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ISOPERIMETRIC INEQUALITIES FOR THE HANDLEBODY

GROUPS

URSULA HAMENSTÄDT AND SEBASTIAN HENSEL

Abstract. We show that the mapping class group of a handlebody V of genus
at least 2 has a Dehn function of at most exponential growth type.

1. Introduction

A handlebody of genus g ≥ 2 is a compact orientable 3-manifold V whose bound-
ary ∂V is a closed surface of genus g. The handlebody group Map(V ) is the group of
isotopy classes of orientation preserving homeomorphisms of V . It can be identified
with a subgroup of the mapping class group Map(∂V ) of ∂V via the restriction
homomorphism. This subgroup is of infinite index, and it surjects onto the outer
automorphism group of the fundamental group of V , which is the free group with
g generators.

The handlebody group is finitely presented [Wa98]. Thus it can be equipped
with a word norm which is unique up to quasi-isometry. The large-scale geometry
induced by such a metric is not compatible with the large-scale geometry of the
ambient group Map(∂V ). Namely, we showed in [HH11] that for every g ≥ 2
the handlebody group is an exponentially distorted subgroup of the mapping class
group of ∂V . Here, a finitely generated subgroup H < G of a finitely generated
group G is called exponentially distorted if the following holds. First, the word
norm in H of every element h ∈ H can be bounded from above by an exponential
function in the word norm of h in G. On the other hand, there is no such bound
with sub-exponential growth rate.

As a consequence, geometric properties of the mapping class group may be very
different from geometric properties of the handlebody group.

A particularly useful geometric invariant of a finitely presented group G is its
Dehn function, which can be defined as the isoperimetric function of a presentation
complex for G (see Section 4 for a complete definition). Although the Dehn function
itself depends on the choice of a finite presentation of G, its growth type does not.
In fact, the growth type of the Dehn function is a quasi-isometry invariant of G.

The mapping class group Map(∂V ) of ∂V is automatic [Mo95] and hence has a
quadratic Dehn function. On the other hand, for g ≥ 3 the Dehn function of the
outer automorphism group Out(Fg) of a free group Fg on g generators is exponential
[HV96, BV95, BV10, HM10]. Since the kernel of the projection from the handlebody
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group to Out(Fg) is infinite (and even infinitely generated [McC85]), this fact does
not restrict the Dehn function of Map(V ).

The goal of this note is to give an upper bound for the Dehn function of Map(V ).
We show

Theorem. The handlebody group Map(V ) satisfies an exponential isoperimetric
inequality, i.e. the growth of its Dehn function is at most exponential.

The strategy of proof for the theorem is similar to the strategy employed in
[HV96] to show an exponential upper bound for the Dehn function of outer auto-
morphism groups of free groups. We construct a graph which is a geometric model
for the handlebody group. A similar graph is used in [HH11] to show that the dis-
tortion of the handlebody group in the mapping class group is at most exponential.
Vertices of this graph correspond to isotopy classes of special cell decompositions
of ∂V containing the boundary of a simple disk system in their one-skeleton. A
simple disk system is a collection of pairwise disjoint, pairwise non-homotopic em-
bedded disks in V which decompose V into simply connected regions. We then use
a surgery procedure for disk systems to define a distinguished class of paths in the
handlebody group. The example at the end of this note shows that these paths are
in general not uniform quasi-geodesics. However, they are sufficiently well-behaved
so that they can be used to fill a cycle with area bounded by an exponential function
in the length of the cycle.

The organization of this note is as follows. In Section 2 we introduce disk sys-
tems and construct special paths in the disk system graph. Section 3 discusses a
geometric model for the handlebody group. This model is used in Section 4 for the
proof of the main theorem.

Acknowlegement. We would like to thank the anonymous referee for providing
us with helpful comments and suggestions.

2. Disk exchange paths

In this section we collect some facts about properly embedded disks in a han-
dlebody V of genus g ≥ 2. In particular, we describe a surgery procedure that is
central to the construction of paths in the handlebody group used in later sections.

A disk D in V is called essential if it is properly embedded and if ∂D is an
essential simple closed curve on ∂V . A disk system for V is a set of pairwise disjoint
essential disks in V no two of which are homotopic. Here, and in the sequel, all
homotopies are required to be proper. A disk system is called simple if all of its
complementary components are simply connected. It is called reduced if in addition
it has a single complementary component.

We usually consider disks and disk systems only up to proper isotopy. Further-
more, we will always assume that disks and disk systems are in minimal position if
they intersect. Here we say that two disk systems D1,D2 are in minimal position
if their boundary multicurves intersect in the minimal number of points in their
respective isotopy classes and if every component of D1 ∩ D2 is an embedded arc
in D1 ∩ D2 with endpoints in ∂D1 ∩ ∂D2. Note that although the minimal inter-
section pattern of the boundary curves ∂D1 and ∂D2 is determined by the isotopy
classes of D1 and D2, this is not true for the minimal position of the disks D1 and
D2 themselves. In particular the intersection pattern D1 ∩ D2 between disks in
minimal position is not determined by the isotopy classes of D1 and D2.
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The following easy fact will be used frequently throughout the article.

Lemma 2.1. The handlebody group acts transitively on the set of isotopy classes
of reduced disk systems. Every mapping class of ∂V which fixes the isotopy class of
a simple disk system is contained in the handlebody group.

Proof. The first claim follows from the fact that the complement of a reduced disk
system in V is a ball with 2g spots and any two such manifolds are homeomorphic.
The second claim is immediate since every homeomorphism of the boundary of a
spotted ball extends to a homeomorphism of the interior. �

Let D be a disk system. An arc relative to D is a continuous embedding ρ :
[0, 1] → ∂V whose endpoints ρ(0) and ρ(1) are contained in ∂D. Such an arc ρ is
called essential if it cannot be homotoped into ∂D with fixed endpoints as an arc
on ∂V . In the sequel we always assume that arcs are essential and that the number
of intersections of ρ with ∂D is minimal in its isotopy class.

Choose an orientation of the curves in ∂D. Since ∂V is oriented, this choice
determines a left and a right side of a component α of ∂D in a small annular
neighborhood of α in ∂V . We then say that an endpoint ρ(0) (or ρ(1)) of an arc ρ
lies to the right (or to the left) of α, if a small neighborhood ρ([0, ǫ]) (or ρ([1−ǫ, 1]))
of this endpoint is contained in the right (or left) side of α in a small annulus around
α. A wave relative to D is an arc both of whose endpoints lie on the same side of
the boundary ∂D of a disk D in D, and whose interior is disjoint from ∂D.

For every disk E which is not disjoint from D there are at least two distinct
waves of ∂E relative to D. Namely, consider the intersection pattern of E with
the disks in D. Then there are at least two components E′, E′′ of E \ D whose
boundary consists of a single arc in ∂E and a single arc in D. The boundary arc
in ∂E of such an outermost component is a wave relative to D.

Let now D be a simple disk system and let ρ be a wave whose endpoints are
contained in the boundary of some disk D ∈ D. Then ∂D \ {ρ(0), ρ(1)} is the
union of two (open) intervals γ1 and γ2. Put αi = γi ∪ ρ. Up to isotopy, α1 and
α2 are simple closed curves in ∂V which are disjoint from ∂D (compare [St99] for
this construction). Therefore both α1 and α2 bound disks in the handlebody which
we denote by Q1 and Q2. We say that Q1 and Q2 are obtained from D by simple
surgery along the wave ρ.

The following observation is well known (compare [HH11], [M86, Lemma 3.2], or
[St99]).

Lemma 2.2. If Σ is a reduced disk system and ρ is a wave with endpoints on
D ∈ Σ, then for exactly one choice of the disks Q1, Q2 defined as above, say the
disk Q1, the disk system obtained from Σ by replacing D by Q1 is reduced.

The disk Q1 is characterized by the requirement that the two spots in the bound-
ary of V \Σ corresponding to the two copies of D are contained in distinct connected
components of V \ (Σ ∪ Q1). It only depends on Σ and the wave ρ. We call the
interval γ1 used in the construction of the disk Q1 the preferred interval defined by
the wave.

Definition 2.3. Let Σ be a reduced disk system. A disk exchange move is the
replacement of a disk D ∈ Σ by a disk D′ which is disjoint from Σ and such that
(Σ \ D) ∪ D′ is a reduced disk system. If D′ is determined as in Lemma 2.2 by a
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wave of a disk in a disk system D then the modification is called a disk exchange
move of Σ in direction of D or simply a directed disk exchange move.

A sequence (Σi) of reduced disk systems is called a disk exchange sequence in
direction of D (or directed disk exchange sequence) if each Σi+1 is obtained from
Σi by a disk exchange move in direction of D.

The following lemma is an easy consequence of the fact that simple surgery
reduces the geometric intersection number (see e.g [HH11, Lemma 5.4] for a proof).

Lemma 2.4. Let Σ1 be a reduced disk system and let D be any other disk system.
Then there is a disk exchange sequence Σ1, . . . , Σn in direction of D such that Σn

is disjoint from D.

To estimate the growth rate of the Dehn function of the handlebody group we will
need to compare disk exchange sequences starting in disjoint reduced disk systems.
This is made possible by considering a different type of surgery sequence for disk
systems which we describe in the remainder of this section.

To this end, let D be any simple disk system and let ρ be a wave. A full disk
replacement defined by ρ modifies D to a simple disk system D′ as follows. Let
D ∈ D be the disk containing the endpoints of the wave ρ. Replace D by both
disks Q1, Q2 obtained from D by the simple surgery defined by ρ. The disks Q1, Q2

are disjoint from each other and from D. If one (or both) of these disks is isotopic
to a disk Q from D \D then this disk will be discarded (i.e. we retain a single copy
of Q; compare [Ha95] for a similar construction). We say that a sequence (Di) is
a full disk replacement sequence in direction of D (or directed full disk replacement
sequence) if each Di+1 is obtained from Di by a full disk replacement along a wave
contained in ∂D.

The following two lemmas relate full disk replacement sequences to disk exchange
sequences. Informally, these lemmas state that every directed disk exchange se-
quence may be extended to a full disk replacement sequence, and conversely every
full disk replacement sequence contains a disk exchange sequence. To make this
idea precise, we use the following

Definition 2.5. Let D be an arbitrary disk system. Suppose that D1, . . . ,Dn is
a full disk replacement sequence in direction of D and that Σ1, . . . , Σk is a disk
exchange sequence in direction of D.

We say that the sequences (Di) and (Σi) are compatible, if there is a non-
decreasing surjective map r : {1, . . . , n} → {1, . . . , k} such that Σr(i) ⊂ Di for
all i.

Lemma 2.6. Let Σ be a reduced disk system, let D be a simple disk system con-
taining Σ and let D = D1, . . . ,Dn be a full disk replacement sequence in direction
of a disk system D′. Then there is a disk exchange sequence Σ = Σ1, . . . , Σk in
direction of D′ which is compatible with (Di).

Proof. We proceed by induction on the length of the full disk replacement sequence
(Di). If this length equals zero there is nothing to show. Assume that the claim
holds true whenever this length does not exceed n − 1 for some n > 0.

Let D1, . . . ,Dn be a full disk replacement sequence of length n and let Σ ⊂ D1 be
a reduced disk system. Let D ∈ D1 be the disk replaced in the full disk replacement
move connecting D1 to D2.
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If D ∈ Σ then for one of the two disks obtained from D by simple surgery, say
the disk D′, the disk system Σ2 = (Σ \ D) ∪D′ is reduced. However, Σ2 ⊂ D2 and
the claim now follows from the induction hypothesis.

If D 6∈ Σ then Σ ⊂ D2 by definition and once again, the claim follows from the
induction hypothesis. �

Lemma 2.7. Let Σ1, . . . , Σk be a disk exchange sequence of reduced disk systems in
direction of a disk system D′. Then for every simple disk system D1 ⊃ Σ1 there is
a full disk replacement sequence D1, . . . ,Dn in direction of D′ which is compatible
with (Σi).

Proof. We proceed by induction on the length k of the directed disk exchange
sequence.

The case k = 1 is trivial, so assume that the lemma holds true for directed disk
exchange sequences of length at most k − 1 for some k ≥ 2. Let Σ1, . . . , Σk be a
directed disk exchange sequence of length k. Suppose Σ2 is obtained from Σ1 by
replacing a disk D ∈ Σ1. Let ρ be the wave with endpoints on D defining the disk
replacement, and let D2 be the disk in Σ2 which is the result of the simple surgery.

We distinguish two cases. In the first case, ρ ∩ D1 = ρ ∩ D. Then ρ is a
wave relative to D1. Let D2 be the disk system obtained from D1 by the full disk
replacement defined by ρ. One of the two disks obtained by simple surgery along
ρ is the disk D2 and hence D2 ∈ D2. The claim now follows from the induction
hypothesis, applied to the disk exchange sequence Σ2, . . . , Σk of length k − 1 and
the simple disk system D2 containing Σ2.

In the second case, the wave ρ intersects D1 \ D. Then ρ \ (D1 \ D) contains a
component ρ′ which is a wave with endpoints on a disk Q ∈ D1\{D}. A replacement
of the disk Q by both disks obtained from Q by simple surgery using the wave ρ′

reduces the number of intersection components of ρ ∩ (D1 \ D). Moreover, the
resulting disk system contains D. In finitely many surgery steps, say s ≥ 1 steps,
we obtain a simple disk system Ds with the following properties.

(1) Ds contains D and is obtained from D1 by a full disk replacement sequence.
(2) ρ ∩ (Ds \ D) = ∅.

Define r(i) = 1 for i = 1, . . . , s, where r is the function required in the definition
of compatibility. We now can use the procedure from the first case above, applied
to Σ1,Ds and ρ to carry out the induction step. This completes the proof of the
lemma. �

Lemma 2.6 and Lemma 2.7 show the following. Let Σ, Σ′ be reduced disk systems
which are disjoint. Let D be any disk system. Then for every disk exchange
sequence connecting Σ to a disk system disjoint from D there is a disk exchange
sequence connecting Σ′ to a disk system disjoint from D so that these sequences
are contained in the same full disk replacement sequence.

3. The graph of rigid racks

The goal of this section is to describe a construction of paths in the handlebody
group whose geometry is easy to control. A version of these paths was already used
in [HH11] to establish an upper bound for the distortion of the handlebody group
in the mapping class group. The main objects are given by the following
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Definition 3.1. A rack R in V is given by a reduced disk system Σ(R), called
the support system of the rack R, and a collection of pairwise disjoint essential
embedded arcs in ∂V \ ∂Σ(R) with endpoints on ∂Σ(R), called ropes, which are
pairwise non-homotopic relative to ∂Σ(R). At each side of a support disk D ∈ Σ(R),
there is at least one rope which ends at the disk and approaches the disk from this
side. A rack is called large if the set of ropes decomposes ∂V \ ∂Σ(R) into simply
connected regions.

We will consider racks up to an equivalence relation called “rigid isotopy” which
is defined as follows.

Definition 3.2. i) Let R be a large rack. The union of the boundary of the
support system and the system of ropes of R defines the 1–skeleton of a cell
decomposition of the surface ∂V which we call the cell decomposition induced
by R.

ii) Let R and R′ be racks. We say that R and R′ are rigidly isotopic if there is
an isotopy of ∂V which maps the support system of R to the support system
of R′ and defines an isotopy of the cell decompositions induced by R and R′.

Since stabilizers of cell-decompositions in the mapping class group are finite, and
the stabilizer in the mapping class group of a reduced disk system is contained in
the handlebody group we have the following

Lemma 3.3. The handlebody group acts on the set of rigid isotopy classes of large
racks with finite quotient and finite point stabilizers.

For simplicity of notation, we call a rigid isotopy class of a large rack simply a
rigid rack. Lemma 3.3 allows us to use rigid racks as the vertex set of a Map(V )–
graph. More precisely, we make the following

Definition 3.4. The graph of rigid racks RRK(V ) is the graph whose vertex set is
the set of large rigid racks. Two such vertices corresponding to racks R and R′ are
joined by an edge if the support systems of R and R′ are disjoint, and furthermore
up to isotopy, the 1–skeleta of the cell decompositions induced by R and R′ intersect
in at most K points.

In [HH11] it is shown that the constant K may be chosen in such a way that
RRK(V ) is connected (see the discussion after Lemma 7.3 in [HH11]). Furthermore,
we may choose K large enough so that any two racks with the same support system
Σ can be joined by an edge-path all of whose vertices correspond to racks with
support system Σ. In the sequel, we will always use this choice of K and suppress
the mention of K from our notation. It then follows from Lemma 3.3 and the
Svarc-Milnor lemma that the graph RR(V ) is quasi-isometric to Map(V ).

For a reduced disk system Σ let RR(V, Σ) be the complete subgraph of RR(V )
whose vertices are rigid racks with support system Σ. We have

Lemma 3.5. Let Σ be a reduced disk system for V .

i) RR(V, Σ) is a connected subgraph of RR(V ) which is equivariantly quasi-
isometric to the stabilizer of ∂Σ in the mapping class group of ∂V .

ii) RR(V, Σ) is quasi-isometrically embedded in RR(V ).

Proof. RR(V, Σ) is connected by choice of the constant K in the definition of the
graph of rigid racks.



ISOPERIMETRIC INEQUALITIES FOR THE HANDLEBODY GROUPS 7

Let G be the stabilizer of ∂Σ in the mapping class group of ∂V . The group G is
contained in the handlebody group since every homeomorphism of the boundary of
a spotted ball extends to the interior. The group G acts on RR(V, Σ) with finite
quotient and finite point stabilizers. To show this, note that there are only finitely
many isotopy classes of cell decompositions of a bordered sphere with uniformly
few cells up to the action of the mapping class group. Thus, by the Svarc-Milnor
lemma, RR(V, Σ) is equivariantly quasi-isometric to G. This proves part i).

The stabilizer G of ∂Σ is quasi-isometrically embedded in the full mapping class
group of ∂V (see [MM00] or [H09b, Theorem 2]). Hence G is also quasi-isometrically
embedded in the handlebody group. Together with i) this shows ii). �

Next we recall a family of distinguished paths in the graph of rigid racks from
[HH11]. The paths are inspired by splitting sequences of train tracks on surfaces.
Since we do not use the details of the construction in this note, we only summa-
rize the important properties of the paths in the following theorem, which is an
immediate consequence of the proof of Theorem 7.9 from [HH11].

Theorem 3.6. Let R, R′ be two rigid racks. Then there is a disk system D de-
pending only on the support system of R′ with the following property. Let Σ(R) =
Σ1, . . . , Σn be a disk exchange sequence in direction of D such that Σn is disjoint
from D.

Then there is an edge-path (Rj) in the graph of rigid racks with the following
properties.

i) There is a sequence of numbers 1 = r1 < · · · < rn such that the support system
of Rj is Σi for all ri ≤ j ≤ ri+1 − 1.

ii) For ri ≤ j ≤ ri+1 − 1, the sequence (Rj) is a uniform quasi-geodesic in the
graph RR(V, Σi).

iii) The length of the sequence (Rj) is bounded by ek0·d, where d is the distance
between R and R′ in the graph of rigid racks and k0 > 0 is a uniform constant.

We call a sequence (Ri) given by the theorem a D–splitting sequence, and call
the sequence (Σi) the disk exchange sequence associated to (Ri).

Here and in the sequel, we say that a path is a uniform quasigeodesic if the
quasigeodesic constants of the path depend only on the genus of the handlebody.
Similarly, we say that a number is uniformly bounded, if there is a bound depending
only on the genus of V .

In Section 2 we demonstrated that D–disk exchange sequences starting in disjoint
reduced disk systems can be compared using full disk replacement sequences. In
the rest of this section we develop a slight generalization of racks, which will allow
to similarly compare D–splitting sequences starting in adjacent vertices of RR(V ).

Namely, define an extended rack R in the same way as a rack except that the
support system D(R) of an extended rack R may be any simple disk system instead
of a reduced disk system. The cell decomposition induced by an extended rack
is defined in the obvious way, and similarly we can define rigid isotopies between
extended racks. The rigid isotopy class of an extended rack is called a rigid extended
rack.

Rigid extended racks can be used in the same way as racks to define a geometric
model for the handlebody group.
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Definition 3.7. The graph of rigid extended racks RERK(V ) is the graph whose
vertex set is the set of large rigid extended racks. Two such vertices corresponding
to rigid extended racks R and R′ are connected by an edge of length one if the
following holds. The support systems of R and R′ are disjoint, and in addition up
to isotopy the 1–skeleta of the cell decompositions induced by R and R′ intersect
in at most K points.

Again, the constant K may be chosen in such a way that the graph of rigid
extended racks is connected. For a simple disk system D let RER(V,D) be the
complete subgraph of RER(V ) whose vertices are rigid extended racks with support
system D. We may choose K large enough such that for any simple disk system D
the subgraph RER(V,D) is connected. We denote the resulting graph by RER(V ).
The analog of Lemma 3.5 holds for the graphs RER(V,D), with the same proof.

An analog of Lemma 3.3 holds for rigid extended racks as well, and implies that
the handlebody group acts on the graph of rigid extended racks with finite quotient.
Thus, the graph of rigid extended racks is quasi-isometric to the handlebody group.
Note also that every large rack is a large extended rack. Thus the graph of rigid
racks embeds as a subgraph in the graph of rigid extended racks. This inclusion is
a quasi-isometry.

The proof of Theorem 7.9 of [HH11] also implies the following theorem which
allows to connect two rigid racks with a distinguished type of path.

Theorem 3.8. There is a number k1 > 0 with the following property. Let R̂ be a
rigid rack, and let D be the disk system given by Theorem 3.6. Let R be another
rigid rack and let D(R) = D1,D1, . . . ,Dn be a full disk replacement sequence in
direction of D such that Dn is disjoint from D.

Then there is an rigid extended rack R′ which is at distance at most k1 to R̂ in
RER(V ), and there is an edge-path (Rj) in the graph of rigid extended racks with
the following properties.

i) There is a sequence of numbers 1 = r1 < · · · < rk such that the support system
of Rj is Di for all ri ≤ j ≤ ri+1 − 1.

ii) For ri ≤ j ≤ ri+1 − 1, the sequence (Rj) is a uniform quasi-geodesic in the
graph RER(V,Di).

iii) The length of the sequence (Rj) is bounded by ek1d, where d is the distance

between R and R̂ in the graph of rigid extended racks.

We call a sequence (Rj) given by this theorem a full D–splitting sequence and
say that the sequence (Di) is the full disk exchange sequence associated to (Ri).

Combining Lemmas 2.6 and 2.7 with Theorem 3.8 above, we obtain the following.

Corollary 3.9. There is a number k2 > 0 with the following property.

i) Let Ri, i = 1, . . .N be a D–splitting sequence of racks with associated disk
exchange sequence (Σj). Let (Dj) be a full disk replacement sequence compatible

with (Σj). Then there is a full D–splitting sequence R̃k, k = 1, . . .K such that

the following holds. The full disk replacement sequence associated to (R̃k) is

(Dj). Furthermore, R̃1 = R1 and the distance between R̃K and RN is at most
k2. The length K of any such sequence is at most ek2d, where d is the distance
between R1 and RK in the graph of rigid racks.

ii) Conversely, suppose that R̃k, k = 1, . . . , K is a full D–splitting sequence with
associated full disk replacement sequence (Dj). Suppose further that (Σj) is a



ISOPERIMETRIC INEQUALITIES FOR THE HANDLEBODY GROUPS 9

disk exchange sequence compatible with (Di). If R̃1 is a large rack, then there
is a D–splitting sequence R1, . . . , RN whose associated disk exchange sequence

is (Σj) such that RN is of distance at most k1 to R̃K . The length N of any
such sequence is at most ek2d, where d is the distance between R1 and RN in
the graph of rigid racks.

4. Estimating the Dehn function of the handlebody group

In this section we prove the main result of this note.

Theorem 4.1. The Dehn function of the handlebody group has at most exponential
growth rate.

To begin, we recall the definitions of the Dehn function and growth rate. Let
G be a finitely presented group, and choose a finite presentation G = 〈S|R〉. Let
F (S) be the free group with generating set S, and let R be the subgroup of F (S)
normally generated by R. Thus G is isomorphic to the quotient F (S)/R.

Every r ∈ R < F (S) can be written as a product of conjugates of elements in R:

r = Πn
i=1r

γi

i , ri ∈ R, γi ∈ G.

We call the minimal length n of such a product the area Area(r) needed to fill the
relation r. On the other hand, r can be viewed as an element of F (S) and hence it
can be written as a word in the elements of S. We call the minimal length of such
a word the length l(r) of the loop r.

The Dehn function of G is then defined by

δ(n) = max{Area(r) | r ∈ R with l(r) ≤ n}.

The function δ depends on the choice of finite presentation 〈S|R〉. However, the
Dehn functions obtained from different finite presentations are of the same growth
type. To say that two functions f, g : N≥0 → N≥0 are of the same growth type
means that there are numbers K, L > 0 with

f(x) ≤ L · g(K · x + K) + L · x + L

for all x ∈ N≥0, and that there is an analogous inequality bounding g in terms of
f .

To estimate the Dehn function of the handlebody group we will consider loops
in the graph RER(V ) of rigid extended racks. Let γ be a loop of length R in
RER(V ). We will show that there is a number k > 0 only depending on the genus
of the handlebody and that there are m ≤ ekR loops ζ1, . . . , ζm of length at most
k each such that γ can be be contracted to a point in m steps consisting each of
replacing a subsegment of ζi by another subsegment of ζi. This suffices, since each
loop ζi as above corresponds to a cycle in the handlebody group which can be filled
with uniformly small area. By slight abuse of notation we will then say that γ can
be filled with area ekR if the above condition holds.

Recall from Section 3 the definition of the graph RER(V,D). The following
lemma allows to control the isoperimetric function of these subgraphs.

Lemma 4.2. Let D be a simple disk system for V . Any loop in RER(V,D) can be
filled with area coarsely bounded quadratically in its length.
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Proof. The stabilizer G of ∂D in the mapping class group of ∂V is a Lipschitz retract
of the mapping class group of ∂V (see [HM10] for a detailed discussion of this fact
which is a consequence of the work of Masur and Minsky [MM00]). Mapping class
groups are automatic [Mo95] and hence have quadratic Dehn function. Then the
same holds true for G (compare again [HM10]). The lemma now follows from the
fact that by Lemma 3.5, the graph RER(V, Σ) is quasi-isometric to G (the proof
of Lemma 3.5 works verbatim also for rigid extended racks). �

As the next step, we use Corollary 3.9 to control splitting sequences starting
at adjacent points in the graph of rigid racks. We show that these paths can be
constructed in such a way that the resulting loop can be filled with controlled area.
Together with the length estimate for splitting sequences from Theorem 3.8 this
will imply the exponential bound for the Dehn function.

The main technical tool in this approach is given by the following

Lemma 4.3. For each k > 0 there is a number k3 = k3(k) > 0 with the following
property.

Let D be a simple disk system. Let Ri, i = 1, . . . , N be a D–splitting sequence of

rigid racks and let R̃j , j = 1, . . . , M be a full D–splitting sequence of rigid extended
racks such that the following holds.

i) The rigid extended racks R1 and R̃1 (respectively RN and R̃M ) have distance
at most k in the graph of rigid extended racks.

ii) The disk exchange sequence associated to (Ri) is compatible with the full disk

replacement sequence associated to (R̃j).

Then the loop γ in RER(V ) formed by the sequences (Ri), (R̃j) and geodesics

between R1 and R̃1 and RN and R̃M can be filled with area k3(N + M)3.

Proof. The idea of the proof is to inductively decompose the loop γ into smaller
loops, each of which can be filled with area at most k3(N + M)2 for a suitable k3.

Denote the disk exchange sequence associated to (Ri) by Σi (i = 1, . . . , m) and

the full disk replacement sequence associated to (R̃j) by Dj (j = 1, . . . n). Let
r : {1, . . . , n} → {1, . . . , m} be the non-decreasing surjective function given by the
definition of compatibility, i.e. Σr(j) ⊂ Dj for all j = 1, . . . , n.

We define

I(ℓ) = {k | Σ(Rk) = Σℓ}

and

J(ℓ) = {k | D(R̃k) = Dj and r(j) = ℓ}.

Put ik = max I(k) and jk = maxJ(k). We will inductively choose paths dk con-

necting Rik
to R̃jk

and paths ck connecting Rik+1 to R̃jk+1 with the following
properties.

(1) The path ck is a uniform quasigeodesic in RER(V, Σk+1).
(2) The path dk is a uniform quasigeodesic in RER(V, Σk).
(3) The paths ck, dk are uniform fellow-travelers.

The existence of a family of paths with these properties implies the statement of
the lemma in the following way. We adopt the following notation. If c = (xi) is
a path in RER(V ) then we denote by c−1 or (xi)

−1 the path with the opposite
orientation.
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The restriction of the sequence Ri to I(k) and the restriction of R̃−1
j to J(k)

form together with c−1
k−1 and dk a loop γk in RER(V, Σk). The length of ck−1 and

dk is coarsely bounded by N + M by the triangle inequality. Hence, the length of
γk can be coarsely bounded by 4(N + M). Since RER(V, Σk) admits a quadratic
isoperimetric function by Lemma 4.2, this loop can be filled with area bounded by
k3(N + M)2 for some uniform constant k3.

Similarly, the paths d−1
k and ck+1 together with the edges connecting Rik

to

Rik+1 and R̃jk+1
to R̃jk

form a loop δk. The length of δk can again be coarsely
bounded by 2(N + M) using the triangle inequality. Since the paths dk and ck are
uniform fellow-travelers, δk can be filled with area depending linearly on its length.

There are at most 2 max(N, M) loops γk, δk. Hence the concatenation of all
the loops γi and δj can be filled with area at most k3(N + M)3 (after possibly
enlarging the constant k3). The paths ci and di occur in the concatenation of γi

and δj twice, with opposite orientations, except for c0 and the last occurring arc
dL. As a consequence, the concatenation of the loops γi and δj is, after erasing
these opposite paths, uniformly close to γ in the Hausdorff metric. Thus γ may
also be filled with area bounded by k3(N + M)3 (again possibly increasing k3).

We now describe the inductive construction of the paths ck and dk. We set
c0 = d0 to be the constant path R1. Suppose that the paths ci, di are already
constructed for i = 0, . . . , k − 1.

The support systems of Rik
and R̃jk

both contain Σk. We first construct the

path dk connecting Rik
and R̃jk

.
The reduced disk systems Σk and Σk+1 are disjoint. The simple disk system Σk∪

Σk+1 is disjoint from the support systems of Rik
, Rik+1 and R̃jk

, R̃jk+1 by definition
of splitting sequences. Furthermore, the 1-skeleta of the cell decompositions of all
four of these extended racks intersect ∂Σk ∪∂Σk+1 in uniformly few points. Hence,
there are rigid extended racks U1, U2 which have Σk ∪Σk+1 as their support system

and such that U1 is uniformly close to Rik
, and U2 is uniformly close to R̃jk

in
RER(V ). Let e be a geodesic path in RER(V, Σk ∪ Σk+1) connecting U1 and U2.
Since RER(V, Σk ∪Σk+1) is undistorted in RER(V ) by Lemma 3.5, the length of e
is coarsely bounded by N +M +1. By adding uniformly short geodesic segments in
RER(V, Σk) at the beginning and the end of e, we obtain the path dk with property
ii).

By definition of ik and jk, we have ik + 1 ∈ I(k + 1) and jk + 1 ∈ J(k + 1).

Hence, both Rik+1 and R̃jk+1 contain Σk+1 in their support systems. We can thus
define ck with properties i) and iii) by adding uniformly short geodesic segments
in RER(V, Σk+1) to the beginning and the end of e. �

We have now collected all the tools for the proof of the main theorem.

Proof of Theorem 4.1. Recall that it suffices to show that every loop in the graph
of rigid racks can be filled with area coarsely bounded by an exponential function
of its length in the sense discussed in the beginning of this section.

Let (Ri) be a loop of length L in the graph of rigid racks based at R0 = R̂. Since
the graph of rigid racks is quasi-isometric to the graph of rigid extended racks, we
can consider Ri as a loop in RER(V ) and it suffices to show that this loop can be
filled in RER(V ) with area bounded exponentially in its length.
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Similar to the proof of Lemma 4.3, the strategy is to write the loop (Ri) as a

concatenation of smaller loops whose area we can control. To this end let Σ̂ be the
disk system given by Theorem 3.8 applied to R̂ = R0. We will define paths ci in
RER(V ) with the following properties.

(1) The path ci connects Ri to a rack which is uniformly close to R̂ in RER(V ).

(2) The path ci is a Σ̂–splitting sequence of racks.
(3) The loop formed by ci, c

−1
i+1, the edge between Ri+1 and Ri, and a geodesic

connecting the other pair of endpoints of ci, ci+1 can be filled with area
bounded by ek3L.

This implies that the loop (Ri) itself can be filled with area at most Lek3L, proving
the theorem.

The construction of the paths ci again uses induction. We set c0 to be the
constant path R0. Suppose now that the path ck has already been constructed.
Since Rk and Rk+1 are connected by an edge in the graph of rigid racks, their

support systems Σk and Σk+1 are disjoint (compare Definition 3.4). Let Σ
(i)
k , i =

1, . . . , n be the disk exchange sequence associated to the splitting sequence ck. Put
D1 = Σk ∪Σk+1. Using Lemma 2.7 we obtain a full disk replacement sequence (Di)

compatible with (Σ
(i)
k ). Corollary 3.9 part i) then yields a full splitting sequence

R̃k, k = 1, . . . , M with associated full disk exchange sequence (Di). By Lemma 4.3,

the loop formed by ck and (R̃k) can be filled with area bounded by k3(N + M)3,
where N is the length of the path ck.

Using Lemma 2.6 on the sequence (Di) and the initial reduced disk system (Σk+1)

we obtain a Σ̂–splitting sequence (Σ
(i)
k+1) compatible with (Di), which starts in

Σk+1. Corollary 3.9 part ii) now yields a Σ̂–splitting sequence ck+1 starting in Rk+1

and ending uniformly close to R̂, thus satisfying properties (1) and (2). Applying

Lemma 4.3 again, we see that the loop formed by ck+1 and R̃k, k = 1, . . . , M can
be filled with area bounded by k3(N

′ + M)3, where N ′ is the length of the path
ck+1.

Since both ck and ck+1 are splitting sequences connecting points which are of
distance at most L, their lengths can be bounded by k4e

k4L for a suitable k4 by
Theorem 3.6. As a consequence, the paths ck and ck+1 satisfy condition (3). This
concludes the inductive construction of ci and the proof of the theorem. �

The proof of the theorem would give a polynomial bound for the Dehn function
provided that the length of the splitting sequences used to fill in the loops had a
length which is polynomial in the distance between their endpoints. However, the
following example shows that such a bound does not exist. This is similar to the
behavior of paths of sphere systems used in [HV96] to show an exponential upper
bound for the Dehn function of Out(Fn),

For simplicity of exposition, we do not construct these paths in the graph of
rigid racks (or the handlebody group), but instead in a slightly simpler graph.
The example given below can be extended to the full graph of rigid racks in a
straightforward fashion.

We define RD(V ) to be the graph of reduced disk systems in V . The vertex
set of RD(V ) is the set of isotopy classes of reduced disk systems, and two such
vertices are connected by an edge of length one if the corresponding disk systems
are disjoint. Every directed disk exchange sequence defines an edge-path in RD(V ).
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The following example shows that the length of these edge-paths may be exponential
in the distance between their endpoints.

Example 4.4. Consider a handlebody V of genus 4. For each n ∈ N we will construct

a disk exchange sequence Σ
(n)
1 , . . . , Σ

(n)
N(n) such that on the one hand, the length

N(n) of the sequence growth exponentially in n. On the other hand, the distance

between its endpoints Σ
(n)
1 and Σ

(n)
N(n) in RD(V ) grows linearly in n. To simplify

notation we will only construct the endpoint Σ
(n)
N(n) and denote it by Σn.

We choose three disjoint simple closed curves α1, α2, α3 which decompose the
surface ∂V into a pair of pants, two once-punctured tori and a once-punctured
genus 2 surface (see Figure 1). We may choose the αi such that they bound disks
in V . We denote the two solid tori in the complement of these disks by T1, T2 and
the genus 2 subhandlebody by V ′.

c0

D1 D2

D3 D4

α1 α2

α3

Figure 1. The setup for the example of a non-optimal disk ex-
change path. An admissible arc is drawn dashed.

Let Σ0 = {D1, D2, D3, D4} be a reduced disk system such that D1 ⊂ T1, D2 ⊂ T2

and D3, D4 ⊂ V ′. Choose a base point p on α3. Let γ1, γ2 be two disjointly
embedded loops on ∂V ∩ V ′ based at p with the following property. The loop γ1

intersects the disk D3 in a single point and is disjoint from D4, while γ2 intersects
D4 in a single point and is disjoint from D3. Since the complement of D3 ∪ D4 in
V ′ is simply connected, such a pair of loops generates the fundamental group of V ′.
Denote the projections of γ1 and γ2 to π1(V

′, p) by A1 and A2, respectively.
Let c be an embedded arc on ∂V . We say that c is admissible if the following

holds. The arc c connects the disk D1 to the disk D2. The interior of c intersects
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α1 and α2 in a single point each. Furthermore it intersects α3 in two points, and
its interior is disjoint from both D1 and D2.

Let c be an admissible arc. The intersection of c with V ′ is an embedded arc
c′ connecting α3 to itself. The arc c′ may be turned into an embedded loop in V ′

based at p by connecting the two endpoints of c′ to p along α3. Since the curve
α3 bounds a disk in V ′, the image of this loop in π1(V

′, p) is determined by the
homotopy class of the arc c relative to ∂D1, ∂D2. We call this image the element
induced by the arc c.

Choose an admissible arc c0 in such a way that it intersects the disk D3 in a
single point, and is disjoint from D4 (see Figure 1 for an example). Up to changing
the orientation of γ1 we may assume that the element induced by c0 is A1.

We now describe a procedure that produces essential disks from admissible arcs.
To this end, let c be an admissible arc. Consider a regular neighborhood U of
∂D1 ∪ c ∪ ∂D2 in ∂V . Its boundary consists of three simple closed curves. Two of
them are homotopic to either ∂D1 or ∂D2. The third one we denote by β(c). Note
that β(c) bounds a nonseparating disk in V .

Choose a fixed element ϕ of the handlebody group of V with the following
properties. The mapping class ϕ fixes the isotopy classes of the curves α1, α2 and
α3. The restriction of ϕ to the complement of V ′ is isotopic to the identity. The
restriction of ϕ to V ′ induces an automorphism of exponential growth type on
π1(V

′). To be somewhat more precise, we may choose ϕ such that it acts on the
basis Ai as the following automorphism Φ:

A1 7→ A1A2

A2 7→ A2
1A2

Put cn = ϕn(c0) and βn = β(cn). We claim that a disk exchange sequence in
direction of βn that makes βn disjoint from Σ0 has length at least 2n.

To show the claim, note that the arc cn intersects the disks D3 and D4 in at least
2n points. Namely, the element of π1(V

′, p) induced by ϕn(c0) is equal to Φn(A1).
The cyclically reduced word describing Φn(A1) in the basis A1, A2 has length at
least 2n by construction of Φ.

Therefore, the curve βn can be described as follows. Choose a parametrization
βn : [0, 1] → ∂V . Then there are numbers 0 < t1 < · · · < tN < tN+1 < · · · < t2N <
1 such that the following holds. Each subarc βn([ti, ti+1]) intersects Σ0 only at its
endpoints. The subarcs βn([tN , tN+1]) and βn([0, t1] ∪ [t2N , 1]) are waves to Σ0.
Furthermore, the arcs βn([ti, ti+1]) and βn([t2N−i, t2N+1−i]) are homotopic relative
to Σ0 for all i = 1, . . . , N − 1. More generally, if there are numbers ti with these
properties for a reduced disk system Σ we say that βn is a long string of rectangles
with respect to Σ. The number N is then called the length of the string of rectangles.
By construction, the length N of the string of rectangles βn defines with respect to
Σ0 is at least 2n.

The curve βn has two waves. Let a be one of them, say βn([tN , tN+1]) and let
σ ∈ Σ0 denote the disk containing the endpoints of a. One of the disks obtained
by simple surgery along a is isotopic to either D1 or D2 (depending on which wave
we chose). The preferred interval defined by a contains every intersection point of
βn with σ except the endpoints of a.

Denote by Σ1 the reduced disk system obtained by simple surgery along a. By
construction, the subarc βn(tN−1, tN+2) now defines a wave with respect to Σ1. One
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of the disks obtained by simple surgery along this wave is still properly isotopic to
D1. Furthermore, the subarcs βn([ti, ti+1]) and βn([t2N−i, t2N+1−i]) are still arcs
with endpoints on Σ1 which are homotopic relative to Σ1 for all i = 1, . . . , N − 2.
Each of these arcs cannot be homotoped into ∂Σ1.

Hence the curve βn has a description as a string of rectangles of length N − 1
with respect to Σ1 and the argument can be iterated. By induction, it follows that
any disk exchange sequence starting in Σ0 which ends in a disk system disjoint from
βn has length at least 2n.

On the other hand, the growth of the distance between Σ0 and ϕn(Σ0) in the
graph of reduced disk systems is linear in n by the triangle inequality. The curve
βn intersects ϕn(Σ0) in uniformly few points, and thus the disk system ϕn(Σ0) is
uniformly close to a reduced disk system that is disjoint from βn. Thus the disk
systems Σn have the properties described in the beginning of the example.
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