 = e and gn = gn−1hn for n 6= 0. Explicitly, for
n > 0 this means

gn = h1 · · ·hn.
Let P be the pushforward measure T ∗µZ and P the pushforward measure

T ∗+µ
N.

The measure P describes the distribution µ on sample paths, i.e. of prod-
ucts of independent µ-distributed increments. The measure space (GZ, P ) is
naturally isomorphic to (GN, P )⊗ (GN, P ) via the map sending the bilateral
path ω to the pair of unilateral paths ((ωn)n∈N, (ω−n)n∈N).

Assume now that G acts by isometries on a metric space (X, dX) and
let x0 ∈ X. If µ has finite first moment (which is obviously the case if
the support of µ is finite, which is the case of interest for us), Kingman’s
subadditive ergodic theorem implies that for P a.e. sample path ω the limit

LX = lim
n→∞

dX(ωnx0, x0)

n
exists. This number L is called the drift of the random walk induced by µ
with respect to the metric dX .

In the case that (X, dX) is a separable Gromov hyperbolic metric space
then the action of G on X is called nonelementary if G contains a pair of lox-
odromic isometries with disjoint sets of fixed points in the Gromov boundary
∂X of X. A symmetric probability measure on G is called nonelementary
if the subgroup of G generated by its support is a nonelementary subgroup
of G. The following results are due in this generality to Maher and Tiozzo
[20].

Theorem 6.1. Let G be a countable group that acts by isometries on a
separable Gromov hyperbolic space (X, dX) such that any two points in X ∪
∂X can be connected by a geodesic. Let µ be a nonelementary probability
measure on G.

(1) For any x0 ∈ X and P a.e. sample path ω = (ωn)n∈N of the ran-
dom walk on (G,µ), the sequence (ωnx0)n∈N converges to a point
bnd(ω) ∈ ∂X.



SMALLEST EIGENVALUE OF HYPERBOLIC 3-MANIFOLDS 33

(2) If µ has finite first moment with respect to the metric dX , then there
exists LX > 0 such that for P -a.e. sample path ω one has

lim
n→∞

dX(x0, ωnx0)

n
= LX .

Moreover, there is a unit speed geodesic ray τ converging to bnd(ω)
such that

lim
n→∞

dX(τ(LXn), ωnx0)

n
= 0.

(3) If µ has finite support, then for P -a.e. sample path ω there is an n0

such that ωn acts loxodromically for all n ≥ n0.

Using techniques of [20], Dahmani and Horbez (Proposition 1.9 of [7])
proved.

Proposition 6.2. Let X be a separable geodesic Gromov hyperbolic metric
space, with hyperbolicity constant δ. For all A > 0, there exists a number
κ = κ(A, δ) > 0 such that the following holds. Let G be a group acting by
isometries on X, and let µ be a nonelementary probability measure on G with
finite support. Let LX > 0 denote the drift of the random walk on (G,µ) with
respect to dX . Then for P -a.e. sample path ω of the random walk on (G,µ),
for all ε > 0, and all A-quasi-geodesic rays γ : [0,∞) → X converging to
bnd(ω) ∈ ∂X, there exists n0 ∈ N such that for all n ≥ n0, any A-quasi-
axis of ωn crosses through γ[t1(n), t2(n)] up to distance κ. Here t1(n) (resp.
t2(n)) is the infimum of all real numbers such that dX(γ(0), γ(t1(n))) ≥
εLXn (resp. dX(γ(0), γ(t2(n))) ≥ (1− ε)LXn).

We will apply these results to G = Mod(S), the mapping class group
of the surface S. It acts on the associated complex of curves X = C(S),
which is Gromov hyperbolic by work of Masur and Minsky[23], and has the
property that any two points in X ∪ ∂X can be connected by a geodesic by
work of Bowditch [1]. An element of Mod(S) acts as a loxodromic isometry
on C(S) if and only if it is a pseudo-Anosov. We will call a subgroup of
Mod(S) or a measure on Mod(S) nonelementary if it is nonelementary for
the action on C(S).

Our main technical result (Proposition 6.11) is an analog of Proposi-
tion 6.2 for the action of Mod(S) on the Teichmüller space T (S) with the
Teichmüller metric dT and its Thurston boundary PML of all measured
projective laminations. We begin with collecting those known results for
this action we shall use for our goal.

The set PML contains the invariant subset of uniquely ergodic lamina-
tions. In the following results of Kaimanovich and Masur [15], the notion of
a non-elementary probability measure is the notion discussed above.

Theorem 6.3. Let µ be a nonelementary probability measure on Mod(S).
For P -almost every ω, and every o ∈ T (S), ωno converges to a uniquely
ergodic point bndT (ω) ∈ PML.
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In other words, there is a P -almost everywhere defined measurable map
bnd : GN → PML sending ω to limn→∞ ωno ∈ PML. The measure on
PML defined by

ν = bnd∗P = lim
n→∞

µ∗n

is called the harmonic measure for µ. In fact, (PML, ν) is a model for the
Poisson boundary of (G,µ) [15]. In particular, ν is the unique µ stationary
measure on PML: for every g ∈ G and ν measurable V ⊂ PML we have

ν(V ) =
∑
g∈G

µ(g)ν(g−1V )

and consequently for every n > 0:

ν(V ) =
∑
g∈G

µ∗n(g)ν(g−1V ).

The stationarity and the fact that the support of µ generates G implies
that if ν(V ) > 0 then ν(gV ) > 0 for every g ∈ G. For every g ∈ G we have:

P (ω : lim
n→∞

gωn ∈ V ) = P (ω : lim
n→∞

ωn ∈ g−1V ) = ν(g−1V )

If Ce,h1,...hk is the cylinder subset of GN consisting of ω with ωi = hi for
i ≤ k we have

P (Ce,h1,...hk ∩ bnd−1V )

= P (Ce,h1,...hk)P (ω : lim
n→∞

hkωn ∈ V ) = P (Ce,h1,...hk)ν(h−1
k V )

(this is proved in general for the Poisson boundary by Kaimanovich in Sec-
tion 3.2 of [14]). In particular, if ν(V ) > 0 then for any cylinder subset
C ⊂ GN we have P (C ∩ bnd−1V ) > 0.

The following claim follows from minimality of the action of G on PML.

Lemma 6.4. The measure ν has full support on PML.

Proof. Let V ⊂ PML be an open set. By minimality,
⋃
g∈G gV = PML,

and hence ν(
⋃
g∈G gV ) = 1 > 0 whence ν(gV ) > 0 for some g ∈ G. By

stationarity, ν(V ) > 0. �

The analog of Theorem 6.1 for the action of the mapping class group on
T (S) is due to Tiozzo (Theorem 18 of [32]).

Theorem 6.5. Let µ be a nonelementary probability measure on Mod(S)
with finite first moment for dT . Then there exists LT > 0 such that for
P -a.e. sample path ω one has

lim
n→∞

dT (o, ωno)

n
= LT ,

and for any geodesic ray τ converging to bndT (ω) we have

lim
n→∞

dT (τ(LTn), ωno)

n
= 0.
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For a pseudo-Anosov element φ ∈ Mod(S) let l(φ) be its translation length
in T (S). The following result is Theorem 3.1 of [7].

Theorem 6.6. Let µ be a nonelementary probability measure on Mod(S)
with finite support. Then l(ωn)/n→ LT (n→∞) for P almost every ω.

Reformulating the above discussion in terms of bilateral sample paths
instead we obtain:

Theorem 6.7. For µ-almost every sample path ω ∈ GZ and every x0 ∈ T (S)
the limits

bnd±(ω) = lim
n→±∞

ωnx0 ∈ PML

exist, are independent of x0, distinct and uniquely ergodic.
There is a geodesic τω with vertical and horizontal foliations bnd±(ω),

and for any unit speed parametrization of τω we have

lim
n→±∞

dT (x0, ωnx0)/|n| → LT

and

lim
n→±∞

dT (τω(LTn), ωnx0)/|n| → 0.

The measure ν = bnd∗P has full support on PML. Moreover, for any set
V ⊂ PML× PML with (ν ⊗ ν)(V ) > 0 and each cylinder subset B of GZ

we have P ((bnd− × bnd+)−1(V ) ∩B) > 0.

From now on, for o ∈ T (S) and for almost every sample path ω ∈
Mod(S)Z we denote by ω± = bnd±(ω) the limits limn→±∞ ωno ∈ PML,
respectively. Moreover, τo,ω+ denotes the Teichmüller geodesic ray which

connects the basepoint o to ω+. Recall that this makes sense since for P
a.e. sample path ω the exit point ω+ is uniquely ergodic. Also, from now
on, let L = LT be the drift of µ with respect to the Teichmüller metric dT
(see Theorem 6.5).

Theorem 3 from the introduction can be reformulated as follows. For
a pseudo-Anosov element φ let γφ be a unit speed parametrization of its
axis in T (S) and l(φ) its translation length in T (S). Choose moreover a
basepoint o ∈ T (S). For ζ > 0 and a subset W of T (S) let Nζ(W ) be the
ζ-neighborhood of W for the Teichmüller metric.

Theorem 6.8. There is a number ζ > 0 with the following property. Let
W ⊂ T (S) be a Mod(S)-invariant open subset containing an axis of a
pseudo-Anosov. Then for each R > 0, there exists c = c(W,R) > 0 such
that

P{ω ∈ Mod(S)N | ωn is p-A and

l(ωn)−1|{t ∈ [0, l(ωn)] : γωn(t−R, t+R) ⊂ NζW}| > c}
→ 1 (n→∞)
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To prove Theorem 6.8 we first present two recurrence results for random
geodesics, whose proof we defer until the end of the section. These results
can be viewed as weak versions of Birkhoff’s ergodic theorem for random
rays in Teichmüller space.

Proposition 6.9. There is a number K > 0 with the following property.
For all 0 < a < b and M > 0 and for P -almost every sample path ω, there
is an n0 > 0 such that τo,ω+([an, bn]) contains a connected subsegment of
length M contained in NKMod(S)o for all n > n0.

Proposition 6.10. Let W ⊂ T (S) be a Mod(S)-invariant open subset that
contains an axis of a pseudo-Anosov. Then for all R > 0 there exists a
ĉ = ĉ(R) > 0 such that for almost every sample path ω we have:

lim inf
1

T
|{t ∈ [0, T ] | τo,ω+ [t−R, t+R] ⊂W}| > ĉ

where ω+ = bndT (ω) ∈ PML.

We will use Proposition 6.9 together with Proposition 6.2 to prove our
analogue of Proposition 6.2 for T (S).

Proposition 6.11. There exists a number ζ > 0 with the following property.
For almost every sample path ω, and each ε, there exists a number n0 > 0
such that for n ≥ n0, ωn is a pseudo-Anosov mapping class with translation
length Ln/2 < l(ωn) < 2Ln, and the axis of ωn passes within ζ of τo,ω+(t)
for every t ∈ [εLn, (1− ε)Ln].

Proof. The curve complex X = C(S) is a separable, Gromov hyperbolic
geodesic metric space, and any two points in X ∪ ∂X can be connected
by a geodesic ray [1]. The mapping class group G = Mod(S) acts on it
as a nonelementary group of isometries. Pseudo-Anosov elements act as
loxodromics. Thus by Theorem 6.1, there is an L′ > 0 such that

dC(S)(ωnx, x)/n→ L′

for P almost every sample path ω and every x ∈ C(S). Moreover, P almost
every sample path ω converges to some ω+ ∈ ∂C(S) (the Gromov boundary
of C(S)), and there is a unit speed geodesic ray α starting at x and converging
to ω+ such that d(α(L′n), ωnx)/n → 0. We refer to [32, 20] for a detailed
discussion with a comprehensive list of references.

Let π : T (S) → C(S) be the coarsely well-defined map sending x to a
shortest curve on x. Then for a uniform constant A > 1, π is A quasi-
Lipschitz (i.e. dC(S)(π(x), π(y)) ≤ AdT (x, y) +A for all x, y ∈ T (S)), and it
sends Teichmüller geodesics to A-quasi-geodesics in C(S) [23]. Moreover, if
g ∈ Mod(S) is pseudo-Anosov, and if γ is the axis of g in T (S), then π(γ)
is an A-quasi-axis for the action of Mod(S) on C(S). This means that it is
a g-quasi-invariant A-quasi-geodesic in C(S).

Furthermore, by Theorem 4.2 of [26], Teichmüller geodesics in the thick
part of Teichmüller space are uniformly contracting, and this contraction
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can be traced in the curve graph [10]. This means that for each K > 0
there is a number D = D(K) > 0, and for every κ > 0 there is a number
κ′ > 0 with the following property. Let α1, α2 be Teichmüller geodesics
with α1(t − D, t + D) ⊂ NKMod(S)o and dC(S)(π(α1(t)), π(α2(t))) < κ;
then dT (α1(t), α2(t)) < κ′.

Let as before L be the drift of µ with respect to the Teichmüller metric
dT . For P -almost every sample path ω, there exists a unit speed geodesic
ray τ = τo,ω+ in T (S) based at o and a unit speed geodesic ray α in C(S)
based at o′ = π(o), such that

dT (τ(Ln), ωno)/n→ 0 and dC(S)(α(L′n), ωno
′)/n→ 0.

Consequently, since π : T (S)→ C(S) is coarsely Lipschitz we have

(13) dC(S)(π(τ(Ln)), α(L′n))/n→ 0.

Let γn be the axis of ωn if ωn is pseudo-Anosov and o otherwise. Then
π(γn) is an A quasi-axis for the action of ωn on C(S), and π ◦ τ is an A-
quasi-geodesic. By Proposition 6.2, there is a number κ > 0 such that for
P a.e. sample path ω and every ε > 0 there is an n0 > 0 such that for each
n ≥ n0, every point p ∈ π ◦ τ with

εL′n ≤ dC(S)(p, o
′) ≤ (1− ε)L′n

is within κ of some point of π(γn). Now, if t ∈ [3εLn, (1 − 3ε)Ln] is any
integer and n is large enough, using the estimate (13) we have:

dC(S)(o
′, π(τ(t))) ≤ dC(S)(o

′, α(
L′

L
t)) + dC(S)(α(

L′

L
t), π(τ(t)))

≤ L′

L
t+ εL′n ≤ (1− 3ε)L′n+ εL′n ≤ (1− ε)L′n

and similarly
dC(S)(o

′, π(τ(t))) ≥ εL′n
Thus, π(τ(t)) is within κ of some point of π(γn), and if

τ([t−D, t+D]) ∈ NKMod(S)o

we have that τ(t) is within κ′ of some point of γn. Now note that by
Proposition 6.9, for P almost every ω and for all large enough n there are

t1 ∈ [3εLn, 4εLn]

and
t2 ∈ [(1− 4ε)Ln, (1− 3ε)Ln]

with
τ([ti −D, ti +D]) ∈ NKMod(S)o

Thus τ(ti) are within κ′ of some point of γn and so by [29], τ([t1, t2]) is
within κ′′ of γn where κ′′ depends only on κ′. �

Finally, we will use Propositions 6.11 and 6.10 to prove Theorem 6.8 and
hence Theorem 3.
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Proof of Theorem 6.8. Let ζ > 0 be the constant guaranteed by Proposition
6.11. Denote as before by L the drift of the random walk acting on T (S).

Let W ⊂ T (S) be an open Mod(S)-invariant set which contains the axis
of a pseudo-Anosov element. Let R > 0 and let 0 < ĉ(R + 100ζ) < 1/10 be
the constant guaranteed by Proposition 6.10 for W and R + 100ζ in place
of R. Let ε = ĉ/20 < 1/200.

For each N > 0 let Ω1(N) be the set of all sample paths ω such that

1

T
|{t ∈ [0, T ] : τo,ω+ [t−R− 100ζ, t+R+ 100ζ] ⊂W}| > ĉ

for all T > (1− ε)LN .
Let Ω2(N) consist of all sample paths ω such that for all n > N , ωn is a

pseudo-Anosov with the following properties. The translation length of ωn
is contained in [Ln/2, 2Ln], and its axis passes within ζ of τo,ω+(t) for every
t ∈ [εLn, (1− ε)Ln]. Define Ω(N) = Ω1(N) ∩ Ω2(N).

Let ω ∈ Ω(N) and let n ≥ N . Since ω ∈ Ω2(N), if t ∈ [εLn, (1 − ε)Ln]
then the axis of ωn passes within ζ of τo,ω+(t). By the definition of Ω1(N),
[εLn, (1 − ε)Ln] has a (not necessarily connected) subset In of Lebesgue
measure at least

ĉ(1− ε)Ln− εLn− (2R+ 200ζ) > ĉLn/2

which is a union of intervals J , each of length at least 2R+ 200ζ, such that

τo,ω+(J) ⊂W

for each J .
Let I ′n ⊂ In be a maximal subset which consists of intervals each of

length at least 2R+100ζ and any two of which are at least 10ζ apart. Note,
I ′n has measure at least ĉLn/4. For each interval J of I ′n, the axis of ωn
contains a connected subset of length at least 2R + 98ζ contained within
ζ of τo,ω+(J) ⊂ W . Moreover, since any two intervals of I ′n are at least
10ζ apart, the corresponding subsets of the axis of ωn contained in their ζ
neighborhood are disjoint. Thus, the axis of ωn contains a subset of measure
at least ĉLn/4 which is a union of intervals of length at least 2R + 98ζ
contained in Nζ(W ). Consequently, the R-interior of this subset, i.e. the set
of all points which are contained in one of these intervals and whose distance
to the boundary is at least R, has measure at least 98ζĉLn/4(2R+ 98ζ).

Since ωn has translation length at most 2Ln, the proportion of the points
t on the axis which are midpoints of segments of length 2R entirely contained
in Nζ(W ) is at least c̃ = 98ζĉ/(2R+ 98ζ):

l(ωn)−1|{t ∈ [0, l(φ)] : γωn(t−R, t+R) ⊂ Nζ(W )}| > c̃.

This holds for each ω ∈ Ω(N) and n ≥ N . By Proposition 6.11 and
Proposition 6.10 we know that P (Ω(N)) → 1 as N → ∞, completing the
proof. �
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It remains to prove Proposition 6.10 and Proposition 6.9. Since by Theo-
rem 6.3, ω+ is uniquely ergodic for P almost every ω, and by work of Masur
[22] any two Teichmüller geodesics with the same uniquely ergodic vertical
foliation are asymptotic, the propositions follow from certain bilateral ana-
logues. Namely, for p ∈ T (S) and ζ1, ζ2 ∈ PML defining a Teichmüller
geodesic with the ζi as vertical and horizontal measured geodesic lamina-
tions, let γζ1,ζ2,p be a unit speed parametrization of this geodesic such that
γζ1,ζ2,p(0) is at minimal distance from p. We can make this choice in a
Mod(S) equivariant way, i.e. so that gγζ1,ζ2,p(t) = γgζ1,gζ2,gp(t).

For a bilateral sample path ω converging to distinct uniquely ergodic
ω± ∈ PML and p ∈ T (S) write γω,p instead of γω−,ω+,p. We also write γω
for the trace of the axis in T (S). Proposition 6.10 follows from the following.

Proposition 6.12. Let W ⊂ T (S) be a Mod(S)-invariant open subset that
contains an axis of a pseudo-Anosov.

For every R > 0 there exists a number c̃ = c̃(R) > 0 such that for P
almost every bilateral sample path ω ∈ Mod(S)Z we have:

lim inf
T→∞

1

T
|{t ∈ [−T, T ] : γω,o([t−R, t+R]) ⊂W}| > c̃

Proof. For each K,R > 0 let Ω(K,R) be the set of sample paths ω such that
there is a Teichmüller geodesic with vertical and horizontal laminations ω+

and ω−, and moreover γω,o([−2R, 2R]) ⊂W and d(o, γω) < K.

Lemma 6.13. There is a K = K(W ) > 0 such that P (Ω(K,R)) > 0 for
all R > 0.

Proof. Let K(W ) be large enough so that there exists a pseudo-Anosov
element φ with attracting and repelling (projective) measured foliations φ+

and φ− with axis γφ−,φ+ passing within K/2 of o and contained in

W ∩NK/2Mod(S)o.

Let γφ−,φ+,o be an associated parametrization for its axis. Let a > 0 be such
that the a neighborhood of the axis of φ is contained in W ∩NK/2Mod(S)o.

Filling pairs of laminations are an open subset of PML×PML, and any
such pair determines a Teichmüller geodesic with corresponding vertical and
horizontal measured foliations, unique up to parametrization. Ff a sequence
of such pairs converges to the pseudo-Anosov pair (φ−, φ+), then suitably
parametrized corresponding geodesics converge locally uniformly to γφ−,φ+,o.
Thus for every R > 0 there are open neighborhoods U± ⊂ PML of φ± such
that for all ζ1 ∈ U+ and ζ2 ∈ U− we have

d(γζ1,ζ2,o(t), γφ−,φ+,o(t)) < a

for all t ∈ [−2R, 2R].
Let Ω′(K,R) be the set of all sample paths ω with ω± ∈ U±. By definition,

Ω′(K,R) ⊂ Ω(K,R). Since the U± are open subsets of PML and the
harmonic measure ν has full support on PML, we have ν(U±) > 0 and
hence P (Ω′(K,R)) > 0 and thus P (Ω(K,R)) > 0. �
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Let σ : GZ → GZ be the left Bernoulli shift: σ(ω)n = ωn+1. By basic
symbolic dynamics, σ is invertible, measure preserving and ergodic with
respect to µZ. Therefore,

U = T ◦ σ ◦ T−1

is invertible, measure preserving and ergodic with respect to P . Note that
for each n ∈ Z,

(Uω)n = ω−1
1 ωn+1

and more generally

(Ukω)n = ω−1
k ωn+k.

Let K > 0 be as in Lemma 6.13. Since W and dT are Mod(S) invariant,
we have that Ukω ∈ Ω(K,R) if and only if γω,ωko([−2R, 2R]) ⊂ W and
d(ωko, γω) < K.

Without loss of generality, we can assume that R > 100K. Let si(ω) =
dT (ωio, γω,o(0)). By Theorem 6.5, for almost all P almost all ω we have
si(ω)/i→ L.

If U iω ∈ Ω(K,R) then there is some ti(ω) with |ti(ω)− si(ω)| < 2K and

γo,ω[ti(ω)− 2R, ti(ω) + 2R] ⊂W.
Define

I(ω) = ∪{i|U i(ω)∈Ω(K,R)}[ti(ω)−R, ti(ω) +R].

We need to show that I(ω) has positive density in R, ie that

lim inf
ρ→∞

|I(ω) ∩ [−ρ, ρ]|/2ρ > 0.

Since

|ti(ω)− si(ω)| < 2K

whenever U iω ∈ Ω(K,R), it suffices to show that

I ′(ω) = ∪{i|U i(ω)∈Ω(K,R)}[si(ω)−R, si(ω) +R]

has positive density in R.
Let

d = sup{dT (o, go) | g ∈ supp(µ)}
(this is finite since µ has finite support). Then by Mod(S) invariance of dT ,
for all ω and k we have dT (ωk+1o, ωk) < d. Thus for each

t > dT (o, γω)

there is a nt(ω) ∈ N with

|snt(ω)(ω)− t| < d.

If q > 0 and if n′ is a number with |nt(ω)− n′| ≤ q then

dT (ωnt(ω)o, ωn′o) ≤ qd

and hence dist(t, I ′n′(ω)) ≤ qd+ d. Thus if n′ is such that Un
′
(ω) ∈ Ω(K,R)

then t ∈ Nqd+d(I
′(ω)).
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Now, for A > 0 assume that t is such that d(t, I ′(ω)) > Ad + d. Then
there exists an integer n > 0 with U iω /∈ Ω(K,R) for any i ∈ [n−A,n+A]
and |t− d(ωno, γω(0))| < d.

Let Ω0 ⊂ Mod(S)Z be the P full measure set consisting of ω such that
d(ωmo, o)/m → L as m → ±∞. For ω ∈ Ω0 and large enough t(depending
on ω) we have nt(ω) ∈ [9t/(10L), 11t/(10L)].

Define

Λ(A,K,R) = {ω | U iω /∈ Ω(K,R) for any |i| ≤ A}.

Let ΥA,K,R(ω) be the set of k ∈ Z with U iω /∈ Ω(K,R) for any

k −A ≤ i ≤ k +A.

By definition, Ukω ∈ Λ(A,K,R) if and only if k ∈ ΥA,K,R(ω). Thus any
large enough t with d(t, I ′(ω)) > Ad+ d is contained in

[dT (ωko, γω(0))− d, dT (ωko, γω(0)) + d]

for some k < 11t/(10L) with k ∈ ΥA,K,R(ω). By the Birkhoff ergodic

theorem, P (Λ(A,K,R))→ 0 as A→∞.
Also by the Birkhoff ergodic theorem, for almost every ω,

lim
N→∞

|[−N,N ] ∩ΥA,K,R(ω)|/(2N) = P (Λ(A,K,R)).

Thus for large enough T (depending on A) the Lebesgue measure of the
set

{t ∈ [−T, T ] | d(t, I ′(ω)) > Ad+ d}

is less than 3dP (Λ(A,K,R))(11T/10L).
Therefore the density of t ∈ R with d(t, I ′(ω)) > Ad + d is less than

3dP (Λ(A,K,R))/L which is less than 1/10 for large enough A. Thus for
large enough A the Ad+d neighborhood of I ′(ω) has density at least 9/10 in
R so I ′(ω) itself has density at least c = 9

10(Ad+d) > 0 in R. This completes

the proof of Proposition 6.12. �

Proposition 6.9 follows from the following bilateral statement.

Proposition 6.14. There is a K > 0 with the following property. For every
a < b and M > 0, for P almost every sample path ω there is an n0 > 0 such
that for all n > n0 γω,o(cn, dn) contains a connected subsegment of length
M contained in NKMod(S)o.

Proof. Let Ω(M,K,R) be the set of sample paths ω ∈ Mod(S)Z such that
dT (o, γω) < R/10 and γω,o(t − M, t + M) ⊂ NKMod(S)o for some t ∈
(−R/2 +M,R/2−M).

Lemma 6.15. There is a K > 0 such that for all M > 0 there is an function
f with limR→∞ f(R) = 0 and P (Ω(M,K,R)) > 1− f(R).



42 HYUNGRYUL BAIK, ILYA GEKHTMAN AND URSULA HAMENSTÄDT

We first continue with the proof of Proposition 6.14 assuming Lemma
6.15 and will prove Lemma 6.15 afterwards.

Assume without loss of generality that a > 0 (notation as in the statement
of Proposition 6.14). Let as before Ω0 ⊂ Mod(S)Z denote the P full measure
set of all ω such that

dT (ωio, o)/i→ L

and consider ω ∈ Ω0. Choose R > 0 large enough so that

1− f(R) > (b− a)/(10a+ 10b)

Note, Ukω ∈ Ω(M,K,R) if and only if dT (ωio, γω) < R/10 and

γω,ωio(t−M, t+M) ⊂ NKMod(S)o

for some t ∈ (−R/2 +M,R/2−M). This implies that

γω,o(ti(ω)−M, ti(ω) +M) ⊂ NKMod(S)o

for some ti(ω) with |ti(ω)− d(ωio, γω,o(0))| < R/10.
Let si(ω) = dT (ωio, γω,o(0)) and let again

d = sup{dT (o, go) | g ∈ supp(µ)}.

As in the proof of Proposition 6.12, note for every t > dT (o, γω) there is
some i(t) with |t− si(t)(ω)| < d. Hence, for large enough (depending on ω)
n if there is an i with

U iω ∈ Ω(M,K,R)

and

(2a+ b)n/3 ≤ si(ω) ≤ (a+ 2b)n/3

then

γω,o([an, bn]) ∩NKMod(S)o

has a connected segment of length M .
Moreover, si(ω)/i→ L. Thus, for large enough n, we have

(2a+ b)n/3 ≤ si(ω) ≤ (a+ 2b)n/3

for every i with
(3a+ 2b)n

5L
≤ i ≤ (2a+ 3b)n

5L
Hence, if γω,o([an, bn])∩NKMod(S)o does not have a length M connected

segment we have

U iω /∈ Ω(M,K,R)

for any
(3a+ 2b)n

5L
≤ i ≤ (2a+ 3b)n

5L
If this holds for infinitely many n we have

lim inf
N→∞

|{i ∈ [0, N − 1] | U iω ∈ Ω(M,K,R)}|
N

≤ 1− b− a
2a+ 3b



SMALLEST EIGENVALUE OF HYPERBOLIC 3-MANIFOLDS 43

On the other hand, by the Birkhoff ergodic theorem we have:

lim
N→∞

|{i ∈ [0, N − 1] | U iω ∈ Ω(M,K,R)}|
N

= P (Ω(M,K,R)) > 1− (b− a)/(10a+ 10b)

giving a contradiction. �

Finally, we prove Lemma 6.15.

Proof of Lemma 6.15. Clearly the P measure of ω ∈ Mod(S)Z such that
dT (o, [ω−, ω+]) < R/10 converges to 1 with R. Thus it suffices to show that
for each M > 0 the P measure of ω such that γω,o([−R,R]) ∩NKMod(S)o
contains a length M connected subsegment converges to 1 with R. Let
Λ(M,K) be the set of ω such that dT (o, γω) < K and

γω,o([−M,M ]) ⊂ NKMod(S)o.

The following is similar to Lemma 6.13.

Claim 6.16. There is a K > 0 such that P (Λ(M,K)) > 0 for all M .

Proof. Let K > 0 be large enough so that there exists a pseudo-Anosov ele-
ment φ with attracting and repelling (projective) measured foliations φ+ and
φ− with axis γφ−,φ+ passing within K/2 of o and contained in NK/2Mod(S)o.
Let γφ−,φ+,o be the associated parametrization for its axis. Then there are
open neighborhoods U± ⊂ PML of φ± such that for all ζ1 ∈ U+ and
ζ2 ∈ U−, dT (γζ1,ζ2,o(t), γφ−,φ+,o(t)) < K/2 for all t ∈ [−2M, 2M ].

Let Λ′(M,K) be the set of all sample paths ω with ω± ∈ U±. By defi-
nition, Λ′(M,K) ⊂ Λ(M,K). Since the U± are open subsets of PML and
the harmonic measure ν has full support on PML we have ν(U±) > 0 and
hence P (Λ′(M,K)) > 0 and thus P (Λ(M,K)) > 0. �

Note, U iω ∈ Λ(M,K) if and only if

dT (o, γω) < K

and
γω,ωio([−M,M ]) ⊂ NKMod(S)o.

Note, dT (o, ωio) ≤ di and hence if

U iω ∈ Λ(M,K)

for some i with

0 ≤ i ≤ R−M − 2K

2d
then

γω,o([−R,R]) ∩NKMod(S)o

contains a length M connected subsegment. By the Birkhoff ergodic theo-
rem, the P measure of sample paths ω such that U iω /∈ Λ(M,K) for all i
with

0 ≤ i ≤ R−M − 2K

2d
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converges to 0 with R completing the proof. �
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