
PERIODIC ORBITS IN THE THIN PART OF STRATA

URSULA HAMENSTÄDT

Abstract. Let S be a closed oriented surface of genus g ≥ 0 with n ≥ 0

punctures and 3g − 3 + n ≥ 5. Let Q be a connected component of a stratum
in the moduli space Q(S) of area one meromorphic quadratic differentials on

S with n simple poles at the punctures or in the moduli space H(S) of abelian

differentials on S if n = 0. For a compact subset K of Q(S) or of H(S), we
show that the asymptotic growth rate of the number of periodic orbits for the

Teichmüller flow Φt on Q which are entirely contained in Q − K is at least
h(Q)− 1 where h(Q) > 0 is the complex dimension of R+Q.

1. Introduction

For a closed oriented surface S of genus g ≥ 0, the moduli space Q(S) of area
one meromorphic quadratic differentials with at most simple poles which are not
squares of holomorphic one-forms decomposes into strata. Such a stratum is the
subset of Q(S) of all quadratic differentials with the same number n ≥ 0 of simple
poles and the same number ` ≥ 0 of zeros of the same order mi (1 ≤ i ≤ `). Strata
need not be connected, but they have only finitely many components [L08]. A
connected component Q of a stratum is a real hypersurface in a complex algebraic
orbifold of complex dimension

h(Q) = 2g − 2 + `+ n.

Similarly, for g ≥ 2 the moduli space H(S) of area one abelian differentials on S
decomposes into strata. A stratum is the subset of H(S) of holomorphic one-forms
with the same number s ≥ 0 of zeros of the same order ki (1 ≤ i ≤ s). Again, strata
need not be connected, but they have at most 3 components [KZ03]. A component
Q of a stratum is a real hypersurface in a complex algebraic orbifold of complex
dimension

h(Q) = 2g − 1 + s.

The Teichmüller flow Φt acts on Q(S) and H(S), and this action preserves the
strata. Each component of a stratum contains periodic orbits, and these orbits can
be counted: Namely, for a subset A of Q(S) or of H(S) and a number R > 0,
denote by nA(R) the number of period orbits in A of length at most R. Then for
any component Q of a stratum, we have [H13]

nQ(R) ∼ 1

h(Q)R
eh(Q)R (R→∞)
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which means that the ratio of the numbers on both sides of ∼ tend to 1 as R→∞.

The mechanism behind this result is that the Teichmüller flow on components of
strata is non-uniformly hyperbolic in a precise sense [H22]. However, components
of strata are non-compact, and a major difficulty is the possibility that as R→∞,
the number of periodic orbits of length at most R which do not intersect some fixed
compact set K grows faster than the number of periodic orbits of length at most
R which intersect K. That this is not the case was made established by Eskin and
Mirzakhani [EM11] and Eskin, Mirzakhani and Rafi [EMR19] who showed that for
every ε > 0, there is a compact subset K of Q with the property that the growth
rate of the number of periodic orbits in Q which are entirely contained in Q−K is
at most h(Q)− 1 + ε.

The main goal of this article is to establish a converse of this result. We are
interested in periodic orbits in components of strata which project into the thin
part of moduli space, which ignores the possibility of periodic orbits in components
of strata which are arbitrarily close to a component in the boundary of the stratum,
obtained by colliding zeros or merging zeros and poles of the differentials.

Theorem 1. Let Q be a component of a stratum of area one meromorphic quadratic
differentials with n poles on a closed surface of genus g ≥ 0 where 3g − 3 + n ≥ 5
or of a stratum of area one abelian differentials on a surface of genus g ≥ 3. Then
for every compact set K ⊂ Q(S) we have

lim inf
R→∞

Re−(h(Q)−1)RnQ−K(R) > 0.

Note that the Teichmüller flow Φt on the spaceQ(1;−1) of area one meromorphic
quadratic differentials with a single simple pole on a torus T 2 can be identified with
the geodesic flow on the unit tangent bundle of the modular surface SL(2,Z)\H2.
Thus in this case, there is a compact set K which is intersected by every periodic
orbit for Φt. This shows that a constraint on the complexity of the stratum is
necessary.

In analogy to finite volume locally symmetric manfolds of Q-rank at least 2,
Theorem 1 can be viewed as a witness of higher rank for components of strata,
with a small number of exceptions in low dimension. Indirectly, it draws on the
fact that as is the case for locally symmetric manifolds of Q-rank at least 2, if
3g − 3 + n ≥ 5 then the component Q (or its projectivization) admits a (partial)
compactification which is built from components of strata of smaller complexity
[MW17, BCGGM19].

Theorem 1 is not optimal. In forthcoming work which builds on the results
in this article, we use a flexible symbolic coding of the Teichmüller flow to show
that for every component Q of a stratum as in Theorem 1 and every compact set
K ⊂ Q(S), the asymptotic growth rate of periodic orbits for Φt which are contained
in Q −K is strictly larger than h(Q) − 1. Periodic orbits entirely contained in a
fixed compact set K ⊂ Q(S) are counted in [H10].

The main technical tool for the proof of Theorem 1 is the construction of com-
binatorial models for components Q of strata of area one abelian or quadratic
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differentials. These models are adapted to the study of the dynamics of the Te-
ichmüller flow and do not use cylinder decompositions. They are used to investigate
pseudo-Anosov mapping classes which stabilize a component Q̃ of the preimage of
Q in the Teichmüller space of area one marked abelian or quadratic differentials.
Unit cotangent lines of axes of these mapping classes acting on Teichmüller space
project to periodic orbits in Q, and each periodic orbit can be obtained in this way.

We use this construction to lift periodic orbits of the Teichmüller flow from the
principal boundary of Q in the sense of [EMZ03] into Q−K. The resulting periodic
orbits fellow travel the orbits in the principal boundary used for their construction
in a controlled way except for a subsegment whose length only depends on the
compact set K.

The tools developed in this article can also be applied to construct orbits in a
given stratum with an arbitrarily prescribed recursion behavior to compact subsets
of moduli space. An example for this is given in the following statement. For its
formulation, for a point X in the moduli space M(S) of hyperbolic metrics on the
surface S denote by syst(X) be the systole of X, that is, the minimal length of a
closed geodesic for the hyperbolic metric X.

Theorem 2. Let Q be a component of a stratum of area one meromorphic (or
abelian) differentials on a surface of genus g ≥ 0 with n ≥ 0 simple poles. If
3g − 3 + n ≥ 5 then there is a Teichmüller geodesic ray γ : [0,∞)→M(S) defined
by a differential with uniquely ergodic vertical measured geodesic lamination and
such that

lim sup
t→∞

1

t
log syst(γ(t)) < 0.

The organization of the article is as follows. In Section 2 we collect some re-
sults from the literature in the form needed later on. In Section 3, we construct
combinatorial models for components of strata. In Section 4 we use the classi-
fication of components of strata by Kontsevich and Zorich [KZ03] (for strata of
abelian differentials) and Lanneau [L08] (for strata of quadratic differentials which
are not squares of holomophic one-forms) to find for each component of a stratum
with 3g − 3 + n ≥ 5 such combinatorial models which encode the degeneration of
differentials into suitably chosen components of the principal boundary. Section 5
translates information on dynamical properties of the Teichmüller flow on strata
into the combinatorial setup. This is then used in Section 6 to prove Theorem 1.

Acknowledgement: A major part of this work was carried out in spring 2010
during a special semester at the Hausdorff Institute for Mathematics in Bonn and
in spring 2011 during a visit of the MSRI in Berkeley. I thank both institutes for
their hospitality and for the excellent working conditions.

2. Train tracks and geodesic laminations

In this section we introduce some technical tools needed in the sequel. We
begin with summarizing some constructions from [PH92, H09] which will be used
throughout the paper. We then introduce a class of train tracks which will serve as
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combinatorial models for components of strata in the later sections, and we discuss
some of their properties.

2.1. Geodesic laminations. Let S be an oriented surface of genus g ≥ 0 with
n ≥ 0 marked points (punctures) and where 3g− 3 + n ≥ 2. A geodesic lamination
for a complete hyperbolic structure on S of finite volume is a compact subset of S
which is foliated into simple geodesics. A geodesic lamination λ is called minimal
if each of its half-leaves is dense in λ. Thus a simple closed geodesic is a minimal
geodesic lamination. A minimal geodesic lamination with more than one leaf has
uncountably many leaves and is called minimal arational. Every geodesic lamina-
tion λ consists of a disjoint union of finitely many minimal components and a finite
number of isolated leaves. Each of the isolated leaves of λ either is an isolated closed
geodesic and hence a minimal component, or it spirals about one or two minimal
components [CEG87].

A geodesic lamination λ on S is said to fill up S if its complementary regions
are all topological disks or once punctured monogons or once punctured bigons.
Here a once puncture monogon is a once punctured disk with a single cusp at
the boundary. A maximal geodesic lamination is a geodesic lamination whose
complementary regions are all ideal triangles or once punctured monogons.

Definition 2.1. A geodesic lamination λ is called large if λ fills up S and if more-
over λ can be approximated in the Hausdorff topology by simple closed geodesics.

Since every minimal geodesic lamination can be approximated in the Hausdorff
topology by simple closed geodesics [CEG87], a minimal geodesic lamination which
fills up S is large. However, there are large geodesic laminations with finitely many
leaves. We refer to [H09] for more detailed information.

The topological type of a large geodesic lamination ν is a tuple

(m1, . . . ,m`;−p1, p2) where 1 ≤ m1 ≤ · · · ≤ m`,
∑
i

mi = 4g− 4 + p1, p1 + p2 = n.

Here ` ≥ 1 is the number of complementary regions which are topological disks,
and these disks are mi + 2-gons (i ≤ `). There are p1 once punctured monogons
and p2 once punctured bigons. Let

LL(m1, . . . ,m`;−p1, p2)

be the space of all large geodesic laminations of type (m1, . . . ,m`;−p1, p2) equipped
with the restriction of the Hausdorff topology for compact subsets of S.

A measured geodesic lamination is a geodesic lamination λ together with a trans-
lation invariant transverse measure. Such a measure assigns a positive weight to
each compact arc in S with endpoints in the complementary regions of λ which
intersects λ nontrivially and transversely. The geodesic lamination λ is called
the support of the measured geodesic lamination; it consists of a disjoint union
of minimal components. The space ML of all measured geodesic laminations on
S equipped with the weak∗-topology is homeomorphic to S6g−7+2n × (0,∞). Its
projectivization is the space PML of all projective measured geodesic laminations.
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The measured geodesic lamination µ ∈ ML fills up S if its support fills up S.
This support is then necessarily connected and hence minimal. Since a minimal
geodesic lamination can be approximated in the Hausdorff topology by simple closed
curves [CEG87], there exists a tuple (m1, . . . ,m`;−p1, p2) such that the support of
µ defines a point in the set LL(m1, . . . ,m`;−p1, p2). The projectivization of a
measured geodesic lamination which fills up S is also said to fill up S.

There is a continuous symmetric pairing ι :ML×ML → [0,∞), the so-called
intersection form, which extends the geometric intersection number between simple
closed curves.

2.2. Train tracks. A train track on S is an embedded 1-complex τ ⊂ S whose
edges (called branches) are smooth arcs with well-defined tangent vectors at the
endpoints. At any vertex (called a switch) the incident edges are mutually tangent.
Through each switch there is a path of class C1 which is embedded in τ and contains
the switch in its interior. A simple closed curve component of τ contains a unique
bivalent switch, and all other switches are at least trivalent. The complementary
regions of the train track have negative Euler characteristic, which means that
they are different from disks with 0, 1 or 2 cusps at the boundary and different
from annuli and once-punctured disks with no cusps at the boundary. We always
identify train tracks which are isotopic. Throughout we use the book [PH92] as the
main reference for train tracks. All train tracks will be marked, that is, we think
of a train track τ as a (coarsely well defined) point in the marking graph of the
subsurface of S filled by τ . This subsurface is a small neighborhood of the union
of τ with all complementary components of τ which are topological disks or once
punctured topological disks.

A train track is called generic if all switches are at most trivalent. For each
switch v of a generic train track τ which is not contained in a simple closed curve
component, there is a unique half-branch b of τ which is incident on v and which
is large at v. This means that every germ of an arc of class C1 on τ which passes
through v also passes through the interior of b. A half-branch which is not large
is called small. A branch b of τ is called large (or small) if each of its two half-
branches is large (or small). A branch which is neither large nor small is called
mixed.

Remark 2.2. As in [H09], all train tracks are assumed to be generic. Unfortunately
this leads to a small inconsistency of our terminology with the terminology found
in the literature.

A trainpath on a train track τ is a C1-immersion ρ : [k, `] → τ such that for
every i < ` − k the restriction of ρ to [k + i, k + i + 1] is a homeomorphism onto
a branch of τ . More generally, we call a C1-immersion ρ : [a, b] → τ a generalized
trainpath. A trainpath ρ : [k, `] → τ is closed if ρ(k) = ρ(`) and if either the
image of ρ is a closed curve component of τ or if precisely one of the half-branches
ρ[k, k + 1/2], ρ[`− 1/2, `] is large.

A generic train track τ is orientable if there is a consistent orientation of the
branches of τ such that at any switch s of τ , the orientation of the large half-branch
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incident on s extends to the orientation of the two small half-branches incident on s.
If C is a complementary polygon of an oriented train track then the number of sides
of C is even. In particular, a train track which contains a once punctured monogon
component is not orientable (see p.31 of [PH92] for a more detailed discussion).

A train track or a geodesic lamination η is carried by a train track τ if there is
a map F : S → S of class C1 which is homotopic to the identity and maps η into τ
in such a way that the restriction of the differential of F to the tangent space of η
vanishes nowhere; note that this makes sense since a train track has a tangent line
everywhere. We call the restriction of F to η a carrying map for η. Write η ≺ τ if
the train track η is carried by the train track τ . Then every geodesic lamination ν
which is carried by η is also carried by τ .

A train track fills up S if its complementary components are topological disks
or once punctured monogons or once punctured bigons. Note that such a train
track τ is connected. Let ` ≥ 1 be the number of those complementary components
of τ which are topological disks. Each of these disks is an mi + 2-gon for some
mi ≥ 1 (i = 1, . . . , `). The topological type of τ is defined to be the ordered tuple
(m1, . . . ,m`;−p1, p2) where 1 ≤ m1 ≤ · · · ≤ m` and p1 (or p2) is the number of
once punctured monogons (or once punctured bigons); then

∑
imi = 4g − 4 + p1

and p1 + p2 = n. If τ is orientable then p1 = 0 and mi is even for all i. A train
track of topological type (1, . . . , 1;−p1, 0) is called maximal. The complementary
components of a maximal train track are all trigons, that is, topological disks with
three cusps at the boundary, or once punctured monogons.

A transverse measure on a generic train track τ is a nonnegative weight function
µ on the branches of τ satisfying the switch condition: for every trivalent switch
s of τ , the sum of the weights of the two small half-branches incident on s equals
the weight of the large half-branch. Particular such transverse measures are the
counting measures of simple multicurves c carried by τ . Such a measure associates
to a branch b the number of the preimages of an interior point of b under the
carrying map. The weight of every branch with respect to this measure is integral.
In particular, the ratio of weights of any two branches is rational, and we call a
transverse measure with this property rational. The set of rational measures is
invariant under scaling, and it is dense is the cone of all transverse measures on τ .

A subtrack σ of a train track τ is a subset of τ which is itself a train track.
Then σ is obtained from τ by removing some of the branches, and we write σ < τ .
A vertex cycle for τ is defined to be an embedded subtrack of τ which either is a
simple closed curve or a dumbbell, that is, it consists of two loops with one cusp
which are connected by an embedded segment joining the cusps (that this definition
is equivalent to the definition defined in other works can for example be found in
[Mo03], see also [H06]). An orientable train track does not contain dumbbells. Each
vertex cycle supports a single transverse measure up to scale.

The following is well known and will be used several times in the sequel. We
refer to [Mo03] for a comprehensive discussion.

Lemma 2.3. Let V(τ) be the space of all transverse measures on τ .
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(1) V(τ) has the structure of a cone over a compact convex polyhedron in a
finite dimensional vector space.

(2) The vertices of the polyhedron are up to scaling the measures supported on
the vertex cycles.

(3) There exists a natural homeomorphism of V(τ), equipped with the euclidean
topology, onto the closed subspace of ML of all measured geodesic lamina-
tions carried by τ .

The train track is called recurrent if it admits a transverse measure which is
positive on every branch. We call such a transverse measure µ positive, and we
write µ > 0 (see [PH92] for more details).

If b is a small branch of τ which is incident on two distinct switches of τ then
the graph σ obtained from τ by removing b is a subtrack of τ . We then call τ a
simple extension of σ. Note that formally to obtain the subtrack σ from τ − b we
may have to delete the switches on which the branch b is incident.

Lemma 2.4. (1) A simple extension τ of a recurrent non-orientable connected
train track σ is recurrent. Moreover,

dimV(τ) = dimV(σ) + 1.

(2) An orientable simple extension τ of a recurrent orientable connected train
track σ is recurrent. Moreover,

dimV(τ) = dimV(σ) + 1.

Proof. If τ is a simple extension of a connected train track σ then σ can be obtained
from τ by the removal of a small branch b which is incident on two distinct switches
s1, s2. Then si is an interior point of a branch bi of σ (i = 1, 2).

If σ is moreover non-orientable and recurrent then there is a trainpath ρ0 :
[0, t]→ τ − b which begins at s1, ends at s2 and such that the half-branch ρ0[0, 1/2]
is small at s1 = ρ0(0) and that the half-branch ρ0[t− 1/2, t] is small at s2 = ρ0(t).
Extend ρ0 to a closed trainpath ρ on τ − b which begins and ends at s1. This
is possible since σ is non-orientable, connected and recurrent. There is a closed
trainpath ρ′ : [0, u] → τ which can be obtained from ρ by replacing the trainpath
ρ0 by the branch b traveled through from s1 to s2. The counting measure of
ρ′ on τ satisfies the switch condition and hence it defines a transverse measure
on τ which is positive on b. On the other hand, every transverse measure on σ
defines a transverse measure on τ . Thus since σ is recurrent and since the sum of
two transverse measures on τ is again a transverse measure, the train track τ is
recurrent as well. Moreover, we have dimV(τ) ≥ dimV(σ) + 1.

Let k be the number of branches of τ . Label the branches of τ with the numbers
{1, . . . , k} so that the number k is assigned to b. Let e1, . . . , ek be the standard
basis of Rk and define a linear map A : Rk → Rk by A(ei) = ei for i ≤ k − 1
and A(ek) =

∑
i ν(i)ei where ν is the weight function on {1, . . . , k − 1} defined

by the trainpath ρ0. The map A is a surjection onto a linear subspace of Rk of
codimension one, moreover A preserves the linear subspace V of Rk defined by the
switch conditions for τ . In particular, the corank of A(V ) in V is at most one.
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But A(V ) is contained in the space of solutions of the switch conditions on σ and
consequently its corank in V is at least one. Thus equality holds.

To summarize, we obtain that indeed, dimV(τ) = dimV(σ) + 1 which completes
the proof of the first part of the lemma. The second part follows in exactly the
same way, and its proof will be omitted. �

As a consequence we obtain

Corollary 2.5. (1) dimV(τ) = 2g − 2 + ` + p1 + p2 for every non-orientable
recurrent train track τ of topological type (m1, . . . ,m`;−p1, p2).

(2) dimV(τ) = 2g − 1 + ` + p2 for every orientable recurrent train track τ of
topological type (m1, . . . ,m`; 0, p2).

Proof. The complementary components of a non-orientable recurrent train track τ
of topological type (m1, . . . ,m`;−p1, p2) can be subdivided in 4g− 4 + p1− ` steps
into trigons by successively adding small branches. The once punctured bigon
components can be subdivided into a trigon and a once punctured monogon. A
repeated application of the first part of Lemma 2.4 shows that the resulting train
track η is maximal and recurrent. Since for every maximal recurrent train track
η on a surface with n = p1 + p2 punctures we have dimV(η) = 6g − 6 + 2n (see
[PH92]), the first part of the corollary follows from the formula in the first part of
Lemma 2.4.

To show the second part of the corollary, let τ be an orientable recurrent train
track of type (m1, . . . ,m`; 0, p2). Then mi is even for all i. Add a branch b0 to τ
which cuts some complementary component of τ into a trigon and a second polygon
with an odd number of sides. The resulting train track η0 is not recurrent since
a trainpath on η0 can pass through b0 at most once. However, we can add to η0
another small branch b1 which cuts some complementary component of η0 with at
least 4 sides into a trigon and a second polygon such that the resulting train track
η is non-orientable and recurrent. The inward pointing tangent of b1 is chosen in
such a way that there is a trainpath traveling through both b0 and b1. The counting
measure of any simple closed curve which is carried by η gives equal weight to the
branches b0 and b1. But this just means that dimV(η) = dimV(τ)+1 (see the proof
of Lemma 2.4 for a detailed argument). By the first part of the corollary, we have
dimV(η) = 2g − 2 + ` + p2 + 2 and consequently dimV(τ) = 2g − 1 + ` + p2 as
claimed. �

Definition 2.6. A train track τ of topological type (m1, . . . ,m`;−p1, p2) which
carries a minimal large geodesic lamination ν ∈ LL(m1, . . . ,m`;−p1, p2) is called
fully recurrent.

Remark 2.7. It is not hard to construct train tracks which are recurrent but not
fully recurrent. Since this fact is not important for what follows we do not give
explicit examples here.

If a train track η is carried by a train track τ , then the identity of S induces a
map from the set of complementary components of τ into the set of complementary
components of η. Thus up to homotopy, the complementary components of τ are
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obtained from the complementary components of η by subdivision. In particular,
the number of complementary components of τ is not smaller than the number of
complementary components of η, and if ν ∈ LL(m1, . . . ,m`;−p1, p2) is carried by a
train track τ of topological type (m1, . . . ,m`;−p1, p2), then a carrying map ν → τ
is surjective.

Note that by definition, a fully recurrent train track is connected and fills up
S. Since a minimal geodesic lamination supports a transverse measure, a fully
recurrent train track τ is recurrent.

There are two simple ways to modify a fully recurrent train track τ to another
fully recurrent train track. Namely, if b is a mixed branch of τ then we can shift
τ along b to a new train track τ ′. This new train track carries τ and hence it
is fully recurrent since it carries every geodesic lamination which is carried by τ
[PH92, H09].

Similarly, if e is a large branch of τ then we can perform a right or left split of
τ at e as shown in Figure A. The new small branch in the split track is called the

Figure A

diagonal of the split. A (right or left) split τ ′ of a train track τ is carried by τ .
If τ is of topological type (m1, . . . ,m`;−p1, p2), if ν ∈ LL(m1, . . . ,m`;−p1, p2) is
carried by τ and if e is a large branch of τ , then there is a unique choice of a right
or left split of τ at e such that the split track η carries ν. In particular, η is fully
recurrent. Note however that there may be a split of τ at e such that the split track
is not fully recurrent any more (see Section 2 of [H09] for details).

To each train track τ which fills up S one can associate a dual bigon track τ∗

(Section 3.4 of [PH92]). There is a bijection between the complementary compo-
nents of τ and those complementary components of τ∗ which are not bigons, i.e.
disks with two cusps at the boundary. This bijection maps a complementary com-
ponent C of τ which is an n-gon for some n ≥ 3 to an n-gon component of τ∗

contained in C, and it maps a once punctured monogon or bigon C to a once punc-
tured monogon or bigon contained in C. If τ is orientable then the orientation of
S and an orientation of τ induce an orientation on τ∗, that is, τ∗ is orientable.

There is a notion of carrying for bigon tracks which is analogous to the notion of
carrying for train tracks. Measured geodesic laminations which are carried by the
bigon track τ∗ can be described as follows. A tangential measure on a train track τ
of type (m1, . . . ,m`;−p1, p2) assigns to a branch b of τ a weight µ(b) ≥ 0 such that
for every complementary k-gon of τ or once punctured bigon with consecutive sides
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c1, . . . , ck and total mass µ(ci) (counted with multiplicities) the following holds
true.

(1) µ(ci) ≤ µ(ci−1) + µ(ci+1).

(2)
∑k+j−1
i=j (−1)i−jµ(ci) ≥ 0, j = 1, . . . , k.

The complementary once punctured monogons define no constraint on tangential
measures. Our definition of tangential measure on τ is stronger than the definition
given on p.22 of [PH92] and corresponds to the notion of a metric as defined on
p.184 of [P88]. We do not use this terminology here since we find it misleading.

The space of all tangential measures on τ has the structure of a convex cone
in a finite dimensional real vector space. By Lemma 2.1 of [P88], every tangential
measure on τ determines a simplex of measured geodesic laminations which hit τ
efficiently. The dimension of this simplex equals the number of complementary
components of τ with an even number of sides. The supports of these measured
geodesic laminations are carried by the bigon track τ∗, and every measured geodesic
lamination which is carried by τ∗ can be obtained in this way. The train track τ is
called transversely recurrent if it admits a tangential measure which is positive on
every branch.

In general, a measured geodesic lamination ν which hits τ efficiently does not
determine uniquely a tangential measure on τ either. Namely, let s be a switch of τ
and let a, b, c be the half-branches of τ incident on s and such that the half-branch a
is large. If β is a tangential measure on τ and if ν is a measured geodesic lamination
in the simplex determined by β then it may be possible to drag the switch s across
some of the leaves of ν and modify the tangential measure β on τ to a tangential
measure µ 6= β. Then β − µ is a multiple of a vector of the form δa − δb − δc where
δw denotes the function on the branches of τ defined by δw(w) = 1 and δw(a) = 0
for a 6= w.

Definition 2.8. Let τ be a train track of topological type (m1, . . . ,m`;−p1, p2).

(1) τ is called fully transversely recurrent if its dual bigon track τ∗ carries a
minimal large geodesic lamination ν ∈ LL(m1, . . . ,m`;−p1, p2).

(2) τ is called large if τ is fully recurrent and fully transversely recurrent.

For a large train track τ let V∗(τ) ⊂ML be the set of all measured geodesic lam-
inations whose support is carried by τ∗. Each of these measured geodesic lamina-
tions corresponds to a family of tangential measures on τ . With this identification,
the pairing

(1) (ν, µ) ∈ V(τ)× V∗(τ)→
∑
b

ν(b)µ(b)

is just the restriction of the intersection form on measured lamination space (Section
3.4 of [PH92]). Moreover, V∗(τ) is naturally homeomorphic to a convex cone in a
real vector space. The dimension of this cone coincides with the dimension of V(τ).

From now on we denote by LT (m1, . . . ,m`;−p1, p2) the set of all isotopy classes
of large train tracks on S of type (m1, . . . ,m`;−p1, p2).
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3. Combinatorial models for components of strata

The goal of this section is to relate large train tracks to components of strata of
abelian or quadratic differentials.

For a closed oriented surface Sg,n of genus g ≥ 0 with n ≥ 0 marked points

(punctures) let Q̃(Sg,n) be the bundle of marked area one holomorphic quadratic
differentials with either a simple pole or a regular point at each of the marked
points and no other pole over the Teichmüller space T (Sg,n) of marked complex
structures on Sg,n.

Fix a complete hyperbolic metric on Sg,n of finite area. A quadratic differential

q ∈ Q̃(Sg,n) is determined by a pair (λ+, λ−) of measured geodesic laminations
which bind S, which means that we have ι(λ+, µ) + ι(λ−, µ) > 0 for every mea-
sured geodesic lamination µ. The vertical measured geodesic lamination λ+ for q
corresponds to the equivalence class of the vertical measured foliation of q. The
horizontal measured geodesic lamination λ− for q corresponds to the equivalence
class of the horizontal measured foliation of q. These foliations are the pull-back
of the foliation of C into straight lines parallel to the imaginary or real axis, re-
spectively, by a system of charts on the complement of the singular points of q for
which q takes the form dz2 (or dz if z is a holomorphic one-form).

For p1 ≤ n, p2 = n−p1 and ` ≥ 1, an `-tuple (m1, . . . ,m`) of positive integers 1 ≤
m1 ≤ · · · ≤ m` with

∑
imi = 4g− 4 + p1 defines a stratum Q̃(m1, . . . ,m`;−p1, p2)

in Q̃(Sg,n). This stratum consists of all marked quadratic differentials with p1
simple poles, p2 regular marked points and ` zeros of order m1, . . . ,m`. We require
that these differentials are not squares of holomorphic one-forms. The stratum is a
complex manifold of dimension

(2) h = 2g − 2 + `+ p1 + p2.

In general, such a stratum is not connected, but most strata have only finitely
many connected components [CS21, H21]. These components are permuted by the
mapping class group Mod(Sg,n) of Sg,n.

The closure in Q̃(Sg,n) of a stratum is a union of components of strata. As
strata are invariant under the action of the mapping class group Mod(Sg,n) of Sg,n,

they project to strata in the moduli space Q(Sg,n) = Q̃(Sg,n)/Mod(Sg,n) of qua-
dratic differentials on Sg,m. Denote by Q(m1, . . . ,m`;−p1, p2) the projection of

the stratum Q̃(m1, . . . ,m`;−p1, p2). The strata in moduli space need not be con-
nected, but their connected components have been identified by Lanneau [L08]. A
stratum in Q(Sg,n) has at most two connected components. The number of com-
ponents of the stratum Q(m1, . . . ,m`;−p1, p2) equals the number of components
of Q(m1, . . . ,m`;−p1, 0).

Similarly, let H̃(Sg,n) be the bundle of marked holomorphic one-forms over Te-
ichmüller space T (Sg,n) of Sg,n. Each of the marked points of Sg,n is required to be
a regular marked point for the differential. In particular, the bundle is non-empty
only if g ≥ 1. For an `-tuple k1 ≤ · · · ≤ k` of positive integers with

∑
i ki = 2g− 2,

the stratum H̃(k1, . . . , k`;n) of marked holomorphic one-forms on S with ` zeros
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of order ki (i = 1, . . . , `) and n regular marked points is a complex manifold of
dimension

(3) h = 2g − 1 + `+ n.

It projects to a stratum H(k1, . . . , k`;n) in the moduli space H(Sg,n) of area one
holomorphic one-forms on Sg,n. Strata of holomorphic one-forms in moduli space
need not be connected, but the number of connected components of a stratum is
at most three [KZ03].

We continue to use the assumptions and notations from Section 2. For a marked
large train track τ ∈ LT (m1, . . . ,m`;−p1, p2) let

Q(τ) ⊂ Q̃(Sg,n)

be the set of all marked quadratic differentials whose horizontal measured geodesic
lamination is contained in V(τ) via the identification of V(τ) with a (not necessarily
open) cone in ML and whose vertical measured geodesic lamination is carried by
the dual bigon track τ∗ of τ . Since τ and τ∗ both carry a minimal large geodesic
lamination, and such a lamination supports a transverse measure and fills S = Sg,n,
for a large train track τ on S = Sg,n the set Q(τ) is not empty. Recall that no
geodesic lamination can be carried by both τ and τ∗.

Given two measure laminations (µ, ν) which bind S, it is in general not easy
to determine the stratum of the quadratic or abelian differential z determined by
(µ, ν) due to possibility of horizontal or vertical saddle connections. Such a saddle
connection is a geodesic segment for the singular euclidean metric defined by z
which connects two singular points of z (here we exclude a regular marked point)
and does not contain a singular point in its interior. The next lemma shows that
train tracks can to used to this end.

Lemma 3.1. (1) Let τ ∈ LT (m1, . . . ,m`;−p1, p2) be non-orientable and let
q ∈ Q(τ). If the support of the horizontal measured geodesic lamination of

q is contained in LL(m1, . . . ,m`;−p1, p2) then q ∈ Q̃(m1, . . . ,m`;−p1, p2).
(2) Let τ ∈ LT (m1, . . . ,m`; 0, p2) be orientable and let q ∈ Q(τ). If the sup-

port of the horizontal measured geodesic lamination of q is contained in
LL(m1, . . . ,m`; 0, p2) then q ∈ H̃(m1/2, . . . ,m`/2; p2).

Proof. A marked quadratic differential z ∈ Q̃(Sg,n) defines a singular euclidean
metric on Sg,n. A singular point for z is a zero or a pole or a marked regular point.
A separatrix is a maximal geodesic segment or ray which begins at a singular point
and does not contain a singular point in its interior.

The complex structure on Sg,n underlying z determines a complete finite area
hyperbolic metric h on Sg,n with cusps at the p1 marked points appearing in the
definition. Let ξ be the support of the horizontal measured geodesic lamination
of the quadratic differential z, realized in the hyperbolic metric h. By [L83], the
geodesic lamination ξ can be obtained from the horizontal foliation of z by cutting
Sg,n open along each horizontal separatrix and straightening the remaining leaves
so that they become geodesics for h. In particular, up to homotopy, a horizontal
saddle connection s of z is contained in the interior of a complementary component
C of ξ which is uniquely determined by s.
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Let τ ∈ LT (m1, . . . ,m`;−p1, p2) be non-orientable. Let q ∈ Q(τ) and assume
that the support supp(µ) of the horizontal measured geodesic lamination µ ∈ V(τ)
of q is contained in LL(m1, . . . ,m`;−p1, p2). Then supp(µ) is non-orientable since
otherwise τ inherits an orientation from supp(µ) via a carrying map supp(µ)→ τ .
Since supp(µ) ∈ LL(m1, . . . ,m`;−p1, p2), the orders of the zeros of the quadratic
differential q are obtained from the orders m1, . . . ,m` by subdivision. Moreover, q ∈
Q̃(m1, . . . ,m`;−p1, p2) if and only if this subdivision is trivial, which is equivalent
to stating that q does not have any horizontal saddle connection.

To show that this is indeed the case note first that the closure in Q̃(Sg,n) of

the stratum Q̃(m1, . . . ,m`;−p1, p2) is the union of Q̃(m1, . . . ,m`;−p1, p2) with
components of strata obtained by colliding some singular points. Thus it suffices
to find a sequence qj of marked quadratic differentials which are contained in the

closure of Q̃(m1, . . . ,m`;−p1, p2) and such that qj → q.

For the construction of such a sequence, let βj ∈ V∗(τ) be a sequence of ra-
tional points, that is, measured geodesic laminations supported on simple closed
multicurves, so that βj converges as j →∞ to the vertical measured lamination of
q. Such a sequence exists since rational points are dense in V∗(τ). As µ is min-
imal and fills Sg,n, for all j the pair (µ, βj) binds Sg,n (since the only measured
laminations on Sg,n whose intersection with µ vanish have the same support as µ)

and hence defines a quadratic differential qj ∈ Q̃(Sg,n) with qj → q. Our goal is

to show that qj is contained in the closure of Q̃(m1, . . . ,m`;−p1, p2) and hence in

Q̃(m1, . . . ,m`;−p1, p2) by the choice of µ.

Consider for the moment a quadratic differential u ∈ Q(τ) with horizontal mea-
sured geodesic lamination µ which admits a horizontal saddle connection α con-
necting the zeros x1, x2. The weight deposited on α by the transverse measure of
the vertical measured geodesic lamination of u is positive. By Remark 2.7 and the
discussion in the beginning of this proof, there exists a homotopy of Sg,n which
maps µ onto τ and which maps x1, x2 into a (uniquely determined) complemen-
tary component C of τ . The component C has at least four sides, and if D is the
complementary component of µ which corresponds to C, then there exists a pair
of non-adjacent sides a, b of D corresponding to a pair of non-adjacent sides of C
such that the transverse measure of the vertical measured geodesic lamination of
u gives positive mass to geodesic lines whose intersection components with D have
endpoints on the sides a, b.

We use this observation as follows. For each j, the simple closed multicurve βj
can be homotoped to a collection of closed trainpaths on the dual bigon track τ∗ of
τ . These paths intersect τ transversely in interior points of branches. If C is any
component of Sg,n − τ , then any component of the intersection of βj with C has
its endpoints on consecutive sides of C (see Section 3.4 of [PH92] for details on this
fact).

The geodesic lamination supp(µ) lifts to a geodesic lamination µ̂ in the hyper-
bolic plane H2 which is the universal covering of Sg,n, equipped with a complete
finite volume hyperbolic metric. on H2. The lift of D is a π1(Sg,n)-invariant col-
lection of ideal polygons in H2. Trainpaths on τ∗ lift to uniform quasi-geodesic in
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H2 which uniformly fellow-travel their geodesic representatives. Thus if D̂ ⊂ H2

is a component of the preimage of D, then the geodesic representatives of the lifts
of the trainpaths corresponding to a component of the multi-curve βj do not con-

tain any subarc crossing through D̂, with endpoints on non-adjacent sides of D̂.
Together with the discussion in the previous paragraph, we conclude that qj does
not have a horizontal saddle connection and hence it is contained in the closure of
Q̃(m1, . . . ,m`;−p1, p2) which is what we wanted to show.

This yields the first part of the lemma, and the second part follows with precisely
the same argument. �

We use Lemma 3.1 to show

Proposition 3.2. (1) Let τ ∈ LT (m1, . . . ,m`;−p1, p2) be a large non-orien-

table train track. Then there is a component Q̃ of Q̃(m1, . . . ,m`;−p1, p2)

such that Q(τ) is the closure in Q̃(Sg,n) of an open path connected subset

of Q̃.
(2) For every large orientable train track τ ∈ LT (m1, . . . ,m`; 0, n) there is

a component Q̃ of H̃(m1/2, . . . ,m`/2, n) such that Q(τ) is the closure in

H̃(Sg,n) of an open path connected subset of Q̃.

Proof. In the proof of the proposition, we do not distinguish between the orientable
and the non-orientable case.

Let τ ∈ LL(m1, . . . ,m`;−p1, p2) and let µ ∈ V(τ) be such that the support
supp(µ) of µ is contained in LL(m1, . . . ,m`;−p1, p2). Notice that such a point
is contained in the interior of V(τ). If β ∈ V∗(τ) is arbitrary then the measured
geodesic laminations µ, β bind Sg,n (since the support of β is different from the

support of µ and supp(µ) fills up Sg,n). Hence if we put β̂ = β/ι(µ, beta) then the

pair (µ, |hatβ) defines a point q(µ, β̂) ∈ Q(τ). By Lemma 3.1, we have q(µ, β̂) ∈
Q̃(m1, . . . ,m`;−p1, p2).

Recall that V∗(τ) is homeomorphic to a cone over a closed cell whose dimen-

sion equals half of the dimension of Q̃(m1, . . . ,m`;−p1, p2). Let V be the in-
terior of this cell. By continuity and invariance of domain, we conclude that
the set {q(µ, β) | β ∈ V } is an open subset of the strong stable manifold of in

Q̃(m1, . . . ,m`;−p1, p2) defined by µ. In period coordinates, such a strong stable

manifold consists of quadratic differentials in Q̃(m1, . . . ,m`;−p1, p2) with the same
real part.

As measured geodesic laminations which are minimal and of the same topological
type as τ are dense in the set of all measured laminations in such a strong stable
manifold (see [KMS86] for a comprehensive discussion of this fact), we conclude
that measured geodesic laminations with this property are dense in V∗(τ).

Choose a measured geodesic lamination ν ∈ V∗(τ) whose support supp(ν) is
contained in LL(m1, . . . ,m`;−p1, p2). Using exactly the same reasoning as above,
we deduce that for each α ∈ V(τ), the pair (α̂, ν) defines a quadratic differential

q(α̂, ν) ∈ Q̃(m1, . . . ,m`;−p1, p2) where α̂ = α/ι(α, ν). Furthermore, the measured
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laminations whose supports are minimal and of the same topological type as τ are
dense in V(τ).

As a consequence, there exists a dense subset of Q(τ) which is contained in

Q̃(m1, . . . ,m`;−p1, p2). As Q̃(m1, . . . ,m`;−p1, p2) is locally closed in Q̃(Sg,n), the

intersection Q̃(m1, . . . ,m`;−p1, p2)∩Q(τ) is open and dense in Q(τ). Thus to com-
plete the proof of the proposition, it suffices to show that the set of all pairs (α, β) ∈
V(τ) × V∗(τ) which gives rise to a differential q(α, β̂) ∈ Q̃(m1, . . . ,m`;−p1, p2) is
path connected. Since area renormalization is continuous, to this end it suffices to
construct paths of differentials whose areas may be different from one.

Thus let (α, β), (α′, β′) be two pairs with q(α, β) ∈ Q̃(m1, . . . ,m`;−p1, p2) where
q(α, β) denotes the differential defined by α, β, of area ι(α, β). Now binding Sg,n is

an open condition for pairs of measured laminations, and Q̃(m1, . . . ,m`;−p1, p2)∩
Q(τ) is open inQ(τ) by the above discussion. Since moreover the set of all measured
laminations whose support is of type LL(m1, . . . ,m`;−p1, p2) is dense in V(τ), there
exist laminations µ, µ′ ∈ V(τ) with the following properties.

(1) supp(µ), supp(µ′) are of type LL(m1, . . . ,m`;−p1, p2).
(2) There is a path c, c′ : [0, 1] → V(τ) connecting α to µ, α′ to µ′ so that for

every t ∈ [0, 1], the pair (c(t), β) and (c′(t), β′) binds Sg,n, and the paths

t → q(c(t), β) and t → q(c′(t), β′) are contained in Q̃(m1, . . . ,m`;−p1, p2)
up to area renormalization.

By the beginning of this proof, for every measured lamination ξ ∈ V∗(τ), the

pair (µ, ξ) determines a quadratic differential q(µ, ξ) ∈ Q̃(m1, . . . ,m`;−p1, p2) (up
to area renormalization), and the same holds true for the pair (µ′, ξ). Choose a mea-
sured lamination ν ∈ V∗(τ) whose support is contained in LL(m1, . . . ,m`;−p1, p2).
Using the discussion in the previous paragraphs, the differential q(µ, β) can be con-

nected to q(µ, ν) by a path in Q(τ) which is contained in Q̃(m1, . . . ,m`;−p1, p2)∩
Q(τ), and there also is such a path connecting q(µ′, β′) and q(µ′, ν). Another ap-
plication of this argument shows that the differential q(µ′, ν) can be connected to

q(µ, ν) by a path in Q̃(m1, . . . ,m`;−p1, p2) ∩Q(τ).

Together we find that the differentials q(α, β) and q(α′, β′) can both be connected

to q(µ, ν) by a path in Q̃(m1, . . . ,m`;−p1, p2)∩Q(τ) (up to area renormalization).
As the pairs (α, β), (α′, β′) ∈ V(τ)×V∗(τ) were arbitrarily chosen with the property

that they determine quadratic differentials in Q̃(m1, . . . ,m`;−p1, p2), the proposi-
tion follows. �

The next proposition is a converse to Proposition 3.2 and shows that train tracks
can be used to define coordinates on components of strata.

Proposition 3.3. (1) For every q ∈ H̃(k1, . . . , ks;n) there is an orientable
train track τ ∈ LT (2k1, . . . , 2ks; 0, n) so that q is an interior point of Q(τ).

(2) For every q ∈ Q̃(m1, . . . ,m`;−p1, p2) there is a non-orientable train track
τ ∈ LT (m1, . . . ,m`;−p1, p2) so that q is an interior point of Q(τ).
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Furthermore, if q contains a horizontal cylinder then τ can be chosen in such a
way that the core curve of this cylinder is embedded in τ .

Proof. Let q ∈ Q̃(m1, . . . ,m`;−p1, p2) and let Σ = {u1, . . . , us} (s = `+p1 +p2) be
the singular set of q, that is, the union of the zeros and poles and marked regular
points.

Recall that q defines a singular euclidean metric h on Sg,n as well as two measured
foliations, the horizontal and the vertical measured foliation. If x is a singular point
of the metric h, then x is a cone point of cone angle kπ for some positive integer
k 6= 2. There are precisely k horizontal and precisely k vertical separatrices which
begin at x. The zeros of the differential correspond to cone points with cone angle
kπ for some k ≥ 3.

Choose a number ε > 0 which is smaller than 1/8-th of the distance in the metric
h between any two singular points. Let ui ∈ Σ be a singular point of cone angle kπ
for some k ≥ 1. There exists a neighborhood Vi of ui with the following properties.
The boundary ∂Vi of Vi is a polygon with 2k sides. The sides are alternating
between vertical arcs of fixed length σ < ε/10 and horizontal arcs. The midpoint
of a vertical arc is a point of distance ε on a horizontal separatrix through ui. Note
that the polygon is uniquely determined by these requirements.

Out of the polygons Vi (i ≤ s) we construct a train track ηi with stops whose
switches are the midpoints of the vertical sides of the polygon ∂Vi. Thus each
switch is a point of distance ε to the singular point ui on a horizontal separatrix ζi.

Two different switches on separatrices ζ1i , ζ
2
i starting at xi are connected by a

branch in ηi if the angle at xi between ζ1i , ζ
2
i equals π, or, equivalently, if there is

a path in ∂Vi connecting ζ1i , ζ
2
i which travels through precisely one horizontal side

of ∂Vi. These branches are constructed in such a way that all the vertical sides of
the polygons ∂Vi are replaced by a cusp. Furthermore, we require that all branches
are contained in Vi and do not intersect ui. Figure B shows this construction.

Figure B
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The construction can be done in such a way that ηi is transverse to the vertical
measured foliation of q- more precisely, by adjusting the constant σ we can assume
that the tangent of ηi is arbitrarily close to the horizontal direction and that each
branch of ηi is an arc of arbitrarily small geodesic curvature for the euclidean metric
h. There is a complementary component Ci of Vi − ηi which is a polygon with 2k
cusps. Its closure is contained in Vi and meets ∂Vi only at the cusps. It contains
the singular point ui. The cusps of the component are the vertices of ηi. The
component Ci is a once punctured monogon if ui is a pole, that is, if k = 1, a once
punctured bigon if ui is a regular marked point, or an mi + 2-gon if ui is a zero of
order mi.

Let η̂ be the union of the train tracks with stops ηi; this union consists of `+p1+p2
connected components, and it has

∑
i(mi + 2) + p1 + 2p2 vertices. The graph η̂

is transverse to the vertical foliation of q. By construction, η̂ also is transverse to
the straight line foliation on S defined by any direction for the singular euclidean
metric on S which is sufficiently close to the vertical direction.

A generalized bigon track is a graph with all properties of a train track except
that we allow the existence of complementary bigons, and we allow complementary
annuli. Out of the train track with stops η̂ we construct a generalized bigon track
η on S by inductively replacing a stop by a switch and adding additional branches
as follows.

For i ≤ s let β be a vertical side of the polygon ∂Vi. Then for small enough
d > 0, β is a side of an euclidean (right angled) rectangle Rd in S of width d which
intersects the polygonal disk Vi precisely in β. We require that the interior of Rd
is disjoint from the disks Vj . The area of Rd equals σd. Thus by consideration of
area, there exists a smallest number d0 > 0 such that the vertical side β′ of Rd0
distinct from β intersects one of the polygonal disks Vj . Then β′∩∂Vj is a (possibly
degenerate) subarc of a vertical side ξ of ∂Vj .

There are two possibilities. In the first case, β′ = ξ. Then Vi ∪Rd0 ∪Vj contains
a horizontal saddle connection joining ui to uj . Connect the cusp of the component
ηi of η̂ contained in Vi to the cusp of the component of η̂ contained in Vj by the
subsegment of the saddle connection which is contained in Rd0 . This construction
yields a new generalized bigon track η̂′ with stops, and the number of stops of η̂′

equals the number of stops of η̂ minus two.

The second possibility is that β′ ∩ ξ is a proper subarc of ξ (perhaps degenerate
to a single point). Then precisely one of the endpoints of ξ is contained in β′;
denote this point by z. The point z is a vertex of the polygon Vj and hence it is
contained in a horizontal side of the polygon Vj and determines a branch b of the
train track with stops η̂. Connect the midpoint y of the side β of Rd0 (which is a
stop of ηi) to an interior point of the branch b with an arc ν in such a way that
the union ηi ∪ ν ∪ ηj is a generalized bigon track η̂′ with stops, and that there is an
arc of class C1 contained in η̂′ connecting the stop y of ηi to the endpoint of the
branch b distinct from z. In η̂′, the midpoint y of the vertical side β of Vi (which
was a stop in ηi) is a trivalent switch. The generalized bigon track η̂′ has fewer
stops than η̂.



18 URSULA HAMENSTÄDT

Doing this construction with each of the stops of η̂ replaces η̂ by a generalized
bigon track η. This can be done in such a way that each branch of η is a smooth arc
whose tangent line is everywhere close to the horizontal subbundle of the tangent
bundle of Sg,n − Σ.

We show next that a complementary component of η which does not contain a
singular point of q either is a bigon or an annulus with no singular point on the
boundary. For this it suffices to show that the Euler characteristic of each com-
plementary region which does not contain any marked point vanishes. This Euler
characteristic is computed by giving each cusp in its boundary the value −1 (see
[PH92] for this computation). Thus a disk with 3 cusps at the boundary has Eu-
ler characteristic −1. The sum of the Euler characteristics of the complementary
regions of η containing a zero of q, a puncture or a marked regular point equals
the Euler characteristic of Sg,n. By the Gauss Bonnet theorem, there are no com-
plementary monogons of η without marked point in the interior. Namely, up to
adjusting the constant σ, the total geodesic curvature of any branch of η can be
chosen to be arbitrarily small, while the total number of branches is bounded from
above by a constant independent of σ. Thus the Euler characteristic of every com-
plementary component of η is non-positive and hence the Euler characteristic of
every complementary component not containing a singular point of q or a marked
regular point has to vanish. Hence each such component either is a bigon or an
annulus. An annulus component corresponds to a horizontal cylinder of q.

To construct a train track out of η we begin with collapsing successively the
complementary bigons of η. Namely, the set of all directions for the flat metric
defined by q which are tangent to some saddle connection is countable and hence
we can find arbitrarily near the vertical direction a direction which is not tangent
to any saddle connection. By construction of η, we may assume that this direction
is transverse to η. For simplicity of exposition we will call this direction vertical in
the sequel. We use the singular foliation defined by this direction as follows.

Let B be a complementary component of η which is a bigon. The boundary ∂B
of this bigon consists of two arcs a1, a2 which are nearly horizontal and which meet
tangentially at their endpoints. The vertical foliation is transverse to these sides,
and non-singular in the bigon.

Let x ∈ a1; we claim that x is the starting point of a vertical segment whose
interior is contained in the interior of B and whose endpoint F (x) is contained in
the second side a2 of ∂B. Namely, by transversality and compactness, x is the
starting point of a vertical arc γ whose interior is contained in the interior of B
and whose second endpoint y is contained in a side of ∂B. If y is contained in the
same side a1 of ∂B as γ(0) then y bounds together with the subarc of a1 connecting
x to y an euclidean disk whose boundary consists of two smooth arcs with small
curvature which meet at the endpoints with an angle close to π/2. However, this
violates the Gauss Bonnet theorem. Thus indeed, B is foliated by vertical arcs with
one endpoint on a1 and the second endpoint on a2.

Now observe that although the boundary of B may not be embedded in Sg,n (we
only know that the interior of B is embedded), the two endpoints of any vertical
arc as above are distinct since there is no vertical saddle connection and hence
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no vertical closed geodesic by assumption. This means that we can collapse these

vertical arcs to points and collapse in this way the bigon B to a single arc. Let θ̂
be the generalized bigon track obtained in this way.

There is a map F0 : Sg,n → Sg,n of class C1 which is homotopic to the identity,
which equals the identity in a small neighborhood of the bigon B and which maps

η to θ̂ by collapsing the vertical arcs crossing through B. As the sides of B are
nearly horizontal, the differential of the restriction of the collapsing map F0 to each
horizontal arc vanishes nowhere.

Using once more the fact that vertical trajectories do not contain loops, we can
repeat this process with any other bigon. In finitely many such steps we construct a
generalized bigon track θ and a map F : Sg,n → Sg,n with the following properties.

(1) θ does not have any complementary bigon components.
(2) F is homotopic to the identity and of class C1.
(3) F (η) = θ.
(4) The differential of the restriction of F to the horizontal foliation of q van-

ishes nowhere, and it maps the intersection of the horizontal foliation of q
with the bigon complementary components of η to smoothly immersed arcs
in θ.

The generalized bigon track θ may not be a train track as it may have comple-
mentary components which are annuli. However, the above construction can also
be used to collapse annuli to circles. To this end let A be a complementary annulus
of θ. By construction of θ, A is contained in a horizontal cylinder C for q, and its
closure does not contain a singular point of q. Furthermore, its boundary curves
are transverse to the vertical foliation.

Let a1, a2 be the two boundary curves of A. For a point x ∈ a1, there is a unique
subarc v(x) of a vertical trajectory starting at x which is entirely contained in A
and connects x to a point ψ(x) contained in the boundary of A. Using once more
the Gauss Bonnet theorem, we conclude that in fact ψ(x) ∈ a2. As there are no
vertical cylinders and the closure of A does not contain singular points, we have
ψ(x) 6= x. Furthermore, the arc v(x) depends smoothly on x.

By the discussion in the previous paragraph, for each x ∈ a1 we can collapse
the arc v(x) to a point. The result is a new generalized bigon track which carries
the horizontal measured geodesic lamination of q and is such that the number of
complementary components which are annuli is strictly smaller than the number
of annuli components of θ. Repeating this construction with all the finitely many
annuli components of Sg,n − θ, we construct in this way from θ a train track τ .
There is a map F : Sg,n → Sg,n of class C1 with the following property.

(1) F (η) = τ .
(2) F equals the identity near the singular points of q.
(3) The restriction of the differential of F to the tangent bundle of the hori-

zontal foliation of q vanishes nowhere.
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As a consequence, the train track τ carries the horizontal measured foliation of
q. Furthermore, the vertical measured geodesic lamination of q hits τ efficiently
(see [PH92]) and hence it is carried by τ∗. Each complementary component of τ
contains precisely one singular point of q, and the component is a k + 2-gon if and
only if the singular point is a zero of order k. This yields that τ is of topological
type (m1, . . . ,m`;−p1, p2).

We are left with showing that τ is large. Now by construction, τ carries the
horizontal geodesic lamination of eisq provided that s is sufficiently close to 0. But
the set of directions for the singular euclidean metric defined by q so that the
horizontal foliation in this direction is minimal and of the type predicted by the
number and multiplicities of the zeros of q is dense [KMS86]. This implies that τ
carries a geodesic lamination which is minimal, large and of the same topological
type as q. Similarly, for s sufficiently close to zero, the vertical measured geodesic
lamination of eisq hits τ sufficiently. Thus as before, V∗(τ) carries a minimal large
geodesic lamination of the same topological type as τ . In other words, τ has all the
properties required in the proposition.

Now if q is an abelian differential, then the horizontal and vertical foliations of
q are orientable. As the initial generalized bigon track η̂ is constructed from the
horizontal foliation of q, it inherits an orientation from the horizontal foliation of q.
The collapsing construction uses the orientable vertical foliation, and it is straight-
forward that this construction respects orientations as well. Then the resulting
train track τ is orientable. �

We summarize the discussion in this section as follows.

Let Q be a component of the stratum Q(m1, . . . ,m`;−p1, p2) of Q(Sg,n) (or of

the stratum H(m1/2, . . . ,m`/2; p) of H(Sg,p)) and let Q̃ be the preimage of Q in

Q̃(Sg,n) (or in H̃(Sg,n)). Then there is a collection

LT (Q̃) ⊂ LT (m1, . . . ,m`;−p1, p2)

of large marked train tracks τ of the same topological type as Q such that for every
τ ∈ LT (Q̃), the set Q(τ) contains an open path connected subset of Q̃.

The set LT (Q̃) is invariant under the action of the mapping class group. Its
quotient LT (Q) under this action is finite and is called the set of combinatorial
models for Q. The set

∪τ∈LT (Q̃)Q(τ)

is closed, Mod(S)-invariant and contains Q̃ as an open dense subset, that is, it

coincides with the closure of Q̃ in Q̃(Sg,n).

Lemma 3.4. Let Q be a component of a stratum, with preimage Q̃ in Q̃(Sg,n), let

τ ∈ LT (Q̃) and let η be a large train track of the same topological type as τ which

is carried by τ . Then η ∈ LT (Q̃).

Proof. A point in Q(τ) is defined by a pair (λ, ν) where λ ∈ V(τ) and where
ν ∈ V∗(τ). If we choose λ in such a way that its support supp(λ) is of the same
topological type as τ and such that λ is carried by the train track η, then (λ, ν)



PERIODIC ORBITS IN THE THIN PART OF STRATA 21

defines a differential in Q(η) ∩ Q(τ). It then follows from Proposition 3.2 that
η ∈ LT (Q). �

As a fairly immediate consequence of the above discussion and Section 3 of
[H09], we obtain a method to construct large train tracks of a given topological
type. Namely, for a fixed choice of a complete hyperbolic metric on S of finite
volume and numbers a > 0, ε > 0 there is a notion of a-long train track which
ε-follows a large geodesic lamination λ. By definition, this means the following.
Fix a complete finite volume hyperbolic metric on Sg,n. The straightening of a
train track τ is obtained from τ by replacing each branch b by a geodesic segment
which is homotopic with fixed endpoints to b. We require that the length of each
of the straightened edges is at least a, that their tangent lines are contained in
the ε-neighborhood of the projectivized tangent bundle of λ and that moreover the
straightening of every trainpath on τ is a piecewise geodesic whose exterior angles
at the breakpoints are not bigger than ε.

Lemma 3.2 of [H09] shows that for every geodesic lamination λ on Sg,n and every
ε > 0 there is an a-long generic transversely recurrent train track τ which carries λ
and ε-follows λ.

Corollary 3.5. Let τ ∈ LT (Q̃) and let λ be a minimal large geodesic lamination
of the same topological type as τ which is carried by τ . Then for sufficiently small
ε > 0, an a-long train track η which ε-follows λ is contained in LT (Q̃).

Proof. By construction, if λ is large, then for sufficiently small ε and sufficiently
large a > 0, an a-long train track η which ε-follows λ is of the same topological
type as λ. Furthermore, η carries a minimal large geodesic lamination of the same
topological type as η and hence η is fully recurrent and transversely recurrent.

If λ is carried by a large train track τ then for sufficiently small ε > 0 and
sufficiently large a > 0, η is carried by τ (see Section 3 of [H09]). Then a large
geodesic lamination which is carried by τ∗ is carried by η∗ and hence η is large as
claimed. �

4. Components of strata: The principal boundary

In Section 3, a combinatorial model for every component Q of a stratum in
Q(Sg,n) or in H(Sg,n) was constructed. The purpose of this section is to refine this
construction and obtain models for specific types of degenerations of the stratum.

We begin with introducing the degenerations we are interested in. The frame-
work for these degenerations is in the spirit of the “you see what you get” partial
compactification of strata introduced in [MW17]. Although we will not make use
of this work, we reproduce Definition 2.2 of [MW17]. In its formulation, Σi is the
singular set of the quadratic differential qi on the Riemann surface Xi.

Definition 4.1. Say that (Xj , qj ,Σj) converges to (X, q,Σ) if there are decreasing
neighborhoods Uj ⊂ X with ∩Uj = Σ such that the following holds. There are
maps gj : X − Uj → Xj that are diffeomorphisms onto their range, such that



22 URSULA HAMENSTÄDT

(1) g∗j (qj) converges to q in the compact open topology on X − Σ.
(2) The injectivity radius at points not in the image of gj goes to zero uniformly

in j.

With this definition, we allow to erase zero area components of a limiting surface
with nodes.

There are two specific types of degenerating sequences which will be used in the
sequel.

1) The shrinking half-pillowcase:

Let q be a quadratic differential on Sg,n. Choose a singular or marked regular
point x on Sg,n and cut Sg,n open along a geodesic segment α issuing from x of
length s > 0. If x is a singular point of q then we require that x is the only singular
point contained in α, and if x is a regular point then we require that α does not
contain any singular point. The cut open surface has a geodesic circle as boundary.
Glue a foliated cylinder C to this circle whose opposite boundary is divided into two
arcs of the same length which are identified to form half of a pillowcase as shown
in Figure C. This does not change the genus of Sg,n, but it adds two punctures

Figure C

to Sg,n, and it increases the cone angle of each of the endpoints of α by π. Note
that for the fixed point x, the half-pillowcase is described by 4 real parameters:
The direction and the length of its cutting arc α, the height of the cylinder and
the position of one of the simple poles on the top of the half-pillowcase, which is
determined by the choice of a point on the (oriented) cutting arc α.

We call a sequence of quadratic differentials containing a half-pillowcase whose
circumferences and heights tend to zero and which degenerate in the sense of Defini-
tion 4.1 to the surface with the half-pillowcase removed a shrinking half-pillowcase.
The areas of the half-pillowcases, that is, the products of their circumferences and
heights, tend to zero.

2) The shrinking cylinder:
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Let again q be a quadratic differential defining a flat metric on Sg,n. Given
two singular or marked regular points x1 6= x2 on Sg,n, cut the surface Sg,n open
along two geodesic arcs of the same length and the same direction starting at xi
with no singular point in the interior, and glue the two boundary circles to the
two boundary circles of a flat cylinder. The result is a singular flat metric on the
surface Sg+1,n. The core curve of the attached cylinder in Sg+1,n is non-separating,
and the direction of the geodesics in its core equals the direction of the cutting arcs
used in the construction. We leave it to the reader to check that this construction
depends again on 4 real parameters (this fact is not needed in the sequel, see also
[EMZ03]).

There is a modification of this construction as follows. Cut the surface Sg,n open
along a single geodesic arc α issuing from a singular or marked regular point x with
at most one singular point on the boundary and no interior singular point. Identify
the endpoints of α; the resulting surface has two geodesic boundary circles of the
same length and the same direction. Glue the boundary of a flat cylinder to these
two boundary circles. As before, the result of this construction is a singular flat
metric on the surface Sg+1,n.

We call a sequence of flat surfaces containing a nonseparating cylinder which
degenerate to the surface with nodes by shrinking the width and the heights of the
cylinder to zero a shrinking cylinder. Note that the constructions discussed above
change the area of the singular flat metric, which can be corrected with the usual
area renormalization.

Our goal is to construct combinatorial models for quadratic or abelian differ-
entials which capture these two types of degenerations to differentials on surfaces
with nodes. These models will then be used to construct periodic orbits of the
Teichmüller flow in the thin part of moduli space. Assume from now on that
3g− 3 + n ≥ 5. This rules out spheres with at most 7 punctures, tori with at most
4 punctures and a surface of genus 2 with at most 1 puncture.

Definition 4.2. An essential simple closed curve c on Sg,n is called elementary if
either

a) c is non-separating or
b) n ≥ 2 and c decomposes Sg,n into a surface Sg,n−1 and a twice punctured

disk.

An elementary pair is a pair (c1, c2) consisting of disjoint elementary curves c1, c2
on S. If both c1 and c2 are non-separating then we require that Sg,n − (c1 ∪ c2) is
connected.

Since 3g − 3 + n ≥ 5 by assumption, the complement Sg,n − (c1 ∪ c2) of an
elementary pair in S = Sg,n contains a (unique) component which is not a three
holed sphere. In the sequel we tacitly identify a complementary component of a
curve c in S (or any curve system) with its metric completion, that is, we view S−c
as a surface with boundary.

Definition 4.3. A primitive vertex cycle for a large train track τ is a simple closed
curve c embedded in τ which consists of a large branch and a small branch.
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If c is a primitive vertex cycle in τ then there are two half-branches incident
on the two switches of τ in c which are not contained in c. Since τ is large by
assumption, these two half-branches lie on the two different sides of c in an annulus
neighborhood of c in S. Namely, otherwise there is a complementary component
of τ containing a simple closed curve which is neither contractible nor homotopic
into a puncture.

We call a primitive vertex cycle of a large train track τ clean if its underlying
simple closed curve c is elementary and if moreover a branch b which is incident
on a switch in c and which is not contained in c satisfies one of the two following
conditions.

(1) b is a small branch.
(2) n ≥ 2, c is separating and b is contained in the twice punctured disk com-

ponent of S − c.

As there are two types of elementary curves, there are two types of clean vertex
cycles. To relate these types to the degeneration of quadratic differentials, note
that removing a clean vertex cycle c from τ as well as all the branches of τ adjacent
to c and branches in a 3-holed sphere component of S− c yields a train track τ ′ on
the complementary component S0 of S − c which is not a three holed sphere.

Type I: The shrinking half-pillowcase.

If n ≥ 2 and if c is a separating clean vertex cycle of τ , then there is a com-
plementary component C for the train track τ ′ on S0 which is an annulus whose
core curve is homotopic to c. There is a component γ of ∂C embedded in τ ′, and γ
contains at least one cusp of τ ′ (since otherwise τ has a complementary component
which is a bigon).

Let S′0 be the surface obtained from S0 by replacing the boundary circle of S0

by a marked point (puncture). The genus of S′0 coincides with the genus of S,
and the number of marked points has decreased by one. If the component γ of
∂C contains at most two cusps, then τ ′ is a large train track on S′0, where the
puncture replacing the curve c may be a marked regular point. By Section 3, τ ′

determines a component of a stratum of differentials on S′ = S′0. Passing from S′

back to S corresponds to a shrinking half-pillowcase obtained by cutting S′ open
along a geodesic segment α for the flat metric of a differential on S′ which does not
contain any singular point. If γ contains at least three cusps then remove from S′0
the marked point enclosed by γ and denote the resulting surface by S′. In both
cases, τ ′ is a large train track on the surface S′.

Type II: The shrinking cylinder.

If c is a non-separating clean vertex cycle of τ then both branches incident on c
are small. The genus of the surface with boundary S0 obtained by cutting S open
along c equals g − 1. Let S′0 be obtained from S0 by replacing the two boundary
circles (which are copies of c) by a marked point. As before, τ ′ defines a large train
track on the surface S′ which either coincides with S′0 or is obtained from S′0 by
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removing one or both of the special marked points. These choices depend on the
number of cusps of the complementary components of c in τ ′.

Let as before Q be a component of a stratum of quadratic or abelian differentials
on S. Call a train track τ in special form for Q if τ ∈ LT (Q) and if there is an
elementary pair (c1, c2) for S with the following additional property.

(∗) τ contains each of the curves c1, c2 as a clean vertex cycle, and the graph
obtained by removal of c1, c2 and their adjacent branches as well as all
branches contained in a 3-hold sphere component of S − (c1 ∪ c2) is a large
train track on a subsurface of S

The rest of this section is devoted to the construction of train tracks in spe-
cial form for all components of strata of abelian or quadratic differentials on Sg,n
without marked regular points provided that 3g − 3 + n ≥ 5.

For simplicity, write Q(m1, . . . ,m`;−n) instead of Q(m1, . . . ,m`;−n, 0), and
write H(k1, . . . , ks) instead of H(k1, . . . , ks; 0). Motivated by the strategy in [KZ03]
and [L08], the idea is to start with explicit train tracks for components of strata on
surfaces with small complexity and uses these train tracks as building blocks for the
construction of train tracks for all strata. The first type of modification consists in
subdividing complementary components as follows.

Let C be a complementary component of a train track η which is a disk with
k ≥ 4 cusps on its boundary ∂C. Then C can be subdivided into two components
by adding a small branch which connects two non-adjacent sides of the component.
The resulting train track τ is a simple extension of η as defined in Section 2. If η
is orientable and if the number of cusps of ∂C at least six, then this subdivision
can be done in such a way that the components have an even number of cusps and
that τ is orientable as well. By Proposition 2.4, if τ, η are either both orientable
or both non-orientable then τ is large if and only if this holds true for η. In the
sequel we always choose subdivisions of complementary components of orientable
train tracks in such a way that the resulting train track is orientable.

Following [L08], strata of quadratic differentials with at least three simple poles
are connected. We use this fact to observe

Lemma 4.4. Components of strata of differentials on the two-sphere S2 with n ≥ 7
simple poles or on the two-torus T 2 with n ≥ 4 simple poles admit a train track in
special form.

Proof. Figure D shows large train tracks with at least two clean vertex cycles c1, c2
on S0,n for n = 6, 7 and a single complementary component which is not a once-
punctured monogon. Such a train track belong to the stratum of meromorphic
differentials on S = S2 with a single zero and 6 or 7 simple poles since such strata
are connected [L08].

The train track τ for the stratum of differentials on S0,6 with 6 poles is not in
special form. Namely, removal of the vertex cycles c1, c2 as well as all adjacent
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branches and all branches in the three-holed sphere components of S0,6 − (c1 ∪ c2)
from τ does not result in a large train track for a subsurface of S0,6.

In contrast, the train track τ for the stratum of differentials on S0,7 with a single
zero and 7 poles is in special form: The train track obtained from τ by removal of
the vertex cycles c1, c2, all adjacent branches and all branches in the three-holed
sphere components of S0,7 − (c1 ∪ c2) is a large train track for the stratum of
differentials on S2 with 4 simple poles.

To construct train tracks in special form for strata of differentials on S2 with a
single zero and at least 8 simple poles just attach more copies of a circle enclosing
two punctures and containing a once puncture monogon to one of the two train
tracks shown in Figure D. Train tracks in special form for arbitrary strata of dif-

a
b

Figure D 

ferentials on S2 with at least 7 simple poles are obtained from the train tracks for
strata with a single zero by subdivision of complementary components.

Figure E shows large train tracks containing at least two clean vertex cycles for
the stratum of differentials on the torus T 2 with a single zero and 3 or 4 simple
poles. As before, the train track for the stratum with 4 simple poles is in special
form. To construct train tracks in special form for a stratum of differentials on a
torus with a single zero and at least 5 simple poles, attach more copies of a circle
enclosing two punctures and containing a once punctured monogon. As before,
train tracks in special form for arbitrary strata of differentials on the torus with
at least 4 simple poles are constructed from these train tracks by subdivision of
complementary components. �
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Figure E

Remark 4.5. Lemma 4.4 shows the existence of train tracks in special form for
strata of differentials on S0,n or S1,n where 3g − 3 + n ≥ 4, which is slightly better
than what appears in the statement of Theorem 1.

Call a component of a stratum of abelian or quadratic differentials hyperelliptic
if it consists of differentials on hyperelliptic surfaces which are invariant under the
hyperelliptic involution. Lemma 4.4 is used to show

Lemma 4.6. Let Q be a hyperelliptic component of a stratum of quadratic or
abelian differentials on a surface of genus at least 3. Then there is a train track τ
in special form for Q.

Proof. Let Q be a hyperelliptic component of a stratum of quadratic differentials on
a surface S of genus g ≥ 3 with n ≥ 0 simple poles. Such a hyperelliptic component
is obtained by pull-back of a stratum Q̂ of quadratic differentials on the punctured
sphere S0,m with a double branched covering map.

By the main result of [L04] (see also Theorem 1.2 of [L08]), the component Q̂
consists of differentials with n ≥ 8 simple poles, and the cover is ramified at all or
at all but one of the poles.

Let η be a train track in special form for Q̂ as constructed in Lemma 4.4, with
two clean vertex cycles c1, c2. The vertex cycles c1, c2 cut from the punctured sphere
two twice punctured disks P1, P2.

Choose the branched covering in such a way that it is ramified at each of the
punctures in P1, P2. The preimage of η under this covering is an embedded graph η̂
in the surface S. The preimage of the vertex cycle ci consists of two embedded sim-
ple closed curves which bound an embedded annulus Ai. The annulus Ai contains
the preimage in η̂ of the two punctures in the 3-holed sphere component of S0,m−ci
as shown in the middle part of Figure F. It is subdivided into two bigons with an
interior marked point by the preimage of η. The marked point is a preimage of one
of the ramification points. Remove these marked points and the branches in the
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interior of the annulus Ai and identify the two boundary circles of Ai as shown in
Figure F so that they form a single simple closed curve vi (i = 1, 2).

Ci

Ai

Figure F

Collapse each remaining bigon in η̂ containing a single preimage of a ramification
point to a single arc as described above. The resulting graph τ is a large train track
on S which is contained in LT (Q). The train track τ contains the curves vi as
primitive vertex cycles. By construction, the curves vi are non-separating and
do not form a bounding pair and hence they define an elementary curve system.
Moreover, since ci is a clean primitive vertex cycle for η, the primitive vertex cycle
vi is clean for τ . As the train track η for Q̂ was in special form, naturality of the
construction implies that τ is in special form for Q.

The same reasoning also applies for hyperelliptic components of abelian differ-
entials. Namely, in this case the branched cover defining the component is ramified
at each of the simple poles on the two-sphere and thus it is ramified at at least 8
simple poles. The above argument then shows that there is a train track in special
form for the component. �

To treat non-hyperelliptic components we construct from a large train track η of
topological type (m1, . . . ,m`;−n) on a surface of genus g ≥ 0 with n punctures a
train track τ of type (m1, . . . ,m` + 4;−n) on a surface of genus g + 1 by attaching
a handle as follows.

The train track η has a complementary polygon P with m`+2 sides. Attach two
arcs b1, b2 of class C1 to the interior of two branches of η which are contained in two
different sides of the polygon P in such a way that b1, b2 are disjoint and embedded
in P . Attach a simple closed curve ci ⊂ P of class C1 to the arc bi which meets bi
only at its free endpoint and is tangent to bi (i = 1, 2). We require that the curves
c1, c2 are disjoint and bound disjoint embedded disks D1, D2 in the interior of P .

Remove the interiors of the disks D1, D2 from P . The boundary of the resulting
surface consists of the curves c1, c2. Glue c1 to c2 with a diffeomorphism which
reverses the boundary orientation of Di. The result is a surface of genus g+ 1 with
n punctures which carries a train track τ of topological type (m1, . . . ,m` + 4;−n).
It contains the image of the curves ci under a glueing map as a clean vertex cycle.
Note that if η is orientable, then for a suitable choice of the arcs b1, b2, the train
track τ is orientable as well. In the sequel we always assume that the construction
preserves orientability if applicable. We then call τ the train track obtained from
η by attaching a handle.
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Lemma 4.7. The train track τ obtained from η by attaching a handle is large.
Moreover, it is orientable if and only if this holds true for η.

Proof. By construction, the train track τ is orientable if and only if this holds true
for η. Moreover, η can be viewed as a subtrack of τ .

Now η is a large train track and hence it carries a minimal large geodesic lamina-
tion of type (m1, . . . ,m`;−n). This geodesic lamination defines a minimal geodesic
lamination λ0 on τ . The train track τ contains a primitive vertex cycle c0 which
is disjoint from λ0 and which is the image of the curves c1, c2 under the glueing
process. The union λ0 ∪ c0 is a geodesic lamination carried by τ . This lamination
is not large, but it is a sublamination of a large geodesic lamination which is the
union of λ0 ∪ c0 with two isolated leaves which pass through the two branches of τ
connecting c0 to the subtrack η and which spiral from one side about λ0, from the
other side about c0. Thus τ carries a large geodesic lamination. The same argu-
ment also shows that the dual bigon track τ∗ carries a large geodesic lamination.
In other words, τ is large. �

For the construction of train tracks in special form for all components of strata
we use the classifiction of components due to Kontsevich and Zorich [KZ03] (for
abelian differentials) and Lanneau [L08] (for quadratic differentials).

Proposition 4.8. (1) For every g ≥ 4 the stratum H(2g − 2) has three con-
nected components. One of these components is hyperelliptic, the other two
are distinguished by the parity of the spin structure they define.

(2) The stratum H(4) has two components. One of the components is hyperel-
liptic, the other consists of abelian differentials defining an odd spin struc-
ture.

(3) H(2) is connected.
(4) For every g 6= 3, 4 and every n ≥ 0 the stratum Q(4g − 4 + n;−n) is

connected.
(5) The strata Q(12; 0) and Q(9;−1) have two connected components, and
Q(4; 0) = ∅.

We are now ready to show

Proposition 4.9. Let Q be a non-hyperelliptic component of a stratum of quadratic
or abelian differentials on S where 3g− 3 + n ≥ 5. Then there is a train track τ in
special form for Q.

Proof. We divide the proof of the proposition into four steps. The case g = 0 and
g = 1 is covered by Lemma 4.4.

Step 1: Strata of quadratic differentials with at least three poles.

By the classification of Lanneau [L08], every stratum in moduli space consisting
of meromorphic quadratic differentials with at least three poles is connected. Thus
for n ≥ 3 and any g ≥ 2, we can construct a large train track in special form for
the stratum Q(4g − 4 + n;−n) by attaching handles to a train track on the torus
as described in Lemma 4.7. Although for n = 3, this train track is not in special
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form, it contains 2 clean vertex cycles, and the train obtained from it by attaching
a handle is in special form. These train tracks can be subdivided to train tracks in
special form for any stratum of quadratic differentials with at least three poles.

Step 2: Strata of abelian differentials with a single zero.

The moduli space H(2) of abelian differentials with a single zero on a surface of
genus 2 is connected. It consists of differentials which define an even spin structure
Figure G below shows a large train track η ∈ LT (H(2)). It contains a single clean
vertex cycle. Attaching a handle to η result in a train track in special form on a
surface of genus 3.

Figure G

For g = 3, the stratum H(4) consists of two components. One of these com-
ponents is hyperelliptic. The two components are distinguished by the parity of
the spin structure they define [KZ03]. The parity of the spin structure for the hy-
perelliptic component is even. By Lemma 4.6, it suffices to show that attaching a
handle to the train track η in Figure G results in a train track in special form for
the component with odd spin structure. To this end we compute from a large train
track τ ∈ LT (Q) the parity of the spin structure of the component Q.

The parity of the spin structure defined by an abelian differential ω can be
calculated as follows (see p.643 of [KZ03]). For a smooth simple closed curve α on
S not passing through a zero of ω define indα ∈ Z to be the total change of angle
between the tangent of α and the vector tangent to the vertical foliation of ω. Let
{αi, βi | i = 1, . . . , g} be any system of 2g smooth simple closed curves which define
a symplectic basis for H1(S,Z) with the above property. Then

Arf(ω) =

g∑
i=1

(indαi
+ 1)(indβi

+ 1)(mod 2).

This formula enables us to calculate the parity using a train track. Namely,
a large orientable train track τ of type (4g − 4; 0) has a single complementary
component C which is a 4g-gon. Let α be a smooth simple closed curve on S which
intersects τ transversely in finitely many points contained in the interior of some
branches of τ . Define the index rτ (α) ∈ Z/2Z of α as follows.

Choose a numbering of the sides of the complementary region of τ in counter-
clockwise order. Choose also an orientation of α. A transverse intersection point
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Figure H

p ∈ α ∩ τ is contained in precisely two sides s1, s2 of C. Write r(p) = s2 − s1 +
1 (mod 2) = s1 − s2 + 1 (mod 2) and define

rτ (α) =
∑
p

r(p) ∈ Z/2Z.

Note that if α′ is isotopic to α with an isotopy which moves some subarc of α across
a switch then this number is unchanged, and the same holds true if α is fixed and
τ is modified by a split.

Choose smooth simple closed curves {αi, βi | i = 1, . . . , g} which define a sym-
plectic basis of H1(S,Z). Assume that each of the curves αi intersects τ in finitely
many points which are contained in the interior of some branch of τ . Define

ϕ(τ) =

g∑
i=1

(rτ (αi) + 1)(rτ (βi) + 1) ∈ Z/2Z

and call this number the parity of the spin structure of τ .

Recall that η is a large train track with a single complementary component C.
If the train track τ is obtained from η by attaching a handle, then the parity of the
spin structure of τ can be calculated from the parity of the spin structure of η as
follows. There is a primitive vertex cycle α1 for τ which is disjoint from η (it goes
around the handle). This vertex cycle α1 satisfies rη(α1) = 0 since up to homotopy,
it has a unique intersection point with τ which is contained in one of the small
branches adjacent to the primitive vertex cycle α1. Then this intersection point is
contained in two consecutive sides of the complementary component of τ .

There is a second curve β1 in the handle which intersects α1 in a single point,
and it intersects τ in a single point q as well. Let si, sj (i < j) be the sides of the
complementary component C of η at which branches of τ − η are attached. If we
choose sj = si + 1 then Figure H shows that rη(β1) = 0.
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The curves on S used to calculate the parity of the spin structure for η can
be chosen to be disjoint from τ − η viewed as a subgraph of the complementary
component C. Then the indices of the curves used for η do not change mod 2 and
hence the parity of the spin structure of τ is opposite to the parity of the spin
structure for η. In particular, attaching a handle to the train track shown in Figure
G results in a train track in special form for the component of H(4) with odd spin
structure. Together with the construction for hyperelliptic components, we obtain
a train track in special form for each of the two components of H(2).

Using again Proposition 4.8, for k ≥ 3 the two different non-hyperelliptic compo-
nents of H(2k) are distinguished by the parity of the spin structure they define. It
follows from the above discussion that attaching a handle to a train track in special
form for a component of H(2k−2) with even (or odd) spin structure is a train track
in special form for a component of H(2k) with odd (or even) spin structure. Now
it is easy to see that a train track for a hyperelliptic component can only arise by
this construction from a train track for a hyperelliptic component. Since the parity
of the spin structure of a hyperelliptic component is even, none of the two train
tracks arising from attaching a handle to one of the train tracks in special form
for a component of H(4) is a train track for a hyperelliptic component. Thus by
induction beginning with H(4), we obtain in this way for each k ≥ 1 and for each
non-hyperelliptic component Q of H(2k) a train track in special form for Q.

Step 3: Strata of quadratic differentials with a single zero and at most two poles.

By the classification of Lanneau [L08], strata of quadratic differentials with a
single zero and at most two poles are connected.

To obtain a train track in special form for this stratum on a surface of genus
g = 2 with m = 2 punctures, attach to the train track shown in Figure G a circle
as shown in Figure D enclosing two once-puncture monogons. Similarly, to obtain
a train track in special form for a stratum with a single zero and a single pole on
a surface of genus 3, attach a train track in special form on a surface of genus 3 a
once punctured monogon.

A train track in special form for a stratum in higher genus can be obtained by
attaching handles to the train track for genus 2 or 3.

Step 4: Subdividing complementary components.

Following [L08], we say that a component Q of a stratum in Q(S) for a surface S
of genus g ≥ 2 is adjacent to a component Q0 of another stratum if Q0 is contained
in the closure Q of Q in Q(S). Here we allow that poles merge with zeros and
disappear.

Lanneau [L08] showed that with the exception of one sporadic component in each
of the strata Q(9;−1), Q(3, 6;−1), Q(3, 3, 3;−1), any non-hyperelliptic component
of a stratum with at least two distinct types of zeros or poles is adjacent toQ(4g−4).
For such a component, train tracks in special form can be obtained from train
tracks in special form for components of strata with a single zero by subdivision of
complementary components.
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For the completion of the proof of the proposition we are left with the investi-
gation of the sporadic components in genus g = 3, 4 as listed in the classification of
Lanneau [L08].

The sporadic component for g = 4 is a component of Q(12) which can be checked
explicitly. The sporadic component of Q(3, 3, 3;−1) is adjacent to the sporadic
component of Q(3, 6;−1), and the sporadic component of Q(3, 6;−1) is adjacent
to the sporadic component of Q(9;−1) [L08]. Using Step 2 above, it is therefore
enough to construct a train track with the required properties which belongs to the
sporadic component of Q(9;−1). However, the sporadic component of Q(9;−1)
admits a quadratic differential with a two-cylinder-decomposition which can be
used to construct a train track as required (compare the table in [L08]). This
completes the proof of the proposition. �

Remark 4.10. Although we use the classification result of Kontsevich-Zorich and
of Lanneau in our construction, the construction can be used to give a alternative
proof for the classification.

Remark 4.11. The computation of the parity of the spin structure in the proof
of Proposition 4.9 is similar to the computation of parities in the transition of
component of a stratum to a component of its principal boundary in [EMZ03].
Unfortunately we can not use these computations for our needs.

5. Coding of pseudo-Anosov mapping classes

In this section we combine the results from Sections 1-4 and from [H13] and [H22]
to set up the main properties needed for the proof of Theorem 1. We continue to
use the notations from sections 1-4.

The number m > 0 of branches of a large train track τ ∈ LT (m1, . . . ,m`;−n, p)
only depends on the topological type of τ . A numbering of the branches of τ defines
an embedding of the cone V(τ) of transverse measures on τ onto a closed convex
cone in Rm determined by the switch conditions. For the standard basis e1, . . . , em
of Rm, this embedding associates to a measure µ ∈ V(τ) the vector

∑
i µ(i)ei ∈ Rm

where we identify a branch of τ with its number. If σ ≺ τ then the transformation
V(σ)→ V(τ) induced by a carrying map σ → τ is linear in these coordinates.

The mapping class group Mod(S) acts on marked train tracks by precomposition
of marking. A train track expansion of a mapping class ϕ ∈ Mod(S) is a train track
τ such that ϕ(τ) ≺ τ . Then the composition of the isomorphism V(τ)→ V(ϕτ) =
ϕ(V(τ)) with a carrying map V(ϕτ)→ V(τ) is given by a linear map

A(ϕ, τ) : Rm → Rm.
The matrix describing this map with respect to the standard basis of Rm has non-
negative entries.

By the Perron Frobenius theorem, an (m,m)-matrix A with non-negative entries
admits an eigenvector with non-negative entries. The corresponding eigenvalue α
is positive. If some power of A is positive, then the generalized eigenspace for α is
one-dimensional, and α is bigger than the absolute value of any other eigenvalue
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of A. We call an eigenvector with nonnegative entries for the eigenvalue α of A a
Perron Frobenius eigenvector.

We next collect some information on the relation between a pseudo-Anosov map-
ping class ϕ, a train track expansion τ for ϕ and the linear map A(ϕ, τ). We begin
with Corollary 3.2 of [P88]. For its formulation, recall that a pseudo-Anosov map-
ping class ϕ admits an invariant flow line for the Teichmüller flow on the Teichmüller
space of area one abelian or quadratic differentials, which is the unit cotangent line
of an axis of ϕ. The axis is prescribed by a pair of projective measured geodesic
laminations ([λh], [λv]) ∈ PML2 which are the attracting and repelling fixed points
for the action of ϕ on PML, respectively. Note also that the cone V(τ) of all non-
negative solutions to the switch condition on τ can be identified with a subset of
ML which is invariant under scaling.

Lemma 5.1. Let τ ∈ LT (m1, . . . ,m`;−n, p) and let ϕ ∈ Mod(S) be such that
ϕ(τ) ≺ τ and that the matrix A(ϕ, τ) is positive. Then ϕ is pseudo-Anosov. The
unit cotangent line of its axis intersects Q(τ). The horizontal measured geodesic
lamination of a differential in this cotangent line is a Perron Frobenius eigenvector
of the linear map A(ϕ, τ).

Proof. It follows from Corollary 3.2 of [P88] that ϕ is pseudo-Anosov and that the
attracting fixed point for its action on PML is the projectivization of a Perron-
Frobenius eigenvector λ of the matrix A(ϕ, τ). This eigenvector is positive and
unique up to scale.

As ϕ(τ) ≺ τ , we have ϕ−1(τ∗) ≺ τ∗ and hence V∗(ϕ−1(τ)) ⊂ V∗(τ). Since ϕ
acts with north-south dynamics on PML, we conclude that the attracting fixed
point of ϕ−1 is a measured geodesic lamination whose support is carried by τ∗.
This then implies that the unit cotangent line of the axis of ϕ intersects Q(τ). �

The following lemma gives a more geometric approach to the study of periodic
orbits in a component Q of a stratum. In its formulation, we assume that the
surface S is equipped with a complete finite volume hyperbolic metric. The notion
of an a-long train track which ε-follows a geodesic lamination was introduced at the
end of Section 3. We denote as before by Q̃ the preimage of Q in the Teichmüller
space of marked differentials.

Lemma 5.2. If q ∈ Q̃ is a point on the cotangent line of an axis of the pseudo-
Anosov mapping class ϕ and if q ∈ Q(τ) for some τ ∈ LT (Q̃), then for sufficiently
large k > 0, the train track ϕk(τ) is a-long and ε-follows the support of the attracting
fixed point [µ] for the action of ϕ on PML.

Proof. Let τ ∈ LT (Q̃) and assume that q ∈ Q(τ) for a differential q ∈ Q̃ on
the contangent line of the axis of the pseudo-Anosov mapping class ϕ. Denote
by µ̂ = supp([µ]), ν̂ = supp([ν]) the supports of the attracting and repelling fixed
points for the action of ϕ on PML, respectively. Then ν̂ is carried by τ , furthermore
ν̂ is minimal and its topological type coincides with the topological type of τ . In
particular, the carrying map ν̂ → τ∗ induces a bijection between the complementary
polygons of ν̂ and the complementary components of τ .
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Represent µ̂, ν̂ by geodesics for the hyperbolic metric h′ in the conformal class
of q. Then up to homotopy, we may assume that the switches of τ are contained in
the intersection S−(µ̂∪ ν̂) of the complementary components of µ̂, ν̂. Furthermore,
the weight deposited by ν̂ on any branch of τ is positive.

Following the proof of Lemma 6.2 of [CB88], define an equivalence relation ∼ on
S by x ∼ y if either

(i) x, y are in the closure of the same component of µ̂− ν̂ or
(ii) x, y are in the closure of the same component of ν̂ − µ̂ or
(iii) x = y.

Lemma 6.2 of [CB88] shows that S/ ∼ is a finite type suface homeomorphic to S,
and the measured laminations µ, ν project to transverse singular measured foliations
Fs,Fu on S which up to isotopy equal the horizontal and the vertical measured
foliations of the differential q.

Let b be a branch of τ . Then the endpoints of b project to points x, y ∈ S/ ∼,
and b defines the homotopy class of a geodesic arc for the singular euclidean metric
h defined by q which connects x to y. Since the measure deposited by ν on b is
positive, this geodesic arc is transverse to the vertical foliation of q. Doing this
construction with each of the branches of τ yields an embedded graph G ⊂ S with
the following properties.

(1) G is topologically isotopic to τ (this means that the isotopy mapping G to
τ is not necessarily smooth).

(2) G is disjoint from the singular set of q.
(3) The edges of G are geodesic segments for h whose directions are uniformly

bounded away from the vertical direction.

Note that G may not admit a tangent at its vertices and hence in general, G is not
a train track.

Now ϕ can be represented by a homeomorphism of S which is smooth outside
the singular set of q and which expands the horizontal foliation of q and contracts
the vertical one. Thus the image of G under ϕ is a piecewise geodesic graph in the
singular euclidean surface (S, h) whose edges have directions which are closer to
the horizontal direction than the directions of the edges of G with respect to the
conformal structure on S defined by q or h. Iteration then yields that as k →∞, up
to passing to a subsequence the graphs ϕk(G) converge in the Hausdorff topology
to a closed subset of the horizontal foliation for the flat metric h. Since the edges
of ϕkG are geodesics for h whose lengths tend to infinity with k, this set is leaf
saturated, that is, it is a union of leaves. By minimality of the horizontal foliation
of q, this limit equals the horizontal foliation of q.

The horizontal geodesic lamination µ̂ of q is obtained from the horizontal foliation
by cutting S open along the separatrices of the foliation and straightening the
complement with respect to the hyperbolic metric h′ on S. This implies that up
to isotopy, the hyperbolic straightening of ϕk(G), obtained by replacing each edge



36 URSULA HAMENSTÄDT

by a geodesic segment for the hyperbolic metric h′, converges as k → ∞ in the
Hausdorff topology to µ̂. This shows the lemma. �

The proof of Lemma 5.2 relied on the fact that given a pseudo-Anosov mapping
class ϕ and an abelian or quadratic differential q on the cotangent line of an axis
of ϕ, the mapping class ϕ can be represented by a homeomorphism of S which is
smooth outside the singular points of q and preserves the vertical and the horizontal
measured foliation of the singular euclidean metric defined by q. However, ϕ may
permute zeros of q of the same order, it may permute poles, and if ϕ fixes a zero,
then is may permute vertical and horizontal separatrices coming out of the zero
and only preserve their cyclic order.

We say that ϕ preserves the combinatorics if it fixes each singular point of q
and preserves each horizontal and vertical separatrix coming out of a zero. This
property does not depend on the choice of the differential q on the cotangent line
of an axis of ϕ. As the number of singular points of q, counted with multiplicity, is
a topological invariant, each pseudo-Anosov mapping class ϕ has a positive power
which preserves the combinatorics, and the degree of this power is bounded from
above by a constant only depending on the Euler characteristic of S. Note that
similar constraints arise in the context of zippered rectangles which are used by
Veech [V86] to study the Teichmüller flow.

For a pseudo-Anosov mapping class ϕ ∈ Mod(S) and a differential q on the

cotangent line of its axis, contained in the preimage Q̃ in Q̃(S) of a component Q
of a stratum of quadratic or abelian differentials, define

LT (ϕ) = {τ ∈ LT (Q̃) | q ∈ Q(τ)}.
Note that this only depends on ϕ but not on the choice of q.

The following observation is the main technical result of this section. For the
purpose of its proof and later use, define a splitting and shifting sequence of a train
track τ to be a sequence of modifications of τ by splitting or shifting moves. If η
is carried by τ then τ can be connected to η by a splitting and shifting sequence
[PH92].

Lemma 5.3. If ϕ is a pseudo-Anosov mapping class which preserves the combina-
torics, with cotangent line in Q̃, then

LT (ϕ) = {τ ∈ LT (Q̃) | ϕ(τ) ≺ τ}.

Proof. It is shown in [P88] that every pseudo-Anosov mapping class ϕ has a train

track expansion τ . Furthermore, we may assume that τ ∈ LT (Q̃) where Q̃ is a
component of a stratum in the Teichmüller space of abelian or quadratic differentials
which contains the cotangent line of the axis of ϕ.

We show first that such a train track τ is contained in LT (ϕ). To see this note
that by induction, we have ϕk(τ) ≺ τ and hence ϕkV(τ) ⊂ V(τ) for all k ≥ 1. Since
V(τ) is a cone over a compact complex polyhedron and hence its projectivization
PV(τ) is homeomorphic to a closed topological ball, and since the action of ϕ
on V(τ) commutes with rescaling and hence descends to an action on PV(τ), the
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Brouwer fixed point theorem yields that ϕ has a fixed point in PV(τ). But ϕ acts
on PML ⊃ PV(τ) with north-south dynamics and therefore this fixed point has to
be the attracting fixed point of ϕ. As a consequence, the support µ of the horizontal
measured geodesic lamination of a point q ∈ Q̃ on the cotangent line of the axis of
ϕ is carried by τ .

Reversing the role of τ and its dual bigon track and replacing ϕ to ϕ−1, this
argument also shows that the vertical measured geodesic lamination of q is carried
by the dual bigon track τ∗ of τ and hence τ ∈ LT (ϕ) as claimed.

The inclusion of the set of train track expansions of ϕ into LT (ϕ) holds true for
all pseudo-Anosov mapping classes. To show the reverse inclusion we assume from
now on that the pseudo-Anosov mapping class ϕ preserves the combinatorics. Our
goal is to show that ϕ(τ) ≺ τ for every τ ∈ LT (ϕ).

To this end let as before µ be the support of the horizontal measured geodesic
lamination of the differential q. Then µ is minimal and filling, and its combinatorial
type coincides with the combinatorial type of any τ ∈ LT (ϕ). If η is obtained from
τ ∈ LT (ϕ) by a µ-split, that is, by a split with the property that η carries µ, then
η ∈ LT (ϕ).

The infinite cyclic subgroup Γ of Mod(S) generated by ϕ acts on the set LT (ϕ) ⊂
LT (Q̃) as a group of permutations. Let E ⊂ LT (ϕ) be the subset of all train track
expansions of ϕ. We noted above that this set is non-empty. Moreover, it is clearly
Γ-invariant and invariant under the shift operation on train tracks. We claim that
if τ ∈ E and if η is obtained from τ by a µ-split, then η ∈ E .

Thus let τ ∈ E and let e be a large branch of τ . We know that ϕ(τ) ≺ τ . As
a consequence, if ϕ(τ) is carried by the µ-split σ of τ at e, then since the µ-split
ϕ(σ) of ϕ(τ) at the branch ϕ(e) is carried by ϕ(τ), we have ϕ(σ) ≺ σ and we are
done. So assume that ϕ(τ) is not carried by the µ-split of τ at e.

Let A be a foliated neighborhood of τ in S; this is a neighborhood of τ which is
foliated by compact arcs, called ties, which are transverse to τ and intersect τ in
precisely one point. There is a collapsing map F : A → τ which collapses each of
these ties to a point. Since ϕ(τ) ≺ τ , the train track ϕ(τ) can be isotoped to be
embedded in A and transverse to the ties. The restriction of the collapsing map
F : A → τ to ϕ(τ) is a carrying map. We may assume that no switch of ϕ(τ) is
mapped by F to a switch of τ .

Let v be an endpoint of the large branch e. A cutting arc for ϕ(τ) and v is an
embedded arc γ : [0, d] → F−1(e) beginning at γ(0) = v which is transverse to
the ties of A, which is disjoint from ϕ(τ) except possibly at its endpoints and such
that the length of F (γ) ⊂ e is maximal among arcs with these properties. The
maximality condition implies that either F (γ[0, d]) = e, that is, γ crosses through
the foliated rectangle F−1(e), or that γ(d) is a switch of ϕ(τ) contained in the
interior of F−1(e), and the component of S − ϕ(τ) which contains v has a cusp at
γ(d). In particular, since ϕ preserves the combinatorics by assumption, if γ(d) is a
switch contained in the interior of F−1(e), then we have γ(d) = ϕ(v) and γ(d) is
an endpoint of the large branch ϕ(e).
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By Lemma A.2 of [H09], if ϕ(τ) is not carried by a split of τ at e, then the
following holds true. Let v, v′ be the endpoints of e and let γ : [0, d] → F−1(e),
γ′ : [0, d′] → F−1(e) be the cutting arcs for ϕ(τ) and v, v′. Then γ(d), γ′(d′)
are switches of ϕ(τ) contained in the interior of F−1(e), and there is a trainpath
ρ : [0,m]→ ϕ(τ) ∩ F−1(e) connecting ρ(0) = γ(d) to ρ(1) = γ′(d′).

Since ϕ preserves the combinatorics, it follows from the above discussion that
the trainpath ρ[0,m] consists of the single large branch ϕ(e). Then a collision β
of τ at e, that is, a split followed by removal of the diagonal, carries ϕ(β). As a
consequence, this collision is a train track expansion of ϕ.

On the other hand, the combinatorial type of β does not coincide with the
combinatorial type of τ . More precisely, β does not carry any geodesic lamination
whose topological type equals the topological type of the support of the horizontal
measured geodesic lamination of q. Together this is a contradiction to the beginning
of this proof.

To summarize, we showed so far that if τ ∈ E then so is any µ-split of τ .
To complete the proof of the lemma, it now suffices to show the following. Let
η ∈ LT (ϕ) be arbitrary; then there exists τ ∈ E such that η ≺ τ . Namely, by
[PH92], in this case τ can be connected to η by a splitting and shifting sequence,
and since η carries µ, by induction and what we have established so far, any train
track in the sequence is contained in E .

For τ ∈ E we have ϕ−k+1(τ) ≺ ϕ−k(τ) and hence ϕ−k(τ) ∈ E for all k. By
invariance under the action of Γ, it thus suffices to show that there is some k > 0
such that ϕkη ≺ τ . By Lemma 3.2 of [H09], this follows if for a complete finite
volume hyperbolic metric on S, a given number ε > 0 and all sufficiently large k,
the train track ϕkη is a-long and ε-follows µ where a > 0 only depends on the
hyperbolic metric. That this is indeed the case was established in Lemma 5.2. �

For a component Q̃ of a stratum Q̃(m1, . . . ,m`;−n, p) we write as before τ ∈
LT (Q̃) if τ ∈ LT (m1, . . . ,m`;−n, p) and if moreover the set Q(τ) ⊂ Q̃(S) is

contained in the closure of Q̃. Denote by Stab(Q̃) the stabilizer of Q̃ in Mod(S).

Lemma 5.4. For every component Q of a stratum there exists a number κ =
κ(Q) > 0 with the following property. If τ, σ ∈ LT (Q̃) and if σ ≺ τ then there

exists some ϕ ∈ Stab(Q̃) such that ϕ(τ) ≺ σ and that σ can be connected to ϕ(τ)
by a shifting and splitting sequence of length at most κ.

Proof. Let τ, σ ∈ LT (Q̃) with σ ≺ τ . Then Q(τ) ∩ Q(σ) contains an open subset

of Q̃. Since cotangent lines of axes of pseudo-Anosov mapping classes are dense
in Q̃, there exists a pseudo-Anosov mapping class ϕ ∈ Stab(Q̃) and a differential
q ∈ Q(τ) ∩ Q(σ) on the contangent line of an axis of ϕ. Lemma 5.2 and Lemma
3.2 of [H09] together show that there exists some k ≥ 1 such that ϕk(σ) ≺ τ . Since

the number of Mod(S)-orbits of train tracks in LT (Q̃) is finite, by invariance this
suffices for the proof of the lemma. �
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Let T (S) be the Teichmüller space of S. The translation length of a pseudo-
Anosov element ϕ ∈ Mod(S) is the minimal Teichmüller distance between a point
x ∈ T (S) and its image under ϕ. The translation length of ϕ only depends on the
conjugacy class of ϕ, and it equals the length of the periodic orbit of the Teichmüller
flow which is the projection of the cotangent line of an axis of ϕ to the moduli space
of quadratic or abelian differentials.

Our goal is to construct periodic orbits in the thin part of a stratum of abelian or
quadratic differentials by deforming periodic orbits in components of the principal
boundary of the stratum. To implement this idea we evoke counting results in
components of the principal boundary. We begin with the setup suitable for our
goal.

The moduli space of abelian or quadratic differentials is the quotient of the
Teichmüller space of abelian or quadratic differentials by the action of the mapping
class group Mod(S) of S. To avoid some technical difficulties, we replace Mod(S)
by a torsion free finite index subgroup and replace each component of a stratum
by the corresponding finite cover in the sense of orbifolds. Such a component is a
smooth manifold, and every periodic orbit for the Teichmüller flow in such a cover,
again denoted by Q, defines a nontrivial free homotopy class of the stratum. No
two distinct such orbits defined the same free homotopy class.

There is a further finite cover of a component Q defined as follows. Number
all zeros or poles for a differential q ∈ Q which occur with multiplicity greater
than one in an arbitrary way. Number furthermore the horizontal separatrices of a
differential q at each singular point in a counterclockwise order. This construction
defined a fiber bundle over Q with finite fiber. A point in the fiber over q determines
a numbering of the zeros and poles of q and a horizontal separatrix coming out of
each zero. If we denote by Q̂ a connected component of this fiber bundle, then
Q̂ → Q is a finite connected covering. The Teichmüller flow Φt naturally lifts to a
flow on this covering, and the flow preserves the lift of the Masur Veech measure.
Furthermore, a periodic orbit for Φt in Q̂ is defined by a pseudo-Anosov mapping
class which preserves the combinatorics and, in particular, fixes singular points.
From now on we always denote by Q̂ this finite covering (in the orbifold sense) of
the component Q.

Call a point q ∈ Q̂ recurrent if for every neighborhood U of q there is a sequence
of times ti → ∞, sj → −∞ such that Φtiq ∈ U,Φsjq ∈ U . The set of such points

has full measure for every Φt-invariant probability measure on Q̂.

Denote by λ the normalized lift of the Masur Veech measure on Q̂. Given a
contractible set U ⊂ Q̂, a point u ∈ U and a number T >> 0 such that ΦTu ∈ U ,
a characteristic curve of the pseudo-orbit (u,ΦTu) is a closed curve containing the
orbit segment ∪0≤t≤TΦtu which is obtained by connecting ΦTu to u with an arc
which is entirely contained in U . The following result is Proposition 4.5 of [H22].

Proposition 5.5. Let q ∈ Q̂ be a recurrent point. Then for every neighborhood U of
q and for all δ > 0, η > 0 there are contractible closed neighborhoods Z1 ⊂ Z2 ⊂ U
of q and there is a Borel set Z0 ⊂ Z1 and a number R0 > 0 with the following
properties.
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(1) λ(Z2) ≤ (1− δ)−1λ(Z0).
(2) For some integer m > 1/δ, a Φt-orbit intersects Z1, Z2 in arcs of length

2t0 < η/m.
(3) The set

Z3 = ∪−t0(m−2)≤t≤t0(m−2)Φ
tZ1

is contained in the interior of

Z4 = ∪−t0m≤t≤t0mΦtZ2 ⊂ U.
(4) Let z ∈ Z0 and let T > R0 be such that ΦT z ∈ Z3. Then there exists a path

connected set B(z) ⊂ Z2 containing z, with

ΦTB(z) ⊂ Z4 and λ(B(z)) ∈ [(1− δ)e−hTλ(Z1), (1− δ)−1e−hTλ(Z1)].

There is a periodic orbit γ for Φt of length contained in [T −mt0, T +mt0]
such that for each u ∈ B(z), the characteristic curve of the pseudo-orbit
(u,ΦTu) with endpoints in Z4 determines the same component γ(z, T ) of
γ ∩ Z4. If u ∈ Z0 −B(z) and if ΦTu ∈ Z3, then the arc γ(u, T ) is disjoint
from γ(z, T ).

Remark 5.6. In the formulation of Proposition 4.5 of [H22], the point q is required
to be a good recurrent point. The additional constraint comes from the difficulty
that a component of a stratum is not a manifold. In the finite manifold cover Q̂ of
Q, every point is good.

For a set PA of conjugacy classes of pseudo-Anosov elements in Mod(S) and for
R > 0 let n(PA, R) be the number of elements in PA consisting of conjugacy classes
of translation length at most R. We use Proposition 5.5 to establish a counting
result for periodic orbits in components of strata with combinatorial constraints.

Proposition 5.7. For any component Q̃ of the stratum Q̃(m1, . . . ,m`;−m, p) there

are numbers c = c(Q̃) > 0, R0 = R0(Q̃) > 0 with the following properties. Let

τ ∈ LT (Q̃) and let PA(τ, c) be the set of all conjugacy classes of pseudo-Anosov

elements ϕ ∈ Stab(Q̃) with the following properties.

a) ϕ(τ) ≺ τ .
b) The matrix A(ϕ, τ) is positive, and the ratios of the entries of A(ϕ, τ) are

bounded from above by c.
c) ϕ preserves the combinatorics.

Then we have

n(PA(τ, c), R) ≥ 1

ch(Q̃)R
eh(Q̃)R

for all R ≥ R0.

Proof. Let τ ∈ LT (Q̃). We claim that we can find a pseudo-Anosov mapping class
ϕ ∈ Mod(S) with the following properties.

(1) ϕ(τ) ≺ τ .
(2) The image of any branch of ϕ(τ) under a carrying map ϕ(τ)→ τ is surjec-

tive.
(3) ϕ preserves the combinatorics.
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To see that such a mapping class exists, note that we can always find a splitting
sequence starting at τ whose endpoint η has the property that the restriction of
the carrying map to each branch of η is onto τ (see [H09] for more information).
By Lemma 5.4, there is some ϕ ∈ Mod(S) such that ϕ(τ) ≺ η, and this mapping
class ϕ has the required properties. Note that ϕ is pseudo-Anosov by Lemma 5.1
since A(ϕ, τ) is defined by a positive matrix. By perhaps passing to a finite power,
we may assume that ϕ preserves the combinatorics.

Denote by Q0(τ) the set of quadratic differentials q ∈ Q(τ) whose horizontal
measured geodesic lamination deposits the weight one on τ ; then Q0(τ) is a local

cross section for the Teichmüller flow on Q̃. Let Û ⊂ Q0(τ) be the set of all
differentials v ∈ Q0(τ) whose horizontal measured geodesic lamination is carried
by ϕ(τ) and whose vertical measured geodesic lamination is carried by the dual
ϕ−1(τ∗) of ϕ−1(τ). By possibly replacing ϕ by a positive power, we may assume

that Û ⊂ Q̃, that is, no point in Û is contained in stratum of the boundary of Q̃.

To be more precise, let µ, ν be the attracting and repelling fixed point for the
action of ϕ on PML, respectively. If v ∈ Û then the horizontal measured geodesic
lamination of v is contained in ϕV(τ), and the vertical measured geodesic lamination
is contained in ϕ−1V∗(τ). As ∩k≥0ϕkV(τ) equals the line whose projective class
equals µ, and ∩k≥0ϕ−kV∗(τ) equals the line whose projective class equals ν, and

as Q̃ is an open subset of Q(τ), we obtain that by perhaps replacing ϕ by ϕk for a

suitably chosen k > 0, we may assume that Û ⊂ Q̃.

For every ε > 0, Ũ(ε) = ∪t∈(−ε,ε)ΦtÛ ∩ Q̃ is an open subset of Q̃. By perhaps

decreasing Ũ(ε) we may assume that Ũ(ε) projects homeomorphically to an open

subset U(ε) of the finite cover Q̂ of Q. The unit cotangent line of the axis of the

mapping class ϕ descends to a periodic orbit of Φt in Q̂.

Let q ∈ U(ε) be a point on the periodic orbit defined by ϕ. Choose an open
neighborhood V ⊂ U(ε) of q which is sufficiently small that the following holds
true. Let T > 0 be the period of the periodic point q. If w ∈ V then the Φt-
orbit of w intersects U(ε) in ΦTw,Φ2Tw, Φ−Tw and Φ−2Tw. Furthermore, there

is an open tubular neighborhood N ⊂ Q̂ of the periodic orbit through q which is
homeomorphic to a ball bundle over a circle and such that for every w ∈ V , we have
∪0≤t≤TΦTw ∈ N,∪−T≤t≤0Φtw ∈ N . Let U = V ∩ ΦTV ∩ Φ−TV ⊂ U(ε). Then U
is an open neighborhood of q in U(ε).

Let Z0 ⊂ Z1 ⊂ Z2 ⊂ U and Z3 ⊂ Z4 ⊂ U and R0 > 0 be as in Proposition
5.5. If w ∈ Z0 and if ΦRw ∈ Z3 for some R > max{4T,R0} then Proposition 5.5
shows that the pseudo-orbit (w,ΦRw) determines a periodic orbit for Φt, and this
orbit defines up to conjugation a pseudo-Anosov mapping class ψ. We may choose
a point w(ψ) ∈ Q0(τ) on the cotangent line of the axis of ψ. By the construction

of Q̂, the mapping class ψ preserves the combinatorics. Thus by Lemma 5.3, we
have ψ(τ) ≺ τ .

Consider the pseudo-orbit (Φ−Tw,ΦT+Rw) with endpoints in V . Let β ⊂ Q̃ be

a lift of this pseudo-orbit to Q̃ and let as before P : Q̃(S)→ T (S) be the canonical
projection. Up to replacing all mapping classes by conjugates and renaming, by the
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choice of V , the mapping class ϕ ◦ ψ ◦ ϕ maps Pβ(−T ) into a small neighborhood
of Pβ(R+ T ). Up to adjusting the set N which entered the definition of the open
set U and taking into account that a torsion free finite index subgroup of Mod(S)
acts properly discontinuously and freely on T (S), the mapping class ϕ ◦ ψ ◦ ϕ is
unique with this property. Moreover, the translation length of ϕ ◦ ψ ◦ ϕ does not
exceed R + 2T + χ where χ > 0 is a constant only depending on the choice of
U . Namely, the translation length of ϕ ◦ ψ ◦ ϕ is the infimum of the Teichmüller
distance between a point in T (S) and its image under ϕ ◦ ψ ◦ ϕ, and this distance
does not exceed 2T +R+ χ for a universal constant χ by the above discussion.

The map ψ has τ as train track expansion, and the same holds true for ϕ.
Concatenation shows that ϕ ◦ ψ ◦ ϕ has τ as train track expansion as well. We
claim that there is a number c > 0 not depending on ψ such that the ratios of the
entries of the matrix

A = A(ϕ, τ)A(ψ, τ)A(ϕ, τ)

are bounded from above by c.

Namely, let ` > 0 be the maximum of the ratios of the entries of the matrix
A(ϕ, τ). Then up to a factor of at most `, the entries in each line of the matrix
A(ψ, τ)A(ϕ, τ) coincide with a fixed multiple of the sum of the entries of the matrix
A(ψ, τ) in the same line. In particular, since A(ψ, τ) can not have a line all of whose
entries vanish, the matrix A(ψ, τ)A(ϕ, τ) is positive, and the ratios of its entries in
a fixed line are bounded from above by `.

Similarly, up to a factor of at most `, the entries in each row of the matrix A
coincide with a fixed multiple of the sum of the entries of A(ψ, τ)A(ϕ, τ) in the same
row. By the discussion in the previous paragraph, this implies that the ratios of the
entries of the positive matrix A are bounded from above by `2. Lemma 5.1 shows
that ϕ ◦ ψ ◦ ϕ is pseudo-Anosov. Furthermore, we have ϕ ◦ ψ ◦ ϕ(V(τ)) ⊂ ϕ(V(τ)
and ϕ−1ψ−1ϕ−1V∗(τ) ⊂ ϕ−1V∗(τ). Using once more the Brouwer fixed point
theorem, this implies that the attracting fixed point for the action of ϕ ◦ ψ ◦ ϕ on
PML is contained in the projectivization of ϕV(τ), and the repelling fixed point
is contained in the projectivization of ϕ−1V∗(τ). As a consequence, the cotangent

line of an axis of ϕ ◦ ψ ◦ ϕ is contained in Q̃. Thus any mapping class of the form
ϕ ◦ ψ ◦ ϕ constructed from a pseudo-orbit (u,ΦRu) with R > R0, u ∈ Z0 and
ΦRu ∈ Z3 has properties (a) -(c) stated in the proposition.

We are left with counting the number of such periodic orbits. Put h = h(Q̃).
Note that by Proposition 5.5, a point w ∈ Z0 with ΦRw ∈ Z3 determines a subseg-
ment of a periodic orbit passing through Z4 of uniform length 2t0, and points which
determine the same segment are contained in a subset B ⊂ Z2 with ΦR(B) ⊂ Z4

whose measure is bounded from above by (1− δ)−1e−hRλ(Z1). Thus each such set
accounts for at most the volume (1− δ)−1ehRλ(Z1) from λ(ΦRZ0 ∩ Z3) and hence
there are at least (1− δ)ehRλ(ΦRZ0 ∩Z3)/λ(Z1) such orbits. As a consequence, to
complete the proof of the proposition it suffices to show that for sufficiently large
R >> T , the Masur Veech measure of ΦRZ0 ∩ Z3 is bounded from below by a
universal constant. Namely, as the length of an intersection component of an orbit
with the set Z3 equals a fixed number 2t0 > 0, a periodic orbit of length R can not
intersect Z3 in more than R/2t0 components.



PERIODIC ORBITS IN THE THIN PART OF STRATA 43

Now the normalized Masur Veech measure λ is mixing for the Teichmüller flow
Φt on Q̂ and hence for a given number ε > 0 we have

λ(ΦRZ0 ∩ Z3) ≥ (1− ε)λ(Z0)λ(Z3)

for all sufficiently large R, say for all R ≥ R0. Then the statement of the proposition
holds true for c((1− ε)λ(Z0)λ(Z3)) and all R ≥ R0. �

6. Periodic orbits in the thin part of strata

In this section we only consider strata of differentials without marked regular
points. This means that strata of abelian differentials are defined on surfaces with-
out punctures, and a puncture of a surface S corresponds to a simple pole of a
quadratic differential. Our main goal is to prove Theorem 1 from the introduction.
Strata of differentials with marked regular points will be used in the proof.

Let S be a surface of genus g ≥ 0 with n ≥ 0 punctures and 3g − 3 + n ≥ 5.
Recall that a marked quadratic (or abelian) differential q ∈ Q̃(S) defines a marked
singular euclidean metric of area one on the surface S with singularities at the
zeros and at the poles of the differential. There is a unique finite volume complete
hyperbolic metric on S for the underlying conformal structure.

Define the systole of this hyperbolic metric to be the smallest length of a simple
closed geodesic. We write T (S)ε ⊂ T (S) for the space of all marked complete
hyperbolic metrics on S of finite volume whose systole is at least ε. The mapping
class group Mod(S) acts properly and cocompactly on T (S)ε.

Given a marked abelian or quadratic differential q ∈ Q̃(S), the q-length of an
essential simple closed curve c, that is, a simple closed curve which is not con-
tractible and not freely homotopic into a puncture, is defined to be the infimum
of the lengths with respect to the singular euclidean metric of any curve which is
freely homotopic to c.

The following observation is a fairly easy consequence of invariance under the
action of the mapping class group and cocompactness. A much stronger and more
precise version is due to Rafi [R14]. For its formulation, let

P : Q̃(S)→ T (S)

be the canonical projection which associates to a marked area one quadratic (or
abelian) differential its underlying marked hyperbolic metric.

Lemma 6.1. For every χ > 0 there is a number δ = δ(S, χ) > 0 with the following

property. Let q ∈ Q̃(S) and assume that there is an essential simple closed curve
on S of q-length at most δ; then Pq 6∈ T (S)χ.

Proof. By the collar lemma for hyperbolic surfaces, every cusp of a hyperbolic
surface has a standard embedded neighborhood. Such a neighborhood is homeo-
morphic to a punctured disk. Up to a geometric adjustment of the neighborhoods,
the hyperbolic distance between any two such cusp neighborhoods is bounded from
below by a universal positive constant.
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By Lemma 3.3 of [Mi94], for every χ > 0 there is a number L = L(χ) > 1

such that for every q ∈ Q̃(S) with Pq ∈ T (S)χ, the singular euclidean metric
defined by q is L-bilipschitz equivalent to the hyperbolic metric on the compact
set K. By the choice of the standard neighborhoods of the cusps, every essential
simple closed curve on S either is contained in K, or it intersects the set K in a
union of arcs whose hyperbolic length is bounded from below by some fixed number
c ∈ (0, χ) only depending on the topological type of S and on χ. Then the q-length
of any essential simple closed curve on S is not smaller than c/L. This shows the
lemma. �

Remark 6.2. Lemma 6.1 does not state that an essential simple closed curve of
short q-length has short hyperbolic length for the hyperbolic metric underlying the
complex structure of q. In fact, this is not true in general [R14].

For χ > 0 define

Q̃(S)χ = {q ∈ Q̃(S) | Pq ∈ T (S)χ}.

The sets Q̃(S)χ are invariant under the action of Mod(S) on Q̃(S). Their projec-
tions

Q(S)χ = Q̃(S)χ/Mod(S) ⊂ Q(S)

toQ(S) are compact and satisfyQ(S)χ ⊂ Q(S)δ for χ > δ and ∪χ>0Q(S)χ = Q(S).

For a component Q of a stratum of quadratic or abelian differentials and for
χ > 0, R > 0 let

n(Q, R)<χ ≥ 0

be the number of periodic orbits for the Teichmüller flow Φt of length at most
R which are contained in Q − Q(χ). Our goal is to show that for every χ > 0
and for sufficiently large R depending on χ, the number of such orbits is at least
de(h(Q)−1)R/R for a number d = d(Q, χ) > 0.

The strategy is to use a train track τ in special form for Q as a combinatorial
tool to lift periodic orbits on components of the principal boundary of Q into the
thin part of Q. We recall the important properties of such a train track τ .

(1) τ contains two clean vertex cycles c1, c2. Either the surface S − c1 − c2
is connected, or it consists of a connected component N which is different
from a sphere with at most three holes or a torus with at most one hole
and one or two additional components which are twice punctured disks.

(2) Let S0 (or S1, S2) be the surface which is obtained from the component of
S − c1− c2 (or of S − c1, S − c2) different from a sphere with at most three
holes by replacing the boundary circles by punctures. Then the graph σ0
on S0 (or σ1, σ2 on S1, S2) obtained by removing from τ all branches which
are incident on a switch in c1 ∪ c2 (or incident on a switch in c1, c2) is a
connected large train track, either on Si or on the surface obtained from Si
by removing one or two of the newborn punctures.
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We showed in Section 4 that for i = 1, 2 there is a component Qi of a stratum of
differentials for the surface Si (possibly with marked regular points or with some of

the newborn punctures removed) such that σi ∈ LT (Q̃i) where Q̃i is the preimage
of Qi. The component Qi is determined as follows.

Case 1: n ≥ 2 and the simple closed curve ci is separating.

Then ci bounds a twice punctured disk. There is a simple closed curve α em-
bedded in the train track σi (however with cusps) which is freely homotopic to
ci. Viewing σi as a train track on the surface Si, the curve α encloses the added
marked point on Si (which replaces the circle ci). We require that a differential in
Qi has

• a simple pole at this marked point in the case that α has a single cusp,
• a regular point if α is a bigon or
• a zero if α has at least three cusps (in which case we remove the marked

point).

Let h(Qi) be the dimension of the complex algebraic orbifold containing Qi as
a real hypersurface. We have h(Qi) = h(Q)− 2. A degeneration of differentials in
Q to a differential in Qi corresponds to a shrinking half-pillowcase.

Case 2: The simple closed curve ci is non-separating

Then S−ci has two boundary components. Each of these boundary components
is contained in a complementary component of σi (these components may coincide).
If there are two distinct such components then each of these components is an
annulus. One boundary component of such an annulus is the curve ci, and the
second boundary component α is contained in σi. As before, put a simple pole
on the puncture of Si which replaces the curve ci if α has a single cusp, view
the puncture of Si as a regular marked point if α is a bigon, and remove the
puncture and view is as a zero if α contains at least three cusps. Once again,
h(Qi) = h(Q) − 2. A degeneration of differentials in Q to a differential in Qi
corresponds to a shrinking cylinder. If both boundary components of S − ci are
contained in the same complementary component of σi then we proceed in exactly
the same way.

Our goal is to use the growth estimate from Section 5 for periodic orbits in Qi
which are defined by pseudo-Anosov mapping classes preserving the combinatorics,
with train track expansion σi. Such mapping classes can be lifted to reducible
mapping classes on S. We then concatenate suitably chosen such lifts to a pseudo-
Anosov element for S with train track expansion τ . We show that this can be
accomplished in such a way that the axis of this pseudo-Anosov mapping class is
contained in T (S)− T (S)χ where χ > 0 is an arbitrarily chosen constant.

Recall from Proposition 5.7 the counting constants di = d(Qi) > 0 (i = 0, 1, 2).
Choose elements ϕi ∈ Mod(Si) with the properties stated in Proposition 5.7 for the
numbers di. Each of these mapping classes has σi as a train track expansion and
fixes each of the complementary components of σi. These mapping classes can be
lifted to the mapping class group of the bordered surface S− ci (or of the bordered
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surface S − (c1 ∪ c2) if i = 0) which consists of isotopy classes of diffeomorphisms
fixing the curve ci (or c1 ∪ c2) pointwise. Such an extension in turn can be viewed
as a reducible element of Mod(S).

For a bordered surface X with a distinguished boundary component c and the
surface X ′ obtained from X by replacing c by a puncture, there exists an exact
sequence

1→ Z→ Mod(X)→ Mod(X ′)→ 1

where the infinite cyclic group Z is the group of Dehn twists about the boundary
curve c. Thus a choice of an extension of ϕi as described in the previous paragraph
is by no means unique. However, as ϕi is required to preserve the combinatorics,
we can use the train track τ to construct from ϕi a unique such extension.

Lemma 6.3. There is a natural choice of an extension of ϕi to an element of
Mod(S), again denoted by ϕi, which fulfills ϕi(τ) ≺ τ and is such that ϕi(τ) is
obtained from τ by a splitting and shifting sequence of τ which does not involve a
split at any branch in τ − σi.

Proof. Since ϕ(σi) ≺ σi, there exists a splitting and shifting sequence connecting
σi to ϕi(σi). Our goal is to extend this sequence of a splitting and shifting sequence
of τ .

By construction, there are at most two small branches b1, b2 of τ which connect
σi to the primitive vertex cycle ci of τ . Let e be a large branch of σi. If none of
the two small branches b1, b2 of τ has an endpoint in e, then e is a large branch of
τ and a split of σi at e can be viewed as a split of τ at e. The split track contains
ci as a clean vertex cycle.

If an endpoint of one of the branches b1, b2 is contained in e then there is a
modification of τ by a sequence of shifts and splits at branches of τ contained in e
such that the modified train track τ ′ is large, it contains e as a large branch and
the images of b1, b2 in τ ′ are small branches in τ ′. These splits and shifts move an
endpoint of bi contained in e across an endpoint of e. In this way we obtain from
a splitting and shifting sequence connecting σi to ϕi(σ) a splitting and shifting
sequence which connects τ to a train track ϕ̂i(τ) containing ci as a primitive vertex
cycle and such that the restriction of a carrying map ϕ̂i(τ)→ τ to ϕ̂i(σi) coincides
with the carrying map ϕi(σi)→ σi.

Since the positions of the endpoints of the small branches bi are moved along
sides of complementary components of σi, the train track ϕ̂i(τ) may not be isomor-
phic to τ . However, since ϕ preserves the combinatorics by assumption, it maps the
complementary component C of σi which contains the curve ci to the complemen-
tary component ϕi(C) of ϕi(σi) containing ci, and it maps a side of C containing
an endpoint of one of the small branches bi to the side of ϕi(C) containing the
endpoint of the same branch (with the canonical identification). Thus there is a
unique way to slide the endpoints of b1, b2 along these sides in such a way that the
extension of ϕi(σi) constructed in this way is isomorphic to τ with an isomorphism
(that is, a mapping class), which preserves ci and restricts to ϕi on σi. This is what
we wanted to show. �
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In the sequel we will always identify the map ϕi with this particular extension,
that is, we view ϕi as a reducible mapping class for S with ϕi(τ) ≺ τ and such that
there is a carrying map ϕi(τ)→ τ which is the identity on τ − σi. The map ϕ0 is
viewed as a reducible element of Mod(S) fixing c1 ∪ c2 pointwise.

In the statement of the following lemma, ◦ means composition from the left, that
is, a ◦ b represents the mapping class obtained by applying b first followed by an
application of a. This amounts to using the notational convention that (ϕ◦ψ)(τ) is
the train track obtained from τ by first changing the marking with ψ and afterwards
with ϕ.

Lemma 6.4. For every k > 0 the mapping class

ζ(k) = (ϕk0 ◦ ϕ2 ◦ ϕk0) ◦ (ϕk0 ◦ ϕ1 ◦ ϕk0)

is pseudo-Anosov.

Proof. Note first that ζ(k)(τ) ≺ τ for all k. Namely, by assumption on ϕi we have
ϕi(τ) ≺ τ (see the discussion) in Lemma 6.3 and its proof) and hence by invariance
of the carrying relation under the action of the mapping class group and induction,
we conclude that

ζ(k)(τ) = (ϕk0 ◦ ϕ2 ◦ ϕ2k
0 ◦ ϕ1 ◦ ϕk0(τ)) ≺ τ.

Let as before m be the number of branches of τ and let Rm be the real vector
space with basis the branches of τ . Write Rm = R`0 ⊕ R`1 ⊕ R`2 where R`0 is
the real vector space with basis the branches of τ contained in σ0 and where for
i = 1, 2 the vector space R`i has a basis consisting of the branches of τ − σi+1.
Then R`0 ⊕ R`i is the real vector space with basis the branches of σi.

Since ζ(k)2 is pseudo-Anosov if and only if this is true for ζ(k), by Lemma 5.1,
it suffices to show that the linear self map

A(ζ(k)2, τ) = A(ϕk0 , τ) · · ·A(ϕ1, τ)A(ϕk0 , τ)

of Rm is given with respect to the above basis by a positive matrix. This is equiv-
alent to stating that a carrying map ζ(k)2τ → τ maps every branch of ζ(k)2τ onto
τ .

For i = 1, 2 define

Ai = A(ϕk0 ◦ ϕi ◦ ϕk0 , τ).

The linear map A1 preserves the decomposition Rm = R`0+`1 ⊕ R`2 and therefore
it is given by a matrix in block form. The square matrix which corresponds to the
restriction of A1 to R`0+`1 is positive, and the square matrix which corresponds to
the action on R`2 is the identity. The same holds true for the linear map A2, with
the roles of `1 and `2 exchanged.

As a consequence, the image of a basis vector in R`0+`1 under the matrix A2A1

is a positive vector in Rm. Similarly, the image of a basis vector in R`0+`2 under
the matrix A1A2 is a positive vector in Rm and hence the matrix A2A1A2A1 is
indeed positive. This is what we wanted to show. �
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For the proof of Theorem 1, we count periodic orbits in the χ-thin part of a
component Q of a stratum by counting orbits which are defined by pseudo-Anosov
classes of the form described in Lemma 6.4 where we let ϕ1 vary, and we fix ϕ0, ϕ2

and some large enough k. The next lemma shows that indeed, such mapping classes
give rise to periodic orbits in the thin part of moduli space. Recall that the axis
of a pseudo-Anosov mapping class ϕ is the Teichmüller geodesic which is invariant
under ϕ.

Lemma 6.5. For every χ > 0 there exists a number k0 = k0(χ) > 0 with the
following property. If k ≥ k0 then the axis of each of the mapping classes ζ(k) as
in Lemma 6.4 does not intersect T (S)χ.

Proof. By Lemma 6.1, it suffices to show the following. For every ε > 0, there
exists a number k = k(ε) > 0 such that if k > k(ε) and if q ∈ Q̃ is contained in the
cotangent line of an axis of ζ(k), then there exists an essential simple closed curve
c on S of q-length at most ε.

Using the notations from Lemma 6.4, the carrying map ϕi(τ)→ τ can be chosen
in such a way that it maps each branch of ϕi(σi) onto σi, and it induces the identity
on τ − σi (i = 0, 1, 2).

For a transverse measure µ ∈ V(τ) and a subset B of the branches of τ denote
by µ(B) the total mass deposited by µ on the branches in B. Clearly µ(B) ≥ 0 for
all µ,B.

By Proposition 5.7 and the construction, for i = 1, 2 there is a number ai > 0
with the following property. Let µi be a measured geodesic lamination on S which
is carried by ϕi(σi) and which defines the transverse measure µi ∈ V(ϕi(σi)) ⊂
V(σi) ⊂ V(τ); then µi(b1)/µi(b2) ≤ ai for any two branches b1, b2 of σi.

This implies the existence of a number a > 0 with the following property. Let µ
be any measured geodesic lamination which is carried by ϕi(τ). Assume that the
transverse measure on ϕi(τ) defined by µ is not supported in ϕi(τ)−ϕi(σi). Let µ̂
be the transverse measure on τ induced from µ by a carrying map ϕi(τ)→ τ ; then

(4) µ̂(bi) ≥ 2aµ̂(σi)

for every branch bi of σi (i = 1, 2).

Let V0(τ) ⊂ V(τ) be the set of all transverse measures on τ of total mass one.
Note that V0(τ) is naturally homeomorphic to the projectivization of V(τ). For
ε ∈ (0, 12 ) and i = 0, 1, 2 let Ci(τ, ε) be the closed subset of V0(τ) containing all
transverse measures ν with the following properties.

(1) ν(τ − σi) ≤ ε.
(2) For any branch bi of σi < τ we have ν(bi) ≥ a.

Note that the set Ci(ε) is not empty by the above choice of the number a. Also, by
the second property above, we have ν(σ0) ≥ 2a for every ν ∈ Ci(τ, ε) and i = 1, 2
(recall that σ0 contains at least two branches).
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As in the proof of Lemma 6.4, let

Rm = R`0 ⊕ R`1 ⊕ R`2

be the vector space with basis the branches of τ . The subspace R`0 is spanned by
the branches of τ contained in σ0. A point ν ∈ Ci(τ, ε) (i = 0, 1, 2) can be viewed
as a non-negative vector v(ν) ∈ Rm with the property that the coefficients of the
basis elements in R`0 ⊕ R`i are bounded from below by a > 0 and that the sum of
the coordinates equals one.

Denote as before by A(ϕi, τ) the linear map which describes the action of ϕi on
V(τ), represented by a matrix with respect to the basis of Rm given by the branches
of τ . There is an induced action on V0(τ) by rescaling of the total mass; we denote

this action by Â(ϕi, τ). We claim that there is a constant u > 0 only depending on
ϕ0 such that for every ε > 0, for every k ≥ −u log ε and for i = 1, 2 we have

Â(ϕ0, τ)k(Ci(τ, ε)) ⊂ C0(τ, ε).

To show the claim note that the linear map A(ϕ0, τ) preserves the decomposition
Rm = R`0 ⊕ R`1 ⊕ R`2 and hence its matrix is in block form. The square matrix
A0 which defines the action on R`0 is positive and integral, and the square matrix
defining the action on R`1 ⊕ R`2 is the identity. Since `0 ≥ 2, the entries of the
matrix Ak0 are bounded from below by 2k−1 and hence

A(ϕ0, τ)k(ν)(σ0) ≥ 2k−1ν(σ0) for all ν ∈ V(τ).

Now if ν ∈ Ci(τ, ε) then we have ν(σ0) ≥ 2a and therefore

A(ϕ0, τ)k(ν)(σ0) ≥ a2k,

moreover A(ϕ0, τ)k(ν)(τ − σ0) ≤ 1− 2a for all k ≥ 1. Thus if

k ≥ k̂(ε) = (log(2(1− a))− log(aε))/ log(2)

then it holds A(ϕ0, τ)k(ν)(σ0) ≥ A(ϕ0, τ)k(ν)(τ − σ0)/ε and therefore

A(ϕ0, τ)k(ν)/(A(ϕ0, τ)k(ν)(τ)) ∈ C0(τ, ε).

Together with the estimate (4), this shows Â(ϕ0, τ)k(Ci(τ, ε)) ⊂ C0(τ, ε) for all

k ≥ k̂(ε).

By definition of the maps ϕi, we also have Â(ϕi, τ)(C0(τ, ε)) ⊂ Ci(τ, ε) for i =
1, 2. Together we deduce the existence of a number k(ε) ∼ − log ε > 0 such that for
k > k(ε), the set C0(τ, ε) is invariant under the map which assigns to a measured
geodesic lamination 0 6= µ ∈ V(τ) the normalized image of ζ(k)µ ∈ V(ζ(k)τ) under
a carrying map V(ζ(k)τ)→ V(τ).

Let Q0(τ) be the set of all differentials q ∈ Q(τ) with the property that the total
mass deposited on τ by the horizontal measured geodesic lamination of q equals
one. Then if k > k(ε) and if q ∈ Q0(τ) is contained in the ζ(k)-invariant flow line
of the Teichmüller flow, with horizontal measured geodesic lamination µ, then

µ ∈ C0(τ, ε).

Namely, the open cone C0(τ, ε) ⊂ V0(τ) is non-empty and invariant under the
action of the map ζ(k), viewed as a map V0(τ) → V0(τ). Since the closure of
C0(τ, ε) is homeomorphic to closed a ball and we have ζ(k)C0(τ, ε) ⊂ C0(τ, ε), the
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map ζ(k) has a fixed point in C0(τ, ε) by the Brouwer fixed point theorem. As ζ(k)
is pseudo-Anosov, the projectivization of this fixed point is the attracting fixed
point for the action of ζ(k) on PML, that is, it equals the horizontal projective
measured lamination of q.

The q-length of the simple closed curve ci is contained in the interval

[
1√
2

(ι(µ, ci) + ι(ν, ci)), ι(µ, ci) + ι(ν, ci)]

where µ, ν is the horizontal and the vertical measured geodesic lamination of q,
respectively [R14]. The intersection numbers ι(µ, ci), ι(ν, ci) can be estimated as
follows.

By Lemma 2.5 of [H06], we have

ι(µ, ci) ≤ µ(τ − σi)
and hence as µ ∈ C0(τ, ε), it holds

(5) ι(µ, ci) ≤ ε.

The support of the vertical (or horizontal) measured geodesic lamination of a
quadratic differential q is invariant under the action of the Teichmüller flow Φt,
and its transverse measure scales with the scaling constant et/2 (or with the scaling
constant e−t/2- note that this means that the length of the horizontal measured
geodesic lamination is decrasing along a flow line of the Teichmüller flow). Recall
that ϕk0ϕ1ϕ

k
0(c1) = c1 for all k. The estimate (5) thus implies that ι(e−t/2µ, c1) < ε

for all t ≥ 0. In other words, for t ≥ 0, the intersection between the horizontal
measured geodesic lamination of Φtq and c1 does not exceed ε.

Let κ > 0 be such that Φ2κq ∈ Q0(ϕk0ϕ1ϕ
k
0(τ)), that is, the total weight deposited

by eκµ on ϕk0ϕ1ϕ
k
0(τ) equals one. Our goal is to show that the Φtq-length of c1 is

smaller than 2ε for 0 ≤ t ≤ κ. To this end it suffices to show that ι(c1, e
κν) < ε. To

facilitate the notations, we show this by replacing ζ(k) = (ϕk0◦ϕ2◦ϕk0)◦(ϕk0◦ϕ1◦ϕk0)
by its conjugate

ζ̂(k) = (ϕk0 ◦ ϕ1 ◦ ϕk0) ◦ (ϕk0 ◦ ϕ2 ◦ ϕk0).

This conjugate admits τ as train track expansion. Let ν̂ be the vertical measured

geodesic lamination of the differential q̂ ∈ Q0(τ) on the cotangent line of ζ̂(k). We
claim that ι(c1, ν̂) < ε which is equivalent to stating that ι(c1, e

κν) < ε.

To see that this is indeed the case recall that by construction, the carrying
map ϕ2 ◦ ϕk0(τ) ≺ ϕk0(τ) maps every branch of ϕ2(ϕk0(σ2)) onto ϕk0(σ2). More
precisely, the following holds true. Let µ̂ ∈ V0(τ) be the horizontal measured
geodesic lamination of q̂ and let χ = χ(k) < 1 be such that the total weight of
the measured geodesic lamination χµ̂ on ϕk0(τ) equals one. Then the χµ̂-weight of
every branch in ϕk0(σ2) < ϕk0(τ) is bounded from below by the number a introduced
in the beginning of this proof.

The intersection number 1 = ι(χµ̂, χ−1ν̂) = ι(µ̂, ν̂) can be calculated as

ι(χµ̂, χ−1ν̂) =
∑
b

χµ̂(b)χ−1ν̂∗(b)
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where the sum is over all branches b of ϕk0(τ) = η and χµ̂(b) and χ−1ν̂∗(b) are
the weights of b for the transverse or tangential measure determined by χµ̂, χ−1ν̂
[PH92]. As this intersection number equals one, we have

χ−1ν̂∗(b) ≤ 1/a

for every branch b of the subtrack ϕk0(σ2). As c1 ⊂ ϕk0(τ) is an embedded subtrack
consisting of precisely two branches, we obtain

ι(χ−1ν̂, c1) ≤ 2/a.

It follows from the above discussion that χ(k) → ∞ as k → ∞. Thus for
sufficiently large k, say for k ≥ k(ε), we indeed have ι(c1, ν̂) < ε.

We showed so far the following. Let k ≥ k(ε), let ζ(k) be as in the statement of
the lemma and let q ∈ Q0(τ) be contained in the unit contangent line of an axis of
ζ(k). Let κ1 > 0 be such that Φκ1q ∈ Q0(ϕk0 ◦ϕ1 ◦ϕk0(τ)); then for every t ∈ [0, κ1],
the Φtq-length of the curve c1 is at most 2ε. The same argument also shows that
if κ2 > 0 is such that Φκ2q ∈ Q0(ζ(k)(τ)) then the Φtq-length of ϕk0ϕ1ϕ

k
0(c2) is at

most 2ε for κ1 ≤ t ≤ κ2. But {Φtq | 0 ≤ t ≤ κ2} is a fundamental domain for the
action of ζ(k) on the contangent line of its axis and hence the proof of the lemma
is completed. �

We are now ready to complete the proof of Theorem 1.

Proposition 6.6. Let S be a closed surface of genus g ≥ 0 with n ≥ 0 punctures
and 3g − 3 + n ≥ 5. Then for every component Q of a stratum in Q(S) or H(S)
and for every ε > 0, there exists a number c = c(Q, ε) > 0 such that

n(Q, R)<ε ≥ e(h(Q)−1)R/cR

for all sufficiently large R > 0.

Proof. For the proof of the proposition, we consider periodic orbits which are de-
fined by pseudo Anosov mapping classes ζ(k) = (ϕk0 ◦ ϕ2 ◦ ϕk0)(ϕk0 ◦ ϕ1 ◦ ϕk0) as
constructed in Lemma 6.4 where we fix ϕ0 and ϕ2 and vary ϕ1.

Let T (ϕi) > 0 be the translation length of the pseudo-Anosov mapping class ϕi
acting on the surface S− ci (i = 1, 2). We claim that there is a constant χ > 0 only
depending on k (and the choice of ϕ0) such that the translation length of ζ(k) is
contained in the interval (0, T (ϕ1) + T (ϕ2) + χ].

Namely, the translation length of ζ(k) is the logarithm of the Perron Frobenius
eigenvalue of the linear map A(τ, ζ(k)) determined by ζ(k). This Perron Frobe-
nius eigenvalue does not exceed the operator norm ‖A(ζ(k), τ)‖ of the linear map
A(ζ(k), τ) with respect to the norm ‖ν‖ =

∑
b |ν(b)| on Rm. We have

‖A(τ, ζ(k))‖ ≤ ‖A(σ1, ϕ1)‖‖A(σ2, ϕ2)‖‖B‖4k

where ‖A(σi, ϕi)‖ is the operator norm of the linear map A(σi, ϕi) defining the
map ϕi (which coincides with the operator norm of A(τ, ϕi)) and where ‖B‖ is the
operator norm of the linear map A(τ, ϕ0).
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On the other hand, by the choice of ϕi, there is a constant κ > 0 such that

|T (ϕi)− log ‖A(σi, ϕi)‖| ≤ κ.

The claim follows.

By Proposition 5.7, there exist numbers R0 > 0, d > 0 such that for T ≥ R0,
the number of mapping classes ϕi ∈ Mod(S1) of translation length at most R ≥ R0

which can be used in the construction of the mapping classes ζ(k) is bounded from
below by eh(Q)−2/dR. Then the number of elements in Mod(S) of the form

ζ(k) = ϕk0 ◦ ϕ2 ◦ ϕ2k
0 ◦ ϕ1 ◦ ϕk0

whose translation length is at most R ≥ R0 + χ is at least ae(h(Q)−2)R/R where
a > 0 is computed from χ and from the constant d. In particular, the asymptotic
growth rate of such periodic orbits is at least h(Q)− 2.

Let D be the Dehn twist about the curve c1 in the direction determined by τ .
By this we mean that we require Dτ ≺ τ and hence Dkτ ≺ τ for all k ≥ 0. If
p ≤ ueT (ϕ1) for a suitable choice of u > 0 depending on ε, then it follows from the
above discussion that the mapping class ϕk0 ◦ ϕ2 ◦ ϕ2k

0 ◦Dm ◦ ϕ1 ◦ ϕk0 also has the
required properties. This implies that simultaneous twisting about c1 adds one to
the exponent in the counting of the orbits constructed above and completes the
proof of the proposition. �

Remark 6.7. The stable length of a pseudo-Anosov element g ∈ Mod(S) on the
curve graph C(S) of S is defined to be

sl(g) = lim
k→∞

1

k
d(gkc, c).

This does not depend on the choice of c ∈ C(S).

Bowditch [Bw08] showed that there is an integer ` > 0 only depending on the
topological type of S such that the stable length on the curve graph of every pseudo-
Anosov element ϕ is rational with denominator `. The stable length of each of the
(infinitely many) pseudo-Anosov elements ζ(k) constructed in the proof of Proposi-
tion 6.6 is at most 2. We expect that this is approximately sharp, which means that
the asymptotic growth rate of all pseudo-Anosov mapping classes of stable length
at most 2 is not bigger than h(Q(S))− 1.

A similar argument also yields Theorem 2 from the introduction.

Proposition 6.8. For every component Q of a stratum as in Proposition 6.6 there
is a Teichmüller geodesic with uniquely ergodic vertical measured geodesic lamina-
tion whose projection to moduli space escapes with linear speed to infinity.

Proof. We argue as in the proof of Proposition 6.6. Namely, choose simple closed
curves c1, c2 as in the proof of Proposition 6.6 and fix pseudo-Anosov elements ϕi
of Si with the properties stated in the proof.
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Let τ be a large train track as in the proof of Proposition 6.6, with subtracks σi.
Let Ai = A(ϕi, σi) and denote by ‖Ai‖ the operator norm of A. Choose a sequence
of numbers (ki) such that for each i,

ki ≥ 2
∑
j≤i−1

kj .

Let ψi = ϕ1◦ϕki0 ◦ϕ2◦ϕki0 . Then for each i we have ψiτ ≺ τ . Write ζk = ψk◦· · ·◦ψ1.
We claim that ∩kζkV(τ) consists of a single ray.

To see that this is the case, note from the proof of Proposition 6.6 that for
each i a carrying map (ψi+1 ◦ ψi)τ → τ maps every branch of (ψi+1 ◦ ψi)τ onto τ
and its normalization contracts distances in the cone V0(τ) with a factor which is
independent of i. This implies immediately that ∩kζkV(τ) consists of a single ray.
In particular, a point on this ray is a uniquely ergodic measured geodesic lamination
which fills up S.

To show linear escape in moduli space, let λ ∈ V0(τ) be the normalized measured
geodesic lamination contained in this ray and let ν be a measured geodesic lamina-
tion which fills and hits τ efficiently. Then the pair (λ, ν) determines a quadratic

differential q. Let ` > 0 and let a > 0 be such that the measure ea/2λ on ϕk`0 ψ`−1(τ)
is normalized. Then the arguments in the proof of Lemma 6.6 show that the in-
tersection of the curve ϕk`ψ`−1c1 with the lamination ea/2λ is at most ce−a/2, and
similarly for the intersection with e−a/2ν. This yields the proposition. �

Remark 6.9. By the main result of [CE07], there is a number ε > 0 so that if
a Teichmüller geodesic in moduli space escapes into the cusp with a speed of at
most ε log t, then the vertical measured geodesic lamination of a differential on the
geodesic is uniquely ergodic. The above example implies that one can construct
differentials with uniquely ergodic vertical measured laminations and arbitrarily
prescribed excursions into the cusp.
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