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Abstract. A non-separating multicurve on a surface S of genus g ≥ 2 with

m ≥ 0 punctures is a multicurve c so that S − c is connected. For k ≥ 1
define the graph NC(S, k) of non-separating k-multicurves to be the graph
whose vertices are non-separating multicurves with k components and where

two such multicurves are connected by an edge of length one if they can be
realized disjointly and differ by a single component. We show that if k < g/2+1
then NC(S, k) is hyperbolic.

1. Introduction

The curve graph CG of an oriented surface S of genus g ≥ 0 withm ≥ 0 punctures
and 3g − 3 +m ≥ 2 is the graph whose vertices are isotopy classes of essential (i.e.
non-contractible and not homotopic into a puncture) simple closed curves on S.
Two such curves are connected by an edge of length one if and only if they can
be realized disjointly. The curve graph is a locally infinite δ-hyperbolic geodesic
metric space of infinite diameter [MM99] for a number δ > 0 not depending on the
surface [A12, B12, CRS13, HPW13].

The mapping class group Mod(S) of all isotopy classes of orientation preserving
homeomorphisms of S acts on CG as a group of simplicial isometries. This action is
coarsely transitive, i.e. the quotient of CG under this action is a finite graph. Curve
graphs and their geometric properties turned out to be an important tool for the
investigation of the geometry of Mod(S) [MM00].

If the genus g of S is positive then for each k ≤ g we can define another Mod(S)-
graph NC(S, k) as follows. Vertices of NC(S, k) are non-separating k-multicurves,
i.e. multicurves ν consisting of k components such that S−ν is connected. Two such
multicurves are connected by an edge of length one if they can be realized disjointly
and differ by a single component. The mapping class group of S acts coarsely
transitively as a group of simplicial isometries on the graph of non-separating k-
multicurves. In fact, the action is transitive on vertices. Note that NC(S, 1) is just
the complete subgraph of CG whose vertex set consists of all non-separating simple
closed curves in S.

The goal of this note is to show

Theorem. For g ≥ 2 and k < g/2 + 1 the graph NC(S, k) of non-separating
k-multicurves is hyperbolic.

For the proof of the theorem, we adopt a strategy from [H13]. Namely, we begin
with showing that for g ≥ 2 the graph NC(S, 1) is hyperbolic. This is easy if S has
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at most one puncture, in fact in this case the inclusion map NC(S, 1) → CG is a
quasi-isometry (see Section 3). If S has at least two punctures then this inclusion is
not a quasi-isometry any more. In this case we apply a tool from [H13]. This tool
is also used in Section 4 to successively add components to the multicurve until the
number k < g/2 + 1 of components is reached.

We summarize the results from [H13] which we need in Section 2. At the end of
this note we give an example indicated to us by Tarik Aougab and Saul Schleimer
which shows that the strict bound g/2 + 1 for the number of components of the
multicurve in the Theorem is sharp.

Acknowledgement: This work was carried out while the author visited the
Institute for Pure and Applied Mathematics in Los Angeles. In a first version
of this paper, I erraneously misstated the range of the number of components of
multicurves for which the Theorem is valid. I am grateful to Tarik Aougab and
Saul Schleimer for pointing out this error to me.

2. Hyperbolic extensions of hyperbolic graphs

In this section we consider any (not necessarily locally finite) metric graph (G, d)
(i.e. edges have length one). Let C be any finite, countable or empty index set. For
a given family H = {Hc | c ∈ C} of complete connected subgraphs of G define the
H-electrification of G to be the metric graph (EG, dE) which is obtained from G by
adding vertices and edges as follows.

For each c ∈ C there is a unique vertex vc ∈ EG − G. This vertex is connected
with each of the vertices of Hc by a single edge of length one, and it is not connected
with any other vertex.

Definition 2.1. For a number r > 0 the family H is called r-bounded if for c 6=
d ∈ C the intersection Hc ∩Hd has diameter at most r where the diameter is taken
with respect to the intrinsic path metric on Hc and Hd.

A family which is r-bounded for some r > 0 is simply called bounded.
In the sequel all parametrized paths γ in G or EG are supposed to be simpli-

cial. This means that they are defined on a closed connected subset of the reals
whose finite endpoints (if any) are integers. We require that the image of every
integer is a vertex, and that the restriction to an integral interval [k, k + 1] either
is homeomorphism onto an edge, or it is constant. In particular, simplicial paths
are continuous.

Call a simplicial path γ in EG efficient if for every c ∈ C we have γ(k) = vc for
at most one integer k. Note that if γ is an efficient simplicial path in EG which
passes through γ(k) = vc for some c ∈ C then γ(k− 1) ∈ Hc, γ(k+1) ∈ Hc. This is
true because the vertex vc ∈ EG is only connected with vertices in Hc by an edge.

For a number L > 1, an L-quasi-geodesic in EG is a path γ : [a, b] → EG such
that for all a ≤ s < t ≤ b we have

|t− s|/L− L ≤ d(γ(s), γ(t)) ≤ L|t− s|+ L.

In slight deviation from this standard definition, throughout we require in the sequel
that all quasi-geodesics are simplicial, in particular, they are continuous. We will
often but not always state this explicitly.
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Definition 2.2. The family H has the bounded penetration property if it is r-
bounded for some r > 0 and if for every L > 0 there is a number p(L) > 2r with
the following property. Let γ be an efficient simplicial L-quasi-geodesic in EG, let
c ∈ C and let k ∈ Z be such that γ(k) = vc. If the distance in Hc between γ(k− 1)
and γ(k + 1) is at least p(L) then every efficient simplicial L-quasi-geodesic γ′ in
EG with the same endpoints as γ passes through vc. Moreover, if k′ ∈ Z is such
that γ′(k′) = vc them the distance in Hc between γ(k − 1), γ′(k′ − 1) and between
γ(k + 1), γ′(k′ + 1) is at most p(L).

Let H be as in Definition 2.2. Define an enlargement γ̂ of an efficient simplicial
L-quasi-geodesic γ : [0, n] → EG with endpoints γ(0), γ(n) ∈ G as follows. Let
0 < k1 < · · · < ks < n be those points such that γ(ki) = vci for some ci ∈ C. Then
γ(ki − 1), γ(ki + 1) ∈ Hci . For each i ≤ s replace γ[ki − 1, ki + 1] by a simplicial
geodesic in the graph Hci with the same endpoints. Note that since we require that
the endpoints of γ are vertices in G, an enlargement of γ is a path with the same
endpoints.

For a number k > 0 define a subset Z of the metric graph G to be k-quasi-convex
if any geodesic with both endpoints in Z is contained in the k-neighborhood of Z.
In particular, up to perhaps increasing the number k, any two points in Z can be
connected in Z by a (not necessarily continuous) path which is a k-quasi-geodesic
in G.

In Section 5 of [H13] the following is shown.

Theorem 2.3. Let G be a metric graph and let H = {Hc | c ∈ C} be a bounded
family of complete connected subgraphs of G. Assume that the following conditions
are satisfied.

(1) There is a number δ > 0 such that each of the graphs Hc is δ-hyperbolic.
(2) The H-electrification EG of G is hyperbolic.
(3) H has the bounded penetration property.

Then G is hyperbolic. There is a number L > 1 such that enlargements of geodesics
in EG are L-quasi-geodesics in G. The subgraphs Hc are uniformly quasi-convex.

In fact, although this was not stated explicitly, one obtains that the graph G is
δ′-hyperbolic for a number δ′ > 0 only depending on the hyperbolicity constant for
EG, the common hyperbolicity constant δ for the subgraphs Hc and the constants
which enter in the bounded penetration property.

3. Hyperbolicity of the graph of non-separating curves

In this section we consider an arbitrary surface S of genus g ≥ 2 with m ≥ 0
punctures. Let CG be the curve graph of S and let NC(S, 1) be the complete
subgraph of CG whose vertex set consists of non-separating curves. The goal of this
section is to show

Proposition 3.1. The graph NC(S, 1) is hyperbolic.

Example: If S is a surface of genus g = 1 then any two disjoint non-separating
simple closed curves in S are homotopic after closing the punctures and the graph
NC(S, 1) is not connected.

Define a properly embedded connected incompressible subsurface X of S to
be thick if the genus of X equals g. This is equivalent to stating that each of
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the boundary circles of X is separating in S and that moreover there is no non-
separating simple closed curve in S which is contained in S −X. Observe that the
only thick subsurface of a surface S with at most one puncture is S itself.

If X ⊂ S is thick then each component of S−X is a bordered punctured sphere
with connected boundary. If we collapse each boundary circle of X to a puncture
then we can view X as a surface of finite type whose genus equals the genus of S.
In particular, we can look at thick subsurfaces of X. However, thick subsurfaces of
X are precisely the thick subsurfaces of S which are contained in X.

For a thick subsurface X of S and for p ≥ 1 define a graph A(X, p) as follows.
Vertices of A(X, p) are non-separating simple closed curves in X. Two such vertices
c, d are connected by an edge of length one if either they are disjoint or if they are
both contained in a proper thick subsurface Y of X of Euler characteristic χ(X)+p.
Note that if p ≥ −χ(X)− 2g + 2 then A(X, p) = NC(X, 1).

Recall that for a number L ≥ 1 two geodesic metric spaces Y,Z are L-quasi-
isometric if there is a map F : Y → Z so that

d(x, y)/L− L ≤ d(Fx, Fy) ≤ Ld(x, y) + L∀x, y ∈ Y

and that for all z ∈ Z there is some y ∈ Y with d(Fy, z) ≤ L. In general, quasi-
isometries are not continuous. A map F : Y → Z is called coarsely L-Lipschitz if
d(Fx, Fy) ≤ Ld(x, y) + L for all x, y ∈ Y .

Let CG(X) be the curve graph of X.

Lemma 3.2. For every thick subsurface X of S the vertex inclusion extends to a
2-quasi-isometry A(X, 1) → CG(X).

Proof. Since two simple closed curves which are contained in a proper thick sub-
surface Y of X are disjoint from a boundary circle of Y which is essential in X, the
vertex inclusion extends to a coarsely 2-Lipschitz map A(X, 1) → CG(X). Thus
it suffices to show that the distance in A(X, 1) between any two non-separating
simple closed curves does not exceed twice their distance in CG(X).

To this end let γ : [0, n] → CG(X) be a simplicial geodesic connecting two non-
separating simple closed curves γ(0), γ(n). We construct first a simplicial geodesic
γ̃ in CG(X) with the same endpoints such that for each i, the curve γ̃(i) either is
non-separating or it decomposes X into a thick subsurface of Euler characteristic
χ(X) + 1 and a three-holed sphere. Call such a simple closed curve (with either of
these two properties) admissible in the sequel.

For the construction of γ̃ replace first each of the vertices γ(2i) with even pa-
rameter 0 < 2i < n by an admissible curve. Namely, if γ(2i) is not admissible then
γ(2i) decomposes X into two surfaces X1, X2 which are different from three holed
spheres.

If γ(2i − 1), γ(2i + 1) are contained in distinct components of X − γ(2i) then
they are disjoint and hence they are connected in CG(X) by an edge. This implies
that we can shorten γ with fixed endpoints. Since γ is length minimizing this is
impossible.

Thus γ(2i − 1), γ(2i + 1) are contained in the same component of X − γ(2i),
say in X1. Then X2 = X − X1 either has positive genus and hence contains a
non-separating curve, or it is a sphere with at least four holes and contains an
admissible separating curve. Thus there is an admissible curve γ̃(2i) ⊂ X2, and
this curve is disjoint from γ(2i−1)∪γ(2i+1). Replace γ(2i) by γ̃(2i). This process
leaves the points γ(2i+ 1) with odd parameter unchanged.
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In a second step, replace with the same construction each of the points γ(2i+1)
with odd parameter by an admissible curve. Let γ̃ : [0, n] → CG(X) be the resulting
simplicial geodesic. The image of every vertex is admissible.

The geodesic γ̃ is now modified as follows. Replace each edge γ̃[i, i+1] connecting
two separating admissible simple closed curves γ̃(i), γ̃(i + 1) by an edge path in
CG(X) of length 2 with the same endpoints so that the middle vertex is a non-
separating simple closed curve. This is possible because if c1, c2 are two disjoint
separating admissible curves then c1∪c2 is disjoint from some non-separating simple
closed curve in X. The length of the resulting path γ̂ is at most twice the length
of γ.

The path γ̂ can be viewed as a path in A(X, 1) by simply erasing all vertices
which are separating admissible simple closed curves. Namely, each such vertex v
is the boundary circle of a thick subsurface Y of X of Euler characteristic χ(X)+1.
The two adjacent vertices are non-separating simple closed curves contained in Y .
Thus by the definition of A(X, 1), these curves are connected in A(X, 1) by an
edge. This shows that the endpoints of γ are connected in A(X, 1) by a path whose
length does not exceed twice the distance in CG(X) between the endpoints. �

Since a surface with at most one puncture does not admit any proper thick
subsurface we obtain as an immediate corollary

Corollary 3.3. If S has at most one puncture then the inclusion NC(S, 1) → CG
is a 1-quasi-isometry.

Write A(p) = A(S, p). Our goal is to use Lemma 3.2 and induction on p to show
that A(p) is hyperbolic for all p. Since A(p) = NC(S, 1) for p ≥ −χ(S) − 2g + 2,
this then shows Proposition 3.1.

Let now p−1 ≥ 1 and let X be a thick subsurface of S such that χ(X) = χ(S)+
p − 1. Let HX be the complete subgraph of A(p) whose vertex set consists of all
non-separating simple closed curves which are contained in X. Let H = {HX | X}.
Our goal is to apply Theorem 2.3. to the graph A(p) and its H-electrification. The
next easy observation is the basic setup for the induction step.

Lemma 3.4. A(p− 1) is 2-quasi-isometric to the H-electrification of A(p).

Proof. Let E be the H-electrification of A(p). Let c, d be any two simple closed
curves which are connected in A(p − 1) by an edge. Then either c, d are disjoint
and hence connected in A(p) by an edge, or c, d are contained in a thick subsurface
X of S of Euler characteristic χ(X) = χ(S) + p − 1. Thus c, d are vertices in HX

and hence the distance between c, d in E is at most two. This shows that the vertex
inclusion A(p− 1) → E is two-Lipschitz.

That this is in fact a 2-quasi-isometry follows from the observation that A(p)
is obtained from A(p − 1) by deleting some edges. Moreover, the endpoints of an
embedded simplicial path in E of length 2 whose midpoint is a special vertex not
contained in A(p) are non-separating simple closed curves which are contained in
a thick subsurface X of S of Euler characteristic χ(S) + p − 1 and henc they are
connected by an edge in A(p− 1). �

Our goal is now to check that the family H = {HX | X} has the properties
stated in Theorem 2.3. The following lemma together with Lemma 3.2 implies that
the graphs HX are δ-hyperbolic for a universal constant δ > 0.
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Lemma 3.5. HX is isometric to A(X, 1).

Proof. Let X be a thick subsurface of S of Euler characteristic χ(S) + p − 1. If
c1, c2 are two non-separating simple closed curves contained in X then c1, c2 are
connected in A(p) by an edge if either c1, c2 are disjoint or if c1, c2 are contained in
a thick subsurface X0 of S of Euler characteristic χ(X0) = χ(S) + p = χ(X) + 1.

Now the thick subsurface X0 can be chosen to be contained in X. Namely, any
thick subsurface of S of Euler characteristic χ(S) + ℓ (ℓ ≥ 0) can be described as
the complement in S of a small neighborhood of an embedded forest in S (i.e. an
embedded possibly disconnected graph with no cycles) with ℓ edges whose vertices
are the punctures of S.

Assume for the moment that there is a forest G defining X which is the union of
a connected component Ĝ and isolated points. Then Ĝ has precisely p vertices and
p−1 edges where p−1 = χ(X)−χ(S). Since the graph G0 defining X0 has p edges,

there is at least one puncture x of S which is not contained in Ĝ and which is the
endpoint of an edge e of G0. If up to homotopy with fixed endpoints, e intersects
Ĝ at most at the second endpoint then the complement of a small neighborhood of
Ĝ ∪ e is a thick subsurface Y of X of Euler characteristic χ(S) + p which contains
c1 ∪ c2. This is what we wanted to show.

If e intersects Ĝ in an interior point which can not be removed with a homotopy
of e with fixed endpoints, let e0 be the subarc of e with endpoints x and the first
intersection point with Ĝ. Concatenation of e0 with a subarc of an edge of Ĝ and
modification of the resulting arc with a small homotopy with fixed endpoints yields
an embedded are ê in S whose interior is disjoint from the interior of Ĝ so that
Ĝ ∪ ê defines a thick subsurface Y of X of Euler characteristic χ(S) + p disjoint
from c1 ∪ c2.

The general case is treated in the same way. Namely, there is at least one edge
e of G0 which connects two distinct connected components of G, and the argument
above can be applied to the edge e.

As a consequence, c1, c2 are connected by an edge in A(X, 1) which is what we
wanted to show. �

Lemma 3.6. The family of subgraphs HX of A(p) where X runs through the thick
subsurfaces of S of Euler characteristic χ(S) + p− 1 is bounded.

Proof. Let X,Y be two thick subsurfaces of S of Euler characteristic χ(S) + p− 1.
If X 6= Y then up to homotopy, X ∩Y is a (possibly disconnected) subsurface of X
whose Euler characteristic is strictly bigger than the Euler characteristic of X. In
particular, the diameter in the curve graph of X of the set of simple closed curves
contained in X ∩ Y is uniformly bounded. Thus the lemma follows from Lemma
3.2 and Lemma 3.5. �

The proof of the bounded penetration property is more involved. To this end
recall from [MM00] that for every proper connected subsurface X of S there is a
subsurface projection πX of CG into the subsets of the arc and curve graph of X.
This projection associates to a simple closed curve c in S which is not disjoint from
X the intersection components πX(c) of c with X, viewed as a subset of the arc and
curve graph of X. The diameter of the image is at most one. If c is disjoint from
X then this projection is empty. The arc and curve graph of X is 2-quasi-isometric
to the curve graph of X (see [MM00]).
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Recall that every vertex of any of the graphs A(p) (p ≥ 1) is a non-separating
simple closed curve in S. By definition of a thick subsurface of S, for any such
curve c and every thick subsurface Z of S we have πZ(c) 6= ∅. This fact will be
used throughout the remainder of this section.

We need the following result from [MM00] (in the version formulated in Lemma
6.5 of [H13]).

Proposition 3.7. For every number L > 1 there is a number ξ(L) > 0 with the
following property. Let Y be a proper connected subsurface of S and let γ be a
simplicial path in CG which is an L-quasi-geodesic. If πY (v) 6= ∅ for every vertex v
on γ then

diamπY (γ) < ξ(L).

If γ : [0, n] → A(S, 1) is any geodesic then for all j, the curves γ(j) and γ(j + 1)
either are disjoint and hence connected in CG by an edge, or they are contained in
a common thick subsurface Y of S of Euler characteristic χ(S) + 1. In the second
case replace the edge γ[j, j + 1] by an edge path in CG of length two connecting
the same endpoints which passes through an essential simple closed curve in the
complement of Y . We call γ̃ a canonical modification of γ. By Lemma 3.2 and its
proof, γ̃ is a simplicial path in CG which is a 2-quasi-geodesic.

We now define a family of geodesics in A(S, 1) which serve as substitutes for the
tight geodesics as introduced in [MM00]. Namely, for numbers κ > 0, p ≥ 1 define
a simplicial path ζ : [0, k] → A(S, 1) to be (κ,p)-good if the following holds true.
Let X ⊂ S be any thick subsurface of Euler characteristic χ(X) ≥ χ(S) + p; then
there is a number u = u(X) ∈ [0, k) with the following property.

(1) For every j ≤ u, diam(πX(ζ(0) ∪ ζ(j))) ≤ κ.
(2) For every j > u, diam(πX(ζ(j) ∪ ζ(k))) ≤ κ.

Thus in a good simplicial path, big subsurface projections into thick subsurfaces
can be explicitly localized.

We use Proposition 3.7 to show

Lemma 3.8. There is a number κ1 > 0 such that any two vertices in A(S, 1) can
be connected by a (κ1, 1)-good geodesic.

Proof. Let c1, c2 be non-separating simple closed curves and let γ : [0, k] → A(S, 1)

be a simplicial geodesic connecting c1 to c2, with canonical modification γ̃ : [0, k̃] →
CG.

Let ℓ1 < · · · < ℓs be such that for each i the curves γ̃(ℓi), γ̃(ℓi + 2) are both
separating and such that the subsurface of S filled by γ̃(ℓi) ∪ γ̃(ℓi + 2) (i.e. the
smallest subsurface of S which contains γ̃(ℓi) ∪ γ̃(ℓi + 2)) is a holed sphere whose
complement Z in S is thick (we may have s = 0, i.e. there may not be such a pair
of vertices). Then γ̃(ℓi + 1) is a non-separating simple closed curve contained in
Z. Let γ̃1(ℓi + 1) be a non-separating simple closed curve contained in Z which is
contained in the one-neighborhood of the subsurface projection πZ(c2) of c2. That
the subsurface projection πZ(c2) is not empty follows since c2 is non-separating and
hence can not be contained in S − Z.

Replace γ̃(ℓi+1) by γ̃1(ℓi+1). The simplicial path γ̃1 constructed in this way is
a canoncial modification of a geodesic γ1 in A(S, 1) connecting c1 to c2. We claim
that γ1 is a (ξ(2), 1)-good geodesic in A(S, 1) where ξ(2) > 0 is as in Proposition
3.7.



8 URSULA HAMENSTÄDT

Namely, if Z is an arbitrary thick subsurface of S then since γ1 is a geodesic in
A(S, 1). there are at most two parameters k, k + ι (here ι = 0 or ι = 2) such that
γ̃1(k), γ̃1(k + ι) is disjoint from Z. Since γ̃1 is a 2-quasi-geodesic in CG, if there is
at most one such point (which is in particular the case if the Euler characteristic
of Z equals χ(S) + 1, i.e. if there is a unique essential curve disjoint from Z) then
the properties (1),(2) for Z with κ = ξ(2) are immediate from Lemma 3.2 and
Proposition 3.7. Otherwise the property follows from the construction of γ1 and
the fact that for subsurfaces X ⊂ Y ⊂ S and any simple closed curve c we have
πX(c) = πX(πY (c)) (with a small abuse of notation). �

We use Proposition 3.7 and Lemma 3.8 to define a level p hierarchy path in
A(p) connecting two non-separating simple closed curves c1, c2 as follows. The
starting point is a (κ1, 1)-good geodesic γ : [0, k] → A(S, 1). For any j so that
the curves γ(j), γ(j + 1) are not disjoint there is a thick subsurface Yj of Euler
characteristic χ(Yj) = χ(S)+1 so that γ(j), γ(j+1) ⊂ Yj . Replace the edge γ[j, j+
1] by a simplicial (κ1, 1)-good geodesic in A(Yj , 1) with the same endpoints. The
resulting path is an edge-path in the subgraph A(2) of A(1). Proceed inductively
and construct in p such steps a simplicial path in A(p) ⊂ A(1) connecting c1 to c2
which we call a level p hierarchy path.

Lemma 3.9. For every p ≥ 1 there is a number κp > 0 such that a level p hierarchy
path in A(p) is (κp, p)-good.

Proof. We proceed by induction on p. The case p = 1 follows from the definition
of a hierarchy path and Lemma 3.8. Thus assume that the lemma holds true for
all p− 1 ≥ 1.

Let γ : [0, n] → A(p) be a level p hierarchy path. The construction of γ is as
follows. There is a level p − 1 hierarchy path ζ : [0, s] → A(p − 1), and there
are numbers 0 ≤ τ1 < · · · < τq < s such that for each i, the edge ζ[τi, τi + 1]
connects two non-separating simple closed curves which are contained in a thick
subsurface Zi of S of Euler characteristic χ(S) + p − 1. For ℓ 6∈ {τ1, . . . , τq}, the
simple closed curves ζ(ℓ), ζ(ℓ + 1) are disjoint. The hierarchy path γ is obtained
from ζ by replacing each of the edges ζ[τi, τi + 1] by a (κ1, 1)-good geodesic in
A(Zi, 1) with the same endpoints.

By induction hypothesis, ζ is (κp−1, p − 1)-good for a number κp−1 > 1 not
depending on ζ. Thus for any thick subsurface Z of S of Euler characteristic
χ(Z) ≥ χ(S) + p there is a number u ∈ [0, s] so that for all j ≤ u we have
diam(πZ(ζ(0) ∪ ζ(j))) ≤ κp−1 and similarly for j ≥ u+ 1.

Let now i > 0 be such that τi < u. There is a subarc ρ of γ which is a (κ1, 1)-good
geodesic in A(Zi, 1) connecting ζ(τi) to ζ(τi+1). By the definition of a (κ1, 1)-good
geodesic in A(Zi, 1), since

diam(πZ(ζ(τi) ∪ ζ(τi + 1))) ≤ diam(πZ(ζ(0) ∪ ζ(τi))) + diam(πZ(ζ(0) ∪ ζ(τi + 1)))

≤ 2κp−1,

for each vertex ρ(t) on the geodesic ρ the diameter of the subsurface projection
πZ(ζ(τi) ∪ ρ(t)) does not exceed 2κp−1 + κ1. Then for each t we have

diam(πZ(ζ(0) ∪ ρ(t))) ≤ 3κp−1 + κ1 = κp.

This argument is also valid for τi > u.
Finally if τi = u then we can apply the same reasoning as before to the κ1-good

geodesic ρ and obtain the statement of the lemma. �
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Proof of Proposition 3.1: By Lemma 3.3, if S has at most one puncture then the
inclusion NC(S, 1) → CG is a quasi-isometry.

If the number of punctures is at least two then we show by induction on p the
following.

a) The graph A(p) is hyperbolic.
b) Level p hierarchy paths are uniform quasi-geodesics in A(p).
c) For every L > 1 there is a number ξ(L, p) > 0 with the following property.

Let γ be a simplicial path in A(p) which is an L-quasi-geodesic, and let γ̃
be the canonical modification of γ. If Y is a thick subsurface of S of Euler
characteristic χ(Y ) ≥ χ(S) + p, and if πY (v) 6= ∅ for every vertex v on γ̃
then diamπY (γ) < ξ(L, p).

The case p = 1 follows from Lemma 3.2, Proposition 3.7 and the definition of a
canonical modification of a simplicial path in A(S, 1). Assume that the claim holds
true for p− 1 ≥ 1.

For a thick subsurface X of Euler characteristic χ(X) = χ(S) + p − 1 let as
before HX be the complete subgraph of A(p) whose vertex set consists of all non-
separating simple closed curves contained in X, and let H = {HX | X}. By
Lemma 3.4, A(p−1) is 2-quasi-isometric to the H-electrification of A(p). Moreover
by construction, level p hierarchy paths are enlargements of level p − 1 hierarchy
paths. Therefore by the induction hypothesis, to establish properties a),b) above
for p it suffices to show that the family H is bounded and satisfies the assumptions
(1),(3) in the statement of Theorem 2.3.

Lemma 3.6 shows that the family H = {HX | X} is bounded.
By Lemma 3.5, HX is isometric to A(X, 1) and hence by Lemma 3.2, HX is

δ-hyperbolic for a number δ > 0 not depending on X. The bounded penetration
property for H follows from property c) above, applied to thick subsurfaces of Euler
characteristic χ(S) + p and quasi-geodesics in A(p− 1) (compare [H13]). Thus by
Theorem 2.3 and the induction hypothesis, A(p) is hyperbolic, and level p hierarchy
paths are uniform quasi-geodesics in A(p).

We are left with verifying property c) above for A(p). By Lemma 3.9, this
property holds true for level p hierarchy paths with the number κp > 0 replacing
ξ(L, p). The argument in the proof of Lemma 6.5 of [H13] then yields this property
for an arbitrary L-quasi-geodesic in A(p) for a suitable number ξ(L, p) > 0.

Namely, by hyperbolicity, for every L > 1 there is a number n(L) > 1 so that
for every L-quasi-geodesic η : [0, k] → A(p) of finite length, the Hausdorff distance
between the image of η and the image of a level p hierarchy path γ with the same
endpoints does not exceed n(L).

Let Y ⊂ S be a thick subsurface of Euler characteristic χ(Y ) ≥ χ(S)+p. Assume
that

(1) diam(πY (η(0) ∪ η(k))) ≥ 2κp + L(4n(L) + 10).

By the properties of level p hierarchy paths, if γ̃ denotes the canonical modification
of γ then there is some u ∈ Z so that γ̃(u) ∈ A where A ⊂ CG is the set of all curves
which are disjoint from Y .

By the choice of n(L), the quasi-geodesic η passes through the n(L)-neighborhood
of Y . By this we mean that there is a vertex x on η and a simplicial path in A(p)
of length at most n(L) which connects x to a non-separating simple closed curve
contained in Y .
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Let s0 + 1 ≤ t0 − 1 be the smallest and biggest number, respectively, so that
η(s0+1), η(t0−1) are contained in the n(L)-neighborhood of Y in the sense defined
in the previous paragraph. The distance in A(p) between η(s0) and η(t0) does not
exceed 2n(L) + 3.

A level p hierarchy path connecting η(0) to η(s0) is contained in the n(L)-
neighborhood of η[0, s0] and hence its canonical modification does not pass through
A. Similarly, a canonical modification of a level p hierarchy path connecting η(t0)
to η(k) does not pass through A. By the assumption (1), and the properties of
hierarchy paths, this implies that

diam(πY (η(s0) ∪ η(t0))) ≥ L(4n(L) + 10).

The distance in A(p) between η(s0), η(t0) is at most 2n(L) + 3, and hence since
η is an L-quasi-geodesic, the length of the segment η[s0, t0] is at most L(2n(L)+4).
Then the length of a canonical modification η̃[s, t] of η[s0, t0] is at most L(4n(L)+8).
Now if c, d are disjoint simple closed curves which intersect Y then the diameter of
πY (c ∪ d) is at most one. Thus if η̃(ℓ) intersects Y for all ℓ then

diam(πY (η̃(s) ∪ η̃(t))) = diam(πY (η(s0) ∪ η(t0))) ≤ L(4n(L) + 8)

which is a contradiction.
This completes the induction step and proves Proposition 3.1. �

The arguments in [H13] can now be used without modification to identify the
Gromov boundary of NC(S, 1). To this end let L be the set of all geodesic lam-
inations on S equipped with the coarse Hausdorff topology. In this topology, a
sequence (νi) converges to ν if any limit in the usual Hausdorff topology of a con-
vergent subsequence contains ν as a sublamination.

For each thick subsurface X of S let L(X) ⊂ L be the set of all minimal geodesic
laminations which fill up X, equipped with the coarse Hausdorff topology. We have

Corollary 3.10. The Gromov boundary of NC(S, 1) equals ∪XL(X) equipped with
the coarse Hausdorff topology.

4. Proof of the theorem

In this section we consider an oriented surface S of genus g ≥ 2 with m ≥ 0
punctures. In the introduction we defined for n ≥ 1 the graph NC(S, n) of non-
separating multicurves in S with n components. Our goal is to show

Theorem 4.1. For n < g/2 + 1 the graph NC(S, n) is hyperbolic.

The case n = 1 is just Proposition 3.1. For 2 ≤ n < g/2+ 1 we use induction on
n similiar to the arguments in the proof of Proposition 3.1. There are no new tools
needed, however all the constructions have to be adjusted to the situation at hand.

We begin with describing an electrification of the graph NC(S, n). First, for
a non-separating (n − 1)-multicurve ν ∈ NC(S, n − 1) let Hν be the complete
subgraph of NC(S, n) whose vertex set consists of all non-separating n-multi-curves
containing ν. We have

Lemma 4.2. There is a natural graph isomorphism Hν → NC(S − ν, 1).

Proof. If β ∈ Hν is any non-separating n-multicurve containing ν then β − ν is a
non-separating simple closed curve in S − ν. If β, β′ ∈ Hν are connected by an
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edge then the non-separating simple closed curves β− ν and β′− ν are disjoint and
hence they are connected in NC(S − ν, 1) by an edge.

Vice versa, the union with ν of any non-separating simple closed curve c in S−ν
is a non-separating multicurve in Hν . If c′ ⊂ S − ν is non-separating and disjoint
from c then ν ∪ c and ν ∪ c′ are connected by an edge in Hν .

This shows the lemma. �

Let H = {Hν | ν ∈ NC(S, n− 1)}.

Lemma 4.3. NC(S, n− 1) is quasi-isometric to the H-electrification of NC(S, n).

Proof. Let E be the H-electrification of NC(S, n). Define a vertex embedding Λ :
NC(S, n− 1) → E by associating to a non-separating (n− 1)-multicurve c any non-
separating n-multicurve Λ(c) containing c. We claim that Λ is coarsely 8-Lipschitz.

To see this let c0, c1 be connected by an edge in NC(S, n−1). Then c1 is obtained
from c0 by removing a component a from c0 and replacing it by a component b
disjoint from c0.

The union c0 ∪ b is a multicurve with n components. If this multicurve is non-
separating then we can view it as a vertex x ∈ E . Since Λ(c0) is a non-separating
n-multicurve containing c0, the distance in E between Λ(c0) and x equals at most
2. Similarly, the distance in E between Λ(c1) and x is at most 2 and hence the
distance in E between Λ(c0) and Λ(c1) is at most 4.

If c0 ∪ b is not non-separating then a ∪ b is a bounding pair in S − (c0 − a) =
S − (c1 − b). Choose a non-separating simple closed curve ω ∈ S − (c0 − a) which
is disjoint from a ∪ b so that both c0 ∪ ω and c1 ∪ ω are non-separating. Such a
curve exists since the genus g − n + 2 of S − (c0 ∪ a) is at least three. Apply the
argument from the previous paragraph to the non-separating (n − 1)-multicurves
c0, (c0 − a)∪ω and to (c0 − a)∪ω, c1. We conclude that the distance in E between
Λ(c0) and Λ(c1) is at most 8.

On the other hand, a map which associates to a vertex x ∈ NC(S, n) ⊂ E an
(n− 1)-multicurve contained in x is a coarsely Lipschitz coarse inverse of Λ. Thus
indeed Λ is a quasi-isometry. �

By Lemma 4.2, for each vertex ν ∈ NC(S, n−1) the complete connected subgraph
Hν of NC(S, n) is quasi-isometric to the hyperbolic graph NC(S − ν, 1). However,
by the results in Section 3, the graph NC(S − ν, 1) is not quasi-isometric to the
curve graph of S − ν. Thus controlling distances in these subgraphs via subsurface
projection is not immediate. Moreover, for a subsurface X of S of genus g − n+ 1
there are in general many different non-separating (n−1)-multicurves disjoint from
X.

To resolve this problem we use exactly the strategy from Section 3. Namely,
we introduce intermediate graphs NC(S, n, p) (p ≥ 1) which are defined as follows.
Vertices of NC(S, n, p) are non-separating n-multicurves. Two such multicurves
ν0, ν1 are connected by an edge of length one if ν̂ = ν0 ∩ ν1 is an (n− 1)-multicurve
and if the non-separating simple closed curves a = ν0 − ν̂ and b = ν1 − ν̂ are
connected by an edge in the graph A(S − ν̂, p).

The strategy is now to deduce hyperbolicity of NC(S, n, 1) from hyperbolicity of
NC(S, n− 1), and for p ≥ 2 to deduce hyperbolicity of NC(S, n, p) from hyperbol-
icity of NC(S, n, p− 1).

For a non-separating (n − 1)-multicurve ν ∈ NC(S, n − 1) let Hν(1) be the
complete subgraph of NC(S, n, 1) whose vertex set consists of all non-separating



12 URSULA HAMENSTÄDT

n-multicurves containing ν. Define moreover

H(1) = {Hν(1) | ν}.

The following is immediate from the reasoning in Lemma 4.2 and Lemma 4.3.

Lemma 4.4. (1) There is a natural graph isomorphism Hν(1) → A(S − ν, 1).
(2) NC(S, n− 1) is quasi-isometric to the H(1)-electrification of NC(S, n, 1).

Our goal is to apply Theorem 2.3 to the family H(1) of subgraphs of NC(S, n, 1)
to deduce hyperbolicity of NC(S, n, 1) from hyperbolicity of NC(S, n− 1). To this
end we have to check that the assumptions in the theorem are satisfied.

For ν 6= ζ ∈ NC(S, n − 1), the vertex set of the intersection Hν(1) ∩ Hζ(1) is
the set of all non-separating n-multicurves which contain both ν and ζ and hence
it consists of at most one point. Thus H(1) is bounded.

By the first part of Lemma 4.4 and by Lemma 3.2, for every ν ∈ NC(S, n − 1)
the graph Hν(1) is δ-hyperbolic for a number δ > 0 which does not depend on ν.

The final step is the verification of the bounded penetration property, which is
more involved.

Let E be the H(1)-electrification of NC(S, n, 1). Let β : [0, k] → E be an efficient
simplicial quasi-geodesic. If the integer i < k is such that β(i), β(i+1) ∈ NC(S, n, 1)
then β(i) and β(i + 1) are n-multicurves, and ν = β(i) ∩ β(i + 1) is an (n − 1)-
multicurve such that β(i), β(i+1) ∈ Hν(1). If β(i) = vν is a special vertex defined
by an (n− 1)-multicurve ν then β(i− 1), β(i+ 1) ∈ Hν(1).

As in Section 2, an enlargement of β is a path β̂ : [0,m] → NC(S, n, 1) defined
as follows. For each i such that β(i) = vν for some ν ∈ NC(S, n − 1), replace the
arc β[i− 1, i+1] by a path of the form j → ν ∪ ζ(j) where ζ is a simplicial geodesic
in A(S − ν, 1) connecting β(i− 1)− ν to β(i+ 1)− ν.

By induction, we now assume that for every L > 1 there is number κ′(L) > 0
with the following property. Let X ⊂ S be a connected subsurface of genus g/2 <
h ≤ g − n + 1 < g. If α : [0, ℓ] → NC(S, n − 1) is an L-quasi-geodesic with the
property that πX(α(i)) 6= ∅ for all i then the diameter of πX(∪iα(i)) in the curve
graph of X does not exceed κ′(L). Note that the case n = 2 holds true by the
results in Section 3.

Lemma 4.3 then implies that for every L > 1 there is a number κ(L) > 3L
with the following property. Let β : [0, k] → E be an efficient L-quasi-geodesic.
If X ⊂ S is a connected subsurface of genus g/2 < h ≤ g − n + 1 so that the
diameter of πX(β(0) ∪ β(k)) in the curve graph of X is at least κ(L), then there is
an (n − 1)-multicurve ν ∈ NC(S, n − 1) disjoint from X, and there is some i < k
so that β(i) ∈ Hν(1) ⊂ NC(S, n, 1).

As in Section 3, an enlargement β̂ of β admits a canonical modification β̃ as
follows. If β(i) = ν ∪ a, β(i+ 1) = ν ∪ b are such that the simple closed curves a, b
are not disjoint but contained in a thick subsurfaceX of S−ν of Euler characteristic
χ(X) = χ(S) + 1 = χ(S − ν) + 1, then replace the edge β[i, i + 1] in NC(S, n, 1)
by an edge-path ζ[j − 1, j + 1] of length two in the space of (not necessarily non-
separating) n-multicurves so that ζ(j−1) = β(i) = ν∪a, ζ(j+1) = β(i+1) = ν∪b
and that ζ(j) = ν ∪ c for a (perhaps separating) simple closed curve c ⊂ S − ν
which is disjoint from a, b and X.

The following can now be derived from the results in Section 2, Lemma 4.2 and
Lemma 4.3.
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Proposition 4.5. (1) The graph NC(S, n, 1) is hyperbolic.
(2) For every L > 1 there are numbers L′ > 1, κ(L) > 0 with the following

property. Let β̂ : [0, k] → NC(S, n, 1) be an enlargement of an efficient
L-quasi-geodesic in E.
(a) β̂ is an L′-quasi-geodesic in NC(S, n, 1).
(b) Let X ⊂ S be a connected subsurface of genus h ∈ (g/2, g−n+1] and

Euler characterisitic χ(X) = χ(S) + 1. If diam(πX(β(0) ∪ β(k))) ≥

κ(L) then a canonical modification of β̂ passes through the complement
of X.

Proof. By the results in Section 2, by Lemma 4.2 and Lemma 4.3, to show hyper-
bolicity of NC(S, n, 1) we only have to show the bounded penetration property for
efficient quasi-geodesics in E and the family of subgraphs H(1).

To this end let β : [0, k] → E be an efficient L-quasi-geodesic in E and let
ν ∈ NC(S, n− 1). Assume that

diam(πS−ν(β(0) ∪ β(k))) ≥ 3κ(L).

Then by induction hypothesis, β passes through Hν(1).
The diameter of Hν(1) in E equals two. Thus if 0 ≤ i ≤ j ≤ k are the first and

last points, respectively, of the intersection of β with Hν(1), then the length j − i
of β[i, j] is at most 3L < κ(L).

An application of the induction hypothesis to β[0, i] and to β[j, k] shows that

diam(πX(β(0) ∪ β(i))) ≤ κ(L) and diam(πX(β(j) ∪ β(k))) ≤ κ(L)

and therefore diam(πX(β(i) ∪ β(j))) ≥ κ(L) > 3L.
Hence β[i, j] passes through the special vertex vν . Moreover, the points β(i), β(j)

are of the form ν∪a(i), ν ∪a(j) for non-separating simple closed curves a(i), a(j) ⊂
S−ν such that diam(πS−ν(β(0)∪a(i))) ≤ κ(L) and diam(πX(β(k)∪a(j))) ≤ κ(L).
This immediately implies the bounded penetration property for the regions Hν(1)
and completes the proof of hyperbolicity of NC(S, n, 1).

The other statements are also immediate from the induction hypothesis and
Theorem 2.3. �

Next we show that hyperbolicity of NC(S, n, p − 1) implies hyperbolicity of
NC(S, n, p). To this end we proceed as in Section 3. The proofs are completely
analogous to the proofs in Section 3.

Once more, our goal is to apply Theorem 2.3. For this denote for a connected
subsurface X of S of genus g − n + 1 and Euler characteristic χ(X) = χ(S) +
p − 1 by BX the complete subgraph of NC(S, n, p − 1) whose vertices consist of
all non-separating n-multicurves ν which are disjoint from the boundary of X. By
assumption on the genus of X, every non-separating n-multicurve ν intersects X
and therefore a vertex ν ∈ BX has at least one component which is contained in
X.

In the next lemma, the assumption n− 1 < g/2 is used in an essential way.

Lemma 4.6. There is a number L0 > 1 not depending on X such that BX is
L0-quasi-isometric to A(X, 1).

Proof. Let ν0 ⊂ S − X be a non-separating (n − 1)-multicurve. Then for every
simple closed non-separating curve b ⊂ X, the union ν0∪b is a vertex in NC(S, n, p).
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Moreover, by Lemma 3.5, two such pairs ν0 ∪ a, ν0 ∪ b are connected by an edge in
NC(S, n, p) if and only if a, b are connected by an edge in A(X, 1).

Now let ζ ∈ BX be arbitrary. Then the number k of components of ζ contained
in X is non-zero. Let c1, . . . , ck be these components. Then c1 ∪ · · · ∪ ck is non-
separating k-multicurve contained in X.

Choose a non-separating n-multicurve ζ ′ ⊃ c1 ∪ · · · ∪ ck contained in X. Such a
multicurve exists since n < h. By the definition of BX , the distance in BX between
ζ and ζ ′ equals n − k. Moreover, the distance in BX between ζ ′ and and a non-
separating n-multicurve containing ν0 equals n − 1. But this just means that the
subspace of BX of non-separating n-multicurves containing ν0 is coarsely dense.
Consequently, associating to a vertex ζ ∈ BX a component of ζ contained in X
defines a Lipschitz map BX → A(X, 1).

That this map coarsely does not decrease distances follows from the fact that
any vertex ζ ∈ BX contains at least one component which is contained in X, and
adjacent vertices contain components which either are disjoint or contained in a
common thick subsurface of X of Euler characteristic χ(X) + 1. �

Define a family of subgraphs

B(p) = {BX | X}

of NC(S, n, p) where X runs through the subsurfaces of S of genus g − n + 1 and
Euler characteristic χ(X) = χ(S) + p − 1. By Lemma 4.6 and Lemma 3.2, each
of the graphs BX is quasi-isometric to the curve graph of X, in particular it is
hyperbolic.

We claim that the family B(p) is bounded. To this end let X,Y be two subsur-
faces of S of the same genus g−n+1 and the same Euler characteristic χ(S)+p−1.
Let ν ∈ BX ∩BY ; then ν is a non-separating n-multicurve disjoint from the bound-
aries of both X,Y . Since the genus of X,Y equals g−n+1, at least one component
of ν is contained in X ∩ Y . However, since X 6= Y , X ∩ Y is a proper subsurface
of X. By Lemma 4.6 and Lemma 3.2, BX is quasi-isometric to the curve graph of
X and hence the diameter of BX ∩BY is uniformly bounded.

Lemma 4.6 shows that each of the graphs BX is δ-hyperbolic for a number δ > 0
not depending on X. Moreover, by the definition of the graphs NC(S, n, p), the
graph NC(S, n, p− 1) is quasi-isometric to the B-electrification of NC(S, n, p− 1).
Thus for an application of Theorem 2.3, we are left with showing the bounded
penetration property.

However, this property follows by the induction assumption on subsurface pro-
jection and Lemma 4.6.

Example: The following example was observed by Tarik Aougab and Saul
Schleimer and shows that the bound n < g/2 + 1 in Theorem 1 is sharp.

Namely, let S be a closed surface of genus 4 and let d be a separating simple
closed curve which decomposes S into two surfaces X1, X2 of genus 2 with one
boundary component. Let ϕi be a pseudo-Anosov element in the mapping class
group of Xi and let ai be a non-separating simple closed curve in Xi (i = 1, 2). Let
moreover c be a non-separating simple closed curve which is disjoint from ai and
intersects d in two points so that a1, a2, c defines a non-separating 3-multicurve ν.

For all k, ℓ ∈ Z the pair (ϕk
1 , ϕ

ℓ
2) defines a reducible mapping class for S, moreover

it is easy to see that the distance in NC(S, 3) between ν and (ϕk
1 , ϕ

ℓ
2)ν is comparable
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to k + ℓ. The reason is that the subsurface projection of any non-separating 3-
multicurve in S into each of the subsurfaces X1, X2 does not vanish. But this just
means that NC(S, 3) contains a quasi-isometrically embedded R

2.

Define a subsurface Y of S to be n-heavy if the genus of Y is at least g − n+ 1.
Let L(Y ) be the set of all minimal geodesic laminations which fill up Y . Similarly
to Corollary 3.10 we have

Corollary 4.7. The Gromov boundary of NC(S, n) equals ∪Y L(Y ) equipped with
the coarse Hausdorff topology where Y passes through the n-heavy subsurfaces of S.

Remark: The main result in this note can also be obtained with the tools developed
in [MS13]. To the best of our knowledge, these tools do not have any obvious
advantage over the tools we used.
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