
SMALL EIGENVALUES AND THICK-THIN

DECOMPOSITION IN NEGATIVE CURVATURE

URSULA HAMENSTÄDT

Abstract. Soit M une variété Riemannienne complète orientée, de di-
mension n ≥ 3 et de volume finie. Supposons que la courbure de M soit
contenue dans [−b2,−1], et soit M = Mthick∪Mthin la décomposition en
sa partie épaisse et sa partie fine. Soit λk(M) la k-tième valeur propre
de l’opérateur Laplacien, avec conditions de bord de Neumann. Nous
démontrons que λk(Mthick)/3 ≤ λk(M) pour tout k tel que λk(M) <
(n − 2)2/12. Si M est hyperbolique et de dimension 3, alors λk(M) ≤
C log(vol(Mthin) + 2)λk(Mthick) pour un nombre C > 0 fixé pourvu que
λk(Mthick) < 1/96.

Let M be a finite volume oriented complete Riemannian manifold of
dimension n ≥ 3 and curvature in [−b2,−1], with thick-thin decomposi-
tion M = Mthick ∪Mthin. Denote by λk(Mthick) the k-th eigenvalue for
the Laplacian on Mthick, with Neumann boundary conditions. We show
that λk(Mthick)/3 ≤ λk(M) for all k for which λk(M) < (n− 2)2/12. If
M is hyperbolic and of dimension 3 then λk(M) ≤ C log(vol(Mthin) +
2)λk(Mthick) for a fixed number C > 0 provided that λk(Mthick) < 1/96.

1. Introduction

The small part of the spectrum of the Laplace operator ∆ acting on
functions on a closed oriented hyperbolic surface S is quite well understood.
Namely, if g denotes the genus of S then the 2g − 3-th eigenvalue λ2g−3(S)
can be arbitrarily small [4], while λ2g−2(S) > 1

4 [19].
By the Gauss-Bonnet theorem, the volume of S equals 2π(2g−2), so these

results relate the small part of the spectrum of S to its volume.
For n ≥ 3, the small part of the spectrum of an oriented finite volume Rie-

mannian manifold M of dimension n and sectional curvature κ ∈ [−b2,−1|
for some b ≥ 1 is less well understood. The manifold M admits a thick-thin
decomposition M = Mthick ∪Mthin which is determined as follows. There
exists a constant c = c(n) > 0 such that ε = b−1c(n) is a Margulis constant
for M , and Mthick is the set of all points in M of injectivity radius at least
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ε. Its complement Mthin is a disjoint union of so-called Margulis tubes and
cusps. Here a Margulis tube is a tubular neighborhood of a closed geodesic of
length at most 2ε, and a cusp is homeomorphic to the quotient of a horoball
in the universal covering M̃ of M by a rank n − 1 parabolic subgroup of
the isometry group of M̃ . After a small modification, we may assume that
Mthick = M −Mthin is a submanifold of M with smooth boundary [5].

Unlike in the case of surfaces, the submanifold Mthick is always connected,
and this prevents the occurence of very small eigenvalues. More precisely,
for every n ≥ 3, Schoen [20] established the existence of a universal and
explicit constant θ = θ(n, b) > 0 such that

(1) λ1(M) ≥ θ

vol(M)2

for every closed n-manifold M with curvature in [−b2,−1] (here in contrast
to the work of Schoen, we normalize the metric on M so that the upper
bound of the curvature is fixed). That this estimate extends without change
to non-compact finite volume manifolds was established in [10, 9].

For hyperbolic manifolds of dimension n = 3, this bound is roughly sharp:
White [21] proved that for fixed r ≥ 2, δ > 0 there exists a constant a =
a(r, δ) > 0 such that

λ1(M) ∈ [1/avol(M)2, a/vol(M)2]

for any closed hyperbolic 3-manifold whose injectivity radius is bounded
from below by δ and such that the rank of the fundamental group π1(M) of
M is at most r. This rank is defined to be the minimal number of generators
of π1(M), and it is bounded from above by a fixed multiple of the volume
(Theorem 1.10 in [13]). A similar statement also holds true for random
3-dimensional hyperbolic mapping tori [1] and for random hyperbolic 3-
manifolds of fixed Heegaard genus [15].

Since the injectivity radius at points in Mthick is at least ε, the submani-
fold Mthick of M is uniformly quasi-isometric to a finite graph G of uniformly
bounded valence, with constant only depending on the dimension and the
curvature bounds (see [2] for a detailed discussion of this fact in the case
of hyperbolic manifolds). If |G| denotes the number of vertices of G, then
for k ≤ |G| the k-th eigenvalue λk(Mthick) of Mthick with Neumann bound-
ary conditions is uniformly comparable to the k-th eigenvalue λk(G) of the
graph Laplacian of G [18]. Here and in the sequel, we list eigenvalues as
0 = λ0 < λ1 ≤ λ2 ≤ . . . with each eigenvalue repeated according to its mul-
tiplicity. Note that |G| is proportional to the volume vol(Mthick) of Mthick,
with multiplicative constants only depending on n and b.

Now for any graph G, there are precisely |G| eigenvalues 0 = λ0(G) <
λ1(G) ≤ · · · ≤ λ|G|−1(G), and (Lemma 1 of [8])∑

i

λi(G) = |G|.
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In particular, we have λ|G|−1(G) ≥ 1. As the volume of a finite volume

oriented manifold M of curvature in [−b2,−1] is uniformly comparable to
the volume of Mthick, this together with the result in [18] implies that there
exists a constant q = q(n, b) > 1 so that λqvol(M)(Mthick) ≥ 1/q.

To recover a relation between the spectrum of M and the volume of
M which resembles the result known for hyperbolic surfaces, it is therfore
desirable to relate the small part of the spectrum of M to the small part of
the spectrum of Mthick, taken with Neumann boundary condition. The first
purpose of this article is to establish such a relation. We show

Theorem 1. For a suitable choice of a Margulis constant, we have

λk(M) ≥ min{1

3
λk(Mthick),

(n− 2)2

12
}

for every finite volume oriented Riemannian manifold M of dimension n ≥ 3
and curvature κ ∈ [−b2,−1], and all k ≥ 0.

The dependence of this estimate on the lower curvature bound −b2 enters
this result via the Margulis constant which depends on b. Note also that the
constant (n− 2)2/12 is uniformly comparable to the lower bound (n− 1)2/4
for the bottom of the essential spectrum of a non-compact finite volume
manifold of curvature κ ∈ [−b2,−1] (Corollary 3.2 of [14]). We expect
that our methods can be used to extend Theorem 1 to geometrically finite
manifolds of infinite volume and curvature in [−b2,−1]. This could then be
used to establish an improvement of Corollary 3.3 of [14] which contains the
following statement as a special case: The number of eigenvalues contained
in (0, (n − 2)2/12) is at most dvol(M) for a fixed constant d > 0. However,
we do not attempt to carry out such a generalization in this article.

As an application of Theorem 1, we recover the results of Schoen, of
Dodziuk and of Randol and Dodziuk, and we relate the number of small
eigenvalues to the volume as promised.

Corollary. For all n ≥ 3, b ≥ 1 there exists a constant χ = χ(n, b) > 0
with the following property. Let M be a finite volume oriented Riemannian
manifold of dimension n and curvature κ ∈ [−b2,−1]; then

(1) λ1(M) ≥ χ
vol(M)2

.

(2) λvol(M)/χ(M) ≥ χ.

Unlike in the work of Schoen, the constant χ(n, b) in the above Corollary
is not explicit as it depends on a Margulis constant for Riemannian mani-
folds with curvature in [−b2,−1]. However, for hyperbolic manifolds it can
explicitly be estimated.

For hyperbolic 3-manifolds M we also obtain upper bounds for the small
eigenvalues of M . We show

Theorem 2. There exists a number c > 0 such that for every finite volume
oriented hyperbolic 3-manifold M , we have

λk(M) ≤ c log(vol(Mthin) + 3)λk(Mthick)
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for all k ≥ 1 such that λk(Mthick) < 1/96.

The proof of Theorem 1 uses standard comparison results and a simple
decomposition principle, and it is carried out in Section 2. Theorem 2 is
shown in Section 3 with an explicit construction which is only valid for
hyperbolic 3-manifolds.

Acknowledgement: I am grateful to Juan Souto for inspiring discussions.
Some versions of the results in this paper were independently obtained by
Anna Lenzhen and Juan Souto [16].

2. Bounding small eigenvalues from below

The goal of this section is to show Theorem 1.
Thus let M be a finite volume oriented Riemannian manifold of dimension

n ≥ 3 and sectional curvature κ ∈ [−b2,−1] for some b ≥ 1. Then M admits
a thick-thin decomposition

M = Mthin ∪Mthick.

For a number ε = b−1c(n) > 0, a so-called Margulis constant, the thin part
Mthin is the set of all points x ∈ M with injectivity radius inj(x) ≤ ε, and
Mthick = {x | inj(x) ≥ ε}. The set Mthick is a non-empty compact connected
manifold with (perhaps non-smooth) boundary, and Mthin is a union of (at
most) finitely many Margulis tubes and cusps.

A Margulis tube is a tubular neighborhood of a closed geodesic γ in M of
length smaller than 2ε, and it is homeomorphic to Bn−1 × S1 where Bn−1

is the closed unit ball in Rn−1. The geodesic γ is called the core geodesic of
the tube.

Let T be such a Margulis tube, with core geodesic γ of length ` < 2ε. We
fix a parameterization of γ by arc length on the interval [0, `). Let σ be the
standard angular coordinate on the fibers of the unit normal bundle N(γ) of
γ in M obtained by parallel transport of the fibre over γ(0) (this unit normal
bundle is an Sn−2-bundle over γ), let s be the length parameter of γ and let
ρ ≥ 0 be the radial distance from γ. Via the normal exponential map, these
functions define ”coordinates” (i.e. a parameterization) (σ, s, ρ) for T −{γ},
defined on an open subset of N(γ) × (0,∞) which will be specified below.
In these ”coordinates”, the maps ρ→ (σ, s, ρ) are unit speed geodesics with
starting point on γ and initial velocity perpendicular to γ′.

There exists a continuous function

R : N(γ)→ (0,∞), (σ, s)→ R(σ, s)

such that in these ”coordinates”, we have T = {ρ ≤ R}. The metric on
T − {γ} is of the form h(ρ) + dρ2 where h(ρ) is a family of smooth metrics
on the hypersurfaces ρ = const.

Lemma 2.4 of [5] states that there exists a constant ν(n, b) > 0 which can
be computed as an explicit function of the constants c(n), b, n such that

(2) minR ≥ − log `− ν(n, b).
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In particular, up to slightly adjusting the thick-thin decomposition and re-
placing Mthick by its union with all Margulis tubes with core geodesics of
length ` so that log ` ≥ −3− ν(n, b), we may assume that for every compo-
nent T of Mthin, the distance between the core geodesic and the boundary
∂T is at least three.

In general, the boundary of a Margulis tube need not be smooth. However,
Theorem 2.14 of [5] shows that it can be perturbed to be smooth and of
controlled geometry. We record this result for completeness.

Theorem 2.1. Let T ⊂ M be a Margulis tube, with core geodesic γ and
boundary ∂T . Then there exists a smooth hypersurface H ⊂ T − γ with the
following properties.

(1) The angle θ between the tangent of the radial geodesic and the exte-
rior normal to H is less than π/2−α for some α = α(n, b) ∈ (0, π/2).

(2) The sectional curvatures of H with respect to the induced metric are
bounded in absolute value by a constant depending only on n and b.

(3) H is homeomorphic to ∂T by pushing along radial arcs. The distance
between x ∈ H and its image x̄ ∈ ∂T satisfies d(x, x̄) ≤ bc(n)/50.

In the sequel we always assume that the boundary ∂T of a Margulis tube
has the properties stated in Theorem 2.1. Then the injectivity radius of ∂T
with respect to the induced metric is bounded from below by a positive con-
stant only depending on the curvature bound and the dimension (Corollary
2.24 of [5]).

Our first goal is to obtain a better understanding of the volume element
of a Margulis tube. To this end we record a variant of Lemma 1 of [10]. We
begin with a simple comparison lemma.

Let M̃ be a simply connected complete Riemannian manifold of dimen-
sion n, with sectional curvature κ ≤ −1. Let η : R → M̃ be a geodesic
parametrized by arc length and let Y1(t), . . . , Yn−1(t) be orthonormal par-
allel vector fields along η, orthogonal to η′. Let moreover J1, . . . , Jn−1 be
Jacobi fields along η, orthogonal to η′, with the following initial conditions.

(1) J1(0) = Y1(0), and ∇dtJ1(0) = 0.
(2) For i = 2, . . . , n − 1 we have Ji(0) = 0, and covariant derivatives

∇
dtJi(t)|t=0 = Yi(0).

Then J(t) = (J1(t), . . . , Jn−1(t)) can be viewed as an (n−1, n−1)-matrix
with respect to the basis Y1(t), . . . , Yn−1(t). Define the matrix A(t) by

(3)
∇
dt
J(t) = A(t)J(t).

The matrix valued map t→ A(t) satisfies the Riccati equation

A′ +A2 +Rη′ = 0

where Rη′ is the curvature tensor of M̃ evaluated on η′. In particular, A is
self-adjoint.
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Using the notations from [12], for t > 0 we denote by j(t) the determinant
of the matrix J(t).

Lemma 2.2. For all R > 0 we have

j(R) ≥ (n− 1)

∫ R

0
j(t)dt.

Proof. The proof follows from standard comparison. We use the above no-
tations.

Let η̄ : R → Hn be a geodesic in the hyperbolic n-space Hn. Let
Ȳ1(t), . . . , Ȳn−1(t) be parallel vector fields along η̄ such that for each t,
Ȳ1(t), . . . , Ȳn−1(t) is an orthonormal basis of η̄′(t)⊥. Let J̄i (1 ≤ i ≤ n − 1)
be the Jacobi fields along η̄ defined by J̄1(0) = Ȳ1(0), ∇dt J̄1(0) = 0, and

for i ≥ 2 we require that J̄i(0) = 0 and ∇
dt J̄i(0) = Ȳi(0). Write J̄(t) =

(J̄1(t), . . . , J̄n−1(t)) and view this as a matrix with respect to the basis
Ȳ1(t), . . . , Ȳn−1(t) of η̄′(t)⊥.

The Jacobi fields J̄i can explicitly be computed as follows. We have
J̄1(t) = cosh(t)Ȳ1(t), and J̄i(t) = sinh(t)Ȳi(t) for i ≥ 2. In particular, if we
denote by j̄(t) the determinant of J̄(t) then

j̄(t) = sinhn−2(t) cosh(t).

Thus j̄′(t) = (n− 2) sinhn−3(t) cosh2(t) + sinhn−1(t) and hence

j̄′(t) = ((n− 2) coth(t) + tanh(t))j̄(t).

Using the notations from the lemma and the text preceding it, Theorem
3.2, Theorem 3.4 and Section 6.1 of [11] show that

(4) j′(t)/j(t) ≥ j̄′(t)/j̄(t)

for all t > 0.
Write b(t) = 1

n−1 sinhn−1(t); then b(t) =
∫ t
0 j̄(s)ds and

(5)
d

dt
log b(t) =

b′(t)

b(t)
= (n− 1) coth(t) > n− 1

for all t.
For a(t) =

∫ t
0 j(s)ds we have a′(t) = j(t). By the estimate (5), it now

suffices to show that

d

dt
log a(t) =

a′(t)

a(t)
≥ d

dt
log b(t)

for all t > 0.
Let δ > 0. It suffices to show that for all t > 0 we have d

dt log a(t) ≥
(1− δ) ddt log b(t). To this end note that by comparison, the inequality holds
true for all small t (see [11] for details). As this condition is closed, if the
inequality does not hold for all t then there is a number T0 > 0 so that the
estimate holds true for t ≤ T0, and it is violated for T0 < t < T0 + τ where
τ > 0. Then we have d

dt log a(T0) = (1− δ) ddt log b(T0),
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Now

d2

dt2
log a =

d

dt

a′

a
=
a′′a− (a′)2

a2
=
a′′

a
− (

a′

a
)2 =

a′

a
(
a′′

a′
− a′

a
).

Inequality (4) implies that a′′

a′ (T0) ≥
b′′

b′ (T0). As a′

a (T0) = (1 − δ) b′b (T0), we
conclude that

d2

dt2
log a(T0) > (1− δ) d

2

dt2
log b(T0).

Using Taylor expansion, we deduce that a′

a (s) ≥ (1 − δ) b′b (s) for all s > T0
which are sufficiently close to T0. This contradicts the choice of T0. Since
δ > 0 was arbitrary, the lemma follows. �

A cusp T is an unbounded component of Mthin. It is homeomorphic to
N × [0,∞) where N is a closed manifold of dimension n− 1. The manifold
N is homeomorphic to the quotient of a horosphere in the universal covering
M̃ of M by a parabolic subgroup of the isometry group of M̃ . As before, the
boundary of T need not be smooth, but everything said so far for boundaries
of Margulis tubes is also valid for cusps (see the remark after Theorem 2.14
in [5]). In particular, Theorem 2.1 holds true for boundaries of cusps.

A version of Lemma 2.2 is also valid for cusps and follows with exactly
the same argument. Namely, let T be a cusp, with boundary ∂T . Write
T = ∂T × [0,∞) where ∂T ×{s} is the hypersurface of distance s to ∂T . Let
η : [0,∞) → T be a radial geodesic and let J(t) = (J1(t), . . . , Jn−1(t)) be
Jacobi fields with the following properties. The vectors J1(0), . . . , Jn−1(0)
define an orthonormal basis of η′(0)⊥, and ‖J(t)‖ → 0 (t → ∞). Denote
by j(t) the determinant of J(t), viewed as a matrix with respect to an
orthonormal basis of η′(t)⊥ defined by parallel vector fields along η.

Let j̄(t) be the corresponding function for Jacobi fields defined by a

horoball in hyperbolic n-space. Explicit calcuation yields j̄(t) = e−(n−1)t

and hence j̄(T ) = (n − 1)
∫∞
T j̄(s)ds for all T . The comparison argument

from the proof of Lemma 2.2 together with the results in [11] imply that the
inequality j(T ) ≥

∫∞
T j(s)ds holds true for cusps in a manifold M of curva-

ture ≤ −1. In fact, this statement can also be obtained as a limiting case
of Lemma 2.2 by reparametrizing the radial geodesic arc η of the Margulis
tube, choosing η(R) as a basepoint, renormalizing the Jacobi fields with
rescaling and the Gram-Schmidt procedure and letting R tend to infinity.

As one consequence of the above discussion, by possibly replacing Mthick

by a neighborhood of uniformly bounded radius we may assume that

(6)
3

2
vol(Mthick) ≥ vol(M).

Consider again a Margulis tube T in M . Recall that the boundary ∂T
of T equals the set {ρ = R} which can be viewed as a graph over the unit
normal bundle N(γ) of γ for some smooth function R : N(γ) → (0,∞).
Here we use Theorem 2.1 to assure that the function R is smooth. We
equip ∂T with the volume element determined by this description (this is in
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general not the volume element of ∂T viewed as a smooth hypersurface in
M). By this we mean that the volume element of the hypersurface ∂T at a
point (σ0, s0, R(σ0, s0)) equals the radial projection of the volume element of
the local hypersurface {(σ, s,R(σ0, s0))} passing through (σ0, s0, R(σ0, s0)).
This makes sense since by Theorem 2.1, radial geodesics intersect ∂T trans-
versely. Or, equivalently, this volume element is chosen in such a way that
the Jacobian at (σ, s) of the map (σ, s)→ (σ, s,R(s, σ)) equals the Jacobian
of the normal exponential map (σ, s) → exp(R(σ, s)(σ, s)), and this is just
the function j from Lemma 2.2. The same construction is also valid for a
cusp T , and we equip ∂T with the corresponding volume element obtained
by projection of the volume element on local hypersurfaces orthogonal to
the radial geodesics.

Lemma 2.3. Let T ⊂ Mthin be a Margulis tube or a cusp with boundary
∂T , and let f be a smooth function on T with

∫
T f

2 ≥
∫
∂T f

2; then∫
T
f2 ≤ 4

(n− 2)2

∫
T
‖∇f‖2.

Proof. We begin with the case that T is a Margulis tube. Let γ : [0, `)→M
be a parameterization of the core geodesic of T by arc length. We use normal
exponential coordinates and Lemma 2.2. Let ρ be the radial distance from
γ and let j(σ, s, ρ) be the Jacobian of the normal exponential map at the
point with ”coordinates” (σ, s, ρ). Then we have∫

T
f2 =

∫
Sn−2

dσ

∫ `

0
ds

∫ R(σ,s)

0
f2j(σ, s, ρ)dρ.

Define a(σ, s, ρ) =
∫ ρ
0 j(σ, s, u)du. By Lemma 2.2 and the definition of

the volume element on ∂T , integration by parts along the radial rays from
γ yields∫

T
f2 ≤ 1

n− 1

∫
∂T
f2 − 2

∫
Sn−2

dσ

∫ `

0
ds

∫ R(σ,s)

0
ff ′a(σ, s, ρ)dρ

where f ′ is the derivative of f in direction of the radial variable ρ.
By the assumption in the lemma, we have∫

∂T
f2 ≤

∫
T
f2

and therefore taking absolute values and using Lemma 2.2 once more, we
obtain

n− 2

n− 1

∫
T
f2 ≤ 2

n− 1

∫
Sn−2

dσ

∫ `

0
ds

∫ R

0
|ff ′|j(σ, s, ρ)dρ

=
2

n− 1

∫
T
|ff ′| ≤ 2

n− 1
(

∫
T
f2)1/2(

∫
T
‖∇f‖2)1/2

where the last inequality follows from Schwarz’s inequality and from |f ′| ≤
‖∇f‖ (compare the proof of Lemma 1 of [10]). Dividing by 2

n−1(
∫
T f

2)1/2
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and squaring the resulting inequality yields the lemma in the case that T is
a Margulis tube.

The argument for a cusp is almost identical. Thus let T be such a cusp,
with boundary ∂T . Then ∂T is an closed manifold, and T is diffeomorphic
to ∂T × [0,∞). Let ρ : T → [0,∞) be the radial distance from ∂T .

Let f : T → R be a smooth square integrable function with
∫
T f

2 ≥
∫
∂T f

2

and let j : ∂T × [0,∞)→ (0,∞) be the function which describes the volume
form on T as discussed above. The version of Lemma 2.1 for cusps and
integration by parts is used as in the proof for Margulis tubes. Since f is
square integrable, as R → ∞ we have

∫
ρ=R f

2 → 0 and hence the same

calculation as before yields (here dµ is the volume element on ∂T used in
the lemma)∫

T
f2 =

∫
∂T
dµ

∫ ∞
0

f2j(x, ρ)dρ = lim
R→∞

∫
∂T
dµ

∫ R

0
f2j(x, ρ)d(ρ)

≤ 1

n− 1

(∫
∂T
f2 + 2

∫
∂T
dµ

∫ ∞
0

ff ′j(x, ρ)dρ
)
.

As before, this yields the required estimate. Note that the change of sign in
this formula stems from the fact that here ρ is the radial distance from the
boundary, while for Margulis tubes, ρ denoted the radial distance from the
core geodesic which seems more natural in that context. �

For a Margulis tube T or a cusp, let T̂ be the set of all points x ∈ T
whose radial distance from the boundary ∂T is at least one. Thus if T is
Margulis tube, determined by a closed geodesic and a function R(σ, s) > 0
on the normal bundle of that geodesic, then using ”coordinates” (σ, s, ρ) as

before, we have T̂ = {(σ, s, ρ) ∈ T | ρ ≤ R(σ, s)− 1}. By our assumption on

Margulis tubes, T−T̂ is diffeomorphic to ∂T×[0, 1). Write M̂thick = M−∪T̂
where the union is over all Margulis tubes and cusps.

For a smooth square integrable function f on M denote by

R(f) =

∫
M
‖∇f‖2/

∫
M
f2

the Rayleigh quotient of f .

Lemma 2.4. Let f : M → R be a smooth square integrable function with

Rayleigh quotient R(f) < (n−2)2
12 ; then∫
M̂thick

f2 ≥ 1

3

∫
M
f2.

Proof. By our assumption on the components of the thin part of M , the set

A = M̂thick −Mthick

is a union of shells, i.e. submanifolds of M with boundary which either are
diffeomorphic to Sn−2 × S1 × [0, 1] (if the component is a Margulis tube)
or to N × [0, 1] (if the component is a cusp), where N is a quotient of a
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horosphere by a rank n− 1 parabolic subgroup of the isometry group of the
universal covering M̃ of M .

Let f : M → R be a smooth function with R(f) < (n−2)2
12 . We want to

show that ∫
M̂thick

f2 ≥ 1

3

∫
M
f2,

and to this end we assume to the contrary that
∫
M̂thick

f2 < 1
3

∫
M f2.

Recall that Mthin is a disjoint union of a finite number of Margulis tubes
and cusps, say Mthin = ∪ki=1Ti. For each of these tubes and cusps Ti, let ri
be the radial distance function to the boundary hypersurface, i.e. ri(x) is
the length of the radial arc connecting the point x ∈ T to ∂T . By reordering
we may assume that there exists a number p ≤ k such that for all i ≤ p,
there is some si ≤ 1 such that∫

{ri=si}∩Ti
f2 ≤

∫
Ti∩{ri≥si}

f2

and that for i > p, such an si does not exist. Here we use the volume element
on the hypersurfaces {ri = si} as in Lemma 2.3.

We distinguish two cases. In the first case,
∑p

i=1

∫
Ti−A f

2 ≥ 1
3

∫
M f2.

Lemma 2.3 then shows that∫
M
‖∇f‖2 ≥

p∑
i=1

∫
Ti∩{ri≥si}

‖∇f‖2

≥ (n− 2)2

4

p∑
i=1

∫
Ti∩{ri≥si}

f2 ≥ (n− 2)2

12

∫
M
f2.

Thus we have R(f) ≥ (n−2)2
12 which contradicts our assumption on f .

In the second case, we have
∑p

i=1

∫
Ti−A f

2 < 1
3

∫
M f2. Then

(7)
k∑

i=p+1

∫
Ti−A

f2 ≥ 1

3

∫
M
f2.

But for each i > p, integration of the defining equation

(8)

∫
Ti∩{ri=s}

f2 ≥
∫
Ti∩{ri≥s}

f2

over the shell Ti ∩A = {0 ≤ ri ≤ 1} yields∫ 1

0
ds

∫
Ti∩{ri=s}

f2 =

∫
Ti∩A

f2 ≥
∫
Ti−A

f2.

Summing over i ≥ p+ 1 and using inequality (7), we obtain∫
∪ki=p+1Ti∩A

f2 ≥
k∑

i=p+1

∫
Ti−A

f2 ≥ 1

3

∫
f2.
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As A ⊂ M̂thick, this contradicts the assumption on f . The lemma follows.
�

The next proposition completes the proof of Theorem 1 for a choice of a
Margulis constant so that M̂thick as defined above is contained in the thick
part of M for this constant.

Proposition 2.5. For all k ≥ 0 we have

λk(M) ≥ min{1

3
λk(M̂thick),

(n− 2)2

12
}

for any finite volume oriented Riemannian manifold M of dimension n ≥ 3
and curvature κ ∈ [−b2 − 1].

Proof. Let M be a finite volume oriented Riemannian manifold of dimension
n ≥ 3 and curvature κ ≤ −1. We use the previous notations.

If M is non-compact, then by Corollary 3.2 of [14], the bottom of the
essential spectrum of M is not smaller than (n−1)2/4. Thus the intersection

of the spectrum of M with the interval [0, (n−2)
2

12 ] consists of a finite number
of eigenvalues.

Let H(M) be the Sobolev space of square integrable functions on M ,
with square integrable weak derivatives. Let k > 0 be such that λk(M) <
(n− 2)2/12. Let m ≤ k− 1 be the largest number so that λm(M) < λk(M).
Note that as we count eigenvalues with multiplicities, we may havem < k−1.
Choose a k−m-dimensional subspace Ek ⊂ H(M) of the eigenspace for the
eigenvalue λk(M) and define E = V ⊕ Ek where V is the direct sum of the
eigenspaces for eigenvalues strictly smaller than λk(M). In particular, E is
a k + 1-dimensional linear subspace of the Hilbert space H(M).

By construction, M̂thick is a smooth manifold with smooth boundary.
Denote by H(M̂thick) the Sobolev space of square integrable functions on

M̂thick with square integrable weak derivatives. Here the weak derivative of
a function f on M̂thick is a vector field Y so that∫

M̂thick

〈Y,X〉 = −
∫
M̂thick

fdiv(X)

for all smooth vector fields X on M̂thick with compact support in the interior
of M̂thick. Green’s formula implies that H(M̂thick) contains all functions f

on M̂thick which are smooth up to and including the boundary.
As smooth functions are dense in H(M) and H(M̂thick), there is a natural

linear one-Lipschitz restriction map Π : H(M)→ H(M̂thick). We denote by
W the image of the linear subspace E under Π.

We claim that dim(W ) = k + 1. To this end assume otherwise. Then
there is a normalized function f ∈ E (i.e.

∫
M f2 = 1) whose restriction

to M̂thick vanishes. But by the definition of E, the Rayleigh quotient R(f)
of f is at most λk(M) < (n − 2)2/12 and therefore Lemma 2.4 shows that∫
M̂thick

f2 ≥ 1
3

∫
M f2.
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As dim(W ) = k + 1 and as H(M̂thick) is the function space for M̂thick

with Neumann boundary conditions (see p.14-17 in [6]), Rayleigh‘s theo-
rem shows that there exists a normalized function f ∈ E with R(Π(f)) =

R(f |M̂thick) ≥ λk(M̂thick). Furthermore, as f ∈ E, we have R(f) ≤ λk(M).
Note that f and Π(f) are smooth.

By Lemma 2.4, we have
∫
M̂thick

f2 ≥ 1
3

∫
M f2 = 1

3 and hence

λk(M) ≥ R(f) ≥
∫
M̂thick

‖∇f‖2 ≥ 1

3
R(f |M̂thick

) ≥ 1

3
λk(M̂thick).

This is what we wanted to show. �

As an easy consequence, we obtain the estimate of Schoen [20].

Corollary 2.6. For every n ≥ 3 and every b ≥ 1 there exists a number
χ(n, b) > 0 such that

λ1(M) ≥ χ(n, b)

vol(M)2

for every finite volume Riemannian manifold M of dimension n and curva-
ture κ ∈ [−b2,−1].

Proof. Let ε > 0 be a Margulis constant for Riemannian manifolds M of
dimension n ≥ 3 and curvature in the interval [−b2,−1]. As Mthick 6= ∅,
the manifold M contains an embedded ball of radius ε which is isometric
to a ball of the same radius in a simply connected manifold of curvature
contained in [−b2,−1]. By comparison, the volume of such a ball is bounded
from below by a universal constant a(n, b) only depending on n and b and
hence the volume of every Riemannian n-manifold of curvature in [−b2,−1]
is bounded from below by a(n, b). Thus Theorem 1 shows that λ1(M) ≥
min{a(n, b)2(n− 2)2/12vol(M)2, λ1(Mthick)/3}.

The manifold with boundary Mthick is uniformly quasi-isometric to a fi-
nite connected graph G, and its first nontrivial eigenvalue λ1(Mthick) with
Neumann boundary conditions is uniformly equivalent to the first nontrivial
eigenvalue of the graph Laplacian [18] (see also Lemma 2.1 of [17] for an
explicit formulation of this fact).

Now the first eigenvalue λ1(G) of a finite graph G satisfies λ1(G) ≥
h2(G)/2 where h(G) is the so-called Cheeger constant of the graph [8]. This
Cheeger constant is defined to be

min
|E(U,U ′)|

min{|U |, |U ′|}

where U is a subset of the vertex set V(G) of G, U ′ = V(G)− U and where
E(U,U ′) is the set of all edges which connect a vertex in U to a vertex in U ′.
As G is connected, this Cheeger constant is at least 1/|V(G)| ∼ 1/vol(M)
which yields the corollary. �
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3. Bounding small eigenvalues from above

In this section we restrict to the investigation of oriented hyperbolic 3-
manifolds of finite volume. Our goal is to prove Theorem 2.

We begin with analyzing in more detail functions on Margulis tubes in
such a hyperbolic 3-manifold M . For a sufficiently small Margulis constant
ε > 0, the boundary ∂T of each such tube T is a flat torus whose injectivity
radius for the induced metric roughly equals ε [5]. Furthermore, radial
geodesics intersect ∂T orthogonally. Note that an analogous statement is
not true in higher dimensions.

The radius rad(T ) of the tube T is the distance of ∂T to the core geodesic
γ. The following lemma is only valid in dimension three.

Lemma 3.1. There is a number q1 = q1(ε) > 0 only depending on ε such
that rad(T ) ≥ log vol(∂T )− q1.

Proof. Write R = rad(T ). We may assume that R > 1. The tube T is
isometric to the quotient of the tubular neighborhood N(γ̃, R) of radius R
of a geodesic γ̃ in H3 under an infinite cyclic group of loxodromic isometries.
Up to conjugation, the generator ψ of this group is determined by its complex
translation length χ ∈ C with <(χ) = ` < 2ε. Here ` is the length of the
core geodesic of T .

The boundary ∂N(γ̃, R) of N(γ̃, R) is a flat two-sided infinite cylinder
of circumference 2π sinhR. For a fixed identification of the fibre of the
unit normal circle bundle of γ̃ over the point γ̃(0) with the unit circle S1,
parallel transport along γ̃ and the normal exponential map determine global
“coordinates” on ∂N(γ̃, R). These “coordinates” consist in a diffeomorphism
S1 × R → ∂N(γ̃, R). The isometry ψ identifies the meridian exp(RS1 ×
{0}) with the meridian exp(RS1 × {`}) by an isometry which is given by
rotation with angle =χ in these coordinates. In particular, the volume of
the boundary torus ∂T of T equals

(9) vol(∂T ) = 2π` sinhR coshR

and is independent of =χ.
The second fundamental form of the torus ∂T is uniformly bounded, in-

dependent of R > 1. This implies that the length of the shortest geodesic
on ∂T is contained in an interval [ε, aε] where a > 0 is a universal constant
(compare Theorem 2.14 and the following discussion in [5]). As we are only
interested in tubes of large radius, we may assume that the length 2π sinhR
of the meridian of ∂T is bigger than aε.

Now the distance on ∂N(γ̃, R) for the intrinsic path metric between the
circles corresponding to the coordinates s = 0, s = ` equals ` coshR. Here as
before, s is the length parameter of γ. A shortest closed geodesic on the flat
torus ∂T lifts to a straight line segment on ∂N(γ̃, R). Since 2π sinhR > aε,
this line segment connects the circle {s = 0} to the circle {s = k`} for some
integer k ≥ 1. From this we conclude that

` coshR ≤ aε.
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From the formula (9) for vol(∂T ), we deduce that sinhR ≥ 1
2πaεvol(∂T )

and hence

eR ≥ 1

πaε
vol(∂T )

which is what we wanted to show. �

Remark 3.2. For hyperbolic manifolds of dimension n ≥ 4, Proposition
2 of [3] states a reverse inequality: Namely, if U is any Margulis tube,
and if r(U) is the largest distance of a point in U to the boundary, then
Vol(U) ≥ dn sinh(13r(U)) where dn > 0 is a constant only depending on n.
The case dim(M) = 3 is very special as every point on the boundary of a
Margulis tube has the same distance to the core geodesic. We refer to p.3
of [5] for more information.

In the statement of the next proposition, we use the fact that given a
Margulis tube T of radius at least three, the volume of T is uniformly pro-
portional to the volume of its boundary ∂T .

Proposition 3.3. There exists a number q2 = q2(ε) > 0 with the following
property. Let T ⊂ M be a Margulis tube or a cusp with boundary ∂T . Let
f : ∂T → R be a function (not neccessarily of zero mean) whose Rayleigh
quotient equals d ≥ 0. Then there is an extension of f to a smooth function
F on T with the following properties.

(1) 1
4

∫
∂T f

2 ≤
∫
T F

2 ≤ 1
2

∫
∂T f

2.
(2) The Rayleigh quotient of F is at most dq2 log vol(T ).
(3) If

∫
∂T f = 0 then

∫
T F = 0.

Proof. Let γ be the core curve of the tube T . Use the coordinates (σ, s, ρ)
on T , given by the angular coordinate σ on the unit normal circle over a
point in γ, the length parameter s on γ and the distance ρ from γ. If R > 0
is the radius of T then the boundary ∂T of T is the surface ρ = R. This
boundary is a flat torus whose injectivity radius equals ε up to a universal
multiplicative constant.

By Lemma 3.1, the radius R of the tube satisfies

−θ = log vol(∂T )− q1 − 1−R ≤ −1

where q1 > 0 is a universal constant. By the inequality (2) in Section 2, we
may assume that R− θ ≥ 3.

Let f : ∂T = {ρ = R} → R be a smooth function with Rayleigh quotient
d ≥ 0. Decompose f = f0 +g where f0 is a constant function and

∫
∂T g = 0.

Extend f0 to a constant function F0 on T , and extend the function g to a
function G : T → R by

(10) G(σ, s, ρ) =


g(σ, s,R) if θ + 1 ≤ ρ ≤ R;

(ρ− θ)g(σ, s,R) if θ ≤ ρ ≤ θ + 1;

0 otherwise.
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Then F = F0 + G is continuous, smooth away from the hypersurfaces ρ =
θ+1 and ρ = θ, with uniformly bounded derivative. Standard Sobolev theory
then implies that F is contained in the Sobolev space of square integrable
functions with square integrable weak derivative, and F |∂T = f .

As for each r ∈ (0, R) the radial projection (σ, s, r) → (σ, s,R) of the
torus {ρ = r} onto the boundary torus ∂T is a homothety, with dilation
sinh(R) cosh(R)/ sinh(r) cosh(r), we have

∫
T G = 0. Furthermore, integra-

tion using the explicit description of the metric on T as a warped product
metric (see Section 2 for details) yields that

(11)

∫
T

(F0 +G)2 ∈ [
1

4

∫
∂T

(f + g)2,
1

2

∫
∂T

(f + g)2].

Namely, as (F0 +G)2(σ, s, ρ) ≤ f2(σ, s,R) for all ρ, the upper bound follows
from∫

T
(F0 +G)2 ≤

∫
∂T
f2
∫ R

θ

sinh ρ cosh ρ

sinhR coshR
dρ =

sinh2(R)− sinh2(θ)

2 sinhR coshR

∫
∂T
f2.

To establish the lower bound, simply note that∫
T

(F0 +G)2 ≥
∫
∂T
f2
∫ R

θ+1

sinh ρ cosh ρ

sinhR coshR
dρ

=
sinh2(R)− sinh2(θ + 1)

2 sinhR coshR

∫
∂T
f2.

Up to adjusting the requirement on the radius of the Margulis tube, we may
assume that sinh2(θ + 1) ≤ 1

4 sinh(R)2 and 3
4 sinh(R) ≥ 1

2 cosh(R) which
then results in the estimate stated in the first part of the proposition.

Now
∫
T ‖∇(F0 + G)‖2 =

∫
T ‖∇G‖

2 and therefore for the second part of
the statement in the proposition, it suffices to show that

(12)

∫
T
‖∇G‖2 ≤ c1(R− θ)

∫
∂T
‖∇g‖2

for a universal constant c1 > 0. Namely, the discussion in the previous
paragraph shows that the integral of the constant function one over the
shell θ ≤ ρ ≤ R is bounded from below by 1

4vol(∂T ). In particular, we have
log vol(T ) ≥ log vol(∂T ) − log 4. On the other hand, by the choice of θ, we
also have R− θ = log vol(∂T )− q1 − 1.

To establish the estimate (12) recall from Chapter 2 of [6] that the first
nonzero eigenvalue of ∂T is not smaller than c2/vol(∂T )2 where c2 > 0 is
a universal constant (here we use that the injectivity radius of ∂T is at
least ε). In particular, by the definition of the number θ, this eigenvalue

is not smaller than c3e
−2(R−θ) where c3 > 0 is a universal constant. As a

consequence, we have

(13)

∫
∂T
‖∇g‖2 ≥ c3e−2(R−θ)

∫
∂T
g2.
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Now for r ∈ [θ+ 1, R], the radial projection of the torus {ρ = r} onto ∂T
scales the metric with a fixed constant. Moreover, the directional derivative
of G in direction of the radial vector field vanishes. This implies that∫

ρ=r
‖∇G(σ, s, r)‖2 =

∫
∂T
‖∇G(σ, s,R)‖2

for r ∈ [θ + 1, R] and hence∫
θ+1≤ρ≤R

‖∇G(s, t, ρ)‖2 = (R− θ − 1)

∫
∂T
‖∇g‖2.

On the other hand, if θ < r < θ + 1 then∫
ρ=r
‖∇G(s, t, ρ)‖2 ≤

∫
∂T
‖∇G(s, t, R)‖2 +

∫
ρ=r

G(s, t, ρ)2.

Here the second term in this inequality is the contribution of the derivative
of G in direction of the radial vector field, and we use that this vector field
is normal to the hypersurfaces {ρ = r}.

There is a universal constant c4 > 0 such that for each r ∈ [θ, θ + 1] the

volume of the level surface {ρ = r} is not bigger than c4e
−2(R−θ)(vol(∂T )).

Integration of this inequality over the interval [θ, θ+1] yields
∫
θ≤ρ≤θ+1G

2 ≤
c4e
−2(R−θ) ∫

∂T g
2. Hence by the estimate (13),∫

θ≤ρ≤θ+1
G2 ≤ c4

c3

∫
∂T
‖∇g‖2.

Together this implies

(14)

∫
T
‖∇G‖2 ≤ (R− θ +

c4
c3

)

∫
∂T
‖∇g‖2.

The estimates (11,14) together with the choice of θ show part (1) and (2)
of the proposition. The third part is immediate from the fact that by con-
struction, if

∫
∂T f = 0 then F = G and

∫
T G = 0.

The case that T is a cusp is completely analogous but easier and will be
omitted. �

As an immediate consequence of Proposition 3.3 we obtain

Corollary 3.4. The first nonzero eigenvalue with Neumann boundary con-
ditions of a three-dimensional hyperbolic Margulis tube or a cusp is at most
q3 log vol(T )/vol(∂T )2 where q3 > 0 is a universal constant.

Proof. By the discussion in Chapter II, Section 2 of [6] and the fact that
the injectivity radius of the flat torus ∂T is proportional to ε, there exists a
universal number a > 0 and a function f : ∂T → R with

∫
∂T f = 0 and∫

∂T
‖∇f‖2 ≤ a

∫
∂T
f2/vol(∂T )2.

By Proposition 3.3, the function f can be extended to a function F : T →
R with

∫
T F = 0 and Rayleigh quotient R(f) ≤ q2a log vol(T )/vol(∂T )2.
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Now F is smooth up to and including the boundary, and therefore by
Rayleigh’s principle as explained in Chapter 1 Section 5 of [6], this implies
that the first non-zero eigenvalue of T with Neumann boundary conditions
is bounded from above by q2a log vol(T )/vol(∂T )2 as claimed in the corol-
lary. �

The strategy for the proof of Theorem 2 from the introduction consists
in extending an eigenfunction f on M̂thick to a function on M using the
construction in Proposition 3.3. But the control on square integrals and
Rayleigh quotients established in Proposition 3.3 depends on a control of
these data for the restriction of f to the boundary of M̂thick, and there is no
apparent relation to the global square norm and the global Rayleigh quotient
of f . Note also that there is no useful Harnack inequality for the restriction
of an eigenfunction on M̂thick to its boundary.

To overcome this difficulty we establish some a-priori control on the re-
striction of eigenfunctions for small eigenvalues to sufficiently large tubular
neighborhoods of the boundary of M̂thick- the price we have to pay is that
we have to decrease the Margulis constant which appears in Theorem 2.

We begin with establishing a modified version of Lemma 2.3. We only
formulate this lemma for hyperbolic 3-manifolds although it is valid for
arbitrary finite volume manifolds of curvature contained in [−b2,−1], where
integration over radial distance hypersurfaces has to be interpreted as in
Section 2.

Define a shell in a Margulis tube or cusp T to be a subset of T of the
form {s ≤ ρ ≤ t} where ρ is up to an additive constant the negative of the
radial distance from the boundary of T and s < t (using the negative of
the radial distance is for convenience here). The height of the shell equals
t − s. We always write a shell N in the form N = V × [0, k] where k is
the height of the shell, the manifold V is diffeomorphic to the boundary
∂T of the tube or cusp, the real parameter t is the radial distance from
the boundary component V × {0}, and the boundary component V × {k}
is closer to the boundary ∂T of the tube or cusp. As before, we denote by
R(f) the Rayleigh quotient of a function f .

Lemma 3.5. (1) Let k ≥ 2 and let N = V × [0, k] be a shell of height k
in a Margulis tube or cusp in a hyperbolic 3-manifold. Let f : N → R
be a function which is smooth up to and including the boundary. If∫
V×[0,1] f

2 ≥ 3
∫
V×[k−1,k] f

2 then R(f) ≥ 1
3 .

(2) Let f be an eigenfunction on M̂thick with Neumann boundary con-
ditions for an eigenvalue λ < 1. Let τ > 0 be sufficiently small
that the closed tubular neighborhood of radius τ of the boundary
∂M̂thick in M̂thick is a shell, diffeomorphic to ∂M̂thick × [0, τ ]. Then∫
∂M̂thick×{τ} f

2 ≥
∫
∂M̂thick×{0} f

2.
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Proof. We begin with the proof of the first part of the lemma. Define

s = min{t ∈ [0, 1] |
∫
V×{t}

f2 ≥ 1

3

∫
V×[0,1]

f2} and

u = max{t ∈ [k − 1, k] |
∫
V×{t}

f2 ≤
∫
V×[k−1,k]

f2}.

Then ∫
V×[0,s]

f2 ≤ 1

3

∫
V×[0,1]

f2 ≤ 1

3

∫
N
f2,

in particular, by the assumption on f in the first part of the lemma, we have∫
V×[s,u]

f2 ≥
∫
N
f2 − 1

3

∫
V×[0,1]

f2 −
∫
V×[k−1,k]

f2

≥
∫
N
f2 − 2

3

∫
V×[0,1]

f2 ≥ 1

3

∫
N
f2.

Let us compute the derivative of the function a(t) =
∫
V×{t} f

2. Recall

that the radial projection (x, t) ∈ V ×{t} → (x, u) ∈ V ×{u} is a homothety
which scales the Lebesgue measure of the flat torus ρ = t by a factor b(t, u),
with d

dtb(t, u)|u=t = c(t) ≥ 2 (in fact, for a cusp we have c(t) ≡ 2, and in
the case of a Margulis tube, if the radial distance of V × {t} from the core
geodesic equals R, then c(t) = (cosh2(R) + sinh2(R))/ sinh(R) cosh(R) ≥ 2,
compare the proof of Lemma 2.3). We obtain

(15)
d

dt

∫
V×{t}

f2 = c(t)

∫
V×{t}

f2 + 2

∫
V×{t}

fν(f)

where ν is the outer normal field of the hypersurface V × {t}.
Thus as

∫
V×{u} f

2 ≤
∫
V×[k−1,k] f

2 ≤
∫
V×{s} f

2, we conclude that

(16)

∫
V×{u}

f2 −
∫
V×{s}

f2 =

∫
V×[s,u]

c(t)f2 + 2fν(f) ≤ 0

and hence ∫
V×[s,u]

c(t)f2 ≤ 2|
∫
V×[s,u]

fν(f)|.

Using c(t) ≥ 2 for all t and ν(f)2 ≤ ‖∇f‖2 and applying the Schwarz
inequality as before, we deduce

(17)

∫
V×[s,u]

f2 ≤
∫
V×[s,u]

‖∇f‖2 ≤
∫
N
‖∇f‖2.

As
∫
V×[s,u] f

2 ≥ 1
3

∫
N f

2, this provides the first statement in the lemma.

To show the second statement in the lemma, let f be an eigenfunction on
M̂thick with Neumann boundary conditions and eigenvalue λ < 1. Assume
to the contrary that there exists a number τ > 0 such that the tubular
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neighborhood of radius τ about the boundary ∂M̂thick of M̂thick is a shell
diffeomorphic to ∂M̂thick × [0, τ ] and that

(18) δ =

∫
∂M̂thick×{0}

f2 −
∫
∂M̂thick×{τ}

f2 > 0.

Let t0 ∈ (0, τ ] be the smallest number for which the equation (18) holds
true, with this number δ. We then have

d

dt

∫
∂M̂thick×{t}

f2|t=t0 ≤ 0.

By formula (15), this implies that
∫
∂M̂thick×{t0} fν(f) < 0.

On the other hand, as f is an eigenfunction for the eigenvalue λ, with
Neumann boundary conditions, Green’s formula yields that∫

∂M̂thick×[0,t0]
f∆f = −λ

∫
∂M̂thick×[0,t0]

f2

=

∫
∂M̂thick×{t0}

fν(f)−
∫
∂M̂thick×[0,t0]

‖∇f‖2.

Thus
∫
∂M̂thick×[0,t0] ‖∇f‖

2 ≤ λ
∫
∂M̂thick×[0,t0] f

2. As λ < 1 by assumption, this

violates the first inequality in the formula (17). Note that this inequality
applies since by our setup, the estimate in inequality (16) holds true for
u = t0 and s = 0. �

Corollary 3.6. Let M be a hyperbolic 3-manifold and let M̂thick be the
tubular neighborhood of radius 96 about Mthick. Let N be the tubular neigh-
borhood of radius one about ∂M̂thick in M̂thick. Let f : M̂thick → R be a
smooth function with R(f) ≤ 1/96; then∫

N
f2 ≤ 1

32

∫
M̂thick

f2.

Proof. Parameterize M̂thick−Mthick = W asW = V ×[0, 96] where ∂M̂thick =
V × {0}. With this notation, we have N = V × [0, 1].

We distinguish two cases. In the first case, there exists some k ∈ [0, 95] so
that

∫
V×[0,1] f

2 ≥ 3
∫
V×[k,k+1] f

2. By the first part of Lemma 3.5, we have

R(f |V×[0,k+1]) ≥ 1/3. This implies that∫
M̂thick

‖∇f‖2 ≥
∫
V×[0,k+1]

‖∇f‖2 ≥ 1

3

∫
V×[0,k+1]

f2.

But R(f) ≤ 1/96, that is,∫
M̂thick

‖∇f‖2 ≤ 1

96

∫
M̂thick

f2.

These two estimates together yield∫
V×[0,1]

f2 ≤
∫
V×[0,k+1]

f2 ≤ 1

32

∫
M̂thick

f2
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as claimed.
In the second case, we have

∫
V×[0,1] f

2 ≤ 3
∫
V×[k,k+1] f

2 for all k ≤ 95.

But this implies as before that∫
V×[0,1]

f2 ≤ 1

32

∫
V×[0,96]

f2 ≤ 1

32

∫
M̂thick

f2

which is what we wanted to show. �

As a consequence, we obtain Theorem 2 from the introduction.

Proposition 3.7. There is a constant q4 > 0 with the following property.
Let M be a finite volume oriented hyperbolic 3-manifold; then for a suitable
choice of a Margulis constant, we have

λk(M) ≤ (3 + q4(log vol(Mthin))λk(Mthick)

for all k so that λk(Mthick) < 1/96.

Proof. Let M be a finite volume oriented hyperbolic 3-manifold. Denote by
M̂thick the tubular neighborhood of radius 96 of the thick part Mthick of M
for some choice of Margulis constant.

Let k ≥ 1 be such that λk(M̂thick) = λk < 1/96 and let f : M̂thick → R be
an eigenfunction for the eigenvalue λk, with Neumann boundary conditions.
Then f is a smooth function on M̂thick which solves the Laplace equation

∆(f) + λkf = 0.

Our goal is to extend the function f on M̂thick to a function F on M which
is contained in the Sobolev space H(M) of square integrable functions on
M , with square integrable weak derivative, in such a way that the Rayleigh
quotient of F is controlled by the Rayleigh quotient of f and hence by λk.

The tubular neighborhood N of ∂M̂thick in M̂thick of radius 1 is diffeomor-
phic to ∂M̂thick × [0, 1], where the real parameter is the distance ρ from the

boundary ∂M̂thick of M̂thick. The metric on N is a warped product metric.
By Corollary 3.6, we have

(19)

∫
N
f2 ≤ 1

32

∫
M̂thick

f2.

Let m > 0 be such that
∫
N ‖∇f‖

2 −mλk
∫
N f

2 = 0. Then we can find a
number δ ∈ [0, 1] so that

(20)

∫
∂M̂thick×{δ}

‖∇f‖2 ≤ mλk
∫
∂M̂thick×{δ}

f2.

Let V = M̂thick − ∂M̂thick × [0, δ]. Then V is a smooth submanifold of

M̂thick with boundary ∂V = ∂M̂thick × {δ}. Moreover, M − V is a union of
Margulis tubes and cusps as before. Extend the restriction of f to ∂V as in
Proposition 3.3. This yields a function F : M → (0,∞) which is continuous,
smooth away from ∂V , with smooth restriction to ∂V . Furthermore, F
is square integrable, and its derivative (which exists in the strong sense
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away from the compact hypersurface ∂V ) is pointwise bounded. Thus F is
contained in the Sobolev space H(M) of square integrable functions with
square integrable weak derivative.

The Rayleigh quotient of F can be estimated as follows. Let

T = (M − M̂thick) ∪N ⊃M − V.

Using the second part of Proposition 3.3, the estimate (20) and decomposing
integrals, we have∫

T
‖∇F‖2 ≤

∫
T ∩V
‖∇f‖2 +mλkq2(log vol(T ))

∫
T −V

F 2

≤ mλk(1 +
1

2
q2 log vol(T ))

∫
N
f2(21)

where the last inequality uses the definition of the constant m > 0.
Recall that the Rayleigh quotient of the function f on M̂thick equals λk.

We compute

∫
M
‖∇F‖2 =

∫
M−T

‖∇F‖2 +

∫
T
‖∇F‖2 ≤

∫
M̂thick

‖∇f‖2 +

∫
T
‖∇F‖2

(22)

≤ λk
(∫
M̂thick

f2 +m(1 +
1

2
q2 log vol(T ))

∫
N
f2
)

where the last inequality follows from (21).
As
∫
N ‖∇f‖

2 = mλk
∫
N f

2, we have
∫
N f

2 ≤ 1
m

∫
M̂thick

f2. Inserting into

the estimate (22) implies that∫
M
‖∇F‖2 ≤ λk(2 +

1

2
q2 log vol(T ))

∫
M̂thick

f2.

To complete the control on the Rayleigh quotient of F , we compare the
square norm of F to the square norm of f . For convenience, extend the
eigenfunction f on M̂thick to all of M by 0. As F = f on V = M̂thick −
∂M̂thick × [0, δ], using inequality (19) we estimate

(23)
31

32

∫
M̂thick

f2 ≤
∫
V
f2 ≤

∫
V
f2 +

∫
M−V

F 2 =

∫
M
F 2.

We deduce that the Rayleigh quotient of F is bounded from above by

(3 + q2(log vol(Mthin))λk(M̂thick).

This is the property of the extension function F we were aiming at. Note
also for later reference that as another consequence of Lemma 3.5 and the
fact that F = f on V , we obtain

(24)

∫
M

(f − F )2 =

∫
M−V

F 2 ≤ 1

2

∫
∂M̂thick×{δ}

f2.
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To summarize, for an eigenfunction fk on M̂thick with Neumann boundary
conditions and eigenvalue λk < 1/96, we constructed an extension Fk : M →
R with controlled Rayleigh quotient as predicted in the proposition.

Now let us assume that for each i ≤ k we constructed from an eigen-
function fi on M̂thick with eigenvalue λi(M̂thick) with the above procedure
the function Fi. Let Ek−1 be the linear span of the functions Fi for i < k.
Assume that the function Fk is normalized so that

∫
F 2
k = 1. Using the

above notations with δi ∈ [0, 1] the number which enters the construction of
Fi, assume furthermore for the moment that

(25)

∫
∂M̂thick×{δk}

f2k ≤
∫
N
f2k ≤

1

32

∫
M̂thick

f2k .

Using inequalities (23) and (24), we then have∫
T
F 2
k ≤

3

32

∫
M
F 2
k .

The function Fk may not be orthogonal to Ek−1 for the L2-inner prod-
uct. Denote by H the L2-orthogonal projection of Fk to Ek−1. Note that∫
M H2 < 1. Since H ∈ Ek−1 there exists a finite linear combination h of

eigenfunctions on M̂thick with Neumann boundary conditions and eigenval-
ues λi(M̂thick) for i < k which gives rise to H with the above construction.
As
∫
M H2 < 1, by construction

∫
M̂thick

h2 ≤ 32
31 , and Corollary 3.6 shows that∫

N
h2 ≤ 1

32

∫
M̂thick

h2 ≤ 1

31
.

Now Fk = fk and H = h on M̂thick −N and furthermore
∫
M̂thick

fkh = 0

and hence∫
M

(Fk −H)2 ≥
∫
M̂thick−N

(Fk −H)2 =

∫
M̂thick−N

f2k − 2fkh+ h2(26)

≥ 29

32
− 2|

∫
N
fkh| ≥

29

32
− 2

31
≥ 26

32

by the Cauchy Schwarz inequality.
By the above construction, there exists a universal constant c > 0 so that∫

M
‖∇Fk‖2 ≤ λk(3 + c log vol(Mthin))

∫
M̂thick

F 2
k

and the same holds true for H, with λk replaced by λk−1. But this implies
that the Rayleigh quotient of Fk − H is bounded from above by a fixed
multiple of λk(Mthick)(1+log vol(Mthin)). As k with λk < 1/96 was arbitrary,
the proposition now follows from Rayleigh‘s principle (see [6] for details)
provided that we can assure that inequality (25) holds true for all k.

The final step of this proof consists in modifying the construction of the
function F from an eigenfunction f on M̂thick with Neumann boundary
conditions so that F fulfills inequality (25).
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To this end recall from the second part of Lemma 3.5 that∫
∂M̂thick×{0}

f2 ≤
∫
N
f2.

Let β : [0, δ] → R be such that the function u : ∂M̂thick × [0, δ] = W →
(0,∞) defined by u(x, s) = eβ(s)f(x, δ) satisfies∫

∂M̂thick×{s}
u2 =

∫
∂M̂thick×{s}

f2 for all s ∈ [0, δ].

Clearly we have
∫
W u2 =

∫
W f2.

Let ν be the vector field on W which equals the exterior normal field of
the hypersurfaces M̂thick × {s}, defining the orientation of the interval. We
claim that

(27)

∫
W
ν(u)2 ≤

∫
W
ν(f)2.

To show the claim we evoke formula (15) from the proof of Lemma 3.5
which gives

d

dt

∫
∂M̂thick×{t}

f2 = c(t)

∫
∂M̂thick×{t}

f2 + 2

∫
∂M̂thick×{t}

fν(f).

By the definition of the function u, for all t ∈ [0, δ] we therefore have∫
∂M̂thick×{t}

fν(f) =

∫
∂M̂thick×{t}

uν(u).

But ν(u)(x, t) = β′(t)u(x, t) and hence∫
∂M̂thick×{t}

uν(u) = β′(t)

∫
∂M̂thick×{t}

u2,

furthermore∫
∂M̂thick×{t}

ν(u)2 = |β′(t)|2
∫
∂M̂thick×{t}

u2

= (

∫
∂M̂thick×{t}

uν(u))2/

∫
∂M̂thick×{t}

u2.(28)

Observe that the last line in equation (28) coincides with the correspond-
ing expression for the function f . By the Schwarz’ inequality,

|
∫
∂M̂thick×{t}

fν(f)| ≤ (

∫
∂M̂thick×{t}

f2)1/2(

∫
∂M̂thick×{t}

ν(f)2)1/2.

On the other hand, by (28), for the function u equality holds in this inequal-
ity. This yields

∫
W ν(u)2 ≤

∫
W ν(f)2 as claimed.

Following the discussion in the proof of Proposition 3.3, for s, t ∈ [0, δ]

the radial projection of the hypersurface ∂M̂thick×{s} onto the hypersurface

∂M̂thick×{t} is bilipschitz, with uniformly bounded bilipschitz constant not
depending on M . This implies that there is a universal constant c > 0
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such that for each s ∈ [0, δ], the Rayleigh quotient of the restriction of u

to ∂M̂thick × {s} is not bigger than c times the Rayleigh quotient of the

restriction of u to ∂M̂thick×{δ}. Together with the estimate (27) on normal
derivatives and the choice of δ, we obtain∫

∂M̂thick×[0,δ]
‖∇u‖2 ≤ cmλk

∫
∂M̂thick×[0,δ]

f2 +

∫
∂M̂thick×[0,δ]

‖∇f‖2.

Use Proposition 3.3 to extend the restriction of the function u to M̂thick×
{0} to the complement of M̂thick in M (which consists of a collection of
Margulis tubes and cusps). It now follows from the beginning of this proof
that the resulting function F has all properties predicted in the proposition.

To provide more details of this estimate, let again T = M − M̂thick ∪N .
Then f = F on M − T , and by Proposition 3.3, Lemma 3.5 and inequality
(19),

(29)

∫
T
F 2 ≤ 3

2

∫
N
f2 ≤ 3

64

∫
M̂thick

f2.

This implies as in the estimate (23) that

(30)

∫
M
f2 ≤

∫
M
F 2 ≤ 67

64

∫
M
f2.

On the other hand, using the estimate (20) and the construction of F ,∫
T
‖∇F‖2 ≤ λkq2m(log vol(T ) + c)

∫
N
f2

which yields the required estimate on Rayleigh quotients as above. �

Remark 3.8. For a compact hyperbolic manifold M of dimension n ≥ 4,
Burger and Schroeder [3] proved the upper bound

λ1(M) ≤ αn + βn log vol(M)

diam(M)

with constants αn, βn depending only on n. As hyperbolic 3-manifolds with
cusps can be Dehn-filled, with fixed volume bound, this result is in general
false for hyperbolic 3-manifolds.
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