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Abstract. Let X be an arbitrary hyperbolic geodesic metric space and let0 be a countable sub-
group of the isometry group Iso(X) of X. We show that if0 is non-elementary and weakly acylin-
drical (this is a weak properness condition) then the second bounded cohomology groupsH2

b
(0,R),

H2
b
(0, `p(0)) (1 < p < ∞) are infinite-dimensional. Our result holds for example for any sub-

group of the mapping class group of a non-exceptional surface of finite type not containing a normal
subgroup which virtually splits as a direct product.

1. Introduction

A Banach modulefor a countable group0 is a Banach spaceE together with a homomor-
phism of0 into the group of linear isometries ofE. For every such Banach moduleE for
0 and everyi ≥ 1, the group0 naturally acts on the vector spaceL∞(0i, E) of bounded
functions0i → E. If we denote byL∞(0i, E)0 ⊂ L∞(0i, E) the linear subspace of all
0-invariant such functions, then thesecond bounded cohomology groupH 2

b (0,E) of 0
with coefficientsE is defined as the second cohomology group of the complex

0 → L∞(0,E)0
d
−→ L∞(02, E)0

d
−→ · · ·

with the usual homogeneous coboundary operatord (see [M01]). There is a natural ho-
momorphism ofH 2

b (0,E) into the ordinary second cohomology groupH 2(0,E) of 0
with coefficientsE which in general is neither injective nor surjective.

In this paper we are only interested in the case thatE = R with the trivial0-action or
thatE = `p(0) for somep ∈ (1,∞) with the natural0-action by right translation which
assigns to ap-summable functionf and an elementg ∈ 0 the functiongf : h 7→ f (hg).

Since every homomorphismρ of 0 into a countable groupG induces a homomor-
phismρ∗ : H 2

b (G,R) → H 2
b (0,R), second bounded cohomology with real coefficients

can be used to find obstructions to the existence of interesting homomorphisms0 → G.
The underlying idea is to find conditions onG andρ which ensure that the image of the
mapρ∗ is “large” (e.g. infinite-dimensional) and conclude that this imposes restrictions
on the group0.
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Two countable groups0,G are calledmeasure equivalent[G93] if 0,G admit com-
muting measure preserving actions on a standard infinite measure Borel space with finite
measure fundamental domains. Measure equivalence defines an equivalence relation for
countable groups [Fu99a]. Monod and Shalom [MS06] showed that for countable groups,
vanishing of the second bounded cohomology groups with coefficients in the regular rep-
resentation is preserved under measure equivalence. Thus second bounded cohomology
with coefficients in the regular representation provides an obstruction to the existence of
a measure equivalence between two given countable groups.

For the application of these ideas it is necessary to obtain information on these
bounded cohomology groups. The first and easiest result in this direction is due to
B. Johnson (see [I87] for a discussion and references) who showed that the bounded co-
homology of amenable groups with real coefficients is trivial. Later Brooks [Br81] found
a combinatorial method for the construction of non-trivial real second bounded cohomol-
ogy classes and used it to show that the second bounded cohomology group of a finitely
generated free group is infinite-dimensional.

Fujiwara [F98] investigated the second real bounded cohomology group of a group
of isometries of ahyperbolicgeodesic metric space. Such a spaceX admits a geometric
boundary∂X. Each isometry ofX acts as a homeomorphism on∂X. The limit set of
a group0 of isometries ofX is the closed0-invariant subset of∂X of all accumulation
points of a fixed0-orbit inX. The group0 is callednon-elementaryif its limit set contains
at least three points; then the limit set of0 is in fact uncountable. Using a refinement and
an extension of Brooks’ method, Fujiwara showed that for a countable non-elementary
group0 of isometries ofX acting properly discontinuously onX in a metric sense, the
kernel of the mapH 2

b (0,R) → H 2(0,R) is infinite-dimensional [F98]. Bestvina and
Fujiwara extended this result further to countable subgroups of Iso(X) whose actions
on X satisfy some weaker properness assumption [BF02]. Their result is for example
valid for non-elementary subgroups of themapping class groupof an oriented surfaceS
of finite type and negative Euler characteristic, i.e. for subgroups of the group of isotopy
classes of orientation preserving diffeomorphisms ofS which are not virtually abelian. As
a consequence, the second bounded cohomology group of every non-elementary subgroup
of such a mapping class group is infinite-dimensional.

On the other hand, by a result of Burger and Monod [BM99, BM02], for every ir-
reducible lattice0 in a connected semisimple Lie group with finite center, no compact
factors and of rank at least 2 the kernel of the natural mapH 2

b (0,R) → H 2(0,R) van-
ishes. Together with the results of Fujiwara [F98] and Bestvina and Fujiwara [BF02] it
follows easily that the image of every homomorphism of0 into a finitely generated word
hyperbolic group or into the mapping class group of an oriented surface of finite type and
negative Euler characteristic is finite [BM02, BF02]. The latter result was earlier derived
with different methods by Farb and Masur [FM98] building on the work of Kaimanovich
and Masur [KM96].

The goal of this note is to present a new method for constructing nontrivial second
bounded cohomology classes for a countable group0 from dynamical properties of suit-
able actions of0. We use it to give a common proof of extensions of the above mentioned
results of Fujiwara [F98] and of Bestvina and Fujiwara [BF02], which among other things
answers a question raised by Monod and Shalom [MS04, MS06].
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For the formulation of these results, call a countable group0 of isometries of a (not
necessarily proper) hyperbolic geodesic metric spaceX weakly acylindricalif for every
pointx0 ∈ X and everym > 0 there are numbersR(x0, m) > 0 andc(x0, m) > 0 with the
following property. Ifx, y ∈ X are such that a geodesicγ connectingx to y meets them-
neighborhood ofx0 and if d(x, y) ≥ R(x0, m) then there are at mostc(x0, m) elements
g ∈ 0 such thatd(x, gx) ≤ m andd(y, gy) ≤ m (compare with the definition of an
acylindrical isometry group in [B03]). We show in Section 4 (see [F98, BF02, MMS04]
for earlier results)

Theorem A. Let0 be a non-elementary weakly acylindrical countable group of isome-
tries of an arbitrary hyperbolic geodesic metric space. Then the kernels of the maps
H 2
b (0,R) → H 2(0,R) andH 2

b (0, `
p(0)) → H 2(0, `p(0)) (1 < p < ∞) are infinite-

dimensional.

As an easy corollary of Theorem A and a result of Bowditch [B03] we obtain an extension
of the result of Bestvina and Fujiwara [BF02]. For its formulation, we say that a group
0 virtually splitsas a direct product if0 has a finite index subgroup0′ which splits as a
direct product of two infinite groups. We show

Corollary B. Let0 be a subgroup of the mapping class group of an oriented surface of
finite type and negative Euler characteristic. If0 is not virtually abelian then the kernel of
the mapH 2

b (0,R) → H 2(0,R) is infinite-dimensional. If moreover0 does not contain
a normal subgroup which virtually splits as a direct product then the kernel of each of the
mapsH 2

b (0, `
p(0)) → H 2(0, `p(0)) (1< p < ∞) is infinite-dimensional.

The following corollary is an immediate consequence of Corollary B and the work of
Burger–Monod and Monod–Shalom [BM99, BM02, MS06]. For its formulation, call a
lattice3 in a productG = G1 ×G2 of two locally compactσ -compact and non-compact
topological groupsirreducible if the projection of3 to each of the factors is dense.

Corollary C. Let0 be a subgroup of the mapping class group of an oriented surface of
finite type and negative Euler characteristic. Assume that0 does not contain a normal
subgroup which virtually splits as a direct product. Then0 is not measure equivalent
to an irreducible lattice in a product of two locally compactσ -compact non-compact
topological groups.

For lattices in semisimple Lie groups of higher rank, Corollary C follows from [FM98]
and the beautiful work of Furman [Fu99a]. The earlier result of Zimmer [Z91] suffices
to deduce Corollary C for the full mapping class group which admits a linear represen-
tation with infinite image. Recently, Kida [K06] derived a much stronger rigidity result.
Namely, he showed that for every countable group3 which is measure equivalent to the
mapping class groupM of a non-exceptional oriented surface of finite type, there is a
homomorphism3 → M with finite kernel and finite index image.

The organization of the paper is as follows. In Section 2, we introduce our method
for the construction of second bounded cohomology classes in the concrete example of
the fundamental group0 of a convex cocompactcomplete Riemannian manifoldM of
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bounded negative curvature. Such a manifoldM contains a compact convex subsetC(M),
the so-calledconvex core, as a strong deformation retract. The group0 is word hyperbolic,
and the convex coreC(M) of M is aK(0,1)-space. Therefore, if0 is non-elementary,
i.e. if 0 is not abelian, then the dimension of the cohomology groupH 2(0,R) is finite,
and by Fujiwara’s result [F98], the groupH 2

b (0,R) is infinite-dimensional.
Inspired by a result of Barge and Ghys [BG88], we relate the second bounded co-

homology groupH 2
b (0,R) to thegeodesic flow8t of M which acts on the unit tangent

bundleT 1M of M. SinceM is convex cocompact,T 1M admits a compact8t -invariant
hyperbolic setW which is the closure of the union of all closed orbits of8t . The restric-
tion of8t toW is topologically transitive.

A cocyclefor the action of8t onW is a continuous functionc : W × R → R such
thatc(v, s+ t) = c(v, t)+c(8tv, s) for all v ∈ W and alls, t ∈ R. Two cocyclesc, d are
cohomologousif there is a continuous functionψ : W → R such thatψ(8tv)+c(v, t) =

d(v, t)+ψ(v). The collection of all cocycles which are cohomologous to a given cocycle
c is thecohomology classof c. The flip F : v 7→ −v acts onW and on the space of
cocycles for the geodesic flow preserving cohomology classes. The cohomology class of
a cocyclec is calledflip anti-invariant if F(c) is cohomologous to−c. We denote by
DC(M) the vector space of all flip anti-invariant cohomology classes of cocycles for the
geodesic flow onW which are Ḧolder continuous, i.e. such that for a fixed numbert > 0
the functionv 7→ c(v, t) is Hölder continuous.

Every smooth closed 1-form onM defines via integration along orbit segments of8t

a Hölder continuous cocycle for8t which is anti-invariant under the flip. Two cocycles
defined by closed 1-forms in this way are cohomologous if and only if the 1-forms define
the same de Rham cohomology class onM. ThusH 1(0,R) = H 1(M,R) is naturally a
subspace ofDC(M). In Section 2 we show

Theorem D. Let 0 be the fundamental group of a convex cocompact manifoldM of
bounded negative curvature. Then the quotient spaceDC(M)/H 1(0,R) naturally em-
beds intoker(H 2

b (0,R) → H 2(0,R)).

Section 3 contains the main technical result of this paper. Starting from the concrete con-
struction in Section 2, we present an abstract dynamical criterion for infinite-dimensional
second bounded cohomology for a countable group0 acting as a group of homeomor-
phisms on a metric space of bounded diameter. The coefficients of these cohomology
groups can be eitherR or `p(0) for somep ∈ (1,∞). Theorem 4.4 of Section 4 shows
that our criterion can be applied to countable groups which admit a non-elementary
weakly acylindrical isometric action on a hyperbolic geodesic metric space; this then
yields Theorem A. Section 5 contains the proof of Corollary B and Corollary C as well
as a short discussion of some applications which are due to Monod and Shalom.

2. Dynamical cocycles and bounded cohomology

In this section we consider ann-dimensional convex cocompact Riemannian manifold
M of bounded negative curvature. ThenM = M̃/0 whereM̃ is a simply connected
complete Riemannian manifold of bounded negative curvature and0 is a group of isome-
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tries acting properly discontinuously and freely onM̃. The manifoldM̃ admits a natural
compactification by adding thegeometric boundary∂M̃ which is a topological sphere
of dimensionn − 1. Every isometry ofM̃ acts on∂M̃ as a homeomorphism. Thelimit
set3 of 0 is the set of accumulation points in∂M̃ of a fixed orbit0x (x ∈ M̃) of the
action of0 onM̃. We always assume that the group0 is non-elementary, i.e. that its limit
set contains as least three points. Then3 is the smallest nontrivial closed subset of∂M̃
which is invariant under the action of0.

The geodesic flow8t acts on theunit tangent bundleT 1M̃ of M̃ and on the unit
tangent bundleT 1M of M. Let L̃ ⊂ T 1M̃ be the set of all unit tangents of all geodesics
with both end-points in3. ThenL̃ is invariant under the action of8t and the action of0.
The quotientL = L̃/0 is just thenon-wandering setfor the action of8t onT 1M. Since
M is convex cocompact by assumption,L is a compact hyperbolic set for the geodesic
flow 8t on T 1M. The setsL̃ andL are moreover invariant under theflip F : v 7→ −v

which maps a unit tangent vector to its negative. The Riemannian metric onM induces a
complete Riemannian metric and hence a complete distance functiond onT 1M.

A continuous real-valuedcocyclefor the action of8t on L is a continuous func-
tion c : L × R → R with the property thatc(v, t + s) = c(v, t) + c(8tv, s) for all
v ∈ L, all s, t ∈ R. Every continuous functionf : L → R defines such a cocyclecf by
cf (v, t) =

∫ t
0 f (8

sv) ds. Two cocyclesb, c are calledcohomologousif there is a con-
tinuous functionψ : L → R such thatψ(8tv) + c(v, t) − ψ(v) = b(v, t). If b, c are
cocycles which are Ḧolder continuous with respect to the distanced onL, i.e. if for fixed
t > 0 the mapsv 7→ b(v, t) andv 7→ c(v, t) are Ḧolder continuous, then by Livshits’
theorem,b, c are cohomologous if and only if for every periodic pointv of the geodesic
flow with periodτ > 0 we haveb(v, τ ) = c(v, τ ) [HK95]. Every Hölder continuous co-
cycle is cohomologous to the cocycle of a Hölder continuous functionf (see e.g. [H99]),
and two Ḧolder functionsf, g onL arecohomologous, i.e. their cocyclescf , cg are co-
homologous, if and only if

∫
γ ′ f =

∫
γ ′ g for every closed geodesicγ onM (whereγ ′ is

the unit tangent field ofγ ).
The flipF acts on the space of cocycles preserving cohomology classes. We call the

cohomology class of a cocyclec anti-invariantunder the flipF if F(c) is cohomologous
to −c. If the cohomology class of a Ḧolder continuous cocyclec is anti-invariant under
the flip then there is a Ḧolder continuous functionf which is anti-invariant under the flip,
i.e. which satisfiesf (v) = −f (−v) for all v ∈ L, such that the cocyclecf defined byf
is cohomologous toc (cf. [H97]). Denote byA the vector space of all Ḧolder continuous
functionsf onL which are anti-invariant under the flipF .

SinceL is a compact invariant hyperbolic topologically transitive set for the geodesic
flow on T 1M, for every Ḧolder continuous functionf on L and every number
ε0 > 0 which is smaller than half of the injectivity radius ofM there is a number
k > 0 only depending on the Ḧolder norm off with the following property. Let
v,w ∈ L and let T > 0 be such thatd(8tv,8tw) ≤ ε0 for all t ∈ [0, T ]; then
|
∫ T

0 f (8tv) dt −
∫ T

0 f (8tw) dt | ≤ k.
A quasi-morphismfor 0 is a functionϕ : 0 → R such that

‖ϕ‖0 = sup
g,h∈0

|ϕ(g)+ ϕ(h)− ϕ(gh)| < ∞.
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The setQ of all quasi-morphisms for0 naturally has the structure of a vector space. The
function‖ ‖0 : Q → [0,∞) which associates to a quasi-morphismϕ its defect‖ϕ‖0 is a
pseudo-norm which vanishes precisely on the subspace ofmorphisms.

Lemma 2.1. There is a linear map9 : A → Q such that for everyf ∈ A, the defect
‖9(f )‖0 of 9(f ) is bounded from above by a constant only depending on the curvature
bounds ofM and the Ḧolder norm off .

Proof. Let f ∈ A and extendf to a locally Ḧolder continuous flip anti-invariant func-
tion F on T 1M. Such an extension can be constructed as follows. Choose a probability
measureµ on L for which there are constants 0< a < b such that theµ-mass of a
ballB(v, r) of radiusr < 1 about a pointv ∈ L is contained in [rb, ra ]; for example, the
unique measure of maximal entropy for the geodesic flow onL has this property. We view
µ as a probability measure onT 1M which is supported inL. Let τ : [0,∞) → [0,1]
be a smooth function which satisfiesτ(t) = 1 for t close to 0 andτ [1,∞) = 0. Via
multiplying the restriction ofµ to the metric ballB(w, r) (w ∈ T 1M) by the function
z 7→ τ(d(z,w)/r) we may assume that the measuresµ|B(w, r) depend continuously on
w ∈ T 1M, r > 0 in the weak∗-topology.

Forw ∈ T 1M let δ(w) ≥ 0 be the distance betweenw andL. Forw ∈ T 1M − L

define

f0(w) =
1

µ(B(w,2δ(w)))

∫
B(w,2δ(w))∩L

f dµ

and letf0(w) = f (w) for w ∈ L. By assumption on the measuresµ|B(w, r) and sincef
is Hölder continuous, the functionf0 is locally Hölder continuous and its restriction toL
coincides withf . Thus we obtain a locally Ḧolder continuous flip anti-invariant extension
F of f to T 1M by assigning tow ∈ T 1M − L the valueF(w) =

1
2(f0(w) − f0(−w)).

For every compact subsetK of T 1M the Hölder norm of the restriction ofF to K only
depends onK and on the Ḧolder norm off . If F,H are the extensions off, h constructed
in this way and ifa, b ∈ R thenaF + bH is the extension ofaf + bh.

Let again3 be the limit set of0. The closure Conv(3) ⊂ M̃ of the convex hull of3
in M̃ is invariant under the action of0. Theconvex coreC(M) = Conv(3)/0 of M is
compact. LetF̃ be the lift ofF to T 1M̃ and choose a pointp ∈ Conv(3). For an element
g ∈ 0 define9(f )(g) to be the integral ofF̃ over the tangent of the oriented geodesic
joining p to g(p). We claim that9(f ) is a quasi-morphism for0.

To prove this claim, recall that the curvature ofM̃ is pinched between two negative
constants and therefore by comparison, for everyε0 > 0 there is a numberk = k(ε0) > 0
only depending onε0 and an upper curvature bound forM̃ with the following property.
Let T be a geodesic triangle iñM with verticesA1, A2, A3 and denote byai the side of
T connectingAi−1 to Ai+1. Let qi ∈ ai be the nearest point projection of the vertexAi
to the sideai and letγi,+, γi,− be the oriented geodesic arc parametrized by arc length
which connectsqi = γi,+(0) toAi+1 = γi,+(τi,+) andqi = γi,−(0) toAi−1 = γi,−(τi,−)

(here indices are taken modulo 3). Thenti = τi+1,+ − τi,− ∈ [−k, k] and moreover for
everyt ∈ [k, τi,−] the distance betweenγ ′

i,−(t) ∈ T 1M̃ andγ ′

i+1,+(t + ti) ∈ T 1M̃ is at
mostε0.
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Now by assumption, the functionF is anti-invariant under the flip and locally Hölder
continuous. Therefore the above discussion implies that the integral ofF̃ over the unit
tangent field of a closed curve in Conv(3) which consists of three geodesic arcs forming
a geodesic triangle is bounded from above in absolute value by a universal constant times
the Hölder norm of the restriction ofF to the compact subsetT 1M|C(M) of T 1M of
all unit vectors with foot point in the convex coreC(M) = Conv(3)/0. On the other
hand, by invariance of̃F under the action of0 and by anti-invariance of̃F under the
flip, for g, h ∈ 0 the quantity|9(f )(g) + 9(f )(h) − 9(f )(gh)| is just the absolute
value of the integral ofF̃ over the unit tangent field of the oriented geodesic triangle in
Conv(3) ⊂ M̃ with verticesp, g(p), g(h(p)). Thus9(f ) is indeed a quasi-morphism
and the assignmentf 7→ 9(f ) defines a linear map9 : A → Q. Moreover, the defect
‖ϕ‖0 of ϕ is bounded from above by a constant only depending on the curvature bounds
of M and the Ḧolder norm off . This shows the lemma. ut

Two quasi-morphismsϕ,ψ for 0 are calledequivalentif ϕ − ψ is a bounded function.
This is clearly an equivalence relation. Ifϕ1 is equivalent toϕ2 andψ1 is equivalent to
ψ2 then for alla, b ∈ R the quasi-morphismaϕ1 + bψ1 is equivalent toaϕ2 + bψ2 and
hence the setQB of equivalence classes of quasi-morphisms of0 has a natural structure
of a vector space. It contains as a subspace the vector spaceH 1(0,R) of all equivalence
classes ofmorphismsof 0. There is an exact sequence

0 → H 1(0,R) → QB → H 2
b (0,R) → H 2(0,R) (1)

and therefore the quotient spacẽQ = QB/H 1(0,R) can naturally be identified with
the kernel of the mapH 2

b (0,R) → H 2(0,R) (see [M01]). In particular, an equivalence
class of quasi-morphisms can be viewed as a cohomology class of0-invariant bounded
cocyclesϕ ∈ L∞(03,R)0. In this interpretation, the cocycleϕ determined by the quasi-
morphismψ associates to a triple(g, h, u) ∈ 03 the valueϕ(g, h, u) = ψ(g−1h) +

ψ(h−1u)− ψ(g−1u).
For f ∈ A, the definition of the quasi-morphism9(f ) in the proof of Lemma 2.1

depends on the choice of an extension off to a locally Ḧolder continuous flip anti-
invariant function onT 1M and also on the choice of a basepointp ∈ Conv(3). The next
lemma shows that the cohomology class of9(f ) is independent of these choices.

Lemma 2.2. The cohomology class of the quasi-morphism9(f ) does not depend on the
choice of the basepointp nor on the extension off to a locally Hölder continuous flip
anti-invariant function onT 1M.

Proof. Letf ∈ A and letF be a locally Ḧolder continuous flip anti-invariant extension of
f to T 1M. Denote by9(f ) the quasi-morphism constructed in the proof of Lemma 2.1
using the extensionF of f and the basepointp ∈ Conv(3). We first show that a different
choiceq ∈ Conv(3) of a basepoint gives rise to a quasi-morphism which is equivalent to
9(f ) in the above sense. For this we follow [BG88]. LetF̃ be the lift ofF to T 1M̃. For
g ∈ 0 defineρ(g) to be the integral of the functioñF over the unit tangent field of the
oriented geodesic quadrangle with verticesq, g(q), g(p), p. As in the proof of Lemma
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2.1 we conclude that the functionρ : 0 → R is uniformly bounded. Since by invariance
of F̃ under the action of0 the integral ofF̃ over the oriented geodesic arc connecting
g(q) to g(p) is independent ofg ∈ 0 and, in particular, it coincides with the negative of
the integral ofF̃ over the oriented geodesic arc connectingp to q, the quasi-morphism
defined byF and the basepointq just equals9(f )+ρ. Thus changing the basepoint does
not change the equivalence class of the quasi-morphism9(f ).

Now we may also replace the pointq ∈ Conv(3) by a pointξ ∈ 3. Namely, forg ∈ 0

defineρ(g) to be the oriented integral of the functioñF over the tangent lines of the ideal
geodesic quadrangle with verticesξ, g(ξ), g(p), p. As before, this function is uniformly
bounded. By invariance of̃F under the action of0 and the fact that̃F is anti-invariant
under the flip we find that the 2-cocycle for0 defined as above by the quasi-morphism
9(f ) + ρ is just the cocycleη ∈ L∞(03,R)0 which assigns to a triple(g, h, u) ∈ 03

the integral ofF̃ over the unit tangents of the (possibly degenerate) oriented ideal triangle
with verticesg(ξ), h(ξ), u(ξ). Since these unit tangents are contained in the liftL̃ of the
non-wandering setL for the geodesic flow onT 1M, the cocycleη only depends onf
but not on an extension off to T 1M. Thus the cohomology class defined by9(f ) is
independent of the extension as well. ut

In the following we denote forf ∈ A by2(f ) ∈ Q̃ = ker(H 2
b (0,R) → H 2(0,R)) the

cohomology class of the quasi-morphism9(f ). By Lemma 2.2, this class only depends
on f . Moreover, the assignment2 : A → Q̃ is clearly linear. We next investigate the
kernel of the map2.

Since0 is convex cocompact by assumption, there is a natural correspondence be-
tween oriented closed geodesics onM and conjugacy classes in0. For every homomor-
phismρ : 0 → R and everyg ∈ 0, the valueρ(g) of ρ on g only depends on the
conjugacy class ofg. Therefore such a homomorphism defines a function on the set of
closed geodesics onM; we denote the value ofρ on such a closed geodesicγ by ρ(γ ).
We have

Lemma 2.3. 2(f ) = 0 if and only if there is a morphismρ : 0 → R such that
∫
γ ′ f =

ρ(γ ) for every closed geodesicγ onM.

Proof. Let f ∈ A and assume that there is a morphismρ : 0 → R such that
∫
γ ′ f =

ρ(γ ) for every closed geodesicγ onM. This morphism defines a class inH 1(M,R) and
therefore by the de Rham theorem, there is a smooth closed 1-formβ onM which defines
ρ via integration. Letβ̃ be the pull-back ofβ to a closed 1-form onM̃. Thenβ̃ is exact
and hence the integral of̃β over every piecewise smooth closed curve inM̃ vanishes.

By Livshits’ theorem [HK95] and the choice ofβ, there is a Ḧolder continuous flip
anti-invariant functionψ : L → R such that

∫ T
0 f (8tv) dt = ψ(8T v)+

∫ T
0 β(8tv) dt−

ψ(v) for everyv ∈ L and allT > 0. As in the proof of Lemma 2.1 we extendψ to a
locally Hölder continuous flip anti-invariant function on all ofT 1M which we denote
by the same symbol. Let̃ψ be the lift of ψ to T 1M̃. Fix a pointp ∈ Conv(3) and
for g ∈ 0 let γg be the geodesic arc connectingp = γp(0) to g(p) = γp(T ). Define

α(g) = ψ̃(γ ′
g(T )) +

∫ T
0 β̃(γ ′

g(t)) dt − ψ̃(γ ′
g(0)). By Lemma 2.1 and Lemma 2.2,α is a
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quasi-morphism for0 which defines the cohomology class2(f ). On the other hand,α
differs from the quasi-morphism defined byβ by a bounded function. Since the integral of
β̃ over every piecewise smooth closed curve inM̃ vanishes, the cohomology class2(f )
of the quasi-morphismα vanishes.

On the other hand, letf ∈ A and assume that there is no morphismρ : 0 → R
such that

∫
γ ′ f = ρ(γ ) for every closed geodesicγ onM. We have to show that the

cohomology class2(f ) does not vanish. By the exact sequence (1) above, this is the
case if and only if a quasi-morphism9(f ) representing2(f ) is not equivalent to any
morphism for0.

For this we argue as before. Namely, letρ : 0 → R be any morphism for0 and let
β be a smooth closed 1-form onM definingρ. By assumption, there is a periodic point
v ∈ L of periodτ > 0 for the geodesic flow8t such that

∫ τ
0 (f − β)(8tv) dt = c > 0.

Let ṽ be a lift of v to L̃ and letp ∈ M̃ be the foot-point of̃v. Choose an extension of
f to a locally Ḧolder continuous functionF onT 1M and letF̃ be the lift ofF to T 1M̃.
By definition, the quasi-morphism9(f ) induced byF and the choice of the basepoint
p assigns tog ∈ 0 the integral

∫ T
0 F̃ (γ ′

g(s)) ds whereγg : [0, T ] → M̃ is the oriented
geodesic arc connectingp to g(p). Moreover, this quasi-morphism represents the class
2(f ). Now let η be the geodesic iñM which is tangent tõv. By the choice ofṽ there
is an elementh ∈ 0 which preservesη and whose restriction toη is the translation
η(t) 7→ η(t + τ) with translation lengthτ . Hence we have9(f )(hm) = m

∫ τ
0 f (8

tv) dt

and (9(f ) − ρ)(hm) = mc for all m ∈ Z. In particular, the function9(f ) − ρ is
unbounded and consequently9(f ) is not equivalent toρ. Sinceρ was arbitrary this
means that the projection of9(f ) into Q̃ does not vanish. ut

Fix a numberε0 > 0 which is smaller than half of the injectivity radius ofM and for
f ∈ A define‖f ‖A to be the infimum of the numbersk > 0 with the property that
|
∫ T

0 f (8tv) dt −
∫ T

0 f (8tw) dt | ≤ k wheneverv,w ∈ L andT > 0 are such that
d(8tv,8tw) ≤ ε0 for everyt ∈ [0, T ]. We have

Lemma 2.4. ‖ ‖A is a norm onA.

Proof. We observed above that‖f ‖A < ∞ for every Ḧolder continuous functionf ∈

A. Moreover, we clearly have‖af ‖A = |a|‖f ‖A for all f ∈ A and alla ∈ R and
‖f + g‖A ≤ ‖f ‖A + ‖g‖A by a simple application of the triangle inequality. Thus we
are left with showing that‖f ‖A = 0 only if f ≡ 0. For this assume that 06≡ f ∈ A.
Sincef is anti-invariant under the flip by assumption,f is not a constant function. Hence
by continuity there are pointsv,w ∈ W with d(v,w) < ε0/2 and numbersδ > 0,
T ∈ (0, ε0/2) with f (8tv) ≥ f (8tw) + δ for all t ∈ [0, T ]. Then‖f ‖A ≥ δT by the
definition of‖ ‖A. ut

Call two Hölder functionsf, g ∈ A weakly cohomologousif f − g is cohomologous to a
closed 1-form onM, viewed as a function onT 1M. The class off under the equivalence
relation thus defined will be called theweak cohomology classof f . The setH of weak
cohomology classes of Ḧolder functions is a vector space. Forψ ∈ H let ‖ψ‖ be the
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infimum of the norms‖f ‖A wheref runs through all functions inA which define the
weak cohomology classψ . Then‖ ‖ is a pseudo-norm onH.

TheGromov norm‖α‖ of an elementα ∈ H 2
b (0,R) is the infimum of the supremum

norms over all bounded 2-cocycles for0 representingα [G83] (here a bounded 2-cocycle
is a bounded0-invariant function on03 contained in the kernel of the coboundary oper-
ator). Ifϕ : 0 → R is a quasi-morphism then the Gromov norm of the cohomology class
defined byϕ is the infimum of the defects‖η‖0 whereη runs through the collection of all
quasi-morphisms withη − ϕ equivalent to a morphism of0.

By Lemma 2.3, the map2 factors through an injective linear mapH → Q̃ =

ker(H 2
b (0,R) → H 2(0,R)) which we denote again by2. The following corollary sum-

marizes our discussion and implies Theorem D from the introduction.

Corollary 2.5. The map2 : (H, ‖ ‖) → (Q̃, ‖ ‖) is a continuous embedding.

Proof. By Lemmas 2.1, 2.3 and 2.4 we only have to show the continuity of2. For this
choose a pointξ ∈ 3. Let f ∈ A and letf̃ be the lift off to T 1M̃. For g, h, u ∈ 0

defineα(g, h, u) to be the integral off̃ over the unit tangents of the (possibly degener-
ate) oriented ideal triangle with verticesgξ, hξ, uξ . By Lemma 2.3 and its proof,α is a
cocycle which represents the class2(f ). The considerations in the proof of Lemma 2.1
show that|α(g, h, u)| ≤ c‖f ‖A for a universal constantc > 0, in particular we have
α ∈ L∞(03,R)0 and the Gromov norm of the cohomology class defined byα is not
greater thanc‖f ‖A. From this the continuity of the map2 follows. ut

3. A dynamical criterion for infinite-dimensional second bounded cohomology

This section contains the main technical result of this note. We consider an arbitrary
countable group0 which acts by homeomorphisms on a metric space(X, d) of finite
diameter without isolated points. Our goal is to construct bounded cohomology classes
for 0 using dynamical properties of the action of0 onX as in Section 2. In the application
we have in mind, the spaceX is the Gromov boundary of a hyperbolic geodesic metric
space and0 is a group of isometries acting onX as a group of homeomorphisms.

We begin by describing some properness condition for the action of a countable group
0 by homeomorphisms of(X, d). Namely, the metricd on the spaceX induces a metric
on the spaceX3 of triples of points inX which we denote again byd; this metric is given
by d((x1, x2, x3), (y1, y2, y3)) =

∑3
i=1 d(xi, yi). Let1 ⊂ X3 be the closed subset of all

triples for which at least two points in the triple coincide. The diagonal action of0 onX3

preserves the open setX3
−1 of triples of pairwise distinct points inX.

Definition. The action of0 onX3
−1 is calledmetrically properif for everyν ∈ (0,1/2)

there are constantsm(ν) > 0 andR(ν) > − log(ν/4) such that for any two open disjoint
setsU,V ⊂ X of distance at leastν and of diameter at moste−R(ν) the following is
satisfied.

(1) LetW ⊂ X be a set of diameter at moste−R(ν) whose distance toU ∪V is at leastν.
WriteC = U × V ×W ⊂ X3

−1; then for allk ∈ Z and every fixed pair of points
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x0 6= y0 ∈ X with d(x0, y0) ≥ ν there are at mostm(ν) elementsg ∈ 0 with

g(C) ∩ {(x, y, z) ∈ X3
−1 | x = x0, y = y0,

e−k ≤ min{d(z, x0), d(z, y0)} ≤ e−k+1
} 6= ∅.

(2) LetU ′, V ′
⊂ X be open disjoint sets of distance at leastν and of diameter at most

e−R(ν). LetZ ⊂ X (resp.Z′
⊂ X) be the set of all points whose distance toU ∪ V

(resp. toU ′
∪V ′) is greater thanν. Then there are at mostm(ν) elementsg ∈ 0 with

g(U × V × Z) ∩ U ′
× V ′

× Z′
6= ∅.

If the action of0 onX3
−1 is metrically proper, then every point inX3

−1 has a neigh-
borhoodN inX3

−1 such thatg(N)∩N 6= ∅ only for finitely manyg ∈ 0. Namely, for a
point(x, y, z) ∈ X3

−1 chooseν>0 sufficiently small that min{d(x, y), d(x, z), d(z, y)}
≥ 2ν. For thisν letR(ν) > 0 be as in the definition of a metrically proper action and let
N be the opene−R(ν)-neighborhood of(x, y, z) inX3; thenN ∩gN 6= ∅ only for finitely
manyg ∈ 0 by the second part of the above definition. SinceX does not have isolated
points this implies that the quotient(X3

−1)/0 is a metrizable Hausdorff space.
For everyg ∈ 0, the fixed point set Fix(g) for the action ofg on X is a closed

subset ofX. The boundaryA(g) of the open subsetX3
− Fix(g)3 of X3 is a closed

(possibly empty) nowhere dense subset ofX3. By the above observation, every point
(x, y, z) ∈ X3

−1 admits a neighborhoodN which intersects only finitely many of the
setsA(g) (g ∈ 0). SinceX does not have isolated points, the setX3

−1 −
⋃
g∈0 A(g)

is open and dense inX3
−1. The restriction of the natural projection

π : T = X3
−1 → Y = (X3

−1)/0

to the open dense setX3
−1−

⋃
g∈0 A(g) is a local homeomorphism.

The involutionι : X3
→ X3 defined byι(a, b, c) = (b, a, c) is an isometry with

respect to the metricd on X3 induced from the metric onX, and its fixed point set is
contained in the closed set1 ⊂ X3. Thus the restriction ofι to T acts freely, and it
commutes with the diagonal action of0. In particular,ι naturally acts onY as a continuous
involution and the quotientZ = Y/ι is a metrizable Hausdorff space. There is an open
dense subset ofT such that the restriction of the natural projectionπ0 : T → Z to this
set is a local homeomorphism.

For x ∈ X andε > 0 denote byB(x, ε) ⊂ X the open ball of radiusε aboutx. We
next recall the well known notion of north-south dynamics for a homeomorphism ofX.

Definition. A homeomorphismg of X hasnorth-south dynamicswith respect to an at-
tracting fixed pointa ∈ X and a repelling fixed pointb ∈ X − {a} if the following is
satisfied.

(1) For everyε > 0 there is a numberm > 0 such thatgm(X − B(b, ε)) ⊂ B(a, ε) and
g−m(X − B(a, ε)) ⊂ B(b, ε).

(2) There is a numberδ > 0 such that
⋃
m∈Z g

m(X − B(a, δ)− B(b, δ)) = X − {a, b}.
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We calla theattractingandb therepellingfixed point ofg, and(a, b) is theorderedpair
of fixed points forg.

The next definition formalizes the idea that the dynamics of each element of a groupG of
homeomorphisms of(X, d) is uniformly similar to north-south dynamics on a metrically
large scale.

Definition. The action of an arbitrary groupG on a metric space(X, d) of finite diam-
eter is calledweakly hyperbolicif for everyε > 0 there is ab = b(ε) ∈ (0,1) with
the following property. Letx, y ∈ X with d(x, y) ≥ 2ε and letg ∈ G be such that
d(gx, gy) ≥ 2ε. Let z ∈ X − {x, y} be such thatmin{d(gz, gx), d(gz, gy)} ≥ ε. Then
d(gw, gx) ≤ d(z, y)b/b for everyw ∈ X with d(w, x) ≤ ε.

Let again0 be a countable group which admits an action on a metric space(X, d) of
finite diameter without isolated points by homeomorphisms such that the diagonal action
on T = X3

− 1 is metrically proper. Using the above notations, letC ⊂ T be an
open set whose closureC has positive distance to1 and is mapped by the projection
π0 : T → Z = Y/ι homeomorphically intoZ. This means that for everyg ∈ 0, eitherg
fixesC ∪ ιC pointwise org(C ∪ ιC) ∩ (C ∪ ιC) = ∅. We assume thatC is of the form
C = U × V × W whereU,V,W ⊂ X are open and pairwise of positive distance, say
the distance between any two of these sets is at least 4ν > 0. ForR(ν) > 0 as in the
definition of a metrically proper action we also assume that the diameter ofC is smaller
thane−R(ν). LetHC be the vector space of all Ḧolder continuous functionsf : T → R
supported inC. This means that for everyf ∈ HC there is someα ∈ (0,1) and some
q > 0 such that|f (x)− f (y)| ≤ qd(x, y)α for all x, y ∈ C.

The following lemma is the analogue of Lemma 2.1. For its formulation, denote byQ
the vector space of all quasi-morphisms of0.

Lemma 3.1. Let (X, d) be a metric space of finite diameter without isolated points. Let
0 be a countable group which admits a weakly hyperbolic action by homeomorphisms of
X such that the action of0 on T = X3

− 1 is metrically proper. Then for every open
setC ⊂ T whose closure projects homeomorphically intoZ = (T /0)/ι there is a linear
map9 : HC → Q.

Proof. Using the above notations, writeC = U × V ×W whereU,V,W ⊂ X are open
and pairwise of distance at least 4ν > 0. Assume that the diameter ofC is at moste−R(ν).
The product structure ofT defines a natural foliationF onT by requiring that the leaf of
F through(a, b, c) ∈ T equals the setF(a, b) = {(a, b, d) | d ∈ X − {a, b}}. Thus a
leaf ofF is determined by two distinct points inX, and the leafF(a, b) determined by
a 6= b ∈ X can naturally be identified withX− {a, b}. The foliationF is invariant under
the action of0 and hence it projects to a foliationF0 onY = T/0.

LetµW be a Borel probability measure onW which is positive on open sets. Choose
a non-trivial Ḧolder continuous functionψ : X × X → [0,1] supported inU × V and
let µF be the family of0-invariantι-invariant Borel measures on the leaves ofF which
is determined by the requirement that for every(u, v) ∈ U × V the restriction ofµF to
F(u, v) ∩ C ∼ (u, v)×W equalsψ(u, v)µW .
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We divide the proof of the lemma into two steps. As a notational convention, for
x ∈ X andε > 0 denote as before byB(x, ε) the openε-ball aboutx.

Step 1. In the first step we construct, for a given Hölder continuous functionf ∈ HC
supported inC, a function9(f ) : 0 → R. For this recall that by the choice ofC, every
g ∈ 0 either fixesC∪ιC pointwise or we haveg(C∪ιC)∩(C∪ιC) = ∅. Therefore every
functionf ∈ HC uniquely determines a continuous0-invariantι-anti-invariant function
f̃ on T which is supported in

⋃
g∈0 g(C ∪ ιC) and whose restriction toC coincides

with f . This means thatf̃ (ιx) = −f̃ (x) for all x ∈ T , f̃ (gx) = f̃ (x) for all g ∈ 0

and the restriction off̃ to C coincides withf . We claim that for allx 6= y ∈ X and any
neighborhoodsA of x andB of y we have

∫
F(x,y)−A−B

|f̃ | dµF < ∞, where as before
we identify the leafF(x, y) of the foliationF with the setX − {x, y}.

For this consider first the case thatd(x, y) ≥ 2ν whereν > 0 is as above determined
by the choice of the setC. Let k0 ≥ 1 be the smallest integer which is not smaller than
− logν. If z ∈ X is such thatd(x, z) ≤ e−k0 thend(x, z) = min{d(x, z), d(y, z)} and
hence by the first requirement in the definition of a metrically proper action, for every
k ≥ k0 the number of elementsg ∈ 0 with g(C ∪ ιC) ∩ (F (x, y) ∩ (B(x, e−k) −

B(x, e−k−1))) 6= ∅ is bounded from above by a constantm(ν) > 0 only depending
on ν but not onk and(x, y). Sincef̃ is invariant under the action of0 and supported
in

⋃
g∈0 g(C ∪ ιC) and since the measuresµF are invariant under the action of0 this

implies that∫
F(x,y)∩(B(x,e−k)−B(x,e−k−1))

|f̃ | dµF ≤ m(ν) sup{|f (z)| | z ∈ C}

for everyk ≥ k0. The same estimate also holds for the analogous integral overF(x, y) ∩

(B(y, e−k)− B(y, e−k−1)) provided thatk ≥ k0.
Similarly, since the diameter ofX is finite, the setF(x, y)−B(x, e−k0)−B(y, e−k0)

is the union of finitely many subsets of the form

{z | e−k0+m−1
≤ min{d(z, x), d(z, y)} ≤ e−k0+m} (m ≥ 1).

Using once more the definition of a metrically proper action we conclude that the number
of elementsg ∈ 0 such thatg(C ∪ ιC) ∩ (F (x, y) − B(x, e−k0) − B(y, e−k0)) 6= ∅

is bounded from above by a constant only depending onν. In particular, the integral∫
F(x,y)−B(x,e−k0)−B(y,e−k0)

|f̃ | dµF is bounded above by a universal multiple of the supre-
mum norm off . Together we conclude that for any neighborhoodsA of x andB of y the
integral

∫
F(x,y)−A−B

|f̃ | dµF exists, i.e. the claim holds true wheneverd(x, y) ≥ 2ν.

Now let x 6= y ∈ X be arbitrary points such that the support off̃ intersects the leaf
F(x, y). Sincef̃ is supported in

⋃
g∈0 g(C ∪ ιC), there is then an elementg ∈ 0 with

d(gx, gy) ≥ 2ν. By invariance off̃ andµF under the action of0, for any neighborhoods
A of x andB of y we have∫

F(x,y)−A−B

|f̃ | dµF =

∫
F(gx,gy)−gA−gB

|f̃ | dµF
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where gA and gB are neighborhoods ofgx and gy respectively. Thus indeed∫
F(x,y)−A−B

|f | dµF < ∞ for any two pointsx 6= y ∈ X and any neighborhoodsA
of x andB of y, which shows the above claim.

Recall thatC = U × V × W for open disjoint subsetsU,V,W of X. Fix a point
x ∈ U and letA ⊂ U be a small closed metric ball centered atx. Forf ∈ HC andg ∈ 0

such thatgx 6= x define

9(f )(g) =

∫
F(x,gx)−A−g(A)

f̃ dµF (2)

and if gx = x then define9(f )(g) = 0. By the above considerations, the integral (2)
exists and hence it defines a function9(f ) : 0 → R. Moreover, the assignment9 :
f ∈ HC 7→ 9(f ) is a linear map from the vector spaceHC into the vector space of all
functions on0.

Step 2. In a second step, we show that for everyf ∈ HC the function9(f ) : 0 → R
is a quasi-morphism, i.e. supg,h{|9(f )(g)+9(f )(h)−9(f )(gh)|} < ∞. Observe that
by invariance under0, for g, h ∈ 0 we have

9(f )(g)+9(f )(h)−9(f )(gh) =

∫
F(x,gx)−A−gA

f̃ dµF +

∫
F(gx,ghx)−gA−ghA

f̃ dµF

−

∫
F(x,ghx)−ghA−A

f̃ dµF .

Sincef is anti-invariant under the involutionι it is therefore enough to show that there
is a numberc(ν, f ) only depending onν and the Ḧolder norm off with the following
property. Let(x1, x2, x3) ∈ T and letAi be any neighborhood ofxi in X (i = 1,2,3);
then∣∣∣∣ ∫
F(x1,x2)−A1−A2

f̃ dµF+

∫
F(x2,x3)−A2−A3

f̃ dµF+

∫
F(x3,x1)−A3−A1

f̃ dµF

∣∣∣∣ < c(ν, f ).

For this recall that forg, h ∈ 0 the setsgC, hC, g(ιC), h(ιC) either coincide or are
disjoint. Moreover, iff̃ |F(y, z) 6≡ 0 for somey 6= z ∈ X then there is someg ∈ 0 such
thatd(gy, gz) ≥ 2ν. DefineG = {g ∈ 0 | maxi,j≤3 d(gxi, gxj ) ≥ 2ν} and

G0 = {g ∈ G | min{d(gxi, gxj ) | i 6= j ∈ {1,2,3}} ≥ ν}

and fori = 1,2,3 define

Gi = {g ∈ G | d(gxi, gxi+1) < ν}

(indices are taken modulo 3). By the triangle inequality and the definition of the setG, the
setsGi (i = 0, . . . ,3) are pairwise disjoint and their union equalsG.

If g ∈ 0 is such that(C∪ ιC)∩gF(xi, xi+1) 6= ∅ thend(gxi, gxi+1) ≥ 2ν and there-
foreg ∈ G0 if min{d(gxi−1, gxi), d(gxi−1, gxi+1)} ≥ ν, g ∈ Gi−1 if d(gxi−1, gxi) < ν

andg ∈ Gi+1 otherwise (where indices are again taken modulo 3). Thus by invariance of
f̃ andµF under the action of0 and by the fact that an elementg ∈ 0 either fixesC point-
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wise or is such thatgC ∩ C = ∅ it is enough to show that there is a numberc1(ν, f ) > 0
only depending onν and the Ḧolder norm off such that fori = 0, . . . ,3 we have∑

g∈Gi

∣∣∣∣ 3∑
j=1

∫
g(F (xj ,xj+1)−Aj−Aj+1)∩(C∪ιC)

f̃ dµF

∣∣∣∣ ≤ c1(ν, f ). (3)

We first establish the estimate (3) fori = 0. The caseG0 = ∅ is trivial, so assume that
there is someh ∈ G0 with the additional property thath(F (xj , xj+1)−Aj−Aj+1)∩C 6= ∅

for somej ∈ {1,2,3}. Recall thatC = U×V×W where the diameter of the setsU,V,W
is at moste−R(ν) < ν/4. LetZ ⊂ X be the set of all points whose distance toU ∪ V is at
leastν. Thenh(xj , xj+1, xj+2) ∈ U × V × Z and therefore ifu ∈ G0 is another element
with u(F (xj , xj+1)− Aj − Aj+1) ∩ C 6= ∅ thenuh−1(U × V × Z) ∩ U × V × Z 6= ∅.
Using the second property in the definition of a metrically proper action we conclude
that the number of elementsu ∈ G0 with this property is bounded from above by a
constant only depending onν. The same argument also applies to elementsg ∈ G0 with
g(F (xj , xj+1) − Aj − Aj+1) ∩ ιC 6= ∅ for somej ∈ {1,2,3}. As a consequence, for
i = 0 the number of non-zero terms in the sum (3) is bounded from above by a universal
constant and the estimate (3) holds true fori = 0. Thus by symmetry ini ∈ {1,2,3} and
by invariance under the action of0 it now suffices to show the estimate (3) fori = 3.

By definition, for g ∈ G3 we haved(gx1, gx3) < ν and thereforegF(x1, x3) ∩

(C ∪ ιC) = ∅. This means that

∑
g∈G3

∣∣∣∣ 3∑
j=1

∫
g(F (xj ,xj+1)−Aj−Aj+1)∩(C∪ιC)

f̃ dµF

∣∣∣∣
=

∑
g∈G3

∣∣∣∣ ∫
g(F (x1,x2)−A2−A3)∩(C∪ιC)

f̃ dµF +

∫
g(F (x2,x3)−A3−A1)∩(C∪ιC)

f̃ dµF

∣∣∣∣. (4)

By assumption, the action of0 onX is weakly hyperbolic. Thus there is a constant
b > 0 depending onν such that for all(x, y) ∈ X × X with d(x, y) ≥ 2ν, for all
k ≥ − logν and for allz ∈ X with d(z, x) ≤ ν we haved(gz, gx) ≤ e−kb/b whenever
g ∈ 0 is such that(C∪ ιC)∩g(F (x, y)∩B(y, e−k)) 6= ∅. In particular, for everyw ∈ W

the distance between(gx, gy,w) and(gz, gy,w) = ι(gy, gz,w) is at moste−kb/b.
Now f̃ is a 0-invariant ι-anti-invariant function onT which is supported in⋃

g∈0 g(C ∪ ιC) and whose restrictionf to C satisfies|f (v) − f (w)| ≤ qd(v,w)α

for someα, q > 0 and for allv,w ∈ C. Moreover,µF is a ι-invariant0-invariant
family of measures on the leaves ofF whose restriction toC is of the formψµW
for a Hölder continuous functionψ supported inU × V . As a consequence of the
above discussion on the effect of weak hyperbolicity we conclude that there is a num-
berβ > 0 depending only onν and the Ḧolder norm off with the following property.
Let x, y ∈ X with d(x, y) ≥ 2ν; if for somek ≥ − logν the elementg ∈ 0 is such
that(C ∪ ιC) ∩ g(F (x, y) ∩ (B(y, e−k)− B(y, e−k−1))) 6= ∅ then for everyz ∈ X with
d(z, x) ≤ ν and every neighborhoodA of y we have∣∣∣∣ ∫

g(F (x,y)−A)∩(C∪ιC)

f̃ dµF +

∫
g(F (y,z)−A)∩(C∪ιC)

f̃ dµF

∣∣∣∣ ≤ e−kβ/β. (5)
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By the first property in the definition of a metrically proper action there is a constant
c > 0 only depending onν such that for allx, y ∈ X with d(x, y) ≥ 2ν and every
k ≥ − logν there are at mostc elementsg ∈ 0 with (C∪ ιC)∩g(F (x, y)∩ (B(y, e−k)−

B(y, e−k−1))) 6= ∅. Together with the estimate (5) we conclude that there is a constant
c2(ν, f ) > 0 which only depends onν and on the Ḧolder norm off with the following
property. Forx, y ∈ X with d(x, y) ≥ 2ν, everyz ∈ X − {x, y} with d(x, z) ≤ ν and
every neighborhoodA of y we have∑

{g∈0|d(gx,gz)<ν}

∣∣∣∣ ∫
g((F (x,y)−A)∪(F (y,z)−A))∩(C∪ιC)

f̃ dµF

∣∣∣∣ < c2(ν, f ). (6)

Now if g ∈ G3 is such thatgF(x1, x2) ∩ (C ∪ ιC) 6= ∅ then withyi = gxi we have
d(y1, y3) < ν, d(y1, y2) ≥ 2ν. For any otherh ∈ G3 with hF(x1, x2)∩ (C ∪ ιC) 6= ∅ we
obtaind(hg−1y1, hg

−1y2) ≥ 2ν andd(hg−1y1, hg
−1y3) ≤ ν. By invariance off̃ and

µF under the action of0, inequality (3) above now follows from the estimate (6) and the
equation (4).

As a consequence, for everyf ∈ HC the function9(f ) on 0 is indeed a quasi-
morphism. By construction, the assignmentf 7→ 9(f ) is moreover linear. This com-
pletes the proof of the lemma. ut

In Lemma 3.1 we constructed a linear map9 from the vector spaceHC onto a vector
space9(HC) ⊂ Q of quasi-morphisms for the group0. It follows from our construction
that for a suitable choice of the setC the vector space9(HC) is infinite-dimensional. As
in Section 2, the map9 then induces via composition with the natural projection a linear
map2 : HC → H 2

b (0,R). However, a priori the image of2 may be trivial or finite-
dimensional. To establish that the subspace ofH 2

b (0,R) obtained in this way as the sets
C vary is infinite-dimensional, we use an additional assumption on0 which is motivated
by the work [BF02] of Bestvina and Fujiwara. For this recall that a homeomorphismg

of X which acts with north-south dynamics has an attracting fixed pointa ∈ X and a
repelling fixed pointb ∈ X − {a}. We call(a, b) theorderedpair of fixed points forg.
We show

Proposition 3.2. In the situation described in Lemma3.1, assume in addition that the
group0 contains a free subgroupG with two generators and the following properties.

(1) Everye 6= g ∈ G acts with north-south dynamics onX.
(2) There are infinitely manygi ∈ G (i > 0) such that the0-orbits of the ordered pairs

of fixed points of the elementsgi, g
−1
j (i, j > 0) are pairwise disjoint.

Then the images of the spacesHC under the map2 for suitable choices ofC ⊂ T span
an infinite-dimensional subspace ofH 2

b (0,R).

Proof. Continue to use the assumptions and notations from Lemma 3.1 and its proof.
We have to show that the bounded cohomology classes2(f ) (f ∈ HC) defined by
the quasi-morphisms9(f ) constructed in Lemma 3.1 for suitable choices ofC span an
infinite-dimensional subspace of the kernel of the mapH 2

b (0,R) → H 2(0,R). For this
letG be the free subgroup of0 with two generators as in the statement of the proposition.
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Let g, h ∈ G − {e} be such that the0-orbit of the ordered pair(a, b) of fixed points
for g is distinct from the0-orbit of the ordered pair(a′, b′) of fixed points forh. Then
the leavesF(a, b), F (a′, b′) of the foliationF project to distinct leavesL,L′ of the
induced foliationF0 on Y = T/0. We claim that the closures of these leaves do not
intersect. For this denote as before byπ : T → Y the natural projection. Letε0 > 0
be sufficiently small thatd({a, b}, {a′, b′

}) ≥ 2ε0. Sinceg, h act onX with north-south
dynamics and fixed pointsa, b anda′, b′, there is a numberε < ε0 with the property
that the projectionπ maps the set{(a, b, x) | d(x, {a, b}) ≥ ε} ontoL and thatπ maps
{(a′, b′, y) | d(y, {a′, b′

}) ≥ ε} ontoL′.
Assume to the contrary that the closures of the leavesL,L′ contain a common point.

By the above observation, this implies that there is a sequence(gi) ⊂ 0 of pairwise
distinct elements and there are sequences(xi) ⊂ X, (yi) ⊂ X such that

d(xi, {a, b}) ≥ ε, d(yi, {a
′, b′

}) ≥ ε for all i

and thatd(gi(a, b, xi), (a′, b′, yi)) → 0. In particular, for everyδ > 0 there are infinitely
many distinct elementsu ∈ 0 such thatd(a′, ua) < δ, d(b′, ub) < δ and thatu(X −

B(a, ε)− B(b, ε)) ∩X − B(a′, ε)− B(b′, ε) 6= ∅. However, this contradicts the second
requirement in the definition of a metrically proper action. As a consequence, the closures
of the leavesL,L′ in Y are disjoint.

Let g ∈ G and leta be the attracting andb be the repelling fixed point ofg. Choose
the setC = U × V ×W ⊂ T as in Lemma 3.1 and its proof in such a way thata ∈ U

andb ∈ V . This is possible since the action of0 onX is metrically proper and hence
the stabilizer of{a, b} in 0 acts freely on an open subset ofX − {a, b}. Let x ∈ U − {a}

and choose a closed neighborhoodA ⊂ U − {a} of x for the construction of the quasi-
morphism9(f ). Sinceg acts onX with north-south dynamics there is a closed subset
D of X − {a, b} with dense interior whose distance to{a, b} is positive and which is a
fundamental domain for the action onX − {a, b} of the cyclic subgroup ofG generated
by g. For the measuresµF on the leaves of the foliationF as in the proof of Lemma
3.1 we may assume that the support ofµF intersectsF(a, b) and that theµF -mass of
the boundary ofD viewed as a subset ofF(a, b) vanishes. Letf ∈ HC and letf̃ be
the0-invariantι-anti-invariant function onT defined byf as in the proof of Lemma 3.1.
By the discussion in Step 1 of the proof of Lemma 3.1, the integral

∫
D
f̃ dµF exists. Let

9(f ) be the quasi-morphism of0 defined byf as in (2) in the proof of Lemma 3.1. We
claim that

lim
k→∞

9(f )(gk)/k =

∫
D

f̃ dµF .

To show the claim, observe that ask → ∞ the diameter of the setsgkA tends to 0 and
gkx → a ∈ X − A. Choose a small closed ballB ⊂ V aboutb. By the proof of Lemma
3.1, for sufficiently largek the absolute value of the difference∫

F(gkx,b)−gkA−B

f̃ dµF −

∫
F(gkx,x)−gkA−A

f̃ dµF

is bounded from above by a constant not depending onk. As a consequence, it is enough
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to show that ∫
F(gkx,b)−gkA−B

f̃ dµF/k →

∫
D

f̃ dµF (k → ∞),

and this in turn is equivalent to∫
F(x,b)−A−g−kB

f̃ dµF/k →

∫
D

f̃ dµF (k → ∞).

Choose in particularB = {b} ∪
⋃
j≤0 g

jD. ThenB− g−kB =
⋃k−1
j=0 g

−jD for every
k > 0. Thus for every small ballE ⊂ X − B about the attracting fixed pointa for g we
have

lim
k→∞

∫
F(x,b)−A−g−kB

f̃ dµF/k = lim
k→∞

∫
F(a,b)−E−g−kB

f̃ dµF/k =

∫
D

f̃ dµF . (7)

This shows the above claim.
Let againg ∈ G with attracting fixed pointa ∈ X, repelling fixed pointb ∈ X − {a}

and assume that the ordered pair(a, b) is not contained in the0-orbit of the ordered pair
ι(a, b) = (b, a). By the above consideration, the closure of the projection of the leaf
F(a, b) to Y is disjoint from the closure of the projection ofιF (a, b) = F(b, a). As
before, letD ⊂ F(a, b) be a closed fundamental domain for the action onX − {a, b} ∼

F(a, b) of the cyclic group generated byg. By the second requirement in the definition
of a metrically proper action, there are only finitely manyh ∈ 0 with hD ∩ D 6= ∅.
Denote byπ : T → Y the canonical projection. The measuresµF project to a family
of measures on the leaves of the foliationF0 = πF on Y . For f ∈ HC the function
f̃ projects to a functionf0 on Y . SincehD ∩ D 6= ∅ for only finitely manyh ∈ 0,
the integral

∫
D
f̃ dµF is a positive bounded multiple of

∫
πF(a,b)

f0 dµ0. By the above
considerations, the closureL of the projection of the leafF(a, b) to Y is disjoint from the
closure of its imageF(b, a) under the involutionι and therefore for any given number
q ∈ R there is a Ḧolder functionf ∈ HC such that the quasi-morphism9(f ) defined as
above byf satisfies limk→∞9(f )(gk)/k = q.

By our assumption, there are infinitely many elementsgi ∈ G (i > 0) which act onX
with north-south dynamics and such that the ordered pairs of fixed points ofgi, g

−1
j are

pairwise contained in distinct0-orbits onX. In particular, fori 6= j the closures of the
projections toY of the leaves of the foliationF which are determined by the fixed points
of gi, gj are disjoint. Now for any finite set{h1, . . . , hm} ⊂ {gi | i > 0} ⊂ G choose
the setC as above in such a way that it intersects each of the leaves ofF determined by
the ordered pair of fixed points ofhi ; this can always be achieved by allowing for our
construction a setC which consists of finitely many components satisfying each of the
above assumptions. The above discussion shows that for an arbitrarily chosen collection
{q1, . . . , qm} ⊂ R of real numbers there is a suitable choice of the functionf ∈ HC so
that the quasi-morphism9(f ) for 0 defined byf satisfies limk→∞9(f )(hki )/k = qi
for 1 ≤ i ≤ k.
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For f ∈ HC the cohomology class2(f ) ∈ H 2
b (0,R) vanishes if and only if there

is a homomorphismη ∈ H 1(0,R) such that supg∈0 |9(f )(g) − η(g)| < ∞ (cf. the
discussion in Section 2). This homomorphism then restricts to a homomorphism of the
groupG. NowG is a free group with two generators and henceH 1(G,R) = R2. More
precisely, ifu1, u2 are such free generators forG then every homomorphismη : G → R
is determined by its value atu1, u2. In particular, for any finite subset{h1, . . . , hm} ⊂ G

there are two elements in this collection, sayh1, h2, such that for every quasi-morphism
η for G which is equivalent to a homomorphism and everyj ∈ {3, . . . , m} the quantity
limk→∞ η(hkj )/k is uniquely determined by limk→∞ η(hki )/k (i = 1,2). Together with
the above observation that for any finite subset{h1, . . . , hm} of {gi | i > 0} we can find
a quasi-morphism for0 for which these limits assume arbitrarily prescribed values we
conclude that there are infinitely many quasi-morphisms for0 whose restrictions toG
define linearly independent elements ofH 2

b (G,R). This shows that the kernel of the map
H 2
b (0,R) → H 2(0,R) is infinite-dimensional and completes the proof of the proposi-

tion. ut

Remark. The above proof also shows the following. Let0 be a countable group which
admits a weakly hyperbolic action by homeomorphisms of a metric spaceX of finite
diameter such that the action of0 on T = X3

− 1 is metrically proper. Letgi ∈

0 be elements which act with north-south dynamics onX with ordered pairs of fixed
points(ai, bi) (i = 1, . . . , k). If the 0-orbits of (ai, bi), (bj , aj ) (i, j ≤ k) are all dis-
joint then for every tuple(q1, . . . , qk) ∈ Rk there is a quasi-morphismϕ for 0 with
liml→∞ ϕ(gli)/ l = qi for everyi ≤ k.

The following theorem is the main technical result of this note. For its formulation,
recall that the free groupG with two generators is the fundamental group of a convex
cocompact hyperbolic surface whose limit setB is just theGromov boundaryof G.

Theorem 3.3. Let (X, d) be a metric space of finite diameter without isolated points. Let
0 be a countable group which admits a weakly hyperbolic action by homeomorphisms
of X. Assume that0 contains a free subgroupG with two generators and the following
properties.

(1) Everye 6= g ∈ G acts with north-south dynamics onX.
(2) There are infinitely manygi ∈ G (i > 0) such that the0-orbits of the ordered pairs

of fixed points of the elementsgi, g
−1
j (i, j > 0) are pairwise disjoint.

(3) There is aG-equivariant continuous embedding of the Gromov boundary ofG intoX.

If the action of0 on the space of triples of pairwise distinct points inX is metrically
proper then for everyp ∈ (1,∞) the kernel of the mapH 2

b (0, `
p(0)) → H 2(0, `p(0))

is infinite-dimensional.

Proof. Let 0 be a countable group acting by homeomorphisms on a metric space(X, d)

of finite diameter without isolated points. Assume that the action of0 is weakly hyper-
bolic and that the diagonal action of0 on the spaceT = X3

− 1 of triples of pair-
wise distinct points inX is metrically proper. WriteY = T/0 and denote as before by
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ι : T → T the natural involution which exchanges the first two points in a triple. Let
G be a free subgroup of0 with two generators as in the statement of the theorem. In
particular, we assume that there is a continuousG-equivariant embedding of the Gromov
boundaryB of G into X. We have to show that for everyp ∈ (1,∞) the kernel of the
mapH 2

b (0, `
p(0)) → H 2(0, `p(0)) is infinite-dimensional.

Denote by‖ ‖p the norm of the Banach spacèp(0). We assume that0 acts on
`p(0) by right translation, i.e. for everyg ∈ 0 and every functionψ ∈ `p(0) we
have(gψ)(h) = ψ(hg). Define an`p(0)-valued quasi-morphismfor 0 to be a map
η : 0 → `p(0) such that

sup
g,h∈0

‖η(g)+ gη(h)− η(gh)‖p < ∞.

Two such quasi-morphismsη, η′ are calledequivalentif η − η′ is bounded as a function
from 0 to `p(0), i.e. if there is a numberc > 0 such that‖(η − η′)(g)‖p ≤ c for all
g ∈ 0.

By Corollary 7.4.7 in [M01], the cohomology groupH 2
b (0, `

p(0)) coincides with the
second cohomology group of the complex

0 → L∞(0, `p(0))0
d
−→ L∞(02, `p(0))0

d
−→ L∞(03, `p(0))0 → · · ·

with the usual homogeneous coboundary operatord. Let ψ : 02
→ `p(0) be any

(unbounded)0-equivariant map; this means thatψ(hg1, hg2) = h(ψ(g1, g2)) for all
g1, g2, h ∈ 0. If the imagedψ of ψ under the coboundary operatord is bounded, then
as in the case of real coefficients, the mapψ defines a class in the kernel of the natural
mapH 2

b (0, `
p(0)) → H 2(0, `p(0)). Let e be the unit element in0 and define a map

ϕ : 0 → `p(0) by ϕ(v) = ψ(e, v). Then forg, h, u ∈ 0 we havedψ(g, h, u) =

ψ(h, u) − ψ(g, u) + ψ(g, h) = hϕ(h−1u) − gϕ(g−1u) + gϕ(g−1h) = g(ϕ(g−1h) +

g−1hϕ(h−1u)− ϕ(g−1u)). Since0 acts isometrically oǹp(0), we conclude thatdψ is
bounded if and only ifϕ defines aǹ p(0)-valued quasi-morphism for0. Now by equiv-
ariance,ψ is uniquely determined byϕ and therefore every equivalence class of an`p(0)-
valued quasi-morphism gives rise to a cohomology class in the kernel of the natural map
H 2
b (0, `

p(0)) → H 2(0, `p(0)). This cohomology class vanishes if and only if there is a
mapη : 0 → `p(0) which satisfiesη(gh) = η(g)+ gη(h) for all g, h ∈ 0 and such that
ϕ − η is bounded.

Let againT be the space of triples of pairwise distinct points inX. The group0
and the involutionι act onT , and these actions commute; we denote as before byZ

the corresponding quotient. As above, letC ⊂ T be a set of positive distance to1 and
sufficiently small diameter which is mapped homeomorphically into the quotientZ.

Let T̂ = T × 0 and defineĤ to be the vector space of all functionsf : T̂ → R
supported inC × 0 with the following property. Forg ∈ 0 write fg(x) = f (x, g); we
view fg as a functionC → R. We require that there is someα ∈ (0,1) such that the
Hölder-α-norms‖fg‖α of the functionsfg (g ∈ 0) on C satisfy

∑
g∈0 ‖fg‖

p
α < ∞.

Then for eachy ∈ C the functionfy : g 7→ f (y, g) is contained iǹ p(0) and there-
fore the assignmenty ∈ C 7→ fy defines a (Ḧolder continuous) map ofC into `p(0).
The set of all such functions naturally has the structure of an infinite-dimensional vector
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space. Extend the functionf ∈ Ĥ to a functionf̂ on T̂ which is anti-invariant under the
involution ι : (ζ, g) = (ιζ, g) and satisfiesf̂ (gz, u) = f (z, ug) for all z ∈ T and all
g, u ∈ 0.

As in the proof of Lemma 3.1 above, assume thatC = U × V ×W for open subsets
U,V,W of positive distance and sufficiently small diameter. Recall from the proof of
Lemma 3.1 the definition of the foliationF of T and the measuresµF . Choose a small
closed ballA ⊂ U , a pointx ∈ A and forg ∈ 0 define a function9(f )(g) : 0 → R by

9(f )(g)(u) =

∫
F(x,gx)−A−gA

f̂ (y, u) dµF (y).

It follows from the choice off and the considerations in Step 1 of the proof of Lemma
3.1 that9(f )(g) ∈ `p(0). On the other hand, by the definition of the functionf̂ we have∫

F(gx,ghx)−gA−ghA

f̂ (y, u) dµF (y) =

∫
F(x,hx)−A−hA

f̂ (y, ug) dµF (y)

= 9(f )(h)(ug)

and consequently the estimates in Step 2 of the proof of Lemma 3.1 show that the map
9(f ) is an`p(0)-valued quasi-morphism for0. In other words, as in the case of real
coefficients we obtain a linear map2 from the vector spacêH into the kernel of the
natural mapH 2

b (0, `
p(0)) → H 2(0, `p(0)) which assigns to a functionf ∈ Ĥ the

cohomology class of thèp(0)-valued quasi-morphism9(f ).
Our goal is to show that the image of the map2 is infinite-dimensional. For this

let G < 0 be the free group with two generators as in the statement of the theorem.
Then every functionu ∈ `p(0) restricts to a functionRu ∈ `p(G), and forg ∈ G we
haveR(gu) = g(Ru). Thus for everyf ∈ Ĥ the map9(f ) : 0 → `p(0) restricts to
an `p(G)-valued quasi-morphismR9(f ) : G → `p(G) which defines a cohomology
classR2(f ) ∈ H 2

b (G, `
p(G)). If the cohomology class2(f ) vanishes then the same

is true for the cohomology classR2(f ). Thus it is enough to show that the subspace
{R2(f ) | f ∈ Ĥ} of H 2

b (G, `
p(G)) is infinite-dimensional.

For this letB be the Gromov boundary of the free groupG; this boundary is a Cantor
set on which the groupG acts as a group of homeomorphisms with north-south dynamics.
Assume that there is aG-equivariant continuous embeddingρ0 : B → X. If we denote
by BT the space of triples of pairwise distinct points inB then the mapρ0 induces a
continuousG-equivariant embeddingρ : BT → T . In the following we identifyBT
with its image underρ, i.e. we suppress the mapρ in our notations. Letf ∈ Ĥ; for a
triple (x1, x2, x3) ∈ BT andu ∈ G define

ν(f )(x1, x2, x3)(u) =

∫
F(x1,x2)

f̂ (y, u) dµF (y)+

∫
F(x2,x3)

f̂ (y, u) dµF (y)

+

∫
F(x3,x1)

f̂ (y, u) dµF (y).

Here the sum on the right hand side of the equation is viewed as a limit of sums of finite
integrals over the complements in the leavesF(xi, xj ) of smaller and smaller neighbor-
hoods of the pointsxi (i = 1,2,3), and its existence follows as above from the con-
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tinuity properties of the functionf̂ . By the choice off , for every (x1, x2, x3) ∈ BT

the functionu ∈ G 7→ ν(f )(x1, x2, x3)(u) is contained iǹ p(G). More precisely, the
map (x1, x2, x3) ∈ BT 7→ ν(f )(x1, x2, x3) ∈ `p(0) is a continuouscocyclefor the
action ofG onB, i.e. it is continuous and equivariant under the action ofG, it satisfies
ν ◦ σ = (sgn(σ ))ν for every permutationσ of the three variables and the cocycle identity

ν(f )(x2, x3, x4)− ν(f )(x1, x3, x4)+ ν(f )(x1, x2, x4)− ν(f )(x1, x2, x3) = 0.

In particular, for any fixed pointx ∈ B we conclude as in Section 2 that the assign-
ment(g1, g2, g3) 7→ ν(f )(g1x, g2x, g3x) (gi ∈ G) defines aG-equivariant cocycle with
values iǹ p(G) whose cohomology class coincides withR2(f ).

Now by a result of Adams [A94] (see also [Ka03] for a more precise result), ifσ

is the measure class of the measure of maximal entropy for the geodesic flow of any
convex cocompact hyperbolic manifold whose fundamental group is a free group with
two generators, viewed as aG-invariant measure class on the Gromov boundaryB of G,
then (B, σ ) is a strong boundaryfor G. This means that the action ofG on (B, σ ) is
amenable anddoubly ergodicwith respect to any separable Banach coefficient module,
i.e. for every separable BanachG-spaceE, every measurableG-equivariant map(B ×

B, σ × σ) → E is constant almost everywhere. As a consequence, every continuous
G-equivariant cocycleBT → `p(G) which does not vanish identically defines anon-
vanishingclass inH 2

b (G, `
p(G)) (see the discussion in Section 7 of [M01]). Thus for

everyf ∈ Ĥ such thatν(f ) 6= 0 the classR2(f ) does not vanish and hence the same
is true for the class2(f ). In other words, to show that indeedH 2

b (0, `
p(0)) is infinite-

dimensional we only have to find for everym > 0 a collection of functionsfi ∈ Ĥ
(1 ≤ i ≤ m) such that the cocyclesν(fi) are linearly independent.

For this recall that by Proposition 3.2 and its proof, the subspace ofH 2
b (G,R) defined

by the cohomology classes2G(f ) ∈ H 2
b (G,R) of the quasi-morphisms9(α) where

α ∈ HC for a suitable choice ofC ⊂ T is infinite-dimensional (note that we use here
the notations from Lemma 3.1 for the map9). On the other hand, for everyα ∈ HC the
cohomology class2G(α) ∈ H 2

b (G,R) coincides with the class defined by the continuous
R-valued cocycleν0(α) : BT → R given by

ν0(α)(x1, x2, x3) =

∫
F(x1,x2)

α̃(y) dµF (y)+

∫
F(x2,x3)

α̃(y) dµF (y)

+

∫
F(x3,x1)

α̃(y) dµF (y).

Now letC ⊂ T and letα1, . . . , αm ∈ HC be such that the cocyclesν0(αi) are linearly
independent; such functions exist by Proposition 3.2 and its proof. For everyi ≤ m define
a functionfi ∈ Ĥ by fi(y, e) = αi(y) andfi(y, g) ≡ 0 for g 6= e. Then

ν0(αi)(x1, x2, x3) =

∫
F(x1,x2)

∑
u∈G

f̂i(y, u) dµF (y)+

∫
F(x2,x3)

∑
u∈G

f̂i(y, u) dµF (y)

+

∫
F(x3,x1)

∑
u∈G

f̂i(y, u) dµF (y)
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and therefore since the cocyclesν0(αi) are linearly independent the same is true for the
cocyclesν(fi). As a consequence, the kernel of the mapH 2

b (0, `
p(0)) → H 2(0, `p(0))

is indeed infinite-dimensional. ut

4. Groups acting isometrically on hyperbolic geodesic metric spaces

In this section we consider countable groups which admit a weakly acylindrical isometric
action on an arbitrary Gromov hyperbolic geodesic metric spaceX. We show that the
assumptions in Theorem 3.3 are satisfied for the action of such a group0 on theGromov
boundary∂X of X. From this we deduce Theorem A from the introduction.

First recall that the Gromov boundary of a hyperbolic geodesic metric spaceX is
defined as follows. For a fixed pointx0 ∈ X, define theGromov product(y, z)x0 based at
x0 of two pointsy, z ∈ X by

(y, z)x0 =
1

2
(d(y, x0)+ d(z, x0)− d(y, z)).

Call two sequences(yi), (zj ) ⊂ X equivalentif (yi, zi)x0 → ∞ (i → ∞). By hyper-
bolicity of X, this notion of equivalence defines an equivalence relation in the collection
of all sequences(yi) ⊂ X with the additional property that(yi, yj )x0 → ∞ (i, j → ∞)

[BH99]. The boundary∂X of X is the set of equivalence classes of this relation.
The Gromov product( , )x0 for pairs of points inX can be extended to a product on

∂X by defining
(ξ, η)x0 = sup lim inf

i,j→∞
(yi, zj )x0

where the supremum is taken over all sequences(yi), (zj ) ⊂ X whose equivalence classes
define the pointsξ, η ∈ ∂X. For a suitable numberχ > 0 only depending on the hy-
perbolicity constant ofX there is a distanceδ = δx0 of bounded diameter on∂X with
the property that the distanceδ(ξ, η) between two pointsξ, η ∈ ∂X is comparable to
e−χ(ξ,η)x0 (see 7.3 of [GH90]). More precisely, there is a constantθ > 0 such that

e−χθe−χ(ξ,η)x0 ≤ δ(ξ, η) ≤ e−χ(ξ,η)x0 (8)

for all ξ, η ∈ ∂X. In the following we always assume that∂X is equipped with such a
distanceδ.

There is a natural topology onX∪ ∂X which restricts to the given topology onX and
to the topology on∂X induced by the metricδ. With respect to this topology, a sequence
(yi) ⊂ X converges toξ ∈ ∂X if and only if we have(yi, yj )x0 → ∞ and the equivalence
class of(yi) definesξ . If X is proper, thenX ∪ ∂X is compact. Every isometry ofX acts
naturally onX∪∂X as a homeomorphism. We denote by Iso(X) the isometry group ofX.

Since we donotassume thatX is proper, for a given pair of distinct pointsξ 6= η ∈ ∂X

there may not exist a geodesicγ in X connectingξ to η, i.e. such thatγ (t) converges to
ξ ast → −∞ and thatγ (t) converges toη ast → ∞. However, there is a numberL > 1
only depending on the hyperbolicity constant forX such that any two points in∂X can
be connected by anL-quasi-geodesic. Recall that forL ≥ 1, anL-quasi-geodesicin X is
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a mapγ : (a, b) → X for −∞ ≤ a < b ≤ ∞ such that

−L+ |s − t |/L ≤ d(γ (s), γ (t)) ≤ L|s − t | + L

for all s, t ∈ (a, b). Note that anL-quasi-geodesicγ need not be continuous. How-
ever, from everyL-quasi-geodesicγ we can construct a continuous 4L-quasi-geodesic
γ̃ whose Hausdorff distance toγ is bounded from above by 4L by replacing for each
i ≥ 0 the arcγ [i, i + 1] by a geodesic arc̃γ [i, i + 1] with the same endpoints. In
other words, via changing the constantL we may assume that for any two distinct points
ξ 6= η ∈ ∂X there is a continuousL-quasi-geodesicγ connectingξ to η; we then write
γ (−∞) = ξ, γ (∞) = η (see [GH90, 5.25 and 7.6]; cf. also the discussion in [H06]).

Recall from Section 3 the definition of a weakly hyperbolic action of a groupG on a
metric space of bounded diameter. We show

Lemma 4.1. LetX be an arbitrary hyperbolic geodesic metric space. Then the action of
the isometry groupIso(X) on ∂X is weakly hyperbolic.

Proof. The boundary∂X of a hyperbolic geodesic metric spaceX is a metric space of
bounded diameter where the metricδ is constructed from the Gromov product( , )x0 at a
fixed pointx0 ∈ X. There are numbersχ, θ > 0 such that inequality (8) above holds for
the distanceδ.

Our goal is to show that for everyν > 0 there is a constant2 = 2(ν) > 0 with
the following property. Leta, b ∈ ∂X with δ(a, b) ≥ 2ν. Let g ∈ Iso(X) be such
that δ(ga, gb) ≥ 2ν; if v ∈ ∂X − {a, b} is such that min{δ(gv, ga), δ(gv, gb)} ≥ ν

thenδ(gw, gb) ≤ 2δ(v, a) for everyw ∈ ∂X with δ(w, b) ≤ ν. Note that since the
diameter of∂X is finite, this inequality is automatically satisfied for a suitable choice of
2 wheneverδ(v, a) is bounded from below by a universal constant. Thus it is enough to
show the claim under the additional assumption thatδ(v, a) ≤ ε for some fixedε > 0
which will be determined later on.

Let T ⊂ (∂X)3 be the set of all triples of pairwise distinct points in∂X. A triple
(a, b, c) ∈ T determines (non-uniquely) an idealL-quasi-geodesic triangle with vertices
a, b, c. The Hausdorff distance between any two suchL-quasi-geodesic triangles with the
same vertices in∂X is bounded by a universal constant. There is a numberp0 > 0 such
that for everyp ≥ p0 and every triple(a, b, c) ∈ T the closed setK(a, b, c;p) ⊂ X of
all points inX whose distance to each side of anL-quasi-geodesic triangle with vertices
a, b, c is at mostp is non-empty. The diameter of this set is uniformly bounded by a
constant only depending onp and the hyperbolicity constant forX.

By the definition of the Gromov product and hyperbolicity, there is a numberm1 > 0
with the following property. Let(a, b, c) ∈ T and letζ be a continuousL-quasi-geodesic
connectingb to a. Then min{(a, c)ζ(0), (b, c)ζ(0)} ≤ m1 and if(b, c)ζ(0) ≤ (a, c)ζ(0) then
we haveζ(τ ) ∈ K(a, b, c;m1) for everyτ ≥ 0 such thatd(ζ(0), ζ(τ )) = (a, c)ζ(0).

Now let ν ∈ (0,1) and leta, b ∈ ∂X be such thatδ(a, b) ≥ 2ν. By hyperbolicity
and inequality (8) above, there is a constantm0 = m0(ν) > 0 such that every contin-
uousL-quasi-geodesic connecting two pointsa 6= b ∈ ∂X with δ(a, b) ≥ ν intersects
the ballB(x0, m0). Let γ be a continuousL-quasi-geodesic connectingb = γ (−∞) to
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a = γ (∞) which is parametrized in such a way thatγ (0) ∈ B(x0, m0). Let θ, χ > 0
be as in inequality (8), letR0 = χ(m0 + m1 + θ) and letv ∈ ∂X − {a, b} be such
that δ(a, v) ≤ e−R0; thenδ(a, v) = e−R for someR ≥ R0. By inequality (8) we have
R/χ − θ ≤ (a, v)x0 ≤ R/χ and hence

R/χ − θ −m0 ≤ (a, v)γ (0) ≤ R/χ +m0

sinced(x0, γ (0)) ≤ m0. From the assumption onR we find that(a, v)γ (0) ≥ m1 and
henceγ (τ) ∈ K(a, b, v;m1) for all τ ≥ 0 such thatd(γ (0), γ (τ )) = (a, v)γ (0).

Let g ∈ Iso(X) be such thatδ(ga, gb) ≥ 2ν and min{δ(ga, gv), δ(gb, gv)} ≥ ν.
Then theL-quasi-geodesicgγ intersectsB(x0, m0) and the same if true for anyL-
quasi-geodesic connectingga to gv or connectinggb to gv and consequentlyx0 ∈

K(ga, gb, gv;m0). If as beforeτ > 0 is such thatd(γ (0), γ (τ )) = (a, v)γ (0) then
γ (τ) ∈ K(a, b, v;m1) and therefore

{x0, gγ (τ )} ⊂ K(ga, gb, gv;m0 +m1) = gK(a, b, v;m0 +m1).

Now the diameter of the setK(ga, gb, gv;m0+m1) is bounded from above by a constant
m2 = m2(ν) > 0 only depending onν and henced(gγ (τ), x0) ≤ m2.

Letw ∈ ∂X be such thatδ(w, b) ≤ ν. Thenδ(w, a) ≥ ν and by inequality (8) above,
the Gromov product(w, a)x0 is bounded from above by a universal constant and the same
is true for(w, a)γ (0). In particular, theL-quasi-geodesic rayγ [0,∞) connectingγ (0) to
a is contained in a uniformly bounded neighborhood of anyL-quasi-geodesic connecting
w to a. With τ > 0 as above we have|d(γ (τ), γ (0)) − R/χ | ≤ m0 + θ and hence by
the definition of the Gromov product and hyperbolicity, the quantity(b,w)γ (τ) −R/χ =

(gb, gw)gγ (τ)−R/χ is bounded from below by a universal constant. Butd(gγ (τ), x0) ≤

m2 and hence we have

|(gb, gw)gγ (τ) − (gb, gw)x0| = |(b,w)γ (τ) − (gb, gw)x0| ≤ m2.

Using once more the estimate (8) we conclude that there is a number2 > 1 only depend-
ing onν such thatδ(gb, gw) ≤ 2e−R = 2δ(a, v). This shows that the action of Iso(X)
on ∂X is weakly hyperbolic. ut

As in the introduction, we call an isometric action onX of a countable group0 weakly
acylindrical if for every pointx0 ∈ X and everym > 0 there are numbersR(x0, m) > 0
andc(x0, m) > 0 with the following property. Ifx, y ∈ X with d(x, y) ≥ R(x0, m) are
such that a geodesicγ connectingx to y meets them-neighborhood ofx0 then there are
at mostc(x0, m) elementsg ∈ 0 such thatd(x, gx) ≤ m andd(y, gy) ≤ m. We have.

Lemma 4.2. Let X be a hyperbolic geodesic metric space and let0 be a countable
subgroup ofIso(X) whose action onX is weakly acylindrical. Then the action of0 on
the space or triples of pairwise distinct points in∂X is metrically proper.

Proof. The group0 acts as a group of homeomorphisms on the Gromov boundary∂X

of X. Recall that∂X is a metric space of bounded diameter where the metricδ is con-
structed from the Gromov product( , )x0 at a fixed pointx0 ∈ X and it satisfies the
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estimate (8) from the beginning of this section for someχ, θ > 0 and allξ 6= η ∈ ∂X.
We have to show that the action of0 on the spaceT of triples of pairwise distinct points
in ∂X is metrically proper.

For this letν > 0 be fixed. There are numbersL ≥ 1 andm0 = m0(ν) > 0 such that
any two pointsx 6= y ∈ ∂X can be connected by a continuousL-quasi-geodesic, and if
δ(x, y) ≥ ν then this quasi-geodesic intersects the ballB(x0, m0).

By hyperbolicity, the Hausdorff distance between any twoL-quasi-geodesics con-
necting the same points in∂X is bounded from above by a universal constant. Moreover,
there is a universal constantm1 = m1(ν) > m0 with the following property. Leta 6= b,
x 6= y ∈ ∂X and assume thatδ(a, b) ≥ 2ν and that for someR > − log(ν/2) we
haveδ(a, x) ≤ e−R, δ(b, y) ≤ e−R. Let γ be a continuousL-quasi-geodesic connect-
ing b = γ (−∞) to a = γ (∞) and letη be a continuousL-quasi-geodesic connecting
y = η(−∞) to x = η(∞); thenγ, η intersect the ballB(x0, m0), and the intersection of
γ with B(x0, R/χ) is contained in them1-neighborhood ofη.

As in the proof of Lemma 4.1, forp > 0 and a triple(u, v,w) ∈ T letK(u, v,w;p)

⊂ X be the set of all points whose distance to each side of anL-quasi-geodesic triangle
with verticesu, v,w is at mostp. By the arguments in the proof of Lemma 4.1 there is
a constantm2 > m1 with the following property. Letx, y ∈ ∂X with δ(x, y) ≥ ν. If
z ∈ ∂X andk ≥ − log(ν/2) are such thate−k ≤ δ(x, z) ≤ e−k+1 then the distance
betweenx0 andK(x, y, z;m0) is contained in the interval [k/χ − m2, k/χ + m2]. The
diameter of the setsK(x′, y′, z′;m0) is bounded from above by a universal constantρ > 0
only depending onm0 and the hyperbolicity constant ofX.

Let (a, b, c) ∈ (∂X)3 be a triple of points whose pairwise distances are at least 2ν. Let
R ≥ − log(ν/2) be a number to be determined later, letU(a), U(b), U(c) be the open
e−R-neighborhood ofa, b, c in ∂X and letx ∈ U(a), y ∈ U(b), z ∈ U(c). Let a′, b′

∈

∂X be such thatδ(a′, b′) ≥ 2ν and assume that there is someg ∈ 0 such thatgx = a′,
gy = b′ and δ(gz, a′) ∈ [e−k, e−k+1] for somek ≥ R. Theng maps a continuous
L-quasi-geodesicη connectingy to x with η(0) ∈ K(x, y, z;m0) to a continuousL-
quasi-geodesicgη connectingb′ to a′. Sinceg(η(0)) ∈ K(a′, b′, gz;m0) we have

|d(gη(0), x0)− k/χ | ≤ m2 + ρ. (9)

Now let x′
∈ U(a), y′

∈ U(b), z′ ∈ U(c) and letg′
∈ 0 be such thatg′x′

= a′

= gx, g′y′
= b′

= gy andδ(g′z′, a′) ∈ [e−k, e−k+1]. Let η′ be a continuousL-quasi-
geodesic connectingy′ to x′, with η′(0) ∈ B(x0, m0). As above, letγ be a continuous
L-quasi-geodesic connectingb to a with γ (0) ∈ B(x0, m0) and letσ < 0 be such that
d(x0, γ (σ )) = R/χ . Then there are numbersτ, τ ′ < 0 such thatd(η(τ), γ (σ )) ≤ m1,
d(η′(τ ′), γ (σ )) ≤ m1 and therefored(η(τ), η′(τ ′)) ≤ 2m1. In particular, we have

|d(η(0), η(τ ))− d(η′(0), η′(τ ′))| ≤ 2m0 + 2m1.

The images ofη, η′ underg, g′ are continuousL-quasi-geodesics connectingb′ to a′.
The estimate (9) is valid forg′ as well and hence by hyperbolicity, the distances
d(gη(0), g′(η′(0))), d(g(η(τ)), g′(η′(τ ′))) are bounded from above by a universal con-
stantm3 > 2m2. Together we conclude that

d(g−1g′(η(0)), η(0)) ≤ 2m3, d(g−1g′(η(τ )), η(τ )) ≤ 2m3.
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Now if R0 = R(x0,2m3) is as in the definition of a weakly acylindrical action, then
for R ≥ χR0 and anyk ≥ R the number of elementsg, g′

∈ 0 with this property is
bounded from above by a universal constant independent ofR andk. This shows that the
action of0 on∂X satisfies the first property in the definition of a metrically proper action.

The second property in that definition follows from exactly the same argument.
Namely, using the above notation, there is a numberκ > m0(ν) only depending onν
such that ifZ ⊂ ∂X is the set of all points whose distance toU(a), U(b) is at leastν
then there is a numberτ0 > 0 such that for anyx ∈ U(a), y ∈ U(b) andz ∈ Z the
setK(x, y, z) is contained in the ball of radiusκ > 0 aboutx0. In other words, for any
elementg ∈ 0 which maps a triple(x, y, z) ∈ U(a) × U(b) × Z to a triple of points
whose pairwise distances are bounded from below byν, the distance betweenx0 andgx0
is at mostκ. The above considerations then show that we can find a numberR̃(ν) > 0
depending onν and somem̃(ν) > 0 such that the second requirement in the definition of
a metrically proper action holds with these constants and for the action of0 on ∂X. ut

Recall from Section 3 the definition of a homeomorphism with north-south dynamics of
a metric space of finite diameter. The statement of the next simple lemma is well known
in the case that the hyperbolic spaceX is proper; we include a short proof for the sake of
completeness since we have not found a suitable reference for the general case.

Lemma 4.3. LetX be a hyperbolic geodesic metric space and letg be an isometry of
X such that for somex ∈ X the mapk 7→ gkx is a quasi-isometric embedding of the
integers intoX. Theng acts on∂X with north-south dynamics.

Proof. Let g be an isometry ofX as in the lemma. Then the sequence(gkx)k≥0 ⊂ X

converges to a pointa ∈ ∂X, and the sequence(g−kx)k≥0 ⊂ X converges to a point
b ∈ ∂X − {a}. The limit set of the infinite cyclic groupG generated byg consists of the
two pointsa 6= b ∈ ∂X, and these are fixed points for the action ofG on ∂X.

By hyperbolicity there is a numberm > 0 such that for everyξ ∈ ∂X − {a, b} the
closed setK(a, b, ξ ;m) ⊂ X of all points inX whose distance to each side of anL-
quasi-geodesic triangle with verticesa, b, ξ is at mostm is non-empty and its diameter
K(a, b, ξ ;m) is bounded independently ofξ . Since the assignmentk 7→ gk(x) is a quasi-
isometric embedding of the integers intoX, we may assume by possibly enlargingm
that each of the setsK(a, b, ξ ;m) intersectsQ = {gk(x) | k ∈ Z}. Thus there is a
numberl > 0 and for everyξ ∈ ∂X − {a, b} there is someκ(ξ) ∈ Z such that the set
{gκ(x) | κ(ξ) ≤ κ ≤ κ(ξ) + l} contains the intersection ofK(a, b, ξ ;m) with Q. Then
|κ(gj ξ) − κ(ξ) − j | ≤ l for all j ∈ Z and hence the setD = {ξ ∈ ∂X − {a, b} | 0 ≤

κ(ξ) ≤ l} does not containa, b in its closure and it satisfies
⋃
j∈Z g

jD = ∂X − {a, b}.
Moroever, for anyy neighborhoodsU of a andV of b there is a numberj > 0 such that
gj (X − V ) ⊂ U andg−j (X − U) ⊂ V . Hence the isometryg acts with north-south
dynamics on∂X. ut

Call an isometry ofX hyperbolicif it acts on∂X with north-south dynamics with respect
to some fixed pointsa 6= b. The following corollary is immediate from Lemma 4.1,
Lemma 4.2 and the remark after Proposition 3.2 in Section 3. We refer to [PR04] for a
similar result for the groupSL(2,Z).
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Corollary 4.4. Let0 be a countable group which admits a weakly acylindrical isometric
action on a hyperbolic geodesic metric space. Letg1, . . . , gk ∈ 0 be hyperbolic elements
with ordered pairs of fixed points(ai, bi). If the 0-orbits of (ai, bi), (bi, ai) are pair-
wise disjoint then for every(q1, . . . , qk) ∈ Rk there is a quasi-morphismϕ for 0 with
lim`→∞ ϕ(g`i )/` = qi for everyi ≤ k.

The limit set of an isometric action of a group0 onX is the set of accumulation points
in ∂X of an orbit0x (x ∈ X) of 0; it does not depend on the orbit. A subgroup0 of
Iso(X) is calledelementaryif its limit set contains at most two points. The next result is
Theorem A from the introduction.

Theorem 4.5. Let0 be a countable group which admits a non-elementary weakly acylin-
drical isometric action on a Gromov hyperbolic geodesic metric spaceX. Then the
kernels of the natural homomorphismsH 2

b (0,R) → H 2(0,R) andH 2
b (0, `

p(0)) →

H 2(0, `p(0)) (1< p < ∞) are infinite-dimensional.

Proof. Let0 be a countable non-elementary weakly acylindrical subgroup of Iso(X). By
assumption, the limit set3 of 0 contains at least three points. Then this limit set is a0-
invariant closed subset of∂X without isolated points (see [GH90]). Our goal is to show
that the action of0 on3 satisfies the assumptions in Theorem 3.3.

By Lemma 4.1 and Lemma 4.2, the action of0 on3 is weakly hyperbolic and the ac-
tion of0 on the space of triples of pairwise distinct points in3 is metrically proper. Using
Lemma 4.3 it is enough to show that0 contains a free subgroupG with two generators
which has the following additional properties.

(1) For somex ∈ X the orbit mapg ∈ G 7→ gx ∈ X is a quasi-isometric embedding of
G intoX.

(2) There are infinitely manygi ∈ G (i ≥ 0) such that the ordered pairs of fixed points
of gi, g

−1
j are contained in pairwise distinct orbits of the action of0 on3×3.

Note that the first property guarantees that there is a continuousG-equivariant embedding
of the Gromov boundaryB of G into3.

The existence of a free groupG with two generators and with property (1) above
is immediate from the ping-pong lemma and the requirement that the group0 is non-
elementary (cf. [GH90]).

Now let e 6= g ∈ G and let(a, b) be the ordered pair of fixed points of the action
of g on ∂X. Choose a closed subset of∂X which is contained inX − {a, b} and is a
fundamental domainD for the action on∂X − {a, b} of the infinite cyclic subgroup of
G generated byg. Assume that there is a sequence(ai, bi) ∈ ∂X × ∂X contained in the
0-orbit of (a, b) with (ai, bi) → (a, b). Let δ be a Gromov distance on∂X and writeν =

min{δ(a, b), δ({a, b},D)}/4. LetR(ν) > 0 be as in the definition of a metrically proper
action for0 and letU,V be the opene−R(ν)-neighborhoods ofa, b respectively. For
sufficiently largei we haveai ∈ U andbi ∈ V . By our assumption, there arehi ∈ 0 such
thathiai = a andhibi = b. Thenh−1

i ghi is a hyperbolic isometry with fixed pointsai, bi .
Since a hyperbolic isometry fixespreciselytwo points in∂X, the elementshi are pairwise
distinct and the same is true for their compositions with an arbitrary power ofg. Namely,
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otherwise there arei 6= j andl ∈ Z such thatgl = hih
−1
j , which contradicts the fact that

(a, b) are fixed points forg, (ai, bi) 6= (aj , bj ) andhi is a homeomorphism. However, by
the choice ofD there is for eachi > 0 somek(i) ∈ Z such thatgk(i)hiD ∩ D 6= ∅ and
hencegk(i)hi(U ×V ×D)∩U ×V ×D 6= ∅ for all sufficiently largei. This contradicts
the assumption that the action of0 on the space of triples of pairwise distinct points in
∂X is metrically proper.

As a consequence, for every ordered pair(a, b) of fixed points of an elemente 6= g ∈

G the0-orbit of (a, b) is adiscretesubset of∂X×∂X−1 (note that this fact has already
been established in the proof of Proposition 3.2). Since on the other hand the sets of pairs
of fixed points for the elements ofG aredensein B × B − 1, there are infinitely many
such pairs(ai, bi) which are pairwise contained in distinct orbits under the action of0.
Our argument also implies that we may in addition require that the ordered pairs(ai, bi)

are not contained in the0-orbit of (bj , aj ) for anyj .
We use this fact to show that we can find infinitely manygi ∈ Gwith the property that

the0-orbits of the ordered pairs of fixed points(ai, bi), (bj , aj ) of gi, g
−1
j are all disjoint

(see the argument in [BF02]). Namely, choose two independent elementsg1, g2 ∈ G

which generate a free subgroup with the property that the ordered pairs of fixed points
(a1, b1), (b1, a1) of g1, g

−1
1 are not contained in the0-orbit of the ordered pair of fixed

points(b2, a2) of g−1
2 . We may assume that the group generated byg1, g2 equalsG and

that there is anL-quasi-isometricG-equivariant embeddingρ of the Cayley graphCG of
G intoX which induces an equivariant embedding of the Gromov boundaryB of G into
∂X. IdentifyCG with its image under this embedding. For 0� n1 � m1 � n2 � m2
consider the elementf = g

n1
1 g

m1
2 g

n2
1 g

m2
2 ∈ G. If γ is the axis off in CG and ifh ∈ 0

maps the ordered pair(a, b) of fixed points forf to (b, a), then it maps the inverseρ(γ )−1

of ρ(γ ) into a uniformly bounded neighborhood ofρ(γ ). Now a fundamental domain for
the action off on its axisγ is composed of four arcsγ1, . . . , γ4 whereγ1 is the geodesic
arc inCG connectinge to gn1

1 , γ2 is the translate undergn1
1 of the geodesic arc connecting

e to gm1
2 etc. As a consequence, there is a subsegment of the axis of a conjugate ofg1 in

G whose length tends to infinity asn1 → ∞ and which is mapped byh into a uniformly
bounded neigborhood of a subsegment of the axis of a conjugate ofg−1

2 (see [BF02]). For
sufficiently largen1 this violates the observation that the0-orbits of(ai, b1), (b2, a2) are
discrete and disjoint.

As a consequence, property (2) above holds forG as well (cf. also the discussion in
[BF02]). Thus the theorem is a consequence of Theorem 3.1. ut

5. Applications

In this section we derive some applications of Theorem A from the introduction. We
begin with the proof of Corollary B from the introduction. For this letS be an oriented
surface of genusg ≥ 0 with m ≥ 0 punctures. We assume thatS is non-exceptional,
i.e. that 3g − 3 + m ≥ 2. Thecomplex of curvesC(S) for S is the simplicial complex
whose vertices are the free homotopy classes ofessential simple closed curveson S, i.e.
simple closed curves which are neither contractible nor freely homotopic into a puncture
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of S. The simplices inC(S) are spanned by collections of such curves which can be
realized disjointly. SinceS is non-exceptional by assumption, the complex of curves is
connected. If we equip each simplex inC(S) with the standard euclidean metric of side-
length one, then we obtain a length metric onC(S), and this length metric defines onC(S)
the structure of a hyperbolic geodesic metric space. However,C(S) is not locally finite
and hence this geodesic metric space is not locally compact (for all this see [MM99, B02,
H05a]). A description of its Gromov boundary is contained in [Kl99, H06].

The mapping class groupMg,m of S is the group of isotopy classes of orientation
preserving homeomorphisms ofS. It acts as a group of isometries on the complex of
curvesC(S) of S. Bowditch [B03] showed that this action is weakly acylindrical. Thus
we can apply Theorem 4.5 and deduce Corollary B from the introduction which extends
the result of Bestvina and Fujiwara [BF02].

Proposition 5.1. Let0 be an arbitrary subgroup ofMg,m. If 0 is not virtually abelian
then the groupH 2

b (0,R) is infinite-dimensional. If moreover0 does not contain a normal
subgroup which virtually splits as a direct product of two infinite groups then for every
p ∈ (1,∞) the groupH 2

b (0, `
p(0)) is infinite-dimensional as well.

Proof. Recall from [MP89] the classification of subgroups0 of Mg,m. There are four
cases:

(1) 0 contains two independentpseudo-Anosovelements.
(2) The limit set of the action of0 onC(S) consists of precisely two pointsa 6= b.
(3) 0 is finite.
(4) 0 preserves a non-trivial system of pairwise disjoint essential simple closed mutually

not freely homotopic curves onS.

The action of the mapping class group onC(S) is weakly acylindrical [B03] and
hence the same is true for the action of an arbitrary subgroup0 of Mg,m. If 0 is as
in case (1) above then the limit set of0 contains at least three points and therefore0 is
a non-elementary subgroup of the isometry group ofC(S). By Theorem 4.5, the groups
H 2
b (0,R),H

2
b (0, `

p(0)) are infinite-dimensional for everyp ∈ (1,∞).
In case (2) above, each element of0 maps a quasi-geodesic connectinga to b into

a uniformly bounded neighborhood of itself. Since the action of0 on C(S) is weakly
acylindrical, the group0 is virtually cyclic (cf. the discussion in [BF02]).

In case (4) there is a maximal systemS of pairwise disjoint essential simple closed
non-mutually freely homotopic curves preserved by0. If we cut S open alongS and
replace each boundary circle of the resulting bordered surface by a puncture then we
obtain a possibly disconnected surfaceS′ of finite type and of greater Euler characteristic.
There is a natural homomorphism of0 onto a subgroup0′ of the mapping class group
of S′. Its kernelK is a free abelian group generated by multiple Dehn twists about the
curves of this curve system. Thus by Theorem 12.4.2 of [M01] (see also Corollary 3.6 of
[MS06]), the natural mapH 2

b (0
′,R) → H 2

b (0,R) is an isomorphism.
Let S′

1, . . . , S
′
p be the connected components ofS′. An elementg ∈ 0′ permutes the

components ofS′. This means that there is a homomorphismκ of 0′ into the group of
permutations of{1, . . . , p} whose kernel is the normal subgroupG of 0 of all elements
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which fix each componentS′

i . Thus there is an exact sequence

0 → G → 0′
→ Q → 0 (10)

whereQ is a finite group. This sequence induces an exact sequence [M01]

· · · → H 2
b (Q,R) → H 2

b (0
′,R) → H 2

b (G,R) → H 3
b (Q,R) → · · ·

Since the groupQ is finite, its bounded cohomology with real coefficients is finite dimen-
sional and therefore we conclude thatH 2

b (0
′,R) is infinite-dimensional if and only if this

is the case forH 2
b (G,R).

For i ≤ p denote byGi the projection ofG to a subgroup of the mapping class
group ofS′

i . If Gi preserves a non-trivial systemSi of pairwise disjoint essential simple
closed non-mutually freely homotopic curves onS′

i then the0′-translates of this system
is a0′-invariant curve system onS′ which lifts to a0-invariant curve system onS strictly
containingS. This contradicts the maximality of the systemS.

An exceptional componentS′

i of S′ is either a thrice punctured sphere with finite map-
ping class group, or a once punctured torus or a four times punctured sphere with word hy-
perbolic mapping class group. Therefore either0′ and hence0 is virtually abelian, or after
reordering, the groupG1 admits a weakly acylindrical action as a non-elementary group
of isometries on a hyperbolic geodesic metric space. In particular, if0 is not virtually
abelian then the second bounded cohomology groupH 2

b (G1,R) is infinite-dimensional.
LetR be the kernel of the homomorphismG → G1. Then we have an exact sequence

0 → R → G → G1 → 0. (11)

Since necessarilyH 1
b (R,R) = 0 (see [M01]) we deduce from the induced exact sequence

of bounded cohomology groups thatH 2
b (G,R) is infinite-dimensional if this is the case

for H 2
b (G1,R). In other words, either0 is virtually abelian or the second bounded coho-

mology groupH 2
b (0,R) is infinite-dimensional.

We are left with investigating the groupsH 2
b (0, `

p(0)). Assume that0 is not virtually
abelian. Then the groupG is infinite. Thus using the above notations, if the kernelK of the
natural projectionπ : 0 → 0′ is non-trivial, then the normal subgroupπ−1(G) of 0 splits
as a direct product of two infinite groups. Hence as before, we may assume that0 = 0′.
ThenH 2

b (0, `
p(0)) is infinite-dimensional if this is the case forH 2

b (G, `
p(G)). Namely,

if the centralizerZ0(G) of G in 0 is infinite then the center ofG is infinite and hence
eitherG is virtually abelian orG splits as a direct product of two infinite groups. Thus
we may assume thatZ0(G) is finite. Then every functionf ∈ `p(G) which is invariant
under the action of the finite center ofG defines a function in theG-module`p(0)Z0(G)

of Z0(G)-invariant points iǹ p(0) which vanishes outside ofGZ0(G). It follows that
the second bounded cohomology groupH 2

b (G, `
p(0)Z0(G)) is infinite-dimensional.

The finite groupQ as in the exact sequence (10) admits an isometric action on
H 2
b (G, `

p(0)Z0(G)) induced from the action ofQ onG by conjugation (Corollary 8.7.3
of [M01]). Unsing the explicit form of this action we conclude that the subspace of
H 2
b (G, `

p(0)Z0(G)) of elements which are fixed byQ is infinite-dimensional if this is the
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case forH 2
b (G, `

p(G)). On the other hand, since the groupG is infinite by assumption,
there is no non-zeroG-invariant vector iǹ p(0) and hence by the Hochschild–Serre spec-
tral sequence for bounded cohomology (Theorem 12.0.3 of [M01]), the second bounded
cohomologyH 2

b (0, `
p(0)) is infinite-dimensional if this is the case forH 2

b (G, `
p(G)).

LetNj be the kernel of the projection ofG into a subgroup of the mapping class group
of S′

−S′

j . ThenNj consists of mapping classes which act trivially onSi for all i 6= j . For
i 6= j , the groupsNi, Nj only intersect in the identity and commute. Hence if they are
infinite for somei 6= j , thenG contains a normal subgroup which is the direct product
of two infinite groups. The smallest normal subgroup of0 containingNi, Nj contains the
direct product ofNi, Nj as a subgroup of finite index, i.e. this normal subgroup virtually
splits as a direct product. Thus for the purpose of the proposition we may assume after
reordering thatNi is finite for all i > 1.

Consider first the case thatN1 is infinite. Denote as before byR the kernel of the
natural projectionG → G1 into the mapping class group ofS′

1. The subgroup ofG
generated byN1, R is normal and the direct product ofN1 andR. Therefore as above,
if 0 does not contain a normal subgroup which virtually splits as a direct product of two
infinite groups thenR is finite, and the quotient groupG/R can naturally be identified
with the groupG1.

Assume that this holds true. By Theorem 4.5 and the assumption thatG is not
virtually abelian, the second bounded cohomology groupH 2

b (G1, `
p(G1)) is infinite-

dimensional for everyp ∈ (1,∞). Now the groupR is finite and hence averaging over
the orbits of the action ofR shows that̀ p(G1) as aG1-module can naturally be identi-
fied with theG1-module`p(G)R of all R-invariant points iǹ p(G). As a consequence,
the groupH 2

b (G1, `
p(G)R) is infinite-dimensional, and therefore from the Hochschild–

Serre spectral sequence (Theorem 12.0.3 of [M01]) we deduce that the same is true for
H 2
b (G, `

p(G)). We deduce that ifN1 is infinite and if0 does not contain a normal sub-
group which virtually splits as a direct product thenH 2

b (G, `
p(G)) is infinite-dimensional

as claimed.
Finally, we have to consider the case thatN1 is finite, i.e. that the kernel of the nat-

ural projection ofG to a subgroup of the mapping class group ofS′

2 ∪ · · · ∪ S′
p is finite.

By the above considerations, for everyp ∈ (1,∞) the groupH 2
b (G, `

p(G)) is infinite-
dimensional if this is the case forH 2

b (G/N1, `
p(G/N1)). Since0 contains a normal sub-

group which virtually splits as a direct product if this is the case forG/N1, an application
of the above considerations to the groupG/N1 yields inductively the following. Either0
contains a normal subgroup which virtually splits as a direct product orH 2

b (0, `
p(0)) is

infinite-dimensional. This shows the proposition. ut

Following [MS06], we denote byCgeom the class of countable groups which admit a
non-elementary weakly acylindrical isometric action on some hyperbolic metric space.
Examples of such groups include.

• Word hyperbolic groups which are not virtually abelian.
• Any subgroup of the mapping class group of an oriented surface of finite type and

negative Euler characteristic not preserving any essential multicurve, e.g. the Torelli
group.
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• Any countable group which admits a non-elementary isometric action on a (not neces-
sarily locally finite) tree which is proper on the edges.

This class also contains a large family ofrelatively hyperbolic groups. In fact, it seems
that all geometrically finite relatively hyperbolic groups in the sense of Bowditch (see
[Y04] for a detailed discussion of those groups) are contained inCgeom.

For a locally compactσ -compact topological groupG define alattice in G to be a
discretesubgroup0 of G such thatG/0 admits afiniteG-invariant measure. IfG =

G1 × G2 is any non-trivial direct product with locally compactσ -compact and non-
compact factors then we call a lattice0 in G irreducible if the projection of0 into each
of the factors is dense. The following lemma is part (vi) of Proposition 7.13 in [MS06]
and follows from the work of Burger and Monod [BM02].

Lemma 5.2. Let0 be an irreducible lattice in a productG = G1×G2 of locally compact
σ -compact non-compact groups. ThenH 2

b (0, `
2(0)) = 0.

We use Lemma 5.2 and the results of Monod and Shalom [MS06] to show

Corollary 5.3. A group0 ∈ Cgeom is not measure equivalent to any finitely generated
irreducible lattice in either a simple Lie group of higher rank or in a product of two locally
compactσ -compact and non-compact topological groups.

Proof. By Theorem 4.5, for every0 ∈ Cgeomthe groupH 2
b (0, `

2(0)) is non-trivial. Then
Corollary 7.8 of [MS06] shows thatH 2

b (3, `
2(3)) 6= {0} for every countable group3

which is measure equivalent to0.
Now by Lemma 5.2, if3 is an irreducible lattice in a productG1 × G2 of locally

compactσ -compact non-compact groups thenH 2
b (3, `

2(3)) = {0}. If 3 is a lattice in a
simple Lie group of non-compact type and higher rank then the vanishing of the second
bounded cohomology groupH 2

b (3, `
2(3)) is due to Monod and Shalom (Theorem 1.4 in

[MS04]). Thus in both cases, the group3 is not measure equivalent to0. (Note however
that for lattices3 in simple Lie groups of higher rank a much stronger result is due
to Furman [Fu99a, Fu99b]: Every countable group which is measure equivalent to3 is
commensurable to3.) ut

Corollary C from the introduction is now immediate from Corollary 5.3 and Proposition
5.1.

We finish the paper by mentioning two results of Monod and Shalom [MS06] which
are closely related to this work.

Theorem 5.4. A countable group containing an infinite amenable normal subgroup is
not measure equivalent to a group inCgeom.

Another consequence is Monod and Shalom’s striking rigidity result for actions of prod-
ucts (Theorem 1.8 of [MS06]).

Theorem 5.5. Let01, 02 be torsion free groups inCgeom, 0 = 01 × 02 and let(X,µ)
be an irreducible probability0-space. Let3 be any torsion free countable group and let
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(Y, ν) be any mildly mixing probability3-space. If the0-action and the3-action are
orbit equivalent, then both groups as well as the actions are commensurable.

There is also a version of Theorem A for closed groups of isometries of proper hyperbolic
spaces and their continuous bounded cohomology [H05b].
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