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Abstract

Let M be a complete geometrically finite manifold of bounded
negative curvature, infinite volume and dimension at least 3. We give
both a lower bound for the bottom of the spectrum of M and an upper
bound for the number of the small eigenvalues of M. These bounds
only depend on the dimension, curvature bounds and the volume of
the one-neighborhood of the convex core. !

1 Introduction

Let M be a complete Riemannian manifold of dimension n > 3 with sectional
curvature —x < K < —1 for some x > 1. Denote by X the universal covering
of M; then there is a discrete torsion free subgroup I' of the isometry group
Iso(X) of X such that M = X/T". The group I' acts by homeomorphisms on
the ideal boundary 0X of X. The limit set A of I' is the smallest nonempty
closed I'-invariant subset of 0X. The quotient under the action of I' of the
closed convex hull of A in X is a closed convex subset C(M) of M, the
so-called convex core of M.
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The manifold M is called geometrically finite if the volume of the one-
neighborhood C} (M) of C(M) in M is finite. This is in particular the case
if the manifold M is of finite volume itself [B].

The Laplace-Beltrami operator A of M acts on the space of smooth func-
tions with compact support and admits a unique extension to an unbounded
self-adjoint operator on L*(M). The spectrum of —A is a closed subset
o(M) of the half-line [0, 00) which is the disjoint union of the essential spec-
trum oess(M ) and the discrete spectrum ogisc(M). The essential spectrum is
a closed subset of [0,00). The discrete spectrum consists of eigenvalues of
finite multiplicity; they are isolated points in o(M).

In this note we are interested in the small part of the spectrum of M, i.e.
the intersection of o(M) with the interval [0, (n — 1)%/4). Notice that (n —
1)2/4 is just the bottom of the L?-spectrum of hyperbolic n-space H". Our
first result is a positive lower bound for the bottom A\g(M ) of the spectrum of
M under the assumption that the volume of M is infinite. This bound only
depends on the dimension n, the curvature bounds and the volume of Cy (M)
and generalizes an earlier result of Burger and Canary [BC] for geometrically
finite hyperbolic manifolds, with a simpler proof.

We also show that the bottom of the essential spectrum of M is not
smaller than (n — 1)?/4. Thus the small part of the spectrum consists of a
collection of eigenvalues. We give an upper bound for the number of eigen-
values contained in a closed interval of the form [0, (n — 1)?/4 — x] for some
x > 0. This bound only depends on the dimension n, curvature bounds, the
volume of Cj(M) and the choice of x and generalizes in a weaker form an
estimate of Buser, Colbois and Dodziuk [BCD] for manifolds of finite volume
and bounded negative curvature. Our results can be summarized as follows.

Theorem: Let n > 3,k > 1 and let M be a geometrically finite man-
ifold of dimension n, infinite volume and sectional curvature contained in

[—k, —1]. Denote by vol(C1(M)) the volume of the neighborhood of radius 1
of the convex core of M.

1. There is a constant ¢y = co(n, k) > 0 such that
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2. The essential spectrum of M is contained in [(n — 1)*/4,00).



3. For every x > 0 there is a constant ¢y = ¢1(n, K, x) > 0 such that the
number of eigenvalues of M contained in the interval (0, (n—1)?/4—x]

is bounded from above by cXOl(Cl(M)).

In the case of geometrically finite subgroups I' of the simple rank-one
Lie groups Op(n, 1) where F is one of the Archimedian fields R, C, H, O the
bottom of the spectrum of the corresponding rank-one locally symmetric
space M corresponds precisely to the critical exponent of I'. In particular,
the bottom of the spectrum of M is 0 if and only if this critical exponent
equals dp(n) = dim(M) + dimgF — 2. The proof of our theorem also yields
the following result.

Corollary: Let I' be a geometrically finite subgroup of Og(n,1) and de-
note by M the locally symmetric space defined by I'.

1. The critical exponent of I equals or(n) if and only if T is a lattice.

2. The essential spectrum of M is contained in [0p(n),0), and for every
X > 0 the number of eigenvalues of M contained in [0,0r(n) — x| is
bounded from above by c(x) M),

The first part of our corollary is well known for real hyperbolic manifolds
(see [BC] and the references there) and, in a much stronger form, for general
discrete subgroups of Og(n,1),0g(2,1) (see [C]).

Our method is very general and can be applied to give a lower bound for
the spectrum and the essential spectrum for the Laplacian acting on forms;
however we do not address this question here. For a discussion of further
related results we refer to [BC] and [BCD].

2 Tubes, cusps and ends

In this section we collect some preliminary results on the spectrum of tubes,
cusps and ends in a geometrically finite Riemannian manifold M of dimension
n > 3 and of bounded negative curvature —x < K < —1. Recall that such a
manifold M can be written in the form M = X/T" where I' is a discrete torsion
free subgroup of the isometry group Iso(X) of the universal covering X of
M. The group I is called elementary if its action on the ideal boundary 0.X



of X has a finite orbit. An elementary torsion free discrete isometry group I'
either is an infinite cyclic group of loxodromic isometries or I' is a parabolic
group which fixes a point £ € 90X (see [B]).

We begin with estimating the bottom of the spectrum for the quotient of
X under a torsion free elementary group I'.

Lemma 2.1: Let I' be an infinite cyclic group of loxodromic isometries
of X; then \o(X/T) > (n —1)2/4.

Proof: Since the bottom of the L2-spectrum of M = X/T for the operator
—A equals the top of the positive spectrum of —A it is enough to find a
positive A + (n — 1)?/4-superharmonic function on M [S]. For this let ¥ be
the axis of the action of I' on X; then 7 is a ['-invariant geodesic in X, and I’
acts as a group of translations on 4. Denote by 7 > 0 the translation length
on v of a generator W of I'; then for every x € X and every k € Z we have
dist(x, Ukz) > k.

Fix a point € X and denote by p,(y) the distance of a point y € X to
x. Write 6 = (n — 1)/2; using Rauch’s comparison theorem we have

A(e™) < 7% (=(n = 1)3 + 6%)

at least on X — {z}. Therefore the function e~%+ is A + §%-superharmonic,
moreover it is positive. On the other hand, by our above observation, for
each y € X the series

Z e~ yky (V)

k

converges and hence the assignment y — e~ 9wr: W) defines a T-invariant
positive A + §%-superharmonic function on X which projects to a positive
A + §%-superharmonic function on M = X/T". This shows the lemma. O

Next we look at the bottom of the spectrum of an elementary parabolic
group. For this recall that for every complete Riemannian manifold N the
bottom Ag(N) of the spectrum of N is the infimum of the Rayleigh quo-

tients R(f) = L fli{f over all nontrivial smooth functions on N with compact
support.

Lemma 2.2: Let I' C Iso(X) be an elementary parabolic group; then
Mo(X/T) > (n—1)2/4.

Proof: Let I' C Iso(X) be an elementary parabolic group. Then I' stabi-
lizes a horosphere H in X, and M = X/I is diffeomorphic to H/T' x R with
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a diffeomorphism which maps each line {2z} x R to a geodesic in M. If we
denote by dx the volume element on H/I' of the restriction of the Rieman-
nian metric on M then the volume element w on M can be represented in
the form w = dt x hdx where h: H/T' x R — (0, 00) satisfies

0
ah(x t) > (n—1)h(z,t)

(see [HIH]).
Now let f: M — R be any smooth function with compact support. We
use an idea of Kean (see [BCD]). Namely, for x € H/I" we have

( /_ Oo|a—‘§|2h(x,t)dt)1/2( / F2h(, )2 > /_ |—ff|h(x,t)dt

:-/ gt( 2 bz, )t > / f—hxt)dt>—/ P20, t)dt
and therefore

/H/F/ af /H/F/ fh(z, t)dtdx.

Thus the Rayleigh quotient of f is at least (n — 1)?/4. O

Now consider an arbitrary geometrically finite manifold M of curvature
contained in [—x, —1]. As in the introduction, let C'(M) be the convex core
of M. Then M — C(M) is an open subset of M which consists of finitely
many connected components (see [B]). Recall that for each open subset €2
of a Riemannian manifold M the smallest Rayleigh quotient p(£2) of €2 is
defined to be the infimum of all Rayleigh quotients for all smooth functions
f with compact support in €2; in particular we have p;(2) > p (M).

The next lemma is similar to Lemma 2.2. For its formulation, denote for
a subset A of M and r > 0 by B(A,r) the open r-neighborhood of A in M.

Lemma 2.3: Let M be geometrically finite with curvature —x < K < —1;
then for every r > 0 we have (M — B(C(M),r)) > (tanhr)?(n — 1)%/4.

Proof: Since B(C(M),r) is the r-neighborhood of a convex subset of
M its boundary is a smooth hypersurface 0B(C(M),r) in M. The second
fundamental form of this boundary is positive definite. If we denote by N
the outer normal of 0B(C(M),r) then the normal exponential map exp is a
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diffeomorphism of {tN | t € (0,00)} onto M — B(C(M),r). The pullback
under exp of the volume element w on M — B(C(M),r) can be written in
the form w = dt x h(z,t)dz where dz is the volume element on B(C(M),r)
and where h : O0B(C(M),r) x [0,00) — [1,00) is a smooth function. By
comparison with a manifold of constant curvature —1, this function satisfies

0

ah(l‘, t) > (n—1)h(z,t) tanh(t + r)
for all t > 0. The lemma now follows from the arguments in the proof of
Lemma 2.2. [

Remark: Using the notations from the introduction, if ' is a geomet-
rically finite subgroup of the group Og(n, 1) for F = R,C,H, O then using
the standard computations for Jacobi fields in rank-one symmetric spaces
we observe that the proofs of Lemma 2.1-2.3 remain valid if we replace the
lower bound (n —1)?/4 for the spectrum of our tubes, cusps and ends by the
(sharp) bound dg(n).

3 Proof of the theorem

We continue to look at a geometrically finite Riemannian manifold (M, g)
of dimension n > 3 and sectional curvature —x < K < —1. As before, we
denote by X the universal covering of M and by I' the fundamental group of
M. For a number § > 0 let Miyin(s) be the set of all points in M at which the
injectivity radius is smaller than ¢. Following Margulis, there is a constant
€p > 0 only depending on the dimension and the curvature bounds such that
for every e < € each connected component of Mpin() is isometric to an
open connected subset of the quotient of X under an elementary torsion-free
subgroup G of I'. In the sequel we always denote by ¢y this constant. For
€ € (0, €] define Mipick(e) to be the e-thick part of M, i.e. the set of all points
in M with injectivity radius at least €. Since M is geometrically finite, the
intersection Minick(ey N C'(M) is compact [B].

For an open subset €2 of M the Laplacian acting on smooth functions
with compact support in €2 admits a unique self-adjoint extension Ag to an
unbounded operator on L?(2). The domain of Agl)/ ? is the usual Sobolev
space H'(Q2) which is the completion of the space of smooth functions with
compact support in  with respect to the Sobolev norm || f||* = [ f2+ [ |df|*.
Let o(£2) be the spectrum of —Ag.



We use the spectral theorem for —Agq in the following form (see [D]).
There is a finite measure p on o(Q) x N and a unitary operator U : L*(Q) —
L*(0(Q) x N, dp) as follows. Define h(s,n) = s; then f € L*(2) is contained
in the domain of —Ag if and only if AU(f) € L*(0(Q2) x N, du), and if this is
the case we have —UAqU (U f) = hU(f). The spectral measure of such a
function f is supported in an interval [\ — K, A+ k] if and only if the function
Uf is supported in [\ — 5, A + k] x N. Since (u,q) — [ g(du,dq) is the
quadratic form of —A;{ ? this implies that for every ¢ € H 1(Q) we have

| [ ot = x [ sal < [ 1fal

Using this inequality for u = f we obtain in particular that the Raleigh
quotient of f is contained in the interval [A — k, A + k]. Moreover, if f and
g are contained in the domain of —Aq and if their spectral measures are
supported on disjoint subsets of ¢(Q2) then [ fg = [ g(df,dq) = 0.

Call a square integrable function f on M normalized if [ f> = 1. We
have.

Lemma 3.1: For every o > 0 there is a number Ry = Ry(o,k,n) >0, a
number § = 6(o, k,n) > 0 and a number € = €(o, k,n) < € with the following
properties. Let f € HY(M) be a normalized function with spectral measure
supported in a subinterval of [0, (n—1)%?/4— o] of length at most §; then there
is a normalized function Lf € H'(B(Mpicke N C(M), Ry)) whose spectral
measure is supported in [0, (n — 1)?/4 — 0 /2] and such that

Ju-rr<in

Proof: By the result of Margulis, for € < ¢, each connected component
of Mipin(e) is isometric to an open subset of the quotient of X under an ele-
mentary subgroup of the isometry group of X. Thus by domain monotonic-
ity and Lemma 2.1, Lemma 2.2 the smallest Raleigh quotient pt;(Minin(ey))
of Minin(eo) is not smaller than (n — 1)?/4. Lemma 2.3 also shows that
(M — B(C(M),r)) > (tanhr)?(n — 1)%/4.

Let o > 0 and define x = min{1/16(12+3(n—1)%),0/2} and v = 4x3/(n+
1)2. By Lemma 2.3 of [FH], applied to the closed set B(C'(M),r) for a number
r > 0 which is sufficiently big that (tanh7)*(n —1)?/4 > (n —1)?/4 — 0 /2
and to the closed set Minick(ey), there is a number § = 6(c) < v and a

€0)>
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constant R = R(c) > 0 with the following properties. Let f € H'(M)
be a normalized function whose spectral measure is supported in a closed
subinterval of [0, (n — 1)?/4 — o] of length at most ¢; then

/ Poalat <ot [ 12+ PP < 24,
M—B(C(M),R) M —B(Mihick(eg) 1)

Since each connected component of the ep-thin part of M is isometric
to a connected subset of the quotient of X under an elementary group,
there are numbers ¢; € (0,¢), € € (0,¢] only depending on the dimen-
sion, the curvature bounds and the radius R (which only depends on o) such
that B(Mthick(eo);R) C Mthick(el) and B<Mthick(el)7R) C Mthick(ﬁ). But this
just means that B(C (M), R) N B(Minick(e), R) C B(C(M), R) N Minick(e,) C
B(C(M) N Minick(e), R); thus our function f as above satisfies

/ f2+ldf? < v?/2.
M —B(C(M)NMjpick(e)-R)

Choose a smooth function @ : R — [0,1] which equals 1 on (—o0, 0],
vanishes on [2,00) and whose gradient is pointwise bounded in norm by 1.
Define u(x) = a(dist(z, C(M) N Minick(e)) — R); then w is supported in the
R + 2-neighborhood Q = B(C(M) N Minick(e), R+ 2) of C(M) N Minick(e) and
its gradient is pointwise bounded in norm by 1 The function u f is contained
in H'(Q) and it satisfies

|/f2 (uf) |+/( J=uf) §2/M B(C(M)ﬂMtthk(>,R)f2<V2 and
[ 1 = dtenP+] [ 1af? = ata)p

< 2/ |df 1> + 2 + [2ufg(df, du)| < 3v°.
M—B(C(M)NMinick(e),R)

Let A be the midpoint of an interval of length at most ¢ < v which
contains the support of the spectral measure for f. The function uf lies in
the domain of the operator Aq and therefore uf admits an L?-orthogonal
decomposition of the form uf = a + ¢ + [ where the spectral measure
of a is supported in [0, A\ — x?|, the spectral measure of ¢ is supported in
(A — X%, A + x| and the spectral measure of 3 is supported in [\ + x, 0).
Denote by [|¢| the L*norm of a square integrable function ¢ on © or M
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and denote similary by ||¢]| the L?*norm of a square integrable one-form &
on ©Q or M. Define Lf = a+ ¢/||la + ¢|. For the proof of the lemma it
is now enough to show that ||3]| < 1/8. Namely, if this is the case then we
have ||la+¢|| — 1| < ||[a+ ¢ — f]| < 1/4 and hence |Lf —a — || < 1/4 and

I = LI < lf —a—=wol +llat+e— L <1/2.
For this estimate of || 3|| we proceed as in [FH]. Observe first that we have

ol = [aus) = [af+ [atus =1 < [as+lall

Now f is normalized and the Raleigh quotient of « is not bigger than A\—x? <
(n —1)?/4 and consequently we obtain that

(=¥ lal? = ol = [ gtdasd(uf)) = [ g(da.d) - Vavldal
> [ af = vllall + VXlal) = Nall? - vlall(r-+ 1+ V3N

Since A + 1 +v/3X < (n + 1)2/4 we conclude that ||of| < v(n +1)%/4x* = x
by our choice of v.

On the other hand, the square norm of 5 can be estimated as follows. By
construction we have

(L+3°)(A+v) = (L+3)df|* > [ld(uf)]*
= [|dal* + [|del* + 1dB* = (A = x*) el + (A + ) 18]
Since ||o[]2+ |8]I* = |luf|* — ||a||* > 1—v? —||a|* > 1 —2x* we obtain from

this that
(143 A +v) > (1—2x°) (A =) + x[|8|?

and hence x||8||* < v+3v2(A+v)+x*+2x*(A—x?) and [|8]|* < x(3+3\). By
our choice of y this means that ||5|| < 1/8 from which the lemma follows. [

Recall that if @ C M is an open set with compact closure then the
spectrum of {2 consists of a countable number of eigenvalues going to co. In
the sequel we always count our eigenvalues with multiplicities. We have.

Corollary 3.2:

1. The essential spectrum of M is contained in [(n — 1)%/4,00).



2. There is a constant x > 0 with the following property. For o > 0 let
Ry = Ro(0,k,n) > 0 be as in Lemma 3.1 and let ¢ > 0 be the number
of eigenvalues of Q8 = B(Mpicke) N C(M), Ry) which are contained in
the interval (0, (n —1)%/4 — ¢ /2]; then the number of eigenvalues of M
contained in the interval (0, (n — 1)?/4 — o] is not bigger than x°.

Proof: Let 0 > 0 and let Ry = Ro(n,k,0) > 0 be as in Lemma 3.1.
Since the closure of 0 = B(Mnicke) N C(M), Ro) is compact, its spectrum
consists of a countable number of eigenvalues which increase to co. Let E
be the sum of the eigenspaces for —Aq with respect to those eigenvalues
which are not bigger than (n — 1)?/4 — ¢ /2. Then E is a finite-dimensional
linear subspace of H'()), and its orthogonal complement E+ in H(Q) is
the closed vector subspace which admits a Hilbert basis consisting of the
complete set of eigenfunctions with respect to all eigenvalues contained in
(n—1)%/4—0/2,00).

Let § = d(o) > 0 be as in Lemma 3.1 and let fi,...,f, € H' (M) be
a collection of mutually L?-orthogonal normalized functions whose spectral
measures are supported in a subinterval of [0, (n — 1)?/4 — o] of length at
most 0. By Lemma 3.1 there is a collection gq,...,9, C E of normalized
functions with [(f; — ¢g;)* < 1/4. Then the functions g; are contained in the
unit sphere S in the finite-dimensional vector space E equipped with the
L2-inner product, and their pairwise euclidean distance is at least 1/4. In
other words, the balls in S of radius 1/8 which are centered at the points
g1, - -.,ge are pairwise disjoint. But this implies that there is a universal
constant x > 0 such that the cardinality of the set {g1, ..., g/} and hence the
cardinality of the set {f1,..., f;} is bounded from above by y4™(#),

Thus the dimension of the vector-subspace of H'(M) which is spanned
by all functions whose spectral measures are supported in a subinterval of
[0, (n — 1)%2/4 — o] of length at most § is bounded from above by ™),
This means that the essential spectrum of M does not intersect the interval
0, (n—1)?/4—0], and the dimension of the sum of the eigenspaces of —A for
eigenvalues contained in [0, (n —1)?/4 — 0] is bounded from above by y4™(#),
Since o > 0 was arbitrary the corollary follows. O

Corollary 3.2 shows the second part of the theorem from the introduction
and easily implies the third.

Corollary 3.3: For every o > 0 there is a constant ¢; = ¢1(o,n,k) > 0
such that the number of eigenvalues of M which are contained in the interval
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0, (n — 1)?/4 — o] is not bigger than cYOl(Cl(M))

Proof: Let 0 > 0 and let € = ¢(o0) > 0 and Ry = Ry(c) > 0 be as
in Lemma 3.1. Notice that ¢ and Ry only depend on ¢ and the curvature
bounds. Denote by Q the open Ry-neighborhood of Mipicke) N C(M); then
the closure of €2 is compact. We claim that there is a constant ¢ > 0 only
depending on Ry, the dimension and the curvature bounds such that the
volume of € is bounded from above by (vol(Cy(M)).

To see this recall that B(C(M), 1/2) is the 1/2-neighborhood of a convex
subset of M and therefore the second fundamental form of the boundary
OB(C(M),1/2) of B(C(M),1/2) at a point = € 9B(C(M),1/2) is not big-
ger than the second fundamental form of a ball of radius 1/2 in M which
meets 0B(C'(M),1/2) tangentially at x. Standard comparison arguments
then imply that the second fundamental form of 0B(C(M),1/2) is globally
uniformly bounded. Comparison with a manifold of constant curvature x
then shows that the volume of B(C'(M), Ry) is bounded from above by a
fixed multiple of vol(C}(M)).

As a consequence of this and Corollary 3.2 we only have to show that
the number of eigenvalues of —Aq contained in the interval [0, (n — 1)%/4] is
bounded from above by a constant multiple of vol(£2).

For this recall from Lemma 3.1 and its proof that there there is a number
p > 0 only depending on Ry, € and the curvature bounds such that for every
2z € Q the injectivity radius of M at z is at least p. Choose a collection
of points {p1,...,pe} C Q of maximal cardinality whose pairwise distances
are at least p. Then the closed balls of radius p centered at the points p;
cover ), and the balls of radius p/2 centered at the points p; are pairwise
disjoint. Since the injectivity radius at each of the points p; is at least p, the
volume of the balls of radius p/2 about the points p; is bounded from below
by a universal constant only depending on the curvature bounds. Thus the
cardinality of our collection is bounded from above by a constant multiple of
vol(2).

For i > 1 define U; = {z € Q | dist(z,p;) < dist(z,p;)forj # i}. The
sets U; form a partition of €2, and each of the sets U; is contained in the ball
of radius p about p;. Now the smallest nonzero eigenvalue with Neumann
boundary conditions of a ball of radius p in a simply connected manifold
of curvature contained in [—x, —1] is not smaller than (n — 1)?/4 (compare
[BCD]) and therefore by domain monotonicity, the second eigenvalue for each
of the sets U; with mixed boundary conditions (i.e. Neumann boundary con-
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ditions on OU; N Q2 and Dirichlet boundary conditions on 0f2) is not smaller
than (n —1)2/4 as well. On the other hand, the number of small eigenvalues
on (2 is bounded from above by the total number of small eigenvalues with
Neumann boundary conditions for any partition of {2 and therefore this num-
ber is bounded from above by a constant multiple of the volume of C4(M).
Together with Corollary 3.2, this yields the corollary. O

We are left with showing the first part of the theorem from the intro-
duction. For this denote by A\g = Ao(M) the bottom of the spectrum for
—A on M. By Corollary 3.2, if Ay < (n — 1)?/4 then )¢ is an eigenvalue
of —A, and there is up to a constant a unique solution f of the equation
A+ X\o(M) = 0. This function f is square integrable and positive. For the
purpose of our theorem we then may assume that such an eigenfunction f ex-
ists. For 0 = (n—1)?/8 denote by Ry = Ry(n, x, o) the constant as in Lemma
3.1. Let ¢ > 0 be sufficiently small that B(Minick(e), Ro) C Minick(e,); Dotice
once more that €; can be chosen to depend only on the dimension and the
curvature bounds. We have.

Lemma 3.4: There is a number 5 > 0 only depending on the dimension
and the curvature bounds of M with the following property. Let f be a positive
normalized eigenfunction on M with respect to the eigenvalue g < (n—1)?/8;
then f(z) < Bv o for all & € M) N OB(C(M), Ry)).

Proof: By the infinitesimal Harnack inequality of Cheng and Yau [CY],
applied to our positive normalized eigenfunction f with eigenvalue A\ €
(0, (n — 1)%/8], there is a number ¢; > 0 only depending on the curvature
bounds such that the function f satisfies |dlog f| < ¢1 on Mipick(e,). In par-
ticular, if for a point @ € Mipic(e,) N OB(C(M), Ry) and a number a > 0
we have f(x) > ay/)g then there is a ball B C 9B(C(M), Ry) about z with
the following property. Let N be the exterior normal of B(C'(M), Ry) and
let exp be the normal exponential map; then | N 2 > coa® )y where
¢y > 0 is a universal constant.

We now use the arguments in the proof of Lemma 2.2 and Lemma 2.3.
Namely, let h(y,t) be the function on dB(C(M), Ry) x [0,00) which deter-
mines the pullback under exp of the volume element of M with respect to the
product measure on dB(C(M), Ry) x [0,00) as in Lemma 2.2. Then h(y,0) =
1 for all y € OB(C(M), Ro) and moreover 2h(y,t) > (n — 1)h(y,t)/v2 for
every y € B and t > 0. For y € 0B(C(M), Ry) we conclude as in the proof

xp(Bx (0,00

12



of Lemma 2.2 that

</0 12 ehy, oy / F2h(y, tydt) 2 > /OOO 2 Finty,
5/0°°|‘3< ) h(y, ) ——/ O ()t v

V+5 [ gz 3R+ S [ Pa

|2 (n—1)2
]

implies that o? < W This shows the lemma O]

Integration over B then shows that fe coa®\g which

xp(Bx (0,00)) |

Now we are ready for the proof of the first part of our theorem. Recall
that it is enough to show the existence of a constant v > 0 only depending
on the curvature bounds such that with Ry = Ry(n, , (n — 1)?/8) > 0 as in
Lemma 3.1 we have \g > v/(volB(C(M), Ry))*. For this we follow [DR] and
argue by contradiction. Assume that A\g = \o(M) < a/vol (B(C(M), Ry))?

for a small constant o > 0. Denote by Ki,..., K,, the connected compo-
nents of Mipick(e;) N B(C(M), Ry). Then for every j € {1,...,m} any two
points in K; can be connected by a chain By,..., By of overlapping balls

of radius €;/2 where k£ < ¢;vol(K;) for a universal constant ¢; > 0 and for
which each B; intersects atmost a fixed number ¢ of other B;’s. Now if f is
an eigenfunction on M with respect to the eigenvalue \g, then by the argu-
ments of [DR] the oscillation of f on each of the sets K; is not bigger than
co(a/vol(B(C (M), Ry)))*? where ¢; > 0 is a universal constant. On the
other hand, each of the components K; intersects 0B(C(M), Ry) (compare
[BC]) and by Lemma 3.4 the value of f at such a boundary point does not ex-
ceed S/ Ao where B > 0 is a universal constant. As as consequence, we have
|f| < es(a/vol(B(C(M), Ry)))Y? on U, K; where c3 > 0 is another univer-
sal constant and hence | K, f? < cia. For sufficiently small « this value is
strictly smaller than 1/2. However Lemma 3.1 implies that qu]- f? > 3/4
which is a contradiction.

Remark: The constant (n—1)?/4 for our spectral bounds appears in our
above argument only in the form of a lower bound for the spectrum of the
tubes, cusps and ends of our geometrically finite manifold. Thus using the
remark at the end of Section 2, in the case of a geometrically finite locally
symmetric space we can use the sharp bound dr(n) in our proof and obtain

13



the same statements, with (n —1)?/4 replaced by dp(n). This then yields the
corollary from the introduction.

4
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