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Abstract. Let X be an arbitrary hyperbolic geodesic metric space anil le¢ a countable sub-
group of the isometry group I$&) of X. We show that ifl" is non-elementary and weakly acylin-

drical (this is a weak properness condition) then the second bounded cohomology]gﬁlmﬂ),

th(l“, £P(T)) (1 < p < oo) are infinite-dimensional. Our result holds for example for any sub-
group of the mapping class group of a non-exceptional surface of finite type not containing a normal
subgroup which virtually splits as a direct product.

1. Introduction

A Banach moduléor a countable group is a Banach spack together with a homomor-
phism ofT" into the group of linear isometries @f. For every such Banach modutefor

I and every > 1, the groud naturally acts on the vector spate (I'!, E) of bounded
functionsI'! — E. If we denote byL>°(I'!, E)I' ¢ L*°(I'!, E) the linear subspace of all
[-invariant such functions, then tlsecond bounded cohomology groHﬁ(F, E)of I’
with coefficientsE is defined as the second cohomology group of the complex

0 Lo, BN & Lor2 gyl & ...

with the usual homogeneous coboundary operat(gee [MO1]). There is a natural ho-
momorphism obez(F, E) into the ordinary second cohomology grodf#(T", E) of T
with coefficientsE which in general is neither injective nor surjective.

In this paper we are only interested in the case that R with the trivial "-action or
thatE = ¢ (I") for somep € (1, co) with the natural’-action by right translation which
assigns to @-summable functiory and an elemeng € I the functiongf : & — f(hg).

Since every homomorphism of I" into a countable grou@ induces a homomor-
phismp* : HbZ(G, R) — Hbz(l“, R), second bounded cohomology with real coefficients
can be used to find obstructions to the existence of interesting homomorghisms;.
The underlying idea is to find conditions @handp which ensure that the image of the
map p* is “large” (e.g. infinite-dimensional) and conclude that this imposes restrictions
on the groud".
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Two countable groupE, G are calledneasure equivaleiG93] if I', G admit com-
muting measure preserving actions on a standard infinite measure Borel space with finite
measure fundamental domains. Measure equivalence defines an equivalence relation for
countable groups [Fu90a]. Monod and Shalom [MS06] showed that for countable groups,
vanishing of the second bounded cohomology groups with coefficients in the regular rep-
resentation is preserved under measure equivalence. Thus second bounded cohomology
with coefficients in the regular representation provides an obstruction to the existence of
a measure equivalence between two given countable groups.

For the application of these ideas it is necessary to obtain information on these
bounded cohomology groups. The first and easiest result in this direction is due to
B. Johnson (seé [187] for a discussion and references) who showed that the bounded co-
homology of amenable groups with real coefficients is trivial. Later Brooks |Br81] found
a combinatorial method for the construction of non-trivial real second bounded cohomol-
ogy classes and used it to show that the second bounded cohomology group of a finitely
generated free group is infinite-dimensional.

Fujiwara [F98] investigated the second real bounded cohomology group of a group
of isometries of ayperbolicgeodesic metric space. Such a spacadmits a geometric
boundaryd X. Each isometry ofX acts as a homeomorphism 0X. The limit set of
a groupl” of isometries ofX is the closed -invariant subset o8 X of all accumulation
points of a fixed"-orbit in X. The groufd" is callednon-elementarif its limit set contains
at least three points; then the limit setlofs in fact uncountable. Using a refinement and
an extension of Brooks’ method, Fujiwara showed that for a countable non-elementary
groupI’ of isometries ofX acting properly discontinuously ok in a metric sense, the
kernel of the map2(I', R) — H?(I", R) is infinite-dimensional[[F98]. Bestvina and
Fujiwara extended this result further to countable subgroups @i)swhose actions
on X satisfy some weaker properness assumption [BF02]. Their result is for example
valid for non-elementary subgroups of thepping class groupf an oriented surfacg
of finite type and negative Euler characteristic, i.e. for subgroups of the group of isotopy
classes of orientation preserving diffeomorphisms wthich are not virtually abelian. As
a consequence, the second bounded cohomology group of every non-elementary subgroup
of such a mapping class group is infinite-dimensional.

On the other hand, by a result of Burger and Moniod [BM99, BM02], for every ir-
reducible latticel" in a connected semisimple Lie group with finite center, no compact
factors and of rank at least 2 the kernel of the natural Hap", R) — H2(I', R) van-
ishes. Together with the results of Fujiwara [F98] and Bestvina and Fujivara [BF02] it
follows easily that the image of every homomorphisni’dhto a finitely generated word
hyperbolic group or into the mapping class group of an oriented surface of finite type and
negative Euler characteristic is finite [BM02, BF02]. The latter result was earlier derived
with different methods by Farb and Masur [EFM98] building on the work of Kaimanovich
and Masur[KM96].

The goal of this note is to present a new method for constructing nontrivial second
bounded cohomology classes for a countable gidofimm dynamical properties of suit-
able actions of*. We use it to give a common proof of extensions of the above mentioned
results of Fujiward [F98] and of Bestvina and Fujiwara [BF02], which among other things
answers a question raised by Monod and Shalom [MS04, MS06].
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For the formulation of these results, call a countable grbugf isometries of a (not
necessarily proper) hyperbolic geodesic metric spaaeeakly acylindricalif for every
pointxg € X and everyn > 0 there are numbe®(xg, m) > 0 andc(xg, m) > 0 with the
following property. Ifx, y € X are such that a geodesicconnectingr to y meets then-
neighborhood ofg and ifd(x, y) > R(xp, m) then there are at mostxg, m) elements
g € T' such thatd(x, gx) < m andd(y, gy) < m (compare with the definition of an
acylindrical isometry group iri [B03]). We show in Section 4 (see [IF98, BEO2, MMSO04]
for earlier results)

Theorem A. LetT be a non-elementary weakly acylindrical countable group of isome-
tries of an arbitrary hyperbolic geodesic metric space. Then the kernels of the maps
HZ(,R) — H(T',R) and HA(T, ¢(I")) — H?(T, £/(I")) (1 < p < o0) are infinite-
dimensional.

As an easy corollary of Theorem A and a result of Bowditch [B03] we obtain an extension
of the result of Bestvina and Fujiwara [BE02]. For its formulation, we say that a group
I" virtually splitsas a direct product if has a finite index subgroup which splits as a
direct product of two infinite groups. We show

Corollary B. LetTI" be a subgroup of the mapping class group of an oriented surface of
finite type and negative Euler characteristicl'lfs not virtually abelian then the kernel of
the maprz(F, R) — HZ(, R) is infinite-dimensional. If moreovdt does not contain

a normal subgroup which virtually splits as a direct product then the kernel of each of the
mapsH2(T', ¢7(I')) — HA(T, ¢7(I") (1 < p < oo) is infinite-dimensional.

The following corollary is an immediate consequence of Corollary B and the work of
Burger—Monod and Monod-Shaloim [BM99, BM02, M$06]. For its formulation, call a
lattice A in a productG = G x G2 of two locally compact -compact and non-compact
topological groupgrreducibleif the projection ofA to each of the factors is dense.

Corollary C. LetT be a subgroup of the mapping class group of an oriented surface of
finite type and negative Euler characteristic. Assume fhalioes not contain a normal
subgroup which virtually splits as a direct product. ThEns not measure equivalent

to an irreducible lattice in a product of two locally compagtcompact non-compact
topological groups.

For lattices in semisimple Lie groups of higher rank, Corollary C follows from [FM98]
and the beautiful work of Furmah [Fu99a]. The earlier result of Zimmer|[Z91] suffices
to deduce Corollary C for the full mapping class group which admits a linear represen-
tation with infinite image. Recently, Kida [K06] derived a much stronger rigidity result.
Namely, he showed that for every countable grauprhich is measure equivalent to the
mapping class groupA of a non-exceptional oriented surface of finite type, there is a
homomorphismA — M with finite kernel and finite index image.

The organization of the paper is as follows. In Section 2, we introduce our method
for the construction of second bounded cohomology classes in the concrete example of
the fundamental group of a convex cocompaatomplete Riemannian manifoltd of
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bounded negative curvature. Such a manifdl@¢ontains a compact convex subS§éum ),
the so-called¢onvex corgas a strong deformation retract. The graéuig word hyperbolic,
and the convex coré(M) of M is aK (T", 1)-space. Therefore, if' is non-elementary
i.e. if I is not abelian, then the dimension of the cohomology gr&ider", R) is finite,
and by Fujiwara’s result [F98], the grou‘pbz(l“, R) is infinite-dimensional.

Inspired by a result of Barge and Ghys [BG88], we relate the second bounded co-
homology grouprz(F, R) to thegeodesic flowd’ of M which acts on the unit tangent
bundleT1M of M. SinceM is convex cocompacf M admits a compacb’-invariant
hyperbolic set which is the closure of the union of all closed orbitsdf. The restric-
tion of ®’ to W is topologically transitive.

A cocyclefor the action of®’ on W is a continuous function : W x R — R such
thatc(v, s +1) = c(v, t) +c(®'v, s) forallv € W and alls, r € R. Two cocycles:, d are
cohomologous there is a continuous functioft : W — R such thaty (®'v)+c(v, 1) =
d(v, 1)+ ¥ (v). The collection of all cocycles which are cohomologous to a given cocycle
¢ is thecohomology classf c¢. Theflip F : v — —v acts onW and on the space of
cocycles for the geodesic flow preserving cohomology classes. The cohomology class of
a cocyclec is calledflip anti-invariantif F(c¢) is cohomologous te-c. We denote by
DC(M) the vector space of all flip anti-invariant cohomology classes of cocycles for the
geodesic flow orWWw which are Hlder continuous, i.e. such that for a fixed number O
the functionv — c¢(v, t) is Holder continuous.

Every smooth closed 1-form ai defines via integration along orbit segmentsbéf
a Holder continuous cocycle fab’ which is anti-invariant under the flip. Two cocycles
defined by closed 1-forms in this way are cohomologous if and only if the 1-forms define
the same de Rham cohomology classdnThus HY(I", R) = H1(M, R) is naturally a
subspace gDPC(M). In Section 2 we show

Theorem D. Let I be the fundamental group of a convex cocompact manifolof
bounded negative curvature. Then the quotient sgaéeM)/H(I', R) naturally em-
beds intoker(HA(I', R) — H2(I', R)).

Section 3 contains the main technical result of this paper. Starting from the concrete con-
struction in Section 2, we present an abstract dynamical criterion for infinite-dimensional
second bounded cohomology for a countable grbugcting as a group of homeomor-
phisms on a metric space of bounded diameter. The coefficients of these cohomology
groups can be eithé or ¢7(I") for somep € (1, o0). Theorem 4.4 of Section 4 shows

that our criterion can be applied to countable groups which admit a non-elementary
weakly acylindrical isometric action on a hyperbolic geodesic metric space; this then
yields Theorem A. Section 5 contains the proof of Corollary B and Corollary C as well
as a short discussion of some applications which are due to Monod and Shalom.

2. Dynamical cocycles and bounded cohomology

In this section we consider arrdimensional convex cocompact Riemannian manifold
M of bounded negative curvature. Théh = M /T whereM is a simply connected
complete Riemannian manifold of bounded negative curvatur&asd group of isome-
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tries acting properly discontinuously and freely &h The manifoldM admits a natural
compactification by adding thgeometric boundary M which is a topological sphere
of dimensionn — 1. Every isometry of¥f acts ondM as a homeomorphism. THienit
setA of I' is the set of accumulation points &M/ of a fixed orbitl'x (x € M) of the
action of " on M. We always assume that the groijis non-elementary, i.e. that its limit
set contains as least three points. Theis the smallest nontrivial closed subsetdff
which is invariant under the action of

The geodesic flowd’ acts on theunit tangent bundlel'* M of M and on the unit
tangent bundlg@ M of M. Let L ¢ T1M be the set of all unit tangents of all geodesics
with both end-points im.. ThenL is invariant under the action d@f’ and the action of .
The quotient. = L/ T is just thenon-wandering sefor the action ofd’ on 71M. Since
M is convex cocompact by assumptidnjs a compact hyperbolic set for the geodesic
flow ®' on T1M. The setsl and L are moreover invariant under thig F : v — —v
which maps a unit tangent vector to its negative. The Riemannian metiif ioduces a
complete Riemannian metric and hence a complete distance fudctiom M.

A continuous real-valuedocyclefor the action of®’ on L is a continuous func-
tionc : L x R — R with the property that(v,t + s) = c(v,1) + c(®'v, s) for all
v e L,alls,t e R. Every continuous functiorf : L — R defines such a cocyclg by
cr(v, 1) = fé f(®*v)ds. Two cocyclesh, ¢ are calledcohomologousf there is a con-
tinuous functiomy : L — R such thaty (®'v) + c(v, 1) — ¥ (v) = b(v, ). If b, c are
cocycles which are Blder continuous with respect to the distadcen L, i.e. if for fixed
t > 0the mape — b(v,t) andv — c¢(v, t) are Hilder continuous, then by Livshits’
theoremp, ¢ are cohomologous if and only if for every periodic poindf the geodesic
flow with periodz > 0 we haveb(v, ) = ¢(v, ) [HK95]. Every Holder continuous co-
cycle is cohomologous to the cocycle of alder continuous functiorf (see e.g/[H99]),
and two Hblder functionsf, ¢ on L arecohomologousi.e. their cocyclesy, ¢, are co-
homologous, if and only ijfy, f= fy, g for every closed geodesjcon M (wherey’ is
the unit tangent field of ).

The flip F acts on the space of cocycles preserving cohomology classes. We call the
cohomology class of a cocycteanti-invariantunder the flipF if F(c) is cohomologous
to —c. If the cohomology class of adtder continuous cocycle is anti-invariant under
the flip then there is a &lder continuous functiorf which is anti-invariant under the flip,
i.e. which satisfieg (v) = — f(—v) for all v € L, such that the cocycler defined byf
is cohomologous to (cf. [H97]). Denote byA the vector space of all 8ider continuous
functionsf on L which are anti-invariant under the flip.

SinceL is a compact invariant hyperbolic topologically transitive set for the geodesic
flow on T1M, for every Hlder continuous functionf on L and every number
€0 > 0 which is smaller than half of the injectivity radius & there is a number
k > 0 only depending on the dider norm of f with the following property. Let
v,w € L and letT > 0 be such that/(®'v, ®'w) < ¢ for all ¢+ € [0, T]; then
| Jo f(@v)di — [} f(@'w)dr| <k.

A quasi-morphisnfor I' is a functiong : I' — R such that

lollo = sup |p(g) + ¢(h) —@(gh)| < oco.
g,hel
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The setQ of all quasi-morphisms foF naturally has the structure of a vector space. The
function|| ||o : @ — [0, co) which associates to a quasi-morphigrits defect| ¢|o is a
pseudo-norm which vanishes precisely on the subspac®ighisms

Lemma 2.1. There is a linear mapl : A — Q such that for everyf € A, the defect
¥ (f)llo of w(f) is bounded from above by a constant only depending on the curvature
bounds of\f and the Hblder norm off.

Proof. Let f € A and extendf to a locally Hdlder continuous flip anti-invariant func-
tion F on T1M. Such an extension can be constructed as follows. Choose a probability
measurew on L for which there are constants @ a < b such that theu-mass of a

ball B(v, r) of radiusr < 1 about a poinb € L is contained inf’, r?]; for example, the
unique measure of maximal entropy for the geodesic flow tias this property. We view

w as a probability measure dit M which is supported irL. Let ¢ : [0, 00) — [0, 1]

be a smooth function which satisfiesr) = 1 for z close to 0 anc[1, co) = 0. Via
multiplying the restriction ofx to the metric ballB(w, r) (w € T*M) by the function

z — t(d(z, w)/r) we may assume that the measungs8(w, r) depend continuously on

w e TIM, r > 0in the weak-topology.

Forw € TM let §(w) > 0 be the distance betweenandL. Forw € T*M — L

define !

Jow) w(B(w, 26(w))) Jpw,2sw)nL fdu
and letfo(w) = f(w) forw € L. By assumption on the measuyels$ (w, r) and sincef
is Holder continuous, the functiofy is locally Holder continuous and its restriction fo
coincides withf. Thus we obtain a locally 6lder continuous flip anti-invariant extension
F of f to T1M by assigning tav € T*M — L the valueF (w) = %(fo(w) — fo(—w)).
For every compact subsét of T1M the Holder norm of the restriction of to K only
depends ok and on the ldlder norm off. If F, H are the extensions gf 4 constructed
in this way and ifa, b € R thena F + bH is the extension aif + bh.

Let againA be the limit set of". The closure Con\\) C M of the convex hull ofA
in M is invariant under the action df. Theconvex cor&(M) = ConvA)/T of M is
compact. LetF be the lift of F to 1M and choose a point € ConM(A). For an element
g € I' defineW(f)(g) to be the integral of” over the tangent of the oriented geodesic
joining p to g(p). We claim that¥/ ( f) is a quasi-morphism for.

To prove this claim, recall that the curvature Mfis pinched between two negative
constants and therefore by comparison, for exgry 0 there is a numbér = k(¢g) > 0
only depending org and an upper curvature bound & with the following property.
Let T be a geodesic triangle i with verticesA1, Ao, A3 and denote by; the side of
T connectingA;_1 to A; ;1. Letg; € a; be the nearest point projection of the vertex
to the sideg; and lety; . y; — be the oriented geodesic arc parametrized by arc length
which connectg; = y; +(0)t0 A;+1 = yi 4+ (i, +) andg; = yi,—(0)t0 A;—1 = i —(7i,-)
(here indices are taken modulo 3). Ther= t;41+ — - € [—k, k] and moreover for
everyt € [k, ; _] the distance betweey/ _(1) € T*M andy/,, , (t +1;) € T*M is at
mosteo.
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Now by assumption, the functiofi is anti-invariant under the flip and locallydttler
continuous. Therefore the above discussion implies that the integralasier the unit
tangent field of a closed curve in Cdmy) which consists of three geodesic arcs forming
a geodesic triangle is bounded from above in absolute value by a universal constant times
the Holder norm of the restriction of to the compact subs@t'M|C(M) of TM of
all unit vectors with foot point in the convex cot&M) = ConuA)/I'. On the other
hand, by invariance of’ under the action of* and by anti-invariance of’ under the
flip, for g, h € T the quantity|V(f)(g) + W (f)(h) — Y (f)(gh)| is just the absolute
value of the integral of” over the unit tangent field of the oriented geodesic triangle in
Con(A) C M with verticesp, g(p), g(h(p)). ThusW(f) is indeed a quasi-morphism
and the assignmernft — W (f) defines a linear may : A — Q. Moreover, the defect
llello of ¢ is bounded from above by a constant only depending on the curvature bounds
of M and the Hblder norm of f. This shows the lemma. O

Two quasi-morphismg, ¢ for I' are calledequivalentif ¢ — v is a bounded function.
This is clearly an equivalence relation.gf is equivalent tap, andv, is equivalent to
Y2 then for alla, b € R the quasi-morphisme1 + b1 is equivalent tazgp, + by, and
hence the se® B of equivalence classes of quasi-morphism§ t¢fas a natural structure
of a vector space. It contains as a subspace the vector &4feR) of all equivalence
classes ofmorphismsf I'. There is an exact sequence

0— HYI',R) - OB — HZ(I',R) - H*(T',R) (1)

and therefore the quotient spaée = QB/HY(I', R) can naturally be identified with
the kernel of the magi(I', R) — H(I', R) (see[[MO1]). In particular, an equivalence
class of quasi-morphisms can be viewed as a cohomology cldssmariant bounded
cocyclesp € L=(I'3, R)''. In this interpretation, the cocycledetermined by the quasi-
morphismy associates to a triplég, 1, u) € I'S the valueg(g, i, u) = ¥ (g~ 1h) +
Y — (g hw).

For f € A, the definition of the quasi-morphis#(f) in the proof of Lemma 2.1
depends on the choice of an extensionfoto a locally Hdlder continuous flip anti-
invariant function or’*M and also on the choice of a basepgint Conv(A). The next
lemma shows that the cohomology classlaff) is independent of these choices.

Lemma 2.2. The cohomology class of the quasi-morphigiy) does not depend on the
choice of the basepoint nor on the extension of to a locally Holder continuous flip
anti-invariant function ori 1 M.

Proof. Let f € A and letF be a locally Hlder continuous flip anti-invariant extension of

f to T1M. Denote by ( f) the quasi-morphism constructed in the proof of Lemma 2.1
using the extensiofr of f and the basepoint € ConuA). We first show that a different
choiceq € Conv(A) of a basepoint gives rise to a quasi-morphism which is equivalent to
W(f) in the above sense. For this we folldw [BG88]. Liebe the lift of F to T1M. For

g € T definep(g) to be the integral of the functiof over the unit tangent field of the
oriented geodesic quadrangle with vertigeg(¢), g(p), p- As in the proof of Lemma
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2.1 we conclude that the functign: ' — R is uniformly bounded. Since by invariance
of F under the action of the integral ofF over the oriented geodesic arc connecting
g(q) to g(p) is independent o € I and, in particular, it coincides with the negative of
the integral ofF over the oriented geodesic arc connectintp ¢, the quasi-morphism
defined byF and the basepoitjust equalsl ( /) + p. Thus changing the basepoint does
not change the equivalence class of the quasi-morptigim).

Now we may also replace the poipte Conv(A) by a pointt € A. Namely, forg e T’
definep(g) to be the oriented integral of the functidhover the tangent lines of the ideal
geodesic quadrangle with verticgsg(£), g(p), p. As before, this function is uniformly
bounded. By invariance af under the action of and the fact thaf is anti-invariant
under the flip we find that the 2-cocycle fbrdefined as above by the quasi-morphism
W(f) + p is just the cocycle; € L®(I"3, R)" which assigns to a triplég, i, u) € I'3
the integral ofF” over the unit tangents of the (possibly degenerate) oriented ideal triangle
with verticesg (&), h (&), u(&¢). Since these unit tangents are contained in thd. liéf the
non-wandering seL for the geodesic flow o' M, the cocycley only depends orf
but not on an extension of to 71M. Thus the cohomology class defined ¥y 1) is
independent of the extension as well. O

In the following we denote foy € Aby ©(f) € O = ker(HA(T, R) — H?(T', R)) the
cohomology class of the quasi-morphiging /). By Lemma 2.2, this class only depends
on f. Moreover, the assignmefit : A — Q is clearly linear. We next investigate the
kernel of the ma®.

SinceTl is convex cocompact by assumption, there is a natural correspondence be-
tween oriented closed geodesicsMnand conjugacy classes Ih For every homomor-
phismp : ' — R and everyg € T, the valuep(g) of p on g only depends on the
conjugacy class of. Therefore such a homomorphism defines a function on the set of
closed geodesics aif ; we denote the value gf on such a closed geodesicby p(y).

We have

Lemma 2.3. ©(f) = 0if and only if there is a morphism : I' — R such thatf f=
o (y) for every closed geodesjcon M.

Proof. Let f € A and assume that there is a morphism I' — R such thatfy/ f=

p(y) for every closed geodesjcon M. This morphism defines a classtt (M, R) and
therefore by the de Rham theorem, there is a smooth closed 16foma/ which defines
p via integration. Let be the pull-back of to a closed 1-form om/. Thenﬁ is exact
and hence the integral @f over every piecewise smooth closed curvérvanishes.

By Livshits’ theorem[[HK95] and the choice ¢, there is a Wlder continuous flip
anti-invariant functiony : L — R such thathT f(@v)dt = w(chv)JrfoT B(Dv) dt —
¥ (v) for everyv € L and allT > 0. As in the proof of Lemma 2.1 we extendto a
locally Holder continuous flip anti-invariant function on all @M which we denote
by the same symbol. Lef be the lift of ¥ to T1M. Fix a pointp € ConvA) and
for g € I let y, be the geodesic arc connectipg= y,(0) to g(p) = y,(T). Define

a(g) = Yy (T)) + fOT By (1)) dt — ¥(y;(0). By Lemma 2.1 and Lemma 2.2,is a
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quasi-morphism fof" which defines the cohomology clagg ). On the other handy
differs from the quasi-morphism defined Byoy a bounded function. Since the integral of
B over every piecewise smooth closed curvadnvanishes, the cohomology cla®s f)

of the quasi-morphisma vanishes.

On the other hand, lef € A and assume that there is no morphism I' — R
such thatfy, f = p(y) for every closed geodesie on M. We have to show that the
cohomology clas®(f) does not vanish. By the exact sequerjde (1) above, this is the
case if and only if a quasi-morphisi(f) representing®(f) is not equivalent to any
morphism forT".

For this we argue as before. Namely, tet ' — R be any morphism fof" and let
B be a smooth closed 1-form avf defining p. By assumption, there is a periodic point
v € L of periodr > 0 for the geodesic flowd’ such thatfof(f - B)(®'v)dt = ¢ > 0.
Let 7 be a lift of v to L and letp € M be the foot-point ofi. Choose an extension of
f to alocally Hblder continuous functio& on 71M and letF be the lift of F to T1M.

By definition, the quasi-morphisn (/) induced byF and the choice of the basepoint
p assigns tq € T the integralf; F(y}(s))ds wherey, : [0, T] — M is the oriented
geodesic arc connecting to g(p). Moreover, this quasi-morphism represents the class
O(f). Now letn be the geodesic it which is tangent tdi. By the choice ofy there

is an element: € T which preserves and whose restriction tg is the translation
n(t) — n(t + t) with translation lengthr. Hence we have () (™) = m fO’ f(@')dt

and (W (f) — p)(W™) = mc for all m € Z. In particular, the functionV(f) — p is
unbounded and consequently( /) is not equivalent tqo. Sincep was arbitrary this
means that the projection &f( /) into O does not vanish. O

Fix a numbereg > 0 which is smaller than half of the injectivity radius &f and for
f € A define| f|| 4 to be the infimum of the numbe¥ks > 0 with the property that
|f0T f(@v)dt — fOT f(@'w)dt| < k wheneverv,w € L andT > 0 are such that
d(®'v, ®'w) < ¢ for everyr € [0, T]. We have

Lemma 2.4. | || 4 is a norm onA.

Proof. We observed above thiitf || 4 < oo for every Hilder continuous functiorf €
A. Moreover, we clearly havéaf|| 4 = la|llf]l4 forall f € A and alla € R and
lf+eglla < IIflla+ liglla by a simple application of the triangle inequality. Thus we
are left with showing thaf f|| 4 = 0 only if f = 0. For this assume that£ f € A.
Sincef is anti-invariant under the flip by assumptighis not a constant function. Hence
by continuity there are points, w € W with d(v, w) < €p/2 and numbers > O,
T € (0, €0/2) with f(®'v) > f(®'w) + S forallt € [0, T]. Then| f|l4 = 8T by the
definition of || || 4. O

Call two Holder functionsf, g € A weakly cohomologous f — g is cohomologous to a
closed 1-form onM, viewed as a function ofi* M. The class off under the equivalence
relation thus defined will be called tlveeak cohomology class f. The setH of weak
cohomology classes of ¢der functions is a vector space. Rore H let ||| be the



10 Ursula Hamensidt

infimum of the normg| f|| 4 where f runs through all functions itd which define the
weak cohomology clasg. Then|| | is a pseudo-norm of.

TheGromov norm||«|| of an elementr € Hbz(l“, R) is the infimum of the supremum
norms over all bounded 2-cocycles forepresenting [G83] (here a bounded 2-cocycle
is a bounded™-invariant function ori™3 contained in the kernel of the coboundary oper-
ator). If¢ : ' — R is a quasi-morphism then the Gromov norm of the cohomology class
defined by is the infimum of the defect;||o wheren runs through the collection of all
guasi-morphisms with) — ¢ equivalent to a morphism daf.

By Lemma 2.3, the ma® factors through an injective linear mag — O =
ker(HbZ(r‘, R) — HZ(T', R)) which we denote again b§. The following corollary sum-
marizes our discussion and implies Theorem D from the introduction.

Corollary 2.5. The map® : (H, || ) — (Q, || ) is a continuous embedding.

Proof. By Lemmas 2.1, 2.3 and 2.4 we only have to show the continuii®.dfor this
choose a point € A. Let f € Aand letf be the lift of f to 7M. Forg,h,u € T
definea(g, i, u) to be the integral off over the unit tangents of the (possibly degener-
ate) oriented ideal triangle with verticg$, 1§, u&. By Lemma 2.3 and its prood is a
cocycle which represents the cladgyf). The considerations in the proof of Lemma 2.1
show thatja(g, i, u)| < c||f|l4 for a universal constant > 0, in particular we have

a € L®(I3 R)I and the Gromov norm of the cohomology class definedr by not
greater thar|| f||_4. From this the continuity of the map follows. O

3. A dynamical criterion for infinite-dimensional second bounded cohomology

This section contains the main technical result of this note. We consider an arbitrary
countable groug™ which acts by homeomorphisms on a metric spé€ed) of finite
diameter without isolated points. Our goal is to construct bounded cohomology classes
for I using dynamical properties of the actionldobn X as in Section 2. In the application
we have in mind, the spack is the Gromov boundary of a hyperbolic geodesic metric
space and’ is a group of isometries acting dfias a group of homeomorphisms.

We begin by describing some properness condition for the action of a countable group
I' by homeomorphisms afX, d). Namely, the metri@ on the spac& induces a metric
on the spacé&? of triples of points inX which we denote again hy, this metric is given
by d((x1, x2, x3), (y1, 2. ¥3)) = Yo, d(x;, y;). Let A C X3 be the closed subset of all
triples for which at least two points in the triple coincide. The diagonal actidharf X3
preserves the open s&f — A of triples of pairwise distinct points iX.

Definition. The action of” on X3— A is calledmetrically propeif for everyv € (0, 1/2)
there are constanta(v) > OandR(v) > — log(v/4) such that for any two open disjoint
setsU, V C X of distance at least and of diameter at most—*( the following is
satisfied.

(1) LetW C X be a set of diameter at mast ") whose distance to/ U V is at leastv.
WriteC = U x V x W c X3 — A; then for allk € Z and every fixed pair of points
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X0 # yo € X with d(xo, yo) > v there are at most:(v) elementg € I" with

g(C)N{(x,y,2) € X3— A | x =x0,y = Yo,
e ® < min{d(z, x0), d(z, yo)} < e 1} £ 0.

(2) LetU’, V' C X be open disjoint sets of distance at leasind of diameter at most
e R0 LetZ c X (resp.Z’ C X) be the set of all points whose distancelta) V
(resp. toU’ U V') is greater tharv. Then there are at mosi(v) elementg € I" with

gUxVxZ)NU' xV' xZ #40.

If the action ofl" on X2 — A is metrically proper, then every point Xi® — A has a neigh-
borhoodV in X3— A such thag(N)NN # ¢ only for finitely manyg < I'. Namely, for a
point(x, y, z) € X3— A choose > 0 sufficiently small that mifd(x, y), d(x, z), d(z, y)}

> 2v. For thisv let R(v) > 0 be as in the definition of a metrically proper action and let
N be the oper— %™ -neighborhood ofx, y, z) in X3; thenN NgN # @ only for finitely
manyg € I by the second part of the above definition. Sitkteloes not have isolated
points this implies that the quotietix® — A)/ T is a metrizable Hausdorff space.

For everyg e T, the fixed point set Figg) for the action ofg on X is a closed
subset ofX. The boundaryA(g) of the open subsex® — Fix(g)3 of X3 is a closed
(possibly empty) nowhere dense subsetXSf By the above observation, every point
(x,v,z) € X3 — A admits a neighborhooll’ which intersects only finitely many of the
setsA(g) (g € I'). SinceX does not have isolated points, the ¥8t— A — Ug€F A(g)

is open and dense iKi® — A. The restriction of the natural projection
T T=X-A->Y=(X-A)T

to the open dense s&t — A — UgEF A(g) is alocal homeomorphism.

The involution: : X3 — X3 defined byi(a, b, ¢) = (b, a, ¢) is an isometry with
respect to the metrid on X2 induced from the metric oX, and its fixed point set is
contained in the closed sé&t c X3. Thus the restriction of to T acts freely, and it
commutes with the diagonal actionlof In particular; naturally acts ory as a continuous
involution and the quotienf = Y/ is a metrizable Hausdorff space. There is an open
dense subset df such that the restriction of the natural projectien: T — Z to this
set is a local homeomorphism.

Forx € X ande > 0 denote byB(x, ¢) C X the open ball of radius aboutx. We
next recall the well known notion of north-south dynamics for a homeomorphiskn of

Definition. A homeomorphisrg of X hasnorth-south dynamicwith respect to an at-
tracting fixed pointa € X and a repelling fixed poink € X — {a} if the following is
satisfied.

(1) For everye > Othere is a numbem: > 0such thatg™ (X — B(b, €)) C B(a, ¢) and
g7 ™(X — B(a,€)) C B(b,¢).
(2) There is a numbes > O such that J,,.7 ¢" (X — B(a,8) — B(b,8)) = X — {a, b}.



12 Ursula Hamensidt

We calla theattractingand b therepellingfixed point ofg, and (a, b) is theorderedpair
of fixed points fog.

The next definition formalizes the idea that the dynamics of each element of a@rotup
homeomorphisms afX, d) is uniformly similar to north-south dynamics on a metrically
large scale.

Definition. The action of an arbitrary groujgs on a metric spacéX, d) of finite diam-
eter is calledweakly hyperbolidf for everye > 0 there is ab = b(¢) € (0, 1) with

the following property. Lek, y € X with d(x, y) > 2¢ and letg € G be such that
d(gx, gy) > 2¢. Letz € X — {x, y} be such thamin{d(gz, gx), d(gz, gy)} > €. Then
d(gw, gx) < d(z, y)?/b for everyw € X withd(w, x) <e.

Let againI” be a countable group which admits an action on a metric sp¥cé) of
finite diameter without isolated points by homeomorphisms such that the diagonal action
onT = X° — A is metrically proper. Using the above notations, detc T be an
open set whose closuk€ has positive distance ta and is mapped by the projection
o : T — Z = Y/t homeomorphically int&. This means that for every € T, eitherg
fixes C U (C pointwise org(C U (C) N (C U C) = §. We assume thaf is of the form
C =U xV x WwhereU, V, W C X are open and pairwise of positive distance, say
the distance between any two of these sets is at laast . For R(v) > 0 as in the
definition of a metrically proper action we also assume that the diamet@igmaller
thane R, Let H¢ be the vector space of allditler continuous functiong : 7 — R
supported inC. This means that for every € H¢ there is somex € (0, 1) and some
g > 0suchthatf(x) — f(y)| < gd(x,y)* forallx,y e C.

The following lemma is the analogue of Lemma 2.1. For its formulation, denog by
the vector space of all quasi-morphismdof

Lemma 3.1. Let (X, d) be a metric space of finite diameter without isolated points. Let

" be a countable group which admits a weakly hyperbolic action by homeomorphisms of
X such that the action of on7 = X3 — A is metrically proper. Then for every open
setC c T whose closure projects homeomorphically imte= (7/T")/: there is a linear
mapV¥ : He — Q.

Proof. Using the above notations, write= U x V x W whereU, V, W C X are open
and pairwise of distance at least 4 0. Assume that the diameter 6fis at mose %),
The product structure df defines a natural foliatio on 7' by requiring that the leaf of
F through(a, b, ¢) € T equals the sef(a, b) = {(a,b,d) | d € X — {a, b}}. Thus a
leaf of F is determined by two distinct points iKi, and the leaff'(a, b) determined by
a # b € X can naturally be identified withl — {a, b}. The foliationF is invariant under
the action ofl” and hence it projects to a foliatigfp onY = T/T.

Let uw be a Borel probability measure d¥ which is positive on open sets. Choose
a non-trivial Hilder continuous functiow : X x X — [0, 1] supported inU x V and
let 7 be the family ofl"-invariant.-invariant Borel measures on the leavesfofvhich
is determined by the requirement that for everyv) € U x V the restriction ofu 7 to
F(u,v)NC ~ (u,v) x W equalsy (u, v)uw.
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We divide the proof of the lemma into two steps. As a notational convention, for
x € X ande > 0 denote as before by (x, ¢) the opere-ball aboutx.

Step 1. In the first step we construct, for a giverdlder continuous functiorf € H¢
supported inC, a function¥ () : I' — R. For this recall that by the choice 6f, every
g € T either fixesC U.C pointwise or we havg(CU(C)N(CU.C) = @. Therefore every
function f € H¢ uniquely determines a continuoiisinvariant:-anti-invariant function
f on T which is supported irUger g(C U (C) and whose restriction t@ coincides
with f. This means thaf (.x) = —f(x) forallx € T, f(gx) = f(x)forallg € T
and the restriction of to C coincides withf. We claim that for allk # y € X and any
neighborhoodst of x and B of y we havefF(m _A_B | fldus < oo, where as before
we identify the leafF (x, y) of the foliationF with the setX — {x, y}.

For this consider first the case thatx, y) > 2v wherev > 0 is as above determined
by the choice of the sef. Let kg > 1 be the smallest integer which is not smaller than
—logv. If z € X is such that/(x, z) < e~ thend(x, z) = min{d(x, z), d(y, z)} and
hence by the first requirement in the definition of a metrically proper action, for every
k > ko the number of elementg € I' with g(C U :C) N (F(x,y) N (B(x,e %) —
B(x, e *=1))) # ¢ is bounded from above by a constamtv) > 0 only depending
on v but not onk and (x, y). Since f is invariant under the action df and supported
in Uger g(C U (C) and since the measurgg are invariant under the action 6f this
implies that

/ | Flduz < m)su f()] | 2 € C)
F(x,y)N(B(x,e7%)—B(x,e~k~1))
for everyk > ko. The same estimate also holds for the analogous integralfowery) N
(B(y, e™%) — B(y, e7*~1)) provided thak > kq.

Similarly, since the diameter df is finite, the sef (x, y) — B(x, e ¥0) — B(y, e~%0)
is the union of finitely many subsets of the form

{z | e7Ptm=t < minfd(z, x), d(z, y)} < e7F™)  (m > 1).

Using once more the definition of a metrically proper action we conclude that the number
of elementsg € I" such thatg(C U (tC) N (F(x,y) — B(x,e %) — B(y, e7*0)) % ¢

is bounded from above by a constant only depending .om particular, the integral
fF(x’y)_B(x’e_ko)_B(y’e_ko) | 7| d .+ is bounded above by a universal multiple of the supre-
mum norm of /. Together we conclude that for any neighborhoadsf x and B of y the
integral]F(x’y)_A_B | Fldpr exists, i.e. the claim holds true wheneuigk, y) > 2v.

Now letx # y € X be arbitrary points such that the supportfointersects the leaf
F(x,y). Sincef is supported irUger g(C U C), there is then an elemepte T" with

d(gx, gy) > 2v. By invariance off andu z under the action of, for any neighborhoods
A of x and B of y we have

f |fldur =/ |fldur
F(x,y)-A—B F(gx,gy)—gA—¢gB
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where gA and gB are neighborhoods ofx and gy respectively. Thus indeed
fF(H)fAiB |fldur < oo for any two pointsx # y € X and any neighborhood4
of x andB of y, which shows the above claim.

Recall thatC = U x V x W for open disjoint subset&, V, W of X. Fix a point
x € U and letA c U be a small closed metric ball centeredcaFor f € Hc andg € T
such thatgx # x define

v = [ fduz @
F(x,gx)—A—g(A)

and if gx = x then define¥(f)(g) = 0. By the above considerations, the integfal (2)

exists and hence it defines a functidf(f) : ' — R. Moreover, the assignment :

f € He — ¥ (f) is alinear map from the vector spakg- into the vector space of all

functions onr".

Step 2. In a second step, we show that for evehye Hce the function¥(f) : ' - R
is a quasi-morphism, i.e. SPR{IV (f)(8) + W (f)(h) — W (f)(gh)]} < oo. Observe that
by invariance under, for g, h € I we have

.fd,uf-i-/ fdur

F(gx,ghx)—gA—ghA

W)+ W (f) () — () (gh) = f

F(x,gx)—A—gA

- / fdur.
F(x,ghx)—ghA—A

Since f is anti-invariant under the involutionit is therefore enough to show that there
is a numberk (v, f) only depending o and the Hlder norm of f with the following
property. Let(x1, x2, x3) € T and letA; be any neighborhood of; in X (i = 1, 2, 3);
then

/ Fauz+ [ Fauz+ [ Fdur| < cw. f).
F(x1,x2)—A1—A2 F(x2,x3)—A2—A3 F(x3,x1)—A3—A1

For this recall that fog, i € T the setgC, iC, g(:C), h(.C) either coincide or are
disjoint. Moreover, iff| F(y, z) # 0 for somey # z € X then there is somg € I' such
thatd(gy, gz) = 2v. DefineG = {g € I' | max_;j<3d(gx;, gx;) > 2v} and

Go={g € G| min{d(gx;, gx;) | i #j €{1,2 3}} > v}
and fori = 1, 2, 3 define

G ={geG|d(gx gxit1) < v}

(indices are taken modulo 3). By the triangle inequality and the definition of thig st
setsG; (i =0, ..., 3) are pairwise disjoint and their union equéls

If g e TissuchthatCUC)NgF (x;, x;+1) # Wthend(gx;, gx;+1) > 2v and there-
foreg € Go if min{d(gxi—1, gxi), d(gxi-1, gxi+1)} > v, g € Gi—1 if d(gxi—1, gxi) <v
andg € G;11 otherwise (where indices are again taken modulo 3). Thus by invariance of
f andu = under the action of and by the fact that an element I either fixesC point-
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wise or is such thag¢ C N C = @ it is enough to show that there is a numbggv, f) > 0

only depending ow and the Hlder norm off such that foi =0, ..., 3 we have
3 ~
> Fdur| = ., p. ©)
2G| j=1 8(F(xj,xj+1)—Aj—Aj11)N(CULC)

We first establish the estimafd (3) o= 0. The cas&y = ¢ is trivial, so assume that
there is somé e Go with the additional property that(F (x;, x;11)—A;—A; 1 0)NC # @
forsomej € {1, 2, 3}. Recall thatlC = U x V x W where the diameter of the séfs vV, W
is at moste—R™ < /4. LetZ C X be the set of all points whose distanceta) V is at
leastv. Thenh(x;, xj+1, xj+2) € U x V x Z and therefore is € Go is another element
with u(F (xj, xj11) —A; — A1) NC #0 thenuh=X(U x V x Z)NU x V x Z # .
Using the second property in the definition of a metrically proper action we conclude
that the number of elemenis € Gp with this property is bounded from above by a
constant only depending an The same argument also applies to elemgntsGo with
g(F(xj,xj11) — Aj — Ajy1) N1C # ¢ for somej € {1, 2, 3}. As a consequence, for
i = 0 the number of non-zero terms in the siifn (3) is bounded from above by a universal
constant and the estimafg (3) holds trueifer 0. Thus by symmetry in € {1, 2, 3} and
by invariance under the action bfit now suffices to show the estimafg (3) foe 3.

By definition, forg € Gz we haved(gx1, gx3) < v and thereforeg F(x1, x3) N
(C UtC) = . This means that

3

geGs ! j=1 ‘/g(F(xjsxj+l)—Aj —Aj+1)N(CUC)

fdﬂf)
fduf+/ Fdur|. @
g(F (x2,x3)—A3z—A1)N(CULC)

2€Gs3 L(F(X1,X2)—A2—A3)0(CULC)

By assumption, the action d@f on X is weakly hyperbolic. Thus there is a constant
b > 0 depending orv such that for all(x, y) € X x X with d(x,y) > 2v, for all
k > —logv and for allz € X with d(z, x) < v we haved(gz, gx) < e *?/b whenever
g € Tis such thatC UtC)Ng(F (x, y) N B(y, e %)) # @. In particular, for every € W
the distance betwee®x, gy, w) and(gz, gy, w) = t(gy, gz, w) is at moste ™+’ /b.

Now f is a [-invariant c-anti-invariant function on7 which is supported in
UgGF g(C U (C) and whose restrictiorf to C satisfies| f(v) — f(w)| < gd(v, w)*
for somea,q > 0 and for allv, w € C. Moreover,ur is a-invariant I'-invariant
family of measures on the leaves &f whose restriction taC is of the formyruw
for a Holder continuous function supported inU x V. As a consequence of the
above discussion on the effect of weak hyperbolicity we conclude that there is a num-
berg > 0 depending only om and the Hhlder norm of f with the following property.
Letx,y € X with d(x, y) > 2v; if for somek > —logv the elemeng € T is such
that(C U (C) N g(F(x, y) N (B(y, e ) — B(y, e*1))) # @ then for every; € X with
d(z, x) < v and every neighborhoad of y we have

fdur+ f fdur| <e™*p. (5)

/g(F(x,y)A)ﬁ(CULC) g(F(y,2)—A)N(CULC)
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By the first property in the definition of a metrically proper action there is a constant
¢ > 0 only depending o such that for allx, y € X with d(x,y) > 2v and every
k > —logv there are at mostelements; € I" with (CU(C)Ng(F (x, y)N(B(y, e ¥) —
B(y, e *71))) £ @. Together with the estimatE](S) we conclude that there is a constant
c2(v, f) > 0 which only depends on and on the t8lder norm of f with the following
property. Forx, y € X with d(x, y) > 2v, everyz € X — {x, y} withd(x,z) < v and
every neighborhood of y we have

fdur| < ca(v, f). (6)

(¢eT|d(gx g2)<v) /g«F(x,y)A)U(F(y,z)A))m(cwo

Now if g € Gz is such thatg F(x1, x2) N (C UC) # @ then withy; = gx; we have
d(y1, y3) < v,d(y1, y2) > 2v. For any otheh € Gz with h F(x1, x2) N (C U(C) # @ we
obtaind(hg~1y1, hg~1ys) > 2v andd(hg~1y1, hg~1ys) < v. By invariance off and
wr under the action of, inequality [3) above now follows from the estimdté (6) and the
equation[(4).

As a consequence, for every € H¢ the functionW(f) on T is indeed a quasi-
morphism. By construction, the assignmght— W(f) is moreover linear. This com-
pletes the proof of the lemma. O

In Lemma 3.1 we constructed a linear mépfrom the vector spacé{c onto a vector
space¥ (Hce) C Q of quasi-morphisms for the group It follows from our construction
that for a suitable choice of the sétthe vector spac@ (H¢) is infinite-dimensional. As
in Section 2, the mag then induces via composition with the natural projection a linear
map® : He — HbZ(I‘, R). However, a priori the image ¢ may be trivial or finite-
dimensional. To establish that the subspacélﬁ{l", R) obtained in this way as the sets
C vary is infinite-dimensional, we use an additional assumptioh @rhich is motivated
by the work [BEQO2] of Bestvina and Fujiwara. For this recall that a homeomorphism
of X which acts with north-south dynamics has an attracting fixed poiat X and a
repelling fixed pointb € X — {a}. We call (a, b) the orderedpair of fixed points forg.
We show

Proposition 3.2. In the situation described in Lemn&l, assume in addition that the
groupI” contains a free subgrou@ with two generators and the following properties.

(1) Everye # g € G acts with north-south dynamics dh
(2) There are infinitely many; € G (i > 0) such that thd -orbits of the ordered pairs
of fixed points of the elemergs gj?l (i, j > 0) are pairwise disjoint.

Then the images of the spades under the ma® for suitable choices of C T span
an infinite-dimensional subspacer(F, R).

Proof. Continue to use the assumptions and notations from Lemma 3.1 and its proof.
We have to show that the bounded cohomology classeg) (f € Hc¢) defined by

the quasi-morphism& ( /) constructed in Lemma 3.1 for suitable choice<Co$pan an
infinite-dimensional subspace of the kernel of the niggl’, R) — H2(I', R). For this

let G be the free subgroup @f with two generators as in the statement of the proposition.



Bounded cohomology and isometry groups of hyperbolic spaces 17

Letg, h € G — {e} be such that th&-orbit of the ordered paifa, b) of fixed points
for g is distinct from thel'-orbit of the ordered paifa’, b) of fixed points fork. Then
the leavesF (a, b), F(a’, b’) of the foliation F project to distinct leaved., L’ of the
induced foliationFy onY = T/TI'. We claim that the closures of these leaves do not
intersect. For this denote as beforey. T — Y the natural projection. Letg > 0
be sufficiently small tha#l ({a, b}, {a’, b’}) > 2¢o. Sinceg, h act onX with north-south
dynamics and fixed points, b anda’, b’, there is a numbetr < ¢ with the property
that the projectionr maps the sef(a, b, x) | d(x, {a, b}) > €} onto L and thatr maps
{@,b,y)|d(y,{a’,b'}) > €} onto L.

Assume to the contrary that the closures of the ledves’ contain a common point.
By the above observation, this implies that there is a sequéngec I' of pairwise
distinct elements and there are sequeriggsc X, (y;) C X such that

d(xi, {a,b})) =€, d(y;,{a,b}) >e foralli

and thatd(g; (a, b, x;), (a’, b, y;)) — 0. In particular, for everg > 0 there are infinitely
many distinct elements € I' such thaid(a’, ua) < 8, d(b’,ub) < § and thatu(X —
B(a,e) — B(b,e))N X — B(a',€) — B(b', €) # . However, this contradicts the second
requirement in the definition of a metrically proper action. As a consequence, the closures
of the leaved., L’ in Y are disjoint.

Let g € G and leta be the attracting and be the repelling fixed point of. Choose
thesetC = U x V x W C T as in Lemma 3.1 and its proof in such a way that U
andb € V. This is possible since the action Bfon X is metrically proper and hence
the stabilizer ofa, b} in T acts freely on an open subsetXf— {a, b}. Letx € U — {a}
and choose a closed neighborhadd- U — {a} of x for the construction of the quasi-
morphismW¥ ( f). Sinceg acts onX with north-south dynamics there is a closed subset
D of X — {a, b} with dense interior whose distance {io, b} is positive and which is a
fundamental domain for the action éh— {a, b} of the cyclic subgroup of; generated
by ¢. For the measureg r on the leaves of the foliatiorf as in the proof of Lemma
3.1 we may assume that the supporfugf intersectsF'(a, b) and that theu r-mass of
the boundary ofD viewed as a subset df(a, b) vanishes. Letf € Hc¢ and letf be
the T-invariant:-anti-invariant function oiT" defined byf as in the proof of Lemma 3.1.
By the discussion in Step 1 of the proof of Lemma 3.1, the integ;afduf exists. Let
W (f) be the quasi-morphism &f defined byf as in (2) in the proof of Lemma 3.1. We
claim that

im () k= [ Fauz.
k—00 D
To show the claim, observe thatlas> oo the diameter of the segg A tends to 0 and

gx — a € X — A. Choose a small closed batl ¢ V aboutb. By the proof of Lemma
3.1, for sufficiently large the absolute value of the difference

/ fd,uj: - / fdﬂf
F(gkx,b)—gkA—B F(gkx,x)—gkA—A

is bounded from above by a constant not depending. @ a consequence, it is enough
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to show that
/ Fans/k~ [ Fanr &= oo
F(gkx,b)—gkA—B D

and this in turn is equivalent to

/ fd/i}‘/k*/ Fdur  (k— oo).
F(x,b)—A—g—*B D

Choose in particulaB = {b}U|J;-o g/ D. ThenB — g*B = | J;_§ ¢~/ D for every
k > 0. Thus for every small balk C X — B about the attracting fixed poiatfor g we
have

lim / fdur/k= lim / fdur/k = / fdur. (T
k=00 JF(x,b)—A—g—*B k=00 JF(a,b)—E—g—*B D

This shows the above claim.

Let againg € G with attracting fixed point: € X, repelling fixed poinb € X — {a}
and assume that the ordered pairb) is not contained in th&-orbit of the ordered pair
t(a,b) = (b,a). By the above consideration, the closure of the projection of the leaf
F(a, b) to Y is disjoint from the closure of the projection of (a, b) = F(b,a). As
before, letD C F(a, b) be a closed fundamental domain for the actionxon {a, b} ~
F(a, b) of the cyclic group generated ky By the second requirement in the definition
of a metrically proper action, there are only finitely manye I with A1D N D # @.
Denote byr : T — Y the canonical projection. The measuges project to a family
of measures on the leaves of the foliatiép = 7 F onY. For f € H¢ the function
f projects to a functionfy on Y. SincehD N D # ¢ for only finitely manys € T,
the integral [}, fdur is a positive bounded multiple qan(a’b) foduo. By the above
considerations, the closufeof the projection of the leaf (a, b) to Y is disjoint from the
closure of its imageF (b, a) under the involution and therefore for any given number
g € R there is a Wlder functionf € H¢ such that the quasi-morphisin( /) defined as
above by satisfies lim_ ., V(f)(g")/k = q.

By our assumption, there are infinitely many elements G (i > 0) which act onX
with north-south dynamics and such that the ordered pairs of fixed poigts g}Tl are
pairwise contained in distindt-orbits onX. In particular, fori # j the closures of the
projections toy¥ of the leaves of the foliatiotF which are determined by the fixed points
of g;, gj are disjoint. Now for any finite s€:1,..., h,} C {g; | i > 0} C G choose
the setC as above in such a way that it intersects each of the leavésdatermined by
the ordered pair of fixed points @f; this can always be achieved by allowing for our
construction a sef which consists of finitely many components satisfying each of the
above assumptions. The above discussion shows that for an arbitrarily chosen collection
{q1,...,qm} C R of real numbers there is a suitable choice of the functfoa H¢ so
that the quasi-morphisn¥ (f) for I defined byf satisfies lim_ \Il(f)(hf?)/k = q;
forl<i <k.
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For f € H¢ the cohomology clas®(f) € Hbz(l‘, R) vanishes if and only if there
is a homomorphismy € H(I',R) such that sup. [¥(f)(g) — n(g)| < oo (cf. the
discussion in Section 2). This homomorphism then restricts to a homomorphism of the
groupG. Now G is a free group with two generators and he#ty G, R) = R2. More
precisely, ifu1, uz are such free generators férthen every homomorphism: G — R
is determined by its value at, u». In particular, for any finite subséks, ..., h,} C G
there are two elements in this collection, gay k2, such that for every quasi-morphism
n for G which is equivalent to a homomorphism and evgrg {3, ..., m} the quantity
lims— oo n(h;.‘)/k is uniquely determined by lig, » n(h¥)/k (i = 1, 2). Together with
the above observation that for any finite subgat .. ., 4,,} of {g; | i > 0} we can find
a quasi-morphism for for which these limits assume arbitrarily prescribed values we
conclude that there are infinitely many quasi-morphismsfarhose restrictions ta;
define linearly independent elementsfq}(G, R). This shows that the kernel of the map
Hbz(l“, R) — H?(T', R) is infinite-dimensional and completes the proof of the proposi-
tion. O

Remark. The above proof also shows the following. U&be a countable group which
admits a weakly hyperbolic action by homeomorphisms of a metric sgaoé finite
diameter such that the action 8fon T = X2 — A is metrically proper. Letg; €

I' be elements which act with north-south dynamicsXonvith ordered pairs of fixed
points (a;, b;) (i = 1,...,k). If the I"-orbits of (a;, b;), (b;, a;) (i, j < k) are all dis-
joint then for every tuple(qs, ..., qx) € R* there is a quasi-morphism for I with
lim;— 0 ¢(g))/1 = q; for everyi < k.

The following theorem is the main technical result of this note. For its formulation,
recall that the free grou with two generators is the fundamental group of a convex
cocompact hyperbolic surface whose limit eis just theGromov boundaryf G.

Theorem 3.3. Let (X, d) be a metric space of finite diameter without isolated points. Let

I' be a countable group which admits a weakly hyperbolic action by homeomorphisms
of X. Assume thal' contains a free subgrou@ with two generators and the following
properties.

(1) Everye # g € G acts with north-south dynamics dn

(2) There are infinitely many; € G (i > 0) such that thd -orbits of the ordered pairs
of fixed points of the elemergs gj_l (i, j > 0) are pairwise disjoint.

(3) There is aG-equivariant continuous embedding of the Gromov bounda€éyioto X .

If the action ofl" on the space of triples of pairwise distinct pointsXnis metrically
proper then for every € (1, oo) the kernel of the maplf(l“, 2P(T)) — HA(T, ¢P(I))
is infinite-dimensional.

Proof. LetI" be a countable group acting by homeomorphisms on a metric $sfade

of finite diameter without isolated points. Assume that the actioRi &f weakly hyper-
bolic and that the diagonal action &f on the spacd’ = X2 — A of triples of pair-
wise distinct points inX is metrically proper. Writd/ = T/T" and denote as before by
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t ' T — T the natural involution which exchanges the first two points in a triple. Let
G be a free subgroup df with two generators as in the statement of the theorem. In
particular, we assume that there is a continuGusquivariant embedding of the Gromov
boundaryB of G into X. We have to show that for evepy € (1, co) the kernel of the
mapHA(T, ¢7 (') — H?(T, ¢7(I")) is infinite-dimensional.

Denote by|| ||, the norm of the Banach spa¢é(I'). We assume thall acts on
£7(T") by right translation, i.e. for everg € I' and every functiony € ¢7(I") we
have (gy)(h) = ¥ (hg). Define ane?(I')-valued quasi-morphisrfor " to be a map
n: T — £P(I") such that

sup [In(g) + gn(h) — n(gh)ll, < oo.
g,hel
Two such quasi-morphismg n’ are calledequivalentif n — ' is bounded as a function
from I" to ¢7(T"), i.e. if there is a number > 0 such that|(n — n)(g)ll, < ¢ for all
gel.
By Corollary 7.4.7 in[[MO1], the cohomology grodpf(l", £P(IM)) coincides with the
second cohomology group of the complex

0— LT, eP(T)" % 1o@2, e )t S 1S, 7))’ — - ..

with the usual homogeneous coboundary operdtotet v : I'2 — ¢P(I') be any
(unbounded)-equivariant map; this means thét(hg1, hg2) = h(¥ (g1, g2)) for all

g1, g2, h € T'. If the imaged of ¢ under the coboundary operatotis bounded then

as in the case of real coefficients, the maplefines a class in the kernel of the natural
maprz(F, eP(I)) — HA(T, ¢P(IN)). Let e be the unit element i and define a map

¢ : T — ¢P(T) by p(v) = (e, v). Then forg,h,u € T we havedy (g, h,u) =
Yh,u) — Y(g,w) + v(g, h) = hoth™tu) — gp(g™u) + go(e™h) = gp(g™h) +

g the(h—tu) — ¢(g~u)). Sincel acts isometrically ori? (I'), we conclude thad v is
bounded if and only ifp defines art” (I")-valued quasi-morphism fdr. Now by equiv-
ariancey/ is uniquely determined by and therefore every equivalence class of &fl")-
valued quasi-morphism gives rise to a cohomology class in the kernel of the natural map
HA(T, ¢P(I')) — H?(T, ¢7(I')). This cohomology class vanishes if and only if there is a
mapn : I' — £P(T") which satisfies)(gh) = n(g) + gn(h) forall g, h € T and such that

¢ — n is bounded.

Let againT be the space of triples of pairwise distinct pointsXn The groupI’
and the involutiont act onT, and these actions commute; we denote as beforg by
the corresponding quotient. As above, (etc T be a set of positive distance 1o and
sufficiently small diameter which is mapped homeomorphically into the quafient

Let 7 = T x I" and definef{ to be the vector space of all functionfs: 7 — R
supported inC x I" with the following property. Fog e T" write f,(x) = f(x, g); we
view f, as a functionC — R. We require that there is some e (0, 1) such that the
Holderw-norms| f, |l of the functionsf, (g € T') onC satisfyzgeF ||fg||Z < 00.
Then for eachy € C the functionfy : g — f(y, g) is contained ine”(T") and there-
fore the assignment € C — f, defines a (Wlder continuous) map af into £7(T).
The set of all such functions naturally has the structure of an infinite-dimensional vector
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space. Extend the functiofi €  to a functionf on 7 which is anti-invariant under the
involution: : (¢, g) = (i, g) and satisfie@g(gz, u) = f(z,ug) forall z € T and all
g,uel.

As in the proof of Lemma 3.1 above, assume fiat U x V x W for open subsets
U, V, W of positive distance and sufficiently small diameter. Recall from the proof of
Lemma 3.1 the definition of the foliatio& of T and the measurgsr. Choose a small
closed ballA ¢ U, a pointx € A and forg € I define a functionV/(f)(g) : I' - R by

()@ = [ Forw dur ().
F(x,gx)—A—gA

It follows from the choice off and the considerations in Step 1 of the proof of Lemma

3.1that¥(f)(g) € £(I"). On the other hand, by the definition of the functibrve have

fOowdur@y) = / fO,ug)dug(y)

F(x,hx)—A—hA
=W (f)(h)(ug)

and consequently the estimates in Step 2 of the proof of Lemma 3.1 show that the map
W(f) is ane?(I')-valued quasi-morphism fdr. In other words, as in the case of real
coefficients we obtain a linear map from the vector spac@{ into the kernel of the
natural mapHZ2(T', ¢/(I")) — H?(T, ¢7(I")) which assigns to a functioff €  the
cohomology class of the” (I")-valued quasi-morphisn¥ ( f).

Our goal is to show that the image of the m@pis infinite-dimensional. For this
let G < T' be the free group with two generators as in the statement of the theorem.
Then every functiont € £7(I") restricts to a functiorRu € ¢7(G), and forg € G we
haveR(gu) = g(Ru). Thus for everyf € H the map¥(f) : ' — ¢P(T") restricts to
an ¢”(G)-valued quasi-morphism®W (f) : G — £”(G) which defines a cohomology
classrRO(f) € HbZ(G, £P(G)). If the cohomology clas®( f) vanishes then the same
is true for the cohomology clasB®(f). Thus it is enough to show that the subspace
{RO(f) | f € H} of HbZ(G, £P(G)) is infinite-dimensional.

For this letB be the Gromov boundary of the free groGpthis boundary is a Cantor
set on which the grou@ acts as a group of homeomorphisms with north-south dynamics.
Assume that there is @-equivariant continuous embeddipg : B — X. If we denote
by BT the space of triples of pairwise distinct points Bnthen the mappg induces a
continuousG-equivariant embedding : BT — T. In the following we identifyBT
with its image undep, i.e. we suppress the mapin our notations. Letf € #; for a
triple (x1, x2, x3) € BT andu € G define

/;“(gx,ghx)—gA—ghA

v(f)(x1, x2, x3) (1) :/

F(x1,x2)

fO,w)ydur(y) + / FO,uw)ydur(y)

F(x2,x3)
+ f Fo wydury).
F(x3,x1)

Here the sum on the right hand side of the equation is viewed as a limit of sums of finite
integrals over the complements in the lea¥ds;, x;) of smaller and smaller neighbor-
hoods of the points; (i = 1, 2, 3), and its existence follows as above from the con-
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tinuity properties of the functiory. By the choice off, for every (x1, xo, x3) € BT
the functionu € G — v(f)(x1, x2, x3)(u) is contained int?(G). More precisely, the
map (x1, x2, x3) € BT +— v(f)(x1,x2,x3) € £P(I') is a continuousocyclefor the
action of G on B, i.e. it is continuous and equivariant under the actioi7oft satisfies
voo = (sgno))v for every permutation of the three variables and the cocycle identity

v(f)(x2, X3, x4) — v(f)(x1, X3, X4) + v(f)(x1, X2, x4) — v(f)(x1, x2, x3) = 0.

In particular, for any fixed point € B we conclude as in Section 2 that the assign-
ment(g1, g2, g3) — v(f)(g1x, g2x, g3x) (g € G) defines aG-equivariant cocycle with
values in¢? (G) whose cohomology class coincides WRI® ( f).

Now by a result of Adams [A94] (see also [Ka03] for a more precise resulg), if
is the measure class of the measure of maximal entropy for the geodesic flow of any
convex cocompact hyperbolic manifold whose fundamental group is a free group with
two generators, viewed ag&invariant measure class on the Gromov boundanf G,
then (B, o) is astrong boundaryfor G. This means that the action 6f on (B, o) is
amenable andoubly ergodicwith respect to any separable Banach coefficient module,
i.e. for every separable BanachspaceE, every measurabl&-equivariant magB x
B,o x o) — E is constant almost everywhere. As a consequence, every continuous
G-equivariant cocycleBT — ¢7(G) which does not vanish identically definesxan-
vanishingclass ingz(G, £P(G)) (see the discussion in Section 7 pf [MO1]). Thus for

every f € # such thatv(f) # 0 the classR®(f) does not vanish and hence the same
is true for the clas®(f). In other words, to show that indeeﬁf(F, £P (1)) is infinite-

dimensional we only have to find for every > 0 a collection of functionsf; € H
(1 <i < m) such that the cocycleg f;) are linearly independent.

For this recall that by Proposition 3.2 and its proof, the subspaﬁ%z(JG, R) defined
by the cohomology classe3;(f) € HbZ(G, R) of the quasi-morphism¥ («) where
a € Hc for a suitable choice of C T is infinite-dimensional (note that we use here
the notations from Lemma 3.1 for the mdy). On the other hand, for evety € H¢ the
cohomology clas®¢ («) € Hbz(G, R) coincides with the class defined by the continuous
R-valued cocycleg(a) : BT — R given by

b0 (@) (x1, X2, ¥3) = /

&) dur(y) + / &) dpr(y)
F(x1.,x2)

F(x2,x3)
+/ a(y)dug(y).
F(x3,x1)

Now letC c T and letay, ..., a,, € Hc be such that the cocycles(w;) are linearly
independent; such functions exist by Proposition 3.2 and its proof. For very define
afunctionf; € H by fi(y,e) = «;(y) and f;(y, g) = 0forg # e. Then

vo(ti) (X1, X2, X3) = Y Sy wdpr) + /F Y S wdpr(y)

F(x1,x2) G (x2,%3) yeG

+ /F Y i wdury)

(x3,X1) yeG
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and therefore since the cocyclagw;) are linearly independent the same is true for the
cocyclesv(f;). As a consequence, the kernel of the niiﬁj:(l“, eP()) — HA(T, e (D))
is indeed infinite-dimensional. O

4. Groups acting isometrically on hyperbolic geodesic metric spaces

In this section we consider countable groups which admit a weakly acylindrical isometric
action on an arbitrary Gromov hyperbolic geodesic metric spac#/e show that the
assumptions in Theorem 3.3 are satisfied for the action of such a grongheGromov
boundaryd X of X. From this we deduce Theorem A from the introduction.

First recall that the Gromov boundary of a hyperbolic geodesic metric sfase
defined as follows. For a fixed poing € X, define theGromov producty, z),, based at
xo of two pointsy, z € X by

1
(> 2)xp = 5(d(y, X0) +d(z, x0) — d(y. 2)).

Call two sequence§y;), (z;) C X equivalentif (y;, z;)x, = oo (i — o0). By hyper-
bolicity of X, this notion of equivalence defines an equivalence relation in the collection
of all sequencesy;) C X with the additional property that;, yj)x, — oo (i, j — 00)
[BH99]. The boundary X of X is the set of equivalence classes of this relation.
The Gromov product, )y, for pairs of points inX can be extended to a product on
dX by defining
(&, Mxo = sup liminf(y;, z;)x,
1L, ] >0

where the supremum is taken over all sequeliggs(z;) C X whose equivalence classes
define the point§, n € 9X. For a suitable number > 0 only depending on the hy-
perbolicity constant o there is a distancé = §,, of bounded diameter ofX with
the property that the distandg¢, n) between two point§, n € dX is comparable to
e X& My (see 7.3 of [GHI0]). More precisely, there is a constast 0 such that

e X0 xE My <8, n) < e XE:mMxg (8)

for all &, 7 € 9X. In the following we always assume thak is equipped with such a
distances.

There is a natural topology axiU 8 X which restricts to the given topology dfiand
to the topology ord X induced by the metrig. With respect to this topology, a sequence
(yi) C X convergestg e 9X if and only if we have(y;, y;)x, — oo and the equivalence
class of(y;) definest. If X is proper, therX U 9 X is compact. Every isometry of acts
naturally onX Ud X as a homeomorphism. We denote by(l§pthe isometry group oX.

Since we daotassume thaX is proper, for a given pair of distinct poirgs# n € 90X
there may not exist a geodesidn X connecting to n, i.e. such thay (r) converges to
& ast — —oo and thaty (r) converges tg ast — oo. However, there is a numbér> 1
only depending on the hyperbolicity constant forsuch that any two points iBX can
be connected by ah-quasi-geodesic. Recall that for> 1, anL-quasi-geodesith X is
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amapy : (a,b) > X for —oo < a < b < oo such that
—L+|s—t|/L <d(y(s),y®) < Lls—t|+L

for all s, € (a,b). Note that anL-quasi-geodesi¢z need not be continuous. How-
ever, from everyL-quasi-geodesig we can construct a continuoud.4juasi-geodesic
7 whose Hausdorff distance to is bounded from above byl4by replacing for each
i > 0 the arcy[i,i + 1] by a geodesic arg[i,i + 1] with the same endpoints. In
other words, via changing the constdntve may assume that for any two distinct points
& # n € 90X there is a continuous-quasi-geodesig connectings to n; we then write
y(—00) = &, y(c0) = n (seel[GHI0, 5.25 and 7.6]; cf. also the discussion in [HO6]).
Recall from Section 3 the definition of a weakly hyperbolic action of a griGum a
metric space of bounded diameter. We show

Lemma 4.1. Let X be an arbitrary hyperbolic geodesic metric space. Then the action of
the isometry groupso(X) on d X is weakly hyperbolic.

Proof. The boundary X of a hyperbolic geodesic metric spa&eis a metric space of
bounded diameter where the me#iis constructed from the Gromov product),, at a
fixed pointxg € X. There are numberg, 6 > 0 such that inequality {8) above holds for
the distancé.

Our goal is to show that for eveny > 0 there is a constar® = ©(v) > 0 with
the following property. Letz, b € 39X with 8(a,b) > 2v. Let g € Iso(X) be such
thats(ga, gb) > 2v; if v € 39X — {a, b} is such that mif§(gv, ga), §(gv, gb)} > v
thend(gw, gh) < OJ(v, a) for everyw € 39X with §(w, b) < v. Note that since the
diameter ofd X is finite, this inequality is automatically satisfied for a suitable choice of
® whenevels (v, a) is bounded from below by a universal constant. Thus it is enough to
show the claim under the additional assumption t{@ata) < ¢ for some fixede > 0
which will be determined later on.

Let T c (8X)3 be the set of all triples of pairwise distinct pointsdix. A triple
(a, b, c) € T determines (non-uniquely) an idealquasi-geodesic triangle with vertices
a, b, c. The Hausdorff distance between any two siiehuasi-geodesic triangles with the
same vertices il X is bounded by a universal constant. There is a numpbes 0 such
that for everyp > po and every triplea, b, ¢) € T the closed seK (a, b, c; p) C X of
all points inX whose distance to each side of Amuasi-geodesic triangle with vertices
a, b, c is at mostp is non-empty. The diameter of this set is uniformly bounded by a
constant only depending gnand the hyperbolicity constant faf.

By the definition of the Gromov product and hyperbolicity, there is a numhes 0
with the following property. Leta, b, ¢) € T and let¢ be a continuoué -quasi-geodesic
connecting toa. Then mif(a, ¢)¢(0), (b, )¢} < mrandif(b, ¢)z ) < (a, ¢)¢(0) then
we havet (t) € K(a, b, ¢; my) for everyr > 0 such that/(¢(0), ¢ (7)) = (@, ¢)¢(0)-

Now letv € (0,1) and leta, b € 39X be such thab(a, b)) > 2v. By hyperbolicity
and inequality[(B) above, there is a constamt = mo(v) > 0 such that every contin-
uousL-quasi-geodesic connecting two poiatst b € 09X with §(a, b) > v intersects
the ball B(xg, mg). Let y be a continuoud.-quasi-geodesic connectitig= y (—oo) to
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a = y(oc0) which is parametrized in such a way that0) € B(xg, mg). Letéd, x > 0O
be as in inequality] (8), leRg = x(mo + m1 + 6) and letv € 39X — {a, b} be such
thats(a, v) < e Ro; thens(a, v) = e X for someR > Ro. By inequality [$) we have
R/x —6 < (a,v)x, < R/x and hence

R/x —6 —mo < (a,v)y0 < R/x +mg

sinced (xo, y(0)) < mo. From the assumption oR we find that(a, v), ) > m1 and
hencey (t) € K(a, b, v; my) for all r > 0 such thati(y (0), y (7)) = (a, v)y(0)-

Let ¢ € Iso(X) be such thab(ga, gb) > 2v and min(§(ga, gv), §(gb, gv)} > v.
Then theL-quasi-geodesigy intersectsB(xg, mg) and the same if true for any-
quasi-geodesic connecting: to gv or connectinggh to gv and consequentlyp €
K(ga, gb, gv; mo). If as beforer > 0 is such that/(y(0), y(r)) = (a,v),( then
y (1) € K(a, b, v; m1) and therefore

{x0, gy (v)} C K(ga, gb, gv; mg + m1) = gK(a, b, v; mg + my).

Now the diameter of the sé&t(ga, gb, gv; mo+m1) is bounded from above by a constant
my = mz(v) > 0 only depending om and hencel(gy (), xo) < ma.

Letw € 39X be such thag(w, b) < v. Thens(w, a) > v and by inequality[(8) above,
the Gromov produatw, a),, is bounded from above by a universal constant and the same
is true for(w, a), (o). In particular, thel.-quasi-geodesic ray[0, co) connectingy (0) to
a is contained in a uniformly bounded neighborhood of Arguasi-geodesic connecting
w to a. With ¢ > 0 as above we have(y (1), ¥(0)) — R/x| < mo + 6 and hence by
the definition of the Gromov product and hyperbolicity, the quarttityw), -y — R/x =
(gh, gw)gy(r) — R/ x is bounded from below by a universal constant. Bgty (7), xo) <
m2 and hence we have

|(gb, gw)gy(r) — (gb, gw)x0| = (b, w)y(r) — (gb, gw)x0| = mpy.

Using once more the estimalé (8) we conclude that there is a nunbet only depend-
ing onv such thad(gb, gw) < ®e~ R = @8(a, v). This shows that the action of 16K)
ondX is weakly hyperbolic. O

As in the introduction, we call an isometric action &nof a countable grou weakly
acylindrical if for every pointxg € X and everyn > 0 there are numbe®(xg, m) > 0
andc(xg, m) > 0 with the following property. Ifc, y € X with d(x, y) > R(xp, m) are
such that a geodesjec connectingr to y meets then-neighborhood okg then there are
at mostc(xg, m) elementg € I" such thati(x, gx) < m andd(y, gy) < m. We have.

Lemma 4.2. Let X be a hyperbolic geodesic metric space andIlebe a countable
subgroup oflso(X) whose action orX is weakly acylindrical. Then the action 6fon
the space or triples of pairwise distinct pointsdX is metrically proper.

Proof. The groupI’ acts as a group of homeomorphisms on the Gromov bourtdgry
of X. Recall thatd X is a metric space of bounded diameter where the métisccon-
structed from the Gromov produ¢t ),, at a fixed pointxg € X and it satisfies the
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estimate[(B) from the beginning of this section for som® > 0 and alls # n € 9X.
We have to show that the action Bfon the spacé of triples of pairwise distinct points
in 0.X is metrically proper.

For this letv > 0 be fixed. There are numbets> 1 andmg = mg(v) > 0 such that
any two pointst # y € 9X can be connected by a continualusjuasi-geodesic, and if
8(x, y) > v then this quasi-geodesic intersects the Balg, mo).

By hyperbolicity, the Hausdorff distance between any tixguasi-geodesics con-
necting the same points #X is bounded from above by a universal constant. Moreover,
there is a universal constamty = m1(v) > mg with the following property. Let: # b,

x # y € 90X and assume thakt(a, b) > 2v and that for someR > —log(v/2) we
haved(a, x) < e R, 8(b,y) < e R. Let y be a continuous.-quasi-geodesic connect-
ingb = y(—o0) toa = y(o0) and letn be a continuoud.-quasi-geodesic connecting
y = n(—o00) to x = n(c0); theny, n intersect the balB(xo, mg), and the intersection of
y with B(xg, R/x) is contained in then1-neighborhood of.

As in the proof of Lemma 4.1, fop > 0 and a triple(u, v, w) € T let K (u, v, w; p)

C X be the set of all points whose distance to each side df-gnasi-geodesic triangle
with verticesu, v, w is at mostp. By the arguments in the proof of Lemma 4.1 there is
a constaniny > mj with the following property. Letc, y € 9X with §(x, y) > v. If

z € X andk > —log(v/2) are such that* < §(x,z) < e **1 then the distance
betweenxg and K (x, y, z; mo) is contained in the intervak x — m2, k/x + m2]. The
diameter of the set& (x’, y’, 7’; mg) is bounded from above by a universal consjant 0
only depending omg and the hyperbolicity constant &f.

Let(a, b, ¢) € (3X)3 be atriple of points whose pairwise distances are at leastet
R > —log(v/2) be a number to be determined later, 1&ta), U (b), U (c) be the open
e R-neighborhood of:, b, c in 3X and letx € U(a),y € U(b),z € U(c). Letd’, b’ e
9X be such thaé(a’, b’) > 2v and assume that there is soghe& I such thatgx = d,
gy = b andd(gz,a’) € [e %, e *+1] for somek > R. Theng maps a continuous
L-quasi-geodesig connectingy to x with n(0) € K(x, y, z; mg) to a continuoud_-
guasi-geodesign connectingy’ to a’. Sinceg(n(0)) € K (a’, b', gz; mo) we have

|d(gn(0), x0) —k/x| < m2+ p. 9

Now letx’ € U(a),y € U(b),7’ € U(c) and letg’ € T" be such thag’x’ = a’
=gx, gy =0b = gyands(g'z,a) e [e*, e ¥1]. Let ' be a continuoug.-quasi-
geodesic connecting’ to x’, with ' (0) € B(xp, mo). As above, lety be a continuous
L-quasi-geodesic connectimbgto a with y(0) € B(xg, mg) and letc < 0 be such that
d(xg,y(c)) = R/x. Then there are numbetst’ < 0 such thatl/(n(z), y(c)) < m1,
d(n'(t)), v (o)) < m1 and thereforel(n(z), n'(z")) < 2m1. In particular, we have

[d((0), n(r)) —d(n'(0), n'(z)| < 2mo + 2m1.

The images of;, n” underg, g’ are continuoud.-quasi-geodesics connectingto a’.
The estimate[]g) is valid fog’ as well and hence by hyperbolicity, the distances
d(gn(0), g’ (n'(0))), d(g(n(z)), & (n'(z"))) are bounded from above by a universal con-
stantms > 2m». Together we conclude that

d(g7tg' (0), n(0) < 2m3, d(g g’ (n(x)), n(r)) < 2ms.
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Now if Rg = R(xo, 2m3) is as in the definition of a weakly acylindrical action, then
for R > yxRo and anyk > R the number of elements, ¢’ € T" with this property is
bounded from above by a universal constant independeRtasfdk. This shows that the
action ofl" on 9 X satisfies the first property in the definition of a metrically proper action.

The second property in that definition follows from exactly the same argument.
Namely, using the above notation, there is a number mg(v) only depending on
such that ifZ ¢ 90X is the set of all points whose distancelida), U (b) is at leastv
then there is a numbep > O such that for ang € U(a), y € U(b) andz € Z the
setK (x, y, z) is contained in the ball of radius > 0 aboutxg. In other words, for any
elementg € T" which maps a triplex, y,z) € U(a) x U(b) x Z to a triple of points
whose pairwise distances are bounded from below, ltlge distance betweery andgxg
is at mostc. The above considerations then show that we can find a nubgr> 0
depending o and somen(v) > 0 such that the second requirement in the definition of
a metrically proper action holds with these constants and for the actibroofd X. O

Recall from Section 3 the definition of a homeomorphism with north-south dynamics of
a metric space of finite diameter. The statement of the next simple lemma is well known
in the case that the hyperbolic spakés proper; we include a short proof for the sake of
completeness since we have not found a suitable reference for the general case.

Lemma 4.3. Let X be a hyperbolic geodesic metric space andgéte an isometry of
X such that for some € X the mapk — g¥x is a quasi-isometric embedding of the
integers intoX. Theng acts ond X with north-south dynamics.

Proof. Let g be an isometry o as in the lemma. Then the sequerigéx)>0 C X
converges to a point € X, and the sequenag *x);=0 C X converges to a point
b € 90X — {a}. The limit set of the infinite cyclic grou generated by consists of the
two pointsa # b € 34X, and these are fixed points for the actiondbdnd X.

By hyperbolicity there is a numbet > 0 such that for everg € dX — {a, b} the
closed setK (a, b, &; m) C X of all points in X whose distance to each side of An
guasi-geodesic triangle with verticesb, & is at mostm is non-empty and its diameter
K (a, b, £; m) is bounded independently &f Since the assignmeht— g*(x) is a quasi-
isometric embedding of the integers in¥g we may assume by possibly enlargimg
that each of the setk (a, b, &; m) intersectsQ = {gX(x) | k € Z}. Thus there is a
number/ > 0 and for everng € 0X — {a, b} there is some& (§) € Z such that the set
{g“(x) | k() < k < k(&) + 1} contains the intersection & (a, b, &; m) with Q. Then
lk(g/€) — k() — j| <lforall j € Z and hence the séd = {£ € X — {a,b} | 0 <
k(&) < 1} does not contain, b in its closure and it satisfieLstGZ g/D = 98X — {a, b}.
Moroever, for anyy neighborhoods of « andV of b there is a numbej > 0 such that
g/ (X —V) c Uandg™/(X — U) C V. Hence the isometry acts with north-south
dynamics orb X. O

Call an isometry ofX hyperbolicif it acts ond X with north-south dynamics with respect

to some fixed pointa # b. The following corollary is immediate from Lemma 4.1,
Lemma 4.2 and the remark after Proposition 3.2 in Section 3. We refer to [PR04] for a
similar result for the groug L (2, Z).
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Corollary 4.4. LetI" be a countable group which admits a weakly acylindrical isometric
action on a hyperbolic geodesic metric space.gs€t .., g € I' be hyperbolic elements
with ordered pairs of fixed point&s;, b;). If the I'-orbits of (a;, b;), (b;, a;) are pair-
wise disjoint then for every, ..., gx) € R¥ there is a quasi-morphism for ' with
lim— o0 @(g")/€ = g; for everyi < k.

Thelimit setof an isometric action of a group on X is the set of accumulation points
in X of an orbit'x (x € X) of T'; it does not depend on the orbit. A subgroDpof
Iso(X) is calledelementanyf its limit set contains at most two points. The next result is
Theorem A from the introduction.

Theorem 4.5. LetI" be a countable group which admits a non-elementary weakly acylin-
drical isometric action on a Gromov hyperbolic geodesic metric sp¥cerhen the
kernels of the natural homomorphism&*(I', R) — H2(I', R) and HA(T", ¢P()) —
HA(T, ¢P(I")) (1 < p < oo) are infinite-dimensional.

Proof. LetT" be a countable non-elementary weakly acylindrical subgroup oXls®y
assumption, the limit sek of I contains at least three points. Then this limit set I3-a
invariant closed subset @fX without isolated points (see [GH90]). Our goal is to show
that the action of™ on A satisfies the assumptions in Theorem 3.3.

By Lemma 4.1 and Lemma 4.2, the actionfobn A is weakly hyperbolic and the ac-
tion of I" on the space of triples of pairwise distinct points\iris metrically proper. Using
Lemma 4.3 it is enough to show thBtcontains a free subgrou@ with two generators
which has the following additional properties.

(1) For somex € X the orbit mapg € G — gx € X is a quasi-isometric embedding of
G into X.

(2) There are infinitely many; € G (i > 0) such that the ordered pairs of fixed points
of g, gj_l are contained in pairwise distinct orbits of the actioi'adn A x A.

Note that the first property guarantees that there is a continergguivariant embedding
of the Gromov boundarg of G into A.

The existence of a free groug with two generators and with property (1) above
is immediate from the ping-pong lemma and the requirement that the grasmon-
elementary (cf[[GH90]).

Now lete # g € G and let(a, b) be the ordered pair of fixed points of the action
of g on 9X. Choose a closed subset @k which is contained inX — {a, b} and is a
fundamental domaim for the action o X — {a, b} of the infinite cyclic subgroup of
G generated by. Assume that there is a sequernieg b;) € X x 39X contained in the
I'-orbit of (a, b) with (a;, b;) — (a, b). Lets be a Gromov distance dhX and writev =
min{é(a, b), 8({a, b}, D)}/4. Let R(v) > O be as in the definition of a metrically proper
action forI" and letU, V be the opere—®(-neighborhoods of:, b respectively. For
sufficiently largel we haven; € U andb; € V. By our assumption, there ake € T" such
thath;a; = a andh;b; = b. Thenhflghi is a hyperbolic isometry with fixed points, b;.
Since a hyperbolic isometry fix@gseciselytwo points ind X, the elements; are pairwise
distinct and the same is true for their compositions with an arbitrary powgriamely,
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otherwise there are+ j and! € Z such thag’ = ;4 1, which contradicts the fact that
(a, b) are fixed points fog, (a;, b;) # (a;j, b;) andh; is a homeomorphism. However, by
the choice ofD there is for eachh > 0 somek(i) € Z such thatg®n,D N D # ¢ and
henceg"©h;(U x V x D)NU x V x D # ¢ for all sufficiently largei. This contradicts
the assumption that the action Bfon the space of triples of pairwise distinct points in
9X is metrically proper.

As a consequence, for every ordered gajrb) of fixed points of an elemert# g €
G theTl-orbit of (a, b) is adiscretesubset 0b X x 9 X — A (note that this fact has already
been established in the proof of Proposition 3.2). Since on the other hand the sets of pairs
of fixed points for the elements @ aredensein B x B — A, there are infinitely many
such pairda;, b;) which are pairwise contained in distinct orbits under the action.of
Our argument also implies that we may in addition require that the ordered(paibs)
are not contained in thE-orbit of (b;, a;) for any j.

We use this fact to show that we can find infinitely mapye G with the property that
theT'-orbits of the ordered pairs of fixed poirtis, b;), (b;, a;) of g;, gi‘l are all disjoint
(see the argument in_[BED2]). Namely, choose two independent elemenis € G
which generate a free subgroup with the property that the ordered pairs of fixed points
(a1, b1), (b1, a1) of g1, gl_l are not contained in thE-orbit of the ordered pair of fixed
points (b2, ap) of ggl. We may assume that the group generateghy, equalsG and
that there is ar.-quasi-isometric; -equivariant embedding of the Cayley grapl€ G of
G into X which induces an equivariant embedding of the Gromov bounBasf/G into
dX. ldentify CG with its image under this embedding. FOrQ n1 <« m1 K no < ma
consider the element = ¢7'¢5" ¢1%¢5% € G. If y isthe axis off in CG and ifh € T
maps the ordered paia, b) of fixed points forf to (b, a), then it maps the inverge(y )1
of p(y) into a uniformly bounded neighborhood @fy ). Now a fundamental domain for
the action off on its axisy is composed of four arcg, . . ., y4 wherey; is the geodesic
arcinCG connecting to gfl, y2 is the translate und@f{l of the geodesic arc connecting
e t0 g5* etc. As a consequence, there is a subsegment of the axis of a conjugate of
G whose length tends to infinity a3 — oo and which is mapped by into a uniformly
bounded neigborhood of a subsegment of the axis of a conjugggelcﬁsee [BEQ2]). For
sufficiently largen this violates the observation that tReorbits of (a;, b1), (b2, az) are
discrete and disjoint.

As a consequence, property (2) above holdsttaas well (cf. also the discussion in
[BEQ2]). Thus the theorem is a consequence of Theorem 3.1. O

5. Applications

In this section we derive some applications of Theorem A from the introduction. We
begin with the proof of Corollary B from the introduction. For this be an oriented
surface of genug > 0 with m > 0 punctures. We assume thgtis non-exceptional
i.e.that 3 — 3+ m > 2. Thecomplex of curveg(S) for S is the simplicial complex
whose vertices are the free homotopy classesseéntial simple closed curves S, i.e.
simple closed curves which are neither contractible nor freely homotopic into a puncture
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of S. The simplices inC(S) are spanned by collections of such curves which can be
realized disjointly. Sinces is non-exceptional by assumption, the complex of curves is
connected. If we equip each simplexdqS) with the standard euclidean metric of side-
length one, then we obtain a length metricdis), and this length metric defines 6i4S)

the structure of a hyperbolic geodesic metric space. Howéysy, is not locally finite

and hence this geodesic metric space is not locally compact (for all this see [MM99, B02,
HO5a]). A description of its Gromov boundary is contained in [K[99, HO6].

The mapping class group\, ,, of S is the group of isotopy classes of orientation
preserving homeomorphisms 6f It acts as a group of isometries on the complex of
curvesC(S) of S. Bowditch [BO3] showed that this action is weakly acylindrical. Thus
we can apply Theorem 4.5 and deduce Corollary B from the introduction which extends
the result of Bestvina and Fujiwara [BE02].

Proposition 5.1. LetI" be an arbitrary subgroup oM, ,,. If I" is not virtually abelian
then the groupH,f(F, R) is infinite-dimensional. If moreovét does not contain a normal
subgroup which virtually splits as a direct product of two infinite groups then for every
p € (1, 00) the grouprz(l“, £P(IM)) is infinite-dimensional as well.

Proof. Recall from [MP89] the classification of subgroupsof M, ,. There are four
cases:

(1) T contains two independepseudo-Anosoglements.

(2) The limit set of the action df' onC(S) consists of precisely two points# b.

(3) T is finite.

(4) T preserves a non-trivial system of pairwise disjoint essential simple closed mutually
not freely homotopic curves afi

The action of the mapping class group 66S) is weakly acylindrical [[BOB] and
hence the same is true for the action of an arbitrary subgfomp M, ,,. If T is as
in case (1) above then the limit set Bfcontains at least three points and thereforis
a non-elementary subgroup of the isometry groug @). By Theorem 4.5, the groups
HZ(I',R), HA(T, £7(I")) are infinite-dimensional for every € (1, 00).

In case (2) above, each elementlbfmaps a quasi-geodesic connectingp b into
a uniformly bounded neighborhood of itself. Since the action"adn C(S) is weakly
acylindrical, the group” is virtually cyclic (cf. the discussion in [BF02]).

In case (4) there is a maximal syst&hof pairwise disjoint essential simple closed
non-mutually freely homotopic curves preservedIbylf we cut S open alongS and
replace each boundary circle of the resulting bordered surface by a puncture then we
obtain a possibly disconnected surfat®f finite type and of greater Euler characteristic.
There is a natural homomorphism Bfonto a subgroup” of the mapping class group
of §'. Its kernelK is a free abelian group generated by multiple Dehn twists about the
curves of this curve system. Thus by Theorem 12.4.2 of [M01] (see also Corollary 3.6 of
[MS06]), the natural mapgi2(I'", R) — HA(I', R) is an isomorphism.

LetS;, ..., S, be the connected componentsSof An elementg € I permutes the
components of’. This means that there is a homomorphigrof I into the group of
permutations of1, ..., p} whose kernel is the normal subgroGpof I" of all elements
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which fix each componerst. Thus there is an exact sequence
0—-G—->TI"->0-0 (10)
where is a finite group. This sequence induces an exact sequence [M01]
.- — HZ(Q,R) - HA(I",R) - HA(G,R) - HZ(Q,R) — ---

Since the grou is finite, its bounded cohomology with real coefficients is finite dimen-
sional and therefore we conclude tlﬁﬁ(r’, R) is infinite-dimensional if and only if this
is the case foH2(G, R).

Fori < p denote byG; the projection ofG to a subgroup of the mapping class
group of S. If G; preserves a non-trivial systefiy of pairwise disjoint essential simple
closed non-mutually freely homotopic curves 8then thel'-translates of this system
is al’-invariant curve system a8l which lifts to aI'-invariant curve system ofi strictly
containingS. This contradicts the maximality of the systein

An exceptional componesst of S’ is either a thrice punctured sphere with finite map-
ping class group, or a once punctured torus or a four times punctured sphere with word hy-
perbolic mapping class group. Therefore eitheand henceé is virtually abelian, or after
reordering, the grou1 admits a weakly acylindrical action as a non-elementary group
of isometries on a hyperbolic geodesic metric space. In particul@r,isf not virtually
abelian then the second bounded cohomology gmﬁcGl, R) is infinite-dimensional.

Let R be the kernel of the homomorphisth— G1. Then we have an exact sequence

0O—-R—->G—>G1—0. (12)

Since necessarilﬂbl(R, R) = 0 (seel[M0O1]) we deduce from the induced exact sequence
of bounded cohomology groups tth(G, R) is infinite-dimensional if this is the case
for Hbz(Gl, R). In other words, either is virtually abelian or the second bounded coho-
mology grouprZ(l", R) is infinite-dimensional.

We are left with investigating the grouyﬁsnz(r‘, £P(I')). Assume thar is not virtually
abelian. Then the grou@ is infinite. Thus using the above notations, if the kekiedf the
natural projectionr : I' — I' is non-trivial, then the normal subgroup 1(G) of I" splits
as a direct product of two infinite groups. Hence as before, we may assuniehéay.
ThengZ(F, £P(I)) is infinite-dimensional if this is the case fﬁsz(G, £P(G)). Namely,
if the centralizerZ(G) of G in I is infinite then the center of is infinite and hence
either G is virtually abelian orG splits as a direct product of two infinite groups. Thus
we may assume thatr (G) is finite. Then every functiorf € ¢7(G) which is invariant
under the action of the finite center 6fdefines a function in th&-module¢? (I')4r (@)
of Zr(G)-invariant points in¢? (I') which vanishes outside & Z(G). It follows that
the second bounded cohomology gradd(G, ¢” (I #r(@) is infinite-dimensional.

The finite groupQ as in the exact sequende (10) admits an isometric action on
HZ(G, £P(I')?r(@) induced from the action of on G by conjugation (Corollary 8.7.3
of [MO1]). Unsing the explicit form of this action we conclude that the subspace of
HZ(G, £/ (I')#r(@) of elements which are fixed bg is infinite-dimensional if this is the
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case foerz(G, £7(G)). On the other hand, since the groGpis infinite by assumption,
there is no non-zer@-invariant vector irt” (I') and hence by the Hochschild—Serre spec-
tral sequence for bounded cohomology (Theorem 12.0/3 of [M01]), the second bounded
cohomologyHZ(T, £7(I')) is infinite-dimensional if this is the case f&i2(G, £7(G)).

Let N; be the kernel of the projection 6f into a subgroup of the mapping class group
of §’—§’. ThenN; consists of mapping classes which act trivially$ror all i # ;. For
i #J, t{‘le groupsV;, N; only intersect in the identity and commute. Hence if they are
infinite for somei # j, thenG contains a normal subgroup which is the direct product
of two infinite groups. The smallest normal subgroug'afontaining¥;, N; contains the
direct product ofV;, N; as a subgroup of finite index, i.e. this normal subgroup virtually
splits as a direct product. Thus for the purpose of the proposition we may assume after
reordering thatv; is finite for alli > 1.

Consider first the case thaf; is infinite. Denote as before bi the kernel of the
natural projectionG — G into the mapping class group ¢f. The subgroup oz
generated by, R is normal and the direct product &f; and R. Therefore as above,
if ' does not contain a normal subgroup which virtually splits as a direct product of two
infinite groups therR is finite, and the quotient grou@/R can naturally be identified
with the groupG1.

Assume that this holds true. By Theorem 4.5 and the assumptionGthat not
virtually abelian, the second bounded cohomology gr(blfp(Gl, £P(G1)) is infinite-
dimensional for every € (1, co). Now the groupr is finite and hence averaging over
the orbits of the action oR shows that”(G1) as aG1-module can naturally be identi-
fied with theG1-module£? (G)R of all R-invariant points in¢” (G). As a consequence,
the grouprZ(Gl, £7(G)®) is infinite-dimensional, and therefore from the Hochschild—
Serre spectral sequence (Theorem 12.0.3 of [M01]) we deduce that the same is true for
Hbz(G, £P(G)). We deduce that ifV1 is infinite and ifI” does not contain a normal sub-
group which virtually splits as a direct product thHﬁ(G, £7(G)) is infinite-dimensional
as claimed.

Finally, we have to consider the case thatis finite, i.e. that the kernel of the nat-
ural projection ofG to a subgroup of the mapping class grougsbfU - - - U S[/7 is finite.

By the above considerations, for evesye (1, oo) the grouprZ(G, L2 (G)) is infinite-
dimensional if this is the case f(Hbz(G/Nl, £P(G/N1)). Sincel” contains a normal sub-
group which virtually splits as a direct product if this is the casedgiN1, an application
of the above considerations to the graupN1 yields inductively the following. Eithel
contains a normal subgroup which virtually splits as a direct produﬂ,ﬁﬂ’, £P(T)) is
infinite-dimensional. This shows the proposition. O

Following [MSQ6], we denote by¥geom the class of countable groups which admit a
non-elementary weakly acylindrical isometric action on some hyperbolic metric space.
Examples of such groups include.

e Word hyperbolic groups which are not virtually abelian.

e Any subgroup of the mapping class group of an oriented surface of finite type and
negative Euler characteristic not preserving any essential multicurve, e.g. the Torelli

group.
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e Any countable group which admits a non-elementary isometric action on a (not neces-
sarily locally finite) tree which is proper on the edges.

This class also contains a large familyrefatively hyperbolic groupsin fact, it seems
that all geometrically finite relatively hyperbolic groups in the sense of Bowditch (see
[YO4] for a detailed discussion of those groups) are contain€lgedsin

For a locally compact-compact topological grou@ define alattice in G to be a
discretesubgroupl’ of G such thatG/I" admits afinite G-invariant measure. 1& =
G1 x G2 is any non-trivial direct product with locally compaetcompact and non-
compact factors then we call a lattifein G irreducibleif the projection ofl" into each
of the factors is dense. The following lemma is part (vi) of Proposition 7.13 in [MS06]
and follows from the work of Burger and Mondd [BMO02].

Lemma5.2. LetT be an irreducible lattice in a product¥ = G1 x G2 of locally compact
o -compact non-compact groups. ThHﬁ(F, ¢3(I')) = 0.

We use Lemma 5.2 and the results of Monod and Shé&lom [MS06] to show

Corollary 5.3. A groupT” € Cgeomis Not measure equivalent to any finitely generated
irreducible lattice in either a simple Lie group of higher rank or in a product of two locally
compacis-compact and non-compact topological groups.

Proof. By Theorem 4.5, for every € Cgeomthe grouprz(F, ¢2(I")) is non-trivial. Then
Corollary 7.8 of [MS06] shows thaH,f(A, 02(A)) # {0} for every countable group
which is measure equivalent fa

Now by Lemma 5.2, ifA is an irreducible lattice in a produ€t; x G, of locally
compacio-compact non-compact groups thHrb’r(A, ¢2(A)) = {0}. If A is alattice in a
simple Lie group of non-compact type and higher rank then the vanishing of the second
bounded cohomology groufﬁbz(A, ¢2(A)) is due to Monod and Shalom (Theorem 1.4 in
[MSO04]). Thus in both cases, the gronpis not measure equivalent fa (Note however
that for latticesA in simple Lie groups of higher rank a much stronger result is due
to Furman|[[Fu99e, Fu99b]: Every countable group which is measure equivalanisto
commensurable ta..) O

Corollary C from the introduction is now immediate from Corollary 5.3 and Proposition
5.1.

We finish the paper by mentioning two results of Monod and Shalom [MS06] which
are closely related to this work.

Theorem 5.4. A countable group containing an infinite amenable normal subgroup is
not measure equivalent to a groupdgeom

Another consequence is Monod and Shalom’s striking rigidity result for actions of prod-
ucts (Theorem 1.8 of [MS06]).

Theorem 5.5. LetT'y, I'; be torsion free groups iffigeom I' = I't x T’z and let(X, w)
be an irreducible probability"-space. LetA be any torsion free countable group and let
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(Y, v) be any mildly mixing probability\-space. If thel"-action and theA-action are
orbit equivalent, then both groups as well as the actions are commensurable.

There is also a version of Theorem A for closed groups of isometries of proper hyperbolic
spaces and their continuous bounded cohomology [HO5b].
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