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Abstract

Let M be a complete geometrically finite manifold of bounded

negative curvature, infinite volume and dimension at least 3. We give

both a lower bound for the bottom of the spectrum of M and an upper

bound for the number of the small eigenvalues of M . These bounds

only depend on the dimension, curvature bounds and the volume of

the one-neighborhood of the convex core. 1

1 Introduction

LetM be a complete Riemannian manifold of dimension n ≥ 3 with sectional
curvature −κ ≤ K ≤ −1 for some κ ≥ 1. Denote by X the universal covering
of M ; then there is a discrete torsion free subgroup Γ of the isometry group
Iso(X) of X such that M = X/Γ. The group Γ acts by homeomorphisms on
the ideal boundary ∂X of X. The limit set Λ of Γ is the smallest nonempty
closed Γ-invariant subset of ∂X. The quotient under the action of Γ of the
closed convex hull of Λ in X is a closed convex subset C(M) of M , the
so-called convex core of M .
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The manifold M is called geometrically finite if the volume of the one-
neighborhood C1(M) of C(M) in M is finite. This is in particular the case
if the manifold M is of finite volume itself [B].

The Laplace-Beltrami operator ∆ ofM acts on the space of smooth func-
tions with compact support and admits a unique extension to an unbounded
self-adjoint operator on L2(M). The spectrum of −∆ is a closed subset
σ(M) of the half-line [0,∞) which is the disjoint union of the essential spec-
trum σess(M) and the discrete spectrum σdisc(M). The essential spectrum is
a closed subset of [0,∞). The discrete spectrum consists of eigenvalues of
finite multiplicity; they are isolated points in σ(M).

In this note we are interested in the small part of the spectrum of M , i.e.
the intersection of σ(M) with the interval [0, (n − 1)2/4). Notice that (n −
1)2/4 is just the bottom of the L2-spectrum of hyperbolic n-space Hn. Our
first result is a positive lower bound for the bottom λ0(M) of the spectrum of
M under the assumption that the volume of M is infinite. This bound only
depends on the dimension n, the curvature bounds and the volume of C1(M)
and generalizes an earlier result of Burger and Canary [BC] for geometrically
finite hyperbolic manifolds, with a simpler proof.

We also show that the bottom of the essential spectrum of M is not
smaller than (n − 1)2/4. Thus the small part of the spectrum consists of a
collection of eigenvalues. We give an upper bound for the number of eigen-
values contained in a closed interval of the form [0, (n− 1)2/4− χ] for some
χ > 0. This bound only depends on the dimension n, curvature bounds, the
volume of C1(M) and the choice of χ and generalizes in a weaker form an
estimate of Buser, Colbois and Dodziuk [BCD] for manifolds of finite volume
and bounded negative curvature. Our results can be summarized as follows.

Theorem: Let n ≥ 3, κ ≥ 1 and let M be a geometrically finite man-

ifold of dimension n, infinite volume and sectional curvature contained in

[−κ,−1]. Denote by vol(C1(M)) the volume of the neighborhood of radius 1

of the convex core of M .

1. There is a constant c0 = c0(n, κ) > 0 such that

λ0(M) ≥ c0
vol(C1(M))2

.

2. The essential spectrum of M is contained in [(n− 1)2/4,∞).
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3. For every χ > 0 there is a constant c1 = c1(n, κ, χ) > 0 such that the

number of eigenvalues of M contained in the interval (0, (n−1)2/4−χ]
is bounded from above by c

vol(C1(M))
1 .

In the case of geometrically finite subgroups Γ of the simple rank-one
Lie groups OF(n, 1) where F is one of the Archimedian fields R,C,H,O the
bottom of the spectrum of the corresponding rank-one locally symmetric
space M corresponds precisely to the critical exponent of Γ. In particular,
the bottom of the spectrum of M is 0 if and only if this critical exponent
equals δF(n) = dim(M) + dimRF − 2. The proof of our theorem also yields
the following result.

Corollary: Let Γ be a geometrically finite subgroup of OF(n, 1) and de-

note by M the locally symmetric space defined by Γ.

1. The critical exponent of Γ equals δF(n) if and only if Γ is a lattice.

2. The essential spectrum of M is contained in [δF(n),∞), and for every

χ > 0 the number of eigenvalues of M contained in [0, δF(n) − χ] is
bounded from above by c(χ)vol(C1(M)).

The first part of our corollary is well known for real hyperbolic manifolds
(see [BC] and the references there) and, in a much stronger form, for general
discrete subgroups of OH(n, 1), OO(2, 1) (see [C]).

Our method is very general and can be applied to give a lower bound for
the spectrum and the essential spectrum for the Laplacian acting on forms;
however we do not address this question here. For a discussion of further
related results we refer to [BC] and [BCD].

2 Tubes, cusps and ends

In this section we collect some preliminary results on the spectrum of tubes,
cusps and ends in a geometrically finite Riemannian manifoldM of dimension
n ≥ 3 and of bounded negative curvature −κ ≤ K ≤ −1. Recall that such a
manifoldM can be written in the formM = X/Γ where Γ is a discrete torsion
free subgroup of the isometry group Iso(X) of the universal covering X of
M . The group Γ is called elementary if its action on the ideal boundary ∂X
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of X has a finite orbit. An elementary torsion free discrete isometry group Γ
either is an infinite cyclic group of loxodromic isometries or Γ is a parabolic
group which fixes a point ξ ∈ ∂X (see [B]).

We begin with estimating the bottom of the spectrum for the quotient of
X under a torsion free elementary group Γ.

Lemma 2.1: Let Γ be an infinite cyclic group of loxodromic isometries

of X; then λ0(X/Γ) ≥ (n− 1)2/4.
Proof: Since the bottom of the L2-spectrum ofM = X/Γ for the operator

−∆ equals the top of the positive spectrum of −∆ it is enough to find a
positive ∆ + (n − 1)2/4-superharmonic function on M [S]. For this let γ̃ be
the axis of the action of Γ on X; then γ̃ is a Γ-invariant geodesic in X, and Γ
acts as a group of translations on γ̃. Denote by τ > 0 the translation length
on γ̃ of a generator Ψ of Γ; then for every x ∈ X and every k ∈ Z we have
dist(x,Ψkx) ≥ kτ .

Fix a point x ∈ X and denote by ρx(y) the distance of a point y ∈ X to
x. Write δ = (n− 1)/2; using Rauch’s comparison theorem we have

∆(e−δρx) ≤ e−δρx(−(n− 1)δ + δ2)

at least on X − {x}. Therefore the function e−δρx is ∆ + δ2-superharmonic,
moreover it is positive. On the other hand, by our above observation, for
each y ∈ X the series ∑

k

e−δρ
Ψkx

(y)

converges and hence the assignment y → ∑
k e

−δρ
Ψkx

(y) defines a Γ-invariant
positive ∆ + δ2-superharmonic function on X which projects to a positive
∆ + δ2-superharmonic function on M = X/Γ. This shows the lemma.

Next we look at the bottom of the spectrum of an elementary parabolic
group. For this recall that for every complete Riemannian manifold N the
bottom λ0(N) of the spectrum of N is the infimum of the Rayleigh quo-

tients R(f) =
∫
|df |2∫
f2 over all nontrivial smooth functions on N with compact

support.

Lemma 2.2: Let Γ ⊂ Iso(X) be an elementary parabolic group; then

λ0(X/Γ) ≥ (n− 1)2/4.
Proof: Let Γ ⊂ Iso(X) be an elementary parabolic group. Then Γ stabi-

lizes a horosphere H in X, and M = X/Γ is diffeomorphic to H/Γ×R with
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a diffeomorphism which maps each line {z} × R to a geodesic in M . If we
denote by dx the volume element on H/Γ of the restriction of the Rieman-
nian metric on M then the volume element ω on M can be represented in
the form ω = dt× hdx where h : H/Γ× R → (0,∞) satisfies

∂

∂t
h(x, t) ≥ (n− 1)h(x, t)

(see [HIH]).
Now let f : M → R be any smooth function with compact support. We

use an idea of Kean (see [BCD]). Namely, for x ∈ H/Γ we have

(

∫ ∞

−∞

|∂f
∂t

|2h(x, t)dt)1/2(
∫ ∞

−∞

f 2h(x, t)dt)1/2 ≥
∫ ∞

−∞

|∂f
∂t
f |h(x, t)dt

=
1

2

∫ ∞

−∞

| ∂
∂t

(f 2)|h(x, t)dt ≥ 1

2

∫ ∞

−∞

f 2 ∂

∂t
h(x, t)dt ≥ n− 1

2

∫ ∞

−∞

f 2h(x, t)dt

and therefore∫
H/Γ

∫ ∞

−∞

|∂f
∂t

|2h(x, t)dtdx ≥ (
n− 1

2
)2
∫
H/Γ

∫ ∞

−∞

f 2h(x, t)dtdx.

Thus the Rayleigh quotient of f is at least (n− 1)2/4.

Now consider an arbitrary geometrically finite manifold M of curvature
contained in [−κ,−1]. As in the introduction, let C(M) be the convex core
of M . Then M − C(M) is an open subset of M which consists of finitely
many connected components (see [B]). Recall that for each open subset Ω
of a Riemannian manifold M the smallest Rayleigh quotient µ1(Ω) of Ω is
defined to be the infimum of all Rayleigh quotients for all smooth functions
f with compact support in Ω; in particular we have µ1(Ω) ≥ µ1(M).

The next lemma is similar to Lemma 2.2. For its formulation, denote for
a subset A of M and r > 0 by B(A, r) the open r-neighborhood of A in M .

Lemma 2.3: LetM be geometrically finite with curvature −κ ≤ K ≤ −1;
then for every r > 0 we have µ1(M − B(C(M), r)) ≥ (tanh r)2(n− 1)2/4.

Proof: Since B(C(M), r) is the r-neighborhood of a convex subset of
M , its boundary is a smooth hypersurface ∂B(C(M), r) in M . The second
fundamental form of this boundary is positive definite. If we denote by N
the outer normal of ∂B(C(M), r) then the normal exponential map exp is a
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diffeomorphism of {tN | t ∈ (0,∞)} onto M − B(C(M), r). The pullback
under exp of the volume element ω on M − B(C(M), r) can be written in
the form ω = dt×h(x, t)dx where dx is the volume element on ∂B(C(M), r)
and where h : ∂B(C(M), r) × [0,∞) → [1,∞) is a smooth function. By
comparison with a manifold of constant curvature −1, this function satisfies

∂

∂t
h(x, t) ≥ (n− 1)h(x, t) tanh(t+ r)

for all t ≥ 0. The lemma now follows from the arguments in the proof of
Lemma 2.2.

Remark: Using the notations from the introduction, if Γ is a geomet-
rically finite subgroup of the group OF(n, 1) for F = R,C,H,O then using
the standard computations for Jacobi fields in rank-one symmetric spaces
we observe that the proofs of Lemma 2.1-2.3 remain valid if we replace the
lower bound (n− 1)2/4 for the spectrum of our tubes, cusps and ends by the
(sharp) bound δF(n).

3 Proof of the theorem

We continue to look at a geometrically finite Riemannian manifold (M, g)
of dimension n ≥ 3 and sectional curvature −κ ≤ K ≤ −1. As before, we
denote by X the universal covering of M and by Γ the fundamental group of
M . For a number δ > 0 letMthin(δ) be the set of all points inM at which the
injectivity radius is smaller than δ. Following Margulis, there is a constant
ǫ0 > 0 only depending on the dimension and the curvature bounds such that
for every ǫ ≤ ǫ0 each connected component of Mthin(ǫ) is isometric to an
open connected subset of the quotient of X under an elementary torsion-free
subgroup G of Γ. In the sequel we always denote by ǫ0 this constant. For
ǫ ∈ (0, ǫ0] defineMthick(ǫ) to be the ǫ-thick part ofM , i.e. the set of all points
in M with injectivity radius at least ǫ. Since M is geometrically finite, the
intersection Mthick(ǫ) ∩ C(M) is compact [B].

For an open subset Ω of M the Laplacian acting on smooth functions
with compact support in Ω admits a unique self-adjoint extension ∆Ω to an
unbounded operator on L2(Ω). The domain of ∆

1/2
Ω is the usual Sobolev

space H1(Ω) which is the completion of the space of smooth functions with
compact support in Ω with respect to the Sobolev norm ‖f‖2 =

∫
f 2+

∫
|df |2.

Let σ(Ω) be the spectrum of −∆Ω.
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We use the spectral theorem for −∆Ω in the following form (see [D]).
There is a finite measure µ on σ(Ω)×N and a unitary operator U : L2(Ω) →
L2(σ(Ω)×N, dµ) as follows. Define h(s, n) = s; then f ∈ L2(Ω) is contained
in the domain of −∆Ω if and only if hU(f) ∈ L2(σ(Ω)×N, dµ), and if this is
the case we have −U∆ΩU

−1(Uf) = hU(f). The spectral measure of such a
function f is supported in an interval [λ−κ, λ+κ] if and only if the function
Uf is supported in [λ − κ, λ + κ] × N. Since (u, q) →

∫
g(du, dq) is the

quadratic form of −∆
1/2
Ω this implies that for every q ∈ H1(Ω) we have

|
∫
g(df, dq)− λ

∫
fq| ≤ κ

∫
|fq|.

Using this inequality for u = f we obtain in particular that the Raleigh
quotient of f is contained in the interval [λ − κ, λ + κ]. Moreover, if f and
q are contained in the domain of −∆Ω and if their spectral measures are
supported on disjoint subsets of σ(Ω) then

∫
fq =

∫
g(df, dq) = 0.

Call a square integrable function f on M normalized if
∫
f 2 = 1. We

have.

Lemma 3.1: For every σ > 0 there is a number R0 = R0(σ, κ, n) > 0, a
number δ = δ(σ, κ, n) > 0 and a number ǫ = ǫ(σ, κ, n) < ǫ0 with the following

properties. Let f ∈ H1(M) be a normalized function with spectral measure

supported in a subinterval of [0, (n−1)2/4−σ] of length at most δ; then there

is a normalized function Lf ∈ H1(B(Mthick(ǫ) ∩ C(M), R0)) whose spectral

measure is supported in [0, (n− 1)2/4− σ/2] and such that

∫
(f − Lf)2 < 1/4.

Proof: By the result of Margulis, for ǫ ≤ ǫ0 each connected component
of Mthin(ǫ) is isometric to an open subset of the quotient of X under an ele-
mentary subgroup of the isometry group of X. Thus by domain monotonic-
ity and Lemma 2.1, Lemma 2.2 the smallest Raleigh quotient µ1(Mthin(ǫ0))
of Mthin(ǫ0) is not smaller than (n − 1)2/4. Lemma 2.3 also shows that

µ1(M −B(C(M), r)) ≥ (tanh r)2(n− 1)2/4.
Let σ > 0 and define χ = min{1/16(12+3(n−1)2), σ/2} and ν = 4χ3/(n+

1)2. By Lemma 2.3 of [FH], applied to the closed set B(C(M), r) for a number
r > 0 which is sufficiently big that (tanh r)2(n − 1)2/4 ≥ (n − 1)2/4 − σ/2
and to the closed set Mthick(ǫ0), there is a number δ = δ(σ) < ν and a
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constant R = R(σ) > 0 with the following properties. Let f ∈ H1(M)
be a normalized function whose spectral measure is supported in a closed
subinterval of [0, (n− 1)2/4− σ] of length at most δ; then

∫
M−B(C(M),R)

f 2 + |df |2 < ν2/4,

∫
M−B(Mthick(ǫ0)

,R)

f 2 + |df |2 < ν2/4.

Since each connected component of the ǫ0-thin part of M is isometric
to a connected subset of the quotient of X under an elementary group,
there are numbers ǫ1 ∈ (0, ǫ0], ǫ ∈ (0, ǫ1] only depending on the dimen-
sion, the curvature bounds and the radius R (which only depends on σ) such
that B(Mthick(ǫ0), R) ⊂ Mthick(ǫ1) and B(Mthick(ǫ1), R) ⊂ Mthick(ǫ). But this
just means that B(C(M), R) ∩ B(Mthick(ǫ0), R) ⊂ B(C(M), R) ∩Mthick(ǫ1) ⊂
B(C(M) ∩Mthick(ǫ), R); thus our function f as above satisfies

∫
M−B(C(M)∩Mthick(ǫ),R)

f 2 + |df |2 < ν2/2.

Choose a smooth function ũ : R → [0, 1] which equals 1 on (−∞, 0],
vanishes on [2,∞) and whose gradient is pointwise bounded in norm by 1.
Define u(x) = ũ(dist(x, C(M) ∩Mthick(ǫ)) − R); then u is supported in the
R+ 2-neighborhood Ω = B(C(M)∩Mthick(ǫ), R+ 2) of C(M)∩Mthick(ǫ) and
its gradient is pointwise bounded in norm by 1. The function uf is contained
in H1(Ω) and it satisfies

|
∫
f 2 − (uf)2|+

∫
(f − uf)2 ≤2

∫
M−B(C(M)∩Mthick(ǫ),R)

f 2 < ν2 and

∫
|df − d(uf)|2+|

∫
|df |2 − |d(uf)|2|

≤ 2

∫
M−B(C(M)∩Mthick(ǫ),R)

|df |2 + f 2 + |2ufg(df, du)| < 3ν2.

Let λ be the midpoint of an interval of length at most δ ≤ ν which
contains the support of the spectral measure for f . The function uf lies in
the domain of the operator ∆Ω and therefore uf admits an L2-orthogonal
decomposition of the form uf = α + ϕ + β where the spectral measure
of α is supported in [0, λ − χ2], the spectral measure of ϕ is supported in
[λ − χ2, λ + χ] and the spectral measure of β is supported in [λ + χ,∞).
Denote by ‖ψ‖ the L2-norm of a square integrable function ψ on Ω or M
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and denote similary by ‖ξ‖ the L2-norm of a square integrable one-form ξ
on Ω or M . Define Lf = α + ϕ/‖α + ϕ‖. For the proof of the lemma it
is now enough to show that ‖β‖ < 1/8. Namely, if this is the case then we
have |‖α+ϕ‖− 1| ≤ ‖α+ϕ− f‖ < 1/4 and hence ‖Lf −α−ϕ‖ < 1/4 and
‖f − Lf‖ ≤ ‖f − α− ϕ‖+ ‖α + ϕ− Lf‖ < 1/2.

For this estimate of ‖β‖ we proceed as in [FH]. Observe first that we have

‖α‖2 =
∫
α(uf) =

∫
αf +

∫
α(uf − f) ≤

∫
αf + ν‖α‖.

Now f is normalized and the Raleigh quotient of α is not bigger than λ−χ2 <
(n− 1)2/4 and consequently we obtain that

(λ− χ2)‖α‖2 ≥ ‖dα‖2 =
∫
g(dα, d(uf)) ≥

∫
g(dα, df)−

√
3ν‖dα‖

≥ λ

∫
αf − ν(‖α‖+

√
3λ‖α‖) ≥ λ‖α‖2 − ν‖α‖(λ+ 1 +

√
3λ).

Since λ+ 1 +
√
3λ ≤ (n+ 1)2/4 we conclude that ‖α‖ ≤ ν(n+ 1)2/4χ2 = χ

by our choice of ν.
On the other hand, the square norm of β can be estimated as follows. By

construction we have

(1 + 3ν2)(λ+ ν) ≥ (1 + 3ν2)‖df‖2 ≥ ‖d(uf)‖2
= ‖dα‖2 + ‖dϕ‖2 + ‖dβ‖2 ≥ (λ− χ2)‖ϕ‖2 + (λ+ χ)‖β‖2.

Since ‖ϕ‖2+‖β‖2 = ‖uf‖2−‖α‖2 ≥ 1−ν2−‖α‖2 ≥ 1−2χ2 we obtain from
this that

(1 + 3ν2)(λ+ ν) ≥ (1− 2χ2)(λ− χ2) + χ‖β‖2

and hence χ‖β‖2 ≤ ν+3ν2(λ+ν)+χ2+2χ2(λ−χ2) and ‖β‖2 ≤ χ(3+3λ). By
our choice of χ this means that ‖β‖ < 1/8 from which the lemma follows.

Recall that if Ω ⊂ M is an open set with compact closure then the
spectrum of Ω consists of a countable number of eigenvalues going to ∞. In
the sequel we always count our eigenvalues with multiplicities. We have.

Corollary 3.2:

1. The essential spectrum of M is contained in [(n− 1)2/4,∞).
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2. There is a constant χ > 0 with the following property. For σ > 0 let

R0 = R0(σ, κ, n) > 0 be as in Lemma 3.1 and let q ≥ 0 be the number

of eigenvalues of Ω = B(Mthick(ǫ) ∩ C(M), R0) which are contained in

the interval (0, (n− 1)2/4− σ/2]; then the number of eigenvalues of M
contained in the interval (0, (n− 1)2/4− σ] is not bigger than χq.

Proof: Let σ > 0 and let R0 = R0(n, κ, σ) > 0 be as in Lemma 3.1.
Since the closure of Ω = B(Mthick(ǫ) ∩ C(M), R0) is compact, its spectrum
consists of a countable number of eigenvalues which increase to ∞. Let E
be the sum of the eigenspaces for −∆Ω with respect to those eigenvalues
which are not bigger than (n− 1)2/4− σ/2. Then E is a finite-dimensional
linear subspace of H1(Ω), and its orthogonal complement E⊥ in H1(Ω) is
the closed vector subspace which admits a Hilbert basis consisting of the
complete set of eigenfunctions with respect to all eigenvalues contained in
((n− 1)2/4− σ/2,∞).

Let δ = δ(σ) > 0 be as in Lemma 3.1 and let f1, . . . , fℓ ⊂ H1(M) be
a collection of mutually L2-orthogonal normalized functions whose spectral
measures are supported in a subinterval of [0, (n − 1)2/4 − σ] of length at
most δ. By Lemma 3.1 there is a collection g1, . . . , gℓ ⊂ E of normalized
functions with

∫
(fi − gi)

2 < 1/4. Then the functions gi are contained in the
unit sphere S in the finite-dimensional vector space E equipped with the
L2-inner product, and their pairwise euclidean distance is at least 1/4. In
other words, the balls in S of radius 1/8 which are centered at the points
g1, . . . , gℓ are pairwise disjoint. But this implies that there is a universal
constant χ > 0 such that the cardinality of the set {g1, . . . , gℓ} and hence the
cardinality of the set {f1, . . . , fℓ} is bounded from above by χdim(E).

Thus the dimension of the vector-subspace of H1(M) which is spanned
by all functions whose spectral measures are supported in a subinterval of
[0, (n − 1)2/4 − σ] of length at most δ is bounded from above by χdim(E).
This means that the essential spectrum of M does not intersect the interval
[0, (n−1)2/4−σ], and the dimension of the sum of the eigenspaces of −∆ for
eigenvalues contained in [0, (n−1)2/4−σ] is bounded from above by χdim(E).
Since σ > 0 was arbitrary the corollary follows.

Corollary 3.2 shows the second part of the theorem from the introduction
and easily implies the third.

Corollary 3.3: For every σ > 0 there is a constant c1 = c1(σ, n, κ) > 0
such that the number of eigenvalues of M which are contained in the interval
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[0, (n− 1)2/4− σ] is not bigger than c
vol(C1(M))
1 .

Proof: Let σ > 0 and let ǫ = ǫ(σ) > 0 and R0 = R0(σ) > 0 be as
in Lemma 3.1. Notice that ǫ and R0 only depend on σ and the curvature
bounds. Denote by Ω the open R0-neighborhood of Mthick(ǫ) ∩ C(M); then
the closure of Ω is compact. We claim that there is a constant ζ > 0 only
depending on R0, the dimension and the curvature bounds such that the
volume of Ω is bounded from above by ζvol(C1(M)).

To see this recall that B(C(M), 1/2) is the 1/2-neighborhood of a convex
subset of M and therefore the second fundamental form of the boundary
∂B(C(M), 1/2) of B(C(M), 1/2) at a point x ∈ ∂B(C(M), 1/2) is not big-
ger than the second fundamental form of a ball of radius 1/2 in M which
meets ∂B(C(M), 1/2) tangentially at x. Standard comparison arguments
then imply that the second fundamental form of ∂B(C(M), 1/2) is globally
uniformly bounded. Comparison with a manifold of constant curvature κ
then shows that the volume of B(C(M), R0) is bounded from above by a
fixed multiple of vol(C1(M)).

As a consequence of this and Corollary 3.2 we only have to show that
the number of eigenvalues of −∆Ω contained in the interval [0, (n− 1)2/4] is
bounded from above by a constant multiple of vol(Ω).

For this recall from Lemma 3.1 and its proof that there there is a number
ρ > 0 only depending on R0, ǫ and the curvature bounds such that for every
z ∈ Ω the injectivity radius of M at z is at least ρ. Choose a collection
of points {p1, . . . , pℓ} ⊂ Ω of maximal cardinality whose pairwise distances
are at least ρ. Then the closed balls of radius ρ centered at the points pi
cover Ω, and the balls of radius ρ/2 centered at the points pi are pairwise
disjoint. Since the injectivity radius at each of the points pi is at least ρ, the
volume of the balls of radius ρ/2 about the points pi is bounded from below
by a universal constant only depending on the curvature bounds. Thus the
cardinality of our collection is bounded from above by a constant multiple of
vol(Ω).

For i ≥ 1 define Ui = {z ∈ Ω | dist(z, pi) ≤ dist(z, pj) for j 6= i}. The
sets Ui form a partition of Ω, and each of the sets Ui is contained in the ball
of radius ρ about pi. Now the smallest nonzero eigenvalue with Neumann
boundary conditions of a ball of radius ρ in a simply connected manifold
of curvature contained in [−κ,−1] is not smaller than (n − 1)2/4 (compare
[BCD]) and therefore by domain monotonicity, the second eigenvalue for each
of the sets Ui with mixed boundary conditions (i.e. Neumann boundary con-
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ditions on ∂Ui ∩ Ω and Dirichlet boundary conditions on ∂Ω) is not smaller
than (n− 1)2/4 as well. On the other hand, the number of small eigenvalues
on Ω is bounded from above by the total number of small eigenvalues with
Neumann boundary conditions for any partition of Ω and therefore this num-
ber is bounded from above by a constant multiple of the volume of C1(M).
Together with Corollary 3.2, this yields the corollary.

We are left with showing the first part of the theorem from the intro-
duction. For this denote by λ0 = λ0(M) the bottom of the spectrum for
−∆ on M . By Corollary 3.2, if λ0 < (n − 1)2/4 then λ0 is an eigenvalue
of −∆, and there is up to a constant a unique solution f of the equation
∆ + λ0(M) = 0. This function f is square integrable and positive. For the
purpose of our theorem we then may assume that such an eigenfunction f ex-
ists. For σ = (n−1)2/8 denote by R0 = R0(n, κ, σ) the constant as in Lemma
3.1. Let ǫ1 > 0 be sufficiently small that B(Mthick(ǫ0), R0) ⊂Mthick(ǫ1); notice
once more that ǫ1 can be chosen to depend only on the dimension and the
curvature bounds. We have.

Lemma 3.4: There is a number β > 0 only depending on the dimension

and the curvature bounds ofM with the following property. Let f be a positive

normalized eigenfunction onM with respect to the eigenvalue λ0 < (n−1)2/8;
then f(x) ≤ β

√
λ0 for all x ∈Mthick(ǫ1) ∩ ∂B(C(M), R0)).

Proof: By the infinitesimal Harnack inequality of Cheng and Yau [CY],
applied to our positive normalized eigenfunction f with eigenvalue λ0 ∈
(0, (n − 1)2/8], there is a number c1 > 0 only depending on the curvature
bounds such that the function f satisfies |d log f | ≤ c1 on Mthick(ǫ1). In par-
ticular, if for a point x ∈ Mthick(ǫ1) ∩ ∂B(C(M), R0) and a number α > 0
we have f(x) ≥ α

√
λ0 then there is a ball B ⊂ ∂B(C(M), R0) about x with

the following property. Let N be the exterior normal of B(C(M), R0) and
let exp be the normal exponential map; then

∫
exp(B×(0,∞))

f 2 ≥ c2α
2λ0 where

c2 > 0 is a universal constant.
We now use the arguments in the proof of Lemma 2.2 and Lemma 2.3.

Namely, let h(y, t) be the function on ∂B(C(M), R0) × [0,∞) which deter-
mines the pullback under exp of the volume element ofM with respect to the
product measure on ∂B(C(M), R0)×[0,∞) as in Lemma 2.2. Then h(y, 0) =
1 for all y ∈ ∂B(C(M), R0) and moreover ∂

∂t
h(y, t) ≥ (n − 1)h(y, t)/

√
2 for

every y ∈ B and t ≥ 0. For y ∈ ∂B(C(M), R0) we conclude as in the proof
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of Lemma 2.2 that

(

∫ ∞

0

|∂f
∂t

|2h(y, t)dt)1/2(
∫ ∞

0

f 2h(y, t)dt)1/2 ≥
∫ ∞

0

|∂f
∂t
f |h(y, t)dt

=
1

2

∫ ∞

0

| ∂
∂t

(f 2)|h(y, t)dt ≥ −1

2

∫ ∞

0

∂

∂t
(f 2)h(y, t)dt

=
1

2
f 2(y) +

1

2

∫ ∞

0

f 2 ∂

∂t
h(y, t)dt ≥ 1

2
f 2(y) +

n− 1

2
√
2

∫ ∞

0

f 2h(y, t)dt.

Integration over B then shows that
∫
exp(B×(0,∞))

|∂f
∂t
|2 ≥ (n−1)2

8
c2α

2λ0 which

implies that α2 ≤ 8
c2(n−1)2

. This shows the lemma.

Now we are ready for the proof of the first part of our theorem. Recall
that it is enough to show the existence of a constant ν > 0 only depending
on the curvature bounds such that with R0 = R0(n, κ, (n− 1)2/8) > 0 as in
Lemma 3.1 we have λ0 ≥ ν/(volB(C(M), R0))

2. For this we follow [DR] and
argue by contradiction. Assume that λ0 = λ0(M) < α/vol (B(C(M), R0))

2

for a small constant α > 0. Denote by K1, . . . , Km the connected compo-
nents of Mthick(ǫ1) ∩ B(C(M), R0). Then for every j ∈ {1, . . . ,m} any two
points in Kj can be connected by a chain B1, . . . , Bk of overlapping balls
of radius ǫ1/2 where k ≤ c1vol(Kj) for a universal constant c1 > 0 and for
which each Bi intersects atmost a fixed number ℓ of other Bj’s. Now if f is
an eigenfunction on M with respect to the eigenvalue λ0, then by the argu-
ments of [DR] the oscillation of f on each of the sets Kj is not bigger than
c2(α/vol(B(C(M), R0)))

1/2 where c2 > 0 is a universal constant. On the
other hand, each of the components Kj intersects ∂B(C(M), R0) (compare
[BC]) and by Lemma 3.4 the value of f at such a boundary point does not ex-
ceed β

√
λ0 where β > 0 is a universal constant. As as consequence, we have

|f | ≤ c3(α/vol(B(C(M), R0)))
1/2 on ∪m

i=1Ki where c3 > 0 is another univer-
sal constant and hence

∫
∪Kj

f 2 ≤ c23α. For sufficiently small α this value is

strictly smaller than 1/2. However Lemma 3.1 implies that
∫
∪Kj

f 2 ≥ 3/4

which is a contradiction.

Remark: The constant (n−1)2/4 for our spectral bounds appears in our
above argument only in the form of a lower bound for the spectrum of the
tubes, cusps and ends of our geometrically finite manifold. Thus using the
remark at the end of Section 2, in the case of a geometrically finite locally
symmetric space we can use the sharp bound δF(n) in our proof and obtain
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the same statements, with (n−1)2/4 replaced by δF(n). This then yields the
corollary from the introduction.
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