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URSULA HAMENSTÄDT AND FRIEDER JÄCKEL

Abstract. For every n ≥ 4 we construct infinitely many mututally not
homotopic closed manifolds of dimension n which admit a negatively
curved Einstein metric but no locally symmetric metric.

1. Introduction

As a consequence of the solution to the geometrization conjecture by Perel-
mann, any closed manifold of dimension three which admits a negatively
curved metric also admits a hyperbolic metric, and for surfaces, the corre-
sponding statement is a classical consequence of the uniformization theorem.
This statement is not true any more for closed negatively curved manifolds
of dimension at least four.

Indeed, Gromov and Thurston [GT87] constructed for each dimension
n ≥ 4 and every ϵ > 0 a closed manifold X of dimension n which admits
a metric with curvature contained in the interval [−1 − ϵ,−1 + ϵ] but which
does not admit a hyperbolic metric. These manifolds are cyclic coverings of
standard arithmetic hyperbolic manifolds, branched along a null-homologous
totally geodesic submanifold of codimension two. In the sequel we call such
branched coverings Gromov–Thurston manifolds.

The proof of non-existence of hyperbolic metrics on these manifolds is
however indirect, that is, it it shown that among an infinite collection of
candidate manifolds with pinched curvature, only finitely many admit hy-
perbolic metrics. Much later, Ontaneda [O20] gave a very general method
for constructing closed Riemannian manifolds of any dimension n ≥ 4 with
arbitrarily pinched negative curvature. Some of the examples he found have
in addition some non-zero Pontryagin numbers.

It is a natural question whether these manifolds admit distinguished met-
rics. This was partially answered affirmatively by Fine and Promoselli [FP20]
who constructed negatively curved Einstein metrics on an infinite family of
Gromov-Thurston manifolds in dimension four. These metrics do not have
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constant curvature and therefore by the work of Besson, Courtois and Gal-
lot [BCG95], see also the survey [And10], these manifolds are not homotopy
equivalent to hyperbolic manifolds.

The goal of this article is to extend this result to all dimensions. We show

Theorem 1. For any n ≥ 4 and any ϵ > 0 there exist infinitely many pair-
wise non-homeomorphic smooth closed manifolds X of dimension n with the
following properties.

(1) X admits a Riemannian metric with sectional curvature contained in
[−1 − ϵ,−1 + ϵ].

(2) X admits an Einstein metric with negative sectional curvature.
(3) X is not homeomorphic to any closed locally symmetric space.

The examples in the Theorem are Gromov–Thurston manifolds. For n ≥ 5
they seem to be the first examples of negatively curved Einstein metrics on
manifolds which are not locally symmetric.

Our construction builds on the ideas of Fine and Premoselli, however the
examples we find in dimension four are different from the examples in [FP20].

The following question is motivated by the uniqueness of Einstein metrics
on hyperbolic 4-manifolds [BCG95].

Question. Is it true that an Einstein metric on any closed hyperbolic man-
ifold has constant curvature? Does every Gromov–Thurston manifold admit
an Einstein metric?

The answer to the first question is negative if the Einstein metrics are
allowed to have conical singularities (see Remark 4.4).

1.1. Sketch of proof. In this subsection we outline the rough strategy for
the proof of Theorem 1 and point out the difference to the proof of Fine–
Premoselli.

We start by constructing a particular sequence of closed hyperbolic man-
ifolds of which we take the branched cover. Namely, using subgroup separa-
bility in arithmetic hyperbolic lattices of simplest type, we construct for each
n ≥ 4 a sequence (Mk)k∈N of closed hyperbolic manifolds that contain null-
homologous closed totally geodesic codimension two submanifolds Σk ⊆Mk

with at most two connected components and such that

(1.1) lim
k→∞

diam(Σk)
Rν

k

= 0,

where Rν
k is the normal injectivity radius of Σk ⊆Mk and, by a slight abuse

of notation, diam(Σk) is the maximum of the diameters of the connected
components of Σk.

As Σk ⊆ Mk is homologous to zero, for any fixed integer d ≥ 2 there
exists a cyclic d-fold covering Xk of Mk, branched along Σk. Fine–Premoselli
constructed an approximate Einstein metric ḡk on Xk by gluing together a
model Einstein metric and the hyperbolic metric, where the gluing takes
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place in the region of distance Rk away from Σk. We follow this strategy
and choose as gluing parameter Rk ∶= 1

2R
ν
k. From (1.1) we then deduce that

(1.2) ∫
Xk

∣Ric(ḡk) + (n − 1)ḡk∣2(x)dvolḡk(x)
k→∞ÐÐÐ→ 0.

From this estimate, we obtain the Einstein metric from an application of the
inverse function theorem, using a uniform a priori estimate for the so-called
Einstein operator.

This leaves the question open whether the branched covering manifolds ad-
mit a locally symmetric metric. As our construction of the Einstein metrics
uses a delicate volume estimate, to answer this question in the affirmative we
can not rely on the indirect argument in [GT87]. Moreover the rigidity the-
orem in [BCG95] only holds in dimension four. Instead we show in Section
5 a result of independent interest whose precise version is Theorem 5.5. It
states that given a pair (M,Σ) consisting of a closed hyperbolic n-manifold
M (n ≥ 4) and a codimension two null-homologous embedded totally geo-
desic submanifold Σ of M of the form required for our construction, among
the cyclic covers of M branched along Σ, at most one can be homeomorphic
to a hyperbolic manifold.

1.2. Structure of the article. The article is organized as follows. In Sec-
tion 2 we review the necessary background information. Namely, Section 2.1
introduces the Einstein operator. Section 2.2 explains how the De Giorgi–
Nash–Moser estimates can be used to obtain C0-estimates for the linearized
Einstein operator. In Section 2.3 we recall the construction of the approx-
imate Einstein metric on branched covers due to Fine–Premoselli. The al-
gebraic results about arithmetic hyperbolic manifolds due to Bergeron and
Bergeron–Haglund–Wise we use are contained in Section 2.4. These are then
employed in Section 3 to construct the sequence of closed hyperbolic mani-
folds containing well-behaved codimension two submanifolds. In Section 4.1
we show that the linearized Einstein operator is invertible. The existence
of negatively curved Einstein metrics is then proved in Section 4.2. Finally,
in Section 5 we analyze Gromov Thurstion manifolds and, as an applica-
tion, deduce that we can find such manifolds in any dimension to which our
construction applies and which do not admit any locally symmetric metric.

Acknowledgement: U.H. thanks Alan Reid for pointing out the reference
[BHW11], and Bena Tshishiku for pointing out the reference [CLW18].

2. Preliminaries

2.1. The Einstein operator. As mentioned in the introduction, we shall
construct the Einstein metric by an application of the implicit function the-
orem for the so-called Einstein operator (see [Biq00, Section I.1.C], [And06,
page 228] for more information). This operator is defined as follows.
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Consider the operator Ψ ∶ g → Ric(g) + (n − 1)g acting on smooth Rie-
mannian metrics g on the manifold X, where Ric denotes the Ricci tensor.
As the diffeomorphism group Diff(X) of the manifold X acts on metrics by
pull-back and Ψ is equivariant for this action, the linearization of Ψ is not
elliptic. To remedy this problem, for a given background metric ḡ one defines
the Einstein operator Φḡ (in Bianchi gauge relative to ḡ) by

(2.1) Φḡ(g) ∶= Ric(g) + (n − 1)g +
1

2
L(βḡ(g))♯(g),

where the musical isomorphism ♯ is with respect to the metric g, and βḡ is
the Bianchi operator of ḡ acting on symmetric (0,2)-tensors h by

(2.2) βḡ(h) ∶= δḡ(h) +
1

2
dtrḡ(h) ∶= −

n

∑
i=1
(∇eih)(⋅, ei) +

1

2
dtrḡ(h).

The exact formula (2.1) is not important. What does matter is that, using
the formula for the linearization of Ric ([Top06, Proposition 2.3.7]), one
computes the linearization of Φḡ at ḡ to be

(2.3) (DΦḡ)ḡ(h) =
1

2
∆Lh + (n − 1)h.

Here ∆L is the Lichnerowicz Laplacian acting on symmetric (0,2)-tensors h
by

∆Lh = ∇∗∇h +Ric(h),
where ∇∗∇ is the Connection Laplacian and Ric is the Weitzenböck curvature
operator given by

Ric(h)(x, y) = h(Ric(x), y) + h(x,Ric(y)) − 2 trgh(⋅,R(⋅, x)y)

(see [Pet16, Section 9.3.2]).
Equation (2.3) shows that (DΦḡ)ḡ is an elliptic operator. This opens up

the possibility for an application of the implicit function theorem.
The main point is, as has been observed many times in the literature, that

the Einstein operator can detect Einstein metrics. The following result can
for example be found in [And06, Lemma 2.1].

Lemma 2.1 (Detecting Einstein metrics). Let (X, ḡ) be a complete Rie-
mannian manifold, and let g be another metric on X so that

sup
x∈X
∣βḡ(g)∣(x) <∞ and Ric(g) ≤ λg for some λ < 0,

where βḡ(⋅) is the Bianchi operator of the background metric ḡ. Denote by
Φḡ the Einstein operator defined in (2.1). Then

Φḡ(g) = 0 if and only if g solves the system
⎧⎪⎪⎨⎪⎪⎩

Ric(g) = −(n − 1)g
βḡ(g) = 0

.
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2.2. C0-. To obtain C0-estimates for the linearization of the Einstein opera-
tor, we use once again a standard tool, the De Giorgi–Nash–Moser estimates
on manifolds in the following form.

Lemma 2.2 (C0-estimate). For all n ∈ N, α ∈ (0,1), Λ ≥ 0, and i0 > 0
there exist constants ρ = ρ(n,α,Λ, i0) > 0 and C = C(n,α,Λ, i0) > 0 with the
following property. Let (X,g) be a Riemannian n-manifold satisfying

∣ sec(X,g)∣ ≤ Λ and inj(X,g) ≥ i0.
For f ∈ C0(Sym2(T ∗X)) let h ∈ C2(Sym2(T ∗X)) be a solution of

1

2
∆Lh + (n − 1)h = f.

Then it holds

(2.4) ∣h∣(x) ≤ C(∣∣h∣∣L2(B(x,ρ)) + ∣∣f ∣∣C0(B(x,ρ)))

for all x ∈M .

Here as customary, sec(X,g) denotes the sectional curvature of the met-
ric g and inj(X,g) the injectivity radius, and Sym2(T ∗X) is the bundle of
symmetric (0,2) tensors on X.

In the proof we will make use of a result by Jost–Karcher [JK82, Satz 5.1]
or Anderson [And90, Main Lemma 2.2] that, under the geometric assump-
tions on (X,g), around every point there exists harmonic charts of a priori
size with good analytic control.

Proof. The desired C0-bound will follow from the De Giorgi—Nash—Moser
estimates. The problem is that De Giorgi–Nash–Moser estimates only hold
for scalar equations, but not for systems. To remedy this, we show that ∣h∣
satisfies an elliptic partial differential inequality.

We write ∆ = ∇∗∇ = − tr∇2 for the Connection Laplacian (on tensors and
functions). Using 1

2∆(∣h∣
2) = ⟨∆h,h⟩−∣∇h∣2 and f = 1

2∆h+
1
2 Ric(h)+(n−1)h,

we obtain

−1
2
∆(∣h∣2) = −2⟨f, h⟩ + ⟨Ric(h), h⟩ + 2(n − 1)∣h∣2 + ∣∇h∣2.

Note that ∣Ric(h)∣ ≤ C(n,Λ)∣h∣ since ∣ sec(M)∣ ≤ Λ. Thus, together with the
Cauchy-Schwarz inequality, the above equality implies

(2.5) −1
2
∆(∣h∣2) +C(n,Λ)∣h∣2 ≥ −2∣f ∣∣h∣ + ∣∇h∣2.

Suppose for the moment that h ≠ 0 everywhere. Then ∣h∣ is a nowhere
vanishing C2 function. Observe

∣∇(∣h∣)∣ ≤ ∣∇h∣ and − 1

2
∆(∣h∣2) = −∣h∣∆(∣h∣) + ∣∇(∣h∣)∣2.

Combining this with inequality (2.5) and dividing by ∣h∣ shows

(2.6) −∆(∣h∣) +C(n,Λ)∣h∣ ≥ −2∣f ∣.
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By [JK82, Satz 5.1] (also see [And90, Main Lemma 2.2], [And06, page
230] and [Biq00, Proposition I.3.2]) there exist ρ = ρ(n,α,Λ, i0) > 0 and
C = C(n,α,Λ, i0) with the following property. For all x ∈ X there exists a
harmonic chart φ ∶ B(x,2ρ) ⊆X → Rn centered at x so that

(2.7) e−Q∣v∣g ≤ ∣(Dφ)(v)∣eucl. ≤ eQ∣v∣g

for all v ∈ TB(x,2ρ), and for all i, j = 1, . . . , n

(2.8) ∣∣gφij ∣∣C1,α ≤ C,

where Q > 0 is a very small fixed constant, and ∣∣ ⋅ ∣∣C2,α is the usual Hölder
norm of the coefficient functions in φ(B(p,2ρ)) ⊆ Rn.

Fix x ∈X and choose a harmonic chart φ ∶ B(x,2ρ)→ Rn satisfying (2.7)
and (2.8). In the local harmonic coordinates given by φ, the differential
inequality (2.6) reads

gijφ ∂i∂j(∣h∣ ○φ−1)+C(n,Λ)(∣h∣ ○φ−1) ≥ −2(∣f ∣ ○φ−1) in φ(B(x0,2ρ)) ⊆ Rn.

Since the matrices (gijφ ) are uniformly elliptic by (2.7), the desired estimate
(2.4) follows from the classical De Giorgi–Nash–Moser estimates (see [GT01,
Theorem 8.17]) provided that h ≠ 0 everywhere.

It remains to show that the assumption h ≠ 0 can be dropped. Note that
(2.4) is stable under C2-convergence, that is, if (2.4) holds for a sequence of
hi and if hi → h in the C2-topology, then (2.4) also holds for h. Therefore,
it suffices to construct a sequence hi converging to h in the C2-topology so
that hi ≠ 0 everywhere.

An arbitrary h ∈ C2(Sym2(T ∗X)) can be approximated in the C2-topo-
logy by symmetric (0,2)-tensors hi (i ≥ 1) which are transverse to the zero-
section of Sym2(T ∗X). For reasons of dimension, such a section is disjoint
from the zero-section, in other words, the tensors hi vanish nowhere. There-
fore, the estimate (2.4) holds for all h ∈ C2(Sym2(T ∗X)) and x ∈X. □

2.3. The approximate Einstein metric of Fine–Premoselli. In this
subsection we review the construction of the approximate Einstein metric
on the branched cover of a hyperbolic manifold due to Fine–Premoselli. We
refer the reader to [FP20, Section 3] for more information.

Let M be a closed hyperbolic manifold of dimension n ≥ 4, and let Σ ⊆
M be a closed null-homologous totally geodesic codimension two embedded
submanifold. Fix an integer d ≥ 2 and denote by p ∶X →M the cyclic d-fold
cover branched along Σ. We refer to [FP20] and to Section 3 for an explicit
construction of such branched covers.

Define r ∶X → R by r(x) = dM(p(x),Σ) and u = cosh(r). Set

Umax ∶= cosh(Rν),
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where Rν is the normal injectivity radius of Σ ⊆ M . The construction of
the approximate Einstein metric also depends on a choice of gluing param-
eter Uglue < 1

2Umax. We will later choose Uglue = (Umax)1/2, though this is
irrelevant at the moment.

The following proposition summarizes all the necessary information about
the approximate Einstein metric that will be used later.

Proposition 2.3 (The approximate Einstein metric). There exists a smooth
Riemannian metric ḡ on the branched covering X with the following proper-
ties:

(i) For all m ∈ N there exists a constant C = C(m,n, d) such that

∣∣Ric(ḡ) + (n − 1)ḡ∣∣Cm(X,ḡ) ≤ CU
−(n−1)
glue ;

(ii) The tensor Ric(ḡ) + (n − 1)ḡ is supported in the region {12Uglue < u <
Uglue};

(iii) There exists a constant c = c(n, d) > 0 such that sec(X, ḡ) ≤ −c < 0;
(iv) For all U < Umax the volume of the region {12U < u < U} is bounded

from above by

voln ({
1

2
U < u < U} , ḡ) ≤ CUn−1 voln−2(Σ, ghyp)

for a constant C = C(n, d).

Points (i)-(iii) are contained in [FP20, Proposition 3.1]. Property (iii)
requires that the gluing parameter Uglue is larger than a constant depending
on n and d. As in [FP20], in our construction this will always be the case.
Point (iv) follows from the explicit construction, which we are now going to
explain.

Consider Hn and fix a totally geodesic copy S ⊆ Hn of Hn−2. Then in
exponential normal coordinates centered at S, the hyperbolic metric of Hn

is given by
gHn = dr2 + sinh2(r)dθ2 + cosh2(r)gS ,

where gS is the hyperbolic metric of S. Using the change of variables u =
cosh(r), this becomes

gHn = du2

u2 − 1
+ (u2 − 1)dθ2 + u2gS ,

which is defined for (u, θ) ∈ (1,∞) × S1.
Fine–Premoselli consider metrics of the form

(2.9) g = du2

V (u)
+ V (u)dθ2 + u2gS ,

where V is a positive smooth function. The following is [FP20, Proposition
3.2].
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Lemma 2.4. The metric g defined in (2.9) solves Ric(g) + (n − 1)g = 0 if
and only if V is of the form

(2.10) V (u) = u2 − 1 + a

un−3
for some a ∈ R.

Let ga be the metric (2.9) for the function V = Va given by (2.10). Let
ua denote the largest zero of the function Va. If ua > 0, ga is a smooth Rie-
mannian metric for u ∈ (ua,∞), but in general it will have a cone singularity
along S at u = ua with cone angle depending on a. The following summarizes
[FP20, Lemma 3.3].

Lemma 2.5. There are explicit constants amax = amax(n) > 0 and v = v(n) >
0 such that the following hold.

(i) We have ua > 0 if and only if a ∈ (−∞, amax] and the map a ↦ ua is a
decreasing homeomorphism (−∞, amax]→ [v,∞);

(ii) For each integer d ≥ 1 there exists a unique a = a(d) ∈ (−∞, amax) such
that the cone angle of ga along S at u = ua is 2π

d .
(iii) The sequence (a(d))d∈N is strictly increasing with a(1) = 0 and a(d)→

amax as d→∞.

Therefore, the metric ga(d) defines a global smooth metric on the cyclic d-
fold branched cover of Hn along S. Of course, this is also true in X, the cyclic
d-fold branched cover of M along Σ, at least in a tubular neighbourhood of
Σ.

The approximate Einstein metric ḡ in Proposition 2.3 is then obtained by
interpolating between ga(d) (defined in a tubular neighbourhood of Σ) and
ghyp (defined on X ∖Σ). Namely, ḡ is as in (2.9) for a function V of the form

V = u2 − 1 + a

un−3
χ(u),

where χ smooth cutoff function with χ = 1 in {u ≤ 1
2Uglue} and χ = 0 in

{u ≥ Uglue}. We refer the reader to [FP20, Section 3.2] for further details.
The volume estimate in Proposition 2.3(iv) follows easily because ḡ is of

the form (2.9).

2.4. Algebraic retraction and subgroup separability. In this subsec-
tion we state the results about arithmetic hyperbolic manifolds and arith-
metic groups from Bergeron–Haglund–Wise [BHW11] and Bergeron [Ber00]
that are needed for the construction of good totally geodesic submanifolds
of codimension two (see Proposition 3.1).

Consider a Q- algebraic group G such that the group of its real points
is the product, with finite intersection, of a compact group by the isometry
group O+(n,1) of Hn for some n ≥ 4. We require that G comes by restriction
of scalars from an orthogonal group over a totally real number field and that
G is anisotropic over Q. The arithmetic group Γ is the subgroup of G
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which is defined over the ring of integers in the totally real number field; it
acts cocompactly on Hn. The compact hyperbolic orbifold Γ/Hn is called
standard, and Γ is a called a standard arithmetic lattice or an arithmetic
lattice of simplest type. A sufficiently deep congruence subgroup Γ′ of Γ is
known to be torsion free and hence acts freely on Hn. Following [BHW11]
we call the quotient Γ′/Hn a standard arithmetic hyperbolic manifold.

A Γ-hyperplane in Hn is a totally geodesic hyperplane H ⊂ Hn with the
property that StabΓ(H) acts cocompactly on H. If Γ is an arithmetic group,
then it is well-known that there exists a Γ-hyperplane in Hn if and only if Γ
is standard. Similarly, a Γ-subspace is a totally geodesic subspace Σ of Hn

of arbitrary codimension so that StabΓ(Σ) acts cocompactly on Σ.

Definition 2.6. A subgroup Λ of a group Γ is called separable if for any
γ ∈ Γ ∖ Λ, there exists a finite index subgroup Γ′ ⩽ Γ such that Λ ⩽ Γ′ and
γ ∉ Γ′.

The following is a special case of a result of Bergeron (see [Ber00, Lemme
principal] or [BHW11, Corollary 1.12]).

Theorem 2.7 (Subgroup Separability). Let M = Γ/Hn be a standard arith-
metic hyperbolic manifold and Σ a Γ-subspace. Then StabΓ(Σ) is separable
in Γ.

Note that if Γ is a group as in Theorem 2.7, if Σ is a Γ-subspace and if
Γ′ is a finite index subgroup of Γ, then StabΓ′(Σ) ⩽ Γ′ is separable. Indeed,
if γ ∈ Γ′ ∖ StabΓ′(Σ), then γ ∈ Γ ∖ StabΓ(Σ). Thus if Γ′′ is a finite index
subgroup of Γ which contains StabΓ(Σ) but not γ, then Γ′′ ∩ Γ′ is a finite
index subgroup of Γ′ which contains StabΓ′(Σ) but not γ.

The following summarizes the results of [BHW11] that will be needed in
the sequel.

Theorem 2.8 (Bergeron–Haglund–Wise). Let M = Γ/Hn be a standard
arithmetic hyperbolic manifold and H ⊆ Hn a Γ-hyperplane. Then there
exists a subgroup of finite index Γ′ ⩽ Γ that retracts onto StabΓ′(H), that is,
there is a group homomorphism

retr ∶ Γ′ → StabΓ′(H) such that retr∣StabΓ′(H) = idStabΓ′(H).

Moreover, StabΓ′(H)/H is a standard arithmetic hyperbolic manifold, and
the natural map

StabΓ′(H)/H Ð→ Γ′/Hn

is an embedding whose image agrees with the projection of H ⊆ Hn to Γ′/Hn.

The first half of Theorem 2.8 is [BHW11, Theorem 1.2]. So it remains to
explain why the second part easily follows from the results of [BHW11].

Proof. By [BHW11, Theorem 1.2] there exists a torsion free congruence sub-
group Γ′ ⩽ Γ of finite index. Note that, for any Γ-hyperplane H ⊆ Hn, the
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stabilizer StabΓ′(H) of H in Γ′ is a congruence subgroup of the arithmetic
group StabΓ(H).

Appealing to [BHW11, Theorem 1.4] we may assume, after possibly pass-
ing to a further finite index congruence subgroup, that Λ = StabΓ′(H) is a
virtual retract of Γ′, that is, there exists a finite index subgroup Q ⩽ Γ′ con-
taining Λ and a homomorphism Q → Λ that is the identity when restricted
to Λ.

Now Λ/H is a compact standard arithmetic manifold, and the natural
map Λ/H → Q/Hn induced by the inclusion H ⊆ Hn is an immersion. By
Theorem 2.7 and the following remark, the subgroup Λ is separable in Q.

If the immersion Λ/H → Q/Hn is not an embedding, then the hyperplane
H is not precisely invariant under Q, that is, there exist γ ∈ Q∖Λ such that

(2.11) γ(H) ∩H ≠ ∅ but γ(H) ≠H.

Then γ(H) ∩H is the intersection of two totally geodesic hyperplanes and
hence it is a totally geodesic submanifold of H of codimension one. As the
action of Λ on H is cocompact, there exists a compact fundamental domain
D ⊆ H for the action of Λ on H. For any γ ∈ Q ∖ Λ satisfying (2.11) there
exists, by precomposing with a suitable element from Λ, an element γ′ ∈ Q∖Λ
such that

(2.12) γ′(H) ∩H ≠ ∅ and γ′(D) ∩D ≠ 0.

Since the action of Q on Hn is discrete and D is compact, there exist only
finitely many elements in Q∖Λ satisfying (2.12). Keeping in mind that Λ is
separated in Q, we can find a finite index subgroup Q′ ⩽ Q which contains
Λ but does not contain any of the elements satisfying (2.12), and hence
also no element satisfying (2.11). Then the manifold Λ/H is embedded in
Q′/Hn. Furthermore, the restriction of the retraction Q→ Λ to Q′ defines a
retraction Q′ → Λ. This completes the proof. □

3. Good totally geodesic submanifolds of codimension two

The goal of this section is to prove the following proposition.

Proposition 3.1 (Codimension two submanifolds). For each n ≥ 4 and any
standard arithmetic hyperbolic manifold M , there is a sequence of finite cov-
ers (Mk)k∈N of M containing closed embedded totally geodesic submanifolds
Σk ⊂Hk ⊂Mk with the following properties:

(i) The manifolds Σk are all isometric, and they are of codimension 2.
(ii) Σk is null-homologous in the embedded connected hypersurface Hk ⊂

Mk;
(iii) Σk has at most two connected components;
(iv) We have

lim
k→∞

diam(Σk)
Rν

k

= 0,
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where Rν
k is the normal injectivity radius of Σk ⊆Mk and, by abuse of

notation, diam(Σk) is the maximum of the diameters of the connected
components of Σk.

Before we come to the proof of Proposition 3.1, we first show how it can
be used to control the L2-norm of the approximate Einstein metrics.

Namely, let (Mk)k∈N and Σk ⊆Mk be as in Proposition 3.1. Fix an integer
d ≥ 2, and denote by Xk the cyclic d-fold cover of Mk branched along Σk.
Set

(3.1) Uk;max ∶= cosh(Rν
k) and Uk;glue ∶= (Uk;max)

1
2 .

Let ḡk be the approximate Einstein metric on Xk given by Proposition 2.3.
Then we easily obtain the following from Proposition 2.3 and Proposition 3.1.

Corollary 3.2 (Small L2-norm). For the L2-norm of Ric(ḡk)+ (n−1)ḡk we
have

∫
Xk

∣Ric(ḡk) + (n − 1)ḡk∣2(x)dvolḡk(x)
k→∞ÐÐÐ→ 0.

This is the key estimate that will enable us to use a fairly simple pertur-
bation argument for the construction of Einstein metrics.

Proof of Corollary 3.2. By Proposition 2.3(i),(ii) the tensor Ric(ḡk) + (n −
1)ḡk is supported in the region {12Uk;glue < u < Uk;glue} and it is uniformly
bounded from above by

(3.2) ∣∣Ric(ḡk) + (n − 1)ḡk∣∣C0(Xk,ḡk) ≤ CU
−(n−1)
k;glue

It follows from Proposition 3.1(iii),(iv) and the definition (3.1) of Uk;glue that
for all ε > 0 and k ≥ k0(ε) large enough we have

voln−2(Σk, ghyp) ≤ C exp ((n − 3)diam(Σk)) ≤ C exp(1
2
εRν

k) ≤ CU
ε
k;glue.

Together with the volume bound in Proposition 2.3(iv) this implies
(3.3)

voln ({
1

2
Uk;glue < u < Uk;glue} , ḡ) ≤ CUn−1

k;glue voln−2(Σ, ghyp) ≤ CU
n−1+ε
k;glue .

Combining (3.2) and (3.3) implies the desired estimate given that we choose
ε < n − 1. □

We now come to the proof of Proposition 3.1.

Proof of Proposition 3.1. The proof of Proposition 3.1 is divided into three
steps.
Step 1. Let M be a standard arithmetic hyperbolic manifold. Because of
Theorem 2.8 and [BHW11, Theorem 1.4], after passing to a finite cover, we
may assume that M = Γ/Hn where Γ is a torsion free cocompact lattice and
that there exists a Γ-hyperplane H̃ ⊆ Hn with the following properties:
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(1) StabΓ(H̃)/H̃ is a standard arithmetic hyperbolic manifold which is
embedded in Γ/Hn;

(2) There is a retraction retr ∶ Γ→ StabΓ(H̃);
(3) Any geometrically finite subgroup of Γ is a virtual retract.

Since StabΓ(H̃)/H̃ is a standard arithmetic hyperbolic manifold, there
exists a StabΓ(H̃)-hyperplane Σ̃ ⊆ H̃ and a subgroup Q ⩽ StabΓ(H̃) of finite
index such that

Σ = StabQ(Σ̃)/Σ̃
is a standard arithmetic hyperbolic manifold embedded in Q/H.

The preimage Γ′ ∶= retr−1(Q) of Q ⩽ StabΓ(H̃) under the retraction retr ∶
Γ → StabΓ(H̃) is a finite index subgroup of Γ. Note that StabΓ′(H̃) =
Γ′ ∩ StabΓ(H̃) = Q, and so the retraction of Γ restricts to a retraction retr ∶
Γ′ → StabΓ′(H̃). Moreover, any geometrically finite subgroup of Γ′ is still a
virtual retract of Γ′.

Therefore, we have obtained a finite index subgroup Γ′ ⩽ Γ such that
StabΓ′(Σ̃)/Σ̃, StabΓ′(H̃)/H̃ and Γ′/Hn are all standard arithmetic hyper-
bolic manifolds that are smoothly embedded in each other and so that (2),(3)
above still hold for Γ′.

For ease of notation we will from now on replace Γ′ by Γ in our notations
and put M = Γ/Hn. Furthermore we put

ΓΣ ∶= StabΓ(Σ̃), Σ ∶= ΓΣ/Σ̃, ΓH ∶= StabΓ(H̃), H ∶= ΓH/H̃.

This notation is slightly different than in Section 2.4, where we used H to
denote a hyperplane in Hn. We hope that this leads to no confusion.
Step 2. Let R > 0 be arbitrary. We will now show that one can pass to
a finite-sheeted cover MR → M that keeps Σ fixed but so that the normal
injectivity radius radius of Σ ⊆ MR is at least R. To achieve this we will
exploit the subgroup separability from Theorem 2.7.
Proof of Step 2. We first make the following observation: If the normal
injectivity radius of Σ ⊆ M is at less than R, then there exists γ ∈ Γ such
that

(3.4) dHn(γ ⋅ x̃0, x̃0) ≤ 2(R + diam(Σ)) and γ ∉ ΓΣ,

where x̃0 ∈ Σ̃ is some basepoint. Indeed, if the normal injectivity radius of
Σ ⊆ M is less than R, then there exists a geodesic σ ∶ [0,1] → M of length
at most 2R such that

σ(i) ∈ Σ and σ′(i) ⊥ Tσ(i)Σ for i = 0,1.

Let x0 ∈ Σ be the projection of the chosen basepoint x̃0 ∈ Σ̃. Choose a
distance minimizing geodesic τi in Σ from x0 to σ(i). Then the concatenation
τ0 ⋅ σ ⋅ τ−11 is a loop based at x0 of length at most 2(R + diam(Σ)). Clearly,
this loop is not homotopic to a loop in Σ. This proves the existence of an
element γ ∈ π1(M,x0) ≅ Γ satisfying (3.4).
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Note that, for R > 0 fixed, there are only finitely many elements γ ∈ Γ
satisfying the conditions in (3.4). Therefore, by Theorem 2.7, there is a
finite index subgroup Γ′ of Γ containing ΓΣ such that γ ∉ Γ′ for all γ ∈ Γ
satisfying (3.4).

Since Γ′ is a subgroup of Γ of finite index, we know that StabΓ′(H̃) is a
subgroup of finite index in StabΓ(H̃) and hence it is a cocompact torsion free
lattice. In particular, StabΓ′(H̃) is a geometrically finite subgroup of Γ. Thus
from property (3) in Step 1 we obtain a finite index subgroup Q ⩽ Γ such that
there is a retraction retr′ ∶ Q → StabΓ′(H̃). As StabΓ′(H̃) = StabΓ′∩Q(H̃),
we obtain a retraction retr′ ∶ Γ′∩Q→ StabΓ′∩Q(H̃) by restriction. Moreover,
ΓΣ ⩽ StabΓ′(H̃) implies ΓΣ ⩽ Γ′ ∩Q. The finite cover M ′ → M associated
to Γ′ ∩ Q has the desired properties. For ease of notation, we will in the
following simply write Γ′ for Γ′ ∩Q. This completes the proof of Step 2. ∎

The construction in Step 2 yields a finite cover M ′ of M and connected
totally geodesic submanifolds Σ ⊆ H ′ ⊆ M ′ = Γ′/Hn such that the normal
injectivity radius of Σ ⊆M ′ is larger than an arbitrary multiple of diam(Σ).
If Σ is null-homologous in H ′ (and hence in M ′) we are done. So we assume
that Σ is not null-homologous in H ′.
Step 3. Finally we show that there is a two-sheeted cover M̂ →M ′ such that
the preimage Σ̂ ⊆ M̂ of Σ is null-homologous in M̂ and the preimage Ĥ of
H ′ in M̂ is connected.
Proof of Step 3. In accordance with Fine–Premoselli [FP20, Definition 2.2]
we say that Σ ⊆ H ′ separates H ′ if H ′ ∖ Σ is disconnected. It is well-
known that this can be detected algebraically. Namely, Σ determines a class
[Σ] ∈Hn−2(H ′;Z/2Z) and hence, by Poincaré duality, also a homomorphism

ρ ∶ π1(H ′)→ Z/2Z

that counts the number of intersections mod 2 of a generic loop with Σ.
Then Σ separates H ′ if and only if ρ is trivial (see for example [FP20, proof
of Lemma 2.3]). Therefore, if ρ is non-trivial, then the two-sheeted cover
Ĥ →H ′ associated to ker(ρ) is connected, and the preimage Σ̂ ⊆ Ĥ of Σ will
separate Ĥ. In particular, Σ̂ is null-homologous in Ĥ. Note that as π1(Σ)
is contained in the kernel of ρ, the manifold Σ̂ has precisely two connected
components, each of which is isometric to Σ.

Precomposing with the retraction retr′ ∶ Γ′ → StabΓ′(H̃) we can extend ρ
to a homomorphism defined on Γ′. Let Γ̂ ⩽ Γ′ be the kernel of this homo-
morphism. Then M̂ = Γ̂/Hn contains the two-sheeted cover Ĥ → H ′ of H
as an embedded totally geodesic submanifold. Since Σ̂ is null-homologous
in Ĥ, it is also null-homologous in M̂ . Furthermore, as Γ̂ ⩽ Γ′, the normal
injectivity radius of Σ̂ is at least R. This completes the proof of Step 3. ∎

Recall that if Σ is not homologous to zero then Σ̂ has precisely two con-
nected components, isometric to Σ, and the normal injectivity radius can not
become smaller. Therefore, this completes the proof of Proposition 3.1. □
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4. Construction of the Einstein metric

Let Mk be a sequence of closed hyperbolic n-manifolds with a totally
geodesic codimension two submanifold Σk as in Proposition 3.1, Xk the
cyclic d-fold covering of Mk branched along Σk, and ḡk the approximate
Einstein metric on Xk given by Proposition 2.3.

The goal of this section is to prove Theorem 1, that is, to show that Xk

admits a negatively curved Einstein metric. By Lemma 2.1 it suffices to show
that the Einstein operator Φk = Φḡk defined in (2.1) has a zero sufficiently
close to the zero section. We will achieve this by an application of the Inverse
Function Theorem.

Recall from (2.3) that the linearization of the Einstein operator at the
background metric ḡk is given by

L = (DΦk)ḡk =
1

2
∆L + (n − 1) id .

We will first show in Section 4.1 that L is an invertible linear operator
between suitable Banach spaces. Section 4.2 then contains the proof of
Theorem 1.

4.1. Invertibility of the linearized Einstein operator. It is a classic
result of Koiso [Koi78, Section 3] (also see [Bes08, Lemma 12.71]) that for
a closed Einstein manifold with negative sectional curvature, the operator
L has a uniform L2-spectral gap (only depending on the negative upper
curvature bound). By an adaptation of Koiso’s argument, the same is also
true for the approximate Einstein metrics ḡk.

Lemma 4.1 (L2-spectral gap). There exists a constant λ = λ(n, d) > 0 such
that for all sufficiently large k we have

λ∫
Xk

∣h∣2 dvolḡk ≤ ∫
Xk

⟨Lh,h⟩dvolḡk

for all h ∈ C2(Sym2(T ∗Xk)).

For a detailed proof we refer the reader to [FP20, Proposition 4.3], which
is a bit more general than what we need here.

Fix a Hölder parameter α ∈ (0,1). We equip C0,α(Sym2(T ∗Xk)) with
the hybrid norm

(4.1) ∣∣f ∣∣0 ∶=max{∣∣f ∣∣C0,α(Xk,ḡk), ∣∣f ∣∣L2(Xk,ḡk)}.

Similarly, we equip C2,α(Sym2(T ∗Xk)) with the hybrid norm

(4.2) ∣∣h∣∣2 ∶=max{∣∣h∣∣C2,α(Xk,ḡk), ∣∣h∣∣H2(Xk,ḡk)},

where ∣∣ ⋅ ∣∣H2(Xk,ḡk) is the Sobolev norm

∣∣h∣∣H2(Xk,ḡk) ∶= (∫Xk

∣h∣2 + ∣∇h∣2 + ∣∆h∣2 dvolḡk)
1
2

.
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Here the Hölder norm of a tensor is defined by the Hölder norm of the
coefficients of the tensor in a harmonic chart defined on balls of a priori size
(for a detailed account we refer to [HJ22, Proof of Proposition 2.5]).

Using the C0-estimate from Lemma 2.2 and the L2-estimate of Lemma 4.1,
it is now straightforward to show that L is invertible (with universal con-
stants).

Proposition 4.2 (L is uniformly invertible). There exists a constant C =
C(α,n, d) with the following property. For all k sufficiently large, the lin-
earized Einstein operator

L ∶ (C2,α(Sym2(T ∗Xk)), ∣∣ ⋅ ∣∣2)Ð→ (C0,α(Sym2(T ∗Xk)), ∣∣ ⋅ ∣∣0)

is invertible, and
∣∣L∣∣op, ∣∣L−1∣∣op ≤ C,

where ∣∣ ⋅ ∣∣0 resp. ∣∣ ⋅ ∣∣2 is the norm defined in (4.1) resp. (4.2).

Proof. It is clear that ∣∣L∣∣op is bounded by a universal constant. It will suffice
to prove the a priori estimate ∣∣h∣∣2 ≤ C ∣∣Lh∣∣0 for all h ∈ C2,α(Sym2(T ∗Xk)).
Indeed, given the a priori estimate, standard arguments show that L is sur-
jective; consequently L is invertible and ∣∣L−1∣∣op ≤ C due to the a priori
estimate.

Clearly, ∣∣h∣∣L2(Xk) ≤ C ∣∣Lh∣∣L2(Xk) because L has a uniform L2-spectral
gap (Lemma 4.1). Since L = 1

2∆L + (n − 1) id, this L2-estimate implies

(4.3) ∣∣h∣∣H2(Xk) ≤ C ∣∣Lh∣∣L2(Xk).

Moreover, the well-known Schauder estimates (see [HJ22, Proposition 2.5])
state

(4.4) ∣∣h∣∣C2,α(Xk) ≤ C(∣∣Lh∣∣C0,α(Xk) + ∣∣h∣∣C0(Xk)).

The C0-estimate (2.4) together with (4.3) yields
(4.5)
∣∣h∣∣C0(Xk) ≤ C(∣∣h∣∣L2(Xk) + ∣∣Lh∣∣C0(Xk)) ≤ C(∣∣Lh∣∣L2(Xk) + ∣∣Lh∣∣C0(Xk)).

Keeping in mind the definitions (4.1) and (4.2) of the norms ∣∣ ⋅ ∣∣0 and ∣∣ ⋅ ∣∣2,
the desired a priori estimate ∣∣h∣∣2 ≤ C ∣∣Lh∣∣0 follows by combining (4.3), (4.4)
and (4.5). □

4.2. Proof of the Main Theorem. The goal of this subsection is to present
the proof of our main result.

Theorem 4.3 (Existence of Einstein metrics). For all sufficiently large k
there exists a metric ĝk on Xk such that

Ric(ĝk) + (n − 1)ĝk = 0 and sec(Xk, ĝk) ≤ −c(n, d) < 0.
Moreover,

∣∣ĝk − ḡk∣∣C2,α(Xk,ḡk)
k→∞ÐÐÐ→ 0.
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Before we come to the proof we point out that, for k sufficiently large,
the Einstein metric ĝk can not be locally symmetric. Indeed, sec(Σk, ḡk) =
−u−2a(d) < −1 by (2.9) and Lemma 2.5. Thus sec(Σk, ĝk) < −1 for all k suffi-
ciently large, and so ĝk can not be (real) hyperbolic. Moreover, by construc-
tion, the metric ḡk is hyperbolic outside of a tubular neighborhood of Σk.
Hence, outside of a tubular neighborhood of Σk, sec(Xk, ĝk) is very close to
−1, and so ĝk can not be complex- or quaternionic hyperbolic nor the Cayley
plane.

In fact, in Section 5 we will show that for a slightly restricted choice of
the hyperbolic manifolds Mk, at most one of the cyclic branched coverings
Xk can not admit any locally symmetric metric.

Proof. We equip Ck,α(Sym2(T ∗Xk)) with the norm ∣∣⋅∣∣k defined in (4.1) and
(4.2) (k = 0,2); B(h, r) shall denote the balls with respect to these norms.

Any element in B(ḡk,1/2) ⊆ C2,α(Sym2(T ∗Xk)) is a positive definite
(0,2)-tensor, that is, a Riemannian metric on Xk. Let Φk = Φḡk be the
Einstein operator defined in (2.1), which we consider as an operator

Φk ∶ B(ḡk,1/2) ⊆ C2,α(Sym2(T ∗Xk))→ C0,α(Sym2(T ∗Xk)).

Denote by L = (DΦk)ḡk the linearization of Φk at the background metric ḡk.
By Proposition 4.2 there exists a universal constant C0 = C0(α,n, d) such
that, for all k sufficiently large, L is invertible with ∣∣L∣∣op, ∣∣L−1∣∣op ≤ C0.
Moreover, by possibly enlarging C0, it is clear that the map g ↦ (DΦk)g
is C0-Lipschitz. Therefore, applying (a quantitative version of) the Inverse
Function Theorem implies that there exist constants ε0 = ε0(α,n, d) > 0 and
C = C(α,n, d) with the following property: For each f ∈ C0,α(Sym2(T ∗Xk))
with ∣∣f −Φk(ḡk)∣∣0 ≤ ε0 there exists a metric gf ∈ C2,α(Sym2(T ∗Xk)) such
that

Φk(gf) = f and ∣∣gf − ḡk∣∣2 ≤ C ∣∣f −Φk(ḡk)∣∣0.
Note that Φk(ḡk) = Ric(ḡk) + (n − 1)ḡk. Hence it follows from Proposi-
tion 2.3(i) and Corollary 3.2 that ∣∣Φk(ḡk)∣∣0 → 0 as k → ∞. In particular,
for all k sufficiently large, f = 0 satisfies ∣∣f −Φk(ḡk)∣∣ ≤ ε0. Therefore, there
exists a metric ĝk on Xk such that

Φk(ĝk) = 0 and ∣∣ĝk − ḡk∣∣2
k→∞ÐÐÐ→ 0.

In particular, as sec(Xk, ḡk) ≤ −c(n, d) < 0 by Proposition 2.3(iii), also
sec(Xk, ĝk) < 0 for all k sufficiently large. Therefore, Φk(ĝk) = 0 implies
Ric(ĝk) + (n − 1)ĝk = 0 due to Lemma 2.1. This completes the proof. □

For the formulation of the next remark, note that there is a natural action
of the cyclic group Cd of order d on the d-fold branched cover Xk.

Remark 4.4. For all k sufficiently large, the Einstein metric ĝk on Xk given
by Theorem 4.3 is Cd-invariant. In particular, for all k sufficiently large (de-
pending on d), the hyperbolic manifoldsMk admit negatively curved Einstein
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metrics with a conical singularity and cone angle 2π
d along the codimension

two submanifold Σk ⊆Mk.

Proof. In the proof of Theorem 4.3, the Einstein metric ĝk was the zero of the
Einstein operator Φk obtained from an application of the Inverse Function
Theorem. Since the Inverse Function Theorem can be proved using the
Banach Fixed Point Theorem, ĝk is of the form ḡk + ĥk, where ĥk is a fixed
point of the operator

Ψk ∶ C2,α(Sym2(T ∗Xk))→ C2,α(Sym2(T ∗Xk)), h↦ h −L−1(Φk(ḡk + h)).
Using the definition (2.1) of the Einstein operator, one can easily check that
if a Riemannian metric g on Xk is φ-invariant for some φ ∈ Isom(Xk, ḡk),
then also Φk(g) is φ-invariant. As the fixed point ĥk is given by the limit
limi→∞Ψi

k(0), this shows that ĥk, and hence ĝk, is Isom(Xk, ḡk)-invariant.
However, it is apparent from the construction of ḡk explained in Section 2.3
that ḡk is Cd-invariant. Therefore, also ĝk is Cd-invariant. □

5. Einstein manifolds not homeomorphic to locally symmetric
spaces

By Theorem 4.3 there exist negatively curved Einstein metrics on some
branched covers X of certain hyperbolic manifolds M . The construction is
valid for all covering degrees smaller than a number depending on M . As
M varies, this maximal covering degree can be arbitrarily large. The goal of
this section is to show that for any dimension n ≥ 4, we find infinitely many
such branched coverings which are not homeomorphic to a locally symmetric
manifold.

We start with the following basic observation.

Proposition 5.1. Let M be a closed hyperbolic n-manifold and Σ ⊆ M
a closed null-homologous totally geodesic submanifold of codimension two.
Then the cyclic d-fold covering X of M branched along Σ is not homeomor-
phic to any locally symmetric manifold, except possibly hyperbolic manifolds.

Proof. Arguing by contradiction, we assume that X is homeomorphic to a
locally symmetric manifold N that is not hyperbolic. We first observe that
this locally symmetric manifold has to be of real rank one. Namely, since
X is aspherical, a locally symmetric metric on a manifold homeomorphic
to X is of non-positive curvature. By a theorem of Wolf (Theorem 4.2
of [W62]), a cocompact lattice in a semisimple Lie group of real rank r
contains a subgroup isomorphic to Zr. However, as X carries a negatively
curved metric [GT87], by Preissmann’s theorem [Pr42, Théorème 10] (also
see [dC92, Theorem 3.2 in Chapter 12]) any abelian subgroup of π1(X) is
infinite cyclic.

It remains to show that X is not homeomorphic to any complex-, qua-
ternionic- or Cayley-hyperbolic manifold. If X is homotopy equivalent to a
complex hyperbolic manifold N , then there is a degree d ≥ 2 map Π ∶ N →M .
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Since M has constant negative curvature, the map Π is homotopic to a
harmonic map. But by a theorem of Sampson [Sa86], any harmonic map
from a compact Kähler manifold into a real hyperbolic manifold is trivial in
homology of dimension larger than two, which contradicts the fact that the
degree of the map Π is positive (unless n = 2 and N is also real hyperbolic).

By a celebrated result of Novikov [Nov65, Theorem 1], the rational Pon-
tryagin classes are a homeomorphism invariant. In particular, the Pontryagin
numbers are a homeomorphism invariant. By a result of Lafont–Roy [LR07,
Theorem B] all Pontryagin numbers of X vanish, while it is a well-known
consequence of the Hirzebruch proportionality principle [Hir56, Satz 2 and
Equation (2)] that closed quaternionic- or Cayley-hyperbolic manifolds have
some non-zero Pontryagin numbers (see [LR07, Corollary 3]). Therefore,
X can also not be homeomorphic to a quaternionic- or Cayley-hyperbolic
manifold. □

As a consequence of Proposition 5.1 and the work of Besson, Courtois and
Gallot [BCG95] we obtain.

Corollary 5.2. If dim(X) = 4 and X admits an Einstein metric as con-
structed in Theorem 4.3 then X is not homeomorphic to a locally symmetric
manifold.

Proof. Using the notations from Proposition 5.1, if X is homeomorphic to a
locally symmetric manifold M then M is real hyperbolic. As X admits an
Einstein metric g, it is a consequence of [BCG95, Théorème 9.6] (also see
[And10, Corollary 4.6]) that X is diffeomorphic to M and g is of constant
curvature. However, the curvature of the Einstein metric g on X is not
constant, from which the corollary follows. □

In the remainder of this section, which is independent of the rest of the
article, we show that for any n ≥ 4 there are infinitely many arithmetic
hyperbolic manifolds M of dimension n which admit branched covers to
which our construction of Einstein metrics applies, but such that at most
one of these branched covers can be homeomorphic to a hyperbolic manifold.
Together with Theorem 5.5, this completes the proof of Theorem 1.

We begin with collecting some more specific information on the standard
arithmetic hyperbolic manifolds used in our construction. Let k be a totally
real number field of degree d over Q equipped with a fixed embedding into R
which we refer to as the identity embedding. Let V be an (n+1)-dimensional
vector space over k equipped with a quadratic form q (with associated sym-
metric matrix Q) defined over k which has signature (n,1) at the identity
embedding, and signature (n + 1,0) at the remaining embeddings. Such
a quadratic form is called admissible. We require in the sequel that q is
anisotropic over Q. This means that q = 0 has no rational solution.

Let Rk be the ring of integers of the number field k and let O(q,Rk) be
the group of automorphisms of the quadratic form q which are defined over
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Rk, that is,
O(q,Rk) ∶= {X ∈ GLn+1(Rk) ∣XtQX = Q}.

A subgroup Γ of the isometry group O+(n,1) of the hyperbolic space Hn

is called an arithmetic group of simplest type if Γ is commensurable with
a conjugate of an arithmetic group O(q,Rk). As the quadratic form q is
admissible and anisotropic over Q, an arithmetic group of simplest type Γ is
a cocompact lattice in O+(n,1). Thus Γ/Hn is a compact hyperbolic orbifold
with singularities corresponding to the fixed points of Γ. We refer to [Em23,
Example 6.30] for more information.

Example 5.3. The quadratic form

q(x) = −
√
2x20 + x21 + ⋅ ⋅ ⋅ + x2n

on Rn+1 is defined over the quadratic extension Q(
√
2) of Q. Evaluation

on the non-identity embedding Q(
√
2) → R given by

√
2 → −

√
2 shows that

q is admissible, moreover it is anisotropic over Q. The upper paraboloid
{x ∈ Rn+1 ∣ q(x) = −1 and x0 > 0} is a model for Hn.

The ring of integers of the number field Q(
√
2) is the ring Z[

√
2] and

hence
O(q,Z[

√
2]) = O(q) ∩GLn+1 (Z[

√
2])

is a cocompact lattice in O+(n,1).

Standard theory of quadratic forms (see [La73]) provides an equivalence
over k of the quadratic form q to an admissible diagonal quadratic form.
Thus we may assume without loss of generality that

q(x) = −a0x20 + a1x21 +⋯ + anx2n
with ai ∈ k, ai > 0. Put Γ = O(q,Rk).

Let ι ∈ Isom(Hn) be the geometric involution that acts via reflection in
the x1-variable, that is,

ι(x0, x1, x2, . . . , xn) = (x0,−x1, x2, . . . , xn).
Then H̃ ∶= Fix(ι) = {x ∈ Hn ∣x1 = 0} is a hyperplane. The quadratic form

q0(x) = −a0x20 + a2x22 +⋯ + anx2n
on the linear subspace V0 = {x1 = 0} of V defined over k is admissible
and anisotropic over Q. Under the obvious identifications we then have
StabΓ(H̃) = O+(n − 1,1) ∩O(q,Rk), so that, by the same reason as above,
the quotient StabΓ(H̃)/H̃ is compact. This means that, in the terminology
of Section 2.4, H̃ is a Γ-hyperplane. Furthermore, we have ιΓι = Γ.

Consider the sequence Γm ⊲ Γ of congruence subgroups defined as the
kernel of the natural homomorphism

Γ→ GLn+1 (Rk)→ GLn+1 (Rk/Om)
where Om is a sequence of mutually distinct prime ideals in Rk. For suf-
ficiently large m the group Γm is sufficiently deep and hence torsion free.
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The quotient manifold Nm = Γm/Hn is a standard arithmetic hyperbolic
manifold. Moreover, by construction, Nm is oriented.

As kernels are normal subgroups, one easily checks ιΓmι
−1 = Γm. It follows

that ι descends to an isometric involution of Nm = Γm/Hn, again denoted
by ι. The fixed point set of this involution is a (possibly disconnected)
totally geodesic submanifold of codimension one. Fix a component H of
this submanifold. We may assume that H is the projection to Nm of the
Γm-hyperplane H̃. Following the construction in Section 3, we know that
StabΓm(H̃) is a virtual retract of Γm. Let Γ′m ⩽ Γm be a finite index sub-
group containing the fundamental group StabΓm(H̃) of H which retracts
onto StabΓm(H̃).

Lemma 5.4. There exists a ι-invariant finite index subgroup Γ0
m ⩽ Γ′m which

contains StabΓm(H̃).

In particular, by restricting the retraction ret ∶ Γ′m → StabΓm(H̃) to Γ0
m,

we see that Γ0
m also retracts onto StabΓ0

m
(H̃) = StabΓm(H̃).

Proof. As Γ′m ⩽ Γm has finite index and Γm is ι-invariant, Γ0
m ∶= Γ′m∩ιΓ′mι−1 is

a ι-invariant finite index subgroup of Γm. Moreover, by inspecting the action
of the differential, one can check that ι−1StabΓm(H̃)ι ⊆ StabΓm(H̃) ⊆ Γ′m.
This then implies StabΓm(H̃) ⩽ Γ0

m. □

The group Γ0
m is invariant under conjugation by ι, and this action of ι on

Γ0
m is nontrivial. Thus ι acts as an isometric involution on Mm = Γ0

m/Hn. Its
fixed point set is a disjoint union of totally geodesic embedded hyperplanes
containing the quotient H of H̃ under the action of StabΓm(H̃).

By the construction in Section 4, by perhaps passing to a two-sheeted
covering M̂m of Mm, we may assume that the preimage Ĥ of H in M̂m

contains a totally geodesic embedded hyperplane Σ̂m which is homologous
to zero and consists of at most two connected components. The involution
ι may not lift to M̂m, but it lifts to the covering M̃m of M̂m of degree at
most two with fundamental group π1(M̂m) ∩ ιπ1(M̂m)ι−1. Note that as the
hyperplane H in Mm is contained in the fixed point set of the involution ι, if
π1(M̂m) < π1(Mm) is not invariant under conjugation by ι, then the preimage
of Ĥ in M̃m consists of two components of Ĥ, each of which contains a totally
geodesic null homologous hyperplane as required in the construction in the
beginning of this article.

Using this construction, Theorem 1 is an immediate consequence of The-
orem 4.3, Proposition 5.1 and the following main result of this section.

Theorem 5.5. Let M be an oriented closed hyperbolic manifold of dimen-
sion n ≥ 4 and let H ⊂M to a totally geodesic embedded hyperplane. Assume
that H is contained in the fixed point set of an orientation reversing iso-
metric involution ι and that H contains a (possibly disconnected) embedded
totally geodesic hyperplane Σ which is homologous to zero in H. Then for
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at most one d ∈ 4Z, the cyclic d-fold covering of M branched along Σ can be
homeomorphic to a hyperbolic manifold.

Remark 5.6. Building on the results in this section, in forthcoming work,
we show that for n ≥ 4, no nontrivial branched cover of a closed hyperbolic
n-manifold admits a hyperbolic metric. We refer to [KS12] for a closely
related result.

The remainder of this article is devoted to the proof of Theorem 5.5. It is
inspired by [GT87, Remark 3.6], though it does not directly follow from it.
The section is divided into two subsections. We always consider a degree d
branched covering X of M for an even number d ≥ 2, and we assume that
X admits a hyperbolic metric.

5.1. Fixed point sets of isometries. Let M be as in the statement of
Theorem 5.5, containing the hypersurface H ⊃ Σ. By assumption, Σ bounds
a submanifold H0 ⊂H. Put H1 =H ∖H0.

The d-fold covering X of M branched along the totally geodesic subman-
ifold Σ ⊂ H ⊂ M can be realized as follows. Let Mcut be obtained from M
by cutting along H0, that is, Mcut is the metric completion of M −H0. Thus
Mcut is a compact (topological) manifold whose boundary consists of two
copies H−0 and H+0 of H0 intersecting in Σ. The manifold X is obtained by
gluing d copies M1

cut, . . . ,M
d
cut of Mcut along the boundary, so that the copy

of H+0 in M i
cut is glued to the copy of H−0 in M i+1

cut (where the superscripts i
are taken modd).

Let ι = ιM ∶ M → M be the isometric involution whose fixed point set
contains H ⊆ Fix(ι). Since locally near H, ιM acts as a reflection in H, it
exchanges the two components of U ∖H where U is a tubular neighborhood
of H in M . Thus ιM acts as an involution on Mcut which exchanges H+0 and
H−0 and fixes W = Fix(ιM) ∖H0 ⊇H1.

As a consequence, ιM induces an involution ι of X with the property that
ι(M i

cut) =Md+2−i
cut and so that the restrictions ι ∶M i

cut →Md+2−i
cut are identified

with ι ∶Mcut →Mcut (superscripts are again taken modd).
Let ζ be a generator of the cyclic deck group of X → M . It cyclically

permutes the copies M1
cut, . . . ,M

d
cut of Mcut in X. Define j = ζ ○ ι (read from

right to left).

Fact 5.7. The fixed point set of j in X is the union Hd,1
0 ∪Hd,1+d/2

0 of the
copies of H0 ⊂ H in M1

cut and M
1+d/2
cut , and the copies Hd,1

0 and H
d,1+d/2
0 of

H0 are glued along Σ (see Figure 1).

The fixed point set of each of the involutions ζi ○ j ○ ζ−i (i = 0, . . . , d − 1)
is the embedded submanifold ζi(Fix(j)) of X. Their union cuts X up into
the d copies of Mcut. We call any diffeomorphism of X contained in the
finite group of diffeomorphisms of X generated by j and ζ an admissible
diffeomorphism of X.
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Figure 1. The cyclic 4-fold branched cover. The involutions
ι and j act via reflection along the colored submanifolds and
ζ via rotation around Σ.

By Mostow rigidity, any homotopy self-equivalence σ of X is homotopic
to a unique isometry σ# of X. Furthermore, by uniqueness, the map

Homeo(X)→ Isom(X), σ ↦ σ#

which associates to a homeomorphism the unique isometry homotopic to it
is a group homomorphism. The following result relates the finite group of
admissible diffeomorphisms of X to the corresponding finite group of isome-
tries for the hyperbolic metric. It seems be known to the experts, and it was
claimed in [GT87] for the generator ζ of the deck group of X →M (except
for Remark 3.4, this is not used in [GT87]). In view of the fact that in the
presence of fixed point sets of positive dimension, a finite group of diffeomor-
phisms of a hyperbolic manifold of dimension n ≥ 3 need not be conjugate
to its isometric realization (see the main result of [CLW18] for the case of
finite groups of homeomorphisms and the included remark about the case of
diffeomorphisms), we present a proof.
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Proposition 5.8. Let ϕ be an admissible diffeomorphism of X and let ϕ# be
the isometry of X homotopic to ϕ. Then the fixed point set Fix(ϕ#) ⊂ X of
ϕ# is (abstractly) diffeomorphic to Fix(ϕ). Moreover, Fix(ϕ#) and Fix(ϕ)
are freely homotopic inside X.

Proof. Let ϕ be any nontrivial admissible diffeomorphism of X. Then ei-
ther ϕ is an orientation reversing involution whose fixed point set is a dis-
joint union of submanifolds of codimension one contained in the preimage of
Fix(ιM), or it is a power of ζ with fixed point set Σ. In particular, the fixed
point set of ϕ is a (possibly disconnected) orientable hyperbolic manifold of
dimension n − 2 or n − 1 containing Σ.

We first observe that ϕ# does have fixed points. Indeed, otherwise X →
⟨ϕ#⟩/X would be a finite-sheeted covering map between manifolds. As X is
a closed hyperbolic manifold, it is aspherical and π1(X) has trivial center.
But then [HJ24, Lemma 2.2] implies that ϕ# can not be homotopic to a map
of finite order and non-empty fixed point set, contradicting the fact that ϕ#
is homotopic to ϕ.

Since a component Z# of Fix(ϕ#) is a totally geodesic submanifold of X
containing the unique closed geodesic in X freely homotopic to an element of
π1(Z#), no two distinct components of Fix(ϕ#) can be freely homotopic. As
a consequence, it suffices to show that for every component Z of Fix(ϕ) (or
Z# of Fix(ϕ#)) there exists a component Z# of Fix(ϕ#) (or Z of Fix(ϕ))
which is diffeomorphic and freely homotopic to Z (or Z#).

Thus let Z be a component of Fix(ϕ) and choose a basepoint x ∈ Z. Let
ϕ∗ be the automorphism of π1(X,x) induced by ϕ. We divide the proof into
six steps.

Claim 1. We have Fix(ϕ∗) = π1(Z,x).

Proof of Claim 1. The hyperbolic metric on M lifts to a hyperbolic cone
metric h on X which is smooth away from Σ and with cone angle 2dπ along
Σ. Thus h is locally a CAT(−1)-metric. Therefore every homotopy class
α ∈ π1(X,x) has a unique geodesic representative for the metric h which is a
geodesic loop based at x. The map ϕ is an isometry for h fixing Z pointwise.

Note that the inclusion π1(Z,x) ⩽ Fix(ϕ∗) trivially holds. To prove
equality, we argue by contradiction and assume that there exists a class
[γ] ∈ Fix(ϕ∗)∖π1(Z,x). This class is represented by a unique geodesic loop
γ based at x that does not entirely lie in Z. As ϕ is an isometry, ϕ(γ) is
the geodesic representative of ϕ∗([γ]) = [γ], and hence ϕ(γ) = γ by unique-
ness. As Z is a connected component of Fix(ϕ), we get γ ⊆ Z, contradicting
[γ] ∉ π1(Z,x). ∎

The argument in the proof of Claim 1 also applies to the map ϕ# as
an isometry for the hyperbolic metric on X and shows that if Z# is any
component of the fixed point set Fix(ϕ#) of ϕ#, which is a totally geodesic
submanifold of X, and if y ∈ Z#, then π1(Z#, y) = Fix(ϕ#∗ ) ⊂ π1(X,y).
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Since ϕ# has fixed points, by changing the hyperbolic metric with an
isotopy, that is, replacing it by its pullback by a diffeomorphism of X isotopic
to the identity, we may assume that x ∈ Fix(ϕ#). Then ϕ# induces an
automorphism ϕ#∗ of π1(X,x).

Claim 2: Let [γ] ∈ π1(Z,x) and let γ# be the closed geodesic for the hyper-
bolic metric which is freely homotopic to γ; then γ# ⊂ Fix(ϕ#).

Proof of Claim 2. Since ϕ and ϕ# are homotopic, there exists an element
α ∈ π1(X,x) such that ϕ#∗ = αϕ∗α−1. As [γ] ∈ π1(Z,x) ⊂ Fix(ϕ∗) we know
that ϕ#∗ ([γ]) is conjugate to [γ]. In other words, ϕ#∗ preserves the conjugacy
class of [γ].

Let γ# be the unique oriented closed geodesic for the hyperbolic metric on
X in the free homotopy class of [γ]. Since ϕ# preserves the conjugacy class
of [γ] and is an isometry, it preserves γ# as an oriented unparameterized
circle.

We argue by contradiction and we assume that γ# /⊂ Fix(ϕ#). If there
are no fixed points of ϕ# on γ# then as ϕ# preserves the hyperbolic norm
of the tangent of γ#, it acts on the immersed circle γ# ⊂ X as a nontrivial
rotation. Then γ# admits a lift γ̃# to the universal covering Hn of X so
that a lift ϕ̃# of ϕ# acts on γ̃# as a nontrivial translation. But any isometry
of Hn which preserves a geodesic and acts on it as a non-trivial translation
is loxodromic and hence fixed point free. This violates the fact that ϕ# and
hence ϕ̃# have fixed points.

As a conclusion, the restriction of ϕ# to γ# has fixed points. Let y ∈ γ# be
such a fixed point. Since ϕ# preserves γ# as a set, the differential dyϕ# of ϕ#

at y maps the (oriented) tangent v of γ# at x to ±v. If dyϕ#(v) = v then γ# ⊂
Fix(ϕ#) since an isometry maps geodesics parameterized by arc length to
geodesics parameterized by arc length, and geodesics are determined by their
tangent at a single point. This contradicts the assumption γ# /⊂ Fix(ϕ#).

Therefore dyϕ#(v) = −v and ϕ# reverses the orientation of γ#. Then
[γ#] is conjugate to its inverse in π1(X,x). This is equivalent to stating
that there exists an element of π1(X,x) acting as the deck group of X on
Hn which exchanges the endpoints in the ideal boundary ∂Hn of Hn of a
lift of γ#, contradicting the fact that any isometry with this property has a
fixed point. Together this completes the proof of Claim 2. ∎

Claim 3: Up to changing the hyperbolic metric with an isotopy, we have
ϕ∗ = ϕ#∗ , in particular Fix(ϕ#∗ ) = Fix(ϕ∗).

Proof of Claim 3. Let γ ⊂ Z be a (nontrivial) closed geodesic for the hy-
perbolic cone metric h on X. Note that such a geodesic exists since the
dimension of each component of Fix(ϕ) is at least two and Z is totally ge-
odesic for h. Let x ∈ γ and let as before γ# be the closed geodesic for the
hyperbolic metric on X which is freely homotopic to γ.
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Choose a point x# ∈ γ# and an embedded arc a ∶ [0,1] → X, smooth
up to and including the endpoints, which connects x to x# and such that
a○γ○a−1 (read from right to left) is homotopic to γ# in π1(X,x#). Let N be
a tubular neighborhood of a. There exists a smooth isotopy [0,1] ×X → X
of X which is the identity outside of N and pushes the point x along a. Let
Λ be the endpoint map of this isotopy. Then Λ maps γ to a based loop at x#
which is homotopic to γ# and hence up to replacing the hyperbolic metric
by its pull-back under Λ, we may assume that x ∈ γ# and that the homotopy
classes of γ and γ# in π1(X,x) coincide.

Recall that ϕ#∗ = αϕ∗α−1 for some α ∈ π1(X,x) (the element α may have
changed in the course of this proof). Since

[γ] = [γ#] = α[γ]α−1

we know that α centralizes the homotopy class [γ] of γ. As π1(X,x) is the
fundamental group of a hyperbolic manifold, the centralizer of [γ] equals
the infinite cyclic group generated by [γ]. In particular, ϕ∗(α) = α since
[γ] ∈ Fix(ϕ∗), moreover ϕ#∗ preserves the fixed point set π1(Z,x) of ϕ∗.

The component Z of the fixed point set of ϕ is a closed oriented hyperbolic
manifold of dimension at least two. Thus any nontrivial inner automorphism
of π1(Z,x) has infinite order. Now ϕ# is an isometry of finite order and hence
the order of ϕ#∗ is finite as well. But ϕ#∗ (β) = αβα−1 for all β ∈ π1(Z,x) and
consequently α = e and ϕ∗ = ϕ#∗ . This completes the proof of Claim 3. ∎

We showed so far that for every component Z of Fix(ϕ) there exists a
component Z# of Fix(ϕ#) whose fundamental group is isomorphic to the
fundamental group of Z. Each component Z of Fix(ϕ) and corresponding
component Z# of Fix(ϕ#) is naturally equipped with a hyperbolic metric.
Its dimension equals the cohomological dimension of its fundamental group.
Thus if the dimension of Z is at least three, then by Mostow rigidity, the
manifolds Z and Z# are isometric and freely homotopic inside X. If the
dimension of Z equals two then the manifolds Z and Z# are diffeomorphic as
the diffeomorphism type of a closed surface is determined by its fundamental
group. Furthermore, Z and Z# are freely homotopic inside X.

It remains to show that there is no component of Fix(ϕ#) which is not
freely homotopic to a component of Fix(ϕ). This is carried out in the rest
of this proof.
Claim 4: X ∖ Fix(ϕ) is aspherical.
Proof of Claim 4. As X is a closed hyperbolic manifold by assumption,
its universal covering X̃ is diffeomorphic to Rn. Furthermore, Fix(ϕ) ⊂
X is an embedded closed totally geodesic submanifold for the CAT(−1)-
hyperbolic cone metric h on X whose codimension either equals one or two.
The preimage Y of X ∖Fix(ϕ) in X̃ is the complement in X̃ of a countable
union of properly embedded submanifolds diffeomorphic either to Rn−1 or to
Rn−2.
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If the codimension of these subspaces equals one then Y is a disjoint union
of countably many contractible spaces. If the codimension of these subspaces
equals two then Y is homotopy equivalent to the wedge of countably many
circles, each corresponding to a loop encircling one of the codimension two
complementary subspaces. Hence Y is aspherical. Since Y is a covering of
X ∖ Fix(ϕ), the space X ∖ Fix(ϕ) is aspherical as well. ∎

Claim 5: X ∖ Fix(ϕ) has the homotopy type of a finite CW-complex, and
its fundamental group is center free.

Proof of Claim 5. There are two cases possible for the map ϕ. In the first
case, Fix(ϕ) is a finute disjoint union of compact codimension one subman-
ifolds in X, and in the second case, we have Fix(ϕ) = Σ. In both cases,
X ∖ Fix(ϕ) is homotopy equivalent to a compact manifold with boundary,
which can be chosen to be the complement of a small open tubular neigh-
borhood of Fix(ϕ). Hence X ∖ Fix(ϕ) has the homotopy type of a finite
CW-complex.

To see that π1(X ∖ Fix(ϕ)) is center free, note that if Fix(ϕ) is a dis-
joint union of hyperplanes, then cutting X open along the corresponding
components of Fix(ϕ#) yields a (possibly disconnected) compact hyperbolic
manifold N with totally geodesic boundary whose fundamental group is a
torsion free hyperbolic group and hence center free.

If Fix(ϕ) = Σ then putting G = π1(X ∖ Fix(ϕ)), the homomorphism ρ ∶
G → π1(X) induced by the inclusion X ∖ Fix(ϕ) → X is surjective. Thus
as π1(X) is torsion free and center free, an element in the center of G is
contained in the kernel of the homomorphism ρ and hence it is contained
in the center of ker(ρ). But the kernel of ρ is the fundamental group of
the preimage Y of X ∖Σ in the universal covering Hn of X. As Y has the
homotopy type of a countable wedge of circles, this fundamental group is an
infinitely generated free group and hence center free. ∎

The following claim completes the proof of the proposition.

Claim 6: There can not be any component of Fix(ϕ#) that is not freely
homotopic to a component of Fix(ϕ).
Proof of Claim 6. We showed so far that there exists a unionQ of components
of Fix(ϕ#) which is abstractly diffeomorphic to Fix(ϕ) and freely homotopic
to Fix(ϕ) in X. The manifolds X ∖ Fix(ϕ) and X ∖ Q have isomorphic
fundamental groups, and by Claim 4 and its analog for X ∖ Q, they are
aspherical. As a consequence, X∖Fix(ϕ) andX∖Q are homotopy equivalent.

Let Λ ∶ X ∖ Fix(ϕ) → X ∖Q be a homotopy equivalence, with homotopy
inverse Λ−1. The map ϕ acting on X ∖ Fix(ϕ) is homotopic to the map
ϕ̂ = Λ−1 ○ϕ# ○Λ, read from right to left. Thus via an identification of π1(X ∖
Fix(ϕ)) with π1(X ∖Q) via the homotopy equivalence Λ, the maps ϕ and
ϕ# induce the same outer automorphisms of π1(X ∖ Fix(ϕ)). Furthermore,
by construction, ϕ and ϕ# have the same order, say m ≥ 2.
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We now follow [HJ24, Lemma 2.2]. The finite order diffeomorphism ϕ
restricts to a fixed point free finite order diffeomorphism on X ∖Fix(ϕ). Let
X̄ = ⟨ϕ⟩/(X ∖Fix(ϕ)) be the quotient of X under the free action of ϕ. There
exists an exact sequence

1→ π1(X ∖ Fix(ϕ))→ π1(X̄)→ Z/mZ→ 1.

Since ϕ and ϕ# induce the same outer automorphism of π1(X∖Fix(ϕ)), this
sequence splits if the map ϕ# acting on X ∖Q has a fixed point. However, as
π1(X ∖ Fix(ϕ)) is center free by Claim 5, if the sequence splits then Z/mZ
is a subgroup of π1(X̄), which is impossible as X ∖Fix(ϕ) and hence X̄ has
the homotopy type of a finite CW complex by Claim 5. We refer to [HJ24,
Lemma 2.2] for more information on this line of argument. As a conclusion,
the action of ϕ# on π1(X ∖Q) is fixed point free, completing the proof of
Claim 6. ∎

This completes the proof of Proposition 5.8. □

Remark. The above proof is valid for all covers X of a hyperbolic manifold
M , branched along a totally geodesic nullhomologous submanifold Σ of codi-
mension two. It shows that if X admits a hyperbolic metric, then the fixed
point set of an isometry of X homotopic to an element of the deck group of
X →M is diffeomorphic to the branch locus Σ, thus confirming [GT87].

5.2. The proof of Theorem 5.5. In this subsection we assume as before
that X admits a hyperbolic metric. Let j be the involution of X described in
Fact 5.7, and ζ be the generator of the deck group of X →M which cyclically
permutes the copies M1

cut, . . . ,M
d
cut of Mcut in X.

From now on we always denote by F the component of Fix(j) containing
Σ and by F# the homotopic component of Fix(j#) whose existence was
shown in Proposition 5.8. By Proposition 5.8 and Mostow rigidity for closed
hyperbolic manifolds of dimension n − 1 ≥ 3, there exists an isometry ψ ∶
F → F# which maps Σ to the fixed point set Σ# of ζ#. Furthermore, with
a homotopy we may identify Σ and Σ# in X. For each i = 0, . . . , d − 1, the
map (ζ#)i ○ ψ ○ ζ−i maps ζi(F ) isometrically onto (ζ#)i(F#).

After possibly changing the hyperbolic metric of X with an isotopy, we
may assume that for each connected component Σ0 of Σ we have Σ0∩Σ#

0 ≠ ∅,
where Σ#

0 = ψ0(Σ0). So, for each component, we can fix a basepoint x0 ∈
Σ0∩Σ#

0 , and we may assume without loss of generality that ψ0(x0) = x0. We
call such a basepoint preferred. Due to Proposition 5.8, we may also assume
that

π1(Σ0, x0) = π1(Σ#
0 , x0) and π1(F,x0) = π1(F#, x0).

In the sequel, the fundamental group π1(X,x0) will always be represented
with respect to a fixed choice x0 of preferred basepoint.

Although by Proposition 5.8, the cyclic group generated by ζ# acts freely
on X ∖Σ# and the manifold F# is homotopic to F , this does not necessarily
imply that ζ#(F#)∩F# = Σ#. The following lemma takes care of this issue.
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Lemma 5.9. (1) The differential of ζ# acts on the normal bundle of
Σ# by a rotation with angle 2π/d.

(2) We have F# ∩ ζ#(F#) = Σ#.

Proof. We begin with the proof of the second part of the lemma. We may
assume that π1(F,x0) = π1(F#, x0) and π1(ζ(F ), x0) = π1(ζ#(F#), x0).
Thus for a choice of lift x̃0 of x0 to the universal covering Hn, limit sets of
these groups in the ideal boundary ∂Hn and of their conjugates, acting as
subgroups of the deck group, coincide.

Let F̃# ⊂ Hn and ζ̃#F# ⊂ Hn be the (unique) lifts of F# and ζ#(F#),
respectively, which pass through x̃0. Each component of F# ∩ ζ#(F#),
which is a totally geodesic embedded hyperplane in F#, lifts to precisely
one π1(F#, x0)-orbit of intersections of F̃# with π1(X,x0)(ζ̃#F#) (using
the deck group action) and hence to a π1(F#, x0)-orbit of intersections of the
boundary sphere of F̃# with the boundaries of the hyperplanes in the orbit of
ζ̃#F#. These boundary spheres are precisely the limit sets of the conjugates
of the group π1(ζ#(F#), x0) = π1(ζ(F ), x0) in ∂Hn. Since F ∩ ζ(F ) = Σ,
the number of π1(F#, x0)-orbits of such intersection spheres is at most the
number of components of Σ = Σ#. Thus we have F# ∩ ζ#(F#) = Σ# which
completes the proof of the second part of the lemma.

Let Σ#
0 be a component of Σ#. This is a totally geodesic submanifold of

X of codimension two contained in the fixed point set of ζ#. Since ζ# is
a non-trivial orientation preserving isometry of X of order d, its differential
acts on the normal bundle of Σ#

0 as a rotation with rotation angle 2πk/d
where k is a generator of the cyclic group of order d. We have to show that
k = 1.

Consider again lifts ζ̃, ζ̃# of ζ, ζ# to the universal covering Hn ofX, chosen
so that they fix pointwise the same component Σ̃#

0 of the universal covering
of Σ#

0 , which is a totally geodesic subspace of Hn of codimension two. The
differential of ζ̃# acts on the normal bundle of Σ̃# as a rotation with rotation
angle 2πk/p.

The choice of basepoint x̃0 ∈ Σ̃#
0 determines an identification of the unit

tangent sphere T 1
x̃0
Hn of Hn at x̃0 with the ideal boundary ∂Hn = Sn−1 of Hn

by associating to a unit tangent vector v the equivalence class of the geodesic
ray with initial velocity v. The limit set in ∂Hn = Sn−1 of the stabilizer of
F̃# in the deck group π1(X,x0) equals the boundary ∂F̃# of F̃#, which
is an equator sphere of codimension one in Tx̃0Hn = ∂Hn. It contains the
ideal boundary of Σ̃#

0 as an equator sphere. We also know that ζ#(∂F̃#)
coincides with the limit set ζ(∂F̃ ) of the group π1(ζ(F ), x0) acting on Hn.

Now recall that ζ acts as an isometry with respect to the CAT(−1) hyper-
bolic cone metric h on X, which is quasi-isometric to the hyperbolic metric,
and it acts as a cyclic permutation on the totally geodesic submanifolds
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ζi(F ). Thus viewing ∂Hn as the ideal boundary of the universal covering
of X, equipped with the hyperbolic cone metric h, we obtain that there
is a component of ∂Hn ∖ (∂F̃ ∪ ζ(∂F̃ )) which does not intersect any of
the spheres ζi(∂F̃ ). By identifying ∂F̃# with the unit tangent sphere of
F̃# at x̃0, which is an equator sphere in T 1

x̃0
Hn, and ζ#(∂F̃#) with the

unit tangent space of ζ#(F#) at x̃0, we deduce that there is a compo-
nent of T 1

x̃0
Hn ∖ (T 1

x̃0
F# ∪ dζ#(T 1

x̃0
F#)) not intersecting any of the spheres

dζ#(T 1
x̃0
F#) if and only if the differential of ζ# acts on the normal bundle

of Σ#
0 as a rotation with rotation angle 2π/d. This completes the proof of

the lemma. □

Remark. The proof of the first part of Lemma 5.9 relies on the analysis
of limit sets of stabilizers of preimages of the totally geodesic hyperplane
H ⊂M . It remains valid even if H is not fixed by an isometric involution.

With these preliminary results at hand, we can now prove Theorem 5.5.

Proof of Theorem 5.5. By construction, the subspace F ∪ ζ(F ) of X sepa-
rates X. By the definition of the map j, the complement X − (F ∪ ζ(F ))
contains two connected components whose closures are homeomorphic to
Mcut. Let Z be the closure of such a component. Its boundary consists of
two copies of H0 glued along Σ.

By Lemma 5.9, there exists a corresponding component M#
cut of X−(F#∪

ζ#(F#)). The boundary of its closure Z# is connected and consists of two
copies of H0 meeting along Σ with an angle 2π/d. Identifying Σ and Σ# as
before and choosing a basepoint x ∈ Σ, we claim that π1(Z,x) = π1(Z#, x).

Namely, by Proposition 5.8, it holds that π1(∂Z,x) = π1(∂Z#, x). As
∂Z is a separating hypersurface in X homotopic to ∂Z#, by the theorem of
Seifert-van Kampen, we know that

π1(X,x) = π1(Z,x) ∗π1(∂Z,x) π1(X ∖Z,x)

= π1(Z#, x) ∗π1(∂Z#,x) π1(X ∖Z#, x).

It then follows from the normal form for amalgamated products [LS01, p.186]
that π1(Z#, x) is isomorphic to either π1(Z,x) or to π1(X ∖Z,x).

If d = 2 then π1(Z,x) is isomorphic to π1(X ∖Z,x) and the claim is clear.
If d ≥ 3 then note that ζ∗ = ζ#∗ maps π1(Z,x) to a proper subgroup of
π1(X ∖Z,x), and it maps π1(X ∖Z,x) to a proper supergroup of π1(Z,x).
Furthermore, it maps π1(Z#, x) to a proper subgroup of π1(X ∖Z#, x), and
it maps π1(X ∖ Z#, x) to a proper supergroup of π1(Z#, x). Thus we have
π1(Z,x) = π1(Z#, x) as claimed.

We argue now by contradiction and we assume that there are distinct
multiples of d1 /= d2 ∈ 4N such that the cyclic di-fold branched cover X(di)
admits a smooth hyperbolic metric for i = 1,2. Then, for each i = 1,2, the
above discussion implies that there exists a hyperbolic cone manifold M2π/di

cut
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with totally geodesic boundary ∂M2π/di
cut homeomorphic and path isometric

to ∂Mcut, with singular set isometric to Σ, cone angle 2π/di along Σ, and
π1(M2π/di

cut ) = π1(Mcut).
Note that d1

2
2π
d1
+ d2

2
2π
d2
= 2π. Therefore, we can glue d1/2 copies of M2π/d1

cut

and d2/2 copies ofM2π/d2
cut in cyclic order along the components of ∂M2π/di

cut ∖Σ
to a smooth hyperbolic manifold Y . An application of the Seifert–van Kam-
pen theorem shows that the fundamental group of Y is isomorphic to the
fundamental group of the (d1+d2)/2-fold cyclic cover X of M branched along
Σ. In particular, this fundamental group admits a finite group of automor-
phisms generated by an element ζ∗ of order (d1 + d2)/2 and an involution
j∗ corresponding to the automorphisms induced by the homeomorphisms ζ
and j of X (notations are as before). By the beginning of this proof, for
each i = 0, . . . , (d1 + d2)/2 − 1, the fixed point group of ζi∗ ○ j∗ ○ ζ−i∗ is the
fundamental group of an embedded codimension one submanifold Fi that,
by construction of the hyperbolic metric on Y , is already totally geodesic.
Moreover, for some i the totally geodesic submanifolds Fi and Fi+1 intersect
with angle 2π/d1, while for other i they intersect with angle 2π/d2.

By Mostow rigidity, there exist isometries ζ#, j# of the hyperbolic man-
ifold Y of order (d1 + d2)/2 and 2, respectively, that induce the outer au-
tomorphism given by ζ∗ and j∗. By Lemma 5.9, the fixed point set of ζ#
is a codimension two totally geodesic submanifold Σ# freely homotopic to
Σ, and thus Σ# = Σ since Σ is already totally geodesic in Y . Similarly,
the fixed point set (ζ#)i(F#) of the involution (ζ#)i ○ j# ○ (ζ#)−i is a
totally geodesic hyperplane freely homotopic to the manifold Fi satisfying
π1(Fi) = Fix(ζi∗ ○ j∗ ○ ζ−i∗ ), and thus (ζ#)i(F#) = Fi since Fi is already hy-
perbolic. However, as ζ# acts by rotation with a fixed angle in the normal
bundle of Σ, the intersection angle of (ζ#)i(F#) and (ζ#)i+1(F#) is the
same for all i. But this contradicts the fact that, by construction, the in-
tersection angle of Fi with Fi+1 varies between 2π/d1 and 2π/d2, completing
the proof of the theorem. □

Remark 5.10. The proof of Theorem 5.5 for branched covers of hyperbolic
manifolds of dimension n ≥ 4 depends in a crucial way on the validity of
Mostow rigidity for closed hyperbolic manifolds of dimension n−1 and hence
is not valid for n = 3. It also shows that at most one covering of degree d ≡ 2
mod 4 can admit a hyperbolic metric.
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